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ABSTRACT. — In the present paper, we discuss the Grothendieck conjecture for hyperbolic
curves over Kummer-faithful fields. In particular, we prove that every point-theoretic and
Galois-preserving outer isomorphism between the étale/tame fundamental groups of affine
hyperbolic curves over Kummer-faithful fields arises from a uniquely determined isomor-
phism between the original hyperbolic curves.
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INTRODUCTION

In the present paper, we discuss the [semi-absolute version of the] Grothendieck con-
jecture for hyperbolic curves over Kummer-faithful fields. In [4], §2, S. Mochizuki proved
that every point-theoretic outer isomorphism between the fundamental groups of affine
hyperbolic curves over finite extensions of either Q, or I, for some prime number p arises
from a uniquely determined isomorphism between the original hyperbolic curves [cf. [4],
Corollary 2.2]. In the present paper, by refining various arguments given in [4], §1, §2;
[5], §1, we generalize this result of Mochizuki to the case of affine hyperbolic curves over
arbitrary Kummer-faithful fields [cf. Definition 1.2; also [5], Definition 1.5]. The main
result of the present paper is as follows [cf. Theorem 3.4].

THEOREM A. — Let O € {o, e}, kg a Kummer-faithful field [cf. Definition 1.2], and
X0 a hyperbolic curve over k. Write XCDpt for the smooth compactification of Xg and
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Dx_, C X2 for the divisor at infinity of Xo. Let
Iy,

O

be either the étale fundamental group m (Xn) of Xp or the tame fundamental group
miame (X2 Dy ) of (X*, Dx.). Write

Isom(Ilx,, ITx,)
for the set of isomorphisms of profinite groups Ilx, — Ilx, ;
ISOmpg(HXO,Hx.) Q ISOm(HXO,Hx.)

for the subset of isomorphisms lx, — Ilx, that are point-theoretic [i.e., induce bi-
jections between the set of decomposition subgroups of llx, associated to closed points of
X and the set of decomposition subgroups of Ilx, associated to closed points of X P
— ¢f. Definition 3.1, (i)] and Galois-preserving [i.e., induce isomorphisms between the
respective geometric subgroups — cf. Definition 3.1, (ii)];

Isom(X,, X,)
for the set of isomorphisms of schemes X, = X,. Then the following hold:

(i) Suppose that Isompg(Ilx,,Ix,) is nonempty. Then it holds that Ty, = m (Xo)
if and only if My, = m(X,).

(ii) Suppose, moreover, that either X, or X, is affine. Then the natural map
Isom(X,, Xs) — Isom(Ily,,IIx,)/Iy,
[cf. (1)] determines a bijection

Isom(X,, X,) — Isompg(Ilx,,Ix,)/Ily,.

0. NOTATIONS AND CONVENTIONS

NUMBERS. — We shall write Brimes for the set of all prime numbers. Let ¥ C Primes
be a subset of Primes. Then we shall say that a positive integer is a X-integer if every
prime divisor of the integer is contained in ¥. We shall refer to a finite extension of Q,

(respectively, IF,) for some prime number p as an MLF [i.e., a mized-characteristic local
field) (respectively, FF [i.e., a finite field)).

PROFINITE GROUPS. — We shall say that a profinite group is slim if every open subgroup
of the profinite group is center-free. One verifies immediately that an extension of center-
free (respectively, slim) profinite groups is center-free (respectively, slim).

Let G be a profinite group and H C G a closed subgroup. We shall say that H

is characteristic if every [continuous| isomorphism of G preserves H. We shall write

Za(H) for the centralizer of H in G, Z(G) o Za(@G) for the center of G, G® for the

abelianization of G [i.e., the quotient of G by the closure of the commutator subgroup

of G], Aut(G) for the group of [continuous] automorphisms of G, Inn(G) C Aut(G) for

the group of inner automorphisms of G, and Out(G) o Aut(G)/Inn(G) for the group of

outer automorphisms of GG. Note that if G is topologically finitely generated, then it follows
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immediately that the topology of G admits a basis of characteristic open subgroups, which
thus induces a profinite topology on Aut(G), hence also Out(G).

Let G be a center-free and topologically finitely generated profinite group and p: J —
Out(G) a homomorphism of profinite groups. Thus, we have a natural ezact sequence of
profinite groups

1 — @ — Aut(G) — Out(G) — 1.
Then, by pulling back this exact sequence by the homomorphism p, we obtain a profinite

t
group G ST , which fits into an exact sequence of profinite groups

1 G — GN T — ] — 1.

CURVES. — Let S be a scheme and X a scheme over S. Then we shall say that X is a
smooth curve over S if there exist a scheme X' which is smooth, proper, geometrically
connected, and of relative dimension one over S and a closed subscheme D C Xt of
X°P* which is finite and étale over S such that the complement X°*\ D of D in X
is isomorphic to X over S. Note that if S is the spectrum of a field %, then it follows
immediately from elementary algebraic geometry that the pair “(X* D)” is uniquely
determined up to canonical isomorphism over k; we shall refer to X' as the smooth
compactification of X and to D as the divisor at infinity of X.

Let S be a scheme. Then we shall say that a smooth curve X over S is hyperbolic if
there exist a pair (X D) satisfying the condition in the above definition of the term
“smooth curve” and a pair (g,7) of nonnegative integers such that 2g — 2 4+ r > 0, the
Os-module (X" — S),(Qxep/g) is [locally free] of rank g, and the finite étale covering
D — X' — S is of degree r.

1. FUNDAMENTAL GROUPS OF HYPERBOLIC CURVES OVER KUMMER-FAITHFUL
FIELDS

In the present §1, we discuss various objects related to the étale/tame fundamental
group of a hyperbolic curve over a Kummer-faithful field [cf. Definition 1.2 below]. In
the present §1, let k be a perfect field, k an algebraic closure of k£, and X a hyperbolic

curve over k. Write G < Gal(k/k). Note that one verifies immediately from the various
definitions involved that since k is perfect, every connected finite étale covering of X is a
hyperbolic curve over the finite extension of k obtained by forming the algebraic closure
of k in the function field of the covering.

DEFINITION 1.1. — We shall write
o Primes*/* C Primes for the set of prime numbers which are invertible in ,

x/k quotient of Z,

° ZX sk for the maximal pro-‘PBrimes
e X for the smooth compactification of X,
e Dy C X for the divisor at infinity of X,

e gy for the genus of X°Pt,
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X déf ﬁDX(E)>

Kx for the function field of X,

X for the set of closed points of X°P*, and

Div(X) for the group of divisors on XP*.

If € X*(k) is a k-rational point of X", then we shall write

e ord,: K% — Z for the [uniquely determined] surjective valuation associated to x €

XPL (k).

In the following, let
Hx
be either the étale fundamental group m(X) of X or the tame fundamental group
lame (XXpt D) of (X', Dy). Write
Ax C Iy
for the quotient of the étale fundamental group m (X ®k) C 71 (X) of X ®; k determined
by Ilx. Thus, we have an exact sequence of profinite groups

1 — Ay — Iy — G — 1.

Now let us recall [cf., e.g., [6], Corollary 1.4; [6], Proposition 1.11] that Ay is slim.

DEFINITION 1.2. — We shall say that k is Kummer-faithful if, for every finite extension
K of k and every semi-abelian variety A over K, it holds that

N N-AK) = {0)

— where N ranges over the positive integers [cf. Remark 1.2.1 below].

REMARK 1.2.1. — If £ is of characteristic zero, then it is immediate that k is Kummer-
faithful in the sense of Definition 1.2 if and only if £ is Kummer-faithful in the sense of
[5], Definition 1.5.

