
RIMS-1799

On some quadratic algebras, Dunkl elements,

Schubert, Grothendieck, Tutte and reduced polynomials

To the memory of Alain Lascoux 1944-2013, the great Mathematician,

from whom I have learned a lot about the Schubert and Grothendieck polynomials

By

Anatol N. KIRILLOV

March 2014

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES

KYOTO UNIVERSITY, Kyoto, Japan



On some quadratic algebras, Dunkl elements,
Schubert, Grothendieck, Tutte and reduced

polynomials

anatol n. kirillov

Research Institute of Mathematical Sciences ( RIMS )
Kyoto, Sakyo-ku 606-8502, Japan

To the memory of Alain Lascoux 1944–2013, the great Mathematician, from whom I
have learned a lot about the Schubert and Grothendieck polynomials

Abstract

We introduce and study a certain class of quadratic algebras, which are non-
homogenious in general, together with the distinguish set of mutually commuting
elements inside of each, the so-called Dunkl elements. We describe relations among
the Dunkl elements in the case of a family of quadratic algebras corresponding to
a certain splitting of the universal classical Yang–Baxter relations into two three
term relations. This result is a further extension and generalization of analogous
results obtained in [22],[58] and [40]. As an application we describe explicitly the
set of relations among the Gaudin elements in the group ring of the symmetric
group, cf [56]. We also study relations among the Dunkl elements in the case of
(nonhomogeneous) quadratic algebras related with the universal dynamical classical
Yang–Baxter relations. Some relations of results obtained in papers [22], [41], [37]
with those obtained in [29] are pointed out. We also identify a subalgebra gener-
ated by the elements corresponding to the simple roots in extended Fomin–Kirillov
algebra with the DAHA, see Section 4.3.

The set of generators of algebras in question, naturally corresponds to the set
of edges of the complete graph Kn (to the set of edges and loops of the complete
graph with loops K̃n in dynamical case). More generally, starting from any sub-
graph Γ of the complete graph with loops K̃n we define a (graded) subalgebra
3T

(0)
n (Γ) of the (graded) algebra 3T

(0)
n (K̃n) [35]. In the case of loop-less graphs

Γ ⊂ Kn we state Conjecture which relates the Hilbert polynomial of the abelian
quotient 3T

(0)
n (Γ)ab of the algebra 3T

(0)
n (Γ) and the chromatic polynomial of the

graph Γ we started with. We check our Conjecture for the complete graphs Kn

and the complete bipartite graphs Kn,m. Besides, in the case of complete multi-
partite graph Kn1,...,nr , we identify the commutative subalgebra in the algebra
3T

(0)
N (Kn1,...,nr), N = n1 + · · ·+ nr, generated by elements

θ
(N)
j,kj

:= ekj (θ
(N)
Nj−1+1, . . . , θ

(N)
Nj

), 1 ≤ j ≤ r, 1 ≤ kj ≤ nj , Nj := n1+. . .+nj , N0 = 0,
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with the cohomology ring H∗(F ln1,...,nr ,Z) of the partial flag variety F ln1,...,nr . In
other words, the set of (additive) Dunkl elements {θ(N)

Nj−1+1, . . . , θ
(N)
Nj
} plays a role

of the Chern roots of the tautological vector bundles ξj , j = 1, . . . , r, over the
partial flag variety F ln1,...,nr , see Section 4.1.2 for details. In a similar fashion,
the set of multiplicative Dunkl elements {Θ(N)

Nj−1+1, . . . ,Θ
(N)
Nj
} plays a role of the

equivariant Chern roots of the tautological vector bundle ξj over the partial flag
variety F ln1,...,nr . As a byproduct for a given set of weights ℓ = {ℓij}1≤i<j≤r

we compute the Tutte polynomial T (K
(ℓ)
n1,...,nk , x, y) of the ℓ-weighted complete

multipartite graph K
(ℓ)
n1,...,nk , see Section 4, Definition 4.4 and Theorem 4.3. More

generally, we introduce universal Tutte polynomial

Tn({qij}, x, y) ∈ Z[{qij}][x, y]

in such a way that for any collection of non-negative integers m = {mij}1≤i<j≤n

and a subgraph Γ ⊂ K
(m)
n of the weighted complete graph on n labeled vertices

such that any edge (i, j) ∈ K(m)
n appears with multiplicity mij , the specialization

qij −→ 0, if edge (i, j) /∈ Γ, qij −→ [mij ]y, if edge (i, j) ∈ Γ

of the universal Tutte polynomial is equal to the Tutte polynomial of graph Γ
multiplied by (x− 1)κ(Γ), see Section 4.1.2, Comments and Examples, for details.

We also introduce and study a family of (super) 6-term relations algebras, and
suggest a definition of “ multiparameter quantum deformation “ of the algebra
of the curvature of 2-forms of the Hermitian linear bundles over the complete flag
variety F ln. This algebra can be treated as a natural generalization of the (multi-
parameter) quantum cohomology ring QH∗(F ln), see Section 4.2.

Yet another objective of our paper is to describe several combinatorial proper-
ties of some special elements in the associative quasi-classical Yang–Baxter algebra
[37], including among others the so-called Coxeter element and the longest ele-
ment. In the case of Coxeter element we relate the corresponding reduced polyno-
mials introduced in [71], with the β-Grothendieck polynomials [23] for some special
permutations π(n)k . More generally, we show that the specialization G

(β)

π
(n)
k

(1) of

the β-Grothendieck polynomial G(β)

π
(n)
k

(Xn) counts the number of k-dissections of

a convex (n + k + 1)-gon according to the number of diagonals involved. When
the number of diagonals in a k-dissection is the maximal possible, we recover the
well-known fact that the number of k-triangulations of a convex (n+ k+ 1)-gon is
equal to the value of a certain Catalan-Hankel determinant, see e.g. [66]. We also
show that for a certain 5-parameters family of vexillary permutations, the special-
ization xi = 1, ∀i ≥ 1, of the corresponding β-Schubert polynomials S(β)

w (Xn) turns
out to be coincide either with the Fuss-Narayana polynomials and their generaliza-
tions, or with a (q, β)-deformation of V SASM or that of CSTCPP numbers, see
Corollary 5.2, (B).. As examples we show that

(a) the reduced polynomial corresponding to a monomial xn12 xm23 counts the
number of (n,m)-Delannoy paths according to the number ofNE-steps, see Lemma 5.2;

(b) if β = 0, the reduced polynomial corresponding to monomial (x12 x23)n xk34, n ≥
k, counts the number of of n up, n down permutations in the symmetric group
S2n+k+1, see Proposition 5.9; see also Conjecture 18.
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We also point out on a conjectural connection between the sets of maximal
compatible sequences for the permutation σn,2n,2,0 and that σn,2n+1,2,0 from one
side, and the set of V SASM(n) and that of CSTCPP (n) correspondingly, from
the other, see Comments 5.7 for details. Finally, in Section 5.1.1 we introduce and
study a multiparameter generalization of reduced polynomials introduced in [71],
as well as that of the Catalan, Narayana and (small) Schröder numbers.

In the case of the longest element we relate the corresponding reduced polyno-
mial with the Ehrhart polynomial of the Chan–Robbins–Yuen polytope, see Sec-
tion 5.3. More generally, we relate the (t, β)-reduced polynomial corresponding to
monomial

n−1∏
J=1

x
aj
j,j+1

n−2∏
j=2

( n∏
k=j+2

xjk

)
, aj ∈ Z≥0, ∀j,

with positive t-deformations of the Kostant partition function and that of the
Ehrhart polynomial of some flow polytopes, see Section 5.3.
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1 Introduction
The Dunkl operators have been introduced in the later part of 80’s of the last century
by Charles Dunkl [17], [18] as a powerful mean to study of harmonic and orthogonal
polynomials related with finite Coxeter groups. In the present paper we don’t need the
definition of Dunkl operators for arbitrary (finite) Coxeter groups, see e.g. [17], but only
for the special case of the symmetric group Sn.

Definition 1.1 Let Pn = C[x1, . . . , xn] be the ring of polynomials in variables x1, . . . , xn.
The type An−1 (additive) rational Dunkl operators D1, . . . , Dn are the differential-difference
operators of the following form

Di = λ
∂

∂xi
+
∑
j ̸=i

1− sij
xi − xj

, (1.1)

Here sij, 1 ≤ i < j ≤ n, denotes the exchange (or permutation) operator, namely,

sij(f)(x1, . . . , xi, . . . , xj, . . . , xn) = f(x1, . . . , xj, . . . , xi, . . . , xn);

∂
∂xi

stands for the derivative w.r.t. the variable xi; λ ∈ C is a parameter.
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The key property of the Dunkl operators is the following result.

Theorem 1.1 ( C.Dunkl [17] ) For any finite Coxeter group (W,S), where S = {s1, . . . , sl}
denotes the set of simple reflections, the Dunkl operators Di := Dsi and Dj := Dsj pair-
wise commute: Di Dj = Dj Di, 1 ≤ i, j ≤ l.

Another fundamental property of the Dunkl operators which finds a wide variety of
applications in the theory of integrable systems, see e.g. [30], is the following statement:

the operator
l∑

i=1

(Di)
2

“essentially” coincides with the Hamiltonian of the rational Calogero–Moser model related
to the finite Coxeter group (W,S).

Definition 1.2 Truncated (additive) Dunkl operator (or the Dunkl operator at critical
level), denoted by Di, i = 1, . . . , l, is an operator of the form (1.1) with parameter λ = 0.

For example, the type An−1 rational truncated Dunkl operator has the following form

Di =
∑
j ̸=i

1− sij
xi − xj

.

Clearly the truncated Dunkl operators generate a commutative algebra.
The important property of the truncated Dunkl operators is the following result discov-
ered and proved by C.Dunkl [18]; see also [4] for a more recent proof.

Theorem 1.2 (C.Dunkl [18], Y.Bazlov [4]) For any finite Coxeter group (W,S) the
algebra over Q generated by the truncated Dunkl operators D1, . . . ,Dl is canonically
isomorphic to the coinvariant algebra AW of the Coxeter group (W,S).

Recall that for a finite crystallographic Coxeter group (W,S) the coinvariant algebra AW

is isomorphic to the cohomology ring H∗(G/B,Q) of the flag variety G/B, where G
stands for the Lie group corresponding to the crystallographic Coxeter group (W,S) we
started with.

Example 1.1 In the case when W = Sn is the symmetric group, Theorem 1.2 states
that the algebra over Q generated by the truncated Dunkl operatorsDi =

∑
j ̸=i

1−sij
xi−xj

, i =

1, . . . , n, is canonically isomorphic to the cohomology ring of the full flag variety F ln of
type An−1

Q[D1, . . . ,Dn] ∼= Q[x1, . . . , xn]/Jn, (1.2)

where Jn denotes the ideal generated by the elementary symmetric polynomials {ek(Xn),
1 ≤ k ≤ n}.

Recall that the elementary symmetric polynomials ei(Xn), i = 1, . . . , n, are defined
through the generating function

1 +
n∑

i=1

ei(Xn) t
i =

n∏
i=1

(1 + t xi),
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where we set Xn := (x1, . . . , xn). It is well-known that in the case W = Sn, the
isomorphism (1.2) can be defined over the ring of integers Z.

Theorem 1.2 by C.Dunkl has raised a number of natural questions:
(A) What is the algebra generated by the truncated
• trigonometric,
• elliptic,
• super, matrix, . . .,
(a) additive Dunkl operators ?
(b) Ruijsenaars–Schneider–Macdonald operators ?
(c) Gaudin operators ?
(B) Describe commutative subalgebra generated by the Jucys–Murphy elements in
• the group ring of the symmetric group;
• the Hecke algebra ;
• the Brauer algebra, BMV algebra, . . ..
(C) Does there exist an analogue of Theorem 1.2 for
• Classical and quantum equivariant cohomology and equivariant K-theory rings of

the partial flag varieties ?
• Cohomology and K-theory rings of affine flag varieties ?
• Diagonal coinvariant algebras of finite Coxeter groups ?
• Complex reflection groups ?
The present paper is an extended Introduction to a few items from Section 5 of [37].
The main purpose of my paper “On some quadratic algebras, II” is to give some

partial answers on the above questions basically in the case of the symmetric group Sn.
The purpose of the present paper is to draw attention to an interesting class of

nonhomogeneous quadratic algebras closely connected (still mysteriously !) with different
branches of Mathematics such as

Classical and Quantum Schubert and Grothendieck Calculi,
Low dimensional Topology,
Classical, Basic and Elliptic Hypergeometric functions,
Algebraic Combinatorics and Graph Theory,
Integrable Systems,
. . . . . . . . . . . . . . . .

What we try to explain in [37] is that upon passing to a suitable representation of
the quadratic algebra in question, the subjects mentioned above, are a manifestation of
certain general properties of that quadratic algebra.

From this point of view, we treat the commutative subalgebra generated by the
additive (resp. multiplicative) truncated Dunkl elements in the algebra 3Tn(β), see
Definition 3.1, as universal cohomology (resp. universal K-theory) ring of the complete
flag variety F ln. The classical or quantum cohomology (resp. the classical or quantum
K-theory) rings of the flag variety F ln are certain quotients of that universal ring.

For example, in [39] we have computed relations among the (truncated) Dunkl el-
ements {θi, i = 1, . . . , n} in the elliptic representation of the algebra 3Tn(β = 0). We
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expect that the commutative subalgebra obtained is isomorphic to elliptic cohomology
ring ( not defined yet, but see [27] , [26]) of the flag variety F ln.

Another example from [37]. Consider the algebra 3Tn(β = 0).
One can prove [37] the following identities in the algebra 3Tn(β = 0)

(A) Summation formula

n−1∑
j=1

( n−1∏
b=j+1

ub,b+1

)
u1,n

(j−1∏
b=1

ub,b+1

)
=

n−1∏
a=1

ua,a+1.

(B) Duality transformation formula Let m ≤ n, then

n−1∑
j=m

( n−1∏
b=j+1

ub,b+1

) [m−1∏
a=1

ua,a+n−1 ua,a+n

]
um,m+n−1

( j−1∏
b=m

ub,b+1

)
+

m∑
j=2

[m−1∏
a=j

ua,a+n−1 ua,a+n

]
um,n+m−1

(n−1∏
b=m

ub,b+1

)
u1,n =

m∑
j=1

[m−j∏
a=1

ua,a+n ua+1,a+n

] (n−1∏
b=m

ub,b+1

) [j−1∏
a=1

ua,a+n−1 ua,a+n

]
.

One can check that upon passing to the elliptic representation of the algebra 3Tn(β =
0), see Comments 3.2, or [37], Section 5.1.7, or [39] for the definition of elliptic
representation, the above identities (A) and (B) finally end up correspondingly, to be
the Summation formula and the N = 1 case of the Duality transformation formula for
multiple elliptic hypergeometric series (of type An−1), see e.g. [32] , or Appendix V, for
the explicit forms of the latter. After passing to the so-called Fay representation [37],
the identities (A) and (B) become correspondingly to be the Summation formula and
Duality transformation formula for the Riemann theta functions of genus g > 0, [37].
These formulas in the case g ≥ 2 seems to be new.
Worthy to mention that the relation (A) above can be treated as a ”non-commutative
analogue” of the well-known recurrence relation among the Catalan numbers. The study
of “descendent relations” in the quadratic algebras in question was originally motivated
by the author attempts to construct a monomial basis in the algebra 3T

(0)
n . This problem

is still widely open, but gives rise the author to discovery of
several interesting connections with
classical and quantum Schubert and Grothendieck Calculi,
combinatorics of reduced decomposition of some special elements in the symmetric

group,
combinatorics of generalized Chan–Robbins–Yuen polytopes,
relations among the Dunkl and Gaudin elements,
computation of Tutte and chromatic polynomials of the weighted complete multipar-

tite graphs, it etc.

A few words about the content of the present paper.
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In Section 2, see Definition 2.2, we introduce the so-called dynamical classical Yang–
Baxter algebra as “a natural quadratic algebra” in which the Dunkl elements form a
pair-wise commuting family. It is the study of the algebra generated by the (truncated)
Dunkl elements that is the main objective of our investigation in [37] and the present
paper. In subsection 2.1 we describe few representations of the dynamical classical Yang–
Baxter algebra DCY Bn

• related with quantum cohomology QH∗(F ln) of the complete flag variety F ln, cf
[21]; quantum equivariant cohomology QH∗

Tn×C∗(T ∗F ln) of the cotangent bundle T ∗F ln
to the complete flag variety, cf [29];
• Dunkl–Gaudin and Dunkl–Uglov representations, cf [56], [75].
In Section 3, see Definition 3.1, we introduce the algebra 3HTn(β), which seems to be

the most general (noncommutative) deformation of the (even) Orlik–Solomon algebra of
type An−1, such that it’s still possible to describe relations among the Dunkl elements,
see Theorem 3.1. As an application we describe explicitly a set of relations among the
(additive) Gaudin / Dunkl elements, cf [56].

▶▶ It should be stressed at this place that we treat the Gaudin elements/operators
(either additive or multiplicative) as images of the universal Dunkl elements/operators
(additive or multiplicative) in the Gaudin representation of the algebra 3HTn(0). There
are several other important representations of that algebra, for example, the Calogero–
Moser, Bruhat, Buchstaber–Felder–Veselov (elliptic), Fay trisecant (τ -functions), ad-
joint, and so on, considered (among others) in [37]. Specific properties of a representation
chosen 3 (e.g. Gaudin representation) imply some additional relations among the images
of the universal Dunkl elements (e.g. Gaudin elements) should to be unveiled. ◀◀

We start Section 3 with definition of algebra 3Tn(β) and its “Hecke” 3HTn(β) and
“elliptic” 3MTn(β) quotients. In particular we define an elliptic representation of the
algebra 3Tn(0) and show how the well-known elliptic solutions of the quantum Yang–
Baxter equation due to A. Belavin and V. Drinfeld, see e.g. [5], S. Shibukawa and K.
Ueno [67], and G. Felder and V.Pasquier [20], can be plug in to our construction, see
Comments 3.2.

In Subsection 3.1 we introduce a multiplicative analogue of the the Dunkl elements
{Θj ∈ 3Tn(β), 1 ≤ j ≤ n} and describe the commutative subalgebra in the algebra
3Tn(β) generated by multiplicative Dunkl elements [40]. The latter commutative subal-
gebra turns out to be isomorphic to the quantum equivariant K-theory of the complete
flag variety F ln [40].

In Subsection 3.2 we describe relations among the truncated Dunkl–Gaudin elements.
In this case the quantum parameters qij = p2ij, where parameters {pij = (zi− zj)−1, 1 ≤
i < j ≤ n} satisfy the both Arnold and Plücker relations. This observation has made

3For example, in the cases of either Calogero–Moser or Bruhat representations one has an additional
constraint, namely, u2ij = 0 for all i ̸= j. In the case of Gaudin representation one has an additional
constraint u2ij = p2ij , where the (quantum) parameters {pij = 1

xi−xj
, i ̸= j}, satisfy simultaneously the

Arnold and Plücker relations, see Section 2, (II). Therefore, the (small) quantum cohomology ring
of the type An−1 full flag variety F ln and the Bethe subalgebra(s) (i.e. the subalgebra generated by
Gaudin elements in the algebra 3HTn(0)) correspond to different specializations of ” quantum parame-
ters” {qij := u2ij} of the universal cohomology ring (i.e. the subalgebra/ring in 3HTn(0) generated by
(universal) Dunkl elements). For more details and examples, see Section 2.1 and [37].
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it possible to describe a set of additional rational relations among the Dunkl–Gaudin
elements, cf [56].

In Subsection 3.3 we introduce an equivariant version of multiplicative Dunkl ele-
ments, called shifted Dunkl elements in our paper, and describe (some) relations among
the latter. This result is a generalization of that obtained in Section 3.1 and [40]. However
we don’t know any geometric interpretation of the commutative subalgebra generated
by shifted Dunkl elements.

In Section 4.1 for any subgraph Γ ⊂ Kn of the complete graph Kn we introduce 4

[37], [35], algebras 3Tn(Γ) and 3T
(0)
n which can be seen as analogue of algebras 3Tn and

3T
(0)
n correspondingly. In the present paper we basically study the abelian quotient of

the algebra 3T
(0)
n (Γ) since we expect some applications of our approach to the theory of

chromatic polynomials of graphs. Our main results hold for the complete multipartite,
cyclic and line graphs. In particular we compute their chromatic and Tutte polynomials,
see Proposition 4.2 and Theorem 4.3. As a byproduct we compute the Tutte polynomial
of the ℓ-weighted complete multipartite graph K

(ℓ)
n1,...,nr where ℓ = {ℓij}1≤i<j≤r, is a

collection of weights, i.e. a set of non-negative integers.
More generally, for a set of variables {{qij}1≤i<j≤n, x, y} we define universal Tutte

polynomial Tn({qij}, x, y) ∈ Z[qij][x, y] such that for any collection on non-negative
integers {mij}1≤i<j≤n and a subgraph Γ ⊂ K

(m)
n of the complete graph Kn with each

edge (i, j) comes with multiplicity mij, the specialization

qij −→ 0, if edge (i, j) /∈ Γ, qij −→ [mij]y :=
ymij − 1

y − 1
if edge (i, j) ∈ Γ

of the universal Tutte polynomial Tn({qij}, x, y) is equal to the Tutte polynomial of graph
Γ multiplied by the factor (t− 1)κ(Γ) :

(x− 1)κ(Γ Tutte(Γ, x, y) := Tn({qij}, x, y)
∣∣∣

qij=0, if (i,j)/∈Γ

qij=[mij ]y
, if (i,j)∈Γ

.

Here and after κ(Γ) demotes the number of connected components of a graph Γ. In
other words, one can treat the universal Tutte polynomial Tn({qij}, x, y) as a “reproducing
kernel” for the Tutte polynomials of all graphs with the number of vertices not exceeded
n.
At the end we emphasize that the case of the complete graph Γ = Kn reproduces
the results of the present paper and those of [37], i.e. the case of the full flag variety
F ln. The case of the complete multipartite graph Γ = Kn1,...,nr reproduces the analogue
of results stated in the present paper for the case of full flag variety F ln, to the case of
the partial flag variety Fn1,...,nr , see [37] for details.

In Section 4.1.3 we sketch how to generalize our constructions and some of our results
to the case of the Lie algebras of classical types 5.

4 Independently the algebra 3T
(0)
n (Γ) has been studied in [8], where the reader can find some examples

and conjectures.
5One can define an analogue of the algebra 3T

(0)
n for the root system of BCn-type as well, but we

are omitted this case in the present paper
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In Section 4. 2 we briefly overview our results concerning yet another interesting
family of quadratic algebras, namely the six-term relations algebras 6Tn, 6T

(0)
n and related

ones. These algebras also contain a distinguished set of mutually commuting elements
called Dunkl elements {θi, i = 1, . . . , n} given by θi =

∑
j ̸=i rij, see Definition 4.8.

In Subsection 4.2.2 we introduce and study the algebra 6T⋆
n in greater detail. In par-

ticular we introduce a “quantum deformation’ of the algebra generated by the curvature
of 2-forms of of the Hermitian linear bundles over the flag variety F ln, cf [59].

In Subsection 4.2.3 we state our results concerning the classical Yang–Baxter algebra
CY Bn and the 6-term relation algebra 6Tn. In particular we give formulas for the Hilbert
series of these algebras. These formulas have been obtained independently in [3] The
paper just mentioned, contains a description of a basis in the algebra 6Tn, and much
more.

In Subsection 4.2.4 we introduce a super analog of the algebra 6Tn, denoted by 6Tn,m,
and compute its Hilbert series.

Finally, in Subsection 4.3 we introduce extended nil-three term relations algebra 3Tn

and describe a subalgebra inside of it which is isomorphic to the double affine Hecke
algebra of type An−1, cf [14].

In Section 5 we describe several combinatorial properties of some special elements in
the associative quasi-classical Yang–Baxter algebra 6, denoted by ÂCY Bn. The main
results in that direction were motivated and obtained as a by-product, in the process
of the study of the the structure of the algebra 3HTn(β). More specifically, the main
results of Section 5 were obtained in the course of “hunting for descendant relations” in
the algebra mentioned, which is an important problem to be solved to construct a basis
in the nil-quotient algebra 3T

(0)
n . This problem is still widely-open.

The results of Section 5.1, see Proposition 5.1, items (1)–(5), are more or less
well-known among the specialists in the subject, while those of the item (6) seem to be
new. Namely, we show that the polynomial Qn(xij = ti) from [71], (6.C8), (c), essen-
tially coincides with the β-deformation [23] of the Lascoux-Schützenberger Grothendieck
polynomial [46] for some particular permutation. The results of Proposition 5.1, (6),
point out on a deep connection between reduced forms of monomials in the algebra
ÂCY Bn and the Schubert and Grothendieck Calculi. This observation was the start-
ing point for the study of some combinatorial properties of certain specializations of
the Schubert, the β-Grothendieck [24] and the double β- Grothendieck polynomials in
Section 5.2 . One of the main results of Section 5.2 can be stated as follows.

Theorem 1.3
(1) Let w ∈ Sn be a permutation, consider the specialization x1 := q, xi = 1, ∀i ≥ 2,

of the β-Grothendieck polynomial G(β)
w (Xn). Then

Rw(q, β + 1) := G(β)
w (x1 = q, xi = 1, ∀i ≥ 2) ∈ N[q, 1 + β].

6 The algebra ÂCY Bn can be treated as “one-half” of the algebra 3Tn(β). It appears, see Lemma 5.1,
that the basic relations among the Dunkl elements, which do not mutually commute anymore, are still
valid, see Lemma 5.1.
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In other words, the polynomial Rw(q, β) has non-negative integer coefficients 7.
For late use we define polynomials

Rw(q, β) := q1−w(1) Rw(q, β).

(2) Let w ∈ Sn be a permutation, consider the specialization xi := q, yi = t, ∀i ≥ 1, of
the double β-Grothendieck polynomial G(β)

w (Xn, Yn). Then

G(β−1)
w (xi := q, yi := t, ∀i ≥ 1) ∈ N[q, t, β].

(3) Let w be a permutation, then

Rw(1, β) = R1×w(0, β).

Note that Rw(1, β) = Rw−1(1, β), but Rw(t, β) ̸= Rw−1(t, β), in general.

For the reader convenience we collect some basic definitions and results concerning the
β-Grothendieck polynomials in Appendix I.

Let us observe that Rw(1, 1) = Sw(1), where Sw(1) denotes the specialization
xi := 1, ∀i ≥ 1, of the Schubert polynomial Sw(Xn) corresponding to permutation w.
Therefore, Rw(1, 1) is equal to the number of compatible sequences [7] (or pipe dreams,
see e.g. [66] ) corresponding to permutation w.

Problem 1.1
Let w ∈ Sn be a permutation and l := ℓ(w) be its length. Denote by CS(w) =

{a = (a1 ≤ a2 ≤ . . . ≤ al) ∈ Nl } the set of compatible sequences [7] corresponding to
permutation w.
• Define statistics r(a) on the set of all compatible sequences CSn :=

⨿
w∈Sn

CS(w)

in a such way that ∑
a∈CS(w)

qa1 βr(a) = Rw(q, β).

• Find a geometric interpretation, and investigate combinatorial and algebra-geometric
properties of polynomials S

(β)
w (Xn),

where for a permutation w ∈ Sn we denoted by S
(β)
w (Xn) the β-Schubert polynomial

defined as follows

S(β)
w (Xn) =

∑
a∈CS(w)

βr(a)

l:=ℓ(w)∏
i=1

xai .

We expect that polynomial S(β)
w (1) coincides with the Hilbert polynomial of a certain

graded commutative ring naturally associated to permutation w.

Remark 1.1 It should be mentioned that, in general, the principal specialization

G(β−1)
w (xi := qi−1, ∀i ≥ 1)

of the (β − 1)-Grothendieck polynomial may have negative coefficients.

7 For a more general result see Appendix I, Corollary 6.2.
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Our main objective in Section 5.2 is to study the polynomials Rw(q, β) for a special
class of permutations in the symmetric group S∞. Namely, in Section 5.2 we study
some combinatorial properties of polynomials Rϖλ,ϕ

(q, β) for the five parameters family
of vexillary permutations {ϖλ,ϕ} which have the shape

λ := λn,p,b = (p(n− i+ 1) + b, i = 1, . . . , n+ 1) and flag
ϕ := ϕk,r = (k + r(i− 1), i = 1, . . . , n+ 1).
This class of permutations is notable for many reasons, including that the special-

ized value of the Schubert polynomial Sϖλ,ϕ
(1) admits a nice product formula 8 , see

Theorem 5.6. Moreover, we describe also some interesting connections of polynomials
Rϖλ,ϕ

(q, β) with plane partitions, the Fuss-Catalan numbers 9 and Fuss-Narayana poly-
nomials, k-triangulations and k-dissections of a convex polygon, as well as a connection
with two families of ASM . For example, let λ = (bn) and ϕ = (kn) be rectangular
shape partitions, then the polynomial Rϖλ,ϕ

(q, β) defines a (q, β)-deformation of the
number of (ordinary) plane partitions 10 sitting in the box b × k × n. It seems an in-
teresting problem to find an algebra-geometric interpretation of polynomials Rw(q, β)
in the general case.

Question Let a and b be mutually prime positive integers. Does there exist a
family of permutations wa,b ∈ S∞ such that the specialization xi = 1 ∀i of the Schubert
polynomial Swa,b

is equal o the rational Catalan number Ca/b ? That is

Swa,b
(1) =

1

a+ b

(
a+ b

a

)
.

Many of the computations in Section 5.2 are based on the following determinantal
formula for β-Grothendieck polynomials corresponding to grassmannian permutations,
cf [47].

Theorem 1.4 (see Comments 5.5)
If w = σλ is the grassmannian permutation with shape λ = (λ, . . . , λn) and a unique

8 One can prove a product formula for the principal specialization Sϖλ,ϕ
(xi := qi−1, ∀i ≥ 1) of the

corresponding Schubert polynomial. We don’t need a such formula in the present paper.
9 We define the (generalized) Fuss-Catalan numbers to be FC(p)

n (b) := 1+b
1+b+(n−1)p

(
np+b
n

)
. Connection

of the Fuss-Catalan numbers with the p-ballot numbers Balp(m,n) := n−mp+1
n+m+1

(
n+m+1

m

)
and the Rothe

numbers Rn(a, b) :=
a

a+bn

(
a+bn
n

)
can be described as follows

FC(p)
n (b) = Rn(b+ 1, p) = Balp−1(n, (n− 1)p+ b).

10 Let λ be a partition. An ordinary plane partition (plane partition for short)bounded by d and
shape λ is a filling of the shape λ by the numbers from the set {0, 1, . . . , d} in such a way that the
numbers along columns and rows are weakly decreasing.

A reverse plane partition bounded by d and shape λ is a filling of the shape λ by the numbers from
the set {0, 1, . . . , d} in such a way that the numbers along columns and rows are weakly increasing.
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descent at position n, then 11

(A) G(β)
σλ

(Xn) = DET |h(β)λj+i,j(Xn)|1≤i,j≤n =
DET |xλj+n−j

i (1 + β xi)
j−1|1≤i,j≤n∏

1≤i<j≤n(xi − xj)
,

where Xn = (xi, x1, . . . , xn), and for any set of variables X,

h
(β)
n,k(X) =

k−1∑
a=0

(
k − 1

a

)
hn−k+a(X) βa,

and hk(X) denotes the complete symmetric polynomial of degree k in the variables from
the set X.

(B) Gσλ
(X, Y ) =

DET |
∏λj+n−j

a=1 (xi + ya + β xi ya) (1 + βxi)
j−1|1≤i,j≤n∏

1≤i<j≤n(xi − xj)
.

In Section 5.3 we give a partial answer on the question 6.C8(d) by R.Stanley [71].
In particular, we relate the reduced polynomial corresponding to monomial(

xa212 · · · xn−1,n
an
) n−2∏

j=2

n∏
k=j+2

xjk, aj ∈ Z≥0,∀j,

with the Ehrhart polynomial of the generalized Chan–Robbins–Yuen polytope, if a2 =
. . . = an = m+ 1, cf [52], with a t-deformation of the Kostant partition function of type
An−1 and the Ehrhart polynomials of some flow polytopes, cf [53].

In Section 5.4 we investigate certain specializations of the reduced polynomials cor-
responding to monomials of the form

xm1
12 · · · xmn

n−1,n, mj ∈ Z≥0.∀j.

First of all we observe that the corresponding specialized reduced polynomial appears to
be a piece-wise polynomial function of parameters m = (m1, . . . ,mn) ∈ (R≥0)

n, denoted
by Pm. It is an interesting problem to compute the Laplas transform of that piece-wise
polynomial function. In the present paper we compute the value of the function Pm in
the dominant chamber Cn = (m1 ≥ m2 ≥ . . . ≥ mn ≥ 0), and give a combinatorial
interpretation of the values of that function in points (n,m) and (n,m, k), n ≥ m ≥ k.

For the reader convenience, in Appendix I–V we collect some useful auxiliary infor-
mation about the subjects we are treated in the present paper.

Almost all results in Section 5 state that some two specific sets have the same number
of elements. Our proofs of these results are pure algebraic. It is an interesting problem

11 the equality

G(β)
σλ

(Xn) =
DET |xλj+n−j

i (1 + β xi)
j−1|1≤i,j≤n∏

1≤i<j≤n(xi − xj)
,

has been proved independently in [55].
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to find bijective proofs of results from Section 5 which generalize and extend remarkable
bijective proofs presented in [79], [66], [72], [53] to the cases of
• the β-Grothendieck polynomials,
• the (small) Schröder numbers,
• k-dissections of a convex (n+ k + 1)-gon,
bullet special values of reduced polynomials.
We are planning to treat and present these bijections in (a) separate publication(s).

We expect that the reduced polynomials corresponding to the higher-order powers
of the Coxeter elements also admit an interesting combinatorial interpretation(s). Some
preliminary results in this direction are discussed in Comments 5.8.

At the end of Introduction I want to add three remarks.
(a) After a suitable modification of the algebra 3HTn, see [41], and the case β ̸= 0 in

[37], one can compute the set of relations among the (additive) Dunkl elements (defined
in Section 2, (2.3)). In the case β = 0 and qij = qi δj−i,1, 1 ≤ i < j ≤ n, where δa,b
is the Kronecker delta symbol, the commutative algebra generated by additive Dunkl
elements (2.3) appears to be “almost” isomorphic to the equivariant quantum cohomology
ring of the flag variety F ln, see [41] for details. Using the multiplicative version of Dunkl
elements (3.14), one can extend the results from [41] to the case of equivariant quantum
K-theory of the flag variety F ln, see [37].

