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Abstract

We introduce and study a certain class of quadratic algebras, which are non-
homogenious in general, together with the distinguish set of mutually commuting
elements inside of each, the so-called Dunkl elements. We describe relations among
the Dunkl elements in the case of a family of quadratic algebras corresponding to
a certain splitting of the universal classical Yang—Baxter relations into two three
term relations. This result is a further extension and generalization of analogous
results obtained in [22],[58] and [40]. As an application we describe explicitly the
set of relations among the Gaudin elements in the group ring of the symmetric
group, cf [56]. We also study relations among the Dunkl elements in the case of
(nonhomogeneous) quadratic algebras related with the universal dynamical classical
Yang—Bazter relations. Some relations of results obtained in papers [22], [41], [37]
with those obtained in [29] are pointed out. We also identify a subalgebra gener-
ated by the elements corresponding to the simple roots in extended Fomin—Kirillov
algebra with the DAH A, see Section 4.3.

The set of generators of algebras in question, naturally corresponds to the set
of edges of the complete graph K, (to the set of edges and loops of the complete
graph with loops K, in dynamical case). More generally, starting from any sub-
graph I' of the complete graph with loops K, we define a (graded) subalgebra
37" (") of the (graded) algebra 37" (K,) [35]. In the case of loop-less graphs
I' ¢ K, we state Conjecture which relates the Hilbert polynomial of the abelian
quotient 3T£0)(F)“b of the algebra 37" (') and the chromatic polynomial of the
graph I' we started with. We check our Conjecture for the complete graphs K,
and the complete bipartite graphs K, ,,. Besides, in the case of complete multi-
partite graph Ky, . . , we identify the commutative subalgebra in the algebra

3T](\?)(Kn1,...,nr)a N =nj +--- 4+ n,, generated by elements

N N N .
HJ(k]) = ekj(QEVjZIH, . ,95\,]_)), 1<j<r, 1<kj<nj, Nj:=ni+...+nj, No=0,



with the cohomology ring H*(Fly, . n,,Z) of the partial flag variety Fl,, .. In

other words, the set of (additive) Dunkl elements {95\],21 IR ,05\],\],[)} plays a role
of the Chern roots of the tautological vector bundles &;, 7 = 1,...,r, over the
partial flag variety Fl,, ., see Section 4.1.2 for details. In a similar fashion,

the set of multiplicative Dunkl elements {@%\;)_IH, e @%\;)} plays a role of the

equivariant Chern roots of the tautological vector bundle &; over the partial flag
variety Flp, . n,.. As a byproduct for a given set of weights £ = {{;j}i<i<j<r
we compute the Tutte polynomial T(K,(fl),m’nk,m,y) of the f-weighted complete
multipartite graph Kfﬁ),,_.7nk, see Section 4, Definition 4.4 and Theorem 4.3. More

generally, we introduce universal Tutte polynomial

Tn({Qij}? xz, y) € Z[{q”ij}”xv y]

in such a way that for any collection of non-negative integers m = {m;; }1<i<j<n

_

and a subgraph I' C KT(Lm) of the weighted complete graph on n labeled vertices
such that any edge (i,7) € KT(Lm) appears with multiplicity m;;, the specialization

Qz] — 07 ’Lf edge (,Lv]) ¢ F: sz — [mij]gp Zf €dg€ (7’?.7) el

of the universal Tutte polynomial is equal to the Tutte polynomial of graph I'
multiplied by (z — 1)%(1)| see Section 4.1.2, Comments and Ezamples, for details.

We also introduce and study a family of (super) 6-term relations algebras, and
suggest a definition of “ multiparameter quantum deformation “ of the algebra
of the curvature of 2-forms of the Hermitian linear bundles over the complete flag
variety Fl,. This algebra can be treated as a natural generalization of the (multi-
parameter) quantum cohomology ring QH*(Fl,), see Section 4.2.

13

Yet another objective of our paper is to describe several combinatorial proper-
ties of some special elements in the associative quasi-classical Yang—Baxter algebra
[37], including among others the so-called Cozeter element and the longest ele-
ment. In the case of Coxeter element we relate the corresponding reduced polyno-
mials introduced in [71], with the -Grothendieck polynomials [23] for some special
permutations 71',5:”). More generally, we show that the specialization &) (1) of

(n)
Tk

the B-Grothendieck polynomial & (X,) counts the number of k-dissections of

()
a convex (n + k + 1)-gon accordingk to the number of diagonals involved. When
the number of diagonals in a k-dissection is the maximal possible, we recover the
well-known fact that the number of k-triangulations of a convex (n + k + 1)-gon is
equal to the value of a certain Catalan-Hankel determinant, see e.g. [66]. We also
show that for a certain 5-parameters family of vexillary permutations, the special-
ization x; = 1,Vi > 1, of the corresponding S-Schubert polynomials 61(,?) (X,) turns
out to be coincide either with the Fuss-Narayana polynomials and their generaliza-
tions, or with a (g, 8)-deformation of V.SASM or that of CSTC PP numbers, see
Corollary 5.2, (B).. As examples we show that

(a) the reduced polynomial corresponding to a monomial z7, x5} counts the
number of (n, m)-Delannoy paths according to the number of N E-steps, see Lemma 5.2;

(b) if B = 0, the reduced polynomial corresponding to monomial (w12 z23)" %, n >
k, counts the number of of n up, n down permutations in the symmetric group
Son+k+1, see Proposition 5.9; see also Conjecture 18.



We also point out on a conjectural connection between the sets of mazimal
compatible sequences for the permutation 0,,2,20 and that o, 2,412,0 from one
side, and the set of VSASM (n) and that of CSTCPP(n) correspondingly, from
the other, see Comments 5.7 for details. Finally, in Section 5.1.1 we introduce and
study a multiparameter generalization of reduced polynomials introduced in [71],
as well as that of the Catalan, Narayana and (small) Schroder numbers.

In the case of the longest element we relate the corresponding reduced polyno-
mial with the Ehrhart polynomial of the Chan—Robbins—Yuen polytope, see Sec-
tion 5.3. More generally, we relate the (¢, 3)-reduced polynomial corresponding to

monomial
n—2

n—1 n

aq .
II =55 ( 11 xik)’ a; € L0, VJ,
J=1

j=2  k=j+2
with positive t-deformations of the Kostant partition function and that of the
Ehrhart polynomial of some flow polytopes, see Section 5.3.
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1 Introduction

The Dunkl operators have been introduced in the later part of 80’s of the last century
by Charles Dunkl [17], [18] as a powerful mean to study of harmonic and orthogonal
polynomials related with finite Coxeter groups. In the present paper we don’t need the
definition of Dunkl operators for arbitrary (finite) Coxeter groups, see e.g. [17], but only
for the special case of the symmetric group S,,.

Definition 1.1 Let P, = C[xy,...,x,] be the ring of polynomials in variables x1, . .., x,.
The type A, 1 (additive) rational Dunkl operators Dy, . .., D,, are the differential-difference
operators of the following form

8+ 1_Sij

Dy =\ ,
0@- oy Ty — Ty

(1.1)

Here s;;, 1 < i < j < n, denotes the exchange (or permutation) operator, namely,

Sii ()@, @iy @y xn) = f(@1, ., Ty Ty T

% stands for the derivative w.r.t. the variable x;; A € C s a parameter.



The key property of the Dunkl operators is the following result.

Theorem 1.1 ( C.Dunkl [17] ) For any finite Coxeter group (W, S), where S = {s1,..., s}
denotes the set of simple reflections, the Dunkl operators D; := Dy, and D; := D, pair-
wise commute: D;D;j=D; D;, 1<i4,5<1.

Another fundamental property of the Dunkl operators which finds a wide variety of
applications in the theory of integrable systems, see e.g. [30], is the following statement:
the operator

(D;)?

l
=1

i
“essentially” coincides with the Hamiltonian of the rational Calogero-Moser model related

to the finite Coxeter group (W, S).

Definition 1.2 Truncated (additive) Dunkl operator (or the Dunkl operator at critical
level), denoted by D;, i =1,...,1, is an operator of the form (1.1) with parameter A = 0.

For example, the type A, _; rational truncated Dunkl operator has the following form
D=y 1%
—, Ly — Xy
J#i

Clearly the truncated Dunkl operators generate a commutative algebra.
The important property of the truncated Dunkl operators is the following result discov-
ered and proved by C.Dunkl [18]; see also [4] for a more recent proof.

Theorem 1.2 (C.Dunkl [18], Y.Bazlov [4]) For any finite Coxeter group (W,S) the
algebra over Q generated by the truncated Dunkl operators Dy,...,D; is canonically
isomorphic to the coinvariant algebra Aw of the Cozeter group (W, S).

Recall that for a finite crystallographic Coxeter group (W, S) the coinvariant algebra Ay,
is isomorphic to the cohomology ring H*(G/B,Q) of the flag variety G/B, where G
stands for the Lie group corresponding to the crystallographic Coxeter group (W, S) we
started with.

Example 1.1 In the case when W = §,, is the symmetric group, Theorem 1.2 states

that the algebra over Q generated by the truncated Dunkl operators D; = > it ;:_S;J , 1=
1,...,n, is canonically isomorphic to the cohomology ring of the full flag variety FI,, of
type A,_1
Q[Dy,..., D] = Qlay, ..., xn]/ I, (1.2)
where J,, denotes the ideal generated by the elementary symmetric polynomials {e(X,),
1 <k<n}.
Recall that the elementary symmetric polynomials e;(X,,), i =1,...,n, are defined

through the generating function

1

n

7

i=1

5



where we set X, := (z1,...,2,). It is well-known that in the case W = §,, the
isomorphism (1.2) can be defined over the ring of integers Z. [

Theorem 1.2 by C.Dunkl has raised a number of natural questions:
(A) What is the algebra generated by the truncated
e trigonometric,
e elliptic,
e super, matrix, ...,
(a) additive Dunkl operators 7
(b) Ruijsenaars—Schneider-Macdonald operators ?
(¢) Gaudin operators ?
(B) Describe commutative subalgebra generated by the Jucys—-Murphy elements in
e the group ring of the symmetric group;
e the Hecke algebra ;
e the Brauer algebra, BMV algebra, .. ..
(C) Does there exist an analogue of Theorem 1.2 for
e C(lassical and quantum equivariant cohomology and equivariant K-theory rings of
the partial flag varieties 7
e Cohomology and K-theory rings of affine flag varieties 7
e Diagonal coinvariant algebras of finite Coxeter groups 7
e Complex reflection groups 7
The present paper is an extended Introduction to a few items from Section 5 of [37].
The main purpose of my paper “On some quadratic algebras, II” is to give some
partial answers on the above questions basically in the case of the symmetric group S,,.
The purpose of the present paper is to draw attention to an interesting class of
nonhomogeneous quadratic algebras closely connected (still mysteriously !) with different
branches of Mathematics such as
Classical and Quantum Schubert and Grothendieck Calculi,
Low dimensional Topology,
Classical, Basic and Elliptic Hypergeometric functions,
Algebraic Combinatorics and Graph Theory,
Integrable Systems,

What we try to explain in [37] is that upon passing to a suitable representation of
the quadratic algebra in question, the subjects mentioned above, are a manifestation of
certain general properties of that quadratic algebra.

From this point of view, we treat the commutative subalgebra generated by the
additive (resp. multiplicative) truncated Dunkl elements in the algebra 37,(5), see
Definition 3.1, as universal cohomology (resp. universal K-theory) ring of the complete
flag variety Fl,. The classical or quantum cohomology (resp. the classical or quantum
K-theory) rings of the flag variety Fl,, are certain quotients of that universal ring.

For example, in [39] we have computed relations among the (truncated) Dunkl el-
ements {0;, i = 1,...,n} in the elliptic representation of the algebra 37T, (5 = 0). We



expect that the commutative subalgebra obtained is isomorphic to elliptic cohomology
ring ( not defined yet, but see [27] , [26]) of the flag variety Fl,.

Another example from [37]. Consider the algebra 37, (5 = 0).
One can prove [37| the following identities in the algebra 37,,(8 = 0)

(A) Summation formula

n—1 n—1 j—1 n—1
§ ( H “b,b+1> Ui n (H Ub,b+1) - H Ua,a+1-
j=1 b=j+1 b=1 a=1
(B) Duality transformation formula Let m < n, then
n—1 n—1 m—1 7—1
E ( H ub,b—l—l) [H Ug,a+n—1 ua,a+n:| Um, m4+n—1 <H ub,b+1) +
j=m b=j+1 a=1 b=m
m m—1 n—1
E [H Uq,a+n—1 ua,a+n:| Um,n+m—1 (H ub,b—l—l) Uin =
j=2 a=j b=m
m m—j n—1 7j—1
E |:H Uq,a+n ua+1,a+n:| (H ub,b+1> |:H Ug,a+n—1 ua,a+n:| .
j=1 a=1 b=m a=1

One can check that upon passing to the elliptic representation of the algebra 3T, (5 =
0), see Comments 3.2, or [37], Section 5.1.7, or  [39] for the definition of elliptic
representation, the above identities (A) and (B) finally end up correspondingly, to be
the Summation formula and the N =1 case of the Duality transformation formula for
multiple elliptic hypergeometric series (of type A,,_1), see e.g. [32] , or Appendix V, for
the explicit forms of the latter. After passing to the so-called Fay representation 37|,
the identities (A) and (B) become correspondingly to be the Summation formula and
Duality transformation formula for the Riemann theta functions of genus g > 0, [37].
These formulas in the case g > 2 seems to be new.
Worthy to mention that the relation (A) above can be treated as a "non-commutative
analogue” of the well-known recurrence relation among the Catalan numbers. The study
of “descendent relations” in the quadratic algebras in question was originally motivated
by the author attempts to construct a monomial basis in the algebra 3Tn(0). This problem
is still widely open, but gives rise the author to discovery of

several interesting connections with

classical and quantum Schubert and Grothendieck Calculi,

combinatorics of reduced decomposition of some special elements in the symmetric
group,

combinatorics of generalized Chan—Robbins—Yuen polytopes,

relations among the Dunkl and Gaudin elements,

computation of Tutte and chromatic polynomials of the weighted complete multipar-
tite graphs, it etc.
|

A few words about the content of the present paper.



In Section 2, see Definition 2.2, we introduce the so-called dynamical classical Yang—
Baaxter algebra as “a natural quadratic algebra” in which the Dunkl elements form a
pair-wise commuting family. It is the study of the algebra generated by the (truncated)
Dunkl elements that is the main objective of our investigation in [37| and the present
paper. In subsection 2.1 we describe few representations of the dynamical classical Yang—
Baxter algebra DCY B,,

e related with quantum cohomology Q H*(Fl,) of the complete flag variety Fl,, cf
[21]; quantum equivariant cohomology QHw - (T*Fl,,) of the cotangent bundle T*Fl,
to the complete flag variety, cf [29];

e Dunkl-Gaudin and Dunkl-Uglov representations, cf [56], [75].

In Section 3, see Definition 3.1, we introduce the algebra 3HT,,(3), which seems to be
the most general (noncommutative) deformation of the (even) Orlik—Solomon algebra of
type A, _1, such that it’s still possible to describe relations among the Dunkl elements,
see Theorem 3.1. As an application we describe explicitly a set of relations among the
(additive) Gaudin / Dunkl elements, cf [56].

»» It should be stressed at this place that we treat the Gaudin elements/operators
(either additive or multiplicative) as images of the universal Dunkl elements/operators
(additive or multiplicative) in the Gaudin representation of the algebra 3HT,,(0). There
are several other important representations of that algebra, for example, the Calogero—
Moser, Bruhat, Buchstaber-Felder—Veselov (elliptic), Fay trisecant (7-functions), ad-
joint, and so on, considered (among others) in [37]. Specific properties of a representation
chosen 3 (e.g. Gaudin representation) imply some additional relations among the images
of the universal Dunkl elements (e.g. Gaudin elements) should to be unveiled. <«

We start Section 3 with definition of algebra 37T, (5) and its “Hecke” 3HT,,(5) and
“elliptic” 3MT,(5) quotients. In particular we define an elliptic representation of the
algebra 37,(0) and show how the well-known elliptic solutions of the quantum Yang—
Baxter equation due to A. Belavin and V. Drinfeld, see e.g. [5], S. Shibukawa and K.
Ueno [67], and G. Felder and V.Pasquier [20], can be plug in to our construction, see
Comments 3.2.

In Subsection 3.1 we introduce a multiplicative analogue of the the Dunkl elements
{0, € 3T,,(B), 1 < j < n} and describe the commutative subalgebra in the algebra
3T, () generated by multiplicative Dunkl elements [40]. The latter commutative subal-
gebra turns out to be isomorphic to the quantum equivariant K-theory of the complete
flag variety Fl,, [40].

In Subsection 3.2 we describe relations among the truncated Dunkl-Gaudin elements.
In this case the quantum parameters g;; = p?j, where parameters {p;; = (z; — zj)*l, 1<
i < j < n} satisfy the both Arnold and Pliicker relations. This observation has made

3For example, in the cases of either Calogero-Moser or Bruhat representations one has an additional

constraint, namely, u?j = 0 for all 7 # j. In the case of Gaudin representation one has an additional
1

constraint ufj = p?j, where the (quantum) parameters {p;; = ——, i # j}, satisfy simultaneously the
pryp—— simuitaneously

Arnold and Pliicker relations, see Section 2, (II). Therefore, the (small) quantum cohomology ring
of the type A, full flag variety FI,, and the Bethe subalgebra(s) (i.e. the subalgebra generated by
Gaudin elements in the algebra 3HT,,(0)) correspond to different specializations of 7 quantum parame-
ters” {qi; = ufj} of the universal cohomology ring (i.e. the subalgebra/ring in 3HT,,(0) generated by
(universal) Dunkl elements). For more details and examples, see Section 2.1 and [37].



it possible to describe a set of additional rational relations among the Dunkl-Gaudin
elements, cf [56].

In Subsection 3.3 we introduce an equivariant version of multiplicative Dunkl ele-
ments, called shifted Dunkl elements in our paper, and describe (some) relations among
the latter. This result is a generalization of that obtained in Section 3.1 and [40]. However
we don’t know any geometric interpretation of the commutative subalgebra generated
by shifted Dunkl elements.

In Section 4.1 for any subgraph I' C K,, of the complete graph K, we introduce *
[37], [35], algebras 37,,(I") and 37" which can be seen as analogue of algebras 37, and

370 correspondingly. In the present paper we basically study the abelian quotient of
the algebra 37T, TSO) (I") since we expect some applications of our approach to the theory of
chromatic polynomials of graphs. Our main results hold for the complete multipartite,
cyclic and line graphs. In particular we compute their chromatic and Tutte polynomials,
see Proposition 4.2 and Theorem 4.3. As a byproduct we compute the Tutte polynomial
of the (-weighted complete multipartite graph Kff;) ,,,,, n, Where ¢ = {l;;}i<icj<r, 1S a
collection of weights, i.e. a set of non-negative integers.

More generally, for a set of variables {{¢i; }1<i<j<n, ®, y} we define universal Tutte
polynomial  T,({q;j},2,y) € Z|g;][z,y] such that for any collection on non-negative
integers {m;; }1<i<j<n and a subgraph I' C K™ of the complete graph K, with each
edge (7,7) comes with multiplicity m;;, the specialization

ym —1

gij — 0, if edge (i,7) €1, qij — [myly == —— -

if edge (i,j) el
of the universal Tutte polynomial 7, ({gi; }, x, v) is equal to the Tutte polynomial of graph
I’ multiplied by the factor (t — 1)*®) :

(x — 1)”“(F Tutte(I', z,y) = T,({q;}, z,v)

435=0, if (4,7)¢r
qij:[7nij]y7 if (i,j)€T

Here and after x(I') demotes the number of connected components of a graph I'.  In
other words, one can treat the universal Tutte polynomial 7,,({¢;;}, =, y) as a “reproducing
kernel” for the Tutte polynomials of all graphs with the number of vertices not exceeded
n.
At the end we emphasize that the case of the complete graph I' = K,, reproduces
the results of the present paper and those of [37], i.e. the case of the full flag variety
Fl,. The case of the complete multipartite graph I' = K,,, ., reproduces the analogue
of results stated in the present paper for the case of full flag variety F1,,, to the case of
the partial flag variety F,, .., see [37] for details.

In Section 4.1.3 we sketch how to generalize our constructions and some of our results
to the case of the Lie algebras of classical types °.

4 Independently the algebra 37" (T) has been studied in [8], where the reader can find some examples
and conjectures.

®One can define an analogue of the algebra 3T7(LO) for the root system of BC,,-type as well, but we
are omitted this case in the present paper



In Section 4. 2 we briefly overview our results concerning yet another interesting
family of quadratic algebras, namely the siz-term relations algebras 671, 67" and related
ones. These algebras also contain a distinguished set of mutually commuting elements
called Dunkl elements {0;,1=1,...,n} given by 6; = Z#i 7ij, see Definition 4.8.

In Subsection 4.2.2 we introduce and study the algebra 67% in greater detail. In par-
ticular we introduce a “quantum deformation’ of the algebra generated by the curvature
of 2-forms of of the Hermitian linear bundles over the flag variety Fl,,, cf [59].

In Subsection 4.2.3 we state our results concerning the classical Yang—Bazter algebra
CY B, and the 6-term relation algebra 67,,. In particular we give formulas for the Hilbert
series of these algebras. These formulas have been obtained independently in [3| The
paper just mentioned, contains a description of a basis in the algebra 67),, and much
more.

In Subsection 4.2.4 we introduce a super analog of the algebra 67,, denoted by 67, ,,,
and compute its Hilbert series.

Finally, in Subsection 4.3 we introduce extended nil-three term relations algebra 3%,
and describe a subalgebra inside of it which is isomorphic to the double affine Hecke
algebra of type A,_1, cf [14].

In Section 5 we describe several combinatorial properties of some special elements in

the associative quasi-classical Yang-Baxter algebra ¢, denoted by mn. The main
results in that direction were motivated and obtained as a by-product, in the process
of the study of the the structure of the algebra 3HT,(/3). More specifically, the main
results of Section 5 were obtained in the course of “hunting for descendant relations” in
the algebra mentioned, which is an important problem to be solved to construct a basis
in the nil-quotient algebra 37Y. This problem is still widely-open.

The results of Section 5.1, see Proposition 5.1, items (1)—(5), are more or less
well-known among the specialists in the subject, while those of the item (6) seem to be
new. Namely, we show that the polynomial @, (z;; =t;) from [71], (6.C8), (c), essen-
tially coincides with the S-deformation [23] of the Lascoux-Schiitzenberger Grothendieck
polynomial [46] for some particular permutation. The results of Proposition 5.1, (6),
point out on a deep connection between reduced forms of monomials in the algebra
fmn and the Schubert and Grothendieck Calculi. This observation was the start-
ing point for the study of some combinatorial properties of certain specializations of
the Schubert, the S-Grothendieck [24] and the double - Grothendieck polynomials in
Section 5.2 . One of the main results of Section 5.2 can be stated as follows.

Theorem 1.3
(1) Letw €S, be a permutation, consider the specialization x1 = q,x; =1, Vi > 2,
of the B-Grothendieck polynomial & (Xn). Then

Rulq,8+1) =6 (21 =q,2;=1, Vi >2) € N[g, 1+ f].

6 The algebra A/C'?Bn can be treated as “one-half” of the algebra 3T,,(3). It appears, see Lemma 5.1,
that the basic relations among the Dunkl elements, which do not mutually commute anymore, are still
valid, see Lemma 5.1.

10



In other words, the polynomial R, (q,3) has non-negative integer coefficients ”.
For late use we define polynomials

Ru(q, B) = ¢" "W Ry (q, B).

(2) Letw €S, be a permutation, consider the specialization x; = q,y; =t, Yi > 1, of
the double B-Grothendieck polynomial &) (Xn,Yn).  Then

BPD (g, .= q,y;, :=t,¥i > 1) € N[g,t, ).
(3) Let w be a permutation, then

mw(laﬁ) = SYi1><w(07ﬁ)'
Note that R, (1,8) = Ry-1(1,5), but Ry,(t, ) # Ry-1(t, 5), in general.

For the reader convenience we collect some basic definitions and results concerning the
[B-Grothendieck polynomials in Appendix I.

Let us observe that R,,(1,1) = &,,(1), where G,,(1) denotes the specialization
x; := 1, Vi > 1, of the Schubert polynomial &,,(X,,) corresponding to permutation w.
Therefore, R®,,(1,1) is equal to the number of compatible sequences |7] (or pipe dreams,
see e.g. [66] ) corresponding to permutation w.

Problem 1.1

Let w € S, be a permutation and | := ((w) be its length. Denote by C'S(w) =
{a=(a; <ay <...<a) €N} the set of compatible sequences [7] corresponding to
permutation w.

e Define statistics r(a) on the set of all compatible sequences CS,, := [[ CS(w)
- wESy,

in a such way that

S g B =Ru(q. ).

acCS(w)
e Find a geometric interpretation, and investigate combinatorial and algebra-geometric
properties of polynomials s (Xn),

where for a permutation w € S,, we denoted by sy (X,) the B-Schubert polynomial
defined as follows

l:=0(w)
sO(x)= Y F® [ .
acCS(w) =1

We expect that polynomial &/ )(1) coincides with the Hilbert polynomial of a certain
graded commutative ring naturally associated to permutation w.

Remark 1.1 [t should be mentioned that, in general, the principal specialization
6Y V(z =g, Vix 1)

of the (8 — 1)-Grothendieck polynomial may have negative coefficients. [ ]

" For a more general result see Appendix I, Corollary 6.2.
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Our main objective in Section 5.2 is to study the polynomials 2R, (q, 5) for a special
class of permutations in the symmetric group S,,. Namely, in Section 5.2 we study
some combinatorial properties of polynomials R, , (q, ) for the five parameters family
of vewillary permutations {w), 4} which have the shape

A= dpp=(P(n—i+1)+b, i=1,...,n+1) and flag

¢=¢pr=(k+riE—-1),i=1,....,n+1).

This class of permutations is notable for many reasons, including that the special-
ized value of the Schubert polynomial &, ,(1) admits a nice product formula 8 | see
Theorem 5.6. Moreover, we describe also some interesting connections of polynomials
R, , (¢, ) with plane partitions, the Fuss-Catalan numbers 9 and Fuss-Narayana poly-
nomials, k-triangulations and k-dissections of a convex polygon, as well as a connection
with two families of ASM. For example, let A = (b") and ¢ = (k™) be rectangular
shape partitions, then the polynomial R, , (¢, 5) defines a (g, 3)-deformation of the
number of (ordinary) plane partitions '° sitting in the box b x k x n. It seems an in-
teresting problem to find an algebra-geometric interpretation of polynomials R, (q, 3)
in the general case.

Question Let a and b be mutually prime positive integers. Does there exist a
family of permutations w,;, € S such that the specialization z; = 1 Vi of the Schubert
polynomial &, , is equal o the rational Catalan number C,, 7 That is

1 a+b
Gwa,b(l) = a+b ( a )
|

Many of the computations in Section 5.2 are based on the following determinantal
formula for S-Grothendieck polynomials corresponding to grassmannian permutations,
cf [47].

Theorem 1.4 (see Comments 5.5)
If w = oy is the grassmannian permutation with shape A = (X ..., \,) and a unique

® One can prove a product formula for the principal specialization &, , (z; :=¢'~', Vi > 1) of the
corresponding Schubert polynomial. We don’t need a such formula in the present paper.

9 We define the (generalized) Fuss-Catalan numbers to be FCP) (b) := % ("P+%). Connection
of the Fuss-Catalan numbers with the p-ballot numbers Bal,(m,n) := "=M2EL ("7 41} and the Rothe
numbers Ry (a,b) := - (“*%") can be described as follows

FCP (b) = R, (b+1,p) = Bal,_1(n,(n —1)p+b).

10 Let A be a partition. An ordinary plane partition (plane partition for short)bounded by d and
shape A is a filling of the shape A by the numbers from the set {0,1,...,d} in such a way that the
numbers along columns and rows are weakly decreasing.

A reverse plane partition bounded by d and shape A is a filling of the shape A by the numbers from
the set {0,1,...,d} in such a way that the numbers along columns and rows are weakly increasing.

12



descent at position n, then !

Aj+n—j i—1
(A) Qﬁ(ﬂ)(Xn) — DET\h(’B) (X)) i<t jon = DET |z}’ (148 )’ i<ij<n

> Agth H1§i<j§n(xi — ;) ’
where X, = (x4, x1,...,2,), and for any set of variables X,
k—1
=% (71 st 5
a=0

and hy(X) denotes the complete symmetric polynomial of degree k in the variables from
the set X.

DET| L (i + ya + B 2 va) (14 B2 1<ijen

H1§i<j§n(ﬂ7i — zj)

(B) Q5a>\ (X’ Y) =

In Section 5.3 we give a partial answer on the question 6.C8(d) by R.Stanley [71].
In particular, we relate the reduced polynomial corresponding to monomial

n—2 n
a2 a N
(9512 " Tp-1n "> H H Tjk, @ € L>0,V],
j=2  k=j+2

with the Ehrhart polynomial of the generalized Chan—Robbins—Yuen polytope, if a; =
... =a, =m+1, cf [52], with a t-deformation of the Kostant partition function of type
A, 1 and the Ehrhart polynomials of some flow polytopes, cf [53].

In Section 5.4 we investigate certain specializations of the reduced polynomials cor-
responding to monomials of the form

mi m
x12 ...x

n
n—1n»

m; S ZZOVJ

First of all we observe that the corresponding specialized reduced polynomial appears to
be a piece-wise polynomial function of parameters m = (myq, ..., m,) € (R>o)", denoted
by Pn. It is an interesting problem to compute the Laplas transform of that piece-wise
polynomial function. In the present paper we compute the value of the function P, in
the dominant chamber C, = (m; > mg > ... > m, > 0), and give a combinatorial
interpretation of the values of that function in points (n,m) and (n,m, k), n > m > k.

For the reader convenience, in Appendix [-V we collect some useful auxiliary infor-
mation about the subjects we are treated in the present paper.

Almost all results in Section 5 state that some two specific sets have the same number
of elements. Our proofs of these results are pure algebraic. It is an interesting problem

11 the equality
_DET |27 (14 B 2) Yicijen

B (x
Box (Xn) H1§i<jgn($i_mj)

T

)

has been proved independently in [55].

13



to find bijective proofs of results from Section 5 which generalize and extend remarkable
bijective proofs presented in [79], [66], [72], [53] to the cases of

e the S-Grothendieck polynomials,

e the (small) Schréder numbers,

e k-dissections of a convex (n + k + 1)-gon,

bullet special values of reduced polynomials.

We are planning to treat and present these bijections in (a) separate publication(s).
|

We expect that the reduced polynomials corresponding to the higher-order powers
of the Coxeter elements also admit an interesting combinatorial interpretation(s). Some
preliminary results in this direction are discussed in Comments 5.8.

At the end of Introduction I want to add three remarks.