REMARK 1.2.2. — If k£ is Kummer-faithful, then the following assertion holds:
If K is a finite extension of k, then it holds that

EHY = {1}

x [k

— where N ranges over the Primes™/"-integers.

Indeed, this follows immediately, by considering the semi-abelian variety “G,,”, from the
definition of the term “Kummer-faithful’, together with our assumption that k, hence
also K, is perfect.
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REMARK 1.2.3. — A typical example of a Kummer-faithful field of characteristic zero is
a sub-p-adic field for some prime number p [i.e., a field which is isomorphic to a subfield
of a finitely generated extension of an MLF — cf. [3], Definition 15.4, (i)] [cf. [5], Remark
1.5.4]. A typical example of a Kummer-faithful field of positive characteristic is an FF.

DEFINITION 1.3.

(i) Let G be a profinite group. Then we shall write €(G) for the set of closed subgroups
of G. Note that G acts on €(G) by conjugation.

(ii)) We shall write
Gy: XM o @(Ily)/Ix
[cf. (1)] for the map given by mapping a closed point of XP* to the ITx-conjugacy class
of a decomposition subgroup associated to the closed point.

DEFINITION 1.4. — We shall write
Ax

for the cyclotome associated to the semi-graph of anabelioids of pro-PBrimes*/* PSC-type

[with no nodes] arising from the hyperbolic curve X ®, k [cf. [2], Definition 3.8, (i)].

REMARK 1.4.1. — In the notation of Definition 1.4:

(i) The cyclotome Ay is isomorphic, as a Gy-module, to lim —py(k) — where the
x [k

projective limit is taken over the JPrimes*/*-integers N, and we write py(k) for the

group of N-th roots of unity in k.

(ii) If X is proper over k [i.e., rx = 0], then

Ax o Homix/k (HQ(A)O ZX/k)’ ix/k)-

PROPOSITION 1.5. — Suppose that k is Kummer-faithful. Then the following hold:
(i) Write

Wi G — Aut(lim v (B) = (Zop)
N

-integers N, and we write (k)
*/k_adic cyclotomic character

— where the projective limit is taken over the Primes*/*

for the group of N-th roots of unity in k — for the Primes
of Gi. Then it holds that Z(Gy,) N Ker(xard) = {1}.
(ii) The profinite group I1x is slim.

PROOF. — First, we verify assertion (i). Assume that there exists a nontrivial element
v € Z(Gy) NKer(x3"). Let K be a finite Galois extension of k contained in & such that
the corresponding normal open subgroup G C Gy does not contain v € G. Then since
v € Z(Gr)N Ker(xgy/ck), the natural action of v on H'(G, lim pn(k)) is trivial. On the
other hand, it follows from Remark 1.2.2, together with the Kummer theory, that this
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triviality implies the triviality of the action of v on K. Thus, since v € Gk, we obtain a
contradiction. This completes the proof of assertion (i).

Next, we verify assertion (ii). Let us first observe that since a connected finite étale
covering of X is a hyperbolic curve over a Kummer-faithful field [cf. our assumption that
k is perfect], to verify assertion (ii), it suffices to verify that I1x is center-free. Next, let us
observe that since Ay is center-free, the composite Z(Ilx) < IIx — Gy is an injection,
whose image is contained in the center Z(Gy) of Gi. On the other hand, it follows
immediately from the various definitions involved that the natural action of Z(Ily) on
Ax is trivial, i.e., that the image of the composite Z(Ilx) < Ilx — G}, is contained in
Ker(xcxy/ck) [cf. Remark 1.4.1, (i)]. Thus, it follows from assertion (i) that Z(Ilx) = {1}.
This completes the proof of assertion (ii), hence also of Proposition 1.5. U

REMARK 1.5.1. — In the situation of Proposition 1.5, (i), in general, it does not hold
that Z(Gy) = {1}. Indeed, although [one verifies easily that] an FF is Kummer-faithful,
the absolute Galois group of an FF is abelian and nontrivial.

LEMMA 1.6. — The following hold:

(i) The quotient of Illx by the normal closed subgroup generated by the intersections
Ax N H — where H ranges over the closed subgroups of Ilx whose images in €(11x)/Ilx
are contained in the image of the map &x of Definition 1.3, (ii) — coincides with the
quotient I x — my (XPY).

(ii) The subset Primes*/* C Primes is the [uniquely determined] mazimal infinite
subset on which the map ‘Primes — 7Z given by mapping p € Primes to dimg, (7r1 (X P QR
k)™ ®5 Q,) (< oo — cf. [6], Proposition 1.1) is constant.

(ili) For every p € Primes /% it holds that dimg, (AP ®5Q,) = 2gx +max{0,ryx — 1},
dimg, (m1 (X' @4 k)?* ®5 Q,) = 2gx.

(iv) It holds that X is proper over k [i.e., rx = 0] if and only if, for every p €
Primes*/*, the mazimal pro-p quotient of Ax is not free pro-p.

(v) It holds that Ax is not topologically finitely generated if and only if char(k) #
0, rx # 0, and llx = m(X). In particular, it holds that Ax is topologically finitely
generated if and only if llx = 72 (Xt Dy).

PROOF. — Assertion (i) follows immediately from the various definitions involved. As-
sertions (ii) and (iii) follow immediately from [6], Corollary 1.2. Assertions (iv) and (v)
follow immediately from [6], Proposition 1.1. This completes the proof of Lemma 1.6. [

LEMMA 1.7. — Suppose that k is Kummer-faithful. Then the following hold:
(i) The map &x: X — &(Ilx)/Ix of Definition 1.3, (ii), is injective.

(ii) Suppose that X is proper over k [i.e., rx = 0]. Let m be a positive integer
and xy,...,x, € X(k) distinct k-rational points. Thus, for each i € {1,...,m}, the
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k-rational point z; € X (k) determines a splitting s; [well-defined up to A% -conjugation]
of the exact sequence of profinite groups

1 — AY — Ix/Ker(Ax —» AY) — G — 1.

Let (ny,...,ny,) € Z%™ be such that Y " n; = 0. Thus, by considering the linear
combination “y_", n; - s;” of the s;’s, we obtain a cohomology class [> i~ n; - s;| €
HY(Gy, AY). Then the divisor Y ;" n;-x; [of degree zero] on X is principal if and only

if Do, ni - si) =0 in HY(Gg, AR).

PROOF. — Assertion (i) follows immediately from a similar argument to the argument
applied in the proof of [6], Proposition 2.8, (i). Assertion (ii) follows immediately from a
similar argument to the argument applied in the proof of [4], Proposition 2.2, (i). This
completes the proof of Lemma 1.7. O

LEMMA 1.8. — Suppose that k is Kummer-faithful, and that Dx(k) = Dx(k). For
x € Dx(k), let 3, C Ax be an inertia subgroup of Ax associated to x. Then the following
hold:

(i) The inclusions J, — llx — where x ranges over the elements of Dx(k) — and
the surjection llx — G} determine an eract sequence

0 — H'(Gp,Ax) — H'(lx,Ax) — P Homy(J,, Ax).

z€Dx (k:)

Thus, by considering the isomorphism [well-defined up to a (Zy i)™ -multiple]
(kX)X/k déf lin kX/(kX)N AN Hl(Gk,Ax)

N

— where the projective limit is taken over the Primes*/*-integers N — obtained by the

Kummer theory [cf. Remark 1.4.1, (1)] and the identification
Zx/k = Homzx/k(AX,AX) — Homzx/k(ji/k,AX) — Homy(J,,Ax)

x [k

— where we write 3" for the mazimal pro-Primes™/* quotient of I, — obtained by the

/k

synchronization of cyclotomes 35" = Ay discussed in [2], Corollary 3.9, (v), we obtain

an exact sequence

0 — (kX)x/k SN HI(HX,A)() N @ Zx/k_
IEDx(k)
(ii) The exact sequence of the final display of (i) fits into the following commutative
diagram

D.cny(x) orde
s

0 — R - (’))X((X) ®$€DX(]€) -
0 — W) —— By Ax)  ——  Buepyg Lo

— where the horizontal sequences are exact, the vertical arrows are injective, the left-
hand and middle vertical arrows are the homomorphisms obtained by the Kummer theory,
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and the right-hand vertical arrow is the homomorphism determined by the natural inclu-
sion 2o — Ly jj.