(b) In fact, one can define an analogue of the algebra 3T
(0)
n for any (oriented)

matroidMn, and state a conjecture which connects the Hilbert polynomial of the alge-
bra 3T

(0)
n (Mn)

ab, t) and the chromatic polynomial of matroid Mn. It is an interesting
problem to find a combinatorial meaning of the algebra 3T

(0)
n (Mn).

(c) (“Compatible” Dunkl elements, and algebras related with the weighted complete
graph mKn )

Let us consider collection of generators {u(α)ij , 1 ≤ i, j ≤ n, α = 1, . . . , r}, with sub-
ject to either the unitarity conditions (the case of sign “+”) or the symmetry conditions
(the case of sign “-”) :

u
(α)
ij ± u

(α)
ji = 0,∀, α, i, j

, and “local” Dunkl elements

θ
(α)
i :=

∑
j ̸=i

u
(α)
ij , j = 1, . . . , n, α = 1, . . . , r.

We are looking for a “natural set of relations” among the generators {u(α)ij } 1≤i,j≤n
1≤α≤r

} such
that the “global” Dunkl elements

θ
(λ)
i := λ1θ

(1)
i + · · ·+ λrθ

(r)
i , i = 1, . . . , n

either pairwise commute (the case “+”) or pairwise anticommute (the case “-”) for all
values of parameters {λi}1≤i≤n. In other words we are searching for the “compatibility
conditions” for local Dunkl elements which ensure the commutativity (or anticommuta-
tivity) of global Dunkl elements, cf with definition of super version of the 6-term relation
algebra in Section 4.2. The “natural conditions” we have in mind are:
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• (Locality conditions)
[u

(α)
ij , u

(α)
kl ]± = 0 = [u

(α)
ij , u

(β)
kl ]± + [u

(β)
ij , u

(α)
kl ]± if {i, j} ∩ {k, l} = ∅, ∀α ̸= β,

• (Crossing relations)
(a) (3-term relations) u

(α)
ij u

α)
jk + u

(α)
jk u

(α)
ki + u

α)
ki u

(α)
ij = 0,

(b) ( 6-term crossing relations)
u
(α)
ij u

(β)
jk + u

(β)
ij u

(α)
jk + u

(α)
k,i u

(β)
ij u

(α)
ki + u

(α)
jk u

(β)
ki + u

(β)
jk u

(α)
ki = 0,

(c) [u
(α)
ij , u

(β)
ik ]± = [u

(β)
ij , u

(α)
ik ]±, [u

(α)
ij + u

(α)
ik , u

(β)
jk ]± + [u

(β)
ij , u

(α)
ik ]± = 0,

if i, j, k are distinct and α ̸= β,
• (u

(α)
ij )2 = 0, [u

(α)
ij , u

(β)
ij ]± = 0, for all i ̸= j, α ̸= β,

where we have used notation [a, b]± := a b∓ b a.
The output of this construction are
• noncommutative quadratic algebra 3T

(±)
n,r generated by the elements {u(α)ij } 1≤i<j≤n

α=1,...,r
,

• a family of nr either mutually commuting (the case “+”) or pairwise anticommuting
(the case “-”) local Dunkl elements {θ(α)i } i=1,...,n

α=1,...,r
.

We expect that the subalgebra generated by local Dunkl elements in the algebra
3T

(+)
n,r is isomorphic to the coinvariant algebra of the diagonal action of the symmetric

group Sn on the ring of polynomials Q[X
(1)
n , . . . , X

(r)
n ], where X(j)

n stands for the set of
variables {x(j)1 , . . . , x

(j)
n )}. The algebra (3T

(−)
n,2 )

anti has been studied in [37], and [6]. In
the present paper we state only our old conjecture.

Conjecture 1.1 (A.N. Kirillov, 2000)

Hilb((3T
(−)
n,3 )

anti, t) = (1 + t)n(1 + nt)n−2.

According to observation of M. Haiman [31], the number 2n (n+ 1)n−2 is thought of
as being equal to to the dimension of the space of triple coinvariants of the symmetric
group Sn.
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2 Dunkl elements
Let Fn be the free associative algebra over Z with the set of generators {uij, 1 ≤ i, j ≤ n}.
We set xi := uii, i = 1, . . . , n.

Definition 2.1
The (additive) Dunkl elements θi, i = 1, . . . , n, in the algebra Fn are defined to be

θi = xi +
n∑

j=1
j ̸=i

uij. (2.3)

We are interested in to find “natural relations” among the generators {uij}1≤i,j≤n such
that the Dunkl elements (2.3) are pair-wise commute. One of the natural conditions
which is the commonly accepted in the theory of integrable systems, is
• (Locality condition)

[xi, xj] = 0, uij ukl = ukl uij, if i ̸= j, k ̸= l and {i, j} ∩ {k, l} = ∅. (2.4)
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Lemma 2.1
Assume that elements {uij} satisfy the locality condition (2.4). If i ̸= j, then

[θi, θj] =
[
xi +

∑
k ̸=i,j

uik, uij + uji

]
+
[
uij,

n∑
k=1

xk

]
+

∑
k ̸=i,j

wijk,

where
wijk = [uij, uik + ujk] + [uik, ujk] + [xi, ujk] + [uik, xj] + [xk, uij]. (2.5)

Therefore in order to ensure that the Dunkl elements form a pair-wise commuting family,
it’s natural to assume that the following conditions hold
• (Unitarity)

[uij + uji, ukl] = 0 = [uij + uji, xk] for all distinct i, j, k, l, (2.6)

i.e. the elements uij + uji are central.
• (“Conservation law”)

[
n∑

k=1

xk , uij] = 0 for all i, j, (2.7)

i.e. the element E :=
∑n

k=1 xk is central,
• (Dynamical classical Yang–Baxter relations )

[uij, uik + ujk] + [uik, ujk] + [xi, ujk] + [uik, xj] + [xk, uij] = 0, (2.8)

if i, j, k are pair-wise distinct.

Definition 2.2
We denote by DCY Bn the quotient of the algebra Fn by the two-sided ideal generated

by relations (2.4),(2.6),(2.7) and (2.8).

Clearly, the Dunkl elements (2.3) generate a commutative subalgebra inside the algebra
CDY Bn, and the sum

∑n
i=1 θi =

∑n
i=1 xi belongs to the center of the algebra DCY Bn.

Remark We will call the Dunkl elements of the form (2.3) by dynamical Dunkl
elements to distinguish the latter from truncated Dunkl elements, corresponding to the
case xi = 0, ∀i.

2.1 Some representations of the algebra DCY Bn

(I) (cf [21]) Given a set q1, . . . , qn−1 of mutually commuting parameters, define qij =∏j−1
a=i qa, if i < j and set qij = qji in the case i > j. Clearly, that if i < j < k, then

qijqjk = qik.
Let z1, . . . , zn be a set of (mutually commuting) variables. Denote by Pn := Z[z1, . . . , zn]

the corresponding ring of polynomials. We consider the variable zi, i = 1, . . . , n, also as
the operator acting on the ring of polynomials Pn by multiplication on zi.
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Let sij ∈ Sn be the transposition that swaps the letters i and j and fixes the all other
letters k ̸= i, j. We consider the transposition sij also as the operator which acts on the
ring Pn by interchanging zi and zj, and fixes all other variables. We denote by

∂ij =
1− sij
zi − zj

, ∂i := ∂i,i+1,

the divided difference operators corresponding to the transposition sij and the simple
transposition si := si,i+1 correspondingly. Finally we define operator (cf [21] )

∂(ij) := ∂i · · · ∂j−1∂j∂j−1 · · · ∂i, if i < j.

The operators ∂(ij), 1 ≤ i < j ≤ n, satisfy (among other things) the following set of
relations (cf [21])
• [zj, ∂(ik)] = 0, if j /∈ [i, k], [∂(ij),

∑j
a=i za] = 0,

• [∂(ij), ∂(kl)] = δjk [zj, ∂(il)] + δil [∂(kj), zi], if i < j, k < l.
Therefore, if we set uij = qij ∂(ij), if i < j, and u(ij) = −u(ji), if i > j, then for

a triple i < j < k we will have

[uij, uik+ujk]+[uik, ujk]+[zi, ujk]+[uik, zj]+[zk, ujk] = qijqjk[∂(ij), ∂(jk)]+qik[∂(ik), zj] = 0.

Thus the elements {zi, i = 1, . . . , n} and {uij, 1 ≤ i < j ≤ n} define a representation of
the algebra DCY Bn, and therefore the Dunkl elements

θi := zi +
∑
j ̸=i

uij = zi −
∑
j<i

qji∂(ji) +
∑
j>i

qij∂(ij)

form a pairwise commuting family of operators acting on the ring of polynomials
Z[q1, . . . , qn−1][z1, . . . , zn], cf [21]. This representation has been used in [21] to construct
the small quantum cohomology ring of the complete flag variety of type An−1.

(II) Consider degenerate affine Hecke algebra Hn generated by the central element h,
the elements of the symmetric group Sn, and the mutually commuting elements y1, . . . , yn,
subject to to relations

siyi − yi+1si = h, 1 ≤ i < n, siyj = yjsi, j ̸= i, i+ 1,

where si stand for the transposition that swaps only indices i and i + 1. For i < j, let
sij = si · · · sj−1sjsj−1 · · · si denotes the permutation that swaps only indices i and j. One
can show that
• [yj, sik] = h[sij, sjk], if i < j < k,
• yisik − sikyk = h+ h sik

∑
i<j<k sjk, if i < k.

Finally, consider a set of mutually commuting parameters {pij, 1 ≤ i ̸= j ≤ n, pij+pji =
0}, subject to the constraints

pijpjk = pikpij + pjkpik + pik, i < j < k.
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Comments 2.1 If parameters {pij} are invertible, and satisfy relations

pijpjk = pikpij + pjkpik + β pik, i < j < k,

then one can rewrite the above displayed relation in the following form:

1 +
β

pik
=

(
1 +

β

pij

)(
1 +

β

pjk

)
, 1 ≤ i < j < k ≤ n.

Therefore there exist parameters {q1, . . . , qn} such that 1+β/pij = qi/qj, 1 ≤ i ≤ n. In
other words, pij =

β qj
qj−qj

, 1 ≤ i < j ≤ n. However, in general there are other solutions,
for example, ones related to the Heaviside function 12 H(x), namely, pij = H(xi −
xj), xi ∈ R, ∀i, and its discrete analogue, see Example (III) below. In the both cases
β = −1.

To continue presentation of Example (II), define elements uij = pijsij, 1 ≤ i ̸= j ≤ n.

Lemma 2.2 (Dynamical classical Yang–Baxter relations)

[uij, uik + ujk] + [uik, ujk] + [uik, yj] = 0, 1 < i < j < k ≤ n. (2.9)

Indeed,

uijujk = uikuij + ujkuik + h piksijsjk, ujkuij = uijuik + uikujk + h piksjksik,

and moreover, [yj, uik] = h pik[sij, sjk].
Therefore, the elements

θi = yi − h
∑
j<i

uij + h
∑
i<j

uij, i = 1, . . . , n,

form a mutually commuting set of elements in the algebra Z[{pij}]⊗Z Hn.

Theorem 2.1 Define matrix Mn = (mi,j)1≤i,j≤n as follows:

mi,j(u; z1, . . . , zn) =

 u− zi if i = j,
−h− pij if i < j,

pij if i > j.

Then

DET
∣∣∣Mn(u; θ1, . . . , θn)

∣∣∣ = n∏
j=1

(u− yj).

Moreover, let us set qij := h2(pij + p2ij) = h2qiqj(qi − qj)−2, i < j, then

ek(θ1, . . . , θn) = e
(q)
k (y1, . . . , yn), 1 ≤ k ≤ n,

where ek(x1, . . . , xn) and e(q)k (x1, . . . , xn) denote correspondingly the classical and quan-
tum [22] elementary symmetric polynomials

12 http://en.wikipedia.org/wiki/Heaviside step function
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13.
Let’s stress that the elements yi and θj do not commute in the algebra Hn, but the

symmetric functions of y1, . . . , yn, i.e. the center of the algebra Hn, do.
A few remarks in order. First of all, u2ij = p2ij are central elements. Secondly, in the

case h = 0 and yi = 0, ∀i, the equality

DET
∣∣∣Mn(u;x1, . . . , xn)

∣∣∣ = un

describes the set of polynomial relations among the Dunkl–Gaudin elements (with the
following choice of parameters pij = (qi − qj)−1 are taken). And our final remark is that
according to [29], Section 8, the quotient ring

Hq
n := Q[y1, . . . , yn]

Sn ⊗Q[θ1, . . . , θn]⊗Q[h] /
⟨
Mn(u; θ1, . . . , θn) =

n∏
j=1

(u− yj)
⟩

is isomorphic to the quantum equivariant cohomology ring of the cotangent bundle T ∗F ln
of the complete flag variety of type An−1, namely,

Hq
n
∼= QH∗

Tn×C∗(T ∗F ln)

with the following choice of quantum parameters: Qi := h qi+1/qi, i = 1, . . . , n− 1.
On the other hand, in [41] we computed the so-called multi-parameter deformation of

the equivariant cohomology ring of the complete flag variety of type An−1. A deformation
defined in [41] depends on parameters {qij, 1 ≤ i < j ≤ n} without any constraints are
imposed. For the special choice of parameters

qij := h2
qi qj

(qi − qj)2

the multiparameter deformation of the equivariant cohomology ring of the type An−1

complete flag variety F ln constructed in [41], is isomorphic to the ring Hq
n.

Comments 2.2 Let us fix a set of independent parameters {q1, . . . , qn} and define
new parameters

{qij := h pij(pij + h) = h2
qi qj

(qi − qj)2
}, 1 ≤ i < j ≤ n, where pij =

qj
qi − qj

, i < j.

We set deg(qij) = 2, deg(pij) = 1, deg(h) = 1.
13 For the reader convenience we remind [22] a definition of the quantum elementary symmetric

polynomial eqk(x1, . . . , xn). Let q := {qij}1≤i<j≤n be a collection of “quantum parameters”, then

eqk(x1, . . . , nn) =
∑
ℓ

∑
1≤1<...<iℓ≤n
j1>i1...,jℓ>iℓ

ek−2 ℓ(XI∪J)
ℓ∏

a=1

qia,ja ,

where I = (i1, . . . .iℓ) J = (j1, . . . , jℓ) should be distinct elements of the set {1, . . . , n}, and XI∪J denotes
set of variables xa for which the subscript a is neither one of im nor one of the jm.
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The new parameters {qij}1≤i<j≤n, do not free anymore, but satisfy rather complicated
algebraic relations. We display some of these relations soon, having in mind a question:
is there some intrinsic meaning of the algebraic variety defined by the set of defining
relations among the “quantum parameters” {qij} ? Let us denote by An,h the quotient
ring of the ring of polynomials Q[xij, 1 ≤ i < j ≤ n] modulo the ideal generating by
polynomials f(xij) such that f(qij) = 0. The algebra An,h has a natural filtration, and
we denote by An = grAn,h the corresponding associated graded algebra.

To describe (a part of) relations among the parameters {qij} let us observe that
parameters {pij} and {qij} are related by the following identity

qijqjk − qik(qij + qjk) + h2qik = 2 pijpikpjk(pik + h), if i < j < k.

Using this identity we can find the following relations among parameters in question

q2ijq
2
jk + q2ijq

2
ik + h4q2ikq

2
jk − 2 qijqikqjk(qij + qjk + qik)− 2 h2qik(qijqjk + qijqik + qjkqik)

= 8 h qij qik qjk pik,
(2.10)

if 1 ≤ i < j < k ≤ n.
Finally, we come to a relation of degree 8 among the “quantum parameters” {qij}(

LHS(2.9)
)2

= 64 h2 q2ij q
3
ik q

2
jk, 1 ≤ i < j < k ≤ n.

There are also higher degree relations among the parameters {qij} some of whose in
degree 16 follow from the deformed Plücker relation between parameters {pij}:

1

pikpjl
=

1

pijpkl
+

1

pilpjk
+

h

pijpjkpkl
, i < j < k < l.

However, we don’t know how to describe the algebra An,h generated by quantum param-
eters {qij}1≤i<j≤n even for n=4.

The algebra An = gr(An,h) is isomorphic to the quotient algebra of Q[xij, 1 ≤ i <
j ≤ n] modulo the ideal generated by the set of relations between “quantum parameters”

{qij :=
( 1

zi − zj

)2

}1≤i<j≤n,

which correspond to the Dunkl–Gaudin elements {θi}1≤i≤n, see Section 3.2 below for
details. In this case the parameters {qij} satisfy the following relations

(q2ijq
2
jk + q2ijq

2
ik + q2jkq

2
ik = 2 qijqikqjk(qij + qjk + qjk)

which correspond to the relations (2.9) in the special case h = 0. One can find a set
of relations in degrees 6, 7 and 8, namely for a given pair-wise distinct integers 1 ≤
i, j, k, l ≤ n, one has
• one relation in degree 6

q2ijq
2
ikq

2
il + q2ijq

2
jkq

2
jl + q2ikq

2
jkq

2
kl + q2ilq

2
jlq

2
kl−
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2 qijqikqilqjkqjlqkl

(qij
qkl

+
qkl
qij

+
qik
qjl

+
qjl
qik

+
qil
qjk

+
qjk
qil

)
+ 8 qijqikqilqjkqjlqkl = 0;

• three relations in degree 7

qik

(
qijqilqkl − qijqilqjk + qijqjkqkl − qilqjkqkl

)2

=

8 q2ijq
2
ikqjkqkl

(
qjk + qjl + qkl

)
− 4 q2ijq

2
ilqjl

(
q2jk + q2kl

)
,

• one relation in degree 8

q2ijq
2
ilq

2
jkq

2
kl + q2ijq

2
ikq

2
jlq

2
kl + q2ikq

2
ilq

2
jkq

2
jl = 2 qijqikqilqjkqjlqkl

(
qijqkl + qikqjl + qilqjk

)
,

However we don’t know does the list of relations displayed above, contains the all in-
dependent relations among the elements {qij}1≤i<j≤n in degrees 6, 7 and 8, even for
n = 4. In degrees ≥ 9 and n ≥ 5 some independent relations should appear.

Notice that the parameters {pij =
h qj
qi−qj

, i < j} satisfy the so-called Gelfand–
Varchenko relations, see e.g. [36]

pijpjk = pikpij + pjkpik + h pik, i < j < k,

whereas parameters {pij = 1
qi−qj

, i < j} satisfy the so-called Arnold relations

pijpjk = pikpij + pjkpik, i < j < k.

Problem Find Hilbert series Hilb(An, t) for n ≥ 4.

For example, Hilb(A3, t) =
(1+t)(1+t2)

(1−t)2
.

Finally, if we set qi := exp(h zi) and take the limit limh→0
h2 qiqj
(qi−qj)2

, as a result we
obtain the Dunkl–Gaudin parameter qij = 1

(zi−zj)2
.

(III) Consider the following representation of the degenerate affine Hecke algebra Hn

on the ring of polynomials Pn = Q[x1, . . . , xn]:
• the symmetric group Sn acts on Pn by means of operators

si = 1 + (xi+1 − xi − h)∂i, i = 1, . . . , n− 1,

• yi acts on the ring Pn by multiplication by xi: yi(f(x)) = xif(x), f ∈ Pn. Clearly,

yi si − yi+1 si = h, and yi(si − 1) = (si − 1)yi+1 + xi+1 − xi − h.

In the subsequent discussion we will identify the operator of multiplication by xi, namely
the operator yi, with xi.

This time define uij = pij(si − 1), if i < j and set uij = −uji if i > j, where
parameters {pij} satisfy the same conditions as in the previous example.

Lemma 2.3 The elements {uij, 1 ≤ i < j ≤ n}, satisfy the dynamical classical
Yang–Baxter relations displayed in Lemma 2.2, (2.9).
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Therefore, the Dunkl elements

θi :=
∑

j
j ̸=i

uij, i = 1, . . . , n,

form a commutative set of elements.

Theorem 2.2 ([29]) Define matrix Mn = (mij)1≤i,j≤n as follows

mi,j(u; z1, . . . , zn) =

u− zi +
∑

j ̸=i h pij if i = j,
−h− pij if i < j,

pij if i > j.

Then

DET
∣∣∣Mn(u; θ1, . . . , θn)

∣∣∣ = n∏
j=1

(u− xj).

Comments 2.3 Let us list a few more representations of the dynamical classical Yang–
Baxter relations.
• (Trigonometric Calogero–Moser representation) Let i < j, define

uij =
xj

xi − xj
(sij − ϵ), ϵ = 0 or 1; sij(xi) = xj, sij(xj) = xi, sij(xk) = xk, ∀k ̸= i, j.

• (Mixed representation)

uij = (
λj

λi − λj
− xj
xi − xj

)(sij − ϵ), ϵ = 0 or 1; sij(λk) = λk ∀k.

We set uij = −uji, if i > j. In all cases we define Dunkl elements to be θi =
∑

j ̸=i uij.
Note that operators

rij = (
λi + λj
λi − λj

− xi + xj
xi − xj

)sij

satisfy the three term relations: rijrjk = rikrij + rjkrik, and rjkrij = rijrjk + rikrjk, and
thus satisfy the classical Yang–Baxter relations.

Remarks 1
(1) (Non-unitary dynamical classical Yang–Baxter algebra) Let Ãn be the quotient

of the algebra Fn by the two-sided ideal generated by the relations (2.4), (2.7) and (2.8).
Consider elements

θi = xi +
∑
a ̸=i

uia, and θ̄j = −xj +
∑
b ̸=j

ubj, 1 ≤ i < j ≤ n.
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Then

[θi, θ̄j] = [
n∑

k=1

xk , uij] +
∑
k ̸=i,j

wikj,

where the elements wijk have been defined in Lemma 2.1, (2.5).
Therefore the elements θi and θ̄j commute in the algebra Ãn.
In the case when xi = 0 for all i = 1, . . . , n, the relations wijk = 0 (assuming

that i, j, k are all distinct) are well-known as the (non-unitary) classical Yang-Baxter
relations. Note that for a given triple of pair-wise distinct (i, j, k) we have in fact 6
relations. These six relations imply that [θi, θ̄j] = 0. However, in general,

[θi, θj] =
[∑
k ̸=i,j

uik , uij + uji

]
̸= 0.

In order to ensure the commutativity relations among the Dunkl elements, i.e. [θi, θj] =
0 for all i, j, one needs to impose on the elements {uij, 1 ≤ i ̸= j ≤ n} the “twisted”
classical Yang–Baxter relations, namely

[uij + uik, ujk] + [uik,uji] = 0, if i, j, k are all distinct. (2.11)

Contrary to the case of non-unitary classical Yang–Baxter relations, it is easy to see that
in the case of twisted classical Yang–Baxter relations, for a given triple (i, j, k) one has
only 3 relations.

Examples 2.1
(a) Define

pij(z1, . . . , zn) =

{ zi
zi−zj

, if 1 ≤ i < j ≤ n,

− zj
zj−zi

, if n ≥ i > j ≥ 1.

Clearly, pij + pji = 1. Now define operators uij = pijsij, and the truncated Dunkl
operators to be θi =

∑
j ̸=i uij, i = 1, . . . , n. All these operators act on the field of

rational functions Q(z1, . . . , zn); the operator sij = sji acts as the exchange operator,
namely, sij(zi) = zj, sij(zk) = zk ∀k ̸= i, j, sij(zj) = zi.

Note that this time one has

p12p23 = p13p12 + p23p13−p13.

It is easy to see that the operators {uij, 1 ≤ i ̸= j ≤ n} satisfy relations (3.11),
Section 3, and therefore, satisfy the twisted classical Yang–Baxter relations (2.9). As a
corollary we obtain that the truncated Dunkl operators {θi, i = 1, . . . , n} are pair-wise
commute. Now consider the Dunkl operator Di = ∂zi + h θi, i = 1, . . . , n, where h is a
parameter. Clearly that [∂zi + ∂zj , uij] = 0, and therefore [Di, Dj] = 0 ∀i, j. It easy to
see that

si,i+1Di −Di+1si,i+1 = h, [Di, sj,j+1] = 0, if j ̸= i, i+ 1.

In such a manner we come to the well-known representation of the degenerate affine
Hecke algebra Hn.
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(b) (Step functions and the Dunkl–Uglov representations of the degenerate affine
Hecke algebra [75]).

Consider step functions η± : R −→ {0, 1}

(Heaviside function) η+(x) =

{
1, if x ≥ 0,
0, if x < 0;

η−(x) =

{
1, if x > 0,
0, if x ≤ 0.

For any two real numbers xi and xj set η±ij = η±(xi − xj).

Lemma 2.4 The functions ηij satisfy the following relations
• η±ij + η±ji = 1 + δxi,xj

, (η±ij)
2 = η±ij ,

• η±ijη
±
jk = η±ikη

±
ij + η±jkη

±
ik − η

±
ik,

where δx,y denotes the Kronecker delta function.

To introduce the Dunkl–Uglov operators [75] we need a few more definitions and no-
tation. To start with, denote by ∆±

i the finite difference operators: ∆±
i (f)(x1, . . . , xn) =

f(. . . , xi ± 1, . . .). Let as before, {sij, 1 ≤ i ̸= j ≤ n, sij = sji}, denotes the set of
transpositions in the symmetric group Sn. Recall that sij(xi) = xj sij(xk) = xk ∀k ̸= i, j.
Finally define Dunkl–Uglov operators d±i : Rn −→ Rn to be

d±i = ∆±
i +

∑
j<i

δxi,xj
−
∑
j<i

η±ji sij +
∑
j>i

η±ij sij.

To simplify notation, set u±ij := η±ijsij, if i < j, and ∆̃±
i = ∆±

i +
∑

j<i δxi,xj
.

Lemma 2.5 The operators {u±iu, 1 ≤ i < j ≤ n} satisfy the following relations

[u±ij, u
±
ik + u±jk] + [u±ik, u

±
jk] + [u±ik,

∑
j<i

δxi,xj
] = 0, if i < j < k.

From now on we assume that xi ∈ Z, ∀i, that is, we will work with the restriction
of the all operators involved in Example (2.1(b), to the subset Zn ⊂ Rn. It is easy to
see that under the assumptions xi ∈ Z, ∀i, we will have

∆±
j η

±
ij = (η±ij ∓ δxi,xj

)∆±
i . (2.12)

Moreover, using relations (2.10), (2.11) one can prove that

Lemma 2.6
• [u±ij, ∆̃

±
i + ∆̃±

j ] = 0,

• [u±ik, ∆̃
±
j ] = [u±ik,

∑
j<i δxi,xj

], i < j < k.

Corollary 2.1
• The operators {u±ij, 1 ≤ i < j < k ≤ n, } and ∆̃±

i , i = 1, . . . , n satisfy the
dynamical classical Yang–Baxter relations

[u±ij, u
±
ik + u±jk] + [u±ik, u

±
jk] + [u±ik, ∆̃j]] = 0, if i < j < k.

• ([75]) The operators {si := si,i+1, 1 ≤ i < n, and ∆̃±
j , 1 ≤ j ≤ n} give

rise to two representations of the degenerate affine Hecke algebra Hn. In particular, the
Dunkl–Uglov operators are mutually commute: [d±i , d

±
j ] = 0.
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(2) Assume that ∀i, xi = 0, and generators {uij, 1 ≤ i < j ≤ n} satisfy the locality
conditions (2.4) and the classical Yang–Baxter relations

[uij, uik + ujk] + [uik, ujk] = 0, if 1 ≤ i < j < k ≤ n.

Let y, z, t1, . . . , tn be parameters, consider the rational function

FCY B(z; t) := FCY B(z; t1, . . . , tn) =
∑

1≤i<j≤n

(ti − tj)uij
(z − ti)(z − tj)

.

Then
[FCY B(z; t), FCY B(y; t)] = 0, and Resz=tiFCY B(z; t) = θi.

(3) Now assume that a set of generators {cij, 1 ≤ i ̸= j ≤ n} satisfy the locality
and symmetry (i.e. cij = cji) conditions, and the Kohno–Drinfeld relations:

[cij, ckl] = 0, if {i, j} ∩ {k, l} = ∅, [cij, cjk + cik] = 0 = [cij + cik, cjk], i < j < k.

Let y, z, t1, . . . , tn be parameters, consider the rational function

FKD(z; t) := FKD(z; t1, . . . , tn) =
∑

1≤i̸=j≤n

cij
(z − ti)(ti − tj)

=
∑

1≤i<j≤n

cij
(z − ti)(z − tj)

.

Then
[FKD(z; t), FKD(y; t)] = 0, and Resz=tiFKD(z; t) = KZi,

where

KZi =
n∑

j=1
j ̸=i

cij
ti − tj

denotes the truncated Knizhnik-Zamolodchikov element.

(IV) (Dunkl and Gaudin operators)
(a) ( Rational Dunkl operators) Consider the quotient of the algebra DCY Bn,

see Definition 2.2, by the two-sided ideal generated by elements

{[xi + xj, uij]} and {[xk, uij], k ̸= i, j}.

Clearly the Dunkl elements (2.3) mutually commute. Now let us consider the so-called
Calogero–Moser representation of the algebra DCY Bn on the ring of polynomials Rn :=
R[z1, . . . , zn] given by

xi(p(z)) = λ
∂ p(z)

∂zi
, uij(p(z)) =

1

zi − zj
(1− sij) p(z), p(z) ∈ Rn.

The symmetric group Sn acts on the ring Rn by means of transpositions sij ∈ Sn :
sij(zi) = zj, sij(zj) = zi, sij(zk) = zk, if k ̸= i, j,
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In the Calogero–Moser representation the Dunkl elements θi becomes the rational
Dunkl operators [17], see Definition 1.1. Moreover, one has [xk, uij] = 0, if k ̸= i, j, and

xi uij = uij xj +
1

zi − zj
(xi − xj − uij), xj uij = uij xi −

1

zi − zj
(xi − xj − uij).

(b) (Gaudin operators)
The Dunkl–Gaudin representation of the algebra DCY Bn is defined on the field of

rational functions Kn := R(q1, . . . , qn) and given by

xi(f(q)) := λ
∂ f(q)

∂qi
uij =

sij
qi − qj

, f(q) ∈ Kn,

but this time we assume that w(qi) = qi,∀i ∈ [1, n] and for all w ∈ Sn. In the Dunkl–
Gaudin representation the Dunkl elements becomes the rational Gaudin operators, see
e.g. [56]. Moreover, one has [xk, uij] = 0, if k ̸= i, j, and

xi uij = uij xj −
uij

qi − qj
, xj uij = uij xi +

uij
qi − qj

.

3 Algebra 3HTn

Consider the twisted classical Yang–Baxter relation

[uij + uia, uja] + [uia, uji] = 0, where i, j, k are distinct.

Having in mind applications of the Dunkl elements to Combinatorics and Algebraic
Geometry, we split the above relation on two relations

uij ujk = ujk uik − uik uji and ujk uij = uik ujk − uji uik (3.13)

and impose the following unitarity constraints

uij + uji = β,

where β is a central element. Summarizing, we come to the following definition.

Definition 3.1 Define algebra 3Tn(β) to be the quotient of the free associative algebra
Z[β] ⟨ uij, 1 ≤ i < j ≤ n ⟩ by the set of relations
• (Locality) uij ukl = ukl uij, if {i, j} ∩ {k, l} = ∅,
• uij ujk = uik uij + ujk uik − β uik, and ujk uij = uij uik + uik ujk − β uik,
if 1 ≤ i < j < k ≤ n.

It is clear that elements {uij, ujk, uik, 1 ≤ i < j < k ≤ n} satisfy the classical Yang–
Baxter relations, and therefore, the elements {θi :=

∑
j ̸=i uij, 1 = 1, . . . , n} form a

mutually commuting set of elements in the algebra 3Tn(β).

Definition 3.2 We will call θ1, . . . , θn by the (universal) additive Dunkl elements.

27



For each pair i < j, we define element qij := u2ij − β uij ∈ 3Tn(β).

Lemma 3.1
(1) The elements {qij, 1 ≤ i < j ≤ n} satisfy the Kohno– Drinfeld relations
( known also as the horizontal four term relations)

qij qkl = qkl qij, if {i, j} ∩ {k, l} = ∅,

[qij, qik + qjk] = 0, [qij + qik, qjk] = 0, if i < j < k.

(2) For a triple (i < j < k) define uijk := uij − uik + ujk. Then

u2ijk = β uijk + qij + qik + qjk.

(3) (Deviation from the Yang–Baxter and Coxeter relations)
uij uik ujk − ujk uik uij = [uik, qij] = [qjk, uik],
uij ujk uij − ujk uij ujk = qij uik − uik qjk.

Comments 3.1 It is easy to see that the horizontal 4-term relations listed in Lemma 3.1,
(1), are consequences of the locality condition among the generators {qij}, together with
the commutativity conditions among the Jucys–Murphy elements

di :=
n∑

j=i+1

qij, i = 2, . . . , n,

namely, [di, dj] = 0. In [37] we describe some properties of a commutative subalgebra
generated by the Jucys-Murphy elements in the Kohno– Drinfeld algebra. It is well-
known that the Jucys–Murphy elements generate a maximal commutative subalgebra in
the group ring of the symmetric group Sn. It is an open problem to describe defining
relations among the Jucys–Murphy elements in the group ring Z[Sn].

Finally we introduce the “Hecke quotient” of the algebra 3Tn(β), denoted by 3HTn(β).

Definition 3.3 Define algebra 3HTn(β) to be the quotient of the algebra 3Tn(β) by the
set of relations

qij qkl = qkl qij, for all i, j, k, l.

In other words we assume that the all elements {qij, 1 ≤ i < j ≤ n} are central in the
algebra 3Tn(β). From Lemma 3.1 follows immediately that in the algebra 3HTn(β) the
elements {uij} satisfy the multiplicative (or quantum) Yang–Baxter relations

uij uik ujk = ujk uik uij, if i < j < k. (3.14)

Comments 3.2 (Modified three term relations algebra 3MTn(β, ψ) )
Let β, {qij = qji, ψij = ψji, 1 ≤ i, j ≤ n}, be a set of mutually commuting elements.
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Definition 3.4 Modified 3-term relation algebra 3MTn(β, ψ) is an associative algebra
over the ring of polynomials Z[β, qij, ψij] with the set of generators {uij, 1 ≤ i, j ≤ n}
subject to the set of relations
• uij + uji = 0, uij ukl = ukl uij, if {i, j} ∩ {k, l} = ∅;
• ( three term relations )

uij ujk + uki uij + ujk uki = 0, if i, j, k are distinct;

• u2ij = β uuj + qij + ψij, if i ̸= j;
• uij ψkl = ψkl uij, if {i, j} ∩ {k, l} = ∅;
• (exchange relations) uij ψjk = ψik uij, if i, j, k are distinct;
• elements β, {qij, 1 ≤ i, j ≤ n} are central.