(a) After a suitable modification of the algebra 3HT,,, see [41], and the case 5 # 0 in
[37], one can compute the set of relations among the (additive) Dunkl elements (defined
in Section 2, (2.3)). Inthe case §=0 and ¢; = ¢ §j_i1, 1 <i<j <n, where o,
is the Kronecker delta symbol, the commutative algebra generated by additive Dunkl
elements (2.3) appears to be “almost” isomorphic to the equivariant quantum cohomology
ring of the flag variety F1,,, see [41] for details. Using the multiplicative version of Dunkl
elements (3.14), one can extend the results from [41] to the case of equivariant quantum
K-theory of the flag variety Fl,,, see [37].

(b) In fact, one can define an analogue of the algebra 37" for any (oriented)
matroid M,,, and state a conjecture which connects the Hilbert polynomial of the alge-
bra 37" (M,,)%, ) and the chromatic polynomial of matroid M,,. It is an interesting
problem to find a combinatorial meaning of the algebra 3T7§0)(./\/ln).

(c) (“Compatible” Dunkl elements, and algebras related with the weighted complete
graph mK, )

Let us consider collection of generators {uﬁ?), 1<i,j<n, a=1,...,r}, with sub-
ject to either the unitarity conditions (the case of sign “+”) or the symmetry conditions
(the case of sign “-”) :

ul £ul?) = 0,9, 0,1, j

, and “local” Dunkl elements
91(0‘) ::Z ugjo-‘), j=1...,n, a=1,... 1
J#

We are looking for a “natural set of relations” among the generators {Ug?)}lgi,jgn} such
1<a<lr
that the “global” Dunkl elements

o =000 A0 i=1,. 0

either pairwise commute (the case “+”) or pairwise anticommute (the case “-”) for all
values of parameters {\; }1<i<,. In other words we are searching for the “compatibility
conditions” for local Dunkl elements which ensure the commutativity (or anticommuta-
tivity) of global Dunkl elements, cf with definition of super version of the 6-term relation
algebra in Section 4.2. The “natural conditions” we have in mind are:
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o (Locality conditions)
i, e 1 = 0 = [ i o+ [ ) i 3,730 {0} =0, Va £ 5,
e (Crossing relations)

(3-term relations) u( 2) u],z + u(k) u,(f;) + u:? u'® =0,

) i Vg
) ( 6-term crossing relatlons)
o) (B B, (@) (o) (B) () (o) (B) ® , ()

Uij " Ujp + Uy~ Uy, Fuyy ug ugg +wyy uy gy =0,

R R ) R Y I )
if 7, j, k are distinct and o # ﬁ
° (ul(] ) =0, [ugx),ugj l« =0, for all i #j, o # 05,

where we have used notation [a,b]+ :=a bF b a.
The output of this construction are

e noncommutative quadratic algebra 3T7§ r) generated by the elements {u }1<1<g<n,
=1,..,

e a family of nr either mutually commutmg (the case “4”) or pairwise anticommuting
(the case “-”) local Dunkl elements {6\ } =t

,,,,,

We expect that the subalgebra generated by local Dunkl elements in the algebra
3T7§7r) is isomorphic to the coinvariant algebra of the diagonal action of the symmetric
group S,, on the ring of polynomials Q[X,(f), o Xn (r)] where X7 stands for the set of
variables {:cgj o2l ))} The algebra (BT( 2))“"“ has been studied in [37], and [6]. In
the present paper we state only our old conjecture.

Conjecture 1.1 (A.N. Kirillov, 2000)
Hilb((3T, )“”“ t)=(1+t)"(1+nt)" 2

According to observation of M. Haiman [31], the number 2" (n + 1)"~2 is thought of
as being equal to to the dimension of the space of triple coinvariants of the symmetric
group S,,.
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2 Dunkl elements
Let F,, be the free associative algebra over Z with the set of generators {u;;, 1 <1i,j < n}.
We set z; :=u;;, 1 =1,...,n.

Definition 2.1
The (additive) Dunkl elements 0;,1 = 1,...,n, in the algebra F, are defined to be

j=1
J#i

We are interested in to find “natural relations” among the generators {u;;}1<; j<, such
that the Dunkl elements (2.3) are pair-wise commute. One of the natural conditions
which is the commonly accepted in the theory of integrable systems, is

e (Locality condition)

[z, 2] =0, wij ug = ug wiy, if i #j, k#L and {i,7} N {k, 1} =0. (2.4)
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Lemma 2.1
Assume that elements {u;;} satisfy the locality condition (2.4). Ifi# j, then

[Hi,ej] = |:£UZ + Z Uik, Uij +Ujl':| + [Uij,z l’k:| -+ Z Wik,
k=1

ki j ki j
where
Wik = [Wij, Wi, + Wik) + [Wik, W) + [T, wjn] + [wir, 5] + [Tk, wij). (2.5)

Therefore in order to ensure that the Dunkl elements form a pair-wise commuting family,
it’s natural to assume that the following conditions hold
e (Unitarity)

[wij + wji, upt] = 0 = [wij +uji, xg]  for all distinct 1,7, k,1, (2.6)

i.e. the elements u;; + u;; are central.
e (“Conservation law”)

[Z Ty, ui;l =0 for all 1,7, (2.7)
k=1

i.e. the element E := "} | x is central,
¢ (Dynamical classical Yang—Baxter relations )

[, Wit + i) + [Wir, W] + [T, wjn] + [win, ;] + [, wij] = 0, (2.8)
if 7, 7, k are pair-wise distinct.

Definition 2.2
We denote by DCY B,, the quotient of the algebra F,, by the two-sided ideal generated
by relations (2.4),(2.6),(2.7) and (2.8).

Clearly, the Dunkl elements (2.3) generate a commutative subalgebra inside the algebra
CDY B,,, and the sum Z?:l 0; = Z?:l x; belongs to the center of the algebra DCY B,,.

Remark We will call the Dunkl elements of the form (2.3) by dynamical Dunkl
elements to distinguish the latter from truncated Dunkl elements, corresponding to the
case x; = 0, Vi.

2.1 Some representations of the algebra DCY B,

(I) (cf[21])  Given aset qy,...,¢,—1 of mutually commuting parameters, define ¢;; =

1;1 qa, if 7 < j and set ¢;; = gj; in the case ¢« > j. Clearly, that if i« < j < k, then

4ijq5k = qik-

Let 21, ..., z, be aset of (mutually commuting) variables. Denote by P, := Z[z1, . . ., z,]
the corresponding ring of polynomials. We consider the variable z;, i =1,...,n, also as
the operator acting on the ring of polynomials P, by multiplication on z;.
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Let s;; € S, be the transposition that swaps the letters ¢ and j and fixes the all other
letters k # ¢, 5. We consider the transposition s;; also as the operator which acts on the
ring P, by interchanging z; and z;, and fixes all other variables. We denote by

1-— Sij

ai' ) @' = ai,i—l—la

Zi—Zj

the divided difference operators corresponding to the transposition s;; and the simple
transposition s; := ;11 correspondingly.  Finally we define operator (cf [21] )

Oijy = 0y -+ 0210;0;—1--- 0y, if 1<].

The operators dj5),1 < i < j < n, satisfy (among other things) the following set of
relations (cf [21]) ‘

hd [Zj7a(ik)] =0, if J ¢ [ivk]a [a(ij)a zlzz‘ Za] =0,

° [a(z])a a(kl)] = 0k [zj,a(u)] + 51'1 [8(@), Zi], if i< j, k<.

Therefore, if we set u;; = q;; Oujy, if 1 <7, andug; = —uyiy, if > j, then for
a triple 7« < j < k we will have

(i, Wig A i) A [Wan, W] + [26, win] 4 [wir, 2]+ [z, i) = G50 1065), O] + Gin[Oiny 23] = 0.

Thus the elements {z;,i = 1,...,n} and {u;;,1 < i < j < n} define a representation of
the algebra DC'Y B,,, and therefore the Dunkl elements

0; ==z + Z Uiy = 2 — Z 45000y + Z i 9ij)
VES Jj<i Jj>i

form a pairwise commuting family of operators acting on the ring of polynomials
Zq1, .. qn-1][71, - - -, 2n], cf [21]. This representation has been used in [21] to construct
the small quantum cohomology ring of the complete flag variety of type A,,_1.

|
(IT) Consider degenerate affine Hecke algebra $),, generated by the central element h,
the elements of the symmetric group S,,, and the mutually commuting elements y1, . . ., yn,

subject to to relations
SiYi — Yiyrsi = h, 1<i<n, sy =y, JFi,i+1,

where s; stand for the transposition that swaps only indices i and ¢ + 1. For ¢ < j, let
Sij = 8; -+ 8;—15;5j_1 - - 5; denotes the permutation that swaps only indices 7 and j. One
can show that

° [yjysik] = h[SZ‘j, Sjk]7 if 4 <j < k’,

o ;S — Sty = h+ h s Zi<j<k Sk, if @ < k.
Finally, consider a set of mutually commuting parameters {p;;, 1 <i # j <n, p;;+p;i =
0}, subject to the constraints

PijDjk = PikPij + DjkDik + Pik, 1 < J < k.
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Comments 2.1  If parameters {p;;} are invertible, and satisfy relations
PijPjk = PikPij + PjkPik + B Dik, 1< J <k,
then one can rewrite the above displayed relation in the following form:

1+£:(1+£)(1+£), 1<i<j<k<n.

Pik Dij Djk
Therefore there exist parameters {qi,...,q,} such that 1+3/p; = ¢:/q;, 1 <i<n. In
other words, p;; = f _q;_, 1 <1<y <n. However, in general there are other solutions,
J J

for example, ones related to the Heaviside function * H(z), namely, p; = H(x; —

z;),z; € R, Vi, and its discrete analogue, see Example (III) below. In the both cases

B=—1.

|
To continue presentation of Example (II), define elements w;; = p;js;j, 1 <i# j < n.
Lemma 2.2 (Dynamical classical Yang—Baxzter relations)
[wij, wire + wi] + [wir, wj] + [, y;] =0, 1<i<j<k<n. (2.9)
Indeed,
Wik = UikWij + Uipip + I DikSijSin,  Wiktli; = Wijlig + Uitk + b PigSjkSir,
and moreover, [y;, wix] = h Dik[Sij, Sjkl- [ |
Therefore, the elements
Oi=yi—h > uy+h Y wy, i=1...n,
j<i i<j
form a mutually commuting set of elements in the algebra Z[{p;;}] @z 9.
Theorem 2.1  Define matriz M, = (m; j)1<ij<n as follows:
u—z if =],
mij(u;z1,...,2,) =% —h—pi; if i<}y,
Then
DET|M,(u;6y,...,0,)| =[] («— ;).
7j=1
Moreover, let us set qi; := h*(pi; + p3;) = h*qiq; (¢ — q;)7%, i < j,  then
er(0r,. . 00) = P (Wi, og), 1<k <n,
where ex(xq,...,x,) and e,(gq) (x1,...,x,) denote correspondingly the classical and quan-

tum [22] elementary symmetric polynomials

12 http:/ /en.wikipedia.org/wiki/Heaviside step function
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13

Let’s stress that the elements y; and ; do not commute in the algebra §,,, but the
symmetric functions of vy, ..., y,, i.e. the center of the algebra $,,, do.

A few remarks in order. First of all, u =p? ;; are central elements. Secondly, in the
case h = 0 and y; = 0, Vi, the equality

DET|M,(u;xq,...,2z,)| = u"

describes the set of polynomial relations among the Dunkl-Gaudin elements (with the
following choice of parameters p;; = (¢; — g;) ™" are taken). And our final remark is that
according to [29], Section 8, the quotient ring

HY = Qlyr, o pl™ @ QU 0] @ QU] / (M6, 6 Hu—y]>

is isomorphic to the quantum equivariant cohomology ring of the cotangent bundle 7% Fl,,
of the complete flag variety of type A, _1, namely,

HY = QHm o (T FL,,)

with the following choice of quantum parameters: Q; :=h ¢;41/q;, i =1,...,n— 1.

On the other hand, in [41] we computed the so-called multi-parameter deformation of
the equivariant cohomology ring of the complete flag variety of type A,,_1. A deformation
defined in [41] depends on parameters {g;;, 1 <1i < j < n} without any constraints are
imposed. For the special choice of parameters

dij ‘=
! (¢ — ¢;)°

the multiparameter deformation of the equivariant cohomology ring of the type A, _;
complete flag variety Fl,, constructed in [41], is isomorphic to the ring H2.

Comments 2.2  Let us fix a set of independent parameters {q,...,¢,} and define
new parameters

q; q; . . q;
{¢ij == h pij(p + h) =h* ——1=}, 1<i<j<n, where p;=
! I (¢ — q;)? Y- q

We set deg(gi;) = 2,deg(pij) =1, deg(h) = 1.

13

i< g

For the reader convenience we remind [22] a definition of the quantum elementary symmetric
polynomial ed(z1,...,2,). Let q:={gij}1<i<j<n be a collection of “quantum parameters”, then

4
ez e P
G2 R k—2 Z ]UJ Qi ja>

1<1< <Lg<n a=1
J1>41..,dp>tp

where I = (i1,....i¢) J = (j1,...,j¢) should be distinct elements of the set {1,...,n}, and X757 denotes
set of variables x, for which the subscript a is neither one of i,, nor one of the j,,.
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The new parameters {¢;; }1<i<j<n, do not free anymore, but satisfy rather complicated
algebraic relations. We display some of these relations soon, having in mind a question:
is there some intrinsic meaning of the algebraic variety defined by the set of defining
relations among the “quantum parameters” {g;;} ? Let us denote by A, the quotient
ring of the ring of polynomials Q[z;;, 1 < i < j < n] modulo the ideal generating by
polynomials f(x;;) such that f(g;;) = 0. The algebra A, ; has a natural filtration, and
we denote by A, = gr.A,  the corresponding associated graded algebra.

To describe (a part of) relations among the parameters {¢;;} let us observe that
parameters {p;;} and {¢;;} are related by the following identity

@itk — Gk (@5 + @ie) + D2 aie = 2 piypacpin(pir + h),  if i <j <k
Using this identity we can find the following relations among parameters in question
GG + GG + M Gt — 2 G50 tie (@ + Qe+ Gin) — 2 WP qin(Gii G + @Gk + Gedin)
=8 h 4ij Gir Uik Pik;
(2.10)

ifl<i<j<k<n.
Finally, we come to a relation of degree 8 among the “quantum parameters” {g;;}

2
(LHS(z.g)) 64N R gy, 1<i<j<k<n.

There are also higher degree relations among the parameters {g¢;;} some of whose in
degree 16 follow from the deformed Pliicker relation between parameters {p;; }:

1 1 1 h
= + +
DirPji PijPrt  PiuPjk  PijPjkPki

, 1<y <k<l

However, we don’t know how to describe the algebra A, ; generated by quantum param-
eters {¢;;j }1<i<j<n even for n=4.

The algebra A, = gr(.A, ) is isomorphic to the quotient algebra of Q[z;;, 1 <i <
J < n] modulo the ideal generated by the set of relations between “quantum parameters”

{qi]‘ = (

which correspond to the Dunkl-Gaudin elements {6;}1<;<n, see Section 3.2 below for
details. In this case the parameters {q;;} satisfy the following relations

1

Zz‘—Zj

2
) }1§i<j§n)

(@05 + Tk + Tuin = 2 Ty Ty + Ty + T
which correspond to the relations (2.9) in the special case h = 0. One can find a set
of relations in degrees 6, 7 and 8, namely for a given pair-wise distinct integers 1 <
1,7, k,l <n, one has
e one relation in degree 6

2.2 9 9.9 92 9. 2 95 | 2.9 9
4G + G T + Gne T + a9 —
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______ i q Qe | 91, 9u | D o
2 0500525100 (——U + ot g _L) + 8 0059790 = 0;
9 45 95 Y Y5k q;

e three relations in degree 7
B S N
Qik <QijQiZle —4ii909k + 9969 — Qilqjqul> =

22 _ (_ — = 22 (2 | 2
8 03Tk ik qn (Cij +q;+ le> — 49,79, (qj-k + le)a
e one relation in degree 8

However we don’t know does the list of relations displayed above, contains the all in-
dependent relations among the elements  {g;;}1<i<j<n in degrees 6, 7 and 8, even for
n =4. In degrees > 9 and n > 5 some independent relations should appear.

Notice that the parameters {p;; = qi.ziq;’ i < j} satisfy the so-called Gelfand-
i—3j

Varchenko relations, see e.g. [36]
PijPik = PikPij + PjkPik + b Dk, @ < j <k,

whereas parameters {p,; = i < j} satisfy the so-called Arnold relations

_1

q9i—q;’
DijDjk = DikPij + DjiPirs 1 <J < k.

Problem Find Hilbert series Hilb(A,,t) for n > 4.

For example, Hilb(As,t) = %

Finally, if we set ¢; := exp(h z;) and take the limit limy_,q (Ij_%q)@,
i —qj
1

(zi—25)"

as a result we

obtain the Dunkl-Gaudin parameter g;; =
|

(ITI) Consider the following representation of the degenerate affine Hecke algebra $),,
on the ring of polynomials P, = Q[z1, ..., z,]:
e the symmetric group S,, acts on P, by means of operators

§; = 1+(xl+1—xl—h)@,22 1,...,7’L—1,
e y; acts on the ring P, by multiplication by x;:  v;(f(z)) = z;f(x), f € P,. Clearly,
Yi i — Yiy1 i = h, and y(3; — 1) = (5; — Dyiys + 10 — 2 — h.

In the subsequent discussion we will identify the operator of multiplication by x;, namely
the operator y;, with x;.

This time define u;; = p;;(5; — 1), if i < j and set w;; = —uj; if @ > j, where
parameters {p;;} satisfy the same conditions as in the previous example.

Lemma 2.3  The elements {u;;, 1 < i < j < n}, satisfy the dynamical classical
Yang—Baxter relations displayed in Lemma 2.2, (2.9).
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Therefore, the Dunkl elements

Hi:: E Uij, z'zl,...,n,
J

i
form a commutative set of elements.

Theorem 2.2 (/29])  Define matriz M,, = (Ti;)1<ij<n as follows

u_zi‘i‘zj#ihpij Zf 12]7
M (U5 21,y 2) = —h — pij if i<,
Dij if 1> 7.
Then

=[] (w—=y).

Jj=1

DET|M,(u;01,...,0,)

Comments 2.3 Let us list a few more representations of the dynamical classical Yang—
Baxter relations.
e (Trigonometric Calogero-Moser representation) Let i < j, define

L

(sij—€), e=0o0r 1; si(x) = x5, sij(x;) =25, sij(2p) = 2%, Vh #14, ].
T; — ZL‘j

e (Mixed representation)

A T
wij = (>\i _])\j _ZBi _ij)(sij —€), e=0o0rl; s;;(\) =\ VEk.
We set u;; = —uj;, if ¢ > j. In all cases we define Dunkl elements to be §; = Z#i Uij-
Note that operators

)\Z—F)\] _$i+$j

satisfy the three term relations: 77, = 7irij + 7jkTi, and rjpry; = 1357 + 1Tk, and
thus satisfy the classical Yang-Baxter relations.

Remarks 1 .

(1) (Non-unitary dynamical classical Yang-Baxter algebra) Let A,, be the quotient
of the algebra F,, by the two-sided ideal generated by the relations (2.4), (2.7) and (2.8).
Consider elements

Gi:xi—i—Zum, and Q_j:—a:j—i—Zubj, 1<i<y<n.
a#i b#j
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Then

= E Tk 7u’Lj + E Wikj,

k#i,5
where the elements w;j; have been defined in Lemma 2.1, (2.5).

Therefore the elements 6; and §; commute in the algebra A,.

In the case when z; = 0 for all ¢ = 1,...,n, the relations w;j;, = 0 (assuming
that 4,7,k are all distinct) are well-known as the (non-unitary) classical Yang-Baxter
relations. Note that for a given triple of pair-wise distinct (7, j, k) we have in fact 6
relations. These six relations imply that [6;, ;] = 0. However, in general,

0170 [Z Uik 5 Uiy +u]z] 7é 0.

k#i.j

In order to ensure the commutativity relations among the Dunkl elements, i.e. [0;,0;] =
0 for all 7,7, one needs to impose on the elements {u;;,1 < i # j < n} the “twisted”
classical Yang-Baxter relations, namely

[wij + Wik, W] + [win, up) =0, if 4,7,k are all distinct. (2.11)

Contrary to the case of non-unitary classical Yang—Baxter relations, it is easy to see that
in the case of twisted classical Yang—Baxter relations, for a given triple (7, j, k) one has
only 3 relations.

Examples 2.1
(a) Define

pl-j(zl, e 7Zn) =

Ao, if 1<i<j<n,
— . if n>i>j> 1.

zj—z;
Clearly, pi; + pji = 1. Now define operators u;; = p;;si;, and the truncated Dunkl
operators to be 6; = Z#i uij, © = 1,...,n. All these operators act on the field of
rational functions Q(z1,...,2,); the operator s;; = sj; acts as the exchange operator,
namely, s;;(z;) = zj, Sij(zk) = 2 Yk £ 4,75, sij(2) = 2.
Note that this time one has

P12P23 = P13P12 + P23P13—P13-

It is easy to see that the operators {u;;, 1 < ¢ # j < n} satisfy relations (3.11),
Section 3, and therefore, satisfy the twisted classical Yang-Baxter relations (2.9). As a
corollary we obtain that the truncated Dunkl operators {6;, i = 1,...,n} are pair-wise
commute. Now consider the Dunkl operator D; =0,, + h 0;, i=1,...,n, where h is a
parameter. Clearly that [0, 4 0., u;;] = 0, and therefore [D;, D;] = 0 Vi, j. It easy to
see that

Siiv1Di — Dig18ip1 = h,  [Di,sj501] =0, if j#i,4+ 1

In such a manner we come to the well-known representation of the degenerate affine
Hecke algebra $,,.
|
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(b)  (Step functions and the Dunkl-Uglov representations of the degenerate affine
Hecke algebra [75]).
Consider step functions n* : R — {0, 1}

) =4O : =9 ’
(Heaviside function) n*(z)= {07 if <0 n () = {0’ if x<O0.

For any two real numbers z; and z; set nf? = n*(z; — x;).

Lemma 2.4 The functions n;; satisfy the following relations
hd 77@32 + 77]1 - 1 + (596“36]7 (771]) = 77?][7

i Th]n]k = nzknzg + njknlk‘ nzk’
where 9., denotes the Kronecker delta function.

To introduce the Dunkl-Uglov operators [75] we need a few more definitions and no-
tation. To start with, denote by AF the finite difference operators: AX(f)(x1,...,2,) =
f(o..,xz;£1,...). Let as before, {s;;, 1 <i # j <n, s;; =sj}, denotes the set of
transpositions in the symmetric group S,,. Recall that s;;(x;) = z; s;j(xx) =z VE # 4, .
Finally define Dunkl-Uglov operators df : R® — R" to be

= Af + Z Osa; — Z i Sij + Zni 5ij-

J<i j<i j>i
. . . + . + s . N+ +
To simplify notation, set ug; :=n;zs;5, if i < j, and A7 = AF + ZKZ a0

Lemma 2.5  The operators {ul, 1 <i < j <n} satisfy the following relations

u)

Soud A ud) + fug ] 4 [, Y 0] =0, if i<j <k

7<i

[u

From now on we assume that x; € Z, Vi, that is, we will work with the restriction
of the all operators involved in Example (2.1(b), to the subset Z" C R™. It is easy to
see that under the assumptions x; € Z, Vi, we will have

A = (75 F Onia,) AT (2.12)
Moreover, using relations (2.10), (2.11) one can prove that

Lemma 2.6

e [u U,Ai —{—Ai] 0,

e [u zk’Ai] [u zk’2j<i 5961-,96]-]» i< g <k
Corollary 2.1

e The operators {u”, 1<i<j<k<n} and ﬁli,z =1,...,n satisfy the
dynamical classical Yang—Bazter relations

[k, wh +ud] + [ud, b + b Al =0, if i<j<k

e ([75])  The operators {s; == s;i41, 1 < i < n, and Kj[,l < j < n} give
rise to two representations of the degenerate affine Hecke algebra $),. In particular, the

Dunkl-Uglov operators are mutually commute: [dF, df] =0.
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(2) Assume that Vi, z; = 0, and generators {u;;,1 < i < j < n} satisfy the locality
conditions (2.4) and the classical Yang-Baxter relations

[uij,ul-k +Ujk] + [uik,ujk] = O, Zf 1 <9 <j <k < n.
Let y, z,t1,...,t, be parameters, consider the rational function

(ti — t;)uy
z—t)(z—t;)

Foyp(2;t) = Foyp(ziti, ... 1) = Z (

1<i<j<n

Then
[Foyp(z;t), Foyp(y;t)] =0, and  Res,—, Foyp(z;t) = 0;.

(3) Now assume that a set of generators {c;;, 1 < i # j < n} satisfy the locality
and symmetry (i.e. ¢;; = ¢;;) conditions, and the Kohno-Drinfeld relations:

[cijem] =0, if {i,5}n{k,l} = 0, (i, Cike + cir) = 0 = [cij + cin, cji), 1< j < k.

Let y, z,t1,...,t, be parameters, consider the rational function
FKD(Z,t) = FKD(Z;tl,...,tn): Z Y = Z Y .
\<Ti<n (z —ti)(ti — t5) \<iTr<n (z —ti)(z — t;)
Then
[Frp(z;t), Frp(y;t)] =0, and Res,—, Fxp(z;t) = KZ;
where .
Cz’j

— t; —1;
j=1
i

denotes the truncated Knizhnik-Zamolodchikov element. [ |

(IV)  (Dunkl and Gaudin operators)
(a) ( Rational Dunkl operators) Consider the quotient of the algebra DCY B,
see Definition 2.2, by the two-sided ideal generated by elements

{[zi + 25, uy]} and {[xg, uyl, k #14,5}.

Clearly the Dunkl elements (2.3) mutually commute. Now let us consider the so-called
Calogero—Moser representation of the algebra DC'Y B,, on the ring of polynomials R,, :=
Rz, ..., 2z, given by

0 p(z) 1

9z ui;(p(2)) = o (1=sij) p(2), p(2) € Ry

zi(p(2)) = A

The symmetric group S,, acts on the ring R, by means of transpositions s;; € S, :
sij(2i) = 25, sij(25) = 2, sij(2) = 2, if k#4,7,
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In the Calogero-Moser representation the Dunkl elements #; becomes the rational
Dunkl operators [17], see Definition 1.1. Moreover, one has [z, u;;] =0, if k # i, j, and

1
(i — ) —wij), @ wj =y T — (@ — xj — uy).

Z; uij:uij xj—i_zi—Zj Z,L'—Zj
(b) (Gaudin operators)
The Dunkl-Gaudin representation of the algebra DCY B, is defined on the field of

rational functions K, := R(q,...,q,) and given by

9 f(q) Sij
zi(f(q) = A———= u;; = ——, flq) € K,,
) = x5 P g = 0 fla)
but this time we assume that w(g;) = ¢;, Vi € [1,n] and for all w € S,,. In the Dunkl-
Gaudin representation the Dunkl elements becomes the rational Gaudin operators, see
e.g. [56]. Moreover, one has [zy,u;;] =0, if k # 4, j, and

i Wi — Wij Ly ] R g Wiy — Way Ly ] -
Qz_% Qz_QJ

uz’j

3 Algebra 3HT,

Consider the twisted classical Yang—Baxter relation
[Wij + Wi, Wja) + [Wia, uji] =0, where 1i,j,k are distinct.

Having in mind applications of the Dunkl elements to Combinatorics and Algebraic
Geometry, we split the above relation on two relations

uij Ujk = Ujk Wik — Uik uji CLTLd Ujk uij = Uik ’Lij — uji Witk (313)

and impose the following unitarity constraints
wi; +ug =0,
where (3 is a central element. Summarizing, we come to the following definition.

Definition 3.1 Define algebra 3T,(5) to be the quotient of the free associative algebra
Z1B] ( wy, 1<i<j<mn ) bythe set of relations
o (Locality) w;j ug = w wij, if {3,7} N {k, 1} =0,
® Ui Ujp = Uip Uij + Ujp Ui — B U,  and Wiy Uij = Ugj Ug + Uig Ujp — 3 U,
ifl<i<j<k<n.

It is clear that elements {u;;, w;r, up, 1 < i < j < k < n} satisfy the classical Yang-
Baxter relations, and therefore, the elements {0; := >, uy, 1 = 1,...,n} form a
mutually commuting set of elements in the algebra 37,,(5).

Definition 3.2 We will call 01, ... ,0, by the (universal) additive Dunkl elements.
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For each pair i < j, we define element ¢;; := u?j — B u;j € 3T,(5).

Lemma 3.1
(1) The elements {qj, 1 <i<j<n} satisfy the Kohno— Drinfeld relations
( known also as the horizontal four term relations)

Gij Qo = qu Gij> of {4,730 {k 1} =10,
[Gij @ik + k) =0, [¢ij + @i i) =0, if i <j<k.
(2)  For a triple (i < j < k) define w;j = u;; — wi, + uji. Then

u?jk = B wijk + qij + Gir + Q-

(3)  (Deviation from the Yang-Bazter and Coxeter relations)
Uij Uik Ujk — Ujk Uik Uiy = [uika%’j] = [ijauik]a
Wi Ujke Wiz — Ujk Uij Uik = Gij Uik — Wik k-

Comments 3.1 [t is easy to see that the horizontal 4-term relations listed in Lemma 3.1,
(1), are consequences of the locality condition among the generators {¢;;}, together with
the commutativity conditions among the Jucys—Murphy elements

d; == i Gij, 1=2,...,n,

j=it1

namely, [d;,d;] = 0. In [37] we describe some properties of a commutative subalgebra
generated by the Jucys-Murphy elements in the Kohno- Drinfeld algebra. It is well-
known that the Jucys—Murphy elements generate a maximal commutative subalgebra in
the group ring of the symmetric group S,. It is an open problem to describe defining
relations among the Jucys—Murphy elements in the group ring Z[S,]. [ |

Finally we introduce the “Hecke quotient” of the algebra 37,,(3), denoted by 3HT,, ().

Definition 3.3 Define algebra 3HT, (B) to be the quotient of the algebra 3T,(8) by the
set of relations

Qij 9kl = 4kl Gij, Jor all 1,7k,

In other words we assume that the all elements {qij, 1 <i < j<n} are central in the
algebra 37,,(8). From Lemma 3.1 follows immediately that in the algebra 3HT,(3) the
elements {u;;} satisfy the multiplicative (or quantum) Yang-Baxter relations

Uij Uik Uik = Ujk Uik Usj, Zf 1< ] < k. (314)

Comments 3.2 (Modified three term relations algebra 3MT,(5,v) )
Let 8,{qij = ¢ji, Vi; = ¥ji, 1 <i,j < n}, be a set of mutually commuting elements.
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Definition 3.4  Modified 3-term relation algebra 3MT, (f3,1) is an associative algebra
over the ring of polynomials Z[f3,qij, Vij| with the set of generators {u;;, 1 <1i,j <n}
subject to the set of relations

® U + Uj; = O, Uzj Ukl = Ukl W45, Zf {Z,]} N {k, l} = @,’

e (three term relations )

Wij Wik + Uk Wij + Uje up; = 0, of 4,7,k are distinct;

uz; = B gy + qig + iy, if 1 #4;

Uiy Y = Y wig, if 13,57 N {E 1} = 0;

(exchange relations)  u;; ¥, = Vi wi;, if 0,7,k are distinct;
elements B3, {q;;, 1 <1i,j <n} are central.