(ili) Lety € X (k) be a k-rational point. Then the composite

O%(X) — H'(Ilx,Ay) — HY(Gp,Ax) < (kK*)*/*
— where the first arrow is the middle vertical arrow of the diagram of (i), and the
second arrow is the homomorphism determined by the splitting [well-defined up to Ax-
conjugation] of llx — Gy, induced by y € X(k), i.e., “©x(y)” — coincides [up to a
(Zx/k)x-multiple — ¢f. the isomorphism (k*)*/* 5 HY(Gy, Ax) discussed in (i)] with
the composite
OF(X) — K — ()
fo= )

— where the second arrow is the natural homomorphism.

PROOF. — Since the Gj-invariant of the Primes*/*-adic Tate module of the Jacobian

variety of X°P* is trivial [by our assumption that k is Kummer-faithful], assertion (i)
follows immediately from a similar argument to the argument applied in the proof of
[4], Proposition 2.1, (ii). Assertions (ii) and (iii) follow immediately — in light of Re-
mark 1.2.2 — from the functoriality of the Kummer class, together with the various
definitions involved. This completes the proof of Lemma 1.8. U

DEFINITION 1.9. — Suppose that k is Kummer-faithful, and that X is proper [i.e., rx =
0]. Let S C X(k) be a finite subset and x € X (k) \ S. Thus, since X \ S is a hyperbolic

curve over k, it follows from Lemma 1.8, (i), that we have an exact sequence

0 — (k,X)x/k SN Hl(HX\S,AX) — @Zx/k
seS

— where we write IIx\g o miEme( X, S). We shall write

P(X,S) dof { (ng)ses € @ Z‘ The divisor Z ng - s is principal. } C @ Zx/k;
ses seS seS
OX<HX7S) g H1<HX\S7AX)
for the submodule obtained by forming the inverse image of the submodule P(X,S) C

~

D.cs Zyx i via the third arrow of the above exact sequence;
ev,(Ily, S): O*(Ilx,S) — H'(Gi, Ax)

for the restriction to O* (Ilx, S) € H'(Ilx\s, Ax) of the homomorphism H'(IIx\g, Ax) —
H'(G, Ax) determined by the splitting [well-defined up to Ax\ s-conjugation] of IIx\g —
Gy induced by z € X(k)\ S, i.e., “Gx\s(x)";

KX (Iy) = lim O* (Ilxg,x, T)

KT

— where the injective limit is taken over the finite extensions K of k contained in k and the
finite subsets 7' C (X ®; K)(K). Here, we note that the natural injection IIxg, x — Ilx
[well-defined up to Ax-conjugation] and the natural surjection IIxg, x = Gk determine
an isomorphism I xe, x — [x Xg, Gx [well-defined up to (Ax x {1})-conjugation].
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LEMMA 1.10. — Suppose that k is Kummer-faithful, and that X is proper [i.e.,
rx = 0]. Then the following hold:

(i) The middle vertical arrows of the diagram of Lemma 1.8, (ii), in the case where
we take “X 7 of Lemma 1.8, (ii), to be (X @y K)\ T — where K ranges over the finite
extensions of k contained in k and T ranges over the finite subsets of (X ®; K)(K) —
determine an injective homomorphism

K — K*(Ilx)

X®kE
[cf. Definition 1.1].
(ii) Let S C X(k) be a finite subset. Then the diagram of Lemma 1.8, (ii), determines

a commutative diagram

@mes ord,
_

0 — k> — Ox(X\9) P(X,S) — 0

| l H

0 —— HYGp,Ax) —— O0*(Ilx,S) —— P(X,S) — 0.
— where the horizontal sequences are exact, and the vertical arrows are injective.

(ili) Let S € X(k) be a finite subset and x € X (k) \ S. Then the kernel of the

homomorphism
ev,(Ilx, S): O*(llx,S) — H'(Gy,Ax)
coincides, relative to the middle vertical injection of the diagram of (ii), with the sub-
group
{feOx(X\9)|f(z)=1}
of O%x(X\ 9), i.e.,
Ker(ev,(Ily, S)) = {f€ 03X\ )| f(z) =1} C OF(X\S).
In particular, for every y € X (k) \ S, relative to the left-hand vertical injection of the
diagram of (ii), it holds that

evy(Ily, S)(Ker(ev,(Ilx, S))) C k*.

(iv) Let x1, zo € X (k) be such that xy # x5. Then
(a) the subgroups
Ker(eviz) (Mxeux,5) € O*(Ilxe,x,S) € K*(Iy)
— where i ranges over the elements of {1,2}, K ranges over the finite extensions of k
contained in k, S; ranges over the finite subsets of (X ®y K)(K) which do not contain

()i, and we write (x;)x € (X @k K)(K) for the K-rational point determined by x; —
and

(b) the subgroups
eV a)ic (Mxeercs §) (Ker (evia « (Mxe,x, 8))) € H'(Gx,Ax) © K*(Ilx)

— where K ranges over the finite extensions of k contained in k, S ranges over the
finite subsets of (X ®p K)(K) which do not contain (x1)x and (r3)k, and we write
(xi)k € (X @ K)(K) for the K-rational point determined by x; —
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generate the image of the injection of (i).

PROOF. — Assertions (i), (ii) follow immediately from the various definitions involved,
together with our assumption that k is Kummer-faithful. Next, we verify assertion (iii).
Let us first observe that one verifies immediately from Lemma 1.8, (iii), together with the
various definitions involved, that, to complete the verification of assertion (iii), it suffices
to verify that Ker(ev,(Ilx,S)) C O%(X \ S). Let f € Ker(ev,(Ilx,S)). Next, let us
observe that it follows immediately from assertion (ii) that there exist g € O%(X \ S)
and a € H'(Gy, Ax) such that f = a-g. Thus, it holds that

Vx(HX7 )( ) = a'evx(HX7S)(g)a

which thus implies that a = ev,(IIx,S)(g)~" € k* [cf. Lemma 1.8, (iii)]. In particular,

we conclude that f =a-g € O%(X \ S). This completes the proof of assertion (iii).
Finally, we verify assertion (iv). Write F C K*(Ilx) for the subgroup generated by

the various subgroups (a), (b) appearing in the statement of assertion (iv) and regard

K ;@ - as a subgroup of K*(ILy) by means of the injection of assertion (i). Then let us
observe that it follows from assertion (iii) that 7 C K ;@ 7+ Moreover, by considering

the subgroups (b), one verifies immediately — in light of Lemma 1.11, (i), below — from
assertion (iii), together with Lemma 1.8, (iii), that

E C]—"CKX

In particular, by considering the subgroups (a), we conclude from assertion (iii), together
with Lemma 1.8, (iii), that, for a rational function f € K)X@J’ if f((x:)z) & {0,00} for

some i € {1,2} [where we write (7;); € (X ®; k) (k) for the k-valued point determined by
x;], then f € F. Thus, the equality F = K ;@k - follows immediately from Lemma 1.11,