It is easy to see that in the algebra 3MTn(β, ψ) the generators {uij} satisfy the modified
Coxeter and modified quantum Yang–Baxter relations, namely
• (modified Coxeter relations) uij ujk uij − ujk uij ujk = (qij − qjk) uik,
• ( modified quantum Yang–Baxter relations)

uij uik ujk − ujk uik uij = (ψjk − ψij) uik,

if i, j, k are distinct
Clearly the additive Dunkl elements {θi :=

∑
j ̸=i uij, i = 1, . . . , n} generate a com-

mutative subalgebra in 3MTn(β, ψ).
It is still possible to describe relations among the additive Dunkl elements [37], cf

[39]. However we don’t know any geometric interpretation of the commutative algebra
obtained. It is not unlikely that this commutative subalgebra is a common generalization
of (small) quantum cohomology and elliptic cohomology (remains to be defined !) of
complete flag varieties.

The algebra 3MTn(β = 0, ψ) has an elliptic representation [37], [39]. Namely,

uij := σλi−λj
(zi − zj) sij, qij = ℘(λi − λj), ψij = −℘(zi − zj),

where {λi, i = 1, . . . , n} is a set of parameters (e.g. complex numbers), and {z1, . . . , zn}
is a set of variables; sij, i < j denotes the transposition that swaps i on j and fixes all
other variables;

σλ(z) :=
θ(z − λ) θ′

(0)

θ(z)θ(λ)

denotes the Kronecker sigma function; ℘(z) denotes the Weierstrass P -function.
The 3-term relations among the elements {uij} are consequence (in fact equivalent)

to the famous Jacobi-Riemann 3-term relation of degree 4 for the theta function θ(z), see
e.g. [78], p.451, Example 5. In several cases, see Introduction, relations (A) and (B),
identities among the Riemann theta functions can be rewritten in terms of the elliptic
Kronecker sigma functions and turn out to be a consequence of certain relations in the
algebra 3MTn(0, ψ) for some integer n, and vice versa 14.

14 It is commonly believed that any identity between the Riemann theta functions is a consequence
of the Jacobi–Riemann three term relations among the former. However we do not expect that the
all hypergeometric type identities among the Riemann theta functions can be obtained from certain
relations in the algebra 3MTn(0, ψ) after applying the elliptic representation of the latter.
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The algebra 3HTn(β) is the quotient of algebra 3MTn(β, ψ) by the two-sided ideal
generated by the elements {ψij}. The-fore the elements {uij of the algebra 3HTn(β)
satisfy the quantum Yang– Baxter relations uij uik ujk = ujk uik uij, i < j < k, and
as a consequence, the multiplicative Dunkl elements

Θi =
1∏

a=i−1

(1 + h ua,i)
−1

n∏
a=i+1

(1 + h ui,a), i = 1, . . . , n, u0,i = ui,n+1 = 0

generate a commutative subalgebra in the algebra 3HTn(β), see Section 3.1. We empha-
size that the Dunkl elements Θj, j = 1, . . . , n, do not pairwise commute in the algebra
3MTn(β), if ψij ̸= 0 for some i ̸= j. One way to construct a multiplicative analog
of additive Dunkl elements θi :=

∑
j ̸=i uij is to add a new set of mutually commuting

generators denoted by {ρij, ρij + ρji = 0, 1 ≤ i ̸= j ≤ n} subject to crossing relations
• ρij commutes with β, qkl and ψk,l for all i, j, k, l,
• ρij ukl = ukl ρij, if {i, j} ∩ {k, l} = ∅,
ρij ujk = ujk ρik, if i, j, k are distinct,
• ρ2ij − β ρij + ψij = ρ2jk − β ρjk + ψjk for all triples 1 ≤ i < j < k ≤ n.
Under these assumptions one can check that elements

Rij := ρij + uij, 1 ≤ i < j ≤ n

satisfy the quantum Yang–Baxter relations

Rij Rik Rjk = Rjk Rik Rij, i < j < k.

In the case of elliptic representation defined above, one can take

ρij := σµ(zi − zj),

where µ ∈ C∗ is a parameter. This solution to the quantum Yang– Baxter equation has
been discovered in [67]. It can be seen as operator form of the famous (finite dimensional)
solution to QY BE due to A. Belavin and V. Drinfeld [5]. One can go one step more
and add to the algebra in question a generator corresponding to the shift operator Tq,
Tq : z −→ q z, cf [20]. In this case one can define multiplicative Dunkl elements which
are closely related with the elliptic Ruijsenaars–Schneider–Macdonald operators.

3.1 Multiplicative Dunkl elements

Since the elements uij, uik and ujk i < j < k, satisfy the classical and quantum Yang–
Baxter relations (3.14), one can define a multiplicative analogue Θi, 1 ≤ i ≤ n, of the
Dunkl elements θi. Namely, to start with, we define elements

hij := hij(t) = 1 + t uij, i ̸= j.

We consider hij(t) as an element of the algebra 3̃HTn := 3HTn(β)⊗Z[[q±1
ij , t, x, y, . . .]],

where we assume that the all parameters {qij, t, x, y, . . .} are central in the algebra 3̃HTn.
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Lemma 3.2
(1a) hij(x) hij(y) = hij(x+ y + β xy) + qij xy,
(1b) hij(x) hji(y) = hij(x− y) + β y − qij x y, if i < j.
It follows from (1b) that hij(t) hji(t) = 1 + β t − t2 qij, if i < j, and therefore the

elements {hij} are invertible in the algebra 3̃HTn.
(2) hij(x) hjk(y) = hjk(y) hik(x) + hik(y) hij(x)− hik(x+ y + β xy).
(3) (Multiplicative Yang–Baxter relations)

hij hik hjk = hjk hik hij, if i < j < k.

(4) Define multiplicative Dunkl elements (in the algebra 3̃HTn) as follows

Θj := Θj(t) =
( 1∏

a=j−1

h−1
aj

) ( j+1∏
a=n

hja

)
, 1 ≤ j ≤ n. (3.15)

Then the multiplicative Dunkl elements pair-wise commute.

Clearly
n∏

j=1

Θj = 1, Θj = 1 + t θj + t2(. . .), and ΘI

∏
i/∈I,j∈I

i<j

(1 + tβ − t2 qij) ∈ 3HTn.

Here for a subset I ⊂ [1, n] we use notation ΘI =
∏

a∈I Θa,
Our main result of this Section is a description of relations among the multiplicative
Dunkl elements.

Theorem 3.1 ( A.N. Kirillov and T.Maeno, [40])
In the algebra 3HTn(β) the following relations hold true∑

I⊂[1,n]
|I|=k

ΘI

∏
i/∈I,j∈J

i<j

(1 + t β − t2 qij) =
[
n
k

]
1+tβ

.

Here
[
n
k

]
q

denotes the q-Gaussian polynomial.

Corollary 3.1
Assume that qij ̸= 0 for all 1 ≤ i < j ≤ n. Then the all elements {uij} are invertible

and u−1
ij = q−1

ij (uij − β) Now define elements Φi ∈ 3̃HTn as follows

Φi =
{ 1∏

a=i−1

u−1
ai

} { i+1∏
a=n

uia

}
, i = 1, . . . , n.

Then we have
(1) (Relationship among Θj and Φj )

tn−2j+1 Θj(t
−1) |t=0 = (−1)j Φj.
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(2) The elements {Φi, 1 ≤ i ≤ n, } generate a commutative subalgebra in the algebra
3̃HTn.

(3) For each k = 1, . . . , n, the following relation in the algebra 3HTn among the
elements {Φi} holds ∑

I⊂[1,n]
|I|=k

∏
i/∈I, j∈I

i<j

(−qij) ΦI = βk(n−k),

where ΦI :=
∏

a∈I Φa.

In fact the element Φi admits the following “reduced expression” which is useful for proofs
and applications

Φi =
{−→∏

j∈I

{−−→∏
i∈Ic+
i<j

u−1
ij

}} {−−→∏
j∈Ic+

{−→∏
i∈I
i<j

uij

}}
. (3.16)

Let us explain notations. For any (totally) ordered set I = (i1 < i2 < . . . < ik) we
denote by I+ the set I with the opposite order, i.e. I+ = (ik > ik−1 > . . . > i1);

if I ⊂ [1, n], then we set Ic := [1, n] \ I. For any (totally) ordered set I we denote by
−→∏
i∈I

the ordered product according to the order of the set I.
Note that the total number of terms in the RHS of (3.16) is equal to i(n− i).

Finally, from the “reduced expression” (3.144) for the element Φi one can see that∏
i/∈I,j∈I

i<j

(−qij) ΦI =
{−→∏

j∈I

{−−→∏
i∈Ic+
i<j

(β − uij)
}} {−−→∏

j∈Ic+

{−→∏
i∈I
i<j

uij

}}
:= Φ̃I ∈ 3HTn.

Therefore the identity ∑
I⊂[1,n]
|I|=k

Φ̃I = βk(n−k)

is true in the algebra 3HTn for any set of parameters {qij}.

Comments 3.3
In fact from our proof of Theorem 3.1 we can deduce more general statement,

namely, consider integers m and k such that 1 ≤ k ≤ m ≤ n. Then∑
I⊂[1,m]
|I|=k

ΘI

∏
i∈[1,m]\I,j∈J

i<j

(1 + t β − t2 qij) =
[
m
k

]
1+tβ

+
∑

A⊂[1,n],B⊂[1,n]
|A|=|B|=r

uA,B, (3.17)

where , by definition, for two sets A = (i1, . . . , ir) and B = (j1, . . . , jr) the symbol
uA,B is equal to the (ordered) product

∏r
a=1 uia,ja . Moreover, the elements of the sets

A and B have to satisfy the following conditions:
• for each a = 1, . . . , r one has 1 ≤ ia ≤ m < ja ≤ n, and k ≤ r ≤ k(n− k).

Even more, if r = k, then sets A and B have to satisfy the following additional conditions:
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• B = (j1 ≤ j2 ≤ . . . ≤ jk), and the elements of the set A are pair-wise distinct.

In the case β = 0 and r = k, i.e. in the case of additive (truncated) Dunkl elements,
the above statement, also known as the quantum Pieri formula, has been stated as
Conjecture in [22], and has been proved later in [58].

Corollary 3.2 ([40])
In the case when β = 0 and qij = qi δj−i,1, the algebra over Z[q1, . . . , qn−1] generated

by the multiplicative Dunkl elements {Θi and Θ−1
i , 1 ≤ i ≤ n} is canonically isomorphic

to the quantum K-theory of the complete flag variety F ln of type An−1.

It is still an open problem to describe explicitly the set of monomials {uA,B} which
appear in the RHS of (3.17) when r > k.

3.2 Truncated Gaudin operators

Let {pij 1 ≤ i ̸= j ≤ n} be a set of mutually commuting parameters. We assume that
parameters {pij}1≤i<j≤n are invertible and satisfy the Arnold relations

1

pik
=

1

pij
+

1

pjk
, i < j, k.

For example one can take pij = (zi − zj)−1, where z = (z1, . . . , zn) ∈ (C\0)n.

Definition 3.5 Truncated (rational) Gaudin operator corresponding to the set of param-
eters {pij}, is defined to be

Gi =
∑
j ̸=i

p−1
ij sij, 1 ≤ i ≤ n,

where sij denotes the exchange operator which switches variables xi and xj, and fixes
parameters {pij}.

We consider the Gaudin operator Gi as an element of the group ring Z[{p±1
ij }][Sn],

call this element Gi ∈ Z[{p±1
ij }][Sn], i = 1, . . . , n, by Gaudin element and denoted it by

θ
(n)
i .

It is easy to see that the elements uij := p−1
ij sij, 1 ≤ i ̸= j ≤ n, define a representation

of the algebra 3HTn(β) with parameters β = 0 and qij = u2ij = p2ij.
Therefore one can consider the (truncated) Gaudin elements as a special case of

the (truncated) Dunkl elements. Now one can rewrite the relations among the Dunkl
elements, as well as the quantum Pieri formula [22] , [58], in terms of the Gaudin elements.

The key observation which allows to rewrite the quantum Pieri formula as a certain
relation among the Gaudin elements is the following one:

parameters {p−1
ij } satisfy the Plücker relations

1

pik pjl
=

1

pij pkl
+

1

pil pjk
, if i < j < k < l.
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To describe relations among the Gaudin elements θ(n)i , i = 1, . . . , n, we need a bit of
notation. Let {pij} be a set of invertible parameters as before. ia < ja, a = 1, . . . , r.
Define polynomials in the variables h = (h1, . . . , hn)

G
(n)
m,k,r(h, {pij}) =

∑
I⊂[1,n−1]

|I|=r

1∏
i∈I pin

∑
J⊂[1,n]

|I|+m=|J |+k

(
n− |I

∪
J |

n−m− |I|

)
h̃J , (3.18)

where
h̃J =

∑
K⊂J, L⊂J,

|K|=|L|, K
∩

L=∅

∏
j∈J\(K

∪
L)

hj
∏

ka∈K, la∈L

p2ka,la ,

and summation runs over subsets K = {k1 < k2 < . . . < kr} and L = {l1 < l2 <
. . . < lr} ⊂ J}, such that ka < la a = 1, . . . , r.

Theorem 3.2 (Relations among the Gaudin elements, [37], cf [56])
Under the assumption that elements {pij, 1 ≤ i < j ≤ n} are invertible, mutually
commute and satisfy the Arnold relations, one has

• G
(n)
m,k,r(θ

(n)
1 , . . . , θ(n)n , {pij}) = 0, if m > k, (3.19)

• G
(n)
0,0,r(θ

(n)
1 , . . . , θ(n)n , {pij}) = er(d2, . . . , dn),

where d2, . . . , dn denote the Jucys–Murphy elements in the group ring Z[Sn] of the
symmetric group Sn, see Comments 3.1 for a definition of the Jucys–Murphy elements.

• Let J = {j1 < j2 . . . < jr} ⊂ [1, n], define matrix MJ := (ma,b)1≤a,b≤r, where

ma,b := ma,b(h; {pij}) =

 hja if a = b,
pja,jb if a < b,
−pjb,ja if a > b.

Then
h̃J = DET |MJ |.

Examples 3.1 (1) Let us display the polynomials G
(n)
m,k,r(h, {pij}) a few cases.

• G
(n)
m,0,r(h, {pij}) =

∑
I⊂[1,n−1]

|I|=r

∏
i∈I

p−1
in

( ∑
J⊂[1,n]

|J|=m+r,I⊂J

h̃J

)
.

• G
(n)
m,k,0(h, {pij}) =

(
n−m+ k

k

)
eqm−k(h1, . . . , hn).

• G
(n)
m,1,r(h, {pij}) =

∑
I⊂[1,n−1]

|I|=r

∏
i∈I

p−1
in

( ∑
J⊂[1,n]

I⊂J, |J|=m+r

(n−m− r + 1) h̃J+

∑
J⊂[1,n]

|J|=m+r−1, |I∪J|=m+r

h̃J

)
.
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(2) Let us list the relations (3.19) among the Gaudin elements in the case n =
3. First of all, the Gaudin elements satisfy the “standard” relations among the Dunkl
elements θ1 + θ2 + θ3 = 0, θ1θ2 + θ1θ3 + θ2θ3 + q12 + q13 + q23 = 0,

θ1θ2θ3 + q12 θ3 + q13 θ2 + q23 θ1 = 0. Moreover, we have additional relations which
are specific for the Gaudin elements

G
(3)
2,0,1 =

1

p13
(θ1θ2 + θ1θ3 + q12 + q13) +

1

p23
(θ1θ2 + θ2θ3 + q12 + q23) = 0,

the elements p23 θ1 + p13 θ2 and θ1 θ2 are central.

It is well-known that the elementary symmetric polynomials er(d2, . . . , dn) := Cr, r =
1, . . . , n, generate the center of the group ring Z[p±1

ij ][Sn], whereas the Gaudin ele-
ments {θ(n)i , i = 1, . . . , n}, generate a maximal commutative subalgebra B(pij), the
so-called Bethe subalgebra, in Z[p±1

ij ][Sn]. It is well-known, see e.g. [56], that B(pij) =⊕
λ⊢n Bλ(pij), where Bλ(pij) is the λ−isotypic component of B(pij). On each λ−isotypic

component the value of the central element Ck is the explicitly known constant ck(λ).
It follows from [56] that the relations (3.19) together with relations

G0,0,r(θ
(n)
1 , . . . , θ(n)n , {pij}) = cr(λ),

are the defining relations for the algebra Bλ(pij).
Let us remark that in the definition of the Gaudin elements we can use any set of

mutually commuting, invertible elements {pij} which satisfies the Arnold conditions. For
example, we can take

pij :=
qj−2(1− q)
1− qj−i

, 1 ≤ i < j ≤ n.

It is not difficult to see that in this case

lim
q→0

θ
(n)
J

p1j
= −dj = −

j−1∑
a=1

saj,

where as before, dj denotes the Jucys–Murphy element in the group ring Z[Sn] of the
symmetric group Sn. Basically from relations (2.15) one can deduce the relations among
the Jucys–Murphy elements d2, . . . , dn after plugging in (3.18) the values pij :=

qj−2(1−q)
1−qj−i

and passing to the limit q → 0. However the real computations are rather involved.
Finally we note that the multiplicative Dunkl / Gaudin elements {Θi, 1, . . . , n} also

generate a maximal commutative subalgebra in the group ring Z[p±1
ij ][Sn]. Some relations

among the elements {Θl} follow from Theorem 3.2, but we don’t know an analogue of
relations (3.14) for the multiplicative Gaudin elements, but see [56].

3.3 Shifted Dunkl elements di and Di

As it was stated in Corollary 3.2, the truncated additive and multiplicative Dunkl el-
ements in the algebra 3HTn(0) generate over the ring of polynomials Z[q1, . . . , qn−1]
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correspondingly the quantum cohomology and quantum K − theory rings of the full
flag variety F ln. In order to describe the corresponding equivariant theories, we will in-
troduce the shifted additive and multiplicative Dunkl elements. To start with we need
at first to introduce an extension of the algebra 3HTn(β).

Let {z1, . . . , zn} be a set of mutually commuting elements and {β, h, t, qij = qji, 1 ≤
i, j ≤ n} be a set of parameters.

Definition 3.6 Define algebra 3THn(β) to be the semi-direct product of the alge-
bra 3THn(β) and the ring of polynomials Z[h, t][z1, . . . , zn] with respect to the crossing
relations

(1) zi ukl = ukl zi if i /∈ {k, l},
(2) zi uij = uij zj + β zi + h, zj uij = uij zi − β zi − h, if 1 ≤ i < j < k ≤ n.

Now we set as before hij := hij(t) = 1 + t uij.

Definition 3.7
• Define shifted additive Dunkl elements to be

di = zi −
∑
i<j

uij +
∑
i<j

uji.

• Define shifted multiplicative Dunkl elements to be

Di =
( 1∏
a=i−1

h−1
ai

)
(1 + zi)

( i+1∏
a=n

hia

)
.

Lemma 3.3
[di, dj] = 0, [Di,Dj] = 0 for all i, j.

Now we stated an analogue of Theorem 3.1. for shifted multiplicative Dunkl elements.
As a preliminary step, for any subset I ⊂ [1, n] let us set DI =

∏
a∈I Da. It is clear that

DI

∏
i/∈I, j∈I

i<j

(1 + t β − t2 qij) ∈ 3HTn(β).

Theorem 3.3
In the algebra 3HTn(β) the following relations hold true∑

I⊂[1,n]
|I|=k

DI

∏
i/∈I,j∈J

i<j

(1 + t β − t2 qij) =
[
n
k

]
1+tβ

+

∑
I⊂[1,n]

I={i1,...,ik}

k∏
a=1

[
za(1 + βt)n−k + h

(1 + βt)n−k − (1 + βt)ia−a

β

]
.

In particular, if β = 0, we will have
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Corollary 3.3 In the algebra 3HTn(0) the following relations hold

∑
I⊂[1,n]
|I|=k

DI

∏
i/∈I,j∈J

i<j

(1− t2 qij) =
(
n

k

)
+

∑
I⊂[1,n]

I={i1,...,ik}

k∏
a=1

n∏
a=1

(
za + t h (n− k − ia + a)

)
.

One of the main steps in our proof of Theorem 2.3. is the following explicit formula for
the elements DI .

Lemma 3.4 One has

D̃I := DI (1 + t β − t2 qij) =
↗∏
b∈I

( ↘∏
a/∈I
a<b

hba

) ↗∏
a∈I

(
(1 + za)

↘∏
b/∈I
a<b

hab

)
.

Note that if a < b, then hba = 1 + βt− uab. Here we have used the symbol

↗∏
b∈I

( ↘∏
a/∈I
a<b

hba

)
to denote the following product. At first, for a given element b ∈ I let us define the
set I(b) := {a ∈ [1, n]\I, a < b} := (a

(b)
1 < . . . < a

(b)
p ) for some p (depending on b). If

I = (b1 < b2 . . . < bk) i.e. bi = a
(b)
i , then we set

↗∏
b∈I

( ↘∏
a/∈I
a<b

hba

)
=

k∏
j=1

(
ubj ,as ubj ,as−1 · · ·ubj ,a1

)
.

For example, let us take n = 6 and I = (1, 3, 5), then
D̃I = h32h54h52(1 + z1)h16h14h12(1 + z3)h36h34(1 + z5)h56.

4 Algebra 3T
(0)
n (Γ) and Tutte polynomial of weighted

complete graphs

4.1 Graph and nil-graph subalgebras, and partial flag varieties

Let’s consider the set Rn := {(i, j) ∈ Z× Z | 1 ≤ i < j ≤ n} as the set of edges of the
complete graph Kn on n labeled vertices v1, . . . , vn. Any subset S ⊂ Rn is the set of
edges of a unique subgraph Γ := ΓS of the complete graph Kn.

Definition 4.1 (Graph and nil-graph subalgebras) The graph subalgebra 3Tn(Γ),
(resp. nil-graph subalgebra 3T

(0)
n (Γ)) corresponding to a subgraph Γ ⊂ Kn of the complete

graph Kn, is defined to be the subalgebra in the algebra 3Tn (resp.3T (0)
n ) generated by the

elements {uij | (i, j) ∈ Γ}.

In subsequent Subsections 4.1.1 and 4.1.2 we will study some examples of graph subalge-
bras corresponding to the complete multipartite graphs, cycle graphs and linear graphs.
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4.1.1 NilCoxeter and affine nilCoxeter subalgebras in 3T
(0)
n

Our first example is concerned with the case when the graph Γ corresponds to either
the set S := {(i, i + 1) | i = 1, . . . , n − 1} of simple roots of type An−1, or the
set Saff := S

∪
{(1, n)} of affine simple roots of type A(1)

n−1.

Definition 4.2 (a) Denote by ÑCn subalgebra in the algebra 3T
(0)
n generated by the

elements ui,i+1, 1 ≤ i ≤ n− 1.

(b) Denote by ÃNCn subalgebra in the algebra 3T
(0)
n generated by the elements

ui,i+1, 1 ≤ i ≤ n− 1 and −u1,n.

Theorem 4.1
(A) (cf [4]) The subalgebra ÑCn is canonically isomorphic to the NilCoxeter algebra

NCn. In particular, Hilb(ÑCn, t) = [n]t!.

(B) The subalgebra ÃNCn has finite dimension and its Hilbert polynomial is equal to
Hilb(ÃNCn, t) = [n]t

∏
1≤j≤n−1[j(n− j)]t= [n]t!

∏
1≤j≤n−1[j]tn−j .

In particular, dim ÃNCn = (n− 1)! n!, degt Hilb(ÃNCn, t)=
(
n+1
3.

)
(C) The kernel of the map π : ÃNCn −→ ÑCn, π(u1,n) = 0, π(ui,i+1) = ui,i+1,

1 ≤ i ≤ n− 1, is generated by the following elements:

f (k)
n =

1∏
j=k

n−k+j−1∏
a=j

ua,a+1, 1 ≤ k ≤ n− 1.

Note that deg f
(k)
n = k(n− k).

The statement (C) of Theorem 4.1 means that the element f (k)
n which does not contain

the generator u1,n, can be written as a linear combination of degree k(n− k) monomials
in the algebra ÃNCn, each contains the generator u1,n at least once. By this means we
obtain a set of all extra relations (i.e. additional to those in the algebra ÑCn) in the
algebra ÃNCn. Moreover, each monomial M in all linear combinations mentioned above,
appears with coefficient (−1)#|u1,n∈M |+1. For example,

f
(1)
4 := u1,2u2,3u3,4 = u2,3u3,4u1,4 + u3,4u1,4u1,2 + u1,4u1,2u2,3; f

(2)
4 := u2,3u3,4u1,2u2,3 =

u1,2u3,4u2,3u1,4 + u1,2u2,3u1,4u1,2 + u2,3u1,4u1,2u3,4 + u3,4u2,3u1,4u3,4 − u1,4u1,2u3,4u1,4.

Remark 4.1 More generally, let (W,S) be a finite crystallographic Coxeter group of
rank l with the set of exponents 1 = m1 ≤ m2 ≤ · · · ≤ ml.

Let BW be the corresponding Nichols–Woronowicz algebra, see e.g. [4]. Follow [4],
denote by ÑCW the subalgebra in BW generated by the elements [αs] ∈ BW correspond-
ing to simple roots s ∈ S. Denote by ÃNWCW the subalgebra in BW generated by
ÑCW and the element [aθ], where [aθ] stands for the element in BW corresponding to
the highest root θ for W. In other words, ÃNWCW is the image of the algebra ÃNCW

under the natural map BE(W ) −→ BW , see e.g. [4], [38]. It follows from [4], Section 6,
that Hilb(ÑCW , t) =

∏l
i=1[mi + 1]t.
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Conjecture 4.1 (Y. Bazlov and A.N. Kirillov, 2002)

Hilb(ÃNWCW , t) =
l∏

i=1

1− tmi+1

1− tmi

l∏
i=1

1− tai
1− t

= Paff (W, t)
l∏

i=1

(1− tai),

where

Paff (W, t) :=
∑

w∈Waff

tl(w) =
l∏

i=1

(1 + t+ · · ·+ tmi)

1− tmi

denotes the Poincaré polynomial corresponding to the affine Weyl group Waff , see [11],
p.245; ai := (2ρ, α∨

i ), 1 ≤ i ≤ l, denote the coefficients of the decomposition of the sum
of positive roots 2ρ in terms of the simple roots αi.

In particular, dim ÃNWCW = |W |
∏l

i=1 ai∏l
i=1 mi

and degHilb(ÃNWCW , t) =
∑l

1=1 ai.

It is well-known that the product
∏l

i=1
1−tai
1−tmi

is a symmetric (and unimodal ?) poly-
nomial with non–negative integer coefficients.

Example 4.1 (a)

Hilb(ÃNC3, t) = [2]2t [3]t, Hilb(ÃNC4, t) = [3]2t [4]
2
t , Hilb(ÃNC5, t) = [4]2t [5]t[6]

2
t .

(b) Hilb(BE2, t) = (1 + t)4(1 + t2)2,

Hilb(ÃNCB2 , t) = (1 + t)3(1 + t2)2 = Paff (B2, t)(1− t3)(1− t4).

(c) Hilb(ÃNCB3 , t) =

(1+ t)3(1+ t2)2(1+ t3)(1+ t4)(1+ t+ t2)(1+ t3+ t6) = Paff (B3, t)(1− t5)(1− t8)(1− t9).

Indeed, mB3 = (1, 3, 5), aB3 = (5, 8, 9).

Definition 4.3 Let ⟨ÃNCn⟩ denote the two-sided ideal in 3T
(0)
n generated by the ele-

ments {ui,i+1}, 1 ≤ i ≤ n− 1, and u1,n. Denote by Un the quotient Un = 3T 0
n/⟨ÃNCn⟩.

Proposition 4.1

U4
∼= ⟨u1,3, u2,4⟩ ∼= Z2 × Z2; U5

∼= ⟨u1,4, u2,4, u2,5, u3,5, u1,3⟩ ∼= ÃNC5.

In particular, Hilb(3T
(0)
5 , t) =

[
Hilb(ÃNC5, t)

]2
.
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4.1.2 Parabolic 3-term relations algebras and partial flag varieties

In fact one can construct an analogue of the algebra 3HTn and a commutative subal-
gebra inside it, for any graph Γ = (V,E) on n vertices, possibly with loops and multiple
edges, [37]. We denote this algebra by 3Tn(Γ), and denote by 3T

(0)
n (Γ) its nil-quotient,

which may be considered as a “classical limit of the algebra 3Tn(Γ)”.
The case of the complete graph Γ = Kn reproduces the results of the present paper
and those of [37], i.e. the case of the full flag variety F ln. The case of the complete
multipartite graph Γ = Kn1,...,nr reproduces the analogue of results stated in the present
paper for the full flag variety F ln, in the case of the partial flag variety Fn1,...,nr , see [37]
for details.
We expect that in the case of the complete graph with all edges having the same mul-
tiplicity m, Γ = K

(m)
n , the commutative subalgebra generated by the Dunkl elements

in the algebra 3T
(0)
n (Γ) is related to the algebra of coinvariants of the diagonal action

of the symmetric group Sn on the ring of polynomials Q[X
(1)
n , . . . , X

(m)
n ], where we set

X
(i)
n = {x(i)1 , . . . , x

(i)
n }.

Example 4.2 Take Γ = K2,2. The algebra 3T (0)(Γ) is generated by four elements {a =
u13, b = u14, c = u23, d = u24} subject to the following set of (defining) relations
• a2 = b2 = c2 = d2 = 0, c b = b c, a d = d a,
• a b a+ b a b = 0 = a c a+ c a c, b d b+ d b d = 0 = c d c+ d c d,
a b d− b d c− c a b+ d c a = 0 = a c d− b a c− c d b+ d b a,
• a b c a+ a d b c+ b a d b+ b c a d+ c a d c+ d b c d = 0.
It is not difficult to see that 15

Hilb(3T (0)(K2,2), t) = [3]2t [4]2t , Hilb(3T (0)(K2,2)
ab, t) = (1, 4, 6, 3).

Here for any algebra A we denote by Aab its abelization.

The commutative subalgebra in 3T (0)(K2,2), which corresponds to the intersection
3T (0)(K2,2)

∩
Z[θ1, θ2, θ3, θ4], is generated by the elements c1 := θ1 + θ2 = (a + b + c +

d) and c2 := θ1 θ2 = (ac+ ca+ bd+ db+ ad+ bc). The elements c1 and c2 commute and
satisfy the following relations

c31 − 2 c1 c2 = 0, c22 − c21 c2 = 0.

The ring of polynomials Z[c1, c2] is isomorphic to the cohomology ring H∗(Gr(2, 4),Z)
of the Grassmannian variety Gr(2, 4).

More generally, take m ≤ n, and consider the complete multipartite graph Kn,m

which corresponds to the grassman variety Gr(n,m+ n.) One can show

Hilb(3T
(0)
n+m(Kn,m)

ab, t) =
n−1∑
k=0

(−1)k (1 + (n− k) t)m−1

n−k∏
j=1

(1 + j t)

{
n

n− k

}
15Hereinafter we shell use notation

(a0, a1, . . . , ak)t := a0 + a1t+ · · ·+ akt
k.

40



= tn+m−1 Tutte(Kn,m, 1 + t−1, 0),

where
{
n
k

}
:= S(n, k) denotes the Stirling numbers of the second kind, that is the num-

ber of ways to partition a set of n labeled objects into k nonempty unlabeled subsets, and
for any graph Γ, Tutte(Γ, x, y) denotes the Tutte polynomial 16 corresponding to
graph Γ.

It is well-known that the Stirling numbers S(n, k) satisfy the following identities

n−1∑
k=0

(−1)k S(n, n− k)
n−k∏
j=1

(1 + j t) = (1 + t)n,
∑
n≥k

{
n
k

}
xn

n!
=
ex − 1)k

k!
.

Let us observe that dim(3T (0)(Kn,n)
ab =

n−1∑
k=0

(−1)k (n+ 1− k)n−1 (n+ 1− k)!
{

n
n− k

}
= A048163, [68].

Moreover, if m ≥ 0, then∑
n≥1

dim(3T (0)(Kn,n+m)
ab) tn =

∑
k≥1

kk+m−1 (k − 1)! tk∏k−1
j=1(1 + k j t)

,

∑
n≥1

Hilb(3T (0)(Kn,m)
ab, t) zn−1 =

∑
k≥0

(1 + k t)m−1

k∏
j=1

z (1 + j t)

1 + j z
.

Comments 4.1 Poly-Bernoulli numbers Based on listed above identities involv-
ing the Stirling numbers S(n, k), one can prove the following combinatorial formula

dim(3T (0)(Kn,m)
ab) =

min(n,m)∑
j=1

(j!)2
{
n+ 1
j + 1

} {
m+ 1
j + 1

}
= B(−m)

n = B(−n)
m ,

where B
(k)
n denotes the poly-Bernoulli number introduced by M. Kaneko [33].

For the reader’s convenient, we recall below a definition of poly- Bernoulli numbers.
To start with, let k be an integer, the formal power series

Lik(z) :=
∞∑
n=1

zn

nk
.

16See e.g. http://en.wikipedia.org/wiki/Tutte.polynomial. It is well-known that

Tutte(Γ, 1 + t, 0) = (−1)|Γ| t−κ(Γ) Chrom(Γ,−t),

where for any graph Γ, |Γ| is equal to the number of vertices and κ(Γ) is equal to the number of
connected components of Γ. Finally Chrom(Γ, t) denotes the chromatic polynomial corresponding to
graph Γ, see e.g., [77], or http://en.wikipedia/wiki/ Chromatic.polynomial.
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if k ≥ 1, Lik(z) is the k-th polylogarithm, and if k ≤ 0, then Lik(z) is a rational func-
tion. Clearly Li1(z) = −ln(1− z). Now define poly-Bernoulli numbers by the generating
function

Lik(1− e−z)

1− e−z
=

∞∑
n=0

B(k)
n

zn

n!
.