It is easy to see that in the algebra 3MT,, (5, ¢) the generators {u;;} satisfy the modified
Coxeter and modified quantum Yang-Baxter relations, namely

e (modified Coxeter relations) w;; wjr wij — ujk wij W = (Gij — Qjk) Wik,

e ( modified quantum Yang-Baxter relations)

U5 Uik Uik — Ujk Uik Uij = (%’k - %‘j) Uik,

if 7,7, k are distinct

Clearly the additive Dunkl elements {60; := > i Wigs 1=1,... ,n} generate a com-
mutative subalgebra in 3MT, (5, v).

It is still possible to describe relations among the additive Dunkl elements [37], cf
[39]. However we don’t know any geometric interpretation of the commutative algebra
obtained. It is not unlikely that this commutative subalgebra is a common generalization
of (small) quantum cohomology and elliptic cohomology (remains to be defined !) of
complete flag varieties.

The algebra 3MT,,(8 = 0,) has an elliptic representation [37], [39]. Namely,

Uij 1= Uxi—Aj(Zi - Zj) Sij, i = @()\z‘ - /\j), 1/%3‘ = —@(Zz‘ - Zj);

where {\;;i = 1,...,n} is a set of parameters (e.g. complex numbers), and {z1,...,2,}
is a set of variables; s;;,7 < j denotes the transposition that swaps ¢ on j and fixes all
other variables;

0(z— \) 6'(0)

0(2)0(})
denotes the Kronecker sigma function; p(z) denotes the Weierstrass P-function.

The 3-term relations among the elements {u;;} are consequence (in fact equivalent)
to the famous Jacobi-Riemann 3-term relation of degree 4 for the theta function (z), see
e.g. [78], p.451, Example 5. In several cases, see Introduction, relations (A) and (B),
identities among the Riemann theta functions can be rewritten in terms of the elliptic
Kronecker sigma functions and turn out to be a consequence of certain relations in the

algebra 3MT, (0, 1) for some integer n, and vice versa 4.

ox(z) =

14 Tt is commonly believed that any identity between the Riemann theta functions is a consequence
of the Jacobi-Riemann three term relations among the former. However we do not expect that the
all hypergeometric type identities among the Riemann theta functions can be obtained from certain
relations in the algebra 3M T, (0, ) after applying the elliptic representation of the latter.
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The algebra 3HT, (/) is the quotient of algebra 3M T, (3,1) by the two-sided ideal
generated by the elements {1;;}. The-fore the elements {u;; of the algebra 3HT, (/)
satisfy the quantum Yang- Baxter relations wu;; wi wjr = wjr i wij, ¢ < j <k, and
as a consequence, the multiplicative Dunkl elements

1 n
Oi = H (147 uaﬂ-)_l H (1+huig), i=1,...,n, Uy; = Uins1 =0
a=i—1 a=i+1

generate a commutative subalgebra in the algebra 3HT,, (), see Section 3.1. We empha-
size that the Dunkl elements ©,,7 = 1,...,n, do not pairwise commute in the algebra
3MT,(B), if ¢;; # 0 for some i # j. One way to construct a multiplicative analog
of additive Dunkl elements 6; := > j»i Wij 1s to add a new set of mutually commuting
generators denoted by {p;;, pi; + pji =0, 1 <1i# j <n} subject to crossing relations

e p;; commutes with 5, g and vy, for all ¢, j, k, [,

o pij U = ug pij, if {3, 5} N {k, [} =0,

Pij Uik = W,k Pik, if 2,7, k are distinct,

o 05— B pij+ i =P — B pjx + Yy for all triples 1 <7 <j <k <n.

Under these assumptions one can check that elements

Rij = pij+uy, 1<i<jij<n
satisfy the quantum Yang—Baxter relations
Rij Rip Rj, = Rj R Ry, 1< j<k.
In the case of elliptic representation defined above, one can take
pij = ou(zi = 2),

where pu € C* is a parameter. This solution to the quantum Yang— Baxter equation has
been discovered in [67]. It can be seen as operator form of the famous (finite dimensional)
solution to QY BE due to A. Belavin and V. Drinfeld [5]. One can go one step more
and add to the algebra in question a generator corresponding to the shift operator Tj,
T, : z —> q z, cf |20]. In this case one can define multiplicative Dunkl elements which

are closely related with the elliptic Ruijsenaars—Schneider-Macdonald operators.

3.1  Multiplicative Dunkl elements

Since the elements u;;, u;, and u;, ¢ < j < k, satisfy the classical and quantum Yang-
Baxter relations (3.14), one can define a multiplicative analogue ©;, 1 <i <mn, of the
Dunkl elements 6;. Namely, to start with, we define elements

hij = hij(t) =1+t uy, @7 ]

We consider h;;(t) as an element of the algebra B/ﬁ :=3HT,(P) ®Z[[q§1, t,x,y,...]],

where we assume that the all parameters {¢;;,¢,x,v, ...} are central in the algebra 3H7T,.
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Lemma 3.2

(La)  hi(z) hij(y) = hij(z +y + B 2y) + qi5 zy,

(16)  hj(@) hji(y) = hij(e —y) + By —aij vy, if 1 <]

It follows from (1b) that h;;(t) hj;(t) =1+ 8t —t* q;;, if i < j, and therefore the
elements {h;;} are invertible in the algebra S/I_{\’_Z{n

(2)  hij(@) hyr(y) = hj(y) hie(x) + hir(y) hij(z) — hi(z +y + B zy).
(3) (Multiplicative Yang—Baxter relations)

hij hik hjk = hjk hik hij; ’lf 1< g < k.

(4) Define multiplicative Dunkl elements (in the algebra ?TI_{E) as follows

0, ::@j(t):( f[ h;j) (ﬁ h]-a>, 1<j<n. (3.15)

a=j—1
Then the multiplicative Dunkl elements pair-wise commute.

Clearly

H®j:1’ @j:1+t8j+t2(...), and @[ H <1+tﬂ—t2 qij) ESHTn
j=1 igljer
Here for a subset I C [1,n] we use notation ©; = [[,.; ©a,

Our main result of this Section is a description of relations among the multiplicative
Dunkl elements.

Theorem 3.1 ( A.N. Kirillov and T.Maeno, [40])
In the algebra 3HT, () the following relations hold true

n
S e ] <1+w_t2qij>:{k] |
1C[1,n] i¢l,jed 1+t8
\T|=F i<j

Here [Z] denotes the g-Gaussian polynomial.
q

Corollary 3.1
Assume that ¢;; # 0 for all 1 <i < j < n. Then the all elements {u;;} are invertible
and ui_jl = qigl(uij — ) Now define elements ®; € 3HT,, as follows

1 i+1
(IDZ-:{H u;z-l} {H um}, i1=1,...,n.
a=i—1 a=n

Then we have
(1) (Relationship among ©; and ®; )

" Ot im0 = (—1) @
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(2) The elements {®;, 1 <i <mn,} generate a commutative subalgebra in the algebra

—_~——

3HT,.
(3) For each k = 1,...,n, the following relation in the algebra 3HT, among the

elements {®;} holds
Z H qU I = 6k(n_k)a

IC[1l,n] i¢l, jeI
| I|=k 1<j

where &7 =[] d,,.

a€el

In fact the element ®; admits the following “reduced expression” which is useful for proofs

and applications . {ﬁ{ﬁ u;j}} {ﬁ {ﬁl uj}} (3.16)

jer i jers
Let us explain notations. For any (totally) ordered set [ = (i3 < iy < ... < i) we
denote by I, the set I with the opposite order, i.e. I, = (ig > ig_1 > ... > i1);

if I C [1,n], then we set I¢:=[1,n] \ I. For any (totally) ordered set I we denote by ﬁ

el
the ordered product according to the order of the set I.

Note that the total number of terms in the RHS of (3.16) is equal to i(n — 7).

Finally, from the “reduced expression” (3.144) for the element ®; one can see that

[T (-a & = {TH{TT ¢-wn}) {ﬁ’{ﬁ us}} =& € 3HT,.

igljel Jel i€l 's
i<j i<j i<j

Therefore the identity

Z q)l 5k(n—k‘)

IC[1,n]
1=k

is true in the algebra 3HT,, for any set of parameters {g;;}.

Comments 3.3
In fact from our proof of Theorem 3.1 we can deduce more general statement,
namely, consider integers m and k such that 1 <k <m <n. Then

Z O H (1 +tp 2 qij) = |:7Z + Z ua,B, (317)

IC[1,m] i€[l,m\I,j€J } 1+t8 AC[1,n],BC[1,n]
|I|=k i<j |Al=|B|=r
where | by definition, for two sets A = (i1,...,4,) and B = (j1,...,J,) the symbol
ua,p is equal to the (ordered) product []'_, u;, ;.. Moreover, the elements of the sets
A and B have to satisfy the following conditions:
e foreacha=1,...;,ronehas1<i, <m<j,<n, and k<r<k(n-—k).
Even more, if r = k, then sets A and B have to satisfy the following additional conditions:
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e B=(j1 <jo<...<jk), and the elements of the set A are pair-wise distinct.

In the case f = 0 and r = k, i.e. in the case of additive (truncated) Dunkl elements,
the above statement, also known as the quantum Pieri formula, has been stated as
Conjecture in 22|, and has been proved later in [58].

Corollary 3.2 (/40])

In the case when =0 and ¢;; = q; 0;_;1, the algebra over Ziq, ..., ¢,—1] generated
by the multiplicative Dunkl elements {©; and ©; ', 1 <i < n} is canonically isomorphic
to the quantum K-theory of the complete flag variety Fl, of type A, _1.

It is still an open problem to describe explicitly the set of monomials {u4 g} which

appear in the RHS of (3.17) when r > k.

3.2 Truncated Gaudin operators

Let {p;; 1 <i# j <n} beaset of mutually commuting parameters. We assume that
parameters {p;; }1<i<j<n are invertible and satisfy the Arnold relations

1 1 1 .
— =—4—, <7k
Dik  Pij  Pjk
For example one can take p;; = (z; — z;) ', where z = (21, ..., 2,) € (C\0)™

Definition 3.5 Truncated (rational) Gaudin operator corresponding to the set of param-
eters {pi;}, is defined to be

Gizz Py sy, 1<i<n,
J#

where s;; denotes the exchange operator which switches variables x; and x;, and fizes
parameters {p;;}-

We consider the Gaudin operator G; as an element of the group ring Z[{pf;l}][Sn],
call this element G; € Z[{pf;l}][Sn], i=1,...,n, by Gaudin element and denoted it by
0.

(2

It is easy to see that the elements u;; := pi_jl si5, 1 <14 # j < n, define a representation

of the algebra 3HT, () with parameters 8 = 0 and ¢;; = u; = pj;.

Therefore one can consider the (truncated) Gaudin elements as a special case of
the (truncated) Dunkl elements. Now one can rewrite the relations among the Dunkl
elements, as well as the quantum Pieri formula [22] , [58], in terms of the Gaudin elements.

The key observation which allows to rewrite the quantum Pieri formula as a certain
relation among the Gaudin elements is the following one:

parameters {p;;'} satisfy the Pliicker relations

1 1 1

= + ,if i<i<k<l.
Dik Pji Dij Pl Dil Pjk
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To describe relations among the Gaudin elements 6’1(”), t=1,...,n, we need a bit of
notation. Let {p;;} be a set of invertible parameters as before. i, < j,, a=1,...,7
Define polynomials in the variables h = (hq, ..., hy,)

. 1 n— 11U J)
Gm kr {plj} Z H Z <TL . ’I|> hJ7 (318)

IC[l,n—1] i€l Pin JC[1,n]
[I|=r [I|+m=|J|+k
where
T 2
RIS I » I s

KcCJ, LCJ, ieJ\(KJL ko€K, lo€L
=i, KAp=p JSNEUD e

and summation runs over subsets K = {k; < ky < ... < k,} and L ={l) <l <
. <.} C J}, such that k, <l, a=1,...,r

Theorem 3.2  (Relations among the Gaudin elements, [37], cf [56])
Under the assumption that elements {p;;, 1 < i < j < n} are invertible, mutually
commute and satisfy the Arnold relations, one has

° G(()?O)W(gin)” n 7{plj})_67‘(d27"->dn)7

where dy, . ..,d, denote the Jucys—Murphy elements in the group ring ZI[S,] of the
symmetric group S,, see Comments 3.1 for a definition of the Jucys—Murphy elements.

o LetJ={j<ja...<jr} C[l,n], define matric My := (map)1<ap<r, where

h’ja Zf a = b,

Map = map(Wi{pi;}) = ¢ Py, 0f a<b

—DPjv.ja Zf a>b.

Then .
hy = DET | M,|.
Examples 3.1 (1) Let us display the polynomials Gf:,)k,r(h7 {pij}) a few cases.
s G’f’)”rLLO’I‘ h, {p;}) = Z Hp ( Z ilJ)
Ic[l,n—1] €l JC[1,n]
\I\ |J|=m+r,ICJ

¢ ka( {pl]}) ( L >€%_k(h1,...,hn).
e GO = 3 TIwt (X G-m-r+1)

IC[ln 1] €l JC[1,n]
|1|= 1Cd, |J|=m+r
3 hy).
JC[1,n]

|J|=m+r—1, [IUJ|=m+r
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(2) Let us list the relations (3.19) among the Gaudin elements in the case n =
3. First of all, the Gaudin elements satisfy the “standard” relations among the Dunkl
elements 61 + 92 + 93 = 0, 9102 + 9193 + 9293 + qdi12 + q13 + 423 = 0,

010505 + q12 03 + q13 02 + qo3 01 = 0. Moreover, we have additional relations which
are specific for the Gaudin elements

1 1
Gg’()u = p_<9192 + 0103 + qi2 + qu3) + ]?—(9192 + 0205 + q12 + ¢23) = 0,
13 23

the elements po3 01 + p13 02 and 6, 6 are central. [ |

It is well-known that the elementary symmetric polynomials e,(dy, ..., d,) := C,, r =
1,...,n, generate the center of the group ring Z[pf;l][Sn], whereas the Gaudin ele-

ments {6’1@), i = 1,...,n}, generate a maximal commutative subalgebra B(p;;), the
so-called Bethe subalgebra, in Z[pfjl][Sn]. It is well-known, see e.g. [56|, that B(p;;) =
D,.,, Br(pij), where By(p;;) is the A—isotypic component of B(p;;). On each A—isotypic
component the value of the central element Cy is the explicitly known constant ¢ ().
It follows from [56] that the relations (3.19) together with relations

Go,o,r(9§”)7 e 765?)7 {pij}> = Cr()\>7

are the defining relations for the algebra B (p;;).

Let us remark that in the definition of the Gaudin elements we can use any set of
mutually commuting, invertible elements {p;;} which satisfies the Arnold conditions. For
example, we can take

J=2(1 —
el

1—qg
It is not difficult to see that in this case

Pij -

Q(n) Jj—1
th = —dj = —Z Saj>
a=1

70 Py

where as before, d; denotes the Jucys-Murphy element in the group ring Z[S,] of the
symmetric group S,. Basically from relations (2.15) one can deduce the relations among
the Jucys-Murphy elements ds, . . ., d,, after plugging in (3.18) the values p;; := qjl_jq(]l-:iq)
and passing to the limit ¢ — 0. However the real computations are rather involved.

Finally we note that the multiplicative Dunkl / Gaudin elements {©;, 1,...,n} also

generate a maximal commutative subalgebra in the group ring Z[piijl] [Sy,]. Some relations
among the elements {©;} follow from Theorem 3.2, but we don’t know an analogue of
relations (3.14) for the multiplicative Gaudin elements, but see [56].

3.3 Shifted Dunkl elements 9, and 2,

As it was stated in Corollary 3.2, the truncated additive and multiplicative Dunkl el-
ements in the algebra 3HT,(0) generate over the ring of polynomials Z[q, ..., ¢n_1]
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correspondingly the quantum cohomology and quantum K — theory rings of the full
flag variety Fl,. In order to describe the corresponding equivariant theories, we will in-
troduce the shifted additive and multiplicative Dunkl elements. To start with we need
at first to introduce an extension of the algebra 3HT, (53).

Let {#,...,2,} be a set of mutually commuting elements and {3, h,t,¢;; = ¢;i, 1 <
i,7 < n} be a set of parameters.

Definition 3.6 Define algebra 3T H,(B) to be the semi-direct product of the alge-
bra 3T H,(B) and the ring of polynomials Zlh,t|[z1,. .., z,] with respect to the crossing
relations

(1) Zi Ukl = Ukl %4 Zf 1 ¢ {k,l},
(2) ZIUU:UUZJ—F&ZZ—FII, z]uw:uljzz—ﬁzz—h, Zf 1§Z<]<k}§n

Now we set as before h;; := h;;(t) = 1+t u;;.

Definition 3.7
e Define shifted additive Dunkl elements to be

Di:Zi_Z Uij+z Uji.
i<j i<j
e Define shifted multiplicative Dunkl elements to be

1+1

o= (T ) =0 (IT m)

a=1—1

Lemma 3.3
[Bi,bj] = O, [@Z,QJ] =0 fOT all Z,j

Now we stated an analogue of Theorem 3.1. for shifted multiplicative Dunkl elements.

As a preliminary step, for any subset I C [1,n] let us set ©; = [],.; Dq. It is clear that

9, [[ (+tB-1 ¢ €3HT.(B).

igl, jeI
i<j

Theorem 3.3
In the algebra 3HT, () the following relations hold true

1+t8

IC[1,n] i¢l,jed
|I|=k i<j
: e (L BO™F — (14 Bty
||[%ﬂ+ﬁﬂ“ +h ]
IC[1,n] a=1 /B
I={iqy,..., i}

In particular, if 5 = 0, we will have
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Corollary 3.3 In the algebra 3HT, ( ) the following relations hold

k n
> oo I o~ tzqij>:(z)+ S T II(eett btk —iat o).
IC[1,n] igl,jeJ IC(l,;n]  a=1 a=1

m k i<j T={i1,0nig}

One of the main steps in our proof of Theorem 2.3. is the following explicit formula for
the elements ©;.

Lemma 3.4 One has

— / \
D=9 ( +tﬁ—t2 Qz] H (H hba) H ((1—|—Za) H hab)-
bel agl ael b1

Note that if a < b, then hy, = 1 + 5t — uy,. Here we have used the symbol

/" N\
H (H hba>
el og

to denote the following product. At first, for a glven element b € I let us define the
set I(b) := {a € [1,n]\I, a < b} = (a'” < ... < a!) for some p (depending on b). If
I= (b <by...<by) ie. b =a?

1 )

then we set

k

/! S
[T (T ) = It s 00)

bel agl j=1
a<b

For example, let us take n = 6 and I = (1,3,5), then
D1 = haahsahsa(1 + z1)highiahia(1 + 2z3)haghsa(1 + 25) hse.

4  Algebra 37, éo)(F) and Tutte polynomial of weighted
complete graphs

4.1 Graph and nil-graph subalgebras, and partial flag varieties

Let’s consider the set R, := {(i,j) € ZxZ |1 <i < j <n} as the set of edges of the
complete graph K, on n labeled vertices vy,...,v,. Any subset S C R, is the set of
edges of a unique subgraph I' := I's of the complete graph K,,.

Definition 4.1 (Graph and nil-graph subalgebras) The graph subalgebra 3T,,(T"),
(resp. nil-graph subalgebra 3T7(LO)(F)) corresponding to a subgraph I' C K, of the complete
graph K, is defined to be the subalgebra in the algebra 37T, (resp.3T7§0)) generated by the
elements {u;; | (1,7) € T'}.

In subsequent Subsections 4.1.1 and 4.1.2 we will study some examples of graph subalge-
bras corresponding to the complete multipartite graphs, cycle graphs and linear graphs.
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4.1.1 NilCoxeter and affine nilCoxeter subalgebras in 37, 0)

Our first example is concerned with the case when the graph I' corresponds to either
the set S = {(4,i + 1) | i« = 1,...,n — 1} of simple roots of type A,_1, or the
set S/ .= SJ{(1,n)} of affine simple roots of type Ag_)l.

Definition 4.2 (a) Denote by ]f\f\én subalgebra in the algebra 37 generated by the
elements u; 41, 1 <1 <n—1.

(b) Denote by ANC,, subalgebra in the algebra 37 generated by the elements
Uiit1, 1<t <n—1 and —uj,.

Theorem 4.1 -
(A) (cf [4]) The subalgebra NC,, is canonically isomorphic to the NilCozxeter algebra
NC,. In particular, Hilb(NC,,,t) = [n].

(B) The subalgebra ANC,, has finite dimension and its Hilbert polynomial is equal to
Hilb(ANC,,,t) = [n]; ngjgn—l[j(” — D= [n]! ngjgn—lmtn—i-

In particular, dim mn =(n—1)!n! deg, Hilb(mn,t): (n;rl)
(C) The kernel of the map m : ANC,, — NC,, m(urn) = 0,m(Uiiy1) = Wit

1 <i<n-—1, s generated by the following elements:

1 n—k+j—1

fT(Lk):H H Ugar1, 1<k<n—1.
j=k =Jj

Note that deg fF = k(n — k).

The statement (C') of Theorem 4.1 means that the element £ which does not contain
the generator u, ,,, can be written as a linear combination of degree k(n — k) monomials
in the algebra ZN@, each contains the generator u,, at least once. By this means we
obtain a set of all extra relations (i.e. additional to those in the algebra Z/\F(/J’n) in the

P

algebra ANC,,. Moreover, each monomial M in all linear combinations mentioned above,
appears with coefficient (—1)#/“1»€MI+1 For example,
1) ._ _ .2 _
f4 = UL 2U2 3U3 4 = U2 3U34UT 4 + U3 4UT 4UYL 2 + U 4U7T 2U2 3; f4 ‘= U2,3U3,4U1,2U23 =
U1,2U3 4% 3U7 4 + U 2U2 3UT 4UT 2 T+ U 3UT 4UL 2U3 4 F U3 4U2 3UT 4UZ 4 — U 4UT 2U3 4UT 4.

Remark 4.1 More generally, let (W, S) be a finite crystallographic Coxeter group of
rank [ with the set of exponents 1 =m; < my < --- < my.

Let By be the corresponding Nichols—Woronowicz algebra, see e.g. [4]. Follow [4],
denote by ]/V\éw the subalgebra in By, generated by the elements [as] € By, correspond-
ing to simple roots s € S. Denote by A]/VWCW the subalgebra in By, generated by
NCy and the element [ag], where [ag] stands for the element in By, corresponding to
the highest root 6 for W. In other words, AWCW is the image of the algebra mw
under the natural map BE(W) — By, see e.g. [4], [38]. It follows from [4], Section 6,
that Hilb(NCyw,t) = [T, [mi + 1.
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Conjecture 4.1 (Y. Bazlov and A.N. Kirillov, 2002)

Hilb(ANWCyw,t) =] [ — 11 — = Paps (W) ) JJa =,
=1

=1 1=

where

aff W t Z tl H 1 + t1—|—_ tmj_ tmi)

’LUGWaff =1

denotes the Poincaré polynomial corresponding to the affine Weyl group Woyss, see [11],
p.245; a; == (2p, ), 1<i <1, denote the coefficients of the decomposition of the sum
of positive roots 2p in terms of the simple roots «.

In particular, dim AZ/Vﬁ//CW = |W|Hl:—1:1 and deg Hilb(A]/VI\/V/CW, =" a.

It is well-known that the product HZ =L is a symmetric (and unimodal ?) poly-

nomial with non—negative integer coefficients.

Example 4.1 (a)
Hilb(ANC, t) = [22[3),, Hilb(ANC4, t) = [3]2[4]2, Hilb(ANCs, t) = [4]2[5],[6]2.
(b)  Hilb(BEy,t) = (1+ )4 (1 +12)2,
Hilb(ANC g, t) = (1 + )3 (1 + 2)2 = Pasp(Ba, t)(1 — 3)(1 — 4.
() Hilb(ANCp,,t) =
I+t + A+ L+t (L +t + )1+ +1°) = Poys(Bs, t)(1 —°) (1 —%)(1 — 7).
Indeed, mp, = (1,3,5), ap, = (5,8,9).
|

Definition 4.3 Let (mm denote the two-sided ideal in 3T generated by the ele-
ments {u; 11}, 1<i<n-—1, and uy,. Denote by U, the quotient U, = 3T\ /(ANC,,).

Proposition 4.1

—_ N—
Uy = (ur3,u24) = Zo X Loy Us = (uya, Us g, Us s, Ug 5, U1 3) = ANCS.

—_— 2
In particular, Hilb(3T\",t) = Hz'lb(ANOg,,t)] .
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4.1.2 Parabolic 3-term relations algebras and partial flag varieties

In fact one can construct an analogue of the algebra 3H7T,, and a commutative subal-
gebra inside it, for any graph I' = (V, E') on n vertices, possibly with loops and multiple

edges, [37]. We denote this algebra by 37, (I'), and denote by 3T7§0)(F) its nil-quotient,
which may be considered as a “classical limit of the algebra 37,,(I")”.

The case of the complete graph I' = K, reproduces the results of the present paper
and those of [37], i.e. the case of the full flag variety Fl,. The case of the complete
multipartite graph I' = K,,, .. reproduces the analogue of results stated in the present
s See [37]

-----

-----

for details.
We expect that in the case of the complete graph with all edges having the same mul-
tiplicity m, I' = Kr(Lm), the commutative subalgebra generated by the Dunkl elements

in the algebra 37, 7EO)(F) is related to the algebra of coinvariants of the diagonal action
of the symmetric group S,, on the ring of polynomials @[X,(LI), . ,XT(Lm)], where we set

Xy(;) = {x§2)7 N 71_7(11)}

Example 4.2 Take I' = Ky5. The algebra 3T©)(T') is generated by four elements {a =
U13, b = U1g, ¢ = U, d = ugy} subject to the following set of (defining) relations
e ’=0P=c2=d>=0, cb=be, ad=da,
e aba+bab=0=aca+cac, bdb+dbd=0=cdc+dcd,
abd—bdc—cab+dca=0=acd—bac—cdb+dba,
e abcat+adbec+badb+bcad+cadc+dbecd=0.
It is not difficult to see that *®

Hilb(3T (Ky9),t) = [3)7 [4]7, Hilb(3T) (K59)™ 1) = (1,4,6,3).
Here for any algebra A we denote by A% its abelization.

The commutative subalgebra in 3T(0)(K272), which corresponds to the intersection
3T(0)(K2,2) () Z[b,02,0s,04], is generated by the elements ¢; := 0, + 0y = (a +b+ c+
d) and ¢y := 0y 03 = (ac+ ca+bd+ db+ ad+ bc). The elements ¢; and ¢, commute and
satisfy the following relations

2 _ 2
A—2c =0, ¢—cjcy=0.

The ring of polynomials Z[cy, ¢s] is isomorphic to the cohomology ring H*(Gr(2,4),7Z)
of the Grassmannian variety Gr(2,4).
|
More generally, take m < n, and consider the complete multipartite graph K, ,,
which corresponds to the grassman variety Gr(n,m + n.) One can show

i
L

n

Hilb(3T\ Y (Knu)™ 1) = > (—1)F A+ —k) ™ J] 1+ 1) { ek }

0 1

Eonl
Il

<.
Il

15Hereinafter we shell use notation
(ag,ai,...,ax); := ag + art + - - + axtk.
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= """ Tutte(Kpm, 1 +171,0),

where { Z } := S(n, k) denotes the Stirling numbers of the second kind, that is the num-

ber of ways to partition a set of n labeled objects into k nonempty unlabeled subsets, and
for any graph I', Twutte(T',z,y) denotes the Tutte polynomial !¢ corresponding to
graph T

It is well-known that the Stirling numbers S(n, k) satisfy the following identities

. nk ‘ " n) " e —1)F
(=" Stnon—k) J] A+50) =0+ Z{k}H:T'

0 j=1 n>k

i
L

B
Il

Let us observe that dim(ST(O)(Kmn)“b =

—_

3

n

(=) n+1—k)" (n+1—k)! {n—k

} = A048163, [68].

B
Il

0

Moreover, if m > 0, then

ERtm=1 (L — 1) ¢tk
S AT (K™ 1 = S (R DL
n>1 k>1 Hj:l (1+kjt)

k
(145 1)
. (0) ab — m—1 & J
N Hilb(3TO (Kypm)® 1) 2" —Z; Lkt ] I

n>1 7=1

Comments 4.1 Poly-Bernoulli numbers Based on listed above identities involv-
ing the Stirling numbers S(n, k), one can prove the following combinatorial formula

min(n,m)
dim(gT(O)(Kmm)ab) _ Z (j')Q {n +1 } { TTL +1 } - BT(L—m) = B7(n—n)7

. J+1 741
7=1

where B denotes the poly-Bernoulli number introduced by M. Kaneko [33].
For the reader’s convenient, we recall below a definition of poly- Bernoulli numbers.
To start with, let k be an integer, the formal power series

le i

16See e.g. http://en.wikipedia.org/wiki/Tutte.polynomial. It is well-known that

Tutte(T',1+t,0) = (=1)TT t=#O) Chrom(I, —t),
where for any graph I, |T'| is equal to the number of vertices and x(I') is equal to the number of

connected components of I'.  Finally Chrom(T',t) denotes the chromatic polynomial corresponding to
graph T, see e.g., [77], or http://en.wikipedia/wiki/ Chromatic.polynomial.

41



if k> 1, Lig(z) is the k-th polylogarithm, and if k < 0, then Liy(z) is a rational func-
tion. Clearly Lii(z) = —In(1 — z). Now define poly-Bernoulli numbers by the generating
function

Lig(1—e) _ S B® Z_T
n:

Note that a combinatorial formula for the numbers B stated above follows from the

following identity [33]

i io: B(_k) z" Zk o eac-i—z

Now let 9§n+m) = Zj# ui;, 1 <17 < n+m, be the Dunkl elements in the algebra
3T (K1), define the following elements the in the algebra 37 (K, ,)

o = e (00T 1<k <, 6= e (00,00 1 < <,
Clearly,
n m n+m
C+> athHa+d &) =J[a+e"™) =1
k=1 r=1 =1

Moreover, there exist the natural isomorphisms of algebras

m

H*(Gr(n,n+m),Z) = Zcy, . .. ,cn]/<(1 +Y et +Y e ) - 1>,

r=1

QE*(Gr(n,n+m) ZZlgller, ... el /(14 e )1+ Y & t7) = 1—q ),

where for a commutative ring R and a polynomial p(t) = > °_, g; t/ € R[t], we denote
by (p(t)) the ideal in the ring R generated by the coefficients g, ..., gs.

These examples are illustrative of the similar results valid for the general complete
multipartite graphs K, _,,., i.e. for the partial flag varieties [37].