(ii), below. This completes the proof of assertion (iv). O

LEMMA 1.11. — Let Q be an algebraically closed field; C' a proper hyperbolic curve over
Q; x, y € C(Q) distinct Q-valued points of C. Then the following hold:

(i) For every A € Q\{0, 1}, there exists a rational function f € K¢ [cf. Definition 1.1]
such that f(x) =1 and f(y) =

(ii) The multiplicative group K[ is generated by rational functions f € K[ such

that f({x,y}) € {0, 00}

PROOF. — Assertion (i) follows immediately by considering, for instance, a suitable
linear fractional transformation (ag + b)/(cg + d) [where a, b, ¢, d € Q] of a rational
function g € K} such that g(x) # g(y) . Next, we verify assertion (ii). Write F C K
for the subgroup of K generated by rational functions f € K7 such that f({z,y})
{0,00}. To complete the verification of the equality F = K[, let us take a rational
function g € K7 such that g({z,y}) C {0,00}. Now, to verify g € F, we may assume
without loss of generality, by replacing g by ¢g~! if necessary, that g(x) = oo, i.e., that
ord,(g) < 0. Then one verifies immediately from the Riemann-Roch theorem that there
exists a rational function h € K such that ord,(g) = ord,(h) (= ord,(h + 1)) and
h(y) =0 [i.e., (h+1)(y) = 1]. Thus, since g/(h+1), h+1 € F, we conclude that g € F.
This completes the proof of assertion (ii). U
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DEFINITION 1.12. — We shall write
A (respectively, AG™)

for the maximal quotient of Ax such that the natural surjection Ay —» m (Xt @y, k)
factors through the surjection Ax — A% (respectively, A%™), and, moreover, the kernel
of the resulting surjection A (respectively, AG™) — 7 (X' ®y, k) is pro-Primes*/*
and abelian (respectively, pro-Primes*/* and contained in the center of AG). We shall
write

IS (respectively, TIS™)

for the quotient of Ily by the kernel of Ax — A%* (respectively, A™). Thus, we have
a commutative diagram of profinite groups

1 —— AX E— HX Gk 1
1 —— AP —— g G 1
I —— A —— TIg™ Gh 1

— where the horizontal sequences are exact, and the vertical arrows are surjective.

LEMMA 1.13. — The following hold:

(i) The natural surjections
HX s H_C)éab s H(‘;écn
determine isomorphisms

HY IS, Ax) = HYIISP, Ay) — H'(ILy, Ay).

(ii) Suppose that X is proper [i.e., rx = 0]. Let x1,...,x, € X (k) be distinct k-
rational points. Fori € {1,...,n}, write U; o X\{z;} and U o X\{z1,...,z,}. Then
the natural open immersions U — U; — where i ranges over the elements of {1,...,n} —
determine an isomorphism of profinite groups [well-defined up to AG™ Xay - - Xax AF-
conjugation

TG T iy -y T
PROOF. — Assertion (i) follows immediately from the various definitions involved. As-

sertion (ii) follows immediately from a similar argument to the argument applied in the
proof of the final portion of [4], Proposition 1.6, (iii). O
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2. MAXIMAL CUSPIDALLY ABELIAN QUOTIENTS

In the present §2, we discuss the mazimal cuspidally abelian quotients “H‘f}f{bxkx” [cf.

Definition 2.1, (ii), below] of the étale fundamental groups of the second configuration
spaces of proper hyperbolic curves. In the present §2, we maintain the notation of the
preceding §1. Suppose, moreover, that X is proper over k [i.e., rx = 0]. Write

IIxy, x o m(X X X) DO Axux o (X x5, X) @ k)

for the respective étale fundamental groups of X x; X, (X x;, X) ® k. Then let us recall
that the two projections X x;, X — X determine an isomorphism of profinite groups

Myw,x — Iy Xg Oy,
which restricts to an isomorphism of profinite groups
AXXkX = AX X Ax.

Let N be a Primes*/*-integer. Write

def

AX,N = Ax/NAX = Homzx/k(H2(ijzx/k)7Z/NZ)

[cf. Definition 1.4; Remark 1.4.1, (ii)].

DEFINITION 2.1.

(i) We shall write Uxx,x € X X X for the second configuration space of X, i.e., the
open subscheme of X x, X obtained by forming the complement of the diagonal divisor
X C X x5 X. Thus, the natural inclusion Ux, x < X Xj; X determines a commutative
diagram of profinite groups

1 —— m((Uxx,x) Q@ k) —— m(Uxx,x) G 1
1l —— Axx,x —  Ilx«x G, 1

— where the horizontal sequences are exact, and the vertical arrows are surjective.
(ii) We shall write
AR

c-ab . c-cn )
Ux x, x

Uxxx? Ux xpx

(respectively, A

for the maximal quotient of 71 ((Ux«, x ) ® k) such that the left-hand vertical arrow of the
diagram of (i) factors through the surjection m ((Uxx,x) ®x k) — AB;XX/;Z (respectively,

Af};“(b X U kX)’ and, moreover, the kernel of the resulting surjection A?})((X/ ]2 (respectively,
X X X

A?j;bxk o AT x) 7 Axgx s pro-Primes*/* (respectively, pro-Primes*/* and abelian;
pro-Primes*/* and contained in the center of A ). We shall write

Uxxx

e O</%)

c-ab . c-cn )
Uxxpx

Uxxpx? Ux xpx

(respectively, II
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for the quotient of 71 (Uxx, x) by the kernel of 7, (Uxx,x) ®rk) —» AC'(X/k)g (respectively,

Ux x,

Afj;bxkx; Ag;“xkx). Thus, the diagram of (i) determines a commutative diagram of profi-

nite groups

S R
L —— AFY « — &0« G !
1 —— AR —— I G 1
1 — Axy,x — xux G 1

— where the horizontal sequences are ezxact, and the vertical arrows are surjective.

LEMMA 2.2. — Let x € X(k) be a k-rational point. Write U o X \ {z}. Then the
splitting [well-defined up to Ax-conjugation] s: Gy, — Iy induced by z, i.e., “Gx(z)”,
determines an isomorphism of profinite groups over Gy,

H?]-cn ; H?]_)C(I;kx XHXka (S(Gk) XGk Hx)

[cf. Definition 1.12].

PrOOF. — This follows immediately from a similar argument to the argument applied
in the proof of [4], Proposition 1.6, (iii), (iv). O

LEMMA 2.3. — Suppose that Ilx is slim, and that k is p-cyclotomically full for every
p € Primes /¥ [i.e., the image of the p-adic cyclotomic character of Gy, is open in L,
for every p € Primes*/*]. Then an extension of an open subgroup of either Iy or My, x
by a [possibly empty| finite product of copies of Ax is slim.

PROOF. — Let us first observe that since the profinite group IIxy, x Sy Xq, IIx has
a structure of extension of IIx by Ay, and Ax is slim, it follows that Iy, x is slim. In
particular, since k is p-cyclotomically full for every p € Primes*/*, it follows immediately
from Remark 1.4.1, (i), that an extension of an open subgroup of either Iy or Iy, x by
a finite product of copies of Ax is slim. This completes the proof of Lemma 2.3. O

REMARK 2.3.1. — It follows immediately from Proposition 1.5, (ii), together with a
similar argument to the argument given in [5], Remark 1.5.1, that if k is Kummer-faithful,
then the two assumptions in the statement of Lemma 2.3 are satisfied. In particular, in
this situation, it follows from Lemma 2.3 that an extension of an open subgroup of either
IIx or Ilxy«, x by a [possibly empty] finite product of copies of Ay is slim.
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DEFINITION 2.4. — Let A C Ax be a characteristic open subgroup of Ax and Iy C Iy
an open subgroup of IIx such that Ay = IIy N Ax = A. Write Gy, C G, for the
image of the composite IIy < Ilx — Gy. [Thus, the connected finite étale covering
Y — X [corresponding to IIy C Ilx] is a hyperbolic curve over the finite extension ky of
k [corresponding to Gy, C Gl

(i) By conjugation, we obtain an action IIx — Aut(A), hence also a semi-direct
product A x IIx, which fits into an exact sequence of profinite groups

1 — AXxAxy — Axlly — G, — 1.
Observe that since Ay is slim, it follows that A x Ax is slim.