Note that a combinatorial formula for the numbers B(−k)
n stated above follows from the

following identity [33]

∞∑
n=0

∞∑
k=0

B(−k)
n

xn

n!

zk

k!
=

ex+z

1− (1− ex)(1− ez)
.

Now let θ(n+m)
i =

∑
j ̸=i uij, 1 ≤ i ≤ n + m, be the Dunkl elements in the algebra

3T (0)(Kn+m), define the following elements the in the algebra 3T (0)(Kn,m)

ck := ek(θ
(n+m)
1 , . . . , θ(n+m)

n ), 1 ≤ k ≤ n, cr := er(θ
(n+m)
n+1 , . . . , θ

(n+m)
n+m , 1 ≤ r ≤ m.

Clearly,

(1 +
n∑

k=1

ck t
k)(1 +

m∑
r=1

cr t
r) =

n+m∏
j=1

(1 + θ
(n+m)
j ) = 1.

Moreover, there exist the natural isomorphisms of algebras

H∗(Gr(n, n+m),Z) ∼= Z[c1, . . . , cn]/
⟨
(1 +

n∑
k=1

ck t
k)(1 +

m∑
r=1

cr t
r)− 1

⟩
,

QH∗(Gr(n, n+m)) ∼= Z[q][c1, . . . , cn]/
⟨
(1 +

n∑
k=1

ck t
k)(1 +

m∑
r=1

cr t
r)− 1− q tn+m

⟩
,

where for a commutative ring R and a polynomial p(t) =
∑s

j=1 gj t
j ∈ R[t], we denote

by ⟨p(t)⟩ the ideal in the ring R generated by the coefficients g1, . . . , gs.

These examples are illustrative of the similar results valid for the general complete
multipartite graphs Kn1,...,nr , i.e. for the partial flag varieties [37].

To state our results for partial flag varieties we need a bit of notation. Let N :=
n1 + . . . + nr, nj > 0, ∀j, be a composition of size N. We set Nj := n1 + · · · +
nj, j = 1, . . . , r, and N0 = 0, Now, consider the commutative subalgebra in the algebra
3T

(0)
N (KN) generated by the set of Dunkl elements {θ(N)

1 , . . . , θ
(N)
N }, and define elements

{c(j,N)
kj

∈ 3T
(0)
N (Kn1,...,nr)} to be the degree kj elementary symmetric polynomials of the

Dunkl elements θ
(N)
Nj−1+1, . . . , θ

(N)
Nj
, namely

c
(j)
k := c

(j,N)
kj

= ek(θ
(N)
Nj−1+1, . . . , θ

(N)
Nj

), 1 ≤ kj ≤ nj, j = 1, . . . , r, c
(j)
0 = 1, ∀j.
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Clearly
r∏

j=1

(

nj∑
a=0

c(j)a ta) =
N∏
j=1

(1 + θ
(N)
j tj) = 1.

Theorem 4.2
The commutative subalgebra generated by the elements {c(j)kj

, 1 ≤ kj ≤ nj, 1 ≤ j ≤ r−1},
in the algebra 3T

(0)
N (Kn1,...,nr) is isomorphic to the cohomology ring H∗(F ln1,...,nr ,Z) of

the partial flag variety F ln1,...,nr .

▶ In other words, we treat the Dunkl elements {θ(N)
Nj−1+a, 1 ≤ a ≤ nj}, j =

1, . . . , r, as the Chern roots of the vector bundles {ξj := Fj/Fj−1}, j = 1, . . . , r, over
the partial flag variety F ln1,...,nr .

Recall that a point F of the partial flag variety F ln1,...,nr , n1 + · · · + nr = N, is a
sequence of embedded subspaces

F = {0 = F0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fr = CN} such that dim(Fi/Fi−1) = ni, i = 1, . . . , r.

By definition, the fiber of the vector bundle ξi over a point F ∈ F ln1,...,nr is the ni-
dimensional vector space Fi/Fi−1.

◀
A meaning of the algebra 3T

(0)
n (Γ) and the corresponding commutative subalgebra

inside it for a general graph Γ, is still unclear.

Conjecture 4.2
Let Γ = (V,E) be a connected subgraph of the complete graph Kn on n vertices. Then

Hilb(3T (0)
n (Γ)ab, t) = t|V |−1 Tutte(Γ; 1 + t−1, 0).

Examples
(1) Let G = K2,2 be complete bipartite graph of type (2, 2). Then,
Hilb(3T 0

4 (2, 2)
ab, t) = (1, 4, 6, 3) = t2 (1 + t) + t (1 + t)2 + (1 + t)3,

and the Tutte polynomial for the graph K2,2 is equal to x+ x2 + x3 + y.
(2) Let G = K3,2 be complete bipartite graph of type (3, 2). Then,

Hilb(3T 0
5 (3, 2)

ab, t) = (1, 6, 15, 17, 7) = t3 (1 + t) + 3 t2 (1 + t)2 + 2t (1 + t)3 + (1 + t)4,
and the Tutte polynomial for the graph K3,2 is equal to x+3 x2+2 x3+x4+y+3 x y+y2.

(3) Let G = K3,3 be complete bipartite graph of type (3, 3). Then
Hilb(3T 0

6 (3, 3)
ab, t) = (1, 9, 36, 75, 78, 31) =

(1 + t)5 + 4t(1 + t)4 + 10t2(1 + t)3 + 11t3(1 + t)2 + 5t4(1 + t),
and the Tutte polynomial of the bipartite graph K3,3 is equal to
5x+ 11x2 + 10x3 + 4x4 + x5 + 15xy + 9x2y + 6xy2 + 5y + 9y2 + 5y3 + y4.

(4) Consider complete multipartite graph K2,2,2. One can show that

Hilb(3T
(0)
6 (K2,2,2)

ab, t) = (1, 12, 58, 137, 154, 64) =

11 t4(1 + t) + 25 t3(1 + t)2 + 20 t2(1 + t)3 + 7 t(1 + t)4 + (1 + t)5,
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and Tutte(K2,2,2, x, y) = x(11, 25, 20, 7, 1)x + y (11, 46, 39, 8)x + y2(32, 52, 12)x +
y3(40, 24)x+ y4(29, 6)x + 15y5 + 5y6 + y7.

The above examples show that the Hilbert polynomial Hilb(3T 0
n(G)

ab, t) appears to
be a certain specialization of the Tutte polynomial of the corresponding graph G. Instead
of using the Hilbert polynomial of the algebra 3T 0

n(G)
ab one can consider the graded Betti

numbers polynomial Betti(3T 0
n(G)

ab, x, y). For example,

Betti(3T 0
3 (K3)

ab, x, y) = 1 + 4 x y + x2 (2 y + 3 y2) + 2 x3 y2,

Betti(3T 0
4 (K2,2)

ab, x, y) = 1 + x (4 y + y2) + x2 (9 y2 + y3) + x3 (3 y2 + 6 y3) + 3 x4 y3,

Betti(3T 0
4 (K4)

ab, x, y) =

1+10 x y+x2 (10 y+24 y2)+x3 (46 y2+15 y3)+x4 (25 y2+36 y3)+x5 (6 y2+25 y3)+6 x6 y3.

Claim Let G = (V,E) be a connected graph without loops. Then (n = |V |, e = |E|)

Betti(3T 0
n(G)

ab,−x, x) = (1− x)e Hilb(3T 0
n(G)

ab, x).

Question Let G be a connected subgraph of the complete graph Kn. Does the graded
Betti polynomial Betti(3T 0

n(G)
ab, x, y) is a certain specialization of the Tutte polynomial

T (G, x, y) ?

Conjecture 4.3 Let n = (n1, . . . , nr) be a composition of n ∈ Z≥1, then

Hilb(3T (0)(Kn1,...,nr)
ab, t) =

∑
k=(k1,...,kr)
0<kj≤nj

(−t)|n|−|k|
r∏

j=1

{
nj

kj

} |k|−1∏
j=1

(1 + jt),

where we set |k| := k1 + . . .+ kr.

Corollary 4.1 If Conjecture 3 is true, then

(a) 1 + t(t− 1)
∑

(n1,...,nr)∈Zr
≥0 \0r

Hilb(3T (0)(Kn1,...,nr)
ab, t)

xn1
1

n1!
· · · x

nr
r

nr!
=

(
1 + t

r∑
j=1

(e−xj − 1)
)1−t

.

(b)
∑

(n1,n2,...,nr)∈Z≥0\0r
dim(3T (0)(Kn1,...,nr)

ab x
n1

n1!
· · · x

nr

nr!
= −log

(
1− r +

r∑
j=1

e−xj).

(c) Hilb(3T (0)(Kn1,...,nr)
ab, t) = (−t)|n| Chrom(Kn1,...,nr ,−t−1),

where for any graph Γ we denote by Chrom(Γ, x) the chromatic polynomial of that graph.
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Indeed, one can show 17

Proposition 4.2 If r ∈ Z≥1, then

Chrom(Kn1,...,nr , t) =
∑

k=(k1,...,kr)

r∏
j=1

{
nj

kj

}
(t)|k|,

where by definition (t)m :=
∏m−1

j=1 (t− j).

Finally we describe explicitly the exponential generating function for the Tutte poly-
nomials of the weighted complete multipartite graphs. We refer the reader to [54] for a
definition and a list of basic properties of the Tutte polynomial of a graph.

Definition 4.4 Let r ≥ 2 be a positive integer and {S1, . . . , Sr} be a collection of sets
of cardinalities #|Sj| = nj, j = 1, . . . , r. Let ℓ := {ℓij}1≤i<j≤n be a collection of non-
negative integers.

The ℓ-weighted complete multipartite graph K
(ℓ)
n1,...,nr is a graph with the set of ver-

tices equals to the disjoint union
⨿r

j=1 Si of the sets S1, . . . , Sr, and the set of edges
{(αi, βj), αi ∈ Si, βj ∈ Sj}1≤i<j≤r of multiplicity ℓij each.

Theorem 4.3 Let us fix an integer r ≥ 2 and a collection of non-negative integers
ℓ := {ℓij}1≤i<j≤r. Then

1 +
∑

n=(n1,...,nr)∈Zr≥0
n̸=0

(x− 1)κ(ℓ,n) Tutte(K(ℓ)
n1,...,nr

, x, y)
tn1
1

n1!
· · · t

nr
r

nr!
=

( ∑
m=(m1,...,mr)∈Zr

≥0

y
∑

1≤i<j≤r ℓij mimj (y − 1)−|m| t
m1
1

m1!
· · · t

mr
r

mr!

)(x−1)(y−1)

,

where κ(ℓ,n) denotes the number of connected components of the graph K(ℓ)
n1,...,nr .

• (Comments and Examples)
(a) Clearly the condition ℓij = 0 means that there are no edges between vertices

from the sets Si and Sj. Therefore Theorem 4.3 allows to compute the Tutte polynomial
of any (finite) graph. For example,
Tutte(K

(16)
2,2,2,2, x, y) = {(0, 362, 927, 911, 451, 121, 17, 1)x, (362, 2154, 2928, 1584, 374, 32)x,

(1589, 4731, 3744, 1072, 96)x, (3376, 6096, 2928, 448, 16)x, (4828, 5736, 1764, 152)x,

17 If r = 1, the complete unipartitite graph K(n) consists of n distinct points, and

Chrom(K(n), x) = xn =
n−1∑
k=0

{
n
k

}
(x)k.

Let us stress that to abuse of notation the complete unipartite graph K(n) consists of n disjoint points
with the Tutte polynomial equals to 1 for all n ≥ 1, whereas the complete graph Kn is equal to the
complete multipartite graph K(1n).
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(5404, 4464, 900, 32)x, (5140, 3040, 380)x, (4340, 1840, 124)x, (3325, 984, 24)x, (2331, 448)x,
(1492, 168)x, (868, 48)x, (454, 8)x, 210, 84, 28, 7, 1}y.

(b) One can show that a formula for the chromatic polynomials from Proposition 4.2
corresponds to the specialization y = 0 (but not direct substitution !) of the formula for
generating function for the Tutte polynomials stated in Theorem 4.3.

(c) The Tutte polynomial Tutte(Kℓ
n1,...

, x, y) does not symmetric with respect
to parameters {ℓij}1≤i<j≤n. For example, let us write ℓ = (ℓ12, ℓ23, ℓ13, ℓ14, ℓ24, ℓ34),
then Tutte(K

(6,3,4,5,2,4)
2,2,2,2 , 1, 1) = 28 · 3 · 5 · 113 · 241 = 1231760640.On the other hand,

Tutte(K
(6,4,3,5,2,4)
2,2,2,2 , 1, 1) = 213 · 3 · 7 · 112 · 61 = 1269768192.

(d) (Universal Tutte polynomials)
Let m = (mij, 1 ≤ i < j ≤ n) be a collection of non-negative integers. Define

generalized Tutte polynomial T̃n(m, x, y) as follows : T̃n(m, x, y) =

Coeff[t1···tn]

( ∑
ℓ1,...,ℓn

ℓi∈{0,1},∀i

y
∑

1≤i<j≤n mij ℓiℓj (y − 1)−
∑

J ℓj
tℓ11
ℓ1!
· · · t

ℓn
n

ℓn!

)(x−1)(y−1)

.

Clearly that if Γ ⊂ K
(ℓ)
n is a subgraph of the weighted complete graph K

(ℓ)
n :

def
= K

(ℓ)
1n ,

then the Tutte polynomial of graph Γ myltiplied by (x− 1)κ(Γ) is equal to the following
specialization

mij = 0 if edge (i, j) /∈ Γ, mij = ℓij if edge (i, j) ∈ Γ

of the generalized Tutte polynomial

(x− 1)κ(Γ) Tutte(Γ, x, y) = T̃n(m, x, y)
∣∣∣

mij=0, if (i,j)/∈Γ

mij=ℓij if (i,j)∈Γ

.

For example,
(a) Take n = 6 and Γ = K6 \ {15, 16, 24, 25, 34, 36} , then Tutte(Γ, x, y) =

{(0, 4, 9, 8, 4, 1)x, (4, 13, 9)x, (8, 7)x, 5, 1}y.
(b) Take n = 6 and Γ = K6 \ {15, 26, 34}, then Tutte(Γ, x, y) =
{(0, 11, 25, 20, 7, 1)x, (11, 46, 39, 8)x, (32, 52, 12)x, (40, 24)x, (29, 6)x, 15, 5, 1}y.
(c) Take n = 6 and Γ = K6 \ {12.34.56} = K2,2,2. As a result one obtains an

expression for the Tutte polynomial of the graph K2,2,2 displayed in Example 4.1.

Now set us set
qij :=

ymij − 1

y − 1
.

Lemma 4.1 The generalized Tutte polynomial T̃n(m, x, y) is a polynomial in the
variables {qij}1≤i<j≤n, x and y.

Definition 4.5 The universal Tutte polynomial Tn({qij}, x, y) is defined to be the
polynomial in the variables {qij}, x, and y defined in Lemma 4.2.
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Explicitly, Tn({qij}, x, y) =

Coeff[t1···tn]

( ∑
ℓ1,...,ℓn

ℓi∈{0,1},∀i

∏
1≤i<j≤n

(qij (y − 1) + 1)ℓiℓj (y − 1)−
∑

J ℓj
tℓ11
ℓ1!
· · · t

ℓn
n

ℓn!

)(x−1)(y−1)

.

Corollary 4.2 Let {mij}1≤i<j≤n be a collection of positive integers. Then the special-
ization

qij −→ [mij]y :=
ymij − 1

y − 1

of the universal Tutte polynomial Tn({qij}, x, y) is equal to the Tutte polynomial of the
complete graph Kn with each edge (i, j) of the multiplicity mij.

Further specialization qij −→ 0, if edge(i, j) /∈ Γ allows to compute the Tutte polyno-
mial for any graph.

Exercises 4.1
(1) Assume that ℓij = ℓ for all 1 ≤ i < j ≤ r. Based on the above formula for the

exponential generating function for the Tutte polynomials of the complete multipartite
graphs Kn1,...,nr , deduce the following well-known formula

Tutte(K(ℓ)
n1,...,nr

, 1, 1) = ℓN−1 N r−2

r∏
j=1

(N − nj)
nj−1,

where N := n1 + · · ·+nr. It is well-known that the number Tutte(Γ, 1, 1) is equal to the
number of spanning trees of a connected graph Γ.

(2) Take r = 3 and let n1, n2, n3 and ℓ12, ℓ13, ℓ23 be positive integers. Set N :=
ℓ12ℓ13n1 + ℓ12ℓ23n2 + ℓ13ℓ23n3 Show that

Tutte(Kℓ1,ℓ2,ℓ3
n1,n2,n3

, 1, 1) = N (ℓ12n2 + ℓ13n3)
n1−1(ℓ12n1 + ℓ13n3)

n2−1)(ℓ13n1 + ℓ23n2)
n3−1.

(3) Let r ≥ 2, consider weighted complete multipartite graph K
(ℓ)
n, . . . , n︸ ︷︷ ︸

r

, where

ℓ = (ℓij) such that ℓ1,j = ℓ, j = 1, . . . , r and ℓij = k, 2 ≤ i < j ≤ r. Show that

Tutte(K
(ℓ)
n, . . . , n︸ ︷︷ ︸

r

, 1, 1) = kn (r − 1)n−1
(
(r − 1)ℓ+ k

)r−2 (
(r − 2)ℓ+ k

)(r−1)(n−1)

nnr−1.

Let Γn(∗) be a spanning star subgraph of the complete graph Kn. For example, one can
take for a graph Γn(∗) the subgraph K1,n−1 with the set of vertices V := {1, 2, . . . , n}
and that of edges E := {(i, n), i = 1, . . . , n− 1}. The algebra 3T

(0)
n (K1,n−1) can be

treated as a “noncommutative analog” of the projective space Pn−1.
We have θ1 = u12 + u13 + . . .+ u1n. It is not difficult to see that

Hilb(3T
(0)
n (K1,n−1)

ab, t) = (1 + t)n−1, and θn1 = 0.
Let us observe that Chrom(Γn(⋆), t) = t(t− 1)n−1.
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Problem 4.1 Compute the Hilbert series of the algebra 3T
(0)
n (Kn1,...,nr).

The first non-trivial case is that of projective space, i.e. the case r = 2, n1 = 1, n2 = 5.

On the other hand, if Γn = {(1, 2)→ (2, 3)→ . . .→ (n− 1, n)} is the Dynkin graph
of type An−1, then the algebra 3T

(0)
n (Γn) is isomorphic to the nil-Coxeter algebra of type

An−1, and if Γ(aff)
n = {(1, 2) → (2, 3) → . . . → (n − 1, n) → −(1, n)} is the Dynkin

graph of type A(1)
n−1, i.e. a cycle, then the algebra 3T

(0)
n (Γ

(aff)
n ) is isomorphic to a certain

quotient of the affine nil-Coxeter algebra of type A(1)
n−1 by the two-sided ideal which can

be described explicitly [37]. Moreover, ibid,

Hilb(3T 0)
n (Γ(aff)), t) = [n]t

n−1∏
j=1

[j(n− j)]t,

see Theorem 4.1. Therefore, the dimension dim(3T (0)(Γaff )) is equal to n! (n− 1)! and
is equal also to the number of (directed) Hamiltonian cycles in the complete bipartite
graph Kn,n, see [68], A010790.
It is not difficult to see that

Hilb(3T (0)
n (Γn)

ab, t) = (t+ 1)n−1, Hilb(3T (0)(Γaff
n )ab, t) = t−1 ((t+ 1)n − t− 1),

whereas

Chrom(Γn, t) = t(t− 1)n−1, Chrom(Γaff
n , t) = (t− 1)n + (−1)n (t− 1).

Exercises 4.2 Let Kn1,...,nr be complete multipartite graph, N := n1 + · · ·+ nr.
Show that 18

Hilb(3TN(Kn1,...,nr), t) =

∏r
j=1

∏nj−1
a=1 (1− a t)∏N−1

j=1 (1− j t)
.

4.1.3 Quasi-classical and associative classical Yang–Baxter algebras of type
Bn.

In this Section we introduce an analogue of the algebra 3Tn(β) for the classical root
systems.

18 It should be remembered that to abuse of notation, the complete graph Kn, by definition, is equal
to the complete multipartite graph K((1, . . . , 1)︸ ︷︷ ︸

n

), whereas the graph K(n) is a collection of n distinct

points.
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Definition 4.6
(A) The quasi-classical Yang–Baxter algebra ̂ACY B(Bn) of type Bn is an

associative algebra with the set of generators {xij, yij, zi, 1 ≤ i ̸= j ≤ n} subject to the
set of defining relations

(1) xij + xij = 0, yij = yji, if i ̸= j,
(2) zi zj = zj zi,
(3) xij xkl = xkl xij, xij ykl = ykl xij, yij ykl = ykl yij, if i, j, k, l are distinct,
(4) zi xkl = xkl zi, zi ykl = ykl zi, if i ̸= k, l,
(5) (Three term relations)
xij xjk = xik xij + xjk xik − β xik, xij yjk = yik xij + yjk yik − β yik,
xik yjk = yjk yij + yij xik + β yij, yik xjk = xjk yij + yij yik + β yij,
if 1 ≤ i < j < k ≤ n,
(6) (Four term relations)
xij zj = zi xij + yij zi + zj yij − β zi,
if i < j.
(B) The associative classical Yang–Baxter algebra ACY B(Bn) of type Bn

is the special case β = 0 of the algebra ̂ACY B(Bn).

Comments 4.2
• In the case β = 0 the algebra ACY B(Bn) has a rational representation

xij −→ (xi − xj)−1, yij −→ (xi + xj)
−1, zi −→ x−1

i .

• In the case β = 1 the algebra ̂ACY B(Bn) has a “trigonometric” representation

xij −→ (1− qxi−xj)−1, yij −→ (1− qxi+xj)−1, zi −→ (1 + qxi)(1− qxi)−1.

Definition 4.7 The bracket algebra E(Bn) of type Bn is an associative algebra with
the set of generators {xij, yij, zi, 1 ≤ i ̸= j ≤ n} subject to the set of relations (1)− (6)
listed in Definition 4.4, and the additional relations

(5a) xjk xij = xij xik + xik xjk − β xik, yjk xij = xij yik + yik yjk − β yik,
yjk xik = yij yjk + xik yij + β yij, xjk yik = yij xjk + yik yij + β yij,
if 1 ≤ i < j < k ≤ n,
(6a) zj xij = xij zi + zi yij + yij zj − β zi,
if i < j.

Definition 4.8 The quasi-classical Yang–Baxter algebra ̂ACY B(Dn) of type Dn, as well
as the algebras ACY B(Dn) and E(Dn), are defined by putting zi = 0, i = 1, . . . , n, in
the corresponding Bn-versions of algebras in question.

Conjecture 4.4 The both algebras E(Bn) and E(Dn) are Koszul, and

Hilb(E(Bn), t) = (
n∏

j=1

(1− (2j − 1)t))−1; if n ≥ 4, Hilb(E(Dn), t) = (
n−1∏
j=1

(1− 2j t))−1.
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Example 4.3 Hilb(ACY B(B2), t) = (1− 4t+ 2t2)−1,
Hilb(ACY B(B3), t) = (1− 9t+ 16t2 − 4t3)−1,
Hilb(ACY B(B4), t) = (1− 16t+ 64t2 − 60t3 + 9t4)−1,
Hilb(ACY B(D4), t) = (1− 12t+ 18t2 − 4t3)−1.
However, Hilb(ACY B(B5), t) = (1− 25t+ 180t2 − 400t3 + 221t4 − 31t5)−1.

Let us introduce the following Coxeter type elements:

wBn :=
n−1∏
a=1

xa,a+1 zn ∈ E(Bn), and wDn :=
n−1∏
a=1

xa,a+1 yn−1,n ∈ E(Dn).

Let us bring the element wBn (resp. wDn ) to the reduced form in the algebra E(Bn) that
is, let us consecutively apply the defining relations (1)− (6), (5a, 6a) to the element wBn

(resp. apply to wDn the defining relations for algebra E(Dn) ) in any order until unable
to do so. Denote the the resulting (noncommutative) polynomial by PBn(xij, yij, z) (resp.
PDn(xij, yij)). In principal, this polynomial itself can depend on the order in which the
relations (1)− (6), (5a, 6a) are applied.

Conjecture 4.5 (Cf [71], 6.C5, (c))
(1) Apart from applying the commutativity relations (1) − (4) , the polynomial

PBn(xij, yij, z) (resp. PDn(xij, yij)) does not depend on the order in which the defining
relations have been applied.

(2) Define polynomial PBn(s, r, t) (resp. PDn(s, r)) to be the the image of that
PBn(xij, yij, z) (resp. PDn(xij, yij)) under the specialization

xij −→ s, yij −→ r, zi −→ t.

Then
PBn(1, 1, 1) =

1
2

(
2n
n

)
= 1

2
CatBn .

Note that PBn(1, 0, 1) = CatAn−1 .

4.2 Super analogue of 6-term relations and classical Yang–Baxter
algebras

4.2.1 Six term relations algebra 6Tn, its quadratic dual (6Tn)
!, and algebra

6HTn

Definition 4.9 The 6 term relations algebra 6Tn is an associative algebra (say
over Q) with the set of generators {ri,j, 1 ≤ i ̸= j < n}, subject to the following relations:

1) ri,j and rk,l commute, if {i, j} ∩ {k, l} = ∅,
2) (unitarity condition) rij + rji = 0,
3) (Classical Yang–Baxter relations)

[rij, rik + rjk] + [rik, rjk] = 0, if i, j, k are distinct.
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We denote by CY Bn, named by classical Yang–Baxter algebra, an associative algebra
over Q generated by elements {rij, 1 ≤ i ̸= j ≤ n} subject to relations 1) and 3).

Note that the algebra 6Tn is given by
(
n
2

)
generators and

(
n
3

)
+ 3

(
n
4

)
quadratic

relations.

Definition 4.10 Define Dunkl elements in the algebra 6Tn to be

θi =
∑
j ̸=i

rij, i = 1, . . . , n.

It easy to see that the Dunkl elements {θi}1≤i≤n generate a commutative subalgebra in
the algebra 6Tn.

Example 4.4 (Some “rational and trigonometric” representations of the al-
gebra 6Tn)

Let A = U(sl(2)) be the universal enveloping algebra of the Lie algebra sl(2). Recall
that the algebra sl(2) is spanned by the elements e, f, h, such that [h, e] = 2e, [h, f ] =
−2f, [e, f ] = h.

Let’s search for solutions to the CY BE in the form

ri,j = a(ui, uj) h⊗ h+ b(ui, uj) e⊗ f + c(ui, uj) f ⊗ e,

where a(u, v), b(u, v) ̸= 0, c(u, v) ̸= 0 are meromorphic functions of the variables (u, v) ∈
C2, defined in a neighborhood of (0, 0), taking values in A⊗A. Let aij := a(ui, uj) (resp.
bij := b(ui, uj), cij := c(ui, uj)).

Lemma 4.2 The elements ri,j := aij h⊗ h+ bij e⊗ f + cij f ⊗ e satisfy CYBE iff
bij bjk cik = cij cjk bik and 4 aik = bij bjk/bik − bik cjk/bij − bik cij/bjk,
for 1 ≤ i < j < k ≤ n.

It is not hard to see that
• there are three rational solutions:

r1(u, v) =
1/2 h⊗ h+ e⊗ f + f ⊗ e

u− v
, r2(u, v) =

u+ v

4(u− v)
h⊗h+ u

u− v
e⊗f+ v

u− v
f⊗e,

and r3(u, v) := −r2(v, u).
• there is a trigonometric solution

rtrig(u, v) =
1

4

q2u + q2v

q2u − q2v
h⊗ h+

qu+v

q2u − q2v
(
e⊗ f + f ⊗ e

)
.

Notice that the Dunkl element θj :=
∑

a ̸=j rtrig(ua, uj) corresponds to the trun-
cated (or level 0) trigonometric Knizhnik–Zamolodchikov operator.

In fact, the “sln-Casimir element” Ω = 1
2

(∑n
i=1 Eii⊗Eii

)
+
∑

1≤i<j≤n Eij⊗Eji sat-
isfies the 4-term relations

[Ω12,Ω13 + Ω23] = 0 = [Ω12 + Ω13,Ω23],

and the elements rij :=
Ωij

ui−uj
, 1 ≤ i < j ≤ n, satisfy the classical Yang–Baxter relations.

Recall that the set {Eij := (δik δjl)1≤k,l≤n, 1 ≤ i, j ≤ n}, stands for the standard
basis of the algebra Mat(n,R).
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Definition 4.11 Denote by 6T
(0)
n the quotient of the algebra 6Tn by the (two-sided) ideal

generated by the set of elements {r2i,j, 1 ≤ i < j ≤ n}.

More generally, let {β, qij, 1 ≤ i < j ≤ n} be a set of parameters. Let R := Q[β][q±1
ij ].

Definition 4.12 Denote by 6HTn the quotient of the algebra 6Tn⊗R by the (two-sided)
ideal generated by the set of elements {r2i,j − β ri,j − qij, 1 ≤ i < j ≤ n}.

All these algebras are naturally graded, with deg(ri,j) = 1, deg(β) = 1, deg(qij) = 2.

It is clear that the algebra 6T
(0)
n can be considered as the infinitesimal deformation

Ri,j := 1 + ϵ ri,j, ϵ −→ 0, of the Yang-Baxter group 19 Y Bn.

Corollary 4.3 Define hij = 1+ rij ∈ 6HTn. Then the following relations in the algebra
6HTn are satisfied:

(1) rij rik rjk = rjk rik rij for all pairwise distinct i, j and k;
(2) (Yang-Baxter relations) hij hik hjk = hjk hik hij, if 1 ≤ i < j < k ≤ n.

Note, the item (1) includes three relations in fact.

Proposition 4.3
(1) The quadratic dual (6Tn)! of the algebra 6Tn is a quadratic algebra generated

by the elements {ti,j, 1 ≤ i < j ≤ n} subject to the set of relations
(i) t2i,j = 0 for all i ̸= j;
(ii) (Anticommutativity) tij tk,l + tk,l ti,j = 0 for all i ̸= j and k ̸= l;
(iii) ti,j ti,k = ti,k tj,k = ti,j tj,k, if i, j, k are distinct.
(2) The quadratic dual (6T (0)

n )! of the algebra 6T
(0)
n is a quadratic algebra with

generators {ti,j, 1 ≤ i < j ≤ n} subject to the relations (ii)-(iii) above only.

4.2.2 Algebras 6T
(0)
n and 6T⋆

n

We are reminded that the algebra 6T
(0)
n is the quotient of the six term relation algebra 6Tn

by the two-sided ideal generated by the elements {rij}1≤i<j≤n. Important consequence of
the classical Yang–Baxter relations and relations r2ij = 0, ∀i ̸= j, is that the both additive
Dunkl elements {θi}1≤i≤n and multiplicative ones {Θi =

∏1

a=i−1
h−1
ai

∏n

a=i+1
hia}1≤i≤n

generate commutative subalgebras in the algebra 6T
(0)
n (and in the algebra 6Tn as well),

see Corollary 4.2. The problem we are interested in, is to describe commutative subal-
gebras generated by additive (resp. multiplicative) Dunkl elements in the algebra 6T

(0)
n .

Notice that the subalgebra generated by additive Dunkl elements in the abelianization
19 For the reader convenience we recall the definition of the Yang–Baxter group

Definition 4.13 The Yang–Baxter group Y Bn is a group generated by elements {R±1
ij , 1 ≤ i < j ≤

n}, subject to the set of defining relations
• RijRkl = RklRij , if i, j, k, l, are distinct,
• (Quantum Yang–Baxter relations)

RijRikRjk = RjkRikRij , if 1 ≤ i < j < k ≤ n.
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20 of the algebra 6Tn(0) has been studied in [66],[59]. In order to state the result we need
from [59], let us introduce a bit of notation. As before, let F ln denotes the complete
flag variety, and denote by An the algebra generated by the curvature of 2-forms of the
standard Hermitian linear bundles over the flag variety F ln, see e.g [59]. Finally, denote
by In the ideal in the ring of polynomials Z[t1, . . . , tn] generated by the set of elements

(ti1 + · · ·+ tik)
k(n−k)+1,

for all sequences of indices 1 ≤ i1 < i2 < . . . < ik ≤ n, k = 1, . . . , n.

Theorem 4.4 ([66],[59])
(A) There exists a natural isomorphism

An −→ Z[t1, . . . , tn]/In,

(B) Hilb(An, t) = t(
n
2) Tutte(Kn, 1 + t, t−1).

Therefore the dimension of An (as a Z-vector space) is equal to the number F(n) of
forests on n labeled vertices. It is well-known that∑

n≥1

F(n)x
n

n!
= exp

(∑
n≥1

nn−1x
n

n!

)
− 1.

For example, Hilb(A3, t) = (1, 2, 3, 1), Hilb(A4, t) = (1, 3, 6, 10, 11, 6, 1),
Hilb(A5, t) = (1, 4, 10, 20, 35, 51, 64, 60, 35, 10, 1),
Hilb(A6, t) = (1, 5, 15, 35, 70, 126, 204, 300, 405, 490, 511, 424, 245, 85, 15, 1).

Problem 4.2 Describe subalgebra in (6T
(0)
n )ab generated by the multiplicative Dunkl

elements {Θi}1≤i≤n.

On the other hand, the commutative subalgebra Bn generated by the additive Dunkl
elements in the algebra 6T

(0)
n , n ≥ 3, has infinite dimension. For example,

B3 ∼= Z[x, y]/⟨ xy(x+ y) ⟩,

and the Dunkl elements θ(3)j , j = 1, 2, 3, have infinite order.

Definition 4.14 Define algebra 6T⋆
n to be the quotient of that 6T (0)

n by the two-sided
ideal generated by the set of “cyclic relations”

m∑
j=2

m∏
a=j

ri1,ia

j∏
a=2

ri1,ia = 0

for all sequences {1 ≤ i1, i2, . . . , im ≤ n} of pairwise distinct integers, and all integers
2 ≤ m ≤ n .

20See e.g. http://mathworld.wolfram.com/Abelianization.html
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For example,
• Hilb(6T⋆

3 , t) = (1, 3, 5, 4, 1) = (1 + t)(1, 2, 3, 1).
• Subalgebra (over Z) in the algebra 6T⋆

3 generated by Dunkl elements θ1 and θ2 has
the Hilbert polynomial equal to (1,2,3,1), and the following presentation: Z [x, y]/I3,
where I3 denotes the ideal in Z[x, y] generated by x3, y3, and (x+ y)3.
• Hilb(6T⋆

4 , t) = (1, 6, 23, 65, 134, 164, 111, 43, 11, 1)t.
As a consequence of the cyclic relations, one can check that for any integer n ≥ 2 the
n-th power of the additive Dunkl element θi is equal to zero in the algebra 6T⋆

n for all
i = 1, . . . , n. Therefore, the Dunkl elements generate a finite dimensional commutative
subalgebra in the algebra 6T⋆

n . There exist natural homomorphisms

6T⋆
n −→ 3T (0)

n , Bn
π̃−−−→ An −→ H∗(F ln,Z) (4.20)

The first and third arrows in (4.19) are epimorphism. We expect that the map π̃ is also
epimorphism 21, and looking for a description of the kernel ker(π̃).