To state our results for partial flag varieties we need a bit of notation. Let N :=
ni+ ...+ n., n; > 0, Vj, be a composition of size N. We set N; := ny + --- +
n;, j=1,...,r, and Ny = 0, Now, consider the commutative subalgebra in the algebra
3T ](VO )(K ~) generated by the set of Dunkl elements {QEN) b ,HJ(VN)}, and define elements

.....

N N
Dunkl elements 95\/]»31 IETRRE 01(\7]-)7 namely
o) =V =08 0N, <k <my, j=1,....1, ¢ =1Vj
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Clearly

<

nJ N
c t“ :H1+9 tj)zl
7j=1

]:1 a=0

Theorem 4.2 .
The commutative subalgebra generated by the elements {cgj), 1<k;j<n; 1<j<r-—1},

in the algebm 3T(O)(K T) is isomorphic to the cohomology ring H*(Fly,. . n..Z) of

.....

-----

» In other words, we treat the Dunkl elements {H(N)l yar 1
1,...,r, as the Chern roots of the vector bundles {&; := F;/F;_1},
the partial flag variety Fl,,, ..

=N

]
A

=
>

<

|

ney M1+ - +n, =N, is a

.....

sequence of embedded subspaces
F={0=FCFCFC...CF =C"} such that dim(F;/F;_1)=mn;, i=1,...,r.

By definition, the fiber of the vector bundle & over a point F € Fl,,
dimensional vector space F;/F; 1.

<

A meaning of the algebra 3T,§0)(F) and the corresponding commutative subalgebra
inside it for a general graph I', is still unclear.

n,. 18 the n;-

-----

Conjecture 4.2
LetT' = (V, E) be a connected subgraph of the complete graph K,, onn vertices. Then

Hilb(3T(T) ¢) = V1= Tutte(I; 1 +¢71,0).

Examples

(1) Let G = K35 be complete bipartite graph of type (2,2). Then,

Hilb(3T(2,2),t) = (1,4,6,3) =12 (1 +t) +t (1 +¢)* + (1 + )3,
and the Tutte polynomial for the graph Kj, is equal to = + 2% + 2° + y.

(2) Let G = K32 be complete bipartite graph of type (3,2). Then,
Hilb(3T2(3,2),t) = (1,6,15,17,7) =3 (1 +t) + 3 > (1 +1)> + 2t (1 + )3+ (1 + )4,
and the Tutte polynomial for the graph K3 is equal to z+3 2?+2 2+ 2t +y+3 © y+1°.

(3) Let G = K33 be complete bipartite graph of type (3,3). Then

Hilb(3TY(3,3)%,t) = (1,9,36,75,78,31) =
(1+1)° +4t(1 4+ t)* + 1062 (1 + ¢)® + 113 (1 4+ t)* + 5t* (1 + t),
and the Tutte polynomial of the bipartite graph K33 is equal to
S5z + 1122 + 1022 + 4a* + 2° + 152y + 922y + 6zy? + 5y + 9y? + 593 + y*.

(4) Consider complete multipartite graph K5 5. One can show that

Hilb(3T," (Ky22)™, 1) = (1,12, 58,137,154, 64) =
A+ +25 831+ +20 21+t + 7t + ) + (1 +1)°,
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and Tutte(Kog9,z,y) = x(11,25,20,7,1), +y (11,46, 39,8), + v*(32,52,12), +
y3(40,24),+ y*(29,6), + 15y° + 545 + ¢,
|
The above examples show that the Hilbert polynomial Hilb(3T°(G),t) appears to
be a certain specialization of the Tutte polynomial of the corresponding graph G. Instead
of using the Hilbert polynomial of the algebra 3T°(G)* one can consider the graded Betti
numbers polynomial Betti(3T°(G)%, x,y). For example,

Betti(3TY(K3)®, z,y) =1+4 2 y+2° (2y+3 y?) +2 2° %,

Betti(3T) (Ka2)™ 2, y) =1+x (dy+y*) +22 Oy* +4°) +2° B4y* +6 v°) +3 2 ¢°,
Betti(3TP(K,)®, x,y)

1410 7 y+2° (10 y+24 y*)+2® (46 y>+15 y*)+2* (25 y*+36 y*)+2° (6 4> +25 3°)+6 2° .
Claim Let G = (V, E) be a connected graph without loops. Then (n = |V|,e = |E|)
Betti(3T(G)*, —z,x) = (1 — x)¢ Hilb(3T°(G)™, x).

Question Let GG be a connected subgraph of the complete graph K,,. Does the graded

Betti polynomial Betti(3T°(G)%, z,y) is a certain specialization of the Tutte polynomial
T(G,2,y)?

Conjecture 4.3  Let n = (nq,...,n,) be a composition of n € Z>y, then
T k|1
' ©) ab 4y _\Inl-k] n; :
HIbGTO (K, )0 = 30 o W] {0 ) TLa+in,
k=(k1,....kr) j=1 j=1
0<kj<nj

where we set k| :==k; + ...+ k,.

Corollary 4.1 If Conjecture 3 is true, then

. a €T l'r
(@) L+t(t—1) > Hilb(BT O Ky, ), 1) T 20
(n1,emr ) €LL 5 \O 1 -
. 1—t
(oS )
j=1
<b> Z dim(ST(O)(Knl ..... m)ab x_‘ L2 P —log(l —r—+ Z e_”j),
(1,120 ) EZ 50 \OT ny: M, =

o) Hilb(3TO(K,, )™ t) = (=" Chrom(K,, .., —t"),
1 T 1 T

----------

where for any graph T we denote by Chrom(I', x) the chromatic polynomial of that graph.
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Indeed, one can show 7

Proposition 4.2 Ifr € Z>,, then

Chrom(Ky, _n.t) = Y H {Zj} (t)xl

k=(k1,....kr) 5=1

where by definition (t),, := H;:ll (t — 7).

Finally we describe explicitly the exponential generating function for the Tutte poly-
nomials of the weighted complete multipartite graphs. We refer the reader to [54] for a
definition and a list of basic properties of the Tutte polynomial of a graph.

Definition 4.4  Let r > 2 be a positive integer and {Si,...,S,} be a collection of sets
of cardinalities #|S;| =mn;, j=1,...,r. Let £ := {l;;}1<icj<n be a collection of non-
negative integers.

The (-weighted complete multipartite graph K,(ﬁ),,__,nr is a graph with the set of ver-
tices equals to the disjoint union H;Zl S; of the sets Sy,...,S,, and the set of edges
{(cvi, B;), s € S, B € Sih<icj<r of multiplicity (;; each.

Theorem 4.3  Let us fix an integer r > 2 and a collection of non-negative integers
(= {gij}1§i<j§r- Then

tTL1 tn'r
k(f,n £ ! — =
i Z (z — 1)) Tutte(Kr(Ll),...,nwx’y) n! ol
n=(nq,..., n»p)EZEO r
n#0
mi mr z—1 ( _1)
< > ySrzicizr b mimy () _ 1)-m tl_'t_|>< -1
my. my:

m:(ml,..‘,mr)GZTZO

¢
where k(¢,n) denotes the number of connected components of the graph Kr(Ll),‘..,nr'

e (Comments and Examples)

(a) Clearly the condition ¢;; = 0 means that there are no edges between vertices
from the sets S; and S;. Therefore Theorem 4.3 allows to compute the Tutte polynomial
of any (finite) graph. For example,

Tutte(KSyh, 7, y) = {(0,362,927,911,451, 121,17, 1),, (362, 2154, 2028, 1584, 374, 32),,,
(1589, 4731, 3744, 1072, 96),, (3376, 6096, 2928, 448, 16),, (4828, 5736, 1764, 152),,

17 If r = 1, the complete unipartitite graph K (n) consists of n distinct points, and

Chrom(K (n), ) = 2" = nf { L } ().

k=0

Let us stress that to abuse of notation the complete unipartite graph K, consists of n disjoint points
with the Tutte polynomial equals to 1 for all n > 1, whereas the complete graph K, is equal to the
complete multipartite graph K(in).

45



(5404, 4464, 900, 32),,, (5140, 3040, 380)., (4340, 1840, 124),., (3325, 984, 24),,, (2331, 448),,
(1492,168),, (868,48),, (454, 8),, 210, 84, 28,7, 1},,.

(b) One can show that a formula for the chromatic polynomials from Proposition 4.2
corresponds to the specialization y = 0 (but not direct substitution !) of the formula for
generating function for the Tutte polynomials stated in Theorem 4.3.

(¢)  The Tutte polynomial Tutte(K. . x,y) does not symmetric with respect
to parameters {{;;}1<i<j<n. For example, let us write { = ({12, 03, 13, 14, log, U34),
then Tutte(Kyyss Y, 1,1) = 28-3-5-11% - 241 = 1231760640.0n the other hand,
Tutte(Kys5y >, 1,1) = 213.3.7- 112 61 = 1269768192.

(d) (Universal Tutte polynomials)

Let m = (my;, 1 < i < j < n) be a collection of non-negative integers. Define

generalized Tutte polynomial Tn(m,x, y) as follows : T,(m,z,y) =

et o N @Dy
C’oeff[tl_,_tn] < Z y21§i<j§n mij il (y_ 1) DR 2 ﬁ_) ‘

01,0l
¢;,€{0,1},Vi

Clearly that if I' C KY is a subgraph of the weighted complete graph K def fﬁ),
then the Tutte polynomial of graph I' myltiplied by (z — 1)*(I) is equal to the following
specialization

mi; =0if edge (i,7) ¢ I, my; = b if edge (1,7) €T

of the generalized Tutte polynomial

(z — 1)*D Tutte(T', z,y) = T,(m, z,y)

m;;=0, if (i,5)¢I :
mij=ti; if (,4)€T

For example,

(a) Take n =6 and I' = K¢ \ {15,16,24,25,34,36} , then Tutte(I',z,y) =
{(0,4,9,8,4,1),,(4,13,9),,(8,7)4,5, 1},.

(b) Take n=6 and I' = K \ {15,26,34}, then Tutte(I', z,y) =

{(0,11,25,20,7,1),, (11, 46,39, 8),, (32, 52, 12),,, (40, 24),, (29, 6),, 15, 5, 1},.

() Take n = 6 and I' = Kg \ {12.34.56} = Ks55. As a result one obtains an
expression for the Tutte polynomial of the graph K549 displayed in Example 4.1.

Now set us set

Lyl
gij == 1
Lemma 4.1 The generalized Tutte polynomial Tn(m,a:,y) 1s a polynomial in the

variables {qi; }1<icj<n, T and y.

Definition 4.5 The universal Tutte polynomial T,,({q;;},x,y) is defined to be the
polynomial in the variables {q;;}, x, and y defined in Lemma 4.2.
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Explicitly, T.({ai},2y) =

Coef fiey ] ( II @ @-—1+0" @y-1)> 5 AR
€1 rln 1<i<j<n "
¢;,€{0,1},Vi
Corollary 4.2 Let {m;;}1<i<j<n be a collection of positive integers. Then the special-
1zation
y™i -1
y—1
of the universal Tutte polynomial T,,({q;j},x,y) is equal to the Tutte polynomial of the
complete graph K,, with each edge (i,j) of the multiplicity my;.

Gij — [Mijly ==

Further specialization ¢;; — 0, if edge(i, j) ¢ I' allows to compute the Tutte polyno-
mial for any graph. [ ]

Exercises 4.1
(1)  Assume that ;; = ¢ for all 1 < i < j <r. Based on the above formula for the
exponential generating function for the Tutte polynomials of the complete multipartite

graphs K, ., deduce the following well-known formula
Tutte(K\) ,  1,1)=MN" N2 I (N —ny)»,

where N :=ny + - --+mn,. It is well-known that the number Tutte(T',1,1) is equal to the
number of spanning trees of a connected graph I'.
(2)  Take r = 3 and let ny,na,n3 and {19,013, (a3 be positive integers. Set N :=
812613711 -+ 612623712 -+ 613623713 Show that
TUtt@(Kfl’EQ’gs 1 1) =N (fung + 613713)”171(612”1 + €13n3)"2*1)(€13n1 + 623712)71371

ni,n2,n3’ =’

3 Let r > 2, consider weighted complete multipartite graph K. © , where
Ny...,N
——

0= (6;) such that 0, =0, j=1,....r and ly;=Fk 2<i<j<r. Show that

(0) n n—1 2 (r=D{n-1) nr—1
Tutte(Ky, . p,1,1)=k" (r—1) ((7’— 1)6—1—1{:) ((T—Q)E—i—k;) n" .
——

9 .

T

Let I',, (%) be a spanning star subgraph of the complete graph K,,. For example, one can

take for a graph I',,(%) the subgraph K, 1 with the set of vertices V' := {1,2,...,n}

and that of edges F :={(i,n), i =1,...,n — 1}. The algebra 3T,§O)(K17n_1) can be

treated as a “noncommutative analog” of the projective space P"~!.

We have 6; = w9 + uiz + ... + uy,. It is not difficult to see that
Hilb(3T" (K1 p1)®,t) = (1 4+ )" !, and 67 = 0.

Let us observe that Chrom(T,(x),t) = t(t — 1)1
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Problem 4.1 Compute the Hilbert series of the algebra ?;TT(LO)(K,Z1 _____ )

The first non-trivial case is that of projective space, i.e. the case r = 2,ny =1, ny = 5.

On the other hand, if I';, = {(1,2) — (2,3) = ... = (n — 1,n)} is the Dynkin graph
of type A,,_1, then the algebra 37 (I',,) is isomorphic to the nil-Coxeter algebra of type
An1, and if T = {(1,2) > (2,3) = ... = (n—1,n) = —(1,n)} is the Dynkin

(0)(F£laff))

graph of type A;l_)l, i.e. a cycle, then the algebra 37T, is isomorphic to a certain

quotient of the affine nil-Coxeter algebra of type AS}_)l by the two-sided ideal which can
be described explicitly [37]. Moreover, ibid,

n—1
Hilb(3TY (1@ 1)y nle I litn = )]

=1

<.

see Theorem 4.1. Therefore, the dimension dim/(37® (I'%/7)) is equal to n! (n —1)! and
is equal also to the number of (directed) Hamiltonian cycles in the complete bipartite
graph K, ,, see [68], A010790.

It is not difficult to see that

Hilb(3TO(T,)%, 1) = (t+ )", Hilb(3TO(Ta Ny ) ==L ((t +1)" —t — 1),
whereas

Chrom(I'y,t) = t(t — 1), Chrom(I'7 t) = (t — 1)" 4+ (=1)" (t — 1).

Exercises 4.2  Let K,
Show that '®

n. be complete multipartite graph, N :=n; +--- +n,.

-----

r n;j—1
Hj:l o1 (I—at)
----- r)’t) = N—_1 .

Hilb(3Tn (K, ;
Hj:l (1—j1)

4.1.3 Quasi-classical and associative classical Yang—Baxter algebras of type
B,.

In this Section we introduce an analogue of the algebra 37, (/) for the classical root
systems.

18 Tt should be remembered that to abuse of notation, the complete graph K,,, by definition, is equal
to the complete multipartite graph K((1,...,1)), whereas the graph K(,) is a collection of n distinct
———

n
points.
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Definition 4.6 .

(A) The quasi-classical Yang-Baxter algebra ACY B(B,) of type B, is an
associative algebra with the set of generators {x;j, vij, zi, 1 < i # j < n} subject to the
set of defining relations

(1) @iy +2i; =0, yij =y, if i #]

(2) 2z 2z =2 %,

(3) Tij T = T Tijy  Tij Yu = Yri Tijs Yij Y = Yk Yig» of 4,4, k, L are distinct,

(4) 2z T = T %, % Y = Yw % 1 F K

(5)  (Three term relations)

Tij Tjke = Tig Tij + Tjk Tik — B ik, Tij Yjk = Yik Tij + Yjk Yik — B Yik,

Tik Yik = Yjk Yij + Yij Tiw + B Yijs  Yik Tik = Tjx Yij + Yij Yax + B Vi,

ifl<i<j<k<n,

(6)  (Four term relations)

Tij 25 = 2 Tij + Yij 2+ 25 Yiy — B 2,

ifi < j.

(B) The associative classical Yang—Baxter algebra ACY B(B,,) of type B,
is the special case =0 of the algebra AC?B\(Bn).

Comments 4.2
e In the case § = 0 the algebra ACY B(B,,) has a rational representation

Tij — (IZ — .Tj)il, Yij — (ZUz + fj)il, Zi — ZL’;I

e In the case 8 =1 the algebra AC’?B\(Bn) has a “trigonometric” representation
2y — (1= ¢" )y — (1= g" )7 2y — (1 +¢") (1 —¢")

Definition 4.7 The bracket algebra £(B,,) of type B, is an associative algebra with
the set of generators {x;j,yij, zi, 1 < i # j < n} subject to the set of relations (1) — (6)
listed in Definition 4.4, and the additional relations

(Sa) Tjk Tij = Tij Tig + Tik Tjg — B ik, Yjk Tij = Tij Yik + Yik Yjk — B Yiks

Yik Tik = Yi5 Yk + Tak Yij + B Yijs  Tix Yie = Yij Tk + Yir Yij + 5 Yij,

if1<i<j<k<n,

(6&) Zj Tijg = Tij %4 + Zi Yij + Yij 25 — ﬁ Zis

ifi<j.

Definition 4.8 The quasi-classical Yang—Baxter algebra AC’YB( n) of type D,,, as well
as the algebras ACY B(D,,) and £(D,,), are defined by putting z; =0, i = 1,...,n, in
the corresponding B, -versions of algebras in question.

Conjecture 4.4 The both algebras £(B,,) and £(D,,) are Koszul, and

n—1

Hilb(E f[ 1= (2 — 1))~ if n>4, Hilb(E(Dy), 1) = (JJ(1—-251)7"

Jj=1
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Example 4.3 Hilb(ACY B(By),t) = (1 — 4t + 2t*)71,

Hilb(ACY B(By), t) = (1 — 9t + 16> — 4¢3)~1,

Hilb(ACY B(By),t) = (1 — 16t + 641> — 60t + 9t*) 1,

Hilb(ACY B(Dy),t) = (1 — 12t + 18t* — 4¢3)~ 1.

However, Hilb(ACY B(Bs),t) = (1 — 25t + 180t? — 400t + 221t* — 31¢°) 1.

Let us introduce the following Coxeter type elements:

n—1 n—1
wpg, = H Taat1 2n € E(By), and wp, = H Taar1 Yn—1n € E(Dy).
a=1 a=1

Let us bring the element wp, (resp. wp, ) to the reduced form in the algebra £(B,,) that
is, let us consecutively apply the defining relations (1) — (6), (5a,6a) to the element wp,
(resp. apply to wp, the defining relations for algebra £(D,,) ) in any order until unable
to do so. Denote the the resulting (noncommutative) polynomial by Pg, (2;;, yij, 2) (resp.
Pp, (zi5,v:;)). In principal, this polynomial itself can depend on the order in which the
relations (1) — (6), (5a,6a) are applied.

Conjecture 4.5 (Cf[71], 6.C5, (c))

(1)  Apart from applying the commutativity relations (1) — (4) , the polynomial
Pg, (zij,Yij,2) (resp. Pp,(xi;,vi;)) does not depend on the order in which the defining
relations have been applied.

(2) Define polynomial Py, (s,r,t) (resp. Pp,(s,7)) to be the the image of that
Pg, (xi;,vi5,2) (resp. Pp, (xi;,vyij)) under the specialization

.I’Z‘j—>87 yij_>Ta z; — t.

Then
Pg,(1,1,1) =1 (*") =1 Catp,.

)

Note that Pg,(1,0,1) = Caty, .

4.2 Super analogue of 6-term relations and classical Yang—Baxter

algebras

4.2.1 Six term relations algebra 67, its quadratic dual (67,)', and algebra
6HT,

Definition 4.9 The 6 term relations algebra 67, is an associative algebra (say

over Q) with the set of generators {r; ;,1 <1i # j < n}, subject to the following relations:
1) rij and iy commute, if {i,j} N{k,1} =0,
2) (unitarity condition) r;; +17; =0,
3) (Classical Yang—Baxter relations)

[73js Tik + k) + [Tiw, 7] = 0, if 4, j, k are distinct.
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We denote by CY B,,, named by classical Yang—Baxter algebra, an associative algebra
over Q generated by elements {r;;, 1 <1i # j < n} subject to relations 1) and 3).

Note that the algebra 67, is given by (%) generators and (g) + 3 (}) quadratic
relations.

Definition 4.10  Define Dunkl elements in the algebra 6T, to be

91‘: E Tij, 2:1,...,n.

J#i
It easy to see that the Dunkl elements {6;},<;<, generate a commutative subalgebra in
the algebra 67,,.

Example 4.4 (Some “rational and trigonometric” representations of the al-
gebra 67,,)

Let A = U(sl(2)) be the universal enveloping algebra of the Lie algebra sl(2). Recall
that the algebra sl(2) is spanned by the elements e, f, h, such that [h,e] = 2e, [h, f] =
_2f7 [G,f] = h.

Let’s search for solutions to the C'Y BE in the form

rij = a(up,uj) h @ h+b(u,uj) e® f+clu,u;) fRe,

where a(u,v), b(u,v) # 0, c(u,v) # 0 are meromorphic functions of the variables (u,v) €

C?, defined in a neighborhood of (0, 0), taking values in A® A. Let a;; := a(u;, u;) (resp.

bij = b(u;,uj), cij = c(uy, uj)).

Lemma 4.2  The elements r;; == a;; h@ h+bj; e® f + ¢i; [ ® e satisfy CYBE iff
bij bjk Cik = cij ¢k bix and 4 a;x = by bjk/bik — bik Cjk/bz'j — bik Cz’j/bjka
for1<i<j<k<n.

It is not hard to see that
e there are three rational solutions:

1/2h@h+ e f+f®e U+ u v
r(u,v) = / — S+ ] , To(u,v) = 4—_h®h+ — eQf+— [ ®e,
u—v (u—v) u—v u—v
and r3(u, v) := —ra(v, u).
e there is a trigonometric solution
1 q2u +q2v qu—i-v
Twig(0) = 7 m m POM T (€®f+f®e)-

Notice that the Dunkl element 6§, := )" 4 Ttrig(Uq, uj) corresponds to the trun-
cated (or level 0) trigonometric Knizhnik—Zamolodchikov operator.

In fact, the “sl,-Casimir element” 2 = %(Z;;l Ei ®E,-,-) +D 1cicjen Ei®@Ej; sat-
isfies the 4-term relations

(19, Q13 + Qos] = 0 = [Qy + i3, Qos),

and the elements r;; := U%Ju -, 1 <4 < j < n,satisfy the classical Yang—Baxter relations.
i~ Uj

Recall that the set {E;; := (dix dji)1<ki<n, 1 < 1,7 < n}, stands for the standard

basis of the algebra Mat(n,R). [
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Definition 4.11 Denote by 67" the quotient of the algebra 6T,, by the (two-sided) ideal
generated by the set of elements {Tiz,j’ 1<i<j<n}.
More generally, let {3, ¢;;, 1 <i < j < n} be a set of parameters. Let R := Q[/f] [qzjjd]

Definition 4.12 Denote by 6HT,, the quotient of the algebra 6T, @ R by the (two-sided)
ideal generated by the set of elements {rzj —Brij—qy, 1<i<j<n}

All these algebras are naturally graded, with deg(r; ;) = 1, deg(p) = 1, deg(g;;) = 2.

It is clear that the algebra 67.” can be considered as the infinitesimal deformation
Rij:=1+¢€r;;, €—0,of the Yang-Baxter group ¥ Y B,,.

Corollary 4.3 Define h;j = 1 +1r;; € 6HT,,. Then the following relations in the algebra
6HT,, are satisfied:

(1) vy ik ik = Tk Tk Tij for all pairwise distinct i, 7 and k;

(2) (Yang-Baxter relations) hij hig b = hji b hig, if 1<i<j<k<n.

Note, the item (1) includes three relations in fact.

Proposition 4.3

(1) The quadratic dual (67,)' of the algebra 6T, is a quadratic algebra generated
by the elements {t;;, 1 <i < j <n} subject to the set of relations

(1) t7; =0 for all i # j;

(i1) (Anticommutativity) t;; tp+te, ti; =0 for alli # j and k # 1

(199) tij tig = tig tin = tij tjx, if 4,4, k are distinct.

(2) The quadratic dual (6T,§O))! of the algebra 67, s a quadratic algebra with
generators {t; ;, 1 <i < j <n} subject to the relations (ii)-(iii) above only.

4.2.2 Algebras 67" and 6T*

We are reminded that the algebra 67" is the quotient of the six term relation algebra 67,
by the two-sided ideal generated by the elements {7;; }1<i<j<n. Important consequence of
the classical Yang-Baxter relations and relations r?j = 0, V7 # 7j, is that the both additive

Dunkl elements {6;}1<;<, and multiplicative ones {©; = Hl ot TT" » hia }1<i<n

a=i—1 a=1
generate commutative subalgebras in the algebra 67, {0 (and in the algebra 67, as well),
see Corollary 4.2. The problem we are interested in, is to describe commutative subal-
gebras generated by additive (resp. multiplicative) Dunkl elements in the algebra 67",

Notice that the subalgebra generated by additive Dunkl elements in the abelianization

19 For the reader convenience we recall the definition of the Yang-Baxter group

Definition 4.13 The Yang—Baxzter group Y B,, is a group generated by elements {Rfjl, 1<i<j<
n}, subject to the set of defining relations

o RijRy = RuRij, if 4,7,k 1, are distinct,

e (Quantum Yang—Baxter relations)

RinikRjk = RijikRij, if 1<i<j<k<n.
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20 of the algebra 67;,(0) has been studied in [66],]59]. In order to state the result we need
from [59], let us introduce a bit of notation. As before, let FI, denotes the complete
flag variety, and denote by A,, the algebra generated by the curvature of 2-forms of the
standard Hermitian linear bundles over the flag variety Fl,, see e.g [59]. Finally, denote
by I, the ideal in the ring of polynomials Zl[ti,...,t,] generated by the set of elements

(t21 _|_ . + t1k>k(n—k)+17
for all sequences of indices 1<i; <ix<... <4 <n, k=1,...,n.

Theorem 4.4 ([66],/59])
(A) There exists a natural isomorphism

A, — Zlty, ... t,] /1,

(B)  Hilb(Ay,,t) = t(&) Tutte(K,,1+t,t1).

Therefore the dimension of A, (as a Z-vector space) is equal to the number F(n) of
forests on n labeled vertices. It is well-known that

" B n—lxn
Z f(n)m—exp(z n F> —1.
n>1 n>1

For example, Hilb(As,t) = (1,2,3,1), Hilb(A4,t) = (1,3,6,10,11,6,1),
Hilb(As, ) = (1,4, 10,20, 35,51, 64, 60, 35, 10, 1),
Hilb(Ag, t) = (1,5,15,35,70, 126, 204, 300, 405, 490, 511, 424, 245, 85, 15, 1).

Problem 4.2  Describe subalgebra in (6T,§0))ab generated by the multiplicative Dunkl
elements {O; }1<i<n.

On the other hand, the commutative subalgebra B, generated by the additive Dunkl
elements in the algebra 6TY(LO), n > 3, has infinite dimension. For example,

By = Zlz,yl/( zy(z +y) ),

and the Dunkl elements 9;3), j = 1,2, 3, have infinite order.

Definition 4.14  Define algebra 6T* to be the quotient of that 67" by the two-sided
ideal generated by the set of “cyclic relations”

m m 7
E I I Tihia, I I rilvia = O
7j=2 a=j a=2

for all sequences {1 < iy,ig,...,1m < n} of pairwise distinct integers, and all integers
2<m<n.

20See e.g. http://mathworld.wolfram.com/Abelianization.html
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For example,

o Hilb(6TF t) = (1,3,5,4,1) = (1 +1)(1,2,3,1).

e Subalgebra (over Z) in the algebra 67 generated by Dunkl elements 6; and 6, has
the Hilbert polynomial equal to (1,2,3,1), and the following presentation: Z [z,y]/I3,
where I3 denotes the ideal in Z[z, y] generated by z?,¢y3, and (x + y)3.

° Hilb(GTf,t) = (1,6,23,65,134,164,111, 43,11, 1),.

As a consequence of the cyclic relations, one can check that for any integer n > 2 the
n-th power of the additive Dunkl element 6; is equal to zero in the algebra 6T* for all
1 =1,...,n. Therefore, the Dunkl elements generate a finite dimensional commutative
subalgebra in the algebra 67%. There exist natural homomorphisms

67X — 3T, B, Ty A, — H*(Fl,,Z) (4.20)

The first and third arrows in (4.19) are epimorphism. We expect that the map 7 is also
epimorphism 2!, and looking for a description of the kernel ker(7).

Comments 4.3

e Let us denote by B™ and A™* the subalgebras generated by multiplicative
Dunkl elements in the algebras 67" and (6Tn(0))“b correspondingly. One can define a
sequence of maps

BTTLrLult N Azlult é K*(,Fln), (421)

which is a K-theoretic analog of that (4.19). It is an interesting problem to find a
geometric interpretation of the algebra A™“ and the map ¢.
e (“Quantization”) Let 8 and {¢;; = ¢;i,1 <14,j < n} be parameters.

Definition 4.15 Define algebra 6 HT,, to be the quotient of the algebra 6T, by the two
sided ideal generated by the elements {r7; — B 7ij — qij}1<ij<n-

Lemma 4.3 The both additive {0;}1<i<n and multiplicative {O; }1<i<, Dunkl elements
generate commutative subalgebras in the algebra 6 HT,,.

Therefore one can define algebras 6HB,, and 6H.4,, which are a “quantum deformation”
of algebras B, and A, respectively. We expect that in the case § = 0 and a special
choice of “arithmetic parameters” {¢;;}, the algebra H.A, is connected with the Arith-
metic Schubert and Grothendieck Calculi, cf [74], [66]. Moreover, for a “general’set of
parameters {g;; }1<i j<n and § =0, we expect an existence of a natural homomorphism

HA™ — QK*(Fl,),

where QK*(Fl,) denotes amultiparameter quantum deformation of the K-theory ring
K*(Fl,), [37], [40]; see also Section 3.1. Thus, we treat the algebra HA™" as the
K-theory version of a multiparameter quantum deformation of the algebra A7 which
is generated by the curvature of 2-forms of the Hermitian linear bundles over the flag
variety Fl,.

2 Contrary to the case of the map pry, : Z[f1,...,0,] — (37,,(0))%®, where the image I'm(pr,,)
has dimension equals to the number of permutations in S,, with (n-1) inversions see [68],4001892.
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e One can define an analogue of the algebra(s) 6T,§0), 6HT, etc, denoted by 67'(T),
etc, for any subgraph I' C K,, of the complete graph K,,, and in fact for any oriented
matroid. It is known that Hilb((6T,(I)%,t) = t*) Tutte(I',1 4 t,t71), see e.g. [2] and
the literature quoted therein.

4.2.3 Hilbert series of algebras CY B,, and 67}, %

Examples 4.1 Hilb(6T3,t) = (1 — 3t + t?)~*
Hilb(6Ty,t) = (1 — 6t + 7t2 — t3)~1, Hilb(6Ts,t) = (1 — 10t + 25¢> — 15¢3 4 ¢1)~*
Hilb(6Ts,t) = (1 — 15t + 65¢% — 90t + 31¢* — 7)1,
Hilb(6T", ¢) = [2[3](1 — ), Hilb(6T\”,t) = [4](1 — £)~2(1 — 3t + 2)!