(ii) By restricting the action IIx — Aut(A) of (i) to IIy C Ilx, we obtain a semi-direct
product A x IIy. Then one verifies easily from the fact that A is center-free that the
centralizer Zaua, (A) C A x Ay determines a splitting of the exact sequence of profinite
groups

1 — A — AxAy — Ay — 1.
Thus, the natural surjections A X Ay — (A X Ay)/Zaway, (A), Ay determine isomor-
phisms of profinite groups

A X Ay AN ((A X Ay)/ZANAy(A)) X Ay <A X AY;
which are compatible with the natural outer actions of Gy, . In particular, by considering

“(-) N G, " [cf. the slimness of A x Ax discussed in (i)], we obtain an isomorphism of
profinite groups

AxIly — Iy Xay, Iy («— My, v)-
Observe that one verifies immediately from the various definitions involved that the natu-

ral splitting of the surjection Ily by Y = Axlly —» Iy arises from the diagonal morphism
Y =Y %, Y.

(iii) We shall write Zn — X x; X for the connected finite étale covering corresponding
to the open subgroup

HZ déf ANHX - AXxHX 5 HXXkX

A

— where the “=” is the isomorphism obtained in (ii). Thus, the exact sequence of (i)
determines an exact sequence of profinite groups
1 — AZA déf KGT(HZA - Gk) — HZA — Gk — 1.

Observe that one verifies immediately from the various definitions involved that the sur-
jection Iz, = AxIly — IIx arises from an “isotrivial’ [cf. (ii)] hyperbolic curve Zn — X
over X, and the natural splitting of the surjection II;, = A x IIx — Ilx arises from a
section ta: X — Za — that lies over the diagonal morphism X — X x; X [cf. (ii)] —
of this hyperbolic curve Zn — X.

REMARK 2.4.1. — One verifies easily from the various definitions involved that, in the
notation of Definition 2.4, if k is either an MLF or FF, then the finite étale covering
Za — X Xy X of Definition 2.4, (iii), is the diagonal covering associated to the covering
Y — X in the sense of [4], Definition 1.2, (i).
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LEMMA 2.5. — In the notation of Definition 2.4, the following hold:

(i) Let i #0 be an integer, G € {A,1lz,}, and A a finite G-module annihilated by a
Primes*/*-integer. Then
lim HY(H, A) = {0}
H
— where the inductive limit is taken over the open subgroups H C G, and the transition
morphisms in the limit are given by the restriction maps.

(ii) Let i # 2 be an integer and A a finite module equipped with the trivial action of
A that is annihilated by a Primes™/*-integer. Then
lim H'(H, A) = {0}
H
— where the projective limit is taken over the open subgroups H C A, and the transition
morphisms in the limit are given by the corestriction maps.
(iii) Let i be an integer and A a finite 15, -module annihilated by a Primes*/*
Then the natural homomorphism

H'(My,,A) — H'(Za,A)

-integer.

18 an isomorphism.

PROOF. — Assertion (i) follows immediately from a similar argument to the argument
applied in the proof of [1], Lemma 4.2, (iii). Next, we verify assertion (ii). Let us recall
cf., e.g., [4], Proposition 1.3, (ii)] that the homomorphism

i 2-i
H'(H,A) — Homix/k (H*7'(H,Ax), A)

determined by the cup product in group cohomology and the natural isomorphism of A x

with “Ax” with respect to H [cf., e.g., [4], Remark 1] is an isomorphism. Thus, assertion

(ii) follows immediately from assertion (i). This completes the proof of assertion (ii).

Assertion (iii) is a formal consequence of assertion (i) [cf., e.g., the proof of [1], Lemma
4.2, (iii)]. This completes the proof of Lemma 2.5. O

LEMMA 2.6. — In the notation of Definition 2.4, write
EY(A) = H'(Ilx, H (A Axy)) = E(A) = HY (T4, Axn)
for the spectral sequence associated to the exact sequence of profinite groups
1 — A — gz (=AxIly) — Iy — 1
Then the following hold:

(i) The natural homomorphism
lim By%(AT) — Ey*(A) (= H°(Ilx, H*(A, Axx)) = Z/NZ)
At

— where the projective limit is taken over the characteristic open subgroups At C Ax
contained in A, and the transition morphisms in the limit are given by the corestriction
maps — 1s an isomorphism.
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(ii) The natural homomorphism
lim E2(A") — lim EY?(AD
P— p—
At At
— where the projective limits are taken over the characteristic open subgroups AT C Ax

contained in A, and the transition morphisms in the limits are given by the corestriction
maps — 1S an isomorphism.
(iii) The image of 1 € Z/NZ via the composite
Z/NZ = HO(HXa HQ(A7AX,N>> = ESVQ(A) — @ ESQ(AT)
At
< lim B*(A") — E*(A) = H*(Ilz,,Axn) — H*(Za,Axw)
At
— where the first “=" is the isomorphism of (i), the second “=7 is the isomorphism of
(ii), and the “= 7 is the isomorphism of Lemma 2.5, (iii) — coincides with the first Chern

class c1(ta(X)) of the divisor ia(X) C Za obtained by forming the scheme-theoretic image
of the section itn: X — Za of the hyperbolic curve Zn — X [cf. Definition 2.4, (iii)].

PRrOOF. — First, we verify assertion (i). Let us recall [cf., e.g., [4], Proposition 1.3, (ii)]
that the homomorphism

(By*(A1) =) HAAT Axy) — Homg  (HYALAx), Axy) (= Z/NZ)

determined by the cup product in group cohomology and the natural isomorphism of
Ax with “Ax” with respect to AT [cf., e.g., [4], Remark 1] is an isomorphism. Thus,
assertion (i) follows immediately from the various definitions involved. Assertion (ii)
follows immediately from Lemma 2.5, (ii). Assertion (iii) follows immediately from the
[easily verified] fact that the image of the compatible system

(er(ear(X))ar € lm E2(AT)
At
[cf. Lemma 2.5, (iii)] via the composite of natural homomorphisms
lim E*(AT) — lim E3*(AY) — EY*(A) = Z/NZ
At At
coincides with 1 € Z/NZ. This completes the proof of Lemma 2.6. i

DEFINITION 2.7. — In the notation of Lemma 2.6:
(i) We shall refer to an extension of II;, by Ax n
1 — Axn — Eany — Iz, — 1
whose associated extension class is given by the image of 1 € Z/NZ via the composite

~

ZINZ = H°(ILx, H*(A, Axy)) = Ey*(A) < lim EY*(A)

AT
PRA @EQ(AT) — E2(A) = HQ(HZA,A)QN)
AT

— where the first “<” is the isomorphism of Lemma 2.6, (i), and the second “< is the
isomorphism of Lemma 2.6, (ii)) — as a mod N fundamental extension of Iz, .
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(ii) We shall refer to the extension of Iz, by Ax

1—>AX—>EAd=efh;nEA,N—>HZA—>1

N

— where the projective limit is taken over the Primes*/*-integers N — obtained by
forming the projective limit of a compatible system of mod N fundamental extensions
{Ean}n [cf. ()] as a fundamental extension of 11, . [Here, let us observe that the natural

surjection II;, — Gj, together with the Kummer theory, determines an exact sequence
1 — /{X/(kX)N e Hl(HZA,AXyN) — Hl(AZA,AxyN);

moreover, one verifies easily that H'(Az,, Ax ) is finite— cf. Lemma 1.6, (v). In partic-
ular, for every N, there exists a Primes*/*-integer Ny which is divisible by N such that, if
N' is a Primes*/*-integer which is divisible by Ny, then the image of H'(Ilz,, Ax ) —
H'(Iz,, Ax ) coincides with the image of H' (114, Ax n,) — H(Ilz,, Ax.n).]