Comments 4.3
• Let us denote by Bmult

n and Amult
n the subalgebras generated by multiplicative

Dunkl elements in the algebras 6T
(0)
n and (6T

(0)
n )ab correspondingly. One can define a

sequence of maps
Bmult
n −→ Amult

n
ϕ̃−−−→ K∗(F ln), (4.21)

which is a K-theoretic analog of that (4.19). It is an interesting problem to find a
geometric interpretation of the algebra Amult

n and the map ϕ̃.
• (“Quantization”) Let β and {qij = qji, 1 ≤ i, j ≤ n} be parameters.

Definition 4.15 Define algebra 6HTn to be the quotient of the algebra 6Tn by the two
sided ideal generated by the elements {r2ij − β rij − qij}1≤i,j≤n.

Lemma 4.3 The both additive {θi}1≤i≤n and multiplicative {Θi}1≤i≤n Dunkl elements
generate commutative subalgebras in the algebra 6HTn.

Therefore one can define algebras 6HBn and 6HAn which are a “quantum deformation”
of algebras Bn and An respectively. We expect that in the case β = 0 and a special
choice of “arithmetic parameters” {qij}, the algebra HAn is connected with the Arith-
metic Schubert and Grothendieck Calculi, cf [74], [66]. Moreover, for a “general”set of
parameters {qij}1≤i,j≤n and β = 0, we expect an existence of a natural homomorphism

HAmult
n −→ QK∗(F ln),

where QK∗(F ln) denotes amultiparameter quantum deformation of the K-theory ring
K∗(F ln), [37], [40]; see also Section 3.1. Thus, we treat the algebra HAmult

n as the
K-theory version of a multiparameter quantum deformation of the algebra Amult

n which
is generated by the curvature of 2-forms of the Hermitian linear bundles over the flag
variety F ln.

21 Contrary to the case of the map prn : Z[θ1, . . . , θn] −→ (3Tn(0))
ab, where the image Im(prn)

has dimension equals to the number of permutations in Sn with (n-1) inversions see [68],A001892.
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• One can define an analogue of the algebra(s) 6T (0)
n , 6HTn etc, denoted by 6T (Γ),

etc, for any subgraph Γ ⊂ Kn of the complete graph Kn, and in fact for any oriented
matroid. It is known that Hilb((6Tn(Γ)ab, t) = te(Γ) Tutte(Γ, 1 + t, t−1), see e.g. [2] and
the literature quoted therein.

4.2.3 Hilbert series of algebras CY Bn and 6Tn
22

Examples 4.1 Hilb(6T3, t) = (1− 3t+ t2)−1,
Hilb(6T4, t) = (1− 6t+ 7t2 − t3)−1, Hilb(6T5, t) = (1− 10t+ 25t2 − 15t3 + t4)−1,
Hilb(6T6, t) = (1− 15t+ 65t2 − 90t3 + 31t4 − t5)−1.

Hilb(6T
(0)
3 , t) = [2][3](1− t)−1, Hilb(6T

(0)
4 , t) = [4](1− t)−2(1− 3t+ t2)−1.

In fact, the following statements are true.

Proposition 4.4 (Cf [3]) Let n ≥ 2, then
• The algebras 6Tn and CY Bn are Koszul;
• We have

Hilb(6Tn, t) =
(n−1∑

k=0

(−1)k
{

n
n− k

}
tk
)−1

,

where
{
n
k

}
stands for the Stirling numbers of the second kind, i.e. the number of ways

to partition a set of n things into k nonempty subsets.
•

Hilb(CY Bn, t) =
(n−1∑

k=0

(−1)k (k + 1)! N(k, n) tk
)−1

,

where N(k, n) = 1
n

(
n
k

) (
n

k+1

)
denotes the Narayana number, i.e the number of Dyck n-

paths with exactly k peaks.

Corollary 4.4
(A) The Hilbert polynomial of the quadratic dual of the algebra 6Tn is equal to

Hilb(6T !
n, t) =

n−1∑
k=0

{
n

n− k

}
tk.

It is well-known that

∑
n≥0

(n−1∑
k=0

{
n

n− k

}
tk
)zn
n!

= exp
(exp(zt)− 1

t

)
.

Therefore,
dim(6Tn)

! = Belln,

22Results of this Subsection have been obtained independently in [3]. This paper contains, among
other things, a description of a basis in the algebra 6Tn, and much more.
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where Belln denotes the n-th Bell number, i.e. the number of ways to partition n things
into subsets, see [68]

Recall, that
∑

n≥0Belln
zn

n!
= exp(exp(z)− 1)).

(B) The Hilbert polynomial of the quadratic dual of the algebra CY Bn is equal to

Hilb((CY Bn)
!, t) =

n−1∑
k=0

(k + 1)! N(k, n) tk = (n− 1)! L
(α=1)
n−1 (−t−1) tn−1,

where L(α)
n (x) = x−αex

n!
dn

dxn (e−xxn+α) denotes the generalized Laguerre polynomial.
It is well-known that

∑
n≥0

(n−1∑
k≥0

(k + 1)!N(k, n) tk
)zn
n!

= exp
(
z(1− zt)−1

)
.

Comments 4.4 Let En(u), u ̸= 0, 1, be the Yokonuma-Hecke algebra, see e.g. [64]
and the literature quoted therein. It is known that the dimension of the Yokonuma–
Hecke algebra En(u) is equal to n! Bn, where Bn denotes as before the n-th Bell number.
Therefore, dim(En(u)) = dim((6Tn)

! ⋊ Sn), where (6Tn)
! ⋊ Sn denotes the semi-direct

product of the algebra (6Tn)
! and the symmetric group Sn. It seems an interesting task

to check whether or not the algebras (6Tn)
! ⋊ Sn and En(u) are isomorphic.

Remark 4.2 Denote byMY Bn the group algebra over Q of the monoid corresponding
to the Yang–Baxter group Y Bn, see e.g. Definition 4.10. Let P (MY Bn, s, t) denotes the
Poincare polynomial of the algebraMY Bn. One can show that

Hilb(6Tn, s) = P (MY Bn,−s, 1)−1.

For example,
P (MY B3, s, t) = 1+ 3s t+ s2 t3, P (MY B4, s, t) = 1+ 6s t+ s2 (3t2 +4t3) + s3 t6,

P (MY B5, s, t) = 1 + 10s t+ s2 (15t2 + 10t3) + s3 (10t4 + 5t6) + s4 t10.
Note that Hilb(MY Bn, t) = P (MY Bn,−1, t)−1 and P (MY Bn, 1, 1) = Belln, the

n-th Bell number.

Conjecture 4.6
P (MY Bn, s, t) =

∑
π

s#(π) tn(π),

where the sum runs over all partitions π = (I1, . . . , Ik) of the set [n] := [1, . . . , n] into
nonempty subsets I1, . . . , Ik, and we set by definition, #(π) := n−k, n(π) :=

∑k
a=1

(|Ia|
2

)
.

Remark 4.3 For any finite Coxeter group (W,S) one can define the algebra CY B(W ) :=
CY B(W,S) which is an analog of the algebra CY Bn = CY B(An−1) for other root sys-
tems.
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Conjecture 4.7 (A.N. Kirillov, Y. Bazlov) Let (W,S) be a finite Coxeter group with
the root system Φ. Then
• the algebra CY B(W ) is Koszul;

• Hilb(CY B(W ), t) =
{∑|S|

k=0 rk(Φ) (−t)k
}−1

,

where rk(Φ) is equal to the number of subsets in Φ+ which constitute the positive part
of a root subsystem of rank k. For example, r1(Φ) = |Φ+|, and r2(Φ) is equal to the
number of defining relations in a representation of the algebra CY B(W ).

Example 4.5 Hilb(CY B(B2)
!, t) = (1, 4, 3), Hilb(CY B(B3)

!, t) = (1, 9, 13, 2),
Hilb(CY B(B4)

!, t) = (1, 16, 46, 28, 5), Hilb(CY B(B5)
!, t) = (1, 25, 130, 200, 101, 12);

Hilb(CY B(D4)
!, t) = (1, 12, 34, 24, 4), Hilb(CY B(D5)

!, t) = (1, 20, 110, 190, 96, 11),

Exercises 4.3
(1) Show that

exp(z (1− zt)−q) = 1 +
∑
n≥1

(
1 +

n−1∑
k=1

(
n− 1

k

) k−1∏
a=0

(a+ (n− k) q) tk
) zn

n!
.

(2) The even generic Orlik–Solomon algebra

Definition 4.16 The even generic Orlik–Solomon algebra OS+(Γn) is defined to be
an associative algebra (say over Z) generated by the set of mutually commuting ele-
ments yi,j, 1 ≤ i ̸= j ≤ n, subject to the set of cyclic relations

yi,j = yj,i, yi1,i2 yi2,i3 · · · yik−1,ik yi1,ik = 0, for k = 2, . . . , n,

and all sequences of pairwise e distinct integers 1 ≤ i1, . . . , ik ≤ n.

• Show that the number of degree k, k ≥ 3, relations in the definition of the Orlik–
Solomon algebra OS‘+(Γn) is equal to 1

2
(k− 1)!

(
n
k

)
and also is equal to the maximal

number of k-cycles in the complete graph Kn.
Note that if one replaces the commutativity condition in the above Definition on

the condition that yi,j
′
s pairwise anticommute, then the resulting algebra appears

to be isomorphic to the Orlik–Solomon algebra OS(Γn) corresponding to the generic
hyperplane arrangement Γn, see [60]. It is known, ibid, Corollary 5.3, that

Hilb(OS(Γn), t) =
∑
F

t|F |,

where the sum runs over all forests F on the vertices 1, . . . , n, and |F | denotes the
number of edges in a forest F.

It follows from Corollary 3.4, that∑
n≥1

Hilb(OS(Γn), t)
zn

n!
= exp

(∑
n≥1

nn−2 tn−1 z
n

n!

)
.
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It is not difficult to see that Hilb(OS+(Γn), t) = Hilb(OS(Γn), t). In particular,
dim OS+(Γn) = F(n). Note also that a sequence {Hilb(OS(Γn),−1)}n≥2 appears in
[68], A057817. The polynomials Hilb(An, t), Fn(x, t) and Hilb(OS+(Γn), t) can be
expressed, see e.g. [59], as certain specializations of the Tutte polynomial T (G;x, y)
corresponding to the complete graph G := Kn. Namely,

Hilb(An, t) = t(
n
2)T (Kn; 1 + t, t−1), Hilb(OS+(Γn), t) = tn−1T (Kn; 1 + t−1, 1).

4.2.4 Super analogue of 6-term relations algebra

Let n, m be non-negative integers.

Definition 4.17 The super 6-term relations algebra 6Tn,m is an associative alge-
bra over Q generated by the elements {xi,j, 1 ≤ i ̸= j ≤ n} and { yα,β, 1 ≤ α ̸= β ≤ m}
subject to the set of relations

(0) xi,j + xj,i = 0, yα,β = yβ,α;
(1) xi,j xk,l = xk,l xi,j, xi,j yα,β = yα,β xi,j, yα,β yγ,δ + yγ,δ yα,β = 0,
if tuples (i, j, k, l), (i, j, α, β), as well as (α, β, γ, δ) consist of pair-wise distinct inte-

gers;
(2) ( Classical Yang–Baxter relations and theirs super analogue)
[xi,k, xj,i + xj,k] + [xi,j, xj,k] = 0,
if 1 ≤ i, j, k ≤ n are distinct,
[xi,k, yj,i + yj,k] + [xi,j, yj,k] = 0,
if 1 ≤ i, j, k ≤ min(n,m) are distinct,
[yα,γ, yβ,α + yβ,γ]+ + [yα,β, yβ,γ]+ = 0,
if 1 ≤ α, β, γ ≤ m are distinct.

Recall that [a, b]+ := a b+ b a denotes the anticommutator of elements a and b.

Conjecture 4.8
• The algebra 6Tn,m is Koszul.

Theorem 4.5 Let n,m ∈ Z≥1, one has
• Hilb((6Tn)

!, t) Hilb((6Tm)
!, t) =

min(n,m)−1∑
k=0

{
min(n,m)

min(n,m)− k

}
Hilb((6Tn−k,m−k)

!, t) t2k,

where
{

n
n− k

}
denotes the Stirling numbers of the second kind, see for e.g. [68],

A008278.

Corollary 4.5 Let n,m ∈ Z≥1. One has
(a) (Symmetry) Hilb(6Tn,m, t) = Hilb(6Tm,n, t).
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(b) Let n ≤ m, then Hilb((6Tn,m)
!, t) =

n−1∑
k=0

s(n− 1, n− k) Hilb((6Tn−k)
!, t) Hilb((6Tm−k)

!, t) t2k,

where s(n− 1, n− k) denotes the Stirling numbers of the first kind, i.e.

n−1∑
k=0

s(n− 1, n− k) tk =
n−1∏
j=1

(1− j t).

(c) dim(6Tn,n)
! is equal to the number of pairs of partitions of the set {1, 2, . . . , n}

whose meet is the partition {{1}, {2}, . . . , {n}}, see e.g. [68], A059849.

Example 4.6 Hilb((6T3,2)
!, t) = Hilb((6T2,3)

!, t) = (1, 4, 3),
Hilb((6T2,4)

!, t) = Hilb((6T4,2)
!, t) = (1, 7, 12, 5), Hilb((6T3,3)

!, t) = (1, 6, 8),
Hilb((6T2,5)

!, t) = Hilb((6T5,2)
!, t) = (1, 11, 34, 34, 9),

Hilb((6T3,4)
!, t) = Hilb((6T4,3)

!, t) = (1, 9, 23, 16), Hilb((6T4,4)
!, t) = (1, 12, 44, 50, 6),

Hilb((6T3,5)
!, t) = Hilb((6T5,3)

!, t) = (1, 13, 53, 79, 34),
Hilb((6T4,5)

!, t) = Hilb((6T5,4)
!, t) = (1, 16, 86, 182, 131, 12),

Hilb((6T5,5)
!, t) = (1, 20, 140, 410, 462, 120).

Now let us define in the algebra 6Tn,m the Dunkl elements θi :=
∑

j ̸=i xi,j, 1 ≤ i ≤ n,

and θ̄α :=
∑

β ̸=α yα,β, 1 ≤ α ≤ m.

Lemma 4.4 One has
• [θi, θj] = 0,
• [θi, θ̄α] = [xi,α, yi,α],
• [θ̄α, θ̄β]+ = 2 y2α,β, if α ̸= β.

Remark 4.4 (“Odd” six-term relations algebra) In particular, one can define an
“odd” analog 6T

(−)
n = 6T0,n of the six term relations algebra 6Tn. Namely, the algebra

6T
(−)
n is given by the set of generators {yij, 1 ≤ i < j ≤ n}, and that of relations:
1) yi,j and yk,l anticommute if i, j, k, l are pairwise distinct;
2) [yi,j, yi,k + yj,k]+ + [yi,k, yj,k]+ = 0, if 1 ≤ i < j ≤ k ≤ n, where [x, y]+ = xy + yx

denotes the anticommutator of x and y.
One can show that the Dunkl elements θi and θj, i ̸= j, given by formula

θi =
∑
j ̸=i

, i = 1, . . . , n,

form an anticommutative family of elements in the algebra 6T
(−)
n .
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4.3 Extended nil-three term relations algebra and DAHA, cf [14]

Let A := {q, t, a, b, c, h, e, f, . . .} be a set of parameters.

Definition 4.18 Extended nil-three term relations algebra 3Tn is an associative
algebra over Z[q±1, t±1, a, b, c, h, e, . . .] with the set of generators {ui,j, 1 ≤ i ̸= j ≤
n, xi, 1 ≤ i ≤ n, π} subject to the set of relations

(0) ui,j + uj,i = 0, u2i,j = 0,
(1) xi xj = xj xi, ui,j uk,l = uk,l ui,j, if i, j, k, l are distinct,
(2) xi ukl = uk,l xi, if i ̸= k, l,
(3) xi ui,j = xj ui,j + 1, xj ui,j = ui,j xi − 1,
(4) ui,j uj,k + uk,i ui,j + uj,k uk,i = 0, if i, j, k are distinct,
(5) π xi = xi+1 π, if 1 ≤ i < n, π xn = t−1 x1 π,
(6) π uij = ui+1,j+1, if 1 ≤ i < j < n, πj un−j+1,n = t u1,j π

j.

Definition 4.19 Let 1 ≤ i < j ≤ n, define

Ti,j = a+ (b xi + c xj + h+ e xi xj) ui,j.

Lemma 4.5
(1) T 2

i,j = (2a+ b− c) Ti,j − a(a+ b− c),
(2) (Coxeter relations) Relations

Ti,j Tj,k Ti,j = Tj,k Ti,j Tj,k,

are valid, if and only if the following relation holds (a+ b)(a− c) + h e = 0.
(3) (Yang–Baxter relations) Relations

Ti,j Ti,k Tj.k = Tj,k Ti,k Ti,j

are valid if and only if b = c = e = 0,
(4) T 2

ij = 1 if and only if a = ±1, c = b± 2, he = (b± 1)2.

In particular, if (a + b)(a − c) + he = 0, then for any permutation w ∈ Sn the element
Tw := Ti1 · · ·Til , where w = si1 · · · sil is any reduced decomposition of w, is well-defined.

Example 4.7
Each of the set of elements

s
(h)
i = 1 + (xi+1 − xi + h) ui,i+1 and

t
(h)
i = −1 + (xi − xi+1 + h(1 + xi)(1 + xi+1)uij, i = 1, . . . , n− 1,

by itself generate the symmetric group Sn.
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Exercises 4.4 Assume that a = q, b = −q, c = q−1, h = e = 0, and introduce elements

eij := (q xi − q−1xj) uij, 1 ≤ i < j < k ≤ n.

(a) Show that if i, j, k are distinct, then

eijejkeij = eij +(qxi− q−1xj)(q xi− q−1xk)(q xj− q−1xk) uijujk uij, e2ij = (q+ q−1) eij.

(b) Assume additionally that

uijujkuij = 0, if i, j, k aredistinct.

Show that the elements {ei := ei,i+1, i = 1, . . . , n − 1}, generate a subalgebra in 3Ln

which is isomorphic to the Temperly–Lieb algebra TLn(q + q−1).

Remark 4.5 Let us stress on a difference between elements Tij as a part of generators
of the algebra 3Tn, and the elements

T(ij) := Ti · · ·Tj−1TjTj−1 · · ·Ti ∈ Hn(q)

where Hn(q) denotes a subalgebra in Tn generated by the elements Ti := Ti,i+1, i =
1, . . . , n− 1.

Whereas one has [Tij, Tkl] = 0, if i, j, k, l are distinct, the relation [T(ij), T(kl)] =
0 in the algebra Hn(q) holds (for general q and i ≤ k) if and only if either one has
i < j < k < l, or i < k < l < j.

In what follows we take a = q, b = −q, c = q−1, h = e = 0. Therefore, T 2
i,j =

(q − q−1)Ti,j + 1.

Lemma 4.6
(1) Tij Tkl = Tkl Tij, if i, j, k, l are distinct,
(2) Ti,j xi Ti,j = xi+1, if 1 ≤ i < j ≤ n,
(3) πTi,j = Ti+1,j+1, if 1 ≤ i < j < n, πj Tn−j+1,n = T1,j π

j.

Definition 4.20 Let 1 ≤ i < j ≤ n, set

Yi,j = T−1
i−1,j−1T

−1
i−2,j−2 · · ·T−1

1,j−i+1 π
j−i Tn−j+i,n · · ·Ti+1,j+1Ti,j, 1 ≤ i < j ≤ n,

and Yn = T−1
n−1,n · · ·T−1

1,2 π.

For example, Y1,j = πj−1 Tn−j+1,n · · ·T1,j, j ≥ 2,
Y2,j = T−1

1,j−1π
j−2 Tn−j+2,n · · ·T2,j, and so on,

Yj−1,j = T−1
j−2,j−1 · · ·T−1

1,2 π Tn−1,n · · ·Tj−1,j.

Proposition 4.5
(1) xjxj Tij = Tij xixj,
(2) Yi,j = Ti,j Yi+1,j+1 Ti,j, if 1 ≤ i < j < n,
(3) Yi,j Yi+k,j+k = Yi+k,j+k Yi,, if 1 ≤ i < j ≤ n− k,
(4) One has

xi−1 Y
−1
i,j = Y −1

i,j xi−1 T
2
i−1,j−1, 2 ≤ i < j ≤ n,

(5) Yi,j x1 x2 · · · xn = t x1x2 · · · xn Yi,j,
(6) xi Y1 Y2 · · ·Yn = t−1 Y1 Y2 · · ·Yn xi,
where we set Yi := Yi,i+1, 1 ≤ i < j < n.
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Theorem 4.6
Subalgebra of 3Tn generated by the elements {Ti := Ti,i+1, 1 ≤ i < n, Y1, . . . , Yn,

and x1, . . . , xn}, is isomorphic to the double affine Hecke algebra DAHAq,t(n).

Note that the algebra 3Tn contains also two additional commutative subalgebras
generated by additive {θi =

∑
j ̸=i uij}1≤i≤n and multiplicative

{Θi =
i−1∏
a=1

(1− uai)
n∏

a=i+1

(1 + uia)}1≤i≤n

Dunkl elements correspondingly.
Finally we introduce (cf [14]) a (projective) representation of the modular group

SL(2,Z) on the extended affine Hecke algebra Ĥn over the ring Z[q±1, t±1] generated by
elements

{T1, . . . , Tn−1}, {π}, and {x1, . . . , xn}.

It is well-known that the group SL(2,Z) can be generated by two matrices

τ+ =

(
1 1
0 1

)
τ− =

(
1 0
1 1

)
.

which satisfy the following relations

τ+τ
−1
− τ+ = τ−1

− τ+τ
−1
− , (τ+τ

−1
− τ+)

6 = I2×2.

Let us introduce operators τ+ and τ− acting on the extended affine algebra Ĥn. Namely,

τ+(π) = x1π, τ+(Ti) = Ti, τ+(xi) = xi, ∀ i,

τ−(π) = π, τ−(Ti) = Ti, τ−(xi) =
( 1∏
a=i−1

Ta

)
π
( i∏
a=n

Ta

)
xi.

Lemma 4.7
• τ+(Yi) = (

∏1
a=i−1 T−1

a ) (
∏i−1

a=1 T
−1
a ) xi Yi,

• τ−(xi) = (
∏1

a=i−1 Ta) (
∏i−1

a=1 Ta) Yi xi,
• (τ+τ

−1
− τ+)(xi) = Y −1

i = (τ−1
− τ+τ

−1
− )(xi),

• (τ+τ
−1
− τ+)(Yi) = t xi (

∏1
a=i−1 Ta)(T1 · · ·Tn−1) (

∏i
a=n−1 Ta),

i = 1, . . . , n.

In the last formula we set Tn = 1 for convenience.
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5 Combinatorics of associative quasi-classical Yang–
Baxter algebras

Let α and β be parameters.

Definition 5.1 ([37])
(1) The associative quasi-classical Yang–Baxter algebra of weight (α, β), denoted by

ÂCY Bn(α, β), is an associative algebra, over the ring of polynomials Z[α, β], generated
by the set of elements {xij, 1 ≤ i < j ≤ n}, subject to the set of relations

(a) xij xkl = xkl xij, if {i, j} ∩ {k, l} = ∅,
(b) xij xjk = xik xij + xjk xik + β xik + α, if 1 ≤ 1 < i < j ≤ n.
(2) Define associative quasi-classical Yang–Baxter algebra of weight β ,de-

noted by ÂCY Bn(β), to be ÂCY Bn(0, β).

Comments 5.1
The algebra 3Tn(β), see Definition 3.1, is the quotient of the algebra ÂCY Bn(−β),

by the “dual relations”

xjkxij − xij xik − xik xjk + β xik = 0, i < j < k.

The (truncated) Dunkl elements θi =
∑

j ̸=i xij, i = 1, . . . , n, do not commute in the al-
gebra ÂCY Bn(β). However a certain version of noncommutative elementary polynomial
of degree k ≥ 1, still is equal to zero after the substitution of Dunkl elements instead
of variables, [37]. We state here the corresponding result only “in classical case”, i.e. if
β = 0 and qij = 0 for all i, j.

Lemma 5.1 ([37]) Define noncommutative elementary polynomial Lk(x1, . . . , xn) as
follows

Lk(x1, . . . , xn) =
∑

I=(i1<i2<...<ik)⊂[1,n]

xi1 xi2 · · · xik .

Then Lk(θ1, θ2, . . . , θn) = 0.
Moreover, if 1 ≤ k ≤ m ≤ n, then one can show that the value of the noncommutative

polynomial Lk(θ1, . . . , θm) in the algebra ÂCY Bn(β) is given by the Pieri formula, see
[22], [58].

5.1 Combinatorics of Coxeter element

Consider the “Coxeter element” w ∈ ÂCY Bn(α, β) which is equal to the ordered product
of “simple generators”:

w := wn =
n−1∏
a=1

xa,a+1.

Let us bring the element w to the reduced form in the algebra ÂCY Bn(α, β), that
is, let us consecutively apply the defining relations (a) and (b) to the element w in
any order until unable to do so. Denote the resulting (noncommutative) polynomial by
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Pn(xij;α, β). In principal, the polynomial itself can depend on the order in which the
relations (a) and (b) are applied. We set Pn(xij; β) := Pn(xij; 0, β).

Proposition 5.1 (Cf [71], 8.C5, (c); [51])
(1) Apart from applying the relation (a) (commutativity), the polynomial Pn(xij; β)

does not depend on the order in which relations (a) and (b) have been applied, and can
be written in a unique way as a linear combination:

Pn(xij; β) =
n−1∑
s=1

βn−s−1
∑
{ia}

s∏
a=1

xia,ja ,

where the second summation runs over all sequences of integers {ia}sa=1 such that
n − 1 ≥ i1 ≥ i2 ≥ . . . ≥ is = 1, and ia ≤ n − a for a = 1, . . . , s − 1; moreover, the
corresponding sequence {ja}n−1

a=1 can be defined uniquely by that {ia}n−1
a=1 .

• It is clear that the polynomial P (xij; β) also can be written in a unique way as a
linear combination of monomials

∏s
a=1 xia,ja such that j1 ≥ j2 . . . ≥ js.

(2) Let us set deg(xij) = 1, deg(β) = 0. Denote by Tn(k, r) the number of degree
k monomials in the polynomial P (xij; β) which contain exactly r factors of the form
x∗,n. (Note that 1 ≤ r ≤ k ≤ n− 1). Then

Tn(k, r) =
r

k

(
n+ k − r − 2

n− 2

) (
n− 2

k − 1

)
.

In other words,
Pn(t, β) =

∑
1≤r≤k<n

Tn(k, r) t
r βn−1−k,

where Pn(t, β) denotes the following specialization

xij −→ 1, if j < n, xin −→ t, ∀ i = 1, . . . , n− 1

of the polynomial Pn(xij; β).
In particular, Tn(k, k) =

(
n−2
k−1

)
, and Tn(k, 1) = T (n− 2, k − 1), where

T (n, k) :=
1

k + 1

(
n+ k

k

) (
n

k

)
is equal to the number of Schröder paths (i.e. consisting of steps U = (1, 1), D =
(1,−1), H = (2, 0) and never going below the x-axis) from (0, 0) to (2n, 0), having k
U ’s, see [68], A088617.

Moreover, Tn(n− 1, r) = Tab(n− 2, r − 1), where

Tab(n, k) :=
k + 1

n+ 1

(
2n− k
n

)
= F

(2)
n−k(k)

is equal to the number of standard Young tableaux of the shape (n, n − k), see [68],
A009766. Recall that F

(p)
n (b) = 1+b

n

(
np+b
n−1

)
stands for the generalized Fuss–Catalan

number.
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(3) After the specialization xij −→ 1 the polynomial P (xij) is transformed to the
polynomial

Pn(β) :=
n−1∑
k=0

N(n, k) (1 + β)k,

where N(n, k) := 1
n

(
n
k

) (
n

k+1

)
, k = 0, . . . , n− 1, stand for the Narayana numbers.

Furthermore, Pn(β) =
∑n−1

d=0 sn(d) β
d, where

sn(d) =
1

n+ 1

(
2n− d
n

) (
n− 1

d

)
is the number of ways to draw n− 1− d diagonals in a convex (n+ 2)-gon, such that no
two diagonals intersect their interior.

Therefore, the number of (nonzero) terms in the polynomial P (xij; β) is equal to
the n-th little Schröder number sn :=

∑n−1
d=0 sn(d), also known as the n-th super-Catalan

number, see e.g. [68], A001003.

(4) Upon the specialization x1j −→ t, 1 ≤ j ≤ n, and that xij −→ 1, if 2 ≤ i < j ≤
n, the polynomial P (xij; β) is transformed to the polynomial

Pn(β, t) = t
n∑

k=1

(1 + β)n−k
∑
π

tp(π),

where the second summation runs over the set of Dick paths π of length 2n with exactly
k picks (UD-steps), and p(π) denotes the number of valleys (DU-steps) that touch upon
the line x = 0.

(5) The polynomial P (xij; β) is invariant under the action of anti-involution ϕ◦ τ,
see Section 5.1.1 [37] for definitions of ϕ and τ.

(6) Follow [71], 6.C8, (c), consider the specialization

xij −→ ti, 1 ≤ i < j ≤ n,

and define Pn(t1, . . . , tn−1; β) = Pn(xij = ti; β).
One can show, ibid , that

Pn(t1, . . . , tn−1; β) =
∑

βn−k ti1 · · · tik , (5.22)

where the sum runs over all pairs {(a1, . . . , ak), (i1, . . . , ik) ∈ Z≥1 × Z≥1} such that 1 ≤
a1 < a2 < . . . < ak, 1 ≤ i1 ≤ i2 . . . ≤ ik ≤ n and ij ≤ aj for all j.

Now we are ready to state our main result about polynomials Pn(t1, . . . , tn; β).

Let π := πn ∈ Sn be the permutation π=
(
1 2 3 . . . n
1 n n− 1 . . . 2

)
. Then

Pn(t1, . . . , tn−1; β) =
(n−1∏

i=1

tn−i
i

)
G(β)

π (t−1
1 , . . . , t−1

n−1),
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where G
(β)
w (x1, . . . , xn−1) denotes the β-Grothendieck polynomial corresponding to a per-

mutation w ∈ Sn, [23], or Appendix I.
In particular,

G(β)
π (x1 = 1, . . . , xn−1 = 1) =

n−1∑
k=0

N(n, k) (1 + β)k,

where N(n, k) denotes the Narayana numbers, see item (3) of Proposition 5.1.
More generally, write Pn(t, β) =

∑
k P

(k)
n (β) tk. Then

G(β)
π (x1 = t, xi = 1, ∀i ≥ 2) =

n−1∑
k=0

P
(k)
n−1(β

−1)βk tn−1−k.

Comments 5.2
• Note that if β = 0, then one has G

(β=0)
w (x1, . . . , xn−1) = Sw(x1, . . . , xn−1),

that is the β-Grothendieck polynomial at β = 0, is equal to the Schubert polynomial

corresponding to the same permutation w. Therefore, if π=
(
1 2 3 . . . n
1 n n− 1 . . . 2

)
,

then
Sπ(x1 = 1, . . . , tn−1 = 1) = Cn−1, (5.23)

where Cm denotes the m-th Catalan number. Using the formula (5.20) it is not diffi-
cult to check that the following formula for the principal specialization of the Schubert
polynomial Sπ(Xn) is true

Sπ(1, q, . . . , q
n−1) = q(

n−1
3 ) Cn−1(q), (5.24)

where Cm(q) denotes the Carlitz - Riordan q-analogue of the Catalan numbers, see e.g.
[69]. The formula (5.20) has been proved in [25] using the observation that π is a vexillary
permutation, see [48] for the a definition of the latter. A combinatorial/bijective proof
of the formula (5.20) is is due to A.Woo [79].
• The Grothendieck polynomials defined by A. Lascoux and M.-P. Schützenberger,

see e.g. [46], correspond to the case β = −1. In this case Pn(−1) = 1, if n ≥ 0, and
therefore the specialization G

(−1)
w (x1 = 1, . . . , xn−1 = 1) = 1 for all w ∈ Sn.

Exercises 5.1
(1) Let as before, π=

(
1 2 3 . . . n
1 n n− 1 . . . 2

)
. Show that

Sπ(x1 = q, xj = 1,∀j ̸= i) =
n−2∑
a=0

n− a− 1

n− 1

(
n+ a− 2

a

)
qa.

Note that the number n−k+1
n+1

(
n+k
k

)
is equal to the dimension of irreducible representation

of the symmetric group Sn+k that corresponds to partition (n+ k, k).

(2) Consider the commutative quotient ÃCY B
ab

n (α, β) of the algebra ÃCY Bn(α, β),
i.e. assume that the all generators {xij| 1 ≤ i < j ≤ n are mutually commute. Denote
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by P n(xij;α, β) the image of polynomial the Pn(xij;α, β) ∈ ÃCY Bn(α, β) in the algebra

ÃCY B
ab

n (α, β). Finally, define polynomials Pn(t, α, β) to be the specialization

xij −→ 1, if j < n, xin −→ t, if 1 ≤ i < n.

Show that
(a) Polynomial Pn(t, α, β) does not depend on on order in which relations (a) and

(b), see Definition 5.1, have been applied.
(b)

Pn(1, α = 1, β = 0) =
∑
k≥0

(2n− 2− 2k)!

k! (n− k) ! (n− 1− 2k)!
,

see [68], A052709(n), for combinatorial interpretations of these numbers.
For example,

P8(t, α, β) = t7 + 6(1 + β) t6 +
[
(20, 35, 15)β + 6 α

]
t5 +

[
(48, 112, 84, 20)β +

α(34, 29)β

]
t4 +

[
(90, 252, 252, 105, 15)β + α(104, 155, 55)β + 14a2

]
t3 +[

(132, 420, 504, 280, 70, 6)β + α(216, 428, 265, 50)β + α2(70, 49)β

]
t2 +[

(132, 462, 630, 420, 140, 21, 1)β + α(300, 708, 580, 190, 20)β + α2(168, 203, 56)β +

14α3
]
t+ α(132, 330, 300, 120, 20, 1)β + α2(168, 252, 112, 14)β + α3(42, 21)β.