In fact, the following statements are true.

Proposition 4.4 (Cf [3]) Letn > 2, then
e The algebras 6T, and C'Y B, are Koszul;
e We have

n—1

Hilb(6T,,, 1) = (32 (-1)* { o } tk)_l,

k=0

where {n } stands for the Stirling numbers of the second kind, i.e. the number of ways

k
to partition a set of n things into k nonempty subsets.
* n—1 _1
Hilb(CY B, t) = (Z(—l)k (k +1)! N(k,n) tk) ,
k=0

where N(k,n) = %(Z) (Hl) denotes the Narayana number, i.e the number of Dyck n-
paths with exactly k peaks.

Corollary 4.4
(A)  The Hilbert polynomial of the quadratic dual of the algebra 6T, is equal to

n—1
Hilb(6T),t) = > { . " y } £

k=0
It is well-known that

S5 {, 0} )5 e (S

Therefore,
dim(6T;,)' = Bell,,

22Results of this Subsection have been obtained independently in [3]. This paper contains, among
other things, a description of a basis in the algebra 67;,, and much more.
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where Bell,, denotes the n-th Bell number, i.e. the number of ways to partition n things
into subsets, see [68]

Recall, that > -, Bell, Z; = exp(exp(z) — 1)).

(B) The Hilbert polynomml of the quadratic dual of the algebra CY B, is equal to

n—1
Hilb((CYB,)',t) =Y (k+ 1! N(k,n) t* = (n — 1)} LTV (=71 "7,
k=0

where LY (z) = L= (e7a™ ) denotes the generalized Laguerre polynomial.

It is well-known that

n—1

Z(Z(lﬁ + DIN(k,n) tk>';—1: = exp(,z(l _ zt)_1>,

n>0 k>0

Comments 4.4  Let &,(u), u # 0, 1, be the Yokonuma-Hecke algebra, sce e.g. [64]
and the literature quoted therein. It is known that the dimension of the Yokonuma—
Hecke algebra &, (u) is equal to n! B,,, where B,, denotes as before the n-th Bell number.
Therefore, dim(&,(u)) = dim((6T,)" x S,), where (6T,,)" x S, denotes the semi-direct
product of the algebra (67},)' and the symmetric group S,. It seems an interesting task
to check whether or not the algebras (67),)' x S, and &, (u) are isomorphic. [

Remark 4.2 Denote by MY B, the group algebra over QQ of the monoid corresponding
to the Yang—Baxter group Y B,, see e.g. Definition 4.10. Let P(MY B,,, s, t) denotes the
Poincare polynomial of the algebra MY B,,. One can show that

Hilb(6T,,, s) = P(MYB,, —s,1)"".

For example,

P(MY Bg,s,t) =1+3st+ s> 13, P(MYBy,s,t) =1+6st+s* (3% +4t3) + s3 15,
P(MY Bs, s,t) =14 10s t + s? (15t> + 10¢3) + s* (10t* + 5¢°) + s* ¢1°.

Note that Hilb(MY B,,,t) = P(MYB,,—1,t)"' and P(MY B,,1,1) = Bell,, the
n-th Bell number.

Conjecture 4.6
P(MYB,,s,t) = Z #(m) gn(m),

where the sum runs over all partitions m = (I1,...,Ix) of the set [n] := [1,...,n] into
nonempty subsets I, . .., I, and we set by definition, #(m) := n—k, n(w) := ZIZ (‘12‘”).
|

Remark 4.3 For any finite Coxeter group (W, S) one can define the algebra CY B(W) :=
CY B(W, S) which is an analog of the algebra CY B,, = CY B(A,,_1) for other root sys-

tems.
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Conjecture 4.7 (A.N. Kirillov, Y. Bazlov) Let (W,S) be a finite Cozeter group with
the root system ®. Then
e the algebra CY B(W) is Koszul;

o Hb(CYBW),t) = {S m(@) (-0t}
where T, (®) is equal to the number of subsets in ®* which constitute the positive part

of a root subsystem of rank k. For example, r1(®) = |®F|, and ro(®P) is equal to the
number of defining relations in a representation of the algebra C'Y B(W).

Example 4.5 Hilb(CY B(B)',t) = (1,4,3), Hilb(CYB(Bs)',t) = (1,9,13,2),
Hilb(CY B(By)',t) = (1,16,46,28,5), Hilb(CY B(Bs)',t) = (1,25,130,200, 101, 12);
Hilb(CY B(Dy)',t) = (1,12,34,24,4), Hilb(CY B(Ds)',t) = (1,20,110,190, 96, 11),

Exercises 4.3
(1) Show that

k—1

exp(z (1 — zt)™? —1—|—Z<1—|—Z (n— ) H(a—l—(n—k) q) tk) Z—T

n>1 a=0
(2) The even generic Orlik—Solomon algebra

Definition 4.16  The even generic Orlik—Solomon algebra OS™(T,,) is defined to be
an associative algebra (say over Z) generated by the set of mutually commuting ele-
ments y;;, 1 <1#j<mn, subject to the set of cyclic relations

Yij = Yjis  Yiris Yissis =" Yig_vix Yiriw =0, for k=2,....n
and all sequences of pairwise e distinct integers 1 < iq,...,1 < n.

e Show that the number of degree k, k > 3, relations in the definition of the Orlik—
Solomon algebra OS™(I',) is equal to 5 (k—1)! (}) and also is equal to the maximal
number of k-cycles in the complete graph K,,.

Note that if one replaces the commutativity condition in the above Definition on
the condition that yz-yj's pairwise anticommute, then the resulting algebra appears
to be isomorphic to the Orlik-Solomon algebra OS(I',,) corresponding to the generic

hyperplane arrangement I',,, see [60]. It is known, ibid, Corollary 5.3, that

Hilb(OS(T,), t) = Y 1,

F

where the sum runs over all forests F' on the vertices 1,...,n, and |F| denotes the
number of edges in a forest F.
It follows from Corollary 3.4, that

S Hilb(OS(T,).t) —T = el‘p(z " Z_>

n>1 n>1
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It is not difficult to see that Hilb(OS™(T,),t) = Hilb(OS(T,),t). In particular,
dim OS™(I',) = F(n). Note also that a sequence {Hilb(OS(T',), —1)},>2 appears in
[68], A057817.  The polynomials Hilb(A,,t), F,(x,t) and Hilb(OS*(I',),t) can be
expressed, see e.g. [59], as certain specializations of the Tutte polynomial T'(G;x,y)
corresponding to the complete graph G := K,,. Namely,

Hilb(An,t) =t (K 1+ 4,67, Hilb(OSH(T,),t) = "' T(K,; 1+ 71, 1),

4.2.4 Super analogue of 6-term relations algebra

Let n, m be non-negative integers.

Definition 4.17 The super 6-term relations algebra 67,,,, is an associative alge-
bra over Q generated by the elements {x;;, 1 <i# j<n} and { Yyop, 1 <a# < m}
subject to the set of relations

(0) @ij+25i =0, Yap = Ypa;

(1) @iy Thg = Try Tig, Tij Ya,p = Yo Tijs Yo Y6 T Yv.6 Yo = 0,

if tuples (i, j, k, 1), (i,7,a,p), as well as (a, 3,7,0) consist of pair-wise distinct inte-
gers;

(2) ( Classical Yang—Bagzter relations and theirs super analogue)

[ig, %0 + k] + [Tig, 28] =0,

if 1 <4,5,k <n are distinct,

[Tik, Yo + Yik) + [2ig, yjk] =0,

if 1 <i,7,k <min(n,m) are distinct,

[yozqm Ys,a + yﬂﬁ]-l— + [ya,ﬁa yﬂ,v]—i— - 07

if 1 < a,B,7 <m are distinct.

Recall that [a,b] := a b+ b a denotes the anticommutator of elements a and b.

Conjecture 4.8
e The algebra 67, ,, s Koszul.

Theorem 4.5 Let n,m € Z>,, one has
o Hilb((6T,)",t) Hilb((6T,,) ) =

min(n,m)—1 -
min(n,m) , ! o
kzg { min(n,m) — k } HZlb((6Tnfk,mfk) 1) 2,

where {n i k} denotes the Stirling numbers of the second kind, see for e.g. [68],

A008278.

Corollary 4.5 Letn,m € Z>;.  One has
(a) (Symmetry) Hilb(6T,, mn,t) = Hilb(6T,,,,1).
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(b)  Letn <m, then Hilb((6T,,,)" 1) =

—_

3

s(n—1,n — k) Hilb((6T,_)',t) Hilb((6T)_y)',t) t**,
0

B
I

where s(n — 1,n — k) denotes the Stirling numbers of the first kind, i.e.

n—1
s(n—1,n—k) tF = (1—j1).
1

i
L

b
Il

0

.
Il

(¢) dim(6Ty,)" is equal to the number of pairs of partitions of the set {1,2,...,n}
whose meet is the partition {{1},{2},...,{n}}, see e.q. [68], A059849.

Example 4.6  Hilb((6T32)',t) = Hilb((6Ty3)"',t) = (1,4,3),

Hilb((6Ty4)' 1) = Hilb((6Ty2)',t) = (1,7,12,5),  Hilb((6T33)",t) = (1,6,8),
Hilb((6Ty5)'t) = Hilb((6T52)',t) = (1,11, 34,34,9),

Hilb((6T34)',t) = Hilb((6Ty3)',t) = (1,9,23,16),  Hilb((6Ty4)',t) = (1,12,44,50,6),
Hilb((6T35)',t) = Hilb((6T53)',t) = (1,13,53,79,34),

Hilb((6Ty5)',t) = Hilb((6T54)",t) = (1,16, 86,182,131, 12),

Hilb((6Ts5)',t) = (1,20, 140,410, 462, 120).

Now let us define in the algebra 67, ,, the Dunkl elements 0; := Z#i x5, 1 <1< mn,
and 0, := Zﬁ;éa Yap, 1 <a<m.

Lemma 4.4 One has
e [0;,0;] =0,
° [(91, ea] = [xi,aa yi,a]a

* [eavéﬁh =2 yi,ﬁ7 if a# B.
Remark 4.4 (“Odd” six-term relations algebra) In particular, one can define an

“odd” analog 67, ) = 6710, of the six term relations algebra 67;,. Namely, the algebra

67 7 is given by the set of generators {y;;, 1 <i < j <n}, and that of relations:

1) y;; and yi,; anticommute if 4, j, k, [ are pairwise distinct;

2) Wigs Vi T Yirls + Wik, Yjxle = 0,if 1 <i < j <k <n, where [z,y]y = 2y +yx
denotes the anticommutator of x and y.

One can show that the Dunkl elements 6; and 6;, i # j, given by formula

9@':27 izl,...,n,

J#

form an anticommutative family of elements in the algebra 67,7,
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4.3 Extended nil-three term relations algebra and DAHA, cf [14]
Let A:={q,t,a,b,c,h,e, f,...} be a set of parameters.

Definition 4.18 Extended nil-three term relations algebra 3%, is an associative
algebra over Z[gt, 1=, a,b,c, hye,...] with the set of generators {u;;, 1 < i # j <
n, x;, 1<i<n, w} subject to the set of relations

0) Uy, j + Uji = 0, u?,j = O,

1)z oy =5 1, Wiy Upg = Uk Wij, if 1,7, k1 are distinct,

2) Ti Ukl = Uk, L4, Zfl 7’é ]{Z,l,

3) Ty Ui 5 = Tj U + ]_, Tj U5 = Uiy Ty — 1,

4)  wyj wig Uk Wi+ uiE ug; =0, if i, 4,k are distinct,

5) maxi=xiaw, if1<i<n, mx,=t"'x T,

6) T Ui5 = Wit1,5+1, Zfl <i< ] <n, 7l Un—j+1,n =t U5 .

AN AN AN AN N AN

Definition 4.19 Let 1 <i < j <n, define
,-Ti,j :a—l—(b $i+CIj+h+€ZL’Z’ J]j) ui’j.

Lemma 4.5
(1) T} =Qa+b—c) T;; —ala+b—c),
(2)  (Coxeter relations)  Relations

Tij Tix Ty =Tk Tij T,

are valid, if and only if the following relation holds (a+b)(a —¢) 4+ h e = 0.
(3)  (Yang-Baater relations) Relations

Tij Tig Tiw =Tip Tig Th 5

are valid if and only if b=c=e =0,
(4) T7=1ifand only ifa=+1,c=b%2, he = (b£ 1)

In particular, if (a + b)(a — ¢) + he = 0, then for any permutation w € S, the element

T, =1, --- T, where w = s;, - -+ s;, is any reduced decomposition of w, is well-defined.

Example 4.7
Each of the set of elements

sgh) =1+ (i1 —xi+h) uip1 and

tgh) = —1 + (QZ'Z — Xj41 + h(l + l’l)(l + xiﬂ)uij, 1, = 1, e, — 1,

by itself generate the symmetric group S,,.
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Exercises 4.4 Assume thata=q, b= —q, c=q ', h =e =0, and introduce elements
eij = (qr—q o) uy, 1<i<j<k<n.

(a)  Show that if i, j, k are distinct, then

eijeinei; = eij+ (qui — ¢ w;)(q 2 — ¢ an) (g o5 — g ) wgug, ugg, 6% =(q+q") ey

(b) Assume additionally that
uuu; =0, iof 4,7,k aredistinct.
Show that the elements {e; == e; 41, i =1,...,n — 1}, generate a subalgebra in 3£,

which is isomorphic to the Temperly—Lieb algebra TL,(q+ q~1).

Remark 4.5 Let us stress on a difference between elements T;; as a part of generators
of the algebra 3%,,, and the elements

Tijy :=Ti -+ Ty T3Tj1 -+ - T; € Halq)

where H,,(q) denotes a subalgebra in ¥, generated by the elements T; := T}, i =
1,....,n—1.

Whereas one has [T};, Tj] = 0, if 4,7, k,[ are distinct, the relation [T(;5), Tiy| =
0 in the algebra #,(¢) holds (for general ¢ and ¢ < k) if and only if either one has
1<j<k<liori<k<l<jy. [ ]
In what follows we take a = ¢,b = —q,c = ¢"',h = e = 0. Therefore, T7, =
(q—q T+ 1.
Lemma 4.6

(1) T T =T T, if 1,j,k, 1 are distinct,

(2) Tijai Tij=m, if 1<i<j<n,

(3) 7TT%7]‘ = T‘i-&-l,j—&-l? Zf 1 <1< j <n, il Tn—j-i—l,n = TL]' .
Definition 4.20 Let 1<i<j<n, set

_ -1 -1 -1 j—i L
Yij=T 0T 00T i ™ n—jtin LipgnTiy, 1<0<j<n,
_ -1 -1
(Ind YTL — Tn_17n st T172 .

For example, Yi; ="' T ji1,---Thy j 22,
_ -1 j—2
Yo, = 1,3;177] Th—jton---Tsj, and so on,
_ -1 -1
Y’]'*l’j - T'j—2 T1727T Tnfl,n tee T’j,l’j.

Proposition 4.5

g1

(1) zju; Ty = Tij iy,
(2) Y, =T; Yiq1ijn Ty, if 1<i<j<mn,
(3) Y, Yipr ik =Yigr 4k Vi, f1<i<ji<n-—k,
(4)  One has
v Vi =Y wia Ty, 2<i<j<n,
(5) Yijmiae xp=tzimaox, Vi,

(6) 2 Vi Yo Yy =t1Y) YoV, i,
where we set Y; :=Y;; 11, 1<i<j<n.
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Theorem 4.6
Subalgebra of 3%, generated by the elements {T; :=T; 41, 1<i<n, Yi,...,Y,,
and xi,...,x,}, is isomorphic to the double affine Hecke algebra DAH A, +(n).

Note that the algebra 37%,, contains also two additional commutative subalgebras
generated by additive {6; = ., uij}i1<i<n and multiplicative

n

{©; = H — Uai) H (1 + wia) br<i<n

a=1+1

Dunkl elements correspondingly.
Finally we introduce (cf [14]) a (projective) representation of the modular group
SL(2,7Z) on the extended affine Hecke algebra ﬁn over the ring Z[q*!, t*!] generated by
elements

{Th,...,Th—1}, A{r}, and {zq,...,2,}.
It is well-known that the group SL(2,7Z) can be generated by two matrices

(11 (10
=\o 1 ==\11 )
which satisfy the following relations
Tl = T (o7 17)% = Inyo.

Let us introduce operators 7, and 7_ acting on the extended affine algebra ﬁn. Namely,

To(m)=om, T (Ty) =T, 7o(x;) =x;, YV 1,

T (m)=m, 1 (T;)=T; 71_(x;)= ( ﬁ Ta> T (lj Ta> x

a=1—1

Lemma 4.7

o (V) =([Ley TY (LA TY = Yi,

. T—(%) (Maei ¥ ) (IT21 Ta) Yi s,

o (rrimy)(w) = (Tfﬂrll)(ifi)a ,

b (T+T T+)( )=t 17@ (Hi:i—l To) (T~ T1) (Hla:n—l Ta),

7"7

In the last formula we set T,, = 1 for convenience.
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5 Combinatorics of associative quasi-classical Yang—
Baxter algebras

Let a and 3 be parameters.

Definition 5.1 (|37])
(1)  The associative quasi-classical Yang—Baxter algebra of weight (c, ), denoted by

mn(a, B), is an associative algebra, over the ring of polynomials Zlc, 5], generated
by the set of elements {x;;, 1 <i < j <n}, subject to the set of relations

(a) @ij xp = a2y, of {0,500 {k, 1} =0,

(b) Tij Tjk = Tig Tij + Tjg Qizk—i‘ﬁ Tik + O, Zfl <1 <1< j<n.

(2) Define associative quasi-classical Yang—Baxter algebra of weight [ ,de-
noted by mn(ﬂ), to be mn((),ﬂ).

Comments 5.1 -
The algebra 37,,(3), see Definition 3.1, is the quotient of the algebra ACY B,,(—f),
by the “dual relations”

TjkTij — Tij Tig — Tigp Tjp + B wg =0, 1 < j <k.

The (truncated) Dunkl elements 6; = E#i x;j, ©=1,...,n, donot commute in the al-

gebra mn (8). However a certain version of noncommutative elementary polynomial
of degree k > 1, still is equal to zero after the substitution of Dunkl elements instead
of variables, [37]. We state here the corresponding result only “in classical case”, i.e. if
B =0and ¢; =0 for all 4,j.

Lemma 5.1 ([37]) Define noncommutative elementary polynomial Li(z1,...,x,) as
follows

Lk<$1,...,$n): Z l’il xwl'zk

I=(i1<i2<...<i)C[1,n]

Then Lk(01,92,...,0n) =0.
Moreover, if 1 < k < m < n, then one can show that the value of the noncommutative
polynomial Ly (01, ...,0,,) in the algebra ACY B, (5) is given by the Pieri formula, see

[22], [58].

5.1 Combinatorics of Coxeter element

Consider the “Coxeter element” w € mn(a, £) which is equal to the ordered product

of “simple generators™
n—1
W= w, = H Taa41-
a=1

Let us bring the element w to the reduced form in the algebra mn(a, B), that
is, let us consecutively apply the defining relations (a) and (b) to the element w in
any order until unable to do so. Denote the resulting (noncommutative) polynomial by
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P,(z;j; 0, B). In principal, the polynomial itself can depend on the order in which the
relations (a) and (b) are applied. We set P, (z;;; 8) := Py(x:5; 0, 5).

Proposition 5.1 (Cf [71], 8.C5, (¢);[51])

(1) Apart from applying the relation (a) (commutativity), the polynomial P, (x;;; )
does not depend on the order in which relations (a) and (b) have been applied, and can
be written in a unique way as a linear combination:

n—1 s
Py B)=>_ 8" > ] wiwie:
s=1

{ia} a=1

where the second summation runs over all sequences of integers {i,}5_, such that
n—1>i>i>...20, =1, and iy, <n—a for a=1,...,s—1; moreover, the
corresponding sequence {j,}'—1 can be defined uniquely by that {i,}"—{.

e It is clear that the polynomial P(z;;; ) also can be written in a unique way as a

linear combination of monomials [[°_, ;, ;. such that j; > jo... > js.

(2) Let us set deg(x;;) = 1, deg() = 0. Denote by T,,(k,r) the number of degree
k monomials in the polynomial P(x;;; ) which contain exactly r factors of the form
Tup. (Notethat 1 <r <k<mn-—1). Then

r (nt+k—r—2 n—2
T"(k’r):E( n—2 )(k—l)'

Po(t,)= > Tu(kr)t" p'F,

1<r<k<n

In other words,

where P,(t, ) denotes the following specialization
z; — 1, if j<n, zpm—t Vi=1,...,n—1

of the polynomial P, (z;;; ).

In particular, T, (k, k) = (Z:f), and T,(k,1) =T(n— 2k — 1), where

o= (1) ()

is equal to the number of Schrioder paths (i.e. consisting of steps U = (1,1), D =
(1,-1),H = (2,0) and never going below the x-axis) from (0,0) to (2n,0), having k
U’s, see [68], A088617.

Moreover, T, (n — 1,r) = Tab(n — 2,r — 1), where

‘_k?—i-l 2n — k  (2)
Tab(n,k).—n+1( . )—F L ()

is equal to the number of standard Young tableaux of the shape (n,n — k), see [68],

A009766. Recall that — F\P(b) = L(""*Y)  stands for the generalized Fuss-Catalan
number.
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(3) After the specialization x;; — 1 the polynomial P(z;;) is transformed to the
polynomial

n—1
Pu(B) =) N(n.k) (1+5)",
k=0
where N(n, k) = % (Z) (kil) k=0,...,n—1, stand for the Narayana numbers.

Furthermore, Po(8) = Y00 s,(d) B, where

w0 = (M) ()

is the number of ways to draw n — 1 — d diagonals in a convexr (n+ 2)-gon, such that no
two diagonals intersect their interior.

Therefore, the number of (nonzero) terms in the polynomial P(x,;;[3) is equal to
the n-th little Schroder number s, = Z;é sp(d), also known as the n-th super-Catalan

number, see e.g. [68], A001003.

(4) Upon the specialization x1; — t, 1 < j <mn, and that z;; — 1, if2 <i < j <
n, the polynomial P(x;;; B) is transformed to the polynomial

PuBty=t > (1+8)"F Y
k=1 T

where the second summation runs over the set of Dick paths m of length 2n with exactly
k picks (UD-steps), and p(m) denotes the number of valleys (DU-steps) that touch upon
the line x = 0.

(5) The polynomial P(x;;;3) s invariant under the action of anti-involution ¢ o,
see Section 5.1.1 [37] for definitions of ¢ and T.

(6) Follow [71], 6.C8, (c), consider the specialization
C(]Z‘j—>ti, 1<i <y <n,

and deﬁne Pn(tla R P B) = Pn(xzj =1 B)
One can show, ibid , that

Pty ta; B) =D B"F ity (5.22)
where the sum runs over all pairs {(ay,...,ag), (i1,...,ix) € Z>1 X Z>1} such that 1 <
ap <ay<...<ap 1<4<i...<i,<n and i; <a; forall j.

Now we are ready to state our main result about polynomials P, (t1,...,t,; ().
Let m:=m, € S,, be the permutation ™= L2 3 ) Then
1 n n—-1 ... 2 -

Pn(tla'-- nla <H tn z> 5t17--'7t;1)
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where & (1,...,2,_1) denotes the B-Grothendieck polynomial corresponding to a per-
mutation w € S, [23], or Appendix 1.
In particular,

[y

6&’8)(1‘1:1’..,,1‘”_1 :1): N(n,/{:) (1+ﬁ)k7
0

=
Il

where N(n, k) denotes the Narayana numbers, see item (3) of Proposition 5.1.
More generally, write P,(t,5) =Y, pw (B) tk. Then

n—1
W (z) =t 2, =1,Vi >2) = Z PW (5~1)pk 1k,
k=0

Comments 5.2
e Note that if 5 = 0, then one has Qigf:o)(xl,...,xn_l) = Gu(z1,. . 20 1),
that is the S-Grothendieck polynomial at 3 = 0, is equal to the Schubert polynomial

corresponding to the same permutation w. Therefore, if 7= (1 Z n i 1 o Z),
then
671-(1)1 = 1, . 7tn—1 = ].) = Cn—h (523)

where C,,, denotes the m-th Catalan number. Using the formula (5.20) it is not diffi-
cult to check that the following formula for the principal specialization of the Schubert
polynomial &,(X,,) is true

n—1

6.(1,q,...,¢" 1) = q< 5) Ch-1(q), (5.24)

where C,,(q) denotes the Carlitz - Riordan g-analogue of the Catalan numbers, see e.g.
[69]. The formula (5.20) has been proved in [25] using the observation that 7 is a vexillary
permutation, see [48] for the a definition of the latter. A combinatorial/bijective proof
of the formula (5.20) is is due to A.Woo [79].

e The Grothendieck polynomials defined by A. Lascoux and M.-P. Schiitzenberger,
see e.g. [46], correspond to the case f = —1. In this case P,(—1) = 1, if n > 0, and

therefore the specialization 0550_1)(371 =1,...,z,1=1)=1forallw €S, u
Exercises 5.1
1 2 3 ..on
(1)  Let as before, 7r—<1 W on—1 . 9 ) Show that

n—2
o n—a—1 (n+a—-2\ ,
Gﬂ'(x]. =4q,T; = 1>vj 7&2) = E _ < ) q .

a=0

Note that the number ”;—_]‘:1 ("Zk) 15 equal to the dimension of irreducible representation

of the symmetric group S, that corresponds to partition (n + k, k).

—~—— ab —_—
(2)  Consider the commutative quotient ACY B,, (a, 5) of the algebra ACY B, («, B),
i.e. assume that the all generators {x;;| 1 <1 < j < n are mutually commute. Denote
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by P,(zij;a, B) the image of polynomial the P,(zij;a, B) € mn(a,ﬁ) in the algebra
—~—— ab
ACY B, («, B). Finally, define polynomials P,(t,a, ) to be the specialization

Show that
(a)  Polynomial P,(t,c, ) does not depend on on order in which relations (a) and
(b), see Definition 5.1, have been applied.
v (2n — 2 — 2k)!
n—2—2k)!
Pn 1, - 1, - O - )
La=15=0=) 4 (n—Fk) ! (n—1—2k)

k>0

see [68], A052709(n), for combinatorial interpretations of these numbers.
For example,

Py(t, o, B) =7+ 6(1 + B) 6 + [(20, 35,15)5 + 6 a} £+ [(48, 112,84, 20)5 +
(34, 29),3} oy [(90, 952,252,105, 15)5 + (104, 155, 55)5 + 14a2] £y

[(132, 420, 504, 280,70, 6) 5 -+ (216, 428, 265, 50) 5 + a2 (70, 49)5] £2 4+

[(132, 462, 630,420, 140,21, 1) + a(300, 708, 530, 190, 20) 5 + a>(168, 203, 56) 5 +

14a3] t + (132,330,300, 120, 20, 1)5 + a?(168, 252, 112, 14) 5 + o(42, 21).
(¢)  Show that in fact

1 (2n—2-=2k\ (n Toio(n —k,k+1)
P,(1 = - b= ot ’ k
p(La.0) =3 n( n—1 )(k)o‘ 2 T

k>0 k>0

see Proposition 5.1,(2), for definition of numbers T,,(k,r). As for a combinatorial inter-
pretation of the polynomials P, (1, c,0), see [68], A117434.

(3)  Consider polynomials P,(t,[) as it has been defined in Proposition 5. 1,
(2). Show that

Pn(t, 6) =1 + Zl thrlfr (;0 - :_ - (’Z _‘:: i) (n ; T> (1 + 5)n+17r7k)'

A few comments in order. Several combinatorial interpretations of the integer numbers

Un(r, k) == 15 (Zii) (".") are known. For example,

if r = 1, the numbers U, (1, k) = % (k+1) (k) are equal to the Narayana numbers, see
e.g. [68], A001263;

if » = 2, the number U, (2, k) counts the number of Dyck (n + 1)-paths whose last
descent has length 2 and which contain n — k peaks, see [68] , A108838 for details.

Finally, it’s easily seen, that P,(1,5) = A127529(n), and P,(t,1) = A033184(n),
see [68].
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5.1.1 Multiparameter deformation of Catalan, Narayana and Schréder num-
bers

Let b = (51,...,0,-1) be a set of mutually commuting parameters. We define a multi-

parameter analogue of the associative quasi-classical Yang—Baxter algebra MZC’\YBTL([J)
as follows.

Definition 5.2 The multiparameter associative quasi-classical Yang—Baxter algebra of
weight b, denoted by M@Bn(b), 1s an associative algebra, over the ring of polyno-
mials Z[P1, . .., Bn-1], generated by the set of elements {z;;, 1 < i < j < n}, subject to
the set of relations

(a) Tij Tkl = Tkl LTij, if {ivj} N {k,l} = Q),

(b) @i Tjp = @ik Tij + Tj T + P v, f1<1<i<j<n

Consider the “Coxeter element” w,, € MXC\YBn(b) which is equal to the ordered
product of “simple generators™

n—1
wn = H .Z'a@_;’_]_.
a=1

Now we can use the same method as in [71], 8.C5, (c) , see Section 5.1, to define the
reduced form of the Coxeter element w,. Namely, let us bring the element w,, to the
reduced form in the algebra MACYB » (), that is, let us consecutively apply the defining
relations (a) and (b) to the element w, in any order until unable to do so. Denote the
resulting (noncommutative) polynomial by P(z;;;b). In principal, the polynomial itself
can depend on the order in which the relations (a) and (b) are applied.

Proposition 5.2 (Cf [71], 8.C5, (¢); [51]) Apart from applying the relation (a) (com-
mutativity), the polynomial P(z;5;b) does not depend on the order in which relations
(a) and (b) have been applied.

To state our main result of this Subsection, let us define polynomials

Q(ﬁla"'aﬁnfl) = P(.’E” = 17VZ>] aﬁl - 1752 - 17"'767171 - 1)

Example 5.1

Q(B1, B2) =1+2 B+ B + fE,

Q(B1, B2, B3) = 14301 4 262 + Bs + 3687 + Bif2 + Bufs + 55 + 57,

Q(B1, B2, B3, Ba) = 1 + 4By + 302 + 283 + Ba + B1(661 + 352 + 383 + 284) + [2(382 +
Bs + Ba) + B3+ BF (481 + B2+ Bs + Ba) + B1(63 + 53) + B3 + B

Theorem 5.1
Polynomial Q(f1, . .., Bn1) has non-negative integer coefficients.
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It follows from [71] and Proposition 4.1, that
Q(br, - -, Bn1) = Cat,,.

Polynomials Q(f1, ..., 0n—1) and Q(B1 + 1,..., 5,1 + 1) can be considered as a multi-
parameter deformation of the Catalan and (small) Schréoder numbers correspondingly,
and the homogeneous degree k part of Q(31,...,5,-1) as a multiparameter analogue of
Narayana numbers.