REMARK 2.7.1. — One verifies easily from Lemma 2.6, (iii), together with the various
definitions involved, that, in the notation of Definition 2.7, if k is either an MLF or FF,
then the notion of a fundamental extension of 11z, defined in Definition 2.7, (ii), coincides
with the notion of a fundamental extension of 11, defined in [4], Definition 1.2, (i) [cf.
also Remark 2.4.1].

DEFINITION 2.8. — Suppose that &k is Kummer-faithful. Let
At C AT C A C Ay
be characteristic open subgroups of Ax;
1 — Ay — Exr — Iz, — 1,
1—>AX—>EA¢—>HZM—>1

respective fundamental extensions of Hy,.. Uz, [cf. Definition 2.7, (ii)]; s: G — Ilx a
splitting of the natural surjection Ilx — Gj. Write

vy — v v — X

for the connected finite étale coverings corresponding to the open subgroups

def

def def lef AL Im(s) & HX-

My: = At-Im(s) C IIy+ £ Af.Im(s) C Iy

(i) By similar procedures to the procedures given in the discussion following [4],
Proposition 1.6, in the case where we take “(X” — X' — X* — X D")” in the discussion
following [4], Proposition 1.6, to be (Y* — YT — Y — X EA;) [cf. Remarks 2.4.1, 2.7.1],
together with Remark 2.3.1, one may define extensions

1 — J] Ax — Syiy(Bar) — Tz — 1,
A/AY

1 — H Ax — Trysjyiy(Bar) — Ilzy — 1
A/At
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— in which II,, is only determined up to A* x {1}-inner automorphisms. We shall refer
to Syi/y (Eat) as the [Y#/Y-]symmetrized fundamental extension [cf. [4], Definition 1.3,

(i)] and to Try+ vty (Eas) as the [Y/YT : Y-]trace-symmetrized fundamental extension
[cf. [4], Definition 1.3, (i)].

(ii) By a similar argument to the argument given in [4], Definition 1.3, (ii), together
with similar results to the results given in [4], Proposition 1.7, (i), (ii), one may define
the notion of a morphism of trace type

Syi/X(EAi) - (SyT/X(Tryi/YT:W(EAi)) —) SYT/X(EAT)'

DEFINITION 2.9. — Suppose that k is Kummer-faithful. Let s: Gy — Ilx be a splitting
of the natural surjection IIx — G} and

CCAC o C A C e © Ay = A

a system of characteristic open subgroups of Ay indexed by the nonnegative integers

such that

A = {1}

i>0
[Note that since Ay is topologically finitely generated [by Lemma 1.6, (v)], such a system
always exists.] Write

for the connected finite étale coverings corresponding to the open subgroups

S C Iy, € A Im(s) € -0 C Ty, & Aj-Im(s) C -+ C Ty

(i) We shall refer to a compatible system of morphisms of trace type [cf. Defini-
tion 2.8, (ii)], up to inner automorphisms of the appropriate type, between symmetrized
fundamental extensions

—»SZ—»_»S]_»_»SO (—» HXka)

— where S; is the Y;/X-symmetrized fundamental extension [cf. Definition 2.8, (i)] — as
a pro-symmetrized fundamental extension of llxy, x [cf. [4], Definition 1.3, (iii)]. In this
situation, we shall refer to the profinite group

Soo déf liﬂsz (_» HXka)

>0
as a pro-fundamental extension of Ilx ., x [cf. [4], Definition 1.3, (iii)].

(ii) Let S be a pro-fundamental extension of IIx., x [cf. (i)]. Then, by a similar
argument to the argument given in [4], Definition 1.4, (ii), together with a similar result to

the result given in [4], Proposition 1.8, (i), one may define the notion of a pro-fundamental
section

My, x — Seo-
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PROPOSITION 2.10. — Suppose that k s Kummer-faithful, and that the natural sur-
jection Iy — Gy has a splitting. Then the following hold:

(i) Let Sy be a pro-fundamental extension of Iy, x [cf. Definition 2.9, (i)].
Then a pro-fundamental section Iy, , — Su [¢f. Definition 2.9, (ii)] determines
isomorphisms of profinite groups

~

—_— Sc>07

~

c-ab SO

Uxxpx

Uxx),x
— where we write Sy for the X/ X -symmetrized fundamental extension [cf. Definition 2.8,
()] [i.e., a fundamental extension of Ilz, = Ilxx,x — cf. Definition 2.7, (ii)] appear-
ing in the pro-symmetrized fundamental extension of Iy, x [¢f. Definition 2.9, (i)]
that determines S .

(i) Let ®x C H‘{jf(bxkx be a decomposition subgroup associated to the diagonal di-

visor X C X x; X such that the image of the composite Dx — I1§2P — Ilxx, x

Uxx,x
coincides with the image of the diagonal homomorphism llx — Ilx xq, Ilx & Mxy,x-
Then if an automorphism « of IS satisfies the following two conditions, then o is

Uxxx
Ker(A}j;kaX — Axy, x)-inner:

c-ab
Uxxpx

automorphism of llx ., x is the identity automorphism.

(a) « preserves the quotient 1 — Ilxx,x, and, moreover, the resulting

(b) « preserves the inertia subgroup of ®x.

(iii) Let {S;}; be a pro-symmetrized fundamental extension of Iy, x and x €

X (k) a k-rational point. Write U O x \{z} and s: Gy, — Ilx for the splitting [well-
defined up to Ax-conjugation| induced by x, i.e., “©x(x)”. Then the first isomorphism
of (i) determines an isomorphism of profinite groups

H?]-ab . m (Sz XHXka (S(Gk) ><G,€ HX))
>0

[cf. Definition 1.12].

(iv) In the notation of (iii), let D, C I be a decomposition subgroup associated to
v € X(k). Then if an automorphism o of 11 satisfies the following two conditions,
then a is Ker(AG™ — Ax)-inner:

(a) « preserves the quotient 1I$* — Tlx, and, moreover, the resulting automor-
phism of Ilx is the identity automorphism.

(b) « preserves the inertia subgroup of ©,.

PRrROOF. — First, let us observe that if we regard IIx as a closed subgroup of IIx x¢,
IIx by means of the diagonal homomorphism IIx — IIx X, IIx, then one verifies
immediately that the set of (Ilx x¢, llx)-conjugates of Ilx coincides with the set of
(Ax x {1})-conjugates of I1x. Thus, assertion (i) (respectively, (iii)) follows immediately
from a similar argument to the argument applied in the proof of [4], Proposition 1.9, (ii)
(respectively, [4], Proposition 1.9, (i)). In particular, assertion (ii) (respectively, (iv))
follows immediately — in light of Lemma 2.11 below and a similar result to the result
given as [4], Lemma 1.1 — from a similar argument to the argument applied in the
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proof of [4], Proposition 1.10, (i) (respectively, [4], Proposition 2.3, (i), together with
Lemma 1.7, (i)). This completes the proof of Proposition 2.10. O

LEMMA 2.11. — Suppose that k is Kummer-faithful. Let G be an open subgroup of
esther Ilx or llx«, x which surjects onto Gy. Then the natural surjection G — Gj,
determines an isomorphism

HY (G, Ax) = HY(G,Ax).
In particular, it holds that
(\n- H'(G,Ax) = {0}

x [k

— where n ranges over the Primes™/*-integers.