(c) Show that in fact

Pn(1, α, 0) =
∑
k≥0

1

n

(
2n− 2− 2k

n− 1

)(
n

k

)
αk =

∑
k≥0

Tn+2(n− k, k + 1)

2n− 1− 2k
αk,

see Proposition 5.1,(2), for definition of numbers Tn(k, r). As for a combinatorial inter-
pretation of the polynomials Pn(1, α, 0), see [68], A117434.

(3) Consider polynomials Pn(t, β) as it has been defined in Proposition 5. 1,
(2). Show that

Pn(t, β) = 1 +
n∑

r=1

tn+1−r
(n−r∑

k=0

r

n+ 1

(
n+ 1

k + r

) (
n− r
k

)
(1 + β)n+1−r−k

)
.

A few comments in order. Several combinatorial interpretations of the integer numbers
Un(r, k) :=

r
n+1

(
n+1
k+r

) (
n−r
k

)
are known. For example,

if r = 1, the numbers Un(1, k) =
1
n

(
n

k+1

)(
n
k

)
are equal to the Narayana numbers, see

e.g. [68], A001263;
if r = 2, the number Un(2, k) counts the number of Dyck (n + 1)-paths whose last

descent has length 2 and which contain n− k peaks, see [68] , A108838 for details.
Finally, it’s easily seen, that Pn(1, β) = A127529(n), and Pn(t, 1) = A033184(n),

see [68].
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5.1.1 Multiparameter deformation of Catalan, Narayana and Schröder num-
bers

Let b = (β1, . . . , βn−1) be a set of mutually commuting parameters. We define a multi-
parameter analogue of the associative quasi-classical Yang–Baxter algebra ̂MACY Bn(b)
as follows.

Definition 5.2 The multiparameter associative quasi-classical Yang–Baxter algebra of
weight b, denoted by ̂MACY Bn(b), is an associative algebra, over the ring of polyno-
mials Z[β1, . . . , βn−1], generated by the set of elements {xij, 1 ≤ i < j ≤ n}, subject to
the set of relations

(a) xij xkl = xkl xij, if {i, j} ∩ {k, l} = ∅,
(b) xij xjk = xik xij + xjk xik + βi xik, if 1 ≤ 1 < i < j ≤ n.

Consider the “Coxeter element” wn ∈ ̂MACY Bn(b) which is equal to the ordered
product of “simple generators”:

wn :=
n−1∏
a=1

xa,a+1.

Now we can use the same method as in [71], 8.C5, (c) , see Section 5.1, to define the
reduced form of the Coxeter element wn. Namely, let us bring the element wn to the
reduced form in the algebra ̂MACY Bn(b), that is, let us consecutively apply the defining
relations (a) and (b) to the element wn in any order until unable to do so. Denote the
resulting (noncommutative) polynomial by P (xij; b). In principal, the polynomial itself
can depend on the order in which the relations (a) and (b) are applied.

Proposition 5.2 (Cf [71], 8.C5, (c); [51]) Apart from applying the relation (a) (com-
mutativity), the polynomial P (xij; b) does not depend on the order in which relations
(a) and (b) have been applied.

To state our main result of this Subsection, let us define polynomials

Q(β1, . . . , βn−1) := P (xij = 1, ∀i, j ; β1 − 1, β2 − 1, . . . , βn−1 − 1).

Example 5.1
Q(β1, β2) = 1 + 2 β1 + β2 + β2

1 ,
Q(β1, β2, β3) = 1 + 3β1 + 2β2 + β3 + 3β2

1 + β1β2 + β1β3 + β2
2 + β3

1 ,
Q(β1, β2, β3, β4) = 1 + 4β1 + 3β2 + 2β3 + β4 + β1(6β1 + 3β2 + 3β3 + 2β4) + β2(3β2 +

β3 + β4) + β2
3+ β2

1 (4β1 + β2 + β3 + β4) + β1(β
2
2 + β2

3) + β3
2 + β4

1 .

Theorem 5.1
Polynomial Q(β1, . . . , βn−1) has non-negative integer coefficients.
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It follows from [71] and Proposition 4.1, that

Q(β1, . . . , βn−1)
∣∣∣
β1=1,...,βn−1=1

= Catn.

Polynomials Q(β1, . . . , βn−1) and Q(β1 + 1, . . . , βn−1 + 1) can be considered as a multi-
parameter deformation of the Catalan and (small) Schröder numbers correspondingly,
and the homogeneous degree k part of Q(β1, . . . , βn−1) as a multiparameter analogue of
Narayana numbers.

5.2 Grothendieck and q-Schröder polynomials

5.2.1 Schröder paths and polynomials

Definition 5.3 A Schröder path of the length n is an over diagonal path from (0, 0) to
(n, n) with steps (1, 0), (0, 1) and steps D = (1, 1) without steps of type D on the diagonal
x = y.

If p is a Schröder path, we denote by d(p) the number of the diagonal steps resting on
the path p, and by a(p) the number of unit squares located between the path p and
the diagonal x = y. For each (unit) diagonal step D of a path p we denote by i(D) the
x-coordinate of the column which contains the diagonal step D. Finally, define the index
i(p) of a path p as the some of the numbers i(D) for all diagonal steps of the path p.

Definition 5.4 Define q-Schröder polynomial Sn(q; β) as follows

Sn(q; β) =
∑
p

qa(p)+i(p) βd(p), (5.25)

where the sum runs over the set of all Schröder paths of length n.

Example 5.2
S1(q; β) = 1, S2(q; β) = 1+q+β q, S3(q; β) = 1+2 q+q2+q3+β (q+2q2+2q3)+β2 q3,
S4(q; β) = 1 + 3q + 3q2 + 3q3 + 2q4 + q5 + q6 + β(q + 3q2 + 5q3 + 6q4 + 3q5 + 3q6) +

β2(q3 + 2q4 + 3q5 + 3q6) + β3 q6.

Comments 5.3
The q-Schröder polynomials defined by the formula (5.22) are different from the q-

analogue of Schröder polynomials which has been considered in [10]. It seems that there
are no simple connections between the both.

Proposition 5.3 (Recurrence relations for q-Schröder polynomials)
The q-Schröder polynomials satisfy the following relations

Sn+1(q; β) = (1+qn+β qn) Sn(q; β)+
k=n−1∑
k=1

(qk+β qn−k) Sk(q; q
n−k β) Sn−k(q; β), (5.26)

and the initial condition S1(q; β) = 1.
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Note that Pn(β) = Sn(1; β) and in particular, the polynomials Pn(β) satisfy the following
recurrence relations

Pn+1(β) = (2 + β) Pn(β) + (1 + β)
n−1∑
k=1

Pk(β) Pn−k(β). (5.27)

Theorem 5.2 (Evaluation of the Schröder – Hankel Determinant)
Consider permutation

π
(n)
k =

(
1 2 . . . k k + 1 k + 2 . . . n
1 2 . . . k n n− 1 . . . k + 1

)
.

Let as before

Pn(β) =
n−1∑
j=0

N(n, j) (1 + β)j, n ≥ 1, (5.28)

be Schröder polynomials. Then

(1 + β)(
k
2) G

(β)

π
(n)
k

(x1 = 1, . . . , xn−k = 1) = Det |Pn+k−i−j(β) |1≤i,j≤k. (5.29)

Proof is based on an observation that the permutation π
(n)
k is a vexillary one and the

recurrence relations (5.24).

Comments 5.4
(1) In the case β = 0, i.e. in the case of Schubert polynomials, Theorem 5.1 has

been proved in [25].
(2) In the cases when β = 1 and 0 ≤ n−k ≤ 2, the value of the determinant in the

RHS(5.26) is known, see e.g. [10], or M. Ichikawa talk Hankel determinants of Catalan,
Motzkin and Schrd̈er numbers and its q-analogue, http:/denjoy.ms.u-tokyo.ac.jp. One
can check that in the all cases mentioned above, the formula (5.26) gives the same results.

(3) Grothendieck and Narayana polynomials
It follows from the expression (5.25) for the Narayana-Schröder polynomials that

Pn(β − 1) = Nn(β), where

Nn(β) :=
n−1∑
j=0

1

n

(
n

j

) (
n

j + 1

)
βj,

denotes the n-th Narayana polynomial. Therefore, Pn(β − 1) = Nn(β) is a symmet-
ric polynomial in β with non-negative integer coefficients. Moreover, the value of the
polynomial Pn(β − 1) at β = 1 is equal to the n-th Catalan number Cn := 1

n+1

(
2n
n

)
.

It is well-known, see e.g. [73], that the Narayana polynomial Nn(β) is equal to the
generating function of the statistics π(p) = (number of peaks of a Dick path p)− 1
on the set Dickn of Dick paths of the length 2n

Nn(β) =
∑
p

βπ(p).
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Moreover, using the Lindström–Gessel–Viennot lemma, see e.g.,
http://en.wikipedia.org/wiki/Lindström–Gessel–Viennot lemma,
one can see that

DET |Nn+k−i−j(β)|1≤i,j≤k = β(
k
2)

∑
(p1,...,pk)

βπ(p1)+...+π(pk), (5.30)

where the sum runs over k-tuple of non-crossing Dick paths (p1, . . . , pk) such that the
path pi starts from the point (i− 1, 0) and has length 2(n− i+ 1), i = 1, . . . , k.

We denote the sum in the RHS(5.27) by N
(k)
n (β). Note that N

(k)
k−1(β) = 1 for all

k ≥ 2.
Thus, N(k)

n (β) is a symmetric polynomial in β with non-negative integer coefficients,
and

N(k)
n (β = 1) = C(k)

n =
∏

1≤i≤j≤n−k

2k + i+ j

i+ j
=

∏
2 a ≤n−k−1

(
2n−2a
2k

)(
2k+2a+1

2k

) .
As a corollary we obtain the following statement

Proposition 5.4 Let n ≥ k, then

G
(β−1)

π
(n)
k

(x1 = 1, . . . , xn = 1) = N(k)
n (β).

Summarizing, the specialization G
(β−1)

π
(n)
k

(x1 = 1, . . . , xn = 1) is a symmetric polynomial
in β with non-negative integer coefficients, and coincides with the generating function
of the statistics

∑k
i=1 π(pi) on the set k-Dickn of k-tuple of non-crossing Dick paths

(p1, . . . , pk).

Example 5.3 Take n = 5, k = 1.Then π
(5)
1 = (15432) and one has

G
(β)

π
(5)
1

(1, q, q2, q3) = q4(1, 3, 3, 3, 2, 1, 1) + q5 (1, 3, 5, 6, 3, 3) β + q7(1, 2, 3, 3)β2 + q10β3.

It is easy to compute the Carlitz-Riordan q-analogue of the Catalan number C5, namely,
C5(q) = (1, 3, 3, 3, 2, 1, 1).

Remark 5.1 The value Nn(4) of the Narayana polynomial at β = 4 has the following
combinatorial interpretation :

Nn(4) is equal to the number of different lattice paths from the point (0, 0) to
that (n, 0) using steps from the set Σ = {(k, k) or (k,−k), k ∈ Z>0}, that never go
below the x-axis, see [68], A059231.

Exercises 5.2 (a) Show that

γk,n :=
C

(k+1)
n

C
(k)
n

=
(2n− 2k)! (2k + 1) !

(n− k) ! (n+ k + 1) !
.

(b) Show that
γk,n ≤ 1, if k ≤ n ≤ 3k + 1, and γk,n ≥ 2n−3k−1, if n > 3k + 1.
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(4) Polynomials Fw(β), Hw(β), Hw(q, t; β) and Rw(q; β)
Let w ∈ Sn be a permutation and G

(β)
w (Xn) and G

(β)
w (Xn, Yn) be the corresponding

β-Grothendieck and double β-Grothendieck polynomials. We denote by G
(β)
w (1) and by

G
(β)
w (1; 1) the specializations Xn := (x1 = 1, . . . , xn = 1), Yn := (y1 = 1, . . . , yn = 1) of

the β-Grothendieck polynomials introduced above.

Theorem 5.3 Let w ∈ Sn be a permutation. Then
(i) The polynomials Fw(β) := G

(β−1)
w (1) and Hw(β) := G

(β−1)
w (1; 1)

have both non-negative integer coefficients.
(ii) One has

Hw(β) = (1 + β)ℓ(w) Fw(β
2).

(iii) Let w ∈ Sn be a permutation, define polynomials

Hw(q, t; β) := G(β)
w (x1 = q, x2 = q, . . . , xn = q, y1 = t, y2 = t, . . . , yn = t)

to be the specialization {xi = q, yi = t, ∀i}, of the double β-Grothendieck polynomial
G

(β)
w (Xn, Yn). Then

Hw(q, t; β) = (q + t+ β q t)ℓ(w) Fw((1 + β q)(1 + β t)).

In particular, Hw(1, 1; β) = (2 + β)ℓ(w) Fw((1 + β)2).
(iv) Let w ∈ Sn be a permutation, define polynomial

Rw(q; β) := G(β−1)
w (x1 = q, x2 = 1, x3 = 1, . . .)

to be the specialization {x1 = q, xi = 1, ∀i ≥ 2}, of the (β−1)-Grothendieck polynomial
G

(β−1)
w (Xn). Then

Rw(q; β) = qw(1)−1 Rw(q; β),

where Rw(q; β) is a polynomial in q and β with non-negative integer coefficients, and
Rw(0; β = 0) = 1.

(v) Consider permutation w
(1)
n := [1, n, n− 1, n− 2, · · · , 3, 2] ∈ Sn.

Then H
w

(1)
n
(1, 1; 1) = 3(

n−1
2 ) Nn(4).

In particular, if w(k)
n = (1, 2, . . . , k, n, n− 1, . . . , k + 1) ∈ Sn, then

S
(β−1)

w
(k)
n

(1; 1) = (1 + β)(
n−k
2 ) S

(β−1)

w
(k)
n

(β2).

See Remark 5.1 for a combinatorial interpretation of the number Nn(4).

Example 5.4
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Consider permutation v = [2, 3, 5, 6, 8, 9, 1, 4, 7] ∈ S9 of the length 12, and set
x := (1 + βq)(1 + βt). One can check that

Hv(q, t; β) = x12 (1 + 2 x)(1 + 6x+ 19x2 + 24x3 + 13x4),

and Fv(β) = (1 + 2β)(1 + 6β + 19β2 + 24β3 + 13β4).
Note that Fv(β = 1) = 27 × 7, and 7 = AMS(3), 26 = CSTCTPP (3), cf

Conjecture 12, Section 5.2.3.

Remark 5.2
One can show, cf [48], p. 89, that if w ∈ Sn, then Rw(1, β) = Rw−1(1, β).

However, the equality Rw(q, β) = Rw−1(q, β) can be violated, and it seems that in
general, there are no simple connections between polynomials Rw(q, β) and Rw−1(q, β),
if so.

From this point we shell use the notation (a0, a1, . . . , ar)β :=
∑r

j=0 aj β
j, etc.

Example 5.5 Let us take w = [1, 3, 4, 6, 7, 9, 10, 2, 5, 8]. Then Rw(q, β) =
(1, 6, 21, 36, 51, 48, 26)β + qβ (6, 36, 126, 216, 306, 288, 156)β+
q2β3 (20, 125, 242, 403, 460, 289)β + q3β5 (6, 46, 114, 204, 170)β. Moreover,

Rw(q, 1) = (189, 1134, 1539, 540)q. On the other hand,
w−1 = [1, 8, 2, 3, 9, 4, 5, 10, 6, 7], and Rw−1(q, β) = (1, 6, 21, 36, 51, 48, 26)β+
qβ (1, 6, 31, 56, 96, 110, 78)β + q2β (1, 6, 27, 58, 92, 122, 120, 78)β+
q3β (1, 6, 24, 58, 92, 126, 132, 102, 26)β + q4β (1, 6, 22, 57, 92, 127, 134, 105, 44)β+
q5β (1, 6, 21, 56, 91, 126, 133, 104, 50)β + q6β (1, 6, 21, 56, 91, 126, 133, 104, 50)β.

Moreover, Rw−1(q, 1) = (189, 378, 504, 567, 588, 588, 588)q.
Notice that w = 1× u, where u = [2, 3, 5, 6, 8, 9, 1, 4, 7]. One can show that

Ru(q, β) = (1, 6, 11, 16, 11)β+qβ
2 (10, 20, 35, 34)β+q

2β4 (5, 14, 26)β. On the other hand,
u−1 = [7, 1, 2, 8, 3, 4, 9, 5, 6] and Ru−1(1, β) = (1, 6, 21, 36, 51, 48, 26)β = Ru(1, β).

[ Recall that by our definition (a0, a1, . . . , ar)β :=
∑r

j=0 aj β
j.]

5.2.2 Grothendieck polynomials G
(β)

π
(n)
k

(x1, . . . , xn) and k-dissections

Let k ∈ N and n ≥ k − 1, be a integer, define a k-dissection of a convex (n+ k + 1)-gon
to be a collection E of diagonals in (n + k + 1)-gon not containing (k + 1)-subset of
pairwise crossing diagonals and such that at least 2(k − 1) diagonals are coming from
each vertex of the (n+k+1)-gon in question. One can show that the number of diagonals
in any k-dissection E of a convex (n + k + 1)-gon contains at least (n + k + 1)(k − 1)
and at most n(2k − 1) − 1 diagonals. We define the index of a k-dissection E to be
i(E) =n(2k − 1)− 1−#|E|. Dnote by

T (k)
n (β) =

∑
E

βi(E)

the generating function for the number of k-dissections with a fixed index, where the
above sum runs over the set of all k-dissections of a convex (n+ k + 1)-gon.
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Theorem 5.4
G

(β)

π
(n)
k

(x1 = 1, . . . , xn = 1) = T (k)
n (β).

A k-dissection of a convex (n + k + 1)-gon with the maximal number of diagonals
(which is equal to n(2k − 1) − 1), is called k-triangulation. It is well-known that
the number of k-triangulations of a convex (n + k + 1)-gon is equal to the Catalan-
Hankel number C(k)

n−1. Explicit bijection between the set of k-triangulations of a convex
(n + k + 1)-gon and the set of k-tuple of non-crossing Dick paths (γ1, . . . , γk) such that
the Dick path γi connects points (i − 1, 0) and (2n − i − 1, 0), has been constructed in
[66], [72].

5.2.3 Principal specialization of Grothendieck polynomials, and q-Schröder
polynomials

Let π(n)
k = 1k × w(n−k)

0 ∈ Sn be the vexillary permutation as before, see Theorem 5.1.
Recall that

π
(n)
k =

(
1 2 . . . k k + 1 k + 2 . . . n
1 2 . . . k n n− 1 . . . k + 1

)
.

(A) Principal specialization of the Schubert polynomial S
π
(n)
k

Note that π(n)
k is a vexillary permutation of the staircase shape λ = (n−k−1, . . . , 2, 1)

and has the staircase flag ϕ = (k+1, k+2, . . . , n−1). It is known, see e.g. [76], [48], that
for a vexillary permutation w ∈ Sn of the shape λ and flag ϕ = (ϕ1, . . . , ϕr), r = ℓ(λ),
the corresponding Schubert polynomial Sw(Xn) is equal to the multi-Schur polynomial
sλ(Xϕ), where Xϕ denotes the flagged set of variables , namely, Xϕ = (Xϕ1 , . . . , Xϕr)
and Xm = (x1, . . . , xm). Therefore we can write the following determinantal formula for
the principal specialization of the Schubert polynomial corresponding to the vexillary
permutation π(n)

k

S
π
(n)
k
(1, q, , q2, . . .) = DET

([
n− i+ j − 1
k + i− 1

]
q

)
1≤i,j≤n−k

,

where
[
n
k

]
q

denotes the q-binomial coefficient.

Let us observe that the Carlitz–Riordan q-analogue Cn(q) of the Catalan number Cn

is equal to the value of the q-Schröder polynomial at β = 0, namely, Cn(q) = Sn(q, 0).

Lemma 5.2 Let k, n be integers and n > k, then

(1) DET
([

n− i+ j − 1
k + i− 1

]
q

)
1≤i,j≤n−k

= q(
n−k
3 ) C(k)

n (q),

(2) DET
(
Cn+k−i−j(q)

)
1≤i,j≤k

= qk(k−1)(6n−2k−5)/6 C(k)
n (q).

(B) Principal specialization of the Grothendieck polynomial G(β)

π
(n)
k
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Theorem 5.5

q(
n−k+1

3 )−(k−1)(n−k
2 ) DET |Sn+k−i−j(q; q

i−1β)|1≤i,j≤k =

qk(k−1)(4k+1)/6

k−1∏
a=1

(1 + qa−1β) G
π
(n)
k
(1, q, q2, . . .).

Corollary 5.1 (1) If k = n− 1, then

DET |S2n−1−i−j(q; q
i−1β)|1≤i,j≤n−1 = q(n−1)(n−2)(4n−3)/6

n−2∏
a=1

(1 + qa−1β)n−a−1,

(2) If k = n− 2, then

qn−2 DET |S2n−2−i−j(q; q
i−1β)|1≤i,j≤n−2 =

q(n−2)(n−3)(4n−7)/6

n−3∏
a=1

(1 + qa−1β)n−a−2
{(1 + β)n−1 − 1

β

}
.

• Generalization
Let n = (n1, . . . , np) ∈ Np be a composition of n so that n = n1 + · · · + np. We set

n(j) = n1 + · · ·+ nj, j = 1, . . . , p, n(0) = 0.

Now consider the permutation w(n) = w
(n1)
0 × w(n2)

0 × · · · × w(np)
0 ∈ Sn,

where w(m)
0 ∈ Sm denotes the longest permutation in the symmetric group Sm. In

other words,

w(n) =

(
1 2 . . . n1 n(2) . . . n1 + 1 . . . n(p−1) . . . n
n1 n1 − 1 . . . 1 n1 + 1 . . . n(2) . . . n . . . n(p−1) + 1

)
.

For the permutation w(n) defined above, one has the following factorization formula for
the Grothendieck polynomial corresponding to w(n), [48],

G
(β)

w(n) = G
(β)

w
(n1)
0

×G
(β)

1n1×w
(n2)
0

×G
(β)

1n1+n2×w
(n3)
0

× · · · ×G
(β)

1n1+...np−1×w
(np)
0

.

In particular, if
w(n) = w

(n1)
0 × w(n2)

0 × · · · × w(np)
0 ∈ Sn, (5.31)

then the principal specialization G
(β)

w(n) of the Grothendieck polynomial corresponding to
the permutation w, is the product of q-Schröder–Hankel polynomials. Finally, we observe
that from discussions in Section 5.2,1, Grothendieck & Narayana polynomials, one
can deduce that

G
(β−1)

w(n) (x1 = 1, . . . , xn = 1) =

p−1∏
j=1

N
(n(j))

n(j+1) (β).

In particular, the polynomial G(β−1)

w(n) (x1, . . . , xn) is a symmetric polynomial in β with
non-negative integer coefficients.
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Example 5.6
(1) Let us take (non vexillary) permutation w = 2143 = s1 s3. One can check that

G
(β)
w (1, 1, 1, 1) = 3+ 3 β + β2 = 1+ (β + 1) + (β + 1)2, and N4(β) = (1, 6, 6, 1), N3(β) =

(1, 3, 1), N2(β) = (1, 1). It is easy to see that

β G
(β)
w (1, 1, 1, 1) = DET

∣∣∣∣ N4(β) N3(β)
N3(β) N2(β)

∣∣∣∣ . On the other hand,

DET

∣∣∣∣ P4(β) P3(β)
P3(β) P2(β)

∣∣∣∣ = (3, 6, 4, 1) = (3 + 3β + β2) (1 + β). It is more involved to

check that

q5(1 + β) G(β)
w (1, q, q2, q3) = DET

∣∣∣∣ S4(q; β) S3(q; β)
S3(q; qβ) S2(q; qβ)

∣∣∣∣ .
(2) Let us illustrate Theorem 5.5 by a few examples. For the sake of simplicity, we

consider the case β = 0, i.e. the case of Schubert polynomials. In this case Pn(q; β =
0) = Cn(q) is equal to the Carlitz– Riordan q-analogue of Catalan numbers. We are
reminded that the q-Catalan– Hankel polynomials are defined as follows

C(k)
n (q) = qk(1−k)(4k−1)/6 DET |Cn+k−i−j(q)|1≤i,j≤n.

In the case β = 0 the Theorem 5.5 states that if n = (n1, . . . , np) ∈ Np and the permu-
tation w(n) ∈ Sn is defined by the use of (5.28), then

Sw(n)(1, q, q2, . . .) = q
∑
(ni

3 ) C
(n1)
n1+n2

(q)× C(n1+n2)
n1+n2+n3

(q)× C(n−np)
n (q).

Now let us consider a few examples for n = 6.
• n = (1, 5), =⇒ Sw(n)(1, q, . . .) = q10 C

(1)
6 (q) = C5(q).

• n = (2, 4), =⇒ Sw(n)(1, q, . . .) = q4 C
(2)
6 (q)=DET

∣∣∣∣ C6(q) C5(q)
C5(q) C4(q)

∣∣∣∣ .
Note that Sw(2,4)(1, q, . . .) = Sw(1,1,4)(1, q, . . .).

• n = (2, 2, 2) =⇒ Sw(n)(1, q, . . .) = C
(2)
4 (q) C

(4)
6 (q).

• n = (1, 1, 4) =⇒ Sw(n)(1, q, . . .) = q4 C
(1)
2 (q) C

(2)
4 (q) = q4 C

(2)
4 (q),

the last equality follows from that C
(k)
k+1(q) = 1 for all k ≥ 1.

• n = (1, 2, 3) =⇒ Sw(n)(1, q, . . .) = q C
(1)
3 (q) C

(3)
6 (q). On the other hand,

• n = (3, 2, 1) =⇒ Sw(n)(1, q, . . .) = q C
(3)
5 (q) C

(5)
6 (q) = q C

(3)
5 (q) = q(1, 1, 1, 1).

Note that C(k)
k+2(q) =

[
k + 1
1

]
q

.

Exercise
Let 1 ≤ k ≤ m ≤ n be integers, n ≥ 2k + 1. Consider permutation

w =

(
1 2 . . . k k + 1 . . . n
m m− 1 . . . m− k + 1 n . . . . . . 1

)
∈ Sn.

Show that
Sw(1, q, . . .) = qn(D(w)) C

(m)
n−m+k(q),
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where for any permutation w, n(D(w)) =
∑(

di(w)
2

)
and di(w) denotes the number of

boxes in the i-th column of the (Rothe ) diagram D(w) of the permutation w, see [48].
p.8.

(C) A determinantal formula for the Grothendieck polynomials G
(β)

π
(n)
k

Define polynomials

Φ(m)
n (Xn) =

n∑
a=m

ea(Xn) β
a−m,

Ai,j(Xn+k−1) =
1

(i− j)!

( ∂

∂β

)j−1

Φ
(n+1−i)
k+n−i (Xk+n−i), if 1 ≤ i ≤ j ≤ n,

and

Ai,j(Xk+n−1) =

i−j−1∑
a=0

en−i−a(Xn+k−i)

(
i− j − 1

a

)
, if 1 ≤ j < i ≤ n.

Theorem 5.6
DET |Ai,j|1≤i,j≤n = G

(β)

π
(k)
k+n

(Xk+n−1).

Comments 5.5
(a) One can compute the Grothendieck polynomials for yet another interesting

family of permutations. namely, grassmannian permutations

σ
(n)
k =

(
1 2 . . . k − 1 k k + 1 k + 2 . . . n+ k
1 2 . . . k − 1 n+ k k k + 1 . . . n+ k − 1

)
=

sksk+1 . . . sn+k−1 ∈ Sn+k.

Then

G
(β)

σk
(n)(x1, . . . , xn+k) =

k−1∑
j=0

s(n,1j)(Xk) β
j,

where s(n,1j)(Xk) denotes the Schur polynomial corresponding to the hook shape par-
tition (n, 1j) and the set of variables Xk := (x1, . . . , xk). In particular,

G
(β)

σk
(n)(xj = 1,∀j) =

(
n+ k − 1

k

)(k−1∑
j=0

k

n+ j

(
k − 1

j

)
βj
)
=

k−1∑
j=0

(
n+ j − 1

j

)
(1 + β)j.

(b) Grothendieck polynomials for grassmannian permutations
In the case of a grassmannian permutation w := σλ ∈ S∞ of the shape λ = (λ1 ≥

λ2 ≥ . . . ≥ λn) where n is a unique descent of w, one can prove the following formulas
for the β-Grothendieck polynomial

G(β)
σλ

(Xn) =
DET |xλj+n−j

i (1 + β xi)
j−1|1≤i,j≤n∏

1≤i<j≤n(xi − xj)
= (5.32)

77



DET |h(β)λj+i,j(X[i,n])|1≤i,j≤n = DET |h(β)λj+i,j(Xn)|1≤i,j≤n, (5.33)

where X[i,n] = (xi, xi+1, . . . , xn), and for any set of variables X,

h
(β)
n,k(X) =

k−1∑
a=0

(
k − 1

a

)
hn−k+a(X) βa,

and hk(X) denotes the complete symmetric polynomial of degree k in the variables from
the set X.

A proof is a straightforward adaptation of the proof of special case β = 0 (the case of
Schur polynomials) given by I. Macdonald [48], Section 2, (2.10) and Section 4, (4.8).

Indeed, consider β-divided difference operators π
(β)
j , j = 1, . . . , n − 1, and π

(β)
w ,

w ∈ Sn, introduced in [23]. For example,
π
(β)
j (f) = 1

xj−xj+1

(
(1 + βxj+1)f(Xn)− (1 + βxj)f(sj(Xn)

)
.

Now let w0 := w
(n)
0 be the longest element in the symmetric group Sn. The same

proves of the statements (2.10), (2.16) from [48] show that

π(β)
w0

= a−1
δ w0

(∑
σ∈Sn

(−1)ℓ(σ)
n−1∏
j=1

(1 + βxj)
n−j σ

)
,

where aδ =
∏

1≤i<j≤n (xi − xj).
On the other hand, the same arguments as in the proof of statement (4.8) from [48]

show that
G(β)

σλ
(Xn) = π

(β)

w(0)(x
λ+δn).

Application of the formula for operator π(β)

w
(0)
n

displayed above to the monomial xλ+δn

finishes the proof of the first equality in (5.29). The statement that the right hand side
of the equality (5.30) coincides with determinants displayed in the identity (5.30) can be
checked by means of simple transformations..

Problems 5.1
(1) Give a bijective prove of Theorem 3.3, i.e. construct a bijection between
• the set of k-tuple of mutually non-crossing Schröder paths (p1, . . . , pk) of lengths

(n, n− 1, . . . , n− k + 1) correspondingly, and
• the set of pairs (m, T ), where T is a k-dissection of a convex (n+ k+1)-gon, and

m is a upper triangle (0, 1)-matrix of size (k − 1)× (k − 1),
which is compatible with natural statistics on the both sets.
(2) Let w ∈ Sn be a permutation, and CS(w) be the set of compatible sequences

corresponding to w, see e.g. [7].
Define statistics c(•) on the set CS(w) such that

G(β−1)
w (x1 = 1, x2 = 1, . . .) =

∑
a∈CS(w)

βc(a).
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(3) Let w be a vexillary permutation.
Find a determinantal formula for the β-Grothendieck polynomial G(β)

w (X).
(4) Let w be a permutation

Find a geometric interpretation of coefficients of the polynomials S
(β)
w (xi = 1) and

S
(β)
w (xi = q, xj = 1,∀j ̸= i).

For example, let w ∈ Sn be an involution, i.e. w2 = 1, and w
′ ∈ Sn+1 be the image of

w under the natural embedding Sn ↪→ Sn+1 given by w ∈ Sn −→ (w, n+ 1) ∈ Sn+1.
It is well-known, see e.g. [42], [79], that the multiplicity me,w of the 0-dimensional
Schubert cell {pt} = Y

w
(n+1)
0

in the Schubert variety Y w
′ is equal to the specialization

Sw(xi = 1) of the Schubert polynomial Sw(Xn). Therefore one can consider the poly-
nomial S(β)

w (xi = 1) as a β-deformation of the multiplicity me,w.
Question What is a geometrical meaning of the coefficients of the polynomial

S
(β)
w (xi = 1) ∈ N[β] ?

Conjecture 5.1 The polynomial S(β)
w (xi = 1) is a unimodal polynomial for any

permutation w.

5.2.4 Specialization of Schubert polynomials

Let n, k, r be positive integers and p, b be non-negative integers such that r ≤
p+ 1. It is well-known [48] that in this case there exists a unique vexillary permutation
ϖ := ϖλ,ϕ ∈ S∞ which has the shape λ = (λ1, . . . , λn+1) and the flag ϕ = (ϕ1, . . . , ϕn+1),
where

λi = (n− i+ 1) p+ b, ϕi = k + 1 + r (i− 1), 1 ≤ i ≤ n+ 1− δb,0.

According to a theorem by M.Wachs [76], the Schubert polynomial Sϖ(X) admits the
following determinantal representation

Sϖ(X) = DET

(
hλi−i+j(Xϕi

)

)
1≤i,j≤n+1

.

Therefore we have Sϖ(1) := Sϖ(x1 = 1, x2 = 1, . . .) =

DET

((
(n− i+ 1)p+ b− i+ j + k + (i− 1)r

k + (i− 1)r

))
1≤i,j≤n+1

.

We denote the above determinant by D(n, k, r, b, p).

Theorem 5.7 D(n, k, r, b, p) =∏
(i,j)∈An,k,r

i+ b+ jp

i

∏
(i,j)∈Bn,k,r

(k − i+ 1)(p+ 1) + (i+ j − 1)r + r(b+ np)

k − i+ 1 + (i+ j − 1)r
,

where
An,k,r =

{
(i, j) ∈ Z2

≥0 | j ≤ n, j < i ≤ k + (r − 1)(n− j)
}
,

Bn,k,r =
{
(i, j) ∈ Z2

≥1 | i+ j ≤ n+ 1, i ̸= k + 1 + r s, s ∈ Z≥0

}
.
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It is convenient to re-wright the above formula for D(n, k, r, b, p) in the following form

D(n, k, r, b, p) =

n+1∏
j=1

(
(n− j + 1)p+ b+ k + (j − 1)(r − 1)

)
! (n− j + 1)!(

k + (j − 1)r
)
!
(
(n− j + 1)(p+ 1) + b

)
!