5.2 Grothendieck and ¢-Schroder polynomials
5.2.1 Schroder paths and polynomials

Definition 5.3 A Schrider path of the length n is an over diagonal path from (0,0) to
(n,n) with steps (1,0), (0,1) and steps D = (1, 1) without steps of type D on the diagonal
x=uy.

If p is a Schroder path, we denote by d(p) the number of the diagonal steps resting on
the path p, and by a(p) the number of unit squares located between the path p and
the diagonal x = y. For each (unit) diagonal step D of a path p we denote by i(D) the
x-coordinate of the column which contains the diagonal step D. Finally, define the index
i(p) of a path p as the some of the numbers (D) for all diagonal steps of the path p.

Definition 5.4 Define q-Schréder polynomial S,(q; 3) as follows

Su(q; ) =Y ¢"PH @) g, (5.25)
p

where the sum runs over the set of all Schroder paths of length n.

Example 5.2
Silq; 8) =1, S2(q; B) = 14+q+B g, Ss(q; B) = 142 ¢+ +¢+06 (¢+2¢°+2¢%)+ 5% ¢°,
Si(q;8) =1+3q¢+3¢*+ 3¢+ 2¢* + ¢+ ¢% + B(q+ 3¢ + 5¢° + 6¢* + 3¢° + 3¢°) +
B¢ + 24" + 3¢° + 3¢°) + 3 ¢°.

Comments 5.3

The g-Schréder polynomials defined by the formula (5.22) are different from the ¢-
analogue of Schréder polynomials which has been considered in [10]. It seems that there
are no simple connections between the both.

Proposition 5.3 (Recurrence relations for ¢g-Schréder polynomials)
The q-Schroder polynomials satisfy the following relations

k=n—1

Sni1(q;8) = (14¢"+8 ¢") Su(@: B)+ Y (*+B8¢" ) Si(g; " B) Su(;8), (5.26)
k=1

and the initial condition Si(q; () = 1.
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Note that P,(8) = S,(1; 8) and in particular, the polynomials P, () satisfy the following
recurrence relations

i
L

Poa(B) = (24 8) Pu(B) + (1 +5) B (B) Par(B). (5.27)

1

3

Theorem 5.2 (Evaluation of the Schroder — Hankel Determinant)
Consider permutation

m (1 2 ... k kE+1 kE+2 ... n
12 .k m om—1 .. k1)
Let as before
n—1
P(B) =S N(nj) (148, n>1, (5.28)
=0
be Schroder polynomials.  Then
(%) 5® _ 1) —
(1+pB)\2 @W@)(Il =1,...,2pp = 1) = Det |Pyij—i—j(B) |i<ij<k- (5.29)
k

Proof is based on an observation that the permutation 7T,(€n) is a vexillary one and the

recurrence relations (5.24).

Comments 5.4

(1) In the case f = 0, i.e. in the case of Schubert polynomials, Theorem 5.1 has
been proved in [25].

(2) Inthecases when =1 and 0 <n—k < 2, the value of the determinant in the
RHS(5.26) is known, see e.g. [10], or M. Ichikawa talk Hankel determinants of Catalan,
Motzkin and Schrder numbers and its g-analogue, http:/denjoy.ms.u-tokyo.ac.jp. One
can check that in the all cases mentioned above, the formula (5.26) gives the same results.

(3) Grothendieck and Narayana polynomials

It follows from the expression (5.25) for the Narayana-Schroder polynomials that
P,(B—1)=M,(5), where

n

no =53 () (1)

J

denotes the n-th Narayana polynomial. Therefore, P,(8 — 1) = 91,(f) is a symmet-
ric polynomial in § with non-negative integer coefficients. Moreover, the value of the
polynomial P,(5 — 1) at § =1 is equal to the n-th Catalan number C,, := n+r1 (2;)

It is well-known, see e.g. [73], that the Narayana polynomial 91,(3) is equal to the
generating function of the statistics w(p) = (number of peaks of a Dick path p) — 1

on the set Dick, of Dick paths of the length 2n

Na(B) =) 5.
p
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Moreover, using the Lindstrom—Gessel-Viennot lemma, see e.g.,
http://en.wikipedia.org/wiki/Lindstrom—Gessel-Viennot lemma,
one can see that

DET| M ik—i—j(B)1<ij<r = 5() Z gribyrtnen), (5.30)
(P1s5-5Pk)
where the sum runs over k-tuple of non-crossing Dick paths (pq,...,px) such that the

path p; starts from the point (i — 1,0) and has length 2(n —i+ 1), i =1,... k.

We denote the sum in the RHS(5.27) by M (8).  Note that ‘J’ték_)l(ﬁ) =1 forall
k> 2.

Thus, nk) (B) is a symmetric polynomial in § with non-negative integer coefficients,
and

‘ﬁ(k)(ﬁ _ 1) _ CT(Lk) _ H 2k +1 —|—j _ H (QnQ—kQa)

n T . 2k+2a+1) °
1<i<j<n—k tJ 2 a <n—k—1 ( 2% )
As a corollary we obtain the following statement
Proposition 5.4 Let n > k, then
~1
655&”) Ny =1,... 2, =1) = 0H(B).
Summarizing, the specialization 057(5;)1)@1 =1,...,z, = 1) is a symmetric polynomial

k
in 8 with non-negative integer coefficients, and coincides with the generating function
of the statistics Zle 7(p;) on the set k-Dick, of k-tuple of non-crossing Dick paths

(pla'-'apk>‘ n

Example 5.3 Taken =5, k= 1.Then 7r§5) = (15432) and one has

6% (1,4,¢%¢") = ¢*(1,3,3,3,2,1,1) + ¢ (1,3,5,6,3,3) B +4¢7(1,2,3,3)8" + ¢'°".

1

It is easy to compute the Carlitz-Riordan q-analogue of the Catalan number Cs, namely,
Cs(q) =(1,3,3,3,2,1,1).

Remark 5.1 The value 91,(4) of the Narayana polynomial at 8 = 4 has the following
combinatorial interpretation :

M, (4) is equal to the number of different lattice paths from the point (0,0) to
that (n,0) using steps from the set ¥ = {(k, k) or (k,—k), k € Z-o}, that never go
below the x-axis, see [68], A059231.

Exercises 5.2 (a) Show that

CY (2n = 2k)! (2k + 1) !
c® T (n—k) ! (n+k+1)1

Yien =

(b)  Show that
Ve < 1, if E<n<3k+1, and v, > n=3k=1 it > 3k + 1.
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(4) Polynomials §,(8), Hu(8), Hule.t;8) and R, (g; B)

Let w € S, be a permutation and &) (X,) and @g)(Xn, Y,,) be the corresponding
[B-Grothendieck and double S-Grothendieck polynomials. We denote by % )(1) and by
05&6)(1; 1) the specializations X,, := (z1 =1,...,2, =1), Y, =y =1,...,y, = 1) of
the B-Grothendieck polynomials introduced above.

Theorem 5.3 Let w € S,, be a permutation.  Then
(i)  The polynomials F.,(5) = (’51(1,671)(1) and  $,(8) = (’51(571)(1; 1)
have both non-negative integer coefficients.
(i1)  One has
Hu(B8) = (1+ ) Fu(5).

(1i1) Let w € S, be a permutation, define polynomials
g)w(qvtﬂﬂ) = qu(uﬁ)(xl =q¢,T2=4,...,Tpn =4, Y1 = tayQ = ta"'ayn = t)

to be the specialization {x; = q,y; =t, Vi}, of the double 5-Grothendieck polynomial
& (X,.Y,). Then

Du(q,t:8) = (g+t+ B ¢ )™ Fu(L+8 q)(1+ 5 1)).

In particular,  $,(1,1;8) = (2+ B)™ Fu((1 + B)?).
(iv) Letw €S, be a permutation, define polynomial

Ruw(q; B) == @Sf‘l)(ml =q,ry=123=1,...)

to be the specialization {x; = q,x; =1, ¥Yi > 2}, of the (6—1)-Grothendieck polynomial
6PV (X,). Then
Ru(g; B) = ¢"V 7" Ru(g; B),

where Ry, (q; B) is a polynomial in q and [ with non-negative integer coefficients, and
R, (0;6=0)=1.
(v)  Consider permutation wid [1,n,n—1,n—2---,32] €8S,.

Then $, (1,1;1) =3("2) ¢, (4).
In particular, if wl = (1,2,...,k,n,n—1,....k+1) €S,, then
_ n—k _
Gf;k)l)u; 1)=(1+ ﬁ)( 2") Gfiml)(ﬁ%‘
See Remark 5.1 for a combinatorial interpretation of the number 9,(4).

Example 5.4
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Consider permutation v = [2,3,5,6,8,9,1,4,7] € Sg of the length 12, and set
x:= (14 Bq)(1+ Bt). One can check that

9.(q,t;8) = 2" (1 + 2 2)(1 + 62 + 192 + 242° + 132%),

and F,(08) = (1+20)(1 + 66+ 1982 + 243° 4+ 135*).
Note that §,(f = 1) = 27 x 7, and 7 = AMS(3), 26 = CSTCTPP(3), cf
Conjecture 12, Section 5.2.3. [ ]

Remark 5.2
One can show, cf [48], p. 89, that if w € S,, then R,(1,8) = Ryu-1(1,5).
However, the equality R, (q,5) = R,-1(q, ) can be violated, and it seems that in
general, there are no simple connections between polynomials R, (q, 5) and R,-1(q, 5),
if so.
From this point we shell use the notation (ag, ay,...,a,)s == Z;:o a; B, ete.

Example 5.5  Let us take w = [1,3,4,6,7,9,10,2,5,8]. Then R,(q, 5) =

(1,6,21,36,51,48,26)5 + ¢f (6, 36,126,216, 306, 288, 156) 5+

3% (20,125,242, 403, 460, 289) 5 + ¢°B° (6,46, 114,204, 170)5. Moreover,
MRy,(g, 1) = (189,1134,1539,540),.  On the other hand,

wl = [1,8,2,3,9,4,5,10,6,7), and R,-1(q, 8) = (1,6,21, 36,51, 48, 26) 5+

g8 (1,6,31,56,96,110,78)s + ¢2B (1,6, 27, 58,92, 122,120, 78) 5+

@B (1,6,24,58,92, 126,132,102, 26)5 + ¢*B (1,6,22,57,92, 127, 134, 105, 44) 5+

@B (1,6,21,56,91,126, 133, 104,50)5 + ¢°8 (1,6, 21, 56,91, 126, 133, 104, 50) 5.
Moreover, R,-1(q, 1) = (189, 378, 504, 567, 588, 588, 588),.

Notice that w = 1 X u, where u = [2,3,5,6,8,9,1,4,7]. One can show that
Ru(g,B) = (1,6,11,16,11)5+¢B* (10,20, 35, 34) 5+¢>3* (5,14,26)5. On the other hand,

ul =[7,1,2,8,3,4,9,5,6] and R,-1(1, 8) = (1,6,21,36,51,48,26)5 = Ru(1, B).

| Recall that by our definition (ag, ar, ... a,)p =30y a; ]

5.2.2 Grothendieck polynomials (’5(’2) (x1,...,2,) and k-dissections
T

Let k € Nand n > k — 1, be a integer, define a k-dissection of a convex (n + k + 1)-gon
to be a collection £ of diagonals in (n + k& + 1)-gon not containing (k + 1)-subset of
pairwise crossing diagonals and such that at least 2(k — 1) diagonals are coming from
each vertex of the (n+k+1)-gon in question. One can show that the number of diagonals
in any k-dissection & of a convex (n + k + 1)-gon contains at least (n+k +1)(k — 1)
and at most n(2k — 1) — 1 diagonals. We define the index of a k-dissection £ to be
i(€) =n(2k — 1) — 1 — #|&|. Dnote by

T = Y 50
&

the generating function for the number of k-dissections with a fixed index, where the
above sum runs over the set of all k-dissections of a convex (n + k + 1)-gon.
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Theorem 5.4
&Y (1 =1,... 0, =1) = TH(B).
Tk

A k-dissection of a convex (n + k + 1)-gon with the maximal number of diagonals
(which is equal to n(2k — 1) — 1), is called k-triangulation. It is well-known that
the number of k-triangulations of a convex (n + k£ + 1)-gon is equal to the Catalan-
Hankel number C’T(Lk_)l. Explicit bijection between the set of k-triangulations of a convex
(n + k + 1)-gon and the set of k-tuple of non-crossing Dick paths (71, ...,7) such that
the Dick path ~; connects points (i — 1,0) and (2n — i — 1,0), has been constructed in
[66], [72].

5.2.3 Principal specialization of Grothendieck polynomials, and ¢-Schréder

polynomials
Let W,(Cn) = 1F x w(()n_k) € S,, be the vexillary permutation as before, see Theorem 5.1.
Recall that
) 1 2 ... k k+1 k+2 ... n
e\l 2 ...k 0 n n—-1 ... k+1)°

(A) Principal specialization of the Schubert polynomial GWW
k

Note that W,(Cn) is a vexillary permutation of the staircase shape A = (n—k—1,...,2,1)
and has the staircase flag ¢ = (k+1,k+2,...,n—1). It is known, see e.g. [76], [48], that
for a vexillary permutation w € S,, of the shape A and flag ¢ = (¢1,...,¢,), 7 = £(N),
the corresponding Schubert polynomial &,,(X,,) is equal to the multi-Schur polynomial
sx(Xy), where X, denotes the flagged set of variables , namely, Xy = (X4,,..., Xy, )
and X, = (z1,..., ;). Therefore we can write the following determinantal formula for
the principal sg)ecialization of the Schubert polynomial corresponding to the vexillary
permutation "

—i4+j5—1
(1 2...:DET(” o )
6”1& )( yds59 ) { k+i1—1 . 1<ij<n—k

where [Z} denotes the g-binomial coefficient.

q
Let us observe that the Carlitz—Riordan g-analogue C,,(q) of the Catalan number C,,

is equal to the value of the ¢-Schréder polynomial at § = 0, namely, C,,(q) = S,.(q,0).

Lemma 5.2 Let k,n be integers and n > k, then

(1) DET({ k+1—1 L) 1<ij<n—k 1 Cu(9),

2) DET(Cn+k,i,j(q)) _ =D En=26-5)/6 ) (g

1<i,j<k "

(B) Principal specialization of the Grothendieck polynomial (’57(2,)1)
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Theorem 5.5

q<n7§+l)_(k_1)(n;k) DET|Snii—i—j(q;: 4" B) li<ij<r =

k—1
D@D TTA 4+ 78) 6 o (La,0% . ).

a=1
Corollary 5.1 (1) Ifk=n—1, then

n—2

DET|Sop-1--(¢; 4" ' B) li<ijen—1 = gD n72n=3)/6 H(l + ¢ )t

a=1

(2) Ifk=mn—2, then

q"? DET|Son—2-i—j(q; 4" ' B)l1<i jen—2 =

n—3
n—2)(n— n— a— n—a— 1+ nil—l
g 2e=n=D/5 TT(1 4 g1 ) 2{( 5?3 }
a=1

e Generalization
Let n = (ny,...,n,) € N? be a composition of n so that n = ny +--- 4+ n,. We set
n =n;+---4n; j=1,...,p, 0% =0.
(n1) (n2) (np)

Now consider the permutation w® = wy™ x wy™ x -+ x wy™ € S,

where w(()m) € S,, denotes the longest permutation in the symmetric group S,,. In

other words,

W™ — 1 2 .oy n® oo omi+1 0 o peh n
“\ny -1 ... 1 ng+1 ... a2® . n oo 4

For the permutation w™ defined above, one has the following factorization formula for
the Grothendieck polynomial corresponding to w®, [48],

6 = @ @(,3) « 6(5) i~ 6(5)

(nl) 1n1 Xw(()"2) 1n1+n2><w(()n3) X n1+ n (np) *

w(“ p— 1><’LU0

In particular, if

(n1) (n2) (np)

w™ = wg™ x wy™ x - x wy' €Sy, (5.31)

then the principal specialization QS( (m Of the Grothendieck polynomial corresponding to
the permutation w, is the product of g-Schroder—Hankel polynomials. Finally, we observe
that from discussions in Section 5.2,1, Grothendieck & Narayana polynomials, one
can deduce that

p—
(8-1) )
Q5w(“) ('/L‘I = ]'7 : H mnﬁ]*’l)
In particular, the polynomial e () (xl, ..., Zy) is a symmetric polynomial in 8 with

non-negative integer coefficients.
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Example 5.6

(1)  Let us take (non vexillary) permutation w = 2143 = s; s3. One can check that
0 (1,1,1,1) =343 f+ 52 = 1+ (5+ 1)+ (5 + 1), and M(5) = (1,6,6,1), Ms(5) =
(1,3,1), My(B) = (1,1). It is easy to see that

(8) _ Mi(B) MN3(B)
8 6y’ (1,1,1,1) = DET ‘ﬁz(ﬁ) ‘ﬁz(ﬂ) ’ . On the other hand,

DET‘ %Eg; izgg; ‘ = (3,6,4,1) = (3+ 38+ B%) (1 + B). It is more involved to

check that

Su(q; B)  Ss(q: B)
S3(q;qB8) Sa(q;qp)

(2)  Let us illustrate Theorem 5.5 by a few examples. For the sake of simplicity, we
consider the case § = 0, i.e. the case of Schubert polynomials. In this case P,(q; 5 =
0) = Cyu(q) is equal to the Carlitz— Riordan g-analogue of Catalan numbers. We are
reminded that the g-Catalan— Hankel polynomials are defined as follows

C(1+8) 6P (1,q,¢% ¢%) = DET‘

CP(q) = "V DET|Criimioj (@) 1<ij<n-

In the case § = 0 the Theorem 5.5 states that if n = (n4,...,n,) € N? and the permu-
tation wy) € S, is defined by the use of (5.28), then

G (1, g, %) = ¢=(5) ™) (q) x C™Em) (q) x Clm)(g).

ni+no ni+nz+ns3

Now let us consider a few examples for n = 6.
e n=(L5), = &,m(Lq...) =" Cs"(a) = Cs(q).

e n=(24), = S,m(lq...=¢ OéQ)(q)DET‘ Cﬁ(q% Cs(q) ’ '

Note that & ,e4(1,q,...) = S a14(1,q,...).

e n=(2272 = G,m(lq..)= c<2>( ) C§(q).

e n=(LLA) = Sym(la..)=g' C3(g) O (a) = 4" C(0).

the last equality follows from that C’k +1( )=1forall k > 1.

e n=(1,2,3) = S,m(l,q,...) =¢q C’?El)(q) Cé3)(q). On the other hand,

e n=321) = &,m(lq..)=qC"q) C(q) = q C§(q) = q(1,1,1,1).

Note that C’k+2( )= bl
1 q
Exercise
Let 1 <k <m <n be integers, n > 2k + 1.  Consider permutation
1 2 k kK+1 ... n
w_(m m—1 ... m—Fk+1 n 1>ES"'
Show that

610(17Q7 v ) - TL(D ) Cn m—i—k(q)
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where for any permutation w, n(D(w)) = > (dig‘“)) and d;(w) denotes the number of
boxes in the i-th column of the (Rothe ) diagram D(w) of the permutation w, see [48].

p.-8.
|

(C) A determinantal formula for the Grothendieck polynomials & l)
Tk

Define polynomials

(I)Smm)(Xn) = Z ea(Xn) BT,

a=m

1 d \i- n i . . .
Ai’j(X""'k_l) - i — <_ ) (I)l(chtLl i )(Xk-i-n z) Zf 1<i<j<n,

and

i—j—1 . .
1—7—1
A’L] Xk+n 1 Z Cn—i— a n—i—k )< J )7 Zf 1§j<l§n

a
a=0

Theorem 5.6
DET’AIJ|1<lj<TL =6 B(k) (Xk—l—n 1)

k+n

Comments 5.5
(a)  One can compute the Grothendieck polynomials for yet another interesting
family of permutations. namely, grassmannian permutations

RO 1 2 ... k-1 k kE+1 k42 n+k B
Tk 1 2 ... k=1 n+k k k+1... n+k—1/)

SkSki1 -+ Sntk—1 € Spik-
Then

& oy (T, ) = D 0,0 (X) B

where s, 15)(X) denotes the Schur polynomial corresponding to the hook shape par-

tition (n,17) and the set of variables X}, := (1,...,73). In particular,
k—1 k—1
(8) o N n—i—k:—l k k— n—l—]—l ]
6t =1 = (" E () ) - 1+ 5y,
7=0 7=0
(b) Grothendieck polynomials for grassmannian permutations
In the case of a grassmannian permutation w := o, € S, of the shape A = (\; >
Ao > ... > \,) where n is a unique descent of w, one can prove the following formulas

for the S-Grothendieck polynomial

_ DET |27 (14 8 2) Vicijen

H1§i<j§n(xi — ;)

(5.32)

7



IENW%A&MmQNPJEﬂMHAnm@m” (5.33)

where X = (24, %iq1, ..., @), and for any set of variables X,

®) — (k-1 .
hn,k(X) = a hnkara(X) ﬁ )

a=0

and hi(X) denotes the complete symmetric polynomial of degree & in the variables from
the set X.
A proof is a straightforward adaptation of the proof of special case 5 = 0 (the case of
Schur polynomials) given by I. Macdonald [48], Section 2, (2.10) and Section 4, (4.8).
Indeed, consider p-divided difference operators Wjﬁ , j=1,...,n—1, and T(B )

w € S,, introduced in [23]. For example,
7é“<f>—-;t;;;(<1+-6xyﬂ>fLX'>—<1+—@xnf< 1(X0)).

Now let wqy := wo ) be the longest element in the symmetric group S,. The same
proves of the statements (2.10), (2.16) from [48] show that

R =ortun(3 0 Ta+n o).
=1

UES’,L

where a5 =[], <, (i — ;).
On the other hand, the same arguments as in the proof of statement (4.8) from [48]
show that

@WMX>—w%xA”w.

Application of the formula for operator 7t (0) displayed above to the monomial z*

finishes the proof of the first equality in (5. 29) The statement that the right hand side
of the equality (5.30) coincides with determinants displayed in the identity (5.30) can be
checked by means of simple transformations..

|

Problems 5.1

(1) Give a bijective prove of Theorem 8.3, i.e. construct a bijection between

e the set of k-tuple of mutually non-crossing Schroder paths (p1,...,px) of lengths
(n,n—1,...,n—k+ 1) correspondingly, _and

o the set of pairs (m,T), where T is a k-dissection of a convex (n+k+ 1)-gon, and
m is a upper triangle (0,1)-matriz of size (k — 1) x (k — 1),

which is compatible with natural statistics on the both sets.

(2) Letw € S, be a permutation, and CS(w) be the set of compatible sequences
corresponding to w, see e.g. [7].

Define statistics c(e) on the set C'S(w) such that

qu(uﬁ_l)(l'l = ]_,Ig = 1, .. ) = Z ﬁc(a).

acCS(w)
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(3)  Let w be a vexillary permutation.

Find a determinantal formula for the B-Grothendieck polynomial e (X).

(4) Let w be a permutation
Find a geometric interpretation of coefficients of the polynomials 61(5)(%- = 1) and
&V (2= q,2; = 1Y) #1).
For example, let w € S, be an involution, i.e. w? =1, and w € S,,; be the image of
w under the natural embedding S,, < S, 1 given by w € S,, — (w,n + 1) € S,41.
It is well-known, see e.g. [42[, [79], that the multiplicity —m,.,, of the O-dimensional
Schubert cell {pt} = YwénH) in the Schubert variety Y,/ is equal to the specialization
Suw(z; = 1) of the Schubert polynomial &,,(X,,). Therefore one can consider the poly-
nomial &4 (z; = 1) as a S-deformation of the multiplicity Me -

Question  What is a geometrical meaning of the coefficients of the polynomial
&Y (z; =1) € N[B] ?

Congecture 5.1 The polynomial fo)(xi = 1) is a unimodal polynomial for any
permutation w.

5.2.4 Specialization of Schubert polynomials

Let n, k, » be positive integers and p, b be non-negative integers such that r <
p+ 1. It is well-known [48| that in this case there exists a unique vezillary permutation

@ 1= Wxg¢ € So Which has the shape A = (A1, ..., A\py1) and the flag ¢ = (¢1,. .., dny1),
where

Ni=m—i+1)p+b ¢gi=k+1+r(i—1), 1<i<n+1-7dy.

According to a theorem by M.Wachs [76], the Schubert polynomial &, (X) admits the
following determinantal representation

80(X) = DET (n-125(Xs)) |
1<i,j<n+1
Therefore we have G,(1) :=64(z1 =1,20=1,...) =
DET(((n—z+1)p+b—.2~l—j+k—|—(z—1)r)> '
k+(i—1)r 1<i,j<n+1
We denote the above determinant by D(n, k,r,b,p).
Theorem 5.7 D(n,k,r,b,p) =

I H—b.—i—jp I (k—i4+Dp+1)+@G+j—1Dr+rD+np)

(6.5)EAn k,r ! (6:)EBr k. k—it+1l+(i+j—1)r

)

where
Auir = {0 €22 | G, j<i<k+(—Dn-j)},

Bn,k,rz{(i,j)ezgl | i+j<n+l, itk+1+7s, sezzo}_
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|
It is convenient to re-wright the above formula for D(n, k,r, b, p) in the following form

D(n,k,r,b,p) =

ntl ((n—j b+k+(G—-Dr—-1) ) (n—y !
II<( R A A ) e RV

@wwj—nﬂ!«n—j+nw+1y+@!

11 ((k‘—i—i—1)(p+1)+jr+(np+b)r>.

1<i<j<n

Corollary 5.2 (Some special cases)

(A) The case r =1

We consider below some special cases of Theorem 5.7 in the case r = 1. To simplify
notation, we set D(n,k,b,p) := D(n,k,r = 1,b,p). Then we can rewrite the above
formula for D(n, k,r,b,p) as follows — D(n,k,b,p) =

n+1 ((n+k—j+1)(p+1)+b)! ((n—j+1)p+b+k>! (j—1)!

i (=4 D+ )+ o) ((ktn—j+ Dpt+b+k)! (k+j— 1)
( ) ( )

—

(1) Ifk<n+1, then D(n,k,b,p)=

J

i Cn+k+1—ﬁ@+n+w)(@—j@+ﬁ+k)juk—ﬁun—j+n!
- n—j+1 J (n+k—j7+1)!

In particular,

o [fk=1, then
140 (p+1)(n+1)+0b (p+1)
D(n,1,b,p) = = E (b
(n777p) 1+b—|—(n+1)p< TL—|—1 n+1()’
where Eﬁb’(b) = % (P”Jb) denotes the generalized Fuss-Catalan number.
o ifk=2 then
24+b)(24+0
D(n,2.b,p) = i FED0) D).

(L+b)2+b+m+1p)2+b+(n+2)p) "
(2) (R.A. Proctor [63]) Consider the Young diagram
ANi=Xopp ={(0,]) €Zs1 X Zs | 1<i<n+1,1<j<(n+1—1i)p+b}.
For each box (i,j) € X define the numbers c(i,j) :=n+1—1i+ j, and
l(m(k):{%;(iﬁf ‘JS(n%—l—?)(P—l)—Fb‘, |
s if (i l=d)p-1) <j-b< (n+1-i)p
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Then
D(n,k.bp) =[] luy(k). (5.34)
(3,7)EN

Therefore, D(n, k,b,p) is a polynomial in k with rational coefficients.
(3) Ifp=0, then

n+k .
b . . ,
D<n7 k767 O) = dim ‘/(i[gff)ll:) — | | (j + )mm(g,n+k+171),
; J
Jj=1

where for any partition p, £(p) < m, Vi[(m) denotes the irreducible gl(m)-module with
the highest weight p. In particular,

. D(n’lb’O)I;<n+2+b><n+2+b)

n+2+5b b b+ 1
is equal to the Narayana number N(n + b+ 2,b);

b+ k) (b+k+1)!
EWbl(k+ 1)1(b+ 1)!
and therefore the number D(1,k,b,0) counts the number of pairs of non-crossing lattice
paths inside a rectangular of size (b+1)x (k+1), which go from the point (1, 0) (resp. from
that (0,1)) to the point (b+ 1, k) (resp. to that (b, k+ 1)), consisting of steps U = (1, 0)
and R = (0, 1), see [68], A001263, for some list of combinatorial interpretations of the
Narayana numbers.

(4) Ifp=0b=1, then

i % +i+j
D(n,k,l,l):Cr(Hr)kH = H T

. D(1,k,b,0) = =Nb+k+1,k),

1<i<j<n+1

(5) ( R.A. Proctor [61],[62] ) Ifp =1 and b s odd integer, then D(n,k,b,1)
1s equal to the dimension of the irreducible representation of the symplectic Lie algebra
Sp(b+ 2n + 1) with the highest wright kwy1.

(6) Ifp=1andb=0, then

2k+1+ _o®

D(n,k,1,0)=D(n -1,k 1,1) = [] 55 = Cne

1<i<j<n

see subsection Grothendieck and Narayana polynomials.
7 Cf 25 Let @)y, be a unique dominant permutation of shape A\ :== X\, ,p» and
( 7p?
0:=lnpp = 5(n+1)(np+ 2b) be its length. Then

¢
S Tl +a) =0 B(n,z,p.b).
aER(w,\) ’L’Z].

Here for any permutation w of length I, we denote by R(w) the set {a = (ay,...,a;)} of
all reduced decompositions of w.
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(B) The case k=0

(1) D(n,0,2,2,2) = VSASM(n),ie. thenumber of alternating sign 2n+1x2n+1
matrices symmetric about the vertical axis, see e.g. [68], A005156.

(2) D(n,0,2,1,2) = CSTCPP(n),i.e. the number of cyclically symmetric transpose
complement plane partitions, see e.g. [68], A051255.

Remark 5.3
It is well-known, see e.g. [63], or [69], vol.2, Exercise 7.101.b, that the number
D(n, k,b,p) is equal to the total number pp*=ro(k) of plane partitions 23 bounded by
k and contained in the shape A, ;,. Finally we recall that the generalized Fuss-Catalan
number Fff:;”(b) counts the number of lattice paths from (0,0) to (b + np,n) that do
not go above the line x = py, see e.g. [44].
|

Theorem 5.8  Let w1, be a unique vexillary permutation of the shape A, := (n,n—
L....,2,D)p and flag ¢ppy = (k+ 1, k+2,....k+n—1,k+n). Then

n+1
_ 1 n+1\ [(n+1)p\ ,._
. eI =Y ( , )( | i1,
i S+l \ j—1

o Ifk>2 then G,i,(B) = Qﬁwﬁn (1) is a polynomial of degree nk in (3, and
anff[ﬂnk]( n,k,p( )) D( ’ 17p ]-7 0)

?) (J 1) 771 = §NM,(t) is known as the Fuss-Narayana poly-

nomial and can be considered as a t-deformation of the Fuss-Catalan number FC?(0).
Recall that the number X (’;) (].p_”l) counts paths from (0,0) to (np,0) in the first
quadrant, consisting of steps U = (1,1) and D = (1, —p) and have j peaks (i.e. UD’s),
cf. [68], A108767.
For example, take n =3,k =2,p=3,r=1,b=0. Then
wso3 =[1,2,12,9,6,3,4,5,7,8,10,11] € Si2, and  G323(8) =
(1,18,171,747,1767,1995,1001). Therefore, G323(1) = 5700 = D(3,2,3,0) and
Coef fige)(G323(8)) = 1001 = D(3,2,2,0).