PrROOF. — The first portion of the statement follows immediately from a similar argu-
ment to the argument applied in the proof of Lemma 1.8, (i). The final portion of the
statement follows immediately from the first portion of the statement, together with the
Kummer theory [cf. Remark 1.4.1, (i)]. This completes the proof of Lemma 2.11. O

3. THE GROTHENDIECK CONJECTURE OVER KUMMER-FAITHFUL FIELDS

In the present §3, we discuss the [semi-absolute version of the| Grothendieck conjecture
for affine hyperbolic curves over Kummer-faithful fields. In the present §3, let O € {o, e},
ko a Kummer-faithful field, ko an algebraic closure of kg, Xg a hyperbolic curve over kp,
and

HXD
either the étale fundamental group m(Xp) of Xg or the tame fundamental group
miame (XY D) of (X&', Dx.). Write Gy, o Gal(ko/kg) and

AXD c HXD

for the quotient of the étale fundamental group 71 (Xo @i ko) C 71 (Xo) of Xg kg ko
determined by Iy .

DEFINITION 3.1. — Let a: Iy, = IIx, be an isomorphism of profinite groups.

(i) We shall say that « is point-theoretic if o determines a bijection between the set
of decomposition subgroups of Iy, associated to closed points of X' and the set of
decomposition subgroups of Ilx, associated to closed points of XS [cf. Remark 3.1.1
below].

(ii) We shall say that «v is Galois-preserving if ov determines an isomorphism of profinite
groups aa: Ay, — Ax,. In particular, we obtain an isomorphism of profinite groups
ag: Gy, = Gy,.

We shall say that an outer isomorphism Iy, — Ilx, is point-theoretic (respectively,
Galois-preserving) if it arises from a point-theoretic (respectively, Galois-preserving) iso-
morphism.
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REMARK 3.1.1. — One verifies easily from [4], Proposition 2.2, (ii), that, in the notation
of Definition 3.1, if k is either an MLF or FF, then « is point-theoretic in the sense of
Definition 3.1, (i), if and only if « is point-theoretic in the sense of [4], Definition 1.5, (ii).

LEMMA 3.2. — Let a: Ilx, = Ilx, be a point-theoretic and Galois-preserving iso-
morphism of profinite groups. Then the following hold:

(i) The isomorphism « determines a bijection ot : X+ 5 X such that, for every

T, € X, if we write x, o a?t(z,) € X, then the following conditions are satisfied:

(a) The diagram

cl+
XglJr o X.clJr

o | [

C(Ily,)/Mx, —— €(Ilx,)/Mx,

— where the lower horizontal arrow is the bijection induced by o — commutes.
(b) It holds that x, lies on X, if and only if xe lies on X,.

(c¢) If we write k(x,), K(xe) for the residue fields at x,, xo, Tespectively, then it
holds that [k(xo) : ko] = [K(e) : kel

We shall write
Div(a): Div(X,) — Div(X,)
[cf. Definition 1.1] for the isomorphism of groups determined by o .
(ii) The isomorphism a determines an isomorphism of profinite groups
aPtm (XSPY) = m (XY,
which restricts to an isomorphism of profinite groups
APt m (X Ry, ko) = (X @4, k).

(i) It holds that (gx,,rx,,char(k,)) = (gx.,rx.,char(k,)).
(iv) The isomorphism o determines an isomorphism Ao : Ax, — Ax,.

PROOF. — First, we verify assertion (i). One verifies immediately from Lemma 1.7,
(i), that there exists a [uniquely determined] bijection o : X+ 5 XF that satisfies
condition (a). The assertion that a°!* satisfies condition (b) follows from the easily verified
fact that, for zp € X&H, it holds that z lies on Xp if and only if Ax, N&x, (zo) = {1},
together with condition (a). The assertion that o't satisfies condition (c) follows from
the easily verified fact that, for xg € XEH, the index of the image of Gx_ (zp) in Gy
coincides with [k(xg) @ kg, together with condition (a). This completes the proof of
assertion (i).

Assertion (ii) follows immediately from Lemma 1.6, (i). Assertion (iii) follows imme-
diately — in light of assertion (ii) — from Lemma 1.6, (ii), (iii), (iv). Assertion (iv)
follows immediately — in light of the equality char(k,) = char(k,) in assertion (iii) —
from conditions (a) and (b) of assertion (i), together with the definition of the cyclotome
“A(y”. This completes the proof of Lemma 3.2. U
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LEMMA 3.3. — In the situation of Lemma 3.2, suppose, moreover, that the natural sur-
jection I, — Gy, has a splitting, and that X, is proper over k,. [Thus, it follows

from Lemma 3.2, (iii), that X, is proper over k,.| Let S, C X,(k,) be a finite subset.

Write Sy < a(S,) C Xo(ka) [cf- condition (c) of Lemma 3.2, (i)], Us © X, \ S, and

U, x, \ Se. Then the following hold:

(i) Let m be a positive integer; !, ... 2™ € X (ko); n1,..., Ny € Z. Then the divisor
D, S niext € Div(X,) is principal if and only if the divisor Div(a)(D,) € Div(X,)

[¢f. Lemma 3.2, ( )] is principal.
(i) The isomorphism a determines an isomorphism o= : TI52 = TIgeP [cf.
0 X ko Xo XeoXpqXe

Definition 2.1, (ii)] [well-defined up to Ker(H‘(}‘i’Xk.X. — Ilx, x,.x.)-inner automorphisms|
such that the diagram

ac—ab

c-ab Hc-ab

Uxoxp,, Xo Uxexp, Xeo

l !

Ux sy xo — Ixox,, x.
— where the lower horizontal arrow is an isomorphism induced by o and the natural

1somorphism HXDXkDXD = 1P\ X G, IIx, — commutes, and, moreover, a?® maps a
decomposition subgroup of HcU'f(b X associated to the diagonal divisor of X, X, X, to a
decomposition subgroup of H‘f];bx e associated to the diagonal divisor of Xe X, Xe.

(iii) The isomorphism « determines an isomorphism a§™: g™ = TG [cf. Def-
inition 1.12] [well-defined up to Ker(II™ — Ilx,)-inner automorphxsms] such that the
diagram

c-cn

c-cn So c-Cn
HUO E— HU.

l |

HXO L HX.

commutes, and, moreover, ag" maps the [uniquely determined] inertia subgroup of II§;™

associated to T, € S, to the [uniquely determined| inertia subgroup of IIf;™ associated to
at(z,) € S,.

(iv) The isomorphism H'(IIG™, Ax,) — HY(IIG™, Ax,) determined by the isomor-
phisms o™ of (iil) and Ay of Lemma 3.2, (iv), determines — relative to the isomorphism
of Lemma 1.13, (i) — an isomorphism

O (a, S,): O*(lx,,S,) — O*(Ilyx,,S,)
[cf. Definition 1.9] such that the diagram
0 —— HY(Gp,,Ax,) —— O0*(llx,, %) —— P(Xo,5) —— 0

l Ox(a,So)l l
0 — Hl(GkuAX.) - OX(HXnS') - P(XMSO) — 0

— where the horizontal sequences are the lower exact sequence of the diagram of Lemma 1.10,
(ii) [in the case where we take “X 7 in Lemma 1.10 to be X, X,|; the left-hand vertical
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arrow is the isomorphism induced by the isomorphisms ag of Definition 3.1, (ii), and A,
of Lemma 3.2, (iv); the right-hand vertical arrow is the isomorphism determined by the
isomorphism Div(«) of Lemma 3.2, (i) — commutes.
(v)  The warious isomorphisms “O*(«a,S,)” of (iv) determine an isomorphism of
abelian groups
K*(a): £*(Ily,) — K*(Ilx,)
[cf. Definition 1.9].