×

∏
1≤i≤j≤n

(
(k − i+ 1)(p+ 1) + jr + (np+ b)r

)
.

Corollary 5.2 (Some special cases)
(A) The case r = 1
We consider below some special cases of Theorem 5.7 in the case r = 1. To simplify

notation, we set D(n, k, b, p) := D(n, k, r = 1, b, p). Then we can rewrite the above
formula for D(n, k, r, b, p) as follows D(n, k, b, p) =

n+1∏
j=1

(
(n+ k − j + 1)(p+ 1) + b

)
!
(
(n− j + 1)p+ b+ k

)
! (j − 1)!(

(n− j + 1)(p+ 1) + b
)
!
(
(k + n− j + 1)p+ b+ k

)
! (k + j − 1)!

.

(1) If k ≤ n+ 1, then D(n, k, b, p) =

k∏
j=1

(
(n+ k + 1− j)(p+ 1) + b

n− j + 1

) (
(k − j)p+ b+ k

j

)
j! (k − j)! (n− j + 1)!

(n+ k − j + 1)!
.

In particular,
• If k = 1, then

D(n, 1, b, p) =
1 + b

1 + b+ (n+ 1)p

(
(p+ 1)(n+ 1) + b

n+ 1

)
:= F

(p+1)
n+1 (b),

where F p
n(b) :=

1+b
1+b+(p−1)n

(
pn+b
n

)
denotes the generalized Fuss-Catalan number.

• if k = 2, then

D(n, 2, b, p) =
(2 + b)(2 + b+ p)

(1 + b)(2 + b+ (n+ 1)p)(2 + b+ (n+ 2)p)
F

(p+1)
n+1 (b) F

(p+1)
n+2 (b).

(2) (R.A. Proctor [63]) Consider the Young diagram

λ := λn,p,b = {(i, j) ∈ Z≥1 × Z≥1 | 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ (n+ 1− i)p+ b}.

For each box (i, j) ∈ λ define the numbers c(i, j) := n+ 1− i+ j, and

l(i,j)(k) =

{
k+c(p,j)
c(i,j)

, if j ≤ (n+ 1− i)(p− 1) + b,
(p+1)k+c(i,j)

c(i,j)
, if (n+ 1− i)(p− 1) < j − b ≤ (n+ 1− i)p.
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Then

D(n, k, b, p) =
∏

(i,j)∈λ

l(i,j)(k). (5.34)

Therefore, D(n, k, b, p) is a polynomial in k with rational coefficients.
(3) If p = 0, then

D(n, k, b, 0) = dim V
gl(b+k)

(n+1)k
=

n+k∏
j=1

(
j + b

j
)min(j,n+k+1−j),

where for any partition µ, ℓ(µ) ≤ m, V
gl(m)
µ denotes the irreducible gl(m)-module with

the highest weight µ. In particular,

• D(n, 2, b, 0) =
1

n+ 2 + b

(
n+ 2 + b

b

)(
n+ 2 + b

b+ 1

)
is equal to the Narayana number N(n+ b+ 2, b);

• D(1, k, b, 0) =
(b+ k)! (b+ k + 1)!

k!b!(k + 1)!(b+ 1)!
:= N(b+ k + 1, k),

and therefore the number D(1, k, b, 0) counts the number of pairs of non-crossing lattice
paths inside a rectangular of size (b+1)×(k+1), which go from the point (1, 0) (resp. from
that (0, 1)) to the point (b+1, k) (resp. to that (b, k+1)), consisting of steps U = (1, 0)
and R = (0, 1), see [68], A001263, for some list of combinatorial interpretations of the
Narayana numbers.

(4) If p = b = 1, then

D(n, k, 1, 1) = C
(k)
n+k+1 :=

∏
1≤i≤j≤n+1

2k + i+ j

i+ j
.

(5) ( R.A. Proctor [61],[62] ) If p = 1 and b is odd integer, then D(n, k, b, 1)
is equal to the dimension of the irreducible representation of the symplectic Lie algebra
Sp(b+ 2n+ 1) with the highest wright kωn+1.

(6) If p = 1 and b = 0, then

D(n, k, 1, 0) = D(n− 1, k, 1, 1) =
∏

1≤i≤j≤n

2k + i+ j

i+ j
= C

(k)
n+k,

see subsection Grothendieck and Narayana polynomials.
(7) ( Cf [25] ) Let ϖλ be a unique dominant permutation of shape λ := λn,p,b and

ℓ := ℓn,p,b =
1
2
(n+ 1)(np+ 2b) be its length. Then

∑
a∈R(ϖλ)

ℓ∏
i=1

(x+ ai) = ℓ! B(n, x, p, b).

Here for any permutation w of length l, we denote by R(w) the set {a = (a1, . . . , al)} of
all reduced decompositions of w.
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(B) The case k = 0
(1) D(n, 0, 2, 2, 2) = V SASM(n), i.e. the number of alternating sign 2n+1×2n+1

matrices symmetric about the vertical axis, see e.g. [68], A005156.
(2) D(n, 0, 2, 1, 2) = CSTCPP (n), i.e. the number of cyclically symmetric transpose

complement plane partitions, see e.g. [68], A051255.

Remark 5.3
It is well-known, see e.g. [63], or [69], vol.2, Exercise 7.101.b, that the number

D(n, k, b, p) is equal to the total number ppλn,p,b(k) of plane partitions 23 bounded by
k and contained in the shape λn,b,p. Finally we recall that the generalized Fuss-Catalan
number F (p+1)

n+1 (b) counts the number of lattice paths from (0, 0) to (b + np, n) that do
not go above the line x = py, see e.g. [44].

Theorem 5.8 Let ϖn,k,p be a unique vexillary permutation of the shape λn.p := (n, n−
1, . . . , 2, 1)p and flag ϕn,k := (k + 1, k + 2, . . . , k + n− 1, k + n). Then

• G(β−1)
ϖn,1,p

(1) =
n+1∑
j=1

1

n+ 1

(
n+ 1

j

) (
(n+ 1)p

j − 1

)
βj−1.

• If k ≥ 2, then Gn,k,p(β) := G
(β−1)
ϖn,k,p(1) is a polynomial of degree nk in β, and

Coeff[βnk](Gn,k,p(β)) = D(n, k, 1, p− 1, 0).

The polynomial
∑n

j=1
1
n

(
n
j

) (
pn
j−1

)
tj−1 := FNn(t) is known as the Fuss-Narayana poly-

nomial and can be considered as a t-deformation of the Fuss-Catalan number FCp
n(0).

Recall that the number 1
n

(
n
j

) (
pn
j−1

)
counts paths from (0, 0) to (np, 0) in the first

quadrant, consisting of steps U = (1, 1) and D = (1,−p) and have j peaks (i.e. UD’s),
cf. [68], A108767.

For example, take n = 3, k = 2, p = 3, r = 1, b = 0. Then
ϖ3,2,3 = [1, 2, 12, 9, 6, 3, 4, 5, 7, 8, 10, 11] ∈ S12, and G3,2,3(β) =
(1, 18, 171, 747, 1767, 1995, 1001). Therefore, G3,2,3(1) = 5700 = D(3, 2, 3, 0) and
Coeff[β6](G3,2,3(β)) = 1001 = D(3, 2, 2, 0).

Comments 5.6 (=⇒) The case r=0
It follows from Theorem 5.7 that in the case r = 0 and k ≥ n, one has

D(n, k, 0, p, b) = dim V
gl(k+1)
λn,p,b

= (1 + p)(
n+1
2 )

n+1∏
j=1

(
(n−j+1)p+b+k−j+1

k−j+1

)(
(n−j+1)(p+1)+b

n−j+1

) .

23 Let λ be a partition. A plane (ordinary) partition bounded by d and shape λ is a filling of the
shape λ by the numbers from the set {0, 1, . . . , d} in such a way that the numbers along columns and
rows are weakly decreasing.

A reverse plane partition bounded by d and shape λ is a filling of the shape λ by the numbers from
the set {0, 1, . . . , d} in such a way that the numbers along columns and rows are weakly increasing.
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Now consider the conjugate ν := νn,p,b := ((n + 1)b, np, (n− 1)p, . . . , 1p) of the partition
λn,p,b, and a rectangular shape partition ψ = (k, . . . , k︸ ︷︷ ︸

np+b

). If k ≥ np+ b, then there exists

a unique grassmannian permutation σ := σn,k,p,b of the shape ν and the flag ψ, [48]. It
is easy to see from the above formula for D(n, k, 0, p, b), that

Sσn,k,p,b
(1) = dim V gl(k−1)

νn,p,b
=

(1 + p)(
n
2)

(
k + n− 1

b

) n∏
j=1

(p+ 1)(n− j + 1)

(n− j + 1)(p+ 1) + b

n∏
j=1

(
k+j−2

(n−j+1)p+b

)(
(n−j+1)(p+1)+b−1

n−j

) .
After the substitution k := np+ b+ 1 in the above formula we will have

Sσn,np+b+1,p,b
(1) = (1 + p)(

n
2)

n∏
j=1

(
np+b+j−1
(n−j+1)p

)(
j(p+1)−1

j−1

) .
In the case b = 0 some simplifications are happened, namely

Sσn,k,p,0
(1) = (1 + p)(

n
2)

n∏
j=1

(
k+j−2

(n−j+1)p

)(
(n−j+1)p+n−j

n−j

) .
Finally we observe that if k = np+ 1, then

n∏
j=1

(
np+j−1
(n−j+1)p

)(
(n−j+1)p+n−j

n−j

) =
n∏

j=2

(
np+j−1

(p+1)(j−1)

)(
j(p+1)−1

j−1

) =
n−1∏
j=1

j! (n(p+ 1)− j − 1)!

((n− j)(p+ 1))! ((n− j)(p+ 1)− 1)!
:= A(p)

n ,

where the numbers A(p)
n are integers that generalize the numbers of alternating sign

matrices (ASM) of size n× n, recovered in the case p = 2, see [57], [15] for details.

Examples 5.1
(1) Let us consider polynomials Gn(β) := G

(β−1)
σn,2n,2,0(1).

• If n = 2, then σ2,4,2,0 = 235614 ∈ S6, and G2(β) = (1, 2,3) := 1 + 2β + 3β2.
Moreover, Rσ2,4,2,0(q; β) = (1,2)β + 3 qβ2.
• If n = 3, then σ3,6,2,0 = 235689147 ∈ S9, and G3(β) = (1, 6, 21, 36, 51, 48,26).
Moreover, Rσ3,6,2,0(q; β) = (1, 6, 11, 16,11)β +q β2(10, 20, 35, 34)β +q2β4(5, 14,26)β;
Rσ3,6,2,0(q; 1) = (45, 99, 45)q.
• If n = 4, then σ4,8,2,0 = [2, 3, 5, 6, 8, 9, 11, 12, 1, 4, 7, 10] ∈ S12, and G4(β) =
(1, 12, 78, 308, 903, 2016, 3528, 4944, 5886, 5696, 4320, 2280,646).
Moreover, Rσ4,8,2,0(q; β) = (1, 12, 57, 182, 392, 602, 763, 730, 493,170)β +
qβ2(21, 126, 476, 1190, 1925, 2626, 2713, 2026, 804)β +
q2β4(35, 224, 833, 1534, 2446, 2974, 2607, 1254)β +q

3β6(7, 54, 234, 526, 909, 1026,646)β;
Rσ4,8,2,0(q; 1) = (3402, 11907, 11907, 3402)q = 1701 (2, 7, 7, 2)q.
• If n = 5, then σ5,10,2 = [2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 1, 4, 7, 10, 13] ∈ S15, and

G5(β) = (1, 20, 210, 1420, 7085, 27636, 87430, 230240, 516375, 997790, 1676587, 2466840,
3204065, 3695650, 3778095, 3371612, 2569795, 1610910, 782175, 262200,45885).
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Moreover, Rσ5,10,2,0(q; β) = (1, 20, 174, 988, 4025, 12516, 31402, 64760, 111510, 162170,
202957, 220200, 202493, 153106, 89355, 35972,7429)β+
qβ2(36, 432, 2934, 13608, 45990, 123516, 269703, 487908, 738927, 956430, 1076265,
1028808, 813177, 499374, 213597, 47538)β +
q2β4(126, 1512, 9954, 40860, 127359, 314172, 627831, 1029726, 1421253, 1711728,
1753893, 1492974, 991809, 461322, 112860)β +
q3β6(84, 1104, 7794, 33408, 105840, 255492, 486324, 753984, 1019538, 1169520, 1112340,
825930, 428895, 117990)β +
q4β8(9, 132, 1032, 4992, 17730, 48024, 102132, 173772, 244620, 276120, 240420, 144210,
45885)β.
Rσ5,10,2,0(q; 1) = (1299078, 6318243, 10097379, 6318243, 1299078)q =
59049(22, 107, 171, 107, 22)q.[

We are reminded that over the paper we have used the notation (a0, a1, . . . , ar)β :=∑r
j=0 aj β

j, etc
]
.

One can show that deg[β]Gn(β) = n(n−1), deg[q]Rσn,2n,2,0(q, 1) = n−1, and looking
on the numbers 3, 26, 646, 45885 we made

Conjecture 5.2 Let a(n) := Coeff [βn(n−1)]
(
Gn(β)

)
. Then

a(n) = V SASM(n) = OSASM(n) =
n−1∏
j=1

(3j + 2)(6j + 3)! (2j + 1)!

(4j + 2)! (4j + 3)!
,

where
V SASM(n) is the number of alternating sign 2n+ 1× 2n+ 1 matrices symmetric

about the vertical axis;
OSASM(n) is the number of 2n × 2n off-diagonal symmetric alternating sign

matrices.
See [68], A005156, [57] and references therein, for details.

Conjecture 5.3
Polynomial Rσn,2n,2,0(q; 1) is symmetric and Rσn,2n,2,0(0; 1) = A20342(2n−1), see [68].

(2) Let us consider polynomials Fn(β) := G
(β−1)
σn,2n+1,2,0(1).

• If n = 1, then σ1,3,2,0 = 1342 ∈ S4, and F2(β) = (1,2) := 1 + 2β.
• If n = 2, then σ2,5,2,0 = 1346725 ∈ S7, and F3(β) = (1, 6, 11, 16,11).
Moreover, Rσ2,5,2,0(q; β) = (1, 2,3)β + qβ(4, 8, 12)β + q2β3(4,11)β.
• If n = 3, then σ3,7,2,0 = [1, 3, 4, 6, 7, 9, 10, 2, 5, 8] ∈ S10, and F4(β) =
(1, 12, 57, 182, 392, 602, 763, 730, 493,170).
Moreover,
Rσ3,7,2,0(q; β) = (1, 6, 21, 36, 51, 48,26)β + q β (6, 36, 126, 216, 306, 288, 156)β
+ q2β3(20, 125, 242, 403, 460, 289)β + q3β5(6, 46, 114, 204,170)β;
Rσ3,7,2,0(q; 1) = (189, 1134, 1539, 540)q = 27 (7, 42, 57, 20)q.
• If n = 4, then σ4,9,2,0 = [1, 3, 4, 6, 7, 9, 10, 12, 13, 2, 5, 8, 11] ∈ S13, and F5(β) =
(1, 20, 174, 988, 4025, 12516, 31402, 64760, 111510, 162170, 202957, 220200, 202493,
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153106, 89355, 35972,7429).
Moreover,
Rσ4,9,2,0(q; β) = (1, 12, 78, 308, 903, 2016, 3528, 4944, 5886, 5696, 4320, 2280,646)β+
qβ (8, 96, 624, 2464, 7224, 16128, 28224, 39552, 47088, 45568, 34560, 18240, 5168)β+
q2β3(56, 658, 3220, 11018, 27848, 53135, 78902, 100109, 103436, 84201, 47830, 14467)β+
q3β5(56, 728, 3736, 12820, 29788, 50236, 72652, 85444, 78868, 50876, 17204)β+
q4β7(8, 117, 696, 2724, 7272, 13962, 21240, 24012, 18768,7429)β;
Rσ4,9,2,0(q; 1) = (30618, 244944, 524880, 402408, 96228)q = 4374 (7, 56, 120, 92, 22)q.
One can show that Fn(β) is a polynomial in β of degree n2, and looking on the

numbers 2, 11, 170, 7429 we made

Conjecture 5.4 Let b(n) := Coeff[β(n−1)2 ]

(
Fn(β)

)
. Then

b(n) = CSTCPP (n). In other words, b(n) is equal to the number of cyclically
symmetric transpose complement plane partitions in an 2n × 2n × 2n box. This
number is known to be

n−1∏
j

(3j + 1)(6j)! (2j)!

(4j + 1)! (4j)!
,

see [68], A051255, [9], p.199.

It ease to see that polynomial Rσn,2n+1,2,0(q; 1) has degree n.

Conjecture 5.5

• Coeff[βn]

(
Rσn,2n+1,2,0(q; 1)

)
= A20342(2n),

see [68];

• Rσn,2n+1,2,0(0; 1) = A
(1)
QT (4n; 3) = 3n(n−1)/2 ASM(n),

see [45], Theorem 5, or [68], A059491.

Proposition 5.5 One has

Rσ4,2n+1,2,0(0; β) = Gn(β) = G(β−1)
σn,2n,2,0

(1), Rσn,2n,2,0(0, β) = Fn(β) = G(β−1)
σn,2n+1,2,0

(1).

Finally we define (β, q)-deformations of the numbers V SASM(n) and CSCTPP (n).
To accomplish these ends, let us consider permutations

w−
k = (2, 4, . . . , 2k, 2k−1, 2k−3, . . . , 3, 1) and w+

k = (2, 4, . . . , 2k, 2k+1, 2k−1, . . . , 3, 1).

Proposition 5.6 One has

Sw−
k
(1) = V SAM(k), Sw+

k
(1) = CSTCPP (k).
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Therefore the polynomials G
(β−1)

w−
k

(x=q, xj = 1, ∀j ≥ 2) and G
(β−1)

w+
k

(x=q, xj = 1,∀j ≥ 2)

define (β, q)-deformations of the numbers V SAM(k) and CSTCPP (k) respectively. Note
that the inverse permutations (w−

k )
−1 = (2k, 1︸︷︷︸, . . . , 2k + 1− i, i︸ ︷︷ ︸, . . . , k + 1, k︸ ︷︷ ︸) and (w+

k )
−1 =

(2k + 1, 1︸ ︷︷ ︸, . . . , 2k + 2− j, j︸ ︷︷ ︸, . . . , k + 2, k︸ ︷︷ ︸, k + 1) also define a (β, q)-deformation of the

numbers considered above.

Problem 5.1
It is well-known, see e.g. [19], p.43, that the set VSASM(n) of alternating sign

(2n + 1)× (2n + 1) matrices symmetric about the vertical axis has the same cardinality
as the set SY T2(λ(n),≤ n) of semistandard Young tableaux of the shape λ(n) := (2n −
1, 2n − 3, . . . , 3, 1) filled by the numbers from the set {1, 2, . . . , n}, and such that the
entries are weakly increasing down the anti-diagonals.

On the other hand, consider the set CS(w−
k ) of compatible sequences, see e.g. [7],

[23], corresponding to the permutation w−
k ∈ S2k.

Challenge Construct bijections between the sets CS(w−
k ), SY T2(λ(k),≤ k) and

VSASM(k).

Remarks 2 One can compute the principal specialization of the Schubert polynomial
corresponding to the transposition tk,n := (k, n− k) ∈ Sn that interchanges k and n− k,
and fixes all other elements of [1, n].

Proposition 5.7 q(n−1)(k−1) Stk,n−k
(1, q−1, q−2, q−3, . . .) =

k∑
j=1

(−1)j−1 q(
j
2)

[
n− 1
k − j

]
q

[
n− 2 + j
k + j − 1

]
q

=
n−2∑
j=1

qj
([

j + k − 2
k − 1

]
q

)2

.

Exercises 5.3
(1) Show that if k ≥ 1, then

Coeff[qkβ2k]

(
Rσn,2n,2,0(q; t)

)
=

(
2n− 1

2k

)
, Coeff[qkβ2k−1]

(
Rσn,2n+1,2,0(q; t)

)
=

(
2n

2k − 1

)
.

(2) Let n ≥ 1 be a positive integer, consider “zig-zag” permutation

w =

(
1 2 3 4 . . . 2k + 1 2k + 2 . . . 2n− 1 2n
2 1 4 3 . . . 2k + 2 2k + 1 . . . 2n 2n− 1

)
∈ S2n.

Show that

Rw(q, β) =
n−1∏
k=0

(
1− β2k

1− β
+ qβ2k

)
.

(3) Let σk,n,m be grassmannian permutation with shape λ = (nm) and flag ϕ =
(k + 1)m, i.e.

σk,n,m =

(
1 2 . . . k k + 1 . . . k + n k + n+ 1 . . . k + n+m
1 2 . . . k k +m+ 1 . . . k +m+ n k + 1 . . . k +m

)
.
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Clearly σk+1,n,m = 1× σk,n,m.
Show that

the coefficient Coeffβm

(
Rσk,n,m

(1, β)

)
is equal to the Narayana number

N(k + n+m, k).
(4) Consider permutation w := w(n) = (w1, . . . , w2n+1), where w2k−1 = 2k + 1 for

k = 1, . . . , n, w2n+1 = 2n, w2 = 1 and w2k = 2k − 2 for k = 2, . . . , n. For example,
w(3) = (3152746). We set w(0) = 1.

Show that
the polynomial S

(β)
w (xi = 1,∀i) has degree n(n− 1) and the coefficient

Coeffβn(n−1)

(
S

(β)
w (xi = 1, ∀i)

)
is equal to the n-th Catalan number Cn.

Note that the specialization S
(β)
w (xi = 1)|β=1 is equal to the 2n-th Euler (or up/down)

number, see [68], A000111.
More generally, consider permutation w

(n)
k := 1k × w(n) ∈ Sk+2n+1, and polynomials

Pk(z) =
∑
j≥0

(−1)j S
w

(j)
k−2j

(xi = 1) zk−2j, k ≥ 0.

Show that ∑
k≥0

Pk(z)
tk

k!
= exp(tz) sech(t).

The polynomials Pk(z) are well-known as Swiss-Knife polynomials, see [68], A153641,
where one can find an overview of some properties of the Swiss-Knife polynomials.

(5) Consider permutation u := un = (u1, . . . , u2n) ∈ S2n, n ≥ 2, where
u1 = 2, u2k+1 = 2k − 1, k = 1, . . . , n, u2k = 2k + 2, k = 1, . . . , n − 1, u2n = 2n − 1.
For example, u4 = (24163857).

Now consider polynomial

R(k)
n (q) = S1k×un

(x1 = q, xi = 1, ∀i ≥ 2).

Show that
• R

(k)
n (1) =

(
2n+k−1

k

)
E2n−1, where E2k−1, k ≥ 1, denotes the Euler number, see [68],

A00111. In particular, R(1)
n (1) = 22n−1 Gn, where Gn denotes the unsigned Genocchi

number, see [68], A110501.
• degqR

(k)
n (q) = n and Coeffqn

(
R

(0)
n (q)

)
= (2n− 3)!!.

(6) Consider permutation wk := (2k+1, 2k−1, . . . , 3, 1, 2k, 2k−2, . . . , 4, 2) ∈ S2k+1,
Show that

S(β−1)
wk

(x1 = q, xj = 1,∀j ≥ 2) = q2k (1 + β)(
n
2).

(7) Consider permutations σ+
k = (1, 3, 5, . . . , 2k + 1, 2k + 2, 2k, . . . , 4, 2) and σ−

k =
(1, 3, 5, . . . , 2k + 1, 2k, 2k − 2, . . . , 4, 2), and define polynomials

S±
k (q) = Sσ±

k
(x1 = q, xj = 1,∀j ≥ 2).
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Show that S+
k (0) = V SASM(k), S+

k (1) = V SASM(k + 1),
∂
∂q
S+
k (q)|q=0 = 2k S+

k (0) Coeffqk
(
S+
k (q)

)
= CSTCP (k + 1).

S−
k (0) = SCTCP (k), S−

k (1) = SCTCP (k + 1),
∂
∂q
S−
k (q)|q=0 = (2k − 1) S−

k (0), Coeffqk
(
S−
k (q)

)
= V SASM(k).

Let’s observe that σ±
k = 1×τ±k−1, where τ+k = (2, 4, . . . , 2k, 2k+1, 2k−1, . . . , 3, 1) and

τ−k = (2, 4, . . . , 2k, 2k − 1, 2k − 3, . . . , 3, 1). Therefore,

Sτ±k
(x1 = q, xj = 1, ∀j ≥ 2) = q S±

k−1(q).

(7) Consider permutation

un =

(
1 2 . . . n n+ 1 n+ 2 n+ 3 . . . 2n
2 4 . . . 2n 1 3 5 . . . 2n− 1

)
,

and set u(k)n := 12k+1 × un.
Show that

G
(β−1)

u
(k)
n

(xi = 1,∀i ≥ 1) = (1 + β)(
n+1
2 ) G

((β)2−1)

1k×w
(n+1)
0

(xi = 1, ∀i ≥ 1),

where w(n+)
0 denotes the permutation (n+ 1, n, n− 1, . . . , 2, 1).

(8) Show that∑
(a,b,c)∈Z3

qa+b+c

[
a+ b
b

]
q

[
a+ c
c

]
q

[
b+ c
b

]
q

=
1

(q; q)3∞

(∑
k≥2

(−1)k
(
k

2

)
q(

k
2)−1

)
.

It is not difficult to see that the left hand side sum of the above identity counts the
weighted number of plane partitions π = (πij) such that

πi,j ≥ 0, πij ≥ max(πi+1,j, πi,j+1), πij ≤ 1, if i ≥ 2 ana j ≥ 2,

and the weight wt(π) :=
∑

i,j πij.

Final remark, it follows from the seventh exercise listed above, that the polynomials
S

(β)

σ±
k

(x1 = q, xj = 1, ∀j ≥ 2) define a (q, β)-deformation of the number V SASM(k) (the
case σ+

k ) and the number CSTCPP (k) (the case σ−
k ), respectively.

5.2.5 Specialization of Grothendieck polynomials

Let p, b, n and i, 2i < n be positive integers. Denote by T (i)
p,b,n the trapezoid, i.e. a

convex quadrangle having vertices at the points

(ip, i), (ip, n− i), (b+ ip, i) and (b+ (n− i)p, n− i).
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Definition 5.5 Denote by FC
(i)
b,p,n the set of lattice path from the point (ip, i) to that

(b + (n − i)p, n − i) with east steps E = (0, 1) and north steps N = (1, 0), which are
located inside of the trapezoid T (i)

p,b,n.

If p ∈ FC(i)
b,p,n is a path, we denote by p(p) the number of peaks, i.e.

p(p) = NE(p) + Ein(p) +Nend(p),

where NE(p) is equal to the number of steps NE resting on path p; Ein(p) is equal to
1, if the path p starts with step E and 0 otherwise; Nend(p) is equal to 1, if the path
p ends by the step N and 0 otherwise.

Note that the equality Nend(p) = 1 may happened only in the case b = 0.

Definition 5.6 Denote by FC(k)
b,p,n the set of k-tuples P = (p1, . . . , pk) of non-crossing

lattice paths, where for each i = 1, . . . , k, pi ∈ FC(i)
b,p,n.

Let
FC

(k)
b,p,n(β) :=

∑
P∈FC

(k)
b,p,n

βp(P)

denotes the generating function of the statistics p(P) :=
∑k

i=1 p(pi) − k.

Theorem 5.9 The following equality holds

G(β)
σn,k,p,b

(x1 = 1, x2 = 1, . . .) = FC
(k)
p,b,n+k(β + 1),

where σn,k,p,b is a unique grassmannian permutation with shape ((n + 1)b, np, (n −
1)p, . . . , 1p) and flag (k, . . . , k)︸ ︷︷ ︸

np+b

.

5.3 The “longest element” and Chan–Robbins–Yuen polytope

5.3.1 The Chan–Robbins–Yuen polytope CRYn

Assume additionally, cf [71], 6.C8, (d), that the condition (a) in Definition 5.1 is
replaced by that

(a′) : xij and xkl commute for all i, j, k and l.

Consider the element w(n)
0 :=

∏
1≤i<j≤n xij. Let us bring the element w(n)

0 to the
reduced form, that is, let us consecutively apply the defining relations (a′) and (b) to
the element w(n)

0 in any order until unable to do so. Denote the resulting polynomial
by Qn(xij;α, β). Note that the polynomial itself depends on the order in which the
relations (a′) and (b) are applied.

We denote by Qn(β) the specialization xij = 1 for all i and j, of the polynomial
Qn(xij;α = 0, β).
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Example 5.7
Q3(β) = (2, 1) = 1 + (β + 1), Q4(β) = (10, 13, 4) = 1 + 5(β + 1) + 4(β + 1)2,

Q5(β) = (140, 336, 280, 92, 9) = 1 + 16(β + 1) + 58(β + 1)2 + 56(β + 1)3 + 9(β + 1)4,
Q6(β) = 1+42(β+1)+448(β+1)2+1674(β+1)3+2364(β+1)4+1182(β+1)5+169(β+1)6.
Q7(β) = (1, 99, 2569, 25587, 114005, 242415, 248817, 118587, 22924, 1156)β+1

Q8(β) = (1, 219, 12444, 279616, 2990335, 16804401, 52421688, 93221276, 94803125,
53910939, 16163947, 2255749, 108900)β+1.

What one can say about the polynomial Qn(β) := Qn(xij; β)|xij=1,∀i,j ?
It is known, [71], 6.C8, (d), that the constant term of the polynomial Qn(β) is equal

to the product of Catalan numbers
∏n−1

j=1 Cj. It is not difficult to see that if n ≥ 3, then
Coeff[β+1](Qn(β)) = 2n − 1−

(
n+1
2

)
.

Theorem 5.10 One has

Qn(β − 1) =
(∑
m≥0

ι(CRYn+1,m) βm
)
(1− β)(

n+1
2 )+1,

where CRYm denotes the Chan–Robbins-Yuen polytope [12], [13], i.e. the convex poly-
tope given by the following conditions :
CRYm = {(aij) ∈Matm×m(Z≥0)} such that
(1)

∑
i aij = 1,

∑
j aij = 1,

(2) aij = 0, if j > i+ 1.
Here for any integral convex polytope P ⊂ Zd, ι(P , n) denotes the number of integer

points in the set nP ∩ Zd.

In particular, the polynomial Qn(β) does not depend on the order in which the relations
(a′) and (b) have been applied.

Now let us denote by Qn(t;α, β) the specialization

xij = 1, i < j < n, and xi,n = t, if i = 1, . . . , n− 1,

of the (reduced) polynomial Qn(xij;α, β) obtained by applying the relations (a′) and (b)
in a certain order. The polynomial itself depends on the order selected.

Conjecture 5.6 (A) Let n ≥ 4 and write

Qn(t = 1;α, β) :=
∑
k≥0

(1 + β)k ck,n(α), then ck,n(α) ∈ Z≥0[α].

(B)

• The polynomial Qn(t, β) has degree dn := [ (n−1)2

4
].

• Write

Qn(t, β) = tn−2

dn∑
k=0

c(k)n (t).

Then
c(dn)n (1) = a2n for some non− negative integer an.
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Moreover, there exists a polynomial an(t) ∈ N[t] such that

c(dn)n (t) = an(1) an(t), an(0) = an−1.

(C) The all roots of the polynomial Qn(β) belong to the set R<−1.

For example,
(a) Q4(t = 1;α, β) = (1, 5, 4)β+1 + α (5, 7)β+1 + 3 α2, Q5(t = 1;α, β) =

(1, 16, 58, 56, 9)β+1 + α (16, 109, 146, 29)β+1 + α2 (51, 125, 34)β+1 + α3 (35, 17)β+1.

(b) c
(6)
6 = 13 (2, 3, 3, 3, 2), c

(9)
7 (t) = 34 (3, 5, 6, 6, 6, 5, 3),

c
(12)
8 (t) = 330 (13, 27, 37, 43, 45, 45, 43, 37, 27, 13).

Comments 5.7
(1) We expect that for each integer n ≥ 2 the set

Ψn+1 := {w ∈ S2n−1 | Sw(1) =
n∏

j=1

Catj}

contains either one or two elements, whereas the set {w ∈ S2n−2 | Sw(1) =
∏n

j=1Catj} is
empty. For example, Ψ4 = { [1, 5, 3, 4, 2] }, Ψ5 = { [1, 5, 7, 3, 2, 6, 4], [1, 5, 4, 7, 2, 6, 3] },

Ψ6 = { w := [1, 3, 2, 8, 6, 9, 4, 5, 7], w−1 }, Ψ7 = {???}.
Question Does there exist a vexillary (grassmannian ?) permutation w ∈ S∞ such

that Sw(1) =
∏n

j=1Catj ?
For example, w = [1, 4, 5, 6, 8, 3, 5, 7] ∈ S8 is a grassmannian permutation such that
Sw(1) = 140, and Rw(1, β) = (1, 9, 27, 43, 38, 18, 4).

Remark 5.4 We expect that for n ≥ 5 there are no permutations w ∈ S∞ such that
Qn(β) = S

(β)
w (1).

(3) The numbers Cn :=
∏n

j=1Catj appear also as the values of the Kostant partition
function of the type An−1 on some special vectors. Namely,

Cn = KΦ(1n)(γn), where γn = (1, 2, 3, . . . , n− 1,−
(
n

2

)
),

see e.g. [71], 6.C10, and [34], 173–178. More generally [34], (7,18), (7.25),one has

KΦ(1n)(γn,d) = ppδn(d) Cn−1 =
n+d−2∏
j=d

1

2j + 1

(
n+ d+ j

2j

)
,

where γn,d = (d + 1, d + 2, . . . , d + n − 1,−n(2d + n − 1)/2), ppδn(d) denotes
the set of reversed (weak) plane partitions bounded by d and contained in the shape
δn = (n − 1, n − 2, . . . , 1). Clearly, ppδn(1) =

∏
1≤i<j≤n

i+j+1
i+j−1

= Cn, where Cn is the n-th

Catalan number 24.
24 For example, if n = 3, there exist 5 reverse (weak) plane partitions of shape δ3 = (2, 1) bounded

by 1, namely reverse plane partitions

{(
0 0
0

)
,

(
0 0
1

)
,

(
0 1
0

)
,

(
0 1
1

)
,

(
1 1
1

)}
.
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Conjecture 5.7
For any permutation w ∈ Sn there exists a graph Γw = (V,E), possibly with multiple

edges, such that the reduced volume ṽol(FΓw) of the flow polytope FΓw , see e.g. [70] for
a definition of the former, is equal to Sw(1).