The polynomial " i1 (

Comments 5.6 (=) The case r=0
It follows from Theorem 5.7 that in the case r = 0 and k£ > n, one has

n+1 ((n—j+1)p+b+k—j+1)

. [(k+1 ntl k—j+1
D(”? k? 0,]7, b) = dim V)?nfp; ) = (1 +p)( ? ) H ((nj+1)j(—;+1)+b)
j=1 n—j+1

23 Let X be a partition. A plane (ordinary) partition bounded by d and shape ) is a filling of the
shape A by the numbers from the set {0,1,...,d} in such a way that the numbers along columns and
rows are weakly decreasing.

A reverse plane partition bounded by d and shape A is a filling of the shape A by the numbers from
the set {0,1,...,d} in such a way that the numbers along columns and rows are weakly increasing.
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Now consider the conjugate v := v, ,5 := ((n + 1)®,nP, (n — 1)?,...,1P) of the partition
Anpp, and a rectangular shape partition ¢ = (k, ..., k). If & > np + b, then there exists
——

np+b
a unique grassmannian permutation o := 0, of the shape v and the flag 1, [48]. It

is easy to see from the above formula for D(n, k, 0, p,b), that

Gﬂ'n,k,p,b(l) - dlm VVgn[,(jjb_l) =

n n k+j—2
1+ (P H "—JH) (")
g (n—j+p+1)+b 45 (et
=1 1

n—j

After the substitution & :=np 4+ b+ 1 in the above formula we will have

n np+b+1 1)
1 1 (n— J+1
Jn,np-&-b-&-l,p,b( ) + p p+1

o (0

In the case b = 0 some simplifications are happened, namely

G}

n ((k-l—j—?) )
_ n n—j+1)p
S, sp0(1) = (14 1)) I1 (GG
J=1 n—j
Finally we observe that if kK = np + 1, then

np+j 1 n np+j—1

ﬁ (n— J+1)p H p+1)(J 1) :1:[ Jjt (n(p ‘*’1)_]'._ 1)! — Aglp)7
Uemmneesy = U o=y = e =56 on i —pe+n -

where the numbers A" are integers that generalize the numbers of alternating sign
matrices (ASM) of size n x n, recovered in the case p = 2, see [57], [15] for details.

Examples 5.1
(1) Let us consider polynomials &,(5) := 055,6_2220(1)
o Ifn=2 then 09490 =235614 € Sg, and G,(8) = (1,2,3) :=1+ 28+ 35%
Moreover, 9%02420<q 6) (1 2)5 +3 Qﬁ2
o Ifn =23, then 03420 = 235689147 € Sy, and  B3(5) = (1,6, 21,36, 51,48, 26).
Moreover, 9%(,376,270@;6) =(1,6,11,16,11)5 +q 32(10,20,35,34)5 +q¢*B*(5, 14, 26);
gq03,6,2,0 (q; 1) = (45a 99, 45)11'
o Ifn=4, then o4820=1[2,3,5,6,8,9,11,12,1,4,7,10] € S12, and &4(f5) =
(1,12,78, 308,903, 2016, 3528, 4944, 5886, 5696, 4320, 2280, 646 ).
Moreover, R, ¢ ,,(q; 8) = (1,12,57,182,392,602, 763, 730,493, 170)5 +
qf*(21, 126,476, 1190, 1925, 2626, 2713, 2026, 804 )5 +
q*4(35,224, 833, 1534, 2446, 2974, 2607, 1254) 5 +¢35°(7, 54, 234, 526, 909, 1026, 646) s;
Ro,s00(q; 1) = (3402,11907, 11907, 3402), = 1701 (2,7,7,2),.
e Ifn =5, then 05502 = [2,3,5,6,8,9,11,12,14,15,1,4,7,10,13] € S;5, and
&5(8) = (1, 20,210, 1420, 7085, 27636, 87430, 230240, 516375, 997790, 1676587, 2466840,
3204065, 3695650, 3778095, 3371612, 2569795, 1610910, 782175, 262200, 45885).
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Moreover, R, 1.,,(4; 8) = (1,20, 174,988, 4025, 12516, 31402, 64760, 111510, 162170,
202057, 220200, 202403, 153106, 89355, 35972, 7429) 1+

432(36, 432, 2934, 13608, 45990, 123516, 260703, 487908, 738927, 956430, 1076265,
1028808, 813177, 499374, 213597, 47538) 5 +

¢234(126, 1512, 9954, 40860, 127359, 314172, 627831, 1029726, 1421253, 1711728,
1753893, 1492974, 991809, 461322, 112860) 5 +

¢335(84, 1104, 7794, 33408, 105840, 255492, 486324, 753984, 1019538, 1169520, 1112340,
825930, 428895, 117990) 5 +

¢*55(9, 132, 1032, 4992, 17730, 48024, 102132, 173772, 244620, 276120, 240420, 144210,
45885) .

Ry 100 (7 1) = (1299078, 6318243, 10097379, 6318243, 1299078),, =

59049(22, 107,171, 107, 22),.

We are reminded that over the paper we have used the notation (ag, a1, ..., a,)s =
Dm0 @ B ele
One can show that deg;g®,(8) = n(n—1), degigRo, 2,00(¢;1) =n—1, and looking
on the numbers 3, 26, 646, 45885 we made
Conjecture 5.2 Let a(n) := Coef f[3"("~V)] (@n(ﬁ)> Then

n—1

(35 4 2)(65 + 3)! (2 + 1)!
a(n) = VSASM(n) = OSASM(n) = [ | @+2(Liw X

J=1

where

VSASM(n) is the number of alternating sign 2n + 1 x 2n + 1 matrices symmetric
about the vertical axis;

OSASM(n) is the number of 2n x 2n off-diagonal symmetric alternating sign
matrices.

See [68], A005156, [57] and references therein, for details.

Conjecture 5.3
Polynomial R, ,, ,,(q; 1) is symmetric and R, ,, ,,(0;1) = A20342(2n—1), see [68].

(2)  Let us consider polynomials §,(5) := ffi Z}LIQO( 1).
o Ifn=1 then o300 =1342€S,, and F(f8) =(1,2):=1+20.
e Ifn =2, then 02,520 = 1346725 € S;, and 33( ) ( 6,11, 16, 11)
Moreover, Ro, 5,,(¢; 6) = (1,2,3)5 + ¢B8(4,8,12)5 + ¢*53(4,11).
o Ifn=3, then o3720=11,3,4,6,7,9,10,2,5,8] € S19, and F4(5) =
(1,12,57,182, 392,602, 763, 730, 493, 170).
Moreover,
Ros.00(0;8) = (1,6,21,36,51,48,26)5 + ¢ 3 (6,36,126,216, 306,288, 156)4
+ ¢%33(20, 125,242, 403, 460, 289) 5 + ¢>3°(6, 46, 114,204, 170) 5;
Ry r00(q; 1) = (189,1134, 1539, 540), = 27 (7,42,57,20),.
o Ifn= 4, then 049,20 = [1, 3, 4, 67 7, 9, 10, 12, 13, 2, 5, 8, 11] S 813, and 35(6) =
(1,20,174,988,4025, 12516, 31402, 64760, 111510, 162170, 202957, 220200, 202493,
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153106, 89355, 35972, 7429).

Moreover,

Ro,o.00(q; B) = (1,12,78, 308,903, 2016, 3528, 4944, 5886, 5696, 4320, 2280, 646) 5+

qf (8,96,624,2464, 7224,16128, 28224, 39552, 47088, 45568, 34560, 18240, 5168) 5+
q*%(56,658, 3220, 11018, 27848, 53135, 78902, 100109, 103436, 84201, 47830, 14467) 5+
q> (56,728, 3736, 12820, 29788, 50236, 72652, 85444, 78368, 50876, 17204) 5+

q*B7(8, 117,696, 2724, 7272, 13962, 21240, 24012, 18768, 7429) 5;

Ro,o.00(q; 1) = (30618,244944, 524880, 402408, 96228), = 4374 (7,56, 120,92, 22),.
One can show that §,(3) is a polynomial in 3 of degree n?, and looking on the

numbers 2,11,170, 7429 we made

Conjecture 5.4 Let b(n) := Coef fizm-12 ({?n(ﬁ)> Then
b(n) = CSTCPP(n). In other words, b(n) is equal to the number of cyclically
symmetric transpose complement plane partitions in an  2n x 2n x 2n box. This
number is known to be
’ﬁ (35 + 1)(65)! (25)!
(45 + 1 (49)!

’
J

see [68], A051255, [9], p.199.

It ease to see that polynomial R, ,,,,,,(¢; 1) has degree n.

Conjecture 5.5

. Coef fim (%(g 1)) = A20842(2n),

see [68];

. R amsro(0:1) = AD)(4n; 3) = 3°""D/2 ASM (n),
see [45], Theorem 5, or [68], A059491.

Proposition 5.5 One has

9{0'4,2n+1,2,0 (O7 /6) - 6 (/8) ng'i 2}1 2, 0(]‘)7 SRo'n 2n,2 0( /8) g7'5(6> g’i;},{ll,Q,()(l)‘

Finally we define (8, ¢)-deformations of the numbers V.SASM (n) and CSCTPP(n).
To accomplish these ends, let us consider permutations

wi = (2,4,...,2k, 2k—1,2k—3,...,3,1) and w; = (2,4,...,2k 2k+1,2k—1,...,3,1).

Proposition 5.6 One has

&, (1) = VSAM(K), ©,:(1) = CSTCPP(k).
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Therefore the polynomials Q5(ﬁf1)(x:q,xj =1,Vj > 2) and 05(6+_1)(:E:q, x; =1,Vj > 2)
wy, wy
define (8, q)-deformations of the numbers V.SAM (k) and CSTC PP (k) respectively. Note

that the inverse permutations (w; )~' = (2k,1,...,2k+ 1 —i,4,...,k+ 1,k) and (w;)~!

~—— ——— ——
(2k+1,1,...,2k+2—34,7,...,k+2,k,k + 1) also define a (3, g)-deformation of the
—_—— —_— —— ———

numbers considered above.

Problem 5.1

It is well-known, see e.g. [19], p.43, that the set VSASM(n) of alternating sign
(2n 4+ 1) x (2n + 1) matrices symmetric about the vertical axis has the same cardinality
as the set SYTy(A(n), < n) of semistandard Young tableauz of the shape A\(n) := (2n —
1,2n — 3,...,3,1) filled by the numbers from the set {1,2,...,n}, and such that the
entries are weakly increasing down the anti-diagonals.

On the other hand, consider the set CS(w,) of compatible sequences, see e.g. [7],
[23], corresponding to the permutation w, € Sq.

Challenge  Construct bijections between the sets CS(wy ), SYT2(A(k), < k) and
VSASM(k). [ |

Remarks 2 One can compute the principal specialization of the Schubert polynomial
corresponding to the transposition ¢4, := (k,n — k) € S,, that interchanges k and n — k,
and fixes all other elements of [1,n].

Proposition 5.7 gV S, (g g =
k ) 1 9 . n—2 . k 9 2
S [P2 2] =S e (PR
, k—j k+j5—-1 , k—1
j=1 q ¢ =1 q

Exercises 5.3
(1)  Show that if k > 1, then

2n—1 2n
Coef figrpee] <9‘i0n,2n’2‘0(q; t)) = ( ok ), Coef figrpon— (%Uny%ﬂ’m(q;t)) = <2k B 1).

(2) Letn > 1 be a positive integer, consider “zig-zag” permutation

(1 2 3 4 ... 2k+1 26+2 ... 2n-1 2n cs
“T\2 1 4 3 2%+2 2k+1 ... 2n 2 — 1 2n-
Show that
Ru(g, B) = + :
(9,5) kHO (1_5 q )
(3) Let oppnm be grassmannian permutation with shape A = (n™) and flag ¢ =
(k+1)", ie.
(1 2 ..k kE+1 k+n k+n+1 ... k+n+m
Ohnm=\1 2 .k k4+m+1 ... k+m+n k+1 ... k+m )
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Clearly o411 pm = 1 X Ok pm-

Show that

the coefficient Coef fam <%0’k,n,m<176)) 1 equal to the Narayana number
N(k+n+m,k).

(4) Consider permutation w := w™ = (wy,..., Wapt1), where wop_1 = 2k + 1 for
k=1,....n, wo,r1 =2n, wo=1and wey, =2k—2 fork=2,...,n. For example,
w® = (3152746). We set w® = 1.

Show that

the polynomial &%) (x; = 1,Vi) has degree n(n — 1)  and the coefficient
Coef fann-1 <61(Uﬁ) (x; = 1,Vz’)) 1s equal to the n-th Catalan number C,,.
Note that the specialization &3 (x; = 1)|p=1 is equal to the 2n-th Euler (or up/down)

number, see [68], AO00111.
(n)

More generally, consider permutation w,"” := 1% x w™ € Spiont1, and polynomials

>0 Y2
Show that
tk
Z Py(z) i exp(tz) sech(t).
k>0 '

The polynomials Py(z) are well-known as Swiss-Knife polynomials, see [68], A153641,
where one can find an overview of some properties of the Swiss-Knife polynomials.

(5)  Consider permutation u := u, = (U1,...,Usp) € Sop, N > 2, where
U =2, U1 =2k—1, k=1,....n, uy =2k+2, k=1,...,n—1, ug, = 2n — 1.
For ezample, uy = (24163857).

Now consider polynomial
RP(q) = Sy, (11 = g, 1 = 1,Vi > 2).

n

Show that
. R%k)(l) = (2”+kk_1) Ey,—1, where Eo,_1,k > 1, denotes the Euler number, see [68],

A00111. In particular, R%l)(l) = 221 G where G,, denotes the unsigned Genocchi
number, see [68], A110501.

. dequ,(f)(q) =n and Coef fyn (R%O)(q)> = (2n — 3)!l.

(6) Consider permutation wy := (2k+1,2k—1,...,3,1,2k,2k—2,...,4,2) € Sox11,
Show that
&Y = q.a; = 1% 2 2) = ¢ (1+ ).

(7)  Consider permutations o;" = (1,3,5,...,2k + 1,2k + 2,2k,...,4,2) and o}, =
(1,3,5,...,2k + 1,2k,2k — 2,...,4,2), and define polynomials

S (q) = 6 s (w1 = g5 = 1,Vj > 2).
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Show that  SF(0) = VSASM(k), Sf(1)=VSASM(k + 1),
255 (@)oo = 2K 57 (0) Coef [y (S (a)) = CSTCP(k +1).
S-(0) = SCTCP(k), S;(1) = SCTCP(k + 1),
28 (@)lgmo = (2k — 1) S; (0), Coeffy: ( ~(q )) — VSASM(K).
Let’s observe that <7,€i = 1><7'k L, where Tim = (2,4,...,2k, 2k+1,2k—1,...,3,1) and
T, =(2,4,...,2k,2k— 1,2k —3,...,3,1). Therefore,

S s(r1 =g, =1, ¥j >2) = q Sp,(q).

(7)  Consider permutation

(1 2 ... n n+l n+2 n+3 ... 2n
"\2 4 ... 2n 1 3 ) oo 2n—1
and set u® = 1261 Uy,
Show that
_ . n+1 2
6% @ =1¥i > 1) = 1+ ) &7, (= 1.¥i > 1),
where wo ) denotes the permutation (n+1,n,n—1,...,2/1).

(8) Show that
£ e [ - eEert)e)

It is not difficult to see that the left hand side sum of the above identity counts the
weighted number of plane partitions m = (m;;) such that

.5 > O, Tij > m&x(ﬂi+1,j,7ri7j+1), g < 17 Zf i > 2 ana j > 2?
and the weight wt(m) := 3, & mj. u

Final remark, it follows from the seventh exercise listed above, that the polynomials
6(6 (x1 = ¢, z; = 1,Vj > 2) define a (g, §)-deformation of the number VSASM (k) (the

case 0; ) and the number C'STCPP(k) (the case o}, ), respectively.

5.2.5 Specialization of Grothendieck polynomials

Let p,b,n and 14, 2i < n be positive integers. Denote by Tbn the trapezoid, i.e. a
convex quadrangle having vertices at the points

(ip,i), (ip,n—1i), (b+ip,i) and (b+ (n—1i)p,n—1i).
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Definition 5.5 Denote by FC’EEZ;n the set of lattice path from the point (ip,i) to that
(b+ (n —i)p,n — i) with east steps E = (0,1) and north steps N = (1,0), which are
located inside of the trapezoid 7;(2),1

Ifp e FC’b(l) is a path, we denote by p(p) the number of peaks, i.e.

p(p) = NE(p) + Ein(p) + Nena(p),

where NE(p) is equal to the number of steps NE resting on path p; FEi,(p) is equal to
1, if the path p starts with step E and 0 otherwise; Ne,q(p) is equal to 1, if the path
p ends by the step N and 0 otherwise.

Note that the equality Ne,q(p) = 1 may happened only in the case b = 0.

Definition 5.6 Denote by FC’IS?W the set of k-tuples P = (p1,...,px) of non-crossing

lattice paths, where for each 1 =1,... k, p; € FCZSZ;”Z

k
FCIE’ ), (B) = g 510(‘13)

perc

b,p,n

denotes the generating function of the statistics p(%) == S, p(p) — k.

Theorem 5.9 The following equality holds

6(5)’&%1) (1:1 = 1’{1:‘2 = 17 . ) = FC;§)7n+k(ﬁ + 1)7

On

where 0,5 05 a unique grassmannian permutation with shape ((n + 1)°,n?, (n —

P, ..., 17) and flag (k,.... k).
——

np—+b

5.3 The “longest element” and Chan—Robbins—Yuen polytope
5.3.1 The Chan—Robbins—Yuen polytope CR),

Assume additionally, cf [71], 6.C8, (d), that the condition (a) in Definition 5.1 is
replaced by that

(a') : w;; and xy commute for all i, 7, k and [.

Consider the element w(()") = [licic j<n Tij- Let us bring the element w(()”) to the
reduced form, that is, let us consecutively apply the defining relations (a’) and (b) to
the element wén) in any order until unable to do so. Denote the resulting polynomial
by Qn(zij;, B). Note that the polynomial itself depends on the order in which the
relations (a’) and (b) are applied.

We denote by @, () the specialization z;; = 1 for all i and j, of the polynomial

Qn(JCij;Oé = 075)-
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Example 5.7

Q3(8)=(2,1) =14+ (B+1), QuB)=(10,13,4) =1+5(8+1)+4(8+ 1)
Q5(8) = (140, 336,280,92,9) = 1 + 16(8 + 1) + 58(8 + 1)* + 56(3 + 1)* + 9(58 + 1)*,
Qs(B) = 1+42(8+1)+448(8+1)*+1674(5+1)>+2364(8+1)*+1182(5+1)°+169(5+1)°.
Q7(8) = (1,99, 2569, 25587, 114005, 242415, 248817, 118587, 22924, 1156) 541
Qs(B) = (1,219, 12444, 279616, 2990335, 16804401, 52421688, 93221276, 94803125,
53910939, 16163947, 2255749, 108900)5.1.

What one can say about the polynomial Q,(8) := Qn(¥ij; B)|ey;=1,vi 7

It is known, [71], 6.C8, (d), that the constant term of the polynomial @, (/) is equal
to the product of Catalan numbers H;:ll C;. It is not difficult to see that if n > 3, then

Coef flp(Qn(B)) =27 — 1 = ("5Y).
Theorem 5.10  One has

Qu(B8 = 1) = (D UCRYwi1,m) 57) (1= g3,

m>0

where CRY,, denotes the Chan—Robbins-Yuen polytope [12], [13], i.e. the convex poly-
tope given by the following conditions :
CRYm = {(aij) € Mat,xm(Zs>p)} such that

(1) ;a5 =1, Zj ai; = 1,

(2) a;; =0, if j>i+1.

Here for any integral convex polytope P C Z¢, (P, n) denotes the number of integer
points in the set nP N Z<.

In particular, the polynomial @, (/) does not depend on the order in which the relations
(a’) and (b) have been applied.
Now let us denote by @, (t; «, 3) the specialization

vy=1, i<j<n, and @, =t, if i=1,...,n—1,

of the (reduced) polynomial Q,(x;;; c, §) obtained by applying the relations (a’) and (b)
in a certain order. The polynomial itself depends on the order selected.

Conjecture 5.6 (A) Letn >4 and write

Qult =L, 8) =) (1+0)" cruler), then cpnler) € Zzolal.

k>0
(B) 2
e The polynomial Q,(t,) has degree d, = [_(n;n J-
o Write J
Qu(t.B)=1"2 ) (1)
k=0
Then
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Moreover, there exists a polynomial a,(t) € N[t] such that
() = an(1) an(t),  an(0) = an_.
(C) The all roots of the polynomial — Q,(B) belong to the set R._;.

For example,
(a) Qit=1;0,8) = (1,5,4):1 +a (5,T)gs1 + 3 %, Qs(t=1;0,8) =
(1,16, 58,56,9)551 + a (16,109, 146,29) 541 + o (51,125,34) 5.1 + o> (35,17)541.
®) ¥ =13(2,3,3,3,2), &”(t) =34 (3,5,6,6,6,5,3),
(1) = 330 (13,27,37,43,45,45, 43, 37,27, 13).

Comments 5.7
(1) We expect that for each integer n > 2 the set

Uy i={w € Spny | &,(1) = [ ] Cat;}
j=1

contains either one or two elements, whereas the set {w € Sy,—5 | &,,(1) = [[}_, Cat;} is
empty. For example, ¥, ={ [1,5,3,4,2] }, ¥5={][1,5,7,3,2,6,4], [1,5,4,7,2,6,3] },
Ue={w:=11,3,2,86,9,4,57, wt} U;={777}.
Question Does there exist a vexillary (grassmannian 7) permutation w € S, such
that  &,(1) = [[;_, Cat;
For example, w = [1,4,5,6,8,3,5,7] € Sg is a grassmannian permutation such that
S, (1) = 140, and R, (1, 8) = (1,9,27,43,38, 18, 4).

Remark 5.4 We expect that for n > 5 there are no permutations w € S, such that

(3) The numbers &, := [[;_, Cat; appear also as the values of the Kostant partition
function of the type A,_1 on some special vectors. Namely,

¢, = Ko@n)(Vn), where 7, =(1,2,3,...,n—1, —(Z)),

see e.g. [71], 6.C10, and [34], 173-178. More generally [34], (7,18), (7.25),0ne has

1 n+d+j
2j + 1 2; )

where v,q = (d+ 1,d+2,...,d+n —1,-n(2d + n — 1)/2), pp°(d) denotes
the set of reversed (weak) plane partitions bounded by d and contained in the shape
6n = (n—1,n—2,...,1). Clearly, pp’(1) = [] £ = C,, where C, is the n-th

n+d—2

K@(l”)(Vn,d) = ppén (d) €n—1 = H

j=d

+7—1

Catalan number 2%,

24 For example, if n = 3, there exist 5 reverse (weak) plane partitions of shape d3 = (2,1) bounded

by1,namelyreverseplanepartitions{(8 0>,<(1) 0), (8 1),(? 1), (1 1>}
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Conjecture 5.7
For any permutation w € S, there exists a graph ', = (V, E), possibly with multiple

edges, such that the reduced volume vol(Fr,) of the flow polytope Fr,, see e.g. [70] for

a definition of the former, is equal to &,,(1). n
For a family of vexillary permutations w,, of the shape A\ = pd,;; and flag ¢ =
(1,2,...,n—1,n) the corresponding graphs I',, , have been constructed in [52], Section 6.
In this case the reduced volume of the flow polytope Jr, , is equal to the Fuss-Catalan
number 1+(n1+1)p ((”J“ﬂ’l’ﬂ)) = 6,,,(1), cf Corollary 5.2

Exercises 5.4
(a)  Show that
the polynomial R, (t) := t'™" Q,(t;0,0) is symmetric (unimodal ?), and R,(0) =
For example, Ry(t)= (14+1t)(2+t+2 %), Rs(t)=2 (5,10,13,14,13,10,5),.
Rs(t) = 10 (2,3,2), (7,7,10,13,10,13,10,7,7),.
Note that R,(1) = [[}Z, Caty.

(b) More generally, write R,(t,3) :== Qu(t;0,8) = >~ gg)(t) B*.

Show that the polynomials R’ (t) are symmetric for all k.
(¢) Consider a reduced polynomial R, ({x;;}) of the element

H Ti5 € m(a =0 = O)ab,

(4,5)#(n—1,n)

see Definition 5.1. Here we assume additionally, that all elements {x;;} are mutually
commute. Define polynomial R, (q,t) to be the following specialization

xij—>1, if i<j<n-—1, Tin—1 —> ¢, Tin — 1, Y1

of the polynomial R, ({x;;}) in question.

Show that polynomials R, (q,t) are well-defined, and

R,(q,t) = Ru(t, q).

Examples 5.2

R4(t, ,B) - (2, 3, 3, 2)t + (4, 5, 4)t ﬁ + (2, 2)15 ﬁ2, R5(t, 6) -
(10,20, 26, 28, 26,20, 10), + (33,61, 74,74,61,33); B8+ (39,65,72,65,39), B2+
(19,27,27,19); 83+ (3,3,3); 8, Rs(t,B) =

(140, 350, 550, 700, 790, 820, 790, 700, 550, 350, 140),+

(686, 1640, 2478, 3044, 3322, 3322, 3044, 2478, 1640, 686); S+

(1370, 3106, 4480, 5280, 5537, 5280, 4480, 3106, 1370), B2+
(1420, 3017,4113,4615, 4615, 4113, 3017, 1420), B+,
(800, 1565, 1987, 2105, 1987, 1565, 800), B4
(230,403, 465, 465, 403, 230); £°+
(26, 39, 39, 39, 26), 5.
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Rs(1, 5) = (5880, 22340, 34009, 26330, 10809, 2196, 169) 5.

R:(t, B) = (5880, 17640, 32340, 47040, 59790, 69630, 76230, 79530, 79530, 76230,
69630, 59790, 47040, 32340, 17640, 5380), +
(39980, 116510, 208196, 295954, 368410, 420850, 452226, 462648, 452226, 420850, 368410,
295954, 208196, 116510, 39980); 8 +
(118179, 333345, 578812, 802004, 975555, 1090913, 1147982, 1147982, 1090913, 975555,
802004, 578812, 333345, 118179), 52 +
(198519, 539551, 906940, 1221060, 1447565, 1580835, 1624550, 1580835, 1447565, 1221060,
906940, 539551, 198519), 33 +
(207712, 540840, 875969, 1141589, 1314942, 1398556, 1398556, 1314942, 1141589, 875969,
540840, 207712), B4 +
(139320, 344910, 535107, 671897, 749338, 773900, 749338, 671897, 535107, 344910,
139320), 3°
+(59235, 137985, 203527, 244815, 263389, 263389, 244815, 203527, 137985, 59235), 4% +
(15119, 32635, 45333, 51865, 53691, 51865, 45333, 32635, 15119), 47 +
(2034, 3966, 5132, 5532, 5532, 5132, 3966, 2034) % + (102, 170, 204, 204, 204, 170, 102), 3.

R7(17 /6) =
(776160, 4266900, 10093580, 13413490, 10959216, 5655044, 1817902, 343595, 33328, 1156) .

5.3.2 The Chan—Robbins—Mészaros polytope P, ,,

Let m > 0 and n > 2 be integers, consider the reduced polynomial @, (¢, ) corre-
sponding to the element

-2

Mn.m = <H$1j>m+1 H H Tk
j=2

j=2  k=j+2

For example Q24(t, 5) = (4,7,9,10,10,9,7.4), + (10,17,21,22,21,17,10),

(8,13, 15,15,13,8),6% + (2,3,3,3,2), 5%, Q24(1, 8) = (60,118, 72, 13).
Q25(t, B) = (60, 144,228,298, 348, 378, 388, 378, 348, 298, 228, 144, 60);

+(262,614, 948, 1208, 1378, 1462, 1462, 1378, 1208, 948, 614, 262), [

(458, 1042, 1560, 1930, 2142, 2211, 2142, 1930, 1560, 1042, 458), 32

(405, 887, 1278, 1526, 1640, 1640, 1526, 1278, 887, 405); 4*

+(187, 389, 534,610, 632, 610, 534, 389, 187), 3*

+(41,79,102, 110, 110, 102, 79, 41), 8° + (3,5,6,6,6,5,3), 5°,

Qa5(1, ) = (3300, 11744, 16475, 11472, 4072, 664, 34) 5,

Q26(1, 5) = (660660, 3626584, 8574762, 11407812, 9355194, 4866708, 1589799,

310172, 32182, 1320)5,  Qu7(5) = (1,213,12145, 279189, 3102220, 18400252,

61726264, 120846096, 139463706, 93866194, 5567810, 7053370, 626730, 16290)s.1.
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Theorem 5.11 One has

H 2m+1)+i+j—1
i+j—1

n—2
(@) Qua(l,1)=]] Cat
k=1

1<i<j<n—1
b an,k b= : ntl )
b g P = T

where Py, ., denotes the generalized Chan-Robbins—Yuen polytope defined in [52], and for
any integral convez polytope P, 1(P,k) denotes the Ehrhart polynomial of polytope P.

Conjecture 5.8 Letn > 3,m > 0 be integers, , write
Qua(t, B) = W) (t) B*, and set b(m,n) = max(k | ¢}, (t) # 0).
k>0

Denote by ¢, ,(t) the polynomial obtained from that cﬁfif?f’”) (t) by dividing the all coeffi-

cients of the latter on their GCD.  Then
Cnm(t) = @nim(t),
where the polynomials a,(t) := con(t) have been defined in Conjecture 16, (B.

For example, co5(t) =4 a7(t), cap(t) =10 as(t), c35(t) = as(t),
cor(t) = 10 (34,78, 118, 148, 168, 178, 181, 178, 168, 148, 118,78, 34) = 10 ag(t).

It is known [34], [51] that

m+n—2

o 2m+1)+i+j—1
gCatk I1 " = 11

1<i<j<n—1 j=m+1

1 n+m+g\
25 +1 2 j N

Ka,_ (m+1,m+2,....,n+m,—mn— (Z))

Conjecture 5.9

Let a = (ag,as,...,a,) be a sequence of non-negative integers, consider the following

element
n—2

M) = (Jll x??) II ( ﬁ fﬂjk)-

i=2 k=gt
Then
(1) Let Ra(ty,...,th-1, «, ) be the following specialization

Ty — tj1 for all 1<i<j<n
of the reduced polynomial Ra(z;;) of monomial M, € mn(a, B).
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Then  the polynomial Ra(t1, ..., th—1, a, ) is well-defined, i.e. does not depend on
an order in which relations (a’) and (b) , Definition 5.1, have been applied.

n n
(2) QMa(l,l):KAn+1(a2+1,a3+2,...,an—|—n—1,—( )— a;).