PROOF. — Assertion (i) follows immediately from Lemma 1.7, (ii), together with con-
ditions (a) and (c) of Lemma 3.2, (i). Assertion (ii) follows immediately — in light of
Proposition 2.10, (i); Lemma 2.11 — from a similar argument to the argument applied
in the proof of [4], Theorem 1.1, (iii), together with similar results to the results given
as [4], Lemma 1.1; [4], Proposition 1.8. Assertion (iii) follows immediately — in light of
condition (a) of Lemma 3.2, (i) — from assertion (ii), together with Lemma 1.13, (ii);
Lemma 2.2. Assertion (iv) follows immediately from assertion (i), together with the var-
ious definitions involved. Assertion (v) follows immediately from the various definitions
involved. This completes the proof of Lemma 3.3. U

THEOREM 3.4. — Let O € {0, e}, kg « Kummer-faithful field [cf. Definition 1.2, and
Xpg a hyperbolic curve over kg. Write X&pt for the smooth compactification of Xg and
Dy, C X2 for the divisor at infinity of Xo. Let

ITx

O

be either the étale fundamental group m (Xp) of Xg or the tame fundamental group
miame( X2 Dy ) of (X2, Dx, ). Write

Isom(Ily,, IIx,)
for the set of isomorphisms of profinite groups Ilx, — Ilx,,
ISOInpg(HXO,Hx.) Q ISOIII(HXO,H)(.)

for the subset of point-theoretic [cf. Definition 3.1, (i)] and Galois-preserving [cf.
Definition 3.1, (ii)] isomorphisms of profinite groups lx, — Ilx,, and

Isom (X, X,)

for the set of isomorphisms of schemes X, = X,. Then the following hold:

(i) Suppose that Isompg(Ilx, ,x,) is nonempty. Then it holds that Ty, = m (Xo)
if and only if My, = m(X,).

(ii) Suppose, moreover, that either X, or X, is affine. Then the natural map
Isom(X,, X,) — Isom(Ily,,IIx,)/Iy,
[cf. (1)] determines a bijection

Isom(Xo, Xo) — Isompg(Ix,,x,)/Ix,.
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PROOF. — Assertion (i) follows immediately from Lemma 1.6, (v). Next, we verify
assertion (ii). First, let us observe that it follows immediately from [6], Lemma 4.2, that
the natural map

Isom(X,, Xo) — Isom(Ilx,,Ix,)/Ilx,

factors through the subset Isompg(Ilx,,x,)/Ilx, € Isom(Ilx,,IIx,)/Ilx,. Next, let
us observe that the injectivity of the map under consideration follows immediately from
Lemma 3.2, (i). Thus, to complete the verification of assertion (ii), it suffices to verify
the surjectivity of the map under consideration. To this end, let a: IIx, — Ilx, be a
point-theoretic and Galois-preserving isomorphism of profinite groups.

Next, let us observe that it follows immediately from the injectivity of the map under
consideration that we may assume without loss of generality, by replacing Iy, by a suit-
able open subgroup of Iy, if necessary, that gx, > 2, hence also gy, > 2 [cf. Lemma 3.2,
(iii)], and, moreover, rx, > 3, hence also rx, > 3 [cf. Lemma 3.2, (iii)]. Next, again by the
injectivity of the map under consideration, we may assume without loss of generality, by
replacing G, by a suitable open subgroup of Gy, if necessary, that Dy, (ko) = Dx, (ko),
hence also Dx,(k,) = Dx,(ks) [cf. conditions (b), (c) of Lemma 3.2, (i)], and that the
natural surjection Ilx, — Gp,, hence also the natural surjection I1y, — G,, has a
splitting.

Let S, C XP'(k,) be a finite subset such that Dy (k.) € S, and z, € Dx, (ko) \
(Dx, (ko) N S,). Write Sy & a+(8,) C X (k,) [cf. condition (c) of Lemma 3.2, (i)
2o € o (z,) € Dx. (ko) \ (Dx. (k) N S,) [cf. conditions (b), (c) of Lemma 3.2, (i)

U, & xert\ 5, U, € xert\ S, and

cpt

]7
]

9

(e} . HXSpt —_— HXfpt

for the isomorphism of profinite groups obtained in Lemma 3.2, (ii). Let us observe that
one verifies immediately from the various definitions involved that aP is point-theoretic
and Galois-preserving. Now I claim that the following assertion holds:

Claim 3.4.A: The diagram

OX(ant7So)
_—

OX(HXgpt,SO) OX<HXfpt,S.)
eVao (ngpt,So)J( J/evm, (HX(.;pt ,Se)

Hl(Gko7 AXO) - H1<Gko7 AX.)

— where the upper horizontal arrow is the isomorphism obtained in
Lemma 3.3, (iv); the lower horizontal arrow is the isomorphism induced
by the isomorphisms ag of Definition 3.1, (ii), and A, of Lemma 3.2,
(iv) — commutes.

Indeed, since [we have assumed that] x,, hence also z,, is a cusp of the given hyperbolic
curve, this follows immediately — in light of Proposition 2.10, (ii), (iv) — from a similar
argument to the argument applied in [4], Remarks 15, 21. This completes the proof of
Claim 3.4.A.

Since [we have assumed that] §Dx, (ko) = rx,, tDx.(ks) = rx, > 3 > 2, by applying
Claim 3.4.A to the various isomorphisms “O*(«, S,)” of Lemma 3.3, (iv), we conclude
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~

from Lemma 1.10, (iv), that the isomorphism IC*(a'): KX (Iyep) — KX (Tyen) of
Lemma 3.3, (v), determines an isomorphism of abelian groups

X . X ~ X
Ka ’ KXO@]QOEO - KXQ@I@.E.
[relative to the injections K ¢ . KX (M yent), K3 o KX (I yept ) of Lemma 1.10,

(i), in the case where we take “X” in Lemma 1.10 to be X' X¢P'| which restricts to
an isomorphism of abelian groups

kS kL
Moreover, since [we have assumed that] §Dx, (ko) = rx., §Dx, (ks) = rx, > 3, it follows
immediately — in light of Claim 3.4.A and the commutativity of the right-hand square
of the diagram of Lemma 3.3, (iv) — from [6], Lemma 4.7, that the bijection

KXO@koEO = K;O®kOEO U {0} ; X.@k.EO = K;.®k.E. U {0}

induced by K is an isomorphism of fields, which restricts to an isomorphism of fields
ko = k. U {0} = %k = k. U {0}

Thus, by considering the IIx -, Ilx,-invariants, we obtain a commutative diagram of
schemes

~

Xgpt N Xfpt

! l

Spec(k,) —— Spec(k,)
— where the horizontal arrows are isomorphisms. Now let us observe that it follows
immediately from our construction of the above diagram that the bijection X+ = X+
induced by the upper horizontal arrow coincides with the bijection a®* of Lemma 3.2,
(i). Thus, it follows from condition (b) of Lemma 3.2, (i), that the upper horizontal
arrow of the above diagram determines an isomorphism X, — X,. The assertion that
the outer isomorphism Iy, S0 x, induced by this isomorphism X, = X, coincides with
the outer isomorphism determined by « follows immediately from a similar argument to
the argument given in the discussion preceding [3], Theorem 14.1. This completes the
proof of assertion (ii), hence also of Theorem 3.4. O
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