(3) Write
Qu(t,8) = (1) 6"
k>0
The polynomials P (t) are symmetric (unimodal ?) for all k.
Example 5.8 Let’s take n = 5,a = (2,1,1,0). One can show that the value of the
Kostant partition function Ka,(3,3,4,4,—14) is equal to 1967. On the other hand, one
has
Qei10(t, B) t73 = (50,118,183, 233, 263, 273,263, 233, 183, 118, 50),+
(214,491, 738,908, 992,992,908, 738, 491, 214), § + (365,808, 1167, 1379, 1448, 1379,
1167, 808, 365); 5% + (313,661,906, 1020, 1020, 906, 661, 313); B3+
(139,275, 351,373,351, 275,139), 8*+ (29,52, 60,60, 52,29); 3°+ (2,3,3,3,2); £°.
Q21,10 (1, 3) = (1967, 6686, 8886, 5800, 1903, 282, 13) = (1, 34,279, 748, 688,204, 13) 511

Exercises 5.5
(1)  Show that
R,(t,—1) =t*"2 R (—t711).
(2)  Show that the ratio
R (0, 5)
1+ p8)"2
is a polynomial in (B + 1) with non-negative coefficients.
(3)  Show that polynomial R,(t,1) has degree e, := (n+ 1)(n —2)/2, and

Coefflt™] Ru(t,1) =[] Caty.

Problems 5.2
(1)  Assume additionally to the conditions (a’) and (b) above that

x?j:ﬁmzj-i—l, if 1<i<j<n.

What one can say about a reduced form of the element wq in this case ¢
(2) According to a result by S. Matsumoto and J. Novak [50], if m € S, is a per-
mutation of the cyclic type A b n, then the total number of primitive factorizations (see
definition in [50]) of 7 into product of n—{(X) transpositions, denoted by Primg,_gx)(X),
s equal to the product of Catalan numbers:

ey
Primy,_gx)(A) = H Caty,-1.
i=1
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Recall that the Catalan number Cat,, = C, = %(2:) Now take X = (2,3,...,n+ 1).
Then

2

Qn(l) = H Cat, = Prim(n) ().

Does there exist “a natural” bijection between the primitive factorizations and monomials
which appear in the polynomial  Qn(xi;; B) ¢

—

(3)  Compute in the algebra ACY B, (a, ) the specialization
C(]Z‘j—>1, vf j<’l’L,ZL’Z’j—>t, 1 <9 <n,

denoted by Py, (t,a, 3), of the reduced polynomial P, ({;}, o, B) corresponding to the
transposition s;; :<Hf€;§ a:k7k+1> Tj_1; (Hz;:j_g xk7k+1) € mn(a,ﬁ).

For example, P, (t,a, B) = t54+3(146)t*+((3, 5, 2) s +3a) >+ (2(1+ )2+ a(5+40) )t
(14 B((1+ 3a) + 2a*)t + a + o2

5.4 Reduced polynomials of certain monomials

In this subsection we compute the reduced polynomials corresponding to dominant mono-

mials of the form
mi

= a7 0, € (ACVBL(0),

n—1n
where m = (my > mg > ... > m,_1 > 0) is a partition, and we apply the relations (a’)

and (b) in the algebra (mn(ﬂ))“b, see Definition 5.1, and Section 5.3.1, successively,
starting from x5 xos.

Proposition 5.8  The function
75— 2%, m— Pu(t=15=1)
can be extended to a piece-wise polynomial function on the space Rggl.

We start with the study of powers of Coxeter elements. Namely, for powers of Coxeter
elements, one has 2°

Plary 205)2(8) = (6,6,1), Play a0y za0)2(8) = (71,142,91,20,1) = (1,16, 37,16, 1) 511,
Pla1gzaszsn)3 (B) = (1301, 3903, 4407, 2309, 555,51, 1) = (1,45, 315,579, 315,45, 1) 41,
Plary 223 w51 2as)2(B) = (1266, 3798, 4289, 2248, 541,50, 1) = (1, 44, 306, 564, 306, 44, 1) 541,
P(Z’129623$34)3 (6 = 1) = 12527, P(g;12a;23a;34)4 (ﬂ = 0) = 26599,
P(x12x23I34)4 (5 = 1) = 5396017 P(wlz T23 T34 Ta5)2 (5 = 1) = 121937
P(:L‘lz T3 T34 T45)3 (5 = O) = 50000, P(a?m T3 T34 T45)3 (ﬁ = 1) = 1090199.

Lemma 5.3 One has

min(n,m) ntm—k m . min(n,m) n m .
o= > (TN (M= X () () aeer

k=0

%5To simplify notation we set Py, (8) := Py(z;; = 1; ).



Moreover,

o polynomial Pl yeys.z,_y . ym (B — 1) is a symmelric polynomial in B with non-negative
coefficients.

o polynomial Py, zm(B) counts the number of (n,m)-Delannoy paths according to the
number of NE steps 2.

Proposition 5.9 Letn and k, 0 < k < n, be integers. The number

P(£B12:v23)" (w34)* (6 - 0)

is equal to the number of n up, n down permutations in the symmetric group Soniri1,
see [08], A229892 and Exercises 5.3, (2).

Conjecture 5.10  Let n,m, k be nonnegative integers. Then the number

5, (6=0)

is equal to the number of n up, m down and k up permutations in the symmetric group

Ty Ty "E34

Sn+m+k+1 .

For example,

e Take n = 2,k = 0, the six permutations in S5 with 2 up, 2 down are 12543,
13542, 14532, 23541, 24531, 34521.

e Taken = 3,k = 1, the twenty permutations in S; with 3 up, 3 down are 1237654,
1247653, 1257643, 1267543, 1347652, 1357642, 1367542, 1457632, 1467532,
1567432, 2347651, 2357641, 2367541, 2457631, 2467531, 2567431, 3457621,
3467521, 3567421, 4567321, sce [68], A229892,

e Taken =3,m =2,k =1, the number of 3 up, 2 down and 1 up permutations in
S7 is equal to 50 = Ps5;(0) : 1237645, 1237546, ..., 4567312.

e Taken =1,m = 3,k = 2, the number of 1 up, 3 down and 2 up permutations in
S7 is equal to 55 = Py32(0), as it can be easily checked.

On the other hand, P4 a3, z§4$45(ﬁ = 0) = 7203 < 7910, where 7910 is the number
of 4 up, 3 down, 2 up and 1 down permutations in the symmetric group Si;.

Conjecture 5.11 Let ky,...,k,_1 be a sequence of non-negative integer numbers, con-
: . Fon—
sider monomial M := z¥yxk2 ... 2"} Then

e reduced polynomial Py (B — 1) is a wunimodal polynomial in 5 with non-negative
coefficients.

Example 5.9

PS,Q,l(ﬁ) = (17147 277 8)5+1 P123(ﬁ)7 P231( ) (171573079)5+1 = Pl,S,Q(B)a
Poia(B) = (1,11,18,4)401 = Pors(8), Pisan(3) = (1,74,837,2630, 2708, 885, 68) 41,
Prssn(0) = 7203 =3x 74, Piisaq(B) = (1,394, 19177, 270210, 1485163, 3638790,
4198361, 2282942, 553828, 51945, 1300) 541,  FPs4.321(0) = 12502111 = 1019 x 12269.

26 Recall that a (n,m)-Delannoy path is a lattice paths from (0,0) to (n,m) with steps E = (1,0),
N =(0,1) and NE = (1,1) only.

For the definition and examples of the Delannoy paths and numbers, see [68],4001850, A008288, and
http://mathworld.wolfram.com/DelannoyNumber.html.
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Exercises 5.6
(1)  Show that if n>m, then

" m—+a—1\ [+ m+a
i zij=l=z; _Z< )(p ( ) ) "
(2) Mth&t Zf n>mz2 k, M Px"Q zh w34<5) plz mzs(ﬁ)
m\ (k\ [a—1 n+1 m+a—1-—5 u
> () () () () (e

b,p=>0

In particular, if n > m >k, then

fas 0= (") 2 ()& () 62) (7))

Note that the set of relations from the item (1) allows to give an explicit formula for the
polynomial Py (3) for any dominant sequence M = (my > mo > ... > my) € (Zso)".
Namely, Py(8+1)=

S () )

where the first sum runs over the following set A(M) of integer sequences a = (ay, . .., ax_1)
A(M) = {OS(IJ §m]~—|—aj_1, j: 1,...,k—1}, (10:0,
and the second sum runs over the set B(M) of all integer sequences b = (by,...,bx_1)

U {0 S bj S min(mj+1,mj — Gy +aj_1)}7 j = 1, ce ,k’ — 1.
acA(M)

(3) Show that

E—1y| _ n+1 2k +n _ p(ntkk)
A1) = T () < o

where f("*+%#) denotes the number of standard Young tableaux of shape (n + k, k). In
particular, #|A(1%)] = Ciy1.
(4) Letn>m >1 be integers and set M = (n,m,1%).  Show that

““m4p+1 fmAp—1\[/m+2k+p
PM(Iijzl;B:O):Z — < ) )( E_ 1 = Pr(n,m).
p=0

In particular, Pi(n,m) = (”Zm) +m (nH:Jrl)’
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Pi(n, 1 —_
(1) =377 k K (k+5)

(5) Let T'e€ STY ((n+ k,k)) be a standard Young tableau of shape (n + k, k).
Denote by 7(7T') the number of integers j € [1,n + k| such that the integer j belongs to
the second row of tableau T, whereas the number j + 1 belongs to the first row of 7.
Show that

1 (242 2% + 2)!
nt ( * +”), P(2,2) = (70K + 341k + 360)-F +2)

Pty -arrise (B — 1) = Z B,

TESTY ((n+k,k))

(6) Let M = (my,my,...,myp_1) € Z¥;' be a composition. Denote by M the

composition (my_1,Mg_s,...,ma,my), and set for short Py (5) = Pl—[k Ll (a:zj =
L; B).
Show that Py (B) = PM(@‘

Note that in general, Prps- 2 l(xij;ﬁ) # Py mii (w5 0).
i=1 Tiit1
(7) Define polynomial PM( ,6) to be the following specialization
iy — 1, if i<j<n, and xym —t, if i=1,...,n—-1

of a polynomial PHk g (xw,ﬁ)

1 7,2

Show that if n > m, then
m n+m—j—1 k
_ k—m+1 j
Paasen =30 (5)( 3 (u5y) ) o
7=0 k=m—1

See Lemma 5.2 for the case t = 1.
(8) Define polynomials R, (t) as follows

Ry (t) := Ployssszsnn (— t7h B =—1) (=)™
Show that polynomials En(t) have non-negative coefficients, and

Ra(0) = 6(?()2)!)!3'

(9) Consider reduced polynomial P, 25(3) corresponding to monomial 7, (r23734)>
and set P, 22(0) := P,22(8 —1). Show that

ﬁn’gg(ﬂ) S N[ﬁ] and pn,2,2<1) = T(Tl + 5, 3),
where the numbers T'(n, k) are defined in [68],4110952, A001701.

Conjecture 5.12  Let A be a partition. The element s,\(an), . ,95,?)) of the algebra
37" can be written in this algebra as a sum of

(H h(x)) x dim V, @0=m) s di, 1, @m)

TEA
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monomials with all coefficients are equal to 1.
Here sy(z1,...,2,) denotes the Schur function corresponding to the partition A and
the set of variables {x1,...,z,,}; for z € A, h(x) denotes the hook length corresponding

V/\(Ql(”))

to a box x; denotes the highest weight A irreducible representation of the Lie

algebra gl(n).

Problems 5.3

(1) Define a bijection between monomials of the form [[._, x;, ;. involved in the
polynomial P(x;;; 3), and dissections of a convex (n + 2)-gon by s diagonals, such that
no two diagonals intersect their interior.

(2) Describe permutations w € S, such that the Grothendieck polynomial &, (t1, ..., t,)
1s equal to the “reduced pol/y@mial” for a some monomial in the associative quasi-classical

Yang—Bazter algebra ACY B, (). ¢

(3) Study “reduced polynomials” corresponding to the monomials

o (transposition) s, = (T12T23* Tn-2.,1-1)* To_1m,

e (powers of the Coxeter element) (r12%23+*Tn_1.0)".

in the algebra mn(a,ﬁ)ab.

(4) Construct a bijection between the set of k-dissections of a convex (n+k -+ 1)-gon
and “ pipe dreams” corresponding to the Grothendieck polynomial 6([2) (T1,...,x,). As

™

k
for a definition of “pipe dreams” for Grothendieck polynomials, see [43]; see also [23].

Comments 5.8 We don’t know any “good” combinatorial interpretation of polyno-
mials which appear in Problem 5.3, (3) for general n and k. For example,
Psw(xij =15) = (3,2)s, P814(xij =1;58) = (26,42,19,2),
Py, (x;; = 1;8) = (381,988,917,362,55,2)5 and Ps,(z;; = 1;1) = 2705.  On the
other hand, Pl,yum)? s (ea)2 (T3 = 1;8) = (252,633,565,212,30, 1), that is in decid-
ing on different reduced decompositions of the transposition s;,,. one obtains in general
different reduced polynomials.

One can compare these formulas for polynomials P, (z;; = 1; ) with those for the
p-Grothendieck polynomials corresponding to transpositions (a, b), see Comments 5.6.

6 Appendixes

6.1 Appendix I Grothendieck polynomials

Definition 6.1  Let $ be a parameter. The Id-Cozeter algebra IdC, () is an asso-
ciative algebra over the ring of polynomials Z[5] generated by elements <61, e ,en_1>
subject to the set of relations

o cie;=ecjen if ‘z —j‘ >9

® cieje; = ejeiej, if ‘z —j‘ =1,

o ?=f¢, 1<i<n-—1
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It is well-known that the elements {e,, w € S,} form a Z[f]-linear basis of the
algebra IdC, (). Here for a permutation w € S, we denoted by e, the product

€i iy - - €, € IdC,(B), where (iy, s, ...,1,) is any reduced word for a permutation w, i.e.
w = 8,8, - 8;, and £ = f(w) is the length of w.
Let 1, 29,...,2y_1,2p = Y, Tps1 = 2,... be a set of mutually commuting variables.

We assume that z; and e; commute for all values of ¢ and j. Let us define

hi(z) =1+ xe;, and A;j(zr) = H ho(x), i=1,...,n—1.

a=n—1

Lemma 6.1  One has
(1) (Addition formula)

hi(z) hi(y) = hi(z © y),

where we set (x B y) ==z +y + fry;
(2)  (Yang-Baater relation)

hi(@)hir1(z ® y)hi(y) = hiz1(y)hi(z © y)hia (@)

Corollary 6.1

(1) [P (@)hi(x), hiva (y)hi(y)]
(2) [Ai(z), Ai(y)] =0, i=1,2,

The second equality follows from the first one by induction using the Addition formula,
whereas the fist equality follows directly from the Yang—Baxter relation.

= 0.
coo,n—1.

Definition 6.2  (Grothendieck expression)
(’5n(3717 e ,lUn—l) = Al(ﬂil)AQ(ﬂ?Q) e 'An—l(ﬂfn—l)-

Theorem 6.1  (/23]) The following identity

®n<x17 .. - 7~rn—l) = Z ®£E)<Xn—l) €w
’LUGSn
holds in the algebra 1dC, @ Zlxy,...,xn_1].

Definition 6.3  We will call polynomial 0555) (Xn_1) as the B-Grothendieck polynomial
corresponding to a permutation w.

Corollary 6.2

(1) If B = —1, the polynomials 65{1)()(71,1) coincide with the Grothendieck polyno-
mials introduced by Lascoux and M.-P. Schiitzenberger [46].

(2) The B-Grothendieck polynomial &) (Xn—1) is divisible by J;Ql”(l)_l.

(3) For any integer k € [1,n — 1] the polynomial 61(5_1)(:% =q,x, = 1,Va # k) is
a polynomaial in the variables ¢ and B with non-negative integer coefficients.
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Proof (Sketch) It is enough to show that the specialized Grothendieck expression
&, (rx = ¢z, = 1,Ya # k) can be written in the algebra IdC,(6 — 1) ® Z[q, 8] as
a linear combination of elements {e, },es, with coefficients which are polynomials in
the variables ¢ and [ with non-negative coefficients. Observe that one can rewrite the
relation € = (8 — 1)ex in the following form ex(er + 1) = B ex. Now, all possible
negative contributions to the expression &, (zx = ¢,z, = 1,Va # k) can appear only
from products of a form c,(q) := (1 + gex)(1 + ex)®. But using the Addition formula one
can see that (1 + ger)(1+ex) = 1+ (1 4 ¢B)ex. It follows by induction on a that c¢,(q)
is a polynomial in the variables ¢ and  with non-negative coefficients.
|

Definition 6.4
e The double 5-Grothendieck expression &,(X,,Y,) is defined as follows

B (X, Yy) = 6,(X,) 6,(=Y,) " € IdC,(B) ® Z[ X, Y.

e The double 5-Grothendieck polynomials {B,(X,,Y,) bwes, are defined from the de-
composition
WX, Ya) = D 6u(X,Ya) e

wES,

of the double B-Grothendieck expression in the algebra IdC,(5).

6.2 Appendix II Cohomology of partial flag varieties

Let n =mn; +---+ng, n; € Z>, ‘v’i, be a composition of n, k> 2. Foreach j=1,...,k
define the numbers N; = ny +--- +n;,Ng = 0, and M; = n; + --- + ng. Denote by
X =X, .. = {xa |i=1,...,k 1 <a < mn} (resp. Y, ..) a set of variables

of the Cardmahty n. We set deg(xfl)) =wa, i =1,...,k For each i = 1,...,k define
quasihomogeneous polynomial of degree n; in variables X = {L(f) | 1<a<n}

P, (X ) = % ) ") e,

and put p,, ., (X,t) = Hle Pn, (X 1), We summarize in the theorem below some
well-known results about the classical and quantum cohomology and K-theory rings of
type A,_1 partial flag varieties  Flp,  n.- Let qi,...,qe—1, deg(q) = n; +nip1, @ =
1,...,k—1, be a set of “quantum parameters.”

Theorem 6.2 There are canonical isomorphisms

H (Flas ) 2 2o Py (K1) = 17



(CF 1) QH (Flaym) = L @1 @it (B (X 8) = 27,

(Cf. 1)) QHMFly,.. nk>%Z[X,Y,ql,...,qk_l]/<Am ..... (X ) =P, nk(Y’t)>’
where 27 Apyon (X 1) =

o S X9 g 0 - 0
0 . o 0 —1 po_, (}((k:—l)7 £) -
0 0 -1 pnk(X(k),t)

.
Jj=0

by <P(x, t)> the ideal in the ring Z[x] generated by the coefficients by(x), ..., b.(x). A

Here for any polynomial P(x,t) = >."_, b;(x)t"™ in variables x = (1,2, ...), we denote

a=1\""a Y]  LNL,.. Np\J Y/ [\ TN,y

similar meaning have the symbols <Hf:1 1%, (25 +8)—pn, e (Vs t)>, <Am ny (X, 1) —

t”> and so on.
Note that dim(F, ....n,) = >_;.; ni n;j and the Hilbert polynomial Hilb(F,, ... n,, q) of

.....

and also is equal to the g-dimension of the weight (n4, ..., ny) subspace of the n-th tensor
power (C")®" of the fundamental representation of the Lie algebra gl(n).

Comments 6.1 The cohomology and (small) quantum cohomology rings H*(F,, ... n,, Z)
and QH*(Fp, ...y, Z), of the partial flag variety F,, .., admit yet another representa-
tions we are going to present. To start with, let as before n =mny + ... +ng, n; € Z>,

Vi, be a composition. Consider the set of variables X = X,,, ., = {:cgf) | 1<i<

Na,a = 1,...,k — 1}, and set as before deg 2 = a. Note that the number of variables
X is equal to n — ny. To continue, let’s define elementary quasihomogeneous polynomials

of degree r

er(i) = Z xffll) . ~-x((j§), eo()A() =1, e,r(f() =0, if r>0,
1A

where the sum runs over sequences of integers [ = (iy,...,is) and A = (ay,...,as) such
that

2TWe prefer to use quantum parameters {g; | 1 <i < k—1} instead of the parameters {(—1)"¢; | 1 <
i < k — 1} have been used in [1].
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o 1< <.iis<k—1,
e 1<a;<ny, j=1,...;s and r=a;+ -, as,
and complete homogeneous polynomials of degree p

hp(X) = detle;—ii1(X)]1<ij<p-

Finally, let’s define the ideal J,, . .
by polynomials

. in the ring of polynomials Z[X,,, ., ,] generated

By i1 (X), - h(X).

Note that the ideal .J,,, . ,, is generated by n — ny = #(X,, . n._,) elements.

k

Proposition 6.1  There exists an isomorphism of rings
H*(Fn1,'“7nk7Z) = Z[an,m,nkfj/Jn17--~7nk'

In a similar way one can describe relations in the (small) quantum cohomology ring of

the partial flag variety F,, ... ,,. To accomplish this let’s introduce quantum quasihomo-

geneous elementary polynomials of degree 7, el@

i (Xay.,...m,,) through the decomposition

Ny
Any iy (Xigony) = Z €§q) (Xons,inr) N, e(()q)(x) =1, e(—qzz (x)=0, if p>0.
=0

To exclude redundant variables {x((zk), 1 <a < ng},, let us define quantum quasiho-
mogeneous Schur polynomials s&q)(Xm,_“,m) corresponding to a composition a = (g <
as < ... < q,) as follows

S Xs,in,) = detlef o, (X, i<iip

@ J—ita;

Proposition 6.2 The (small) quantum cohomology ring QH*(Fu, ... n,, Z) is isomorphic
to the quotient of the ring of polynomials Z{q1, - . . , qk—1] [Xny....n_,] by the ideal I,, ..,
generated by the elements

k—1

Koy omes) = S B Koy ) = @it 2% (Ko, i),

where np+1<r <n.
It is easy to see that the Jacobi matrix
0
<a (%) gT(anv--w"kfl>{a:1 ,,,,, k—1, 1<i<ng
La ng+1<r<n}

corresponding to the set of polynomials ¢,(X,, .., ,) 7 < r < n, has nonzero
determinant, and the component of maximal degree 1., = >, <5 T My in the ring
QH*(Fu, . m,,Z) is a Zlq1, . . . , qx—1)—module of rank one with generator

k—1 ngq M,
A= H (a:f?) .
i=1 a=1



Therefore, one can define a scalar product (the Grothendieck residue)
(0,0) : HQ"(Fuyomps Z) x HQ*(Fry oomps L) — Zlan, . . ., Qr—1]

setting for elements f and g of degrees a and b, (f,h) = 0, if a + b # Nynas, and
(f,hy = A(q), if a4+b=nye and f h = A(q) A. It is well known that the Grothendieck
pairing (e, @) is nondegenerate (for any choice of parameters qi, ..., qx_1)-

Finally we state “a mirror presentation” of the small quantum cohomology ring of
partial flag varieties. To start with, let n =n; +...+ny, k € Zy2 be a composition of
size n, and consider the set

Sm)={(,j)) EZXZN<i<N, My1+1<j<M, a=1,... k—1}

where Ny =n1+ ...+ 1y, No=0,N, =n M, =ng1+...+n,, My=mn,M;,=0.
With these data given, let us introduce the set of variables

Zn = {25 | (4,7) € X(n)},

and define “boundary conditions” as follows
o ziu1=0, if Nq 1 +2<i<N,a=1,.. k-1,
o 2n,415=00, it Myy1+2<j< My,a=1,...,k—1,
® 2N, 41, Mat+1 = Ga, @ =1,... k, where qi,...,q; are “quantum parameters.
Now we are ready, follow [28], to define superpotential

Wyn = Z (oLt 2y,

: Zi g Zi+1,5
(p.J)EX(n) " 7

Conjecture 6.1 (Cf. [28]) There exists an isomorphism of rings
QHpy (Floy,.s Z) 2 Zlat, - - i 1227/ T (W),

where QH[*Q] (Floy....np, Z) denotes the subring of the ring QH*(Fly, ... n,.,Z) generated by

the elements from H*(Fl,,. ., Z);
J(Wyn) stands for the ideal generated by the partial derivatives of the superpoten-
tial W,

), (1,7) € B(n)).

Note that variables {z;; € ¥(n), i # N, +1, a=0,...,k— 2} are redundant, whereas
the variables {z,; := z;,iﬂ’j, j=1,...,n, a=0,...,k — 2} satisfy the system of
algebraic equations.

In the case of complete flag variety FI, corresponds to partition n = (1) and the

superpotential W, i» is equal to

Z Zi,j+1 Zij
Wq71n = < + 5

1<i<j<n—1 Zij Zi—1,j+1
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where we set 2z;, :=¢;, i =1,...,n. The ideal J(W,1») is generated by elements

anJn . 1 4 1 _ Zij+1 + Zi—1,j—1
= 5 .
Zi.j Zij—1 Zi—1,j+1 Zij

One can check that the ideal J(W, 1) can be also generated by elements of the form

Z Aéi) (@1 mits Znmts ooy 2nmiet) 2o =10 AV = g1 guig,

where z; := zfil, 1=1,...n—1. For example,

Z? G- =1 q q 2721_1—612 Zp—2 = 1,

B G232 0—20q G203 Zn1 Zn2 Zn3+ Q2 G3 22 3+ q3 Zn_ag = 1.

Therefore the number of critical points of the superpotential W, is equal to n! =
dimH*(Fl,,Z), as it should be. Note also that QH*(Fl,,Z) = QHy(Fl,, Z).

6.3 Appendix III  Koszul dual of quadratic algebras and Betti
numbers

Let k be a field of zero characteristic, F™ =k < xy,...,x, >= @jzo Fj(n) be the free
associative algebra generated by {z;, 1 <1 § n} Let A = F(™ /I be a quadratic algebra,
i.e. the ideal of relations I is generated by the elements of degree 2, I C FZ("). Let F(W* =
Hom(F,, k) = @, F(n)* with a multiplication induced by the rule fg(ab) = f(a)g(b),
fe M gEF(n)*, aeF" bEFn) Let I+ = {f € F\"*, f(I,) = 0}, and denote
by I+ the two-sided ideal in F ")* generated by the set I3 .

Definition 6.5 The Koszul (or quadratic) dual A' of a quadratic algebra A is
defined to be A':= FW*/T+.

The Koszul dual of a quadratic algebra A is a quadratic algebra and (A4')' = A.

Examples 6.1 (1) Let A= F™ be the free associative algebra, then the quadratic duel
A! :k<y17"'>yn>/(yiyj>1 Sla] gn)
(2) If A=klzy,...,x,] is the ring of polynomials, then

A! = k[yh ce 7yn]/<[yi7yj]47 1< i7j < n)v

where we put by definition [ys,y;] = viy; +y;yi, if i # J, and [y, ] = y2.
(3) (cf [49], (b), Chapter 5) Let A= F®™/(fy,.... f.), where f; = > i<jk<n WikTj Tk,
i =1,...,7 are linear independent elements of degree 2 in F™ . Then the quadratic
dual of A is equal to the quotient algebra A' = k < yy,---,y, > /J, where the ideal
J =< qgi1,...,9s >, s = n?—r, is generated by elements g, = ZKLK” bmjt Yi Yk
The coefficients by, m =1,...,5,1 < j,k <n, can be defined from the system of linear
equations zlgj,kgn @ik, bje =0, i=1,...,r, m=1,...,s.
|
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Let A= >0 A; be a graded finitely generated algebra over field &.

Definition 6.6 The Hilbert series of a graded algebra A is defined to be the generating
function of dimensions of its homogeneous components: Hilb(A,t) = >, -, dimAy, t*.
The Betti numbers B,(n,m) of a graded algebra A are defined to be  Ba(i, j) :=
dimTor{(k, k);.
The Poincare series of algebra A is defined to be the generating function for the
Betti numbers: Pa(s,t) := Y050 Ba(i, 7)s't.

Definition 6.7 A quadratic algebra A is called Koszul iff the Betti numbers Ba(i, j)
are equal to zero unless i = j.

() It is well-known that Hilb(A,t)P4(—1,t) = 1, and a quadratic algebra A is Koszul,
if and only if B4(i,j) = 0 for all i # j. In this case Hilb(A,t) Hilb(A', —t) = 1.

Example 6.1 Let F9 be a quotient of the free associative algebra F,, over field k with
the set of generators {xy,...,x,} by the two-sided ideal generated by the set of ele-

ments {x%, ..., 22}. Then the algebra F}O)n is Koszul, and Hilb(F\",t) = 1_(17;r_t1)t.

6.4 Appendix IV  Hilbert series Hilb(3T",t) and Hilb((3T?)',t):
Examples 28

Examples 6.2 Hilb(3T3,t) = [2]*[3], Hilb(3T},t) = [2]*[3]*[4]?,
Hilb(3TY,t) = [4]*[5]*[6]*, Hilb(3Tg, 1)
= (1, 15,125,765, 3831, 16605, 64432, 228855, 755777, 2347365, 6916867, 19468980,
52632322, 137268120, 346652740, 850296030, - - -).
= Hilb(3T?,t)(1, 5,20, 70,220,640, 1751, 4560, 11386, 27425, 64015, 145330, 321843,
696960, 1478887, 3080190, - - -).
Hilb(3T2, 1) = Hilb(3T2, 1)(1,6,30, 135, 560, 2190, 8181, 20472, 103032, 351192,
1170377, - - ).
Hilb(3T0,t) = Hilb(3T2, ¢)(1,7,42, 231, 1190, 5845, 27671, 127239, 571299, 2514463,

Hilb((3T9)', 1) (1 —t) = (1,2,2,1), Hilb((3TY)", )(1—t) =(1,4,6,2, -5, —4, —1),
Hilb((3T9)',#)(1 — t)* = (1,8,26,40, 19, —18, — -1),
Hilb((3T9)",t)(1 — t)® = (1,12, 58,134,109, —112, 245 —73 68,50,12,1),

Hilb((3T9)', ) (1—t)® = (1,18, 136, 545, 1169, 1022, —624, —1838, —837, 312, 374, 123, 18, 1).

We expect that Hilb((3TP)',t) is a rational function with the only pole at t = 1 of
order [n/2], and the polynomial Hilb((3TP)',t)(1 —t)I"/? has degree equals to [5n/2] —
ifn > 2.

28 All computations in this Section were performed by using the computer system Bergman, except
computations of Hilb(3TY,t) in degrees from twelfth till fifteenth. The last computations were made
by J. Backelin, S. Lundqvist and J.-E. Roos from Stockholm University, using the computer algebra
system aalg mainly developed by S. Lundqvist.
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6.5 Appendix V Summation and Duality transformation for-

mulas [32]

Summation Formula Leta;+---+a,, =b. Then

— [vi — 2+ ]\ [wi+y—0 [y + 2 — ai
> Wl (I 20) S =0 I P

i=1 i 1<i<m

Duality transformation Letay+---4+a,, =b;+---+b,. Then

Z 0] H[xi—fj+@j] 11 [z + Y6 — be] _

i=1 A [ZEZ o Ij] 1<k<n [xl + yk]
Y b T [yx =y + ] 11 [y + 2 — ai
k=1 Ik [yk - yl] 1<i<m [yk + Z‘J
|
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