For a family of vexillary permutations wn,p of the shape λ = pδn+1 and flag ϕ =
(1, 2, . . . , n−1, n) the corresponding graphs Γn,p have been constructed in [52], Section 6.
In this case the reduced volume of the flow polytope FΓn,p is equal to the Fuss-Catalan
number 1

1+(n+1)p

(
(n+1)(p+1)

n+1

)
= Swn,p(1), cf Corollary 5.2

Exercises 5.4
(a) Show that
the polynomial Rn(t) := t1−n Qn(t; 0, 0) is symmetric (unimodal ?), and Rn(0) =∏n−2

k=1 Catk.
For example, R4(t) = (1 + t)(2 + t+ 2 t2), R5(t) = 2 (5, 10, 13, 14, 13, 10, 5)t.
R6(t) = 10 (2, 3, 2)t (7, 7, 10, 13, 10, 13, 10, 7, 7)t.
Note that Rn(1) =

∏n−1
k=1 Catk.

(b) More generally, write Rn(t, β) := Qn(t; 0, β) =
∑

k≥0 R
(k)
n (t) βk.

Show that the polynomials R(k)
n (t) are symmetric for all k.

(c) Consider a reduced polynomial Rn({xij}) of the element∏
1≤i<j≤n

(i,j) ̸=(n−1,n)

xij ∈ ÂCY B(α = β = 0)ab,

see Definition 5.1. Here we assume additionally, that all elements {xij} are mutually
commute. Define polynomial R̃n(q, t) to be the following specialization

xij −→ 1, if i < j < n− 1, xi,n−1 −→ q, xi,n −→ t, ∀i

of the polynomial Rn({xij}) in question.
Show that polynomials R̃n(q, t) are well-defined, and

R̃n(q, t) = R̃n(t, q).

Examples 5.2
R4(t, β) = (2, 3, 3, 2)t + (4, 5, 4)t β + (2, 2)t β

2, R5(t, β) =
(10, 20, 26, 28, 26, 20, 10)t + (33, 61, 74, 74, 61, 33)t β + (39, 65, 72, 65, 39)t β

2+
(19, 27, 27, 19)t β

3 + (3, 3, 3)t β
4, R6(t, β) =

(140, 350, 550, 700, 790, 820, 790, 700, 550, 350, 140)t+
(686, 1640, 2478, 3044, 3322, 3322, 3044, 2478, 1640, 686)t β+
(1370, 3106, 4480, 5280, 5537, 5280, 4480, 3106, 1370)t β

2+
(1420, 3017, 4113, 4615, 4615, 4113, 3017, 1420)t β

3+ ,
(800, 1565, 1987, 2105, 1987, 1565, 800)t β

4+
(230, 403, 465, 465, 403, 230)t β

5+
(26, 39, 39, 39, 26)t β

6.
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R6(1, β) = (5880, 22340, 34009, 26330, 10809, 2196, 169)β.

R7(t, β) = (5880, 17640, 32340, 47040, 59790, 69630, 76230, 79530, 79530, 76230,
69630, 59790, 47040, 32340, 17640, 5880)t +
(39980, 116510, 208196, 295954, 368410, 420850, 452226, 462648, 452226, 420850, 368410,
295954, 208196, 116510, 39980)t β +
(118179, 333345, 578812, 802004, 975555, 1090913, 1147982, 1147982, 1090913, 975555,
802004, 578812, 333345, 118179)t β

2 +
(198519, 539551, 906940, 1221060, 1447565, 1580835, 1624550, 1580835, 1447565, 1221060,
906940, 539551, 198519)t β

3 +
(207712, 540840, 875969, 1141589, 1314942, 1398556, 1398556, 1314942, 1141589, 875969,
540840, 207712)t β

4 +
(139320, 344910, 535107, 671897, 749338, 773900, 749338, 671897, 535107, 344910,
139320)t β

5

+(59235, 137985, 203527, 244815, 263389, 263389, 244815, 203527, 137985, 59235)t β
6 +

(15119, 32635, 45333, 51865, 53691, 51865, 45333, 32635, 15119)t β
7 +

(2034, 3966, 5132, 5532, 5532, 5132, 3966, 2034) β8 +(102, 170, 204, 204, 204, 170, 102)t β
9.

R7(1, β) =
(776160, 4266900, 10093580, 13413490, 10959216, 5655044, 1817902, 343595, 33328, 1156)β.

5.3.2 The Chan–Robbins–Mészáros polytope Pn,m

Let m ≥ 0 and n ≥ 2 be integers, consider the reduced polynomial Qn,m(t, β) corre-
sponding to the element

Mn.m :=
( n∏
j=2

x1j

)m+1
n−2∏
j=2

n∏
k=j+2

xjk.

For example Q2,4(t, β) = (4, 7, 9, 10, 10, 9, 7, 4)t + (10, 17, 21, 22, 21, 17, 10)t β
+(8, 13, 15, 15, 13, 8)tβ

2 + (2, 3, 3, 3, 2)t β
3, Q2,4(1, β) = (60, 118, 72, 13)β.

Q2,5(t, β) = (60, 144, 228, 298, 348, 378, 388, 378, 348, 298, 228, 144, 60)t
+(262, 614, 948, 1208, 1378, 1462, 1462, 1378, 1208, 948, 614, 262)t β
+(458, 1042, 1560, 1930, 2142, 2211, 2142, 1930, 1560, 1042, 458)t β

2

+(405, 887, 1278, 1526, 1640, 1640, 1526, 1278, 887, 405)t β
4

+(187, 389, 534, 610, 632, 610, 534, 389, 187)t β
4

+ (41, 79, 102, 110, 110, 102, 79, 41)t β
5 + (3, 5, 6, 6, 6, 5, 3)t β

6,
Q2,5(1, β) = (3300, 11744, 16475, 11472, 4072, 664, 34)β,
Q2,6(1, β) = (660660, 3626584, 8574762, 11407812, 9355194, 4866708, 1589799,
310172, 32182, 1320)β, Q2,7(β) = (1, 213, 12145, 279189, 3102220, 18400252,
61726264, 120846096, 139463706, 93866194, 5567810, 7053370, 626730, 16290)β+1.
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Theorem 5.11 One has

(a) Qm,n(1, 1) =
n−2∏
k=1

Catk
∏

1≤i<j≤n−1

2(m+ 1) + i+ j − 1

i+ j − 1

(b)
∑
k≥0

ι(Pn,m; k)β
k =

Qm,n(1, β − 1)

(1− β)(
n+1
2 )+1

,

where Pn,m denotes the generalized Chan-Robbins–Yuen polytope defined in [52], and for
any integral convex polytope P, ι(P , k) denotes the Ehrhart polynomial of polytope P.

Conjecture 5.8 Let n ≥ 3,m ≥ 0 be integers, , write

Qm,n(t, β) =
∑
k≥0

c(k)m,n(t) β
k, and set b(m,n) := max(k | c(k)m,n(t) ̸= 0).

Denote by c̃m,n(t) the polynomial obtained from that c(b(m,n)
m,n (t) by dividing the all coeffi-

cients of the latter on their GCD. Then

c̃n,m(t) = an+m(t),

where the polynomials an(t) := c0,n(t) have been defined in Conjecture 16, (B.

For example, c2,5(t) = 4 a7(t), c2,6(t) = 10 a8(t), c3,5(t) = a8(t),

c2,7(t) = 10 (34, 78, 118, 148, 168, 178, 181, 178, 168, 148, 118, 78, 34)
?
= 10 a9(t).

It is known [34], [51] that

n−2∏
k=1

Catk
∏

1≤i<j≤n−1

2(m+ 1) + i+ j − 1

i+ j − 1
=

m+n−2∏
j=m+1

1

2j + 1

(
n+m+ j

2 j

)
=

KAn=1(m+ 1,m+ 2, . . . , n+m,−mn−
(
n

2

)
).

Conjecture 5.9
Let a = (a2, a3, . . . , an) be a sequence of non-negative integers, consider the following

element

M(a) =
( n∏
j=2

x
aj
1j

) n−2∏
j=2

( n∏
k=j+2

xjk

)
.

Then
(1) Let Ra(t1, . . . , tn−1, α, β) be the following specialization

xij −→ tj−1 for all 1 ≤ i < j ≤ n

of the reduced polynomial Ra(xij) of monomial Ma ∈ ÂCY Bn(α, β).
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Then the polynomial Ra(t1, . . . , tn−1, α, β) is well-defined, i.e. does not depend on
an order in which relations (a′) and (b) , Definition 5.1, have been applied.

(2) QMa(1, 1) = KAn+1(a2 + 1, a3 + 2, . . . , an + n− 1,−
(
n

2

)
−

n∑
j=2

aj).

(3) Write
QMa(t, β) =

∑
k≥0

c(k)a (t) βk.

The polynomials c
(k)
a (t) are symmetric (unimodal ?) for all k.

Example 5.8 Let’s take n = 5, a = (2, 1, 1, 0). One can show that the value of the
Kostant partition function KA5(3, 3, 4, 4,−14) is equal to 1967. On the other hand, one
has

Q(2,1,1,0)(t, β) t
−3 = (50, 118, 183, 233, 263, 273, 263, 233, 183, 118, 50)t+

(214, 491, 738, 908, 992, 992, 908, 738, 491, 214)t β + (365, 808, 1167, 1379, 1448, 1379,
1167, 808, 365)t β

2 + (313, 661, 906, 1020, 1020, 906, 661, 313)t β
3+

(139, 275, 351, 373, 351, 275, 139)t β
4 + (29, 52, 60, 60, 52, 29)t β

5 + (2, 3, 3, 3, 2)t β
6.

Q(2,1,1,0)(1, β) = (1967, 6686, 8886, 5800, 1903, 282, 13) = (1, 34, 279, 748, 688, 204, 13)β+1.

Exercises 5.5
(1) Show that

Rn(t,−1) = t2(n−2) Rn−1(−t−1, 1).

(2) Show that the ratio
Rn(0, β)

(1 + β)n−2

is a polynomial in (β + 1) with non-negative coefficients.
(3) Show that polynomial Rn(t, 1) has degree en := (n+ 1)(n− 2)/2, and

Coeff [ten ] Rn(t, 1) =
n−1∏
k=1

Catk.

Problems 5.2
(1) Assume additionally to the conditions (a′) and (b) above that

x2ij = β xij + 1, if 1 ≤ i < j ≤ n.

What one can say about a reduced form of the element w0 in this case ?
(2) According to a result by S. Matsumoto and J. Novak [50], if π ∈ Sn is a per-

mutation of the cyclic type λ ⊢ n, then the total number of primitive factorizations (see
definition in [50]) of π into product of n−ℓ(λ) transpositions, denoted by Primn−ℓ(λ)(λ),
is equal to the product of Catalan numbers:

Primn−ℓ(λ)(λ) =

ℓ(λ)∏
i=1

Catλi−1.
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Recall that the Catalan number Catn := Cn = 1
n

(
2n
n

)
. Now take λ = (2, 3, . . . , n + 1).

Then

Qn(1) =
n∏

a=1

Cata = Prim(n2)
(λ).

Does there exist “a natural” bijection between the primitive factorizations and monomials
which appear in the polynomial Qn(xij; β) ?

(3) Compute in the algebra ÂCY Bn(α, β) the specialization

xij −→ 1, if j < n, xij −→ t, 1 ≤ i < n,

denoted by Pwn(t, α, β), of the reduced polynomial Psij({xij}, α, β) corresponding to the

transposition sij :=
(∏j−2

k=i xk,k+1

)
xj−1,j

(∏i
k=j−2 xk,k+1

)
∈ ÂCY Bn(α, β).

For example, Ps14(t, α, β) = t5+3(1+β)t4+((3, 5, 2)β+3α)t3+(2(1+β)2+α(5+4β))t2

((1 + β((1 + 3α) + 2α2)t+ α + α2.

5.4 Reduced polynomials of certain monomials

In this subsection we compute the reduced polynomials corresponding to dominant mono-
mials of the form

xm := xm1
1,2 x

m2
23 · · · x

mn−1

n−1,n ∈ (ÂCY Bn(β))
ab,

where m = (m1 ≥ m2 ≥ . . . ≥ mn−1 ≥ 0) is a partition, and we apply the relations (a′)

and (b) in the algebra (ÂCY Bn(β))
ab, see Definition 5.1, and Section 5.3.1, successively,

starting from xm1
12 x23.

Proposition 5.8 The function

Zn−1
≥0 −→ Zn−1

≥0 , m −→ Pm(t = 1; β = 1)

can be extended to a piece-wise polynomial function on the space Rn−1
≥0 .

We start with the study of powers of Coxeter elements. Namely, for powers of Coxeter
elements, one has 25

P(x12 x23)2(β) = (6, 6, 1), P(x12 x23 x34)2(β) = (71, 142, 91, 20, 1) = (1, 16, 37, 16, 1)β+1,
P(x12x23x34)3(β) = (1301, 3903, 4407, 2309, 555, 51, 1) = (1, 45, 315, 579, 315, 45, 1)β+1,
P(x12 x23 x34 x45)2(β) = (1266, 3798, 4289, 2248, 541, 50, 1) = (1, 44, 306, 564, 306, 44, 1)β+1,
P(x12x23x34)3(β = 1) = 12527, P(x12x23x34)4(β = 0) = 26599,
P(x12x23x34)4(β = 1) = 539601, P(x12 x23 x34 x45)2(β = 1) = 12193,
P(x12 x23 x34 x45)3(β = 0) = 50000, P(x12 x23 x34 x45)3(β = 1) = 1090199.

Lemma 5.3 One has

Pxn
12 xm

23
(β) =

min(n,m)∑
k=0

(
n+m− k

m

) (
m

k

)
βk =

min(n,m)∑
k=0

(
n

k

) (
m

k

)
(1 + β)k.

25To simplify notation we set Pw(β) := Pw(xij = 1;β).
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Moreover,
• polynomial P(x12x23···xn−1,n)m(β − 1) is a symmetric polynomial in β with non-negative
coefficients.
• polynomial Pxn

12 xm
23
(β) counts the number of (n,m)-Delannoy paths according to the

number of NE steps 26.

Proposition 5.9 Let n and k, 0 ≤ k ≤ n, be integers. The number

P(x12x23)n (x34)k(β = 0)

is equal to the number of n up, n down permutations in the symmetric group S2n+k+1,
see [68], A229892 and Exercises 5.3, (2).

Conjecture 5.10 Let n,m, k be nonnegative integers. Then the number

Pxn
12 xm

23 xk
34
(β = 0)

is equal to the number of n up, m down and k up permutations in the symmetric group
Sn+m+k+1.

For example,
• Take n = 2, k = 0, the six permutations in S5 with 2 up, 2 down are 12543,

13542, 14532, 23541, 24531, 34521.
• Take n = 3, k = 1, the twenty permutations in S7 with 3 up, 3 down are 1237654,

1247653, 1257643, 1267543, 1347652, 1357642, 1367542, 1457632, 1467532,
1567432, 2347651, 2357641, 2367541, 2457631, 2467531, 2567431, 3457621,
3467521, 3567421, 4567321, see [68], A229892,
• Take n = 3,m = 2, k = 1, the number of 3 up, 2 down and 1 up permutations in

S7 is equal to 50 = P321(0) : 1237645, 1237546, . . . , 4567312.
• Take n = 1,m = 3, k = 2, the number of 1 up, 3 down and 2 up permutations in

S7 is equal to 55 = P132(0), as it can be easily checked.
On the other hand, Px4

12 x3
23 x2

34x45
(β = 0) = 7203 < 7910, where 7910 is the number

of 4 up, 3 down, 2 up and 1 down permutations in the symmetric group S11.

Conjecture 5.11 Let k1, . . . , kn−1 be a sequence of non-negative integer numbers, con-
sider monomial M := xk112x

k2
23 · · · x

kn−1

n−1,n. Then
• reduced polynomial PM(β − 1) is a unimodal polynomial in β with non-negative

coefficients.

Example 5.9
P3,2,1(β) = (1, 14, 27, 8)β+1 = P1,2,3(β), P2,3,1(β) = (1, 15, 30, 9)β+1 = P1,3,2(β),

P3,1,2(β) = (1, 11, 18, 4)β+1 = P2,1,3(β), P4,3,2,1(β) = (1, 74, 837, 2630, 2708, 885, 68)β+1,
P4,3,2,1(0) = 7203 = 3× 74, P5,4,3,2,1(β) = (1, 394, 19177, 270210, 1485163, 3638790,
4198361, 2282942, 553828, 51945, 1300)β+1, P5,4,3,2,1(0) = 12502111 = 1019× 12269.

26 Recall that a (n,m)-Delannoy path is a lattice paths from (0, 0) to (n,m) with steps E = (1, 0),
N = (0, 1) and NE = (1, 1) only.

For the definition and examples of the Delannoy paths and numbers, see [68],A001850, A008288, and
http://mathworld.wolfram.com/DelannoyNumber.html.
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Exercises 5.6
(1) Show that if n ≥ m, then

xnij x
m
jk


xij=1=xjk

=
n∑

a=0

(
m+ a− 1

a

)(n−a∑
p=0

(
m

p

)
βp

)
xm+a
ik .

(2) Show that if n ≥ m ≥ k, then Pxn
12 xm

23 xk
34
(β) = Pxn

12 xm
23
(β)+

∑
a≥1
b,p≥0

(
m

p

) (
k

a

) (
a− 1

b

) (
n+ 1

p+ a− b

) (
m+ a− 1− b

a

)
(β + 1)p+a.

In particular, if n ≥ m ≥ k, then

Pxn
12 xm

23 xk
34
(0) =

(
m+ n

n

)
+
∑
a≥1

(
k

a

)( a∑
b=1

(
m+ n+ 1

m+ b

) (
a− 1

b− 1

) (
m+ b− 1

a

))
.

Note that the set of relations from the item (1) allows to give an explicit formula for the
polynomial PM(β) for any dominant sequence M = (m1 ≥ m2 ≥ . . . ≥ mk) ∈ (Z>0)

k.
Namely, PM(β + 1) =

∑
a

k∏
j=2

(
mj + aj−1 − 1

aj−1

) (∑
b

k−1∏
j=1

(
mj+1

bj

)
βbj

)
,

where the first sum runs over the following setA(M) of integer sequences a = (a1, . . . , ak−1)

A(M) := {0 ≤ aj ≤ mj + aj−1, j = 1, . . . , k − 1}, a0 = 0,

and the second sum runs over the set B(M) of all integer sequences b = (b1, . . . , bk−1)

B(M) :=
∪

a∈A(M)

{0 ≤ bj ≤ min(mj+1,mj − aj + aj−1)}, j = 1, . . . , k − 1.

(3) Show that

#|A(n, 1k−1)| = n+ 1

k

(
2k + n

k − 1

)
= f (n+k,k),

where f (n+k,k) denotes the number of standard Young tableaux of shape (n + k, k). In
particular, #|A(1k)| = Ck+1.

(4) Let n ≥ m ≥ 1 be integers and set M = (n,m, 1k). Show that

PM(xij = 1; β = 0) =
n∑

p=0

m+ p+ 1

k

(
m+ p− 1

p

)(
m+ 2k + p

k − 1

)
:= Pk(n,m).

In particular, P1(n,m) =
(
n+m
n

)
+m

(
n+m+1

n

)
,
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Pk(n, 1) =
n+ 1

k + 1

(
2k + 2 + n

k

)
, Pk(2, 2) = (79k2 + 341k + 360)

(2k + 2)!

k! (k + 5)!
.

(5) Let T ∈ STY ((n+ k, k)) be a standard Young tableau of shape (n+ k, k).
Denote by r(T ) the number of integers j ∈ [1, n + k] such that the integer j belongs to
the second row of tableau T, whereas the number j + 1 belongs to the first row of T.
Show that

Pxn
12x23···xk+1,k+2

(β − 1) =
∑

T∈STY ((n+k,k))

βr(T ).

(6) Let M = (m1,m2, . . . ,mk−1) ∈ Zk−1
>0 be a composition. Denote by ←−M the

composition (mk−1,mk−2, . . . ,m2,m1), and set for short PM(β) := P∏k−1
i=1 x

mi
i,i+1

(xij =

1; β).
Show that PM(β) = P←−

M
(β).

Note that in general, P∏k−1
i=1 x

mi
i,i+1

(xij; β) ̸= P∏k−1
i=1 x

mk−i
i,i+1

(xij; β).

(7) Define polynomial PM(t, β) to be the following specialization

xij −→ 1, if i < j < n, and xin −→ t, if i = 1, . . . , n− 1

of a polynomial P∏k−1
i=1 x

mi
i,i+1

(xij; β).

Show that if n ≥ m, then

Pxn
12 xm

23
(t, β) =

m∑
j=0

(
m

j

)(n+m−j−1∑
k=m−1

(
k

m− 1

)
tk−m+1

)
βj.

See Lemma 5.2 for the case t = 1.
(8) Define polynomials R̃n(t) as follows

R̃n(t) := P(x12x23x34)n(−t−1, β = −1) (−t)3n.

Show that polynomials R̃n(t) have non-negative coefficients, and

R̃n(0) =
(3n) !

6 (n !)3
.

(9) Consider reduced polynomial Pn,2,2(β) corresponding to monomial xn12 (x23x34)
2

and set P̃n,2,2(β) := Pn,2,2(β − 1). Show that

P̃n,2,2(β) ∈ N[β] and P̃n,2,2(1) = T (n+ 5, 3),

where the numbers T (n, k) are defined in [68],A110952, A001701.

Conjecture 5.12 Let λ be a partition. The element sλ(θ
(n)
1 , . . . , θ

(n)
m ) of the algebra

3T
(0)
n can be written in this algebra as a sum of(∏

x∈λ

h(x)
)
× dim Vλ′

(gl(n−m)) × dim Vλ
(gl(m))

99



monomials with all coefficients are equal to 1.
Here sλ(x1, . . . , xm) denotes the Schur function corresponding to the partition λ and

the set of variables {x1, . . . , xm}; for x ∈ λ, h(x) denotes the hook length corresponding
to a box x; V

(gl(n))
λ denotes the highest weight λ irreducible representation of the Lie

algebra gl(n).

Problems 5.3
(1) Define a bijection between monomials of the form

∏s
a=1 xia,ja involved in the

polynomial P (xij; β), and dissections of a convex (n + 2)-gon by s diagonals, such that
no two diagonals intersect their interior.

(2) Describe permutations w ∈ Sn such that the Grothendieck polynomial Gw(t1, . . . , tn)
is equal to the “reduced polynomial” for a some monomial in the associative quasi-classical
Yang–Baxter algebra ̂ACY Bn(β). ?

(3) Study “reduced polynomials” corresponding to the monomials
• (transposition) s1n := (x12x23 · · · xn−2,n−1)

2 xn−1,n,
• (powers of the Coxeter element) (x12x23 · · · xn−1,n)

k.

in the algebra ÂCY Bn(α, β)
ab.

(4) Construct a bijection between the set of k-dissections of a convex (n+ k+1)-gon
and “ pipe dreams” corresponding to the Grothendieck polynomial G(β)

π
(n)
k

(x1, . . . , xn). As

for a definition of “pipe dreams” for Grothendieck polynomials, see [43]; see also [23].

Comments 5.8 We don’t know any “good” combinatorial interpretation of polyno-
mials which appear in Problem 5.3, (3) for general n and k. For example,
Ps13(xij = 1; β) = (3, 2)β, Ps14(xij = 1; β) = (26, 42, 19, 2)β,
Ps15(xij = 1; β) = (381, 988, 917, 362, 55, 2)β and Ps15(xij = 1; 1) = 2705. On the
other hand, P(x12x23)2 x34 (x45)2(xij = 1; β) = (252, 633, 565, 212, 30, 1), that is in decid-
ing on different reduced decompositions of the transposition s1n. one obtains in general
different reduced polynomials.

One can compare these formulas for polynomials Psab(xij = 1; β) with those for the
β-Grothendieck polynomials corresponding to transpositions (a, b), see Comments 5.6.

6 Appendixes

6.1 Appendix I Grothendieck polynomials

Definition 6.1 Let β be a parameter. The Id-Coxeter algebra IdCn(β) is an asso-
ciative algebra over the ring of polynomials Z[β] generated by elements

⟨
e1, . . . , en−1

⟩
subject to the set of relations
• eiej = ejei, if

∣∣∣i− j∣∣∣ ≥ 2,

• eiejei = ejeiej, if
∣∣∣i− j∣∣∣ = 1,

• e2i = β ei, 1 ≤ i ≤ n− 1.
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It is well-known that the elements {ew, w ∈ Sn} form a Z[β]-linear basis of the
algebra IdCn(β). Here for a permutation w ∈ Sn we denoted by ew the product
ei1ei2 · · · eiℓ ∈ IdCn(β), where (i1, i2, . . . , iℓ) is any reduced word for a permutation w, i.e.
w = si1si2 · · · siℓ and ℓ = ℓ(w) is the length of w.

Let x1, x2, . . . , xn−1, xn = y, xn+1 = z, . . . be a set of mutually commuting variables.
We assume that xi and ej commute for all values of i and j. Let us define

hi(x) = 1 + xei, and Ai(x) =
i∏

a=n−1

ha(x), i = 1, . . . , n− 1.

Lemma 6.1 One has
(1) (Addition formula)

hi(x) hi(y) = hi(x⊕ y),

where we set (x⊕ y) := x+ y + βxy;
(2) (Yang–Baxter relation)

hi(x)hi+1(x⊕ y)hi(y) = hi+1(y)hi(x⊕ y)hi+1(x).

Corollary 6.1
(1) [hi+1(x)hi(x), hi+1(y)hi(y)] = 0.
(2) [Ai(x), Ai(y)] = 0, i = 1, 2, . . . , n− 1.

The second equality follows from the first one by induction using the Addition formula,
whereas the fist equality follows directly from the Yang–Baxter relation.

Definition 6.2 (Grothendieck expression)

Gn(x1, . . . , xn−1) := A1(x1)A2(x2) · · ·An−1(xn−1).

Theorem 6.1 ([23]) The following identity

Gn(x1, . . . , xn−1) =
∑
w∈Sn

G(β)
w (Xn−1) ew

holds in the algebra IdCn ⊗ Z[x1, . . . , xn−1].

Definition 6.3 We will call polynomial G(β)
w (Xn−1) as the β-Grothendieck polynomial

corresponding to a permutation w.

Corollary 6.2
(1) If β = −1, the polynomials G

(−1)
w (Xn−1) coincide with the Grothendieck polyno-

mials introduced by Lascoux and M.-P. Schützenberger [46].
(2) The β-Grothendieck polynomial G(β)

w (Xn−1) is divisible by xw(1)−1
1 .

(3) For any integer k ∈ [1, n − 1] the polynomial G(β−1)
w (xk = q, xa = 1, ∀a ̸= k) is

a polynomial in the variables q and β with non-negative integer coefficients.
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Proof (Sketch) It is enough to show that the specialized Grothendieck expression
Gn(xk = q, xa = 1, ∀a ̸= k) can be written in the algebra IdCn(β − 1) ⊗ Z[q, β] as
a linear combination of elements {ew}w∈Sn with coefficients which are polynomials in
the variables q and β with non-negative coefficients. Observe that one can rewrite the
relation e2k = (β − 1)ek in the following form ek(ek + 1) = β ek. Now, all possible
negative contributions to the expression Gn(xk = q, xa = 1,∀a ̸= k) can appear only
from products of a form ca(q) := (1 + qek)(1 + ek)

a. But using the Addition formula one
can see that (1 + qek)(1 + ek) = 1 + (1 + qβ)ek. It follows by induction on a that ca(q)
is a polynomial in the variables q and β with non-negative coefficients.

Definition 6.4
• The double β-Grothendieck expression Gn(Xn, Yn) is defined as follows

Gn(Xn, Yn) = Gn(Xn) Gn(−Yn)−1 ∈ IdCn(β)⊗ Z[Xn, Yn].

• The double β-Grothendieck polynomials {Gw(Xn, Yn)}w∈Sn are defined from the de-
composition

Gn(Xn, Yn) =
∑
w∈Sn

Gw(Xn, Yn) ew

of the double β-Grothendieck expression in the algebra IdCn(β).

6.2 Appendix II Cohomology of partial flag varieties

Let n = n1 + · · ·+ nk, ni ∈ Z≥1 ∀i, be a composition of n, k ≥ 2. For each j = 1, . . . , k
define the numbers Nj = n1 + · · · + nj, N0 = 0, and Mj = nj + · · · + nk. Denote by
X := Xn1,...,nk

= {x(i)a | i = 1, . . . , k, 1 ≤ a ≤ ni} (resp. Y, ...) a set of variables
of the cardinality n. We set deg(x(i)a ) = a, i = 1, . . . , k. For each i = 1, . . . , k define
quasihomogeneous polynomial of degree ni in variables X(i) = {x(i)a | 1 ≤ a ≤ ni}

pni
(X(i), t) = tni +

ni∑
a=1

x(i)a tni−a,

and put pn1,...,nk
(X, t) =

∏k
i=1 pni

(X(i), t). We summarize in the theorem below some
well–known results about the classical and quantum cohomology and K-theory rings of
type An−1 partial flag varieties F ln1,...,nk

. Let q1, . . . , qk−1, deg(qi) = ni + ni+1, i =
1, . . . , k − 1, be a set of “quantum parameters.”

Theorem 6.2 There are canonical isomorphisms

H∗(F ln1,...,nk
,Z) ∼= Z[Xn1,...,nk

]/
⟨
pn1,...,nk

(X, t)− tn
⟩
;
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K•(F ln1,...,nk
,Z) ∼= Z[Y±1]/

⟨
pn1,...,nk

(Y, t)− (1 + t)n
⟩
;

H∗
T (F ln1,...,nk

,Z) ∼= Z[X,Y]/
⟨ k∏

i=1

ni∏
a=1

(x(i)a + t)− pn1,...,nk
(Y, t)

⟩
;

(Cf. [1] ) QH∗(F ln1,...,nk
) ∼= Z[Xn1,...,nk

, q1, . . . , qk−1]/
⟨
∆n1,...,nk

(X, t)− tn
⟩
,

(Cf. [1] ) QH∗
T (F ln1,...,nk

) ∼= Z[X,Y, q1, . . . , qk−1]/
⟨
∆n1,...,nk

(X, t)−pn1,...,nk
(Y, t)

⟩
,

where 27 ∆n1,...,nk
(X, t) =

det

∣∣∣∣∣∣∣∣∣∣∣∣

pn1(X
(1), t) q1 0 · · · · · · · · · 0
−1 pn2(X

(2), t) q2 0 · · · · · · 0
0 −1 pn3(X

(3), t) q3 0 · · · 0
... . . . . . . . . . . . . . . . ...
0 · · · · · · 0 −1 pnk−1

(X(k−1), t) qk−1

0 · · · · · · · · · 0 −1 pnk
(X(k), t)

∣∣∣∣∣∣∣∣∣∣∣∣
.

Here for any polynomial P (x, t) =
∑r

j=0 bj(x)t
r−j in variables x = (x1, x2, . . .), we denote

by
⟨
P (x, t)

⟩
the ideal in the ring Z[x] generated by the coefficients b0(x), . . . , br(x). A

similar meaning have the symbols
⟨∏k

i=1

∏ni

a=1(x
(i)
a +t)−pn1,...,nk

(y, t)
⟩
,
⟨
∆n1,...,nk

(x, t)−

tn
⟩

and so on.
Note that dim(Fn1,···,nk

) =
∑

i<j ni nj and the Hilbert polynomial Hilb(Fn1,···,nk
, q) of

the partial flag variety Fn1,...,nk
is equal to the q-multinomial coefficient

[
n

n1, . . . , nk

]
q

,

and also is equal to the q-dimension of the weight (n1, . . . , nk) subspace of the n-th tensor
power (Cn)⊗n of the fundamental representation of the Lie algebra gl(n).

Comments 6.1 The cohomology and (small) quantum cohomology ringsH∗(Fn1,···,nk
,Z)

and QH∗(Fn1,···,nk
,Z), of the partial flag variety Fn1,···,nk

admit yet another representa-
tions we are going to present. To start with, let as before n = n1 + . . . + nk, ni ∈ Z≥1

∀i, be a composition. Consider the set of variables X̂ = Xn1,...,nk−1
:= {x(i)a | 1 ≤ i ≤

na, a = 1, . . . , k − 1}, and set as before deg x(i)a = a. Note that the number of variables
X̂ is equal to n−nk. To continue, let’s define elementary quasihomogeneous polynomials
of degree r

er(X̂) =
∑
I,A

x(i1)a1
· · · x(is)as , e0(X̂) = 1, e−r(X̂) = 0, if r > 0,

where the sum runs over sequences of integers I = (i1, . . . , is) and A = (a1, . . . , as) such
that

27We prefer to use quantum parameters {qi | 1 ≤ i ≤ k−1} instead of the parameters {(−1)niqi | 1 ≤
i ≤ k − 1} have been used in [1].
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• 1 ≤ i1 < . . . is ≤ k − 1,
• 1 ≤ aj ≤ nij , j = 1, . . . , s, and r = a1 + · · · , as,
and complete homogeneous polynomials of degree p

hp(X̂) = det|ej−i+1(X̂)|1≤i,j≤p.

Finally, let’s define the ideal Jn1,...,nk
in the ring of polynomials Z[Xn1,...,nk−1

] generated
by polynomials

hnk+1(X̂), . . . , hn(X̂).

Note that the ideal Jn1,...,nk
is generated by n− nk = #(Xn1,...,nk−1

) elements.

Proposition 6.1 There exists an isomorphism of rings

H∗(Fn1,···,nk
,Z) ∼= Z[Xn1,...,nk−1

]/Jn1,...,nk
.

In a similar way one can describe relations in the (small) quantum cohomology ring of
the partial flag variety Fn1,···,nk

. To accomplish this let’s introduce quantum quasihomo-
geneous elementary polynomials of degree j, e

(q)
j (Xn1,...,nr) through the decomposition

∆n1,...,nr(Xn1,...,nr) =
Nr∑
j=0

e
(q)
j (Xn1,...,nr) t

Nr−j, e
(q)
0 (x) = 1, e

(q)
−p (x) = 0, if p > 0.

To exclude redundant variables {x(k)a , 1 ≤ a ≤ nk},, let us define quantum quasiho-
mogeneous Schur polynomials s(q)α (Xn1,...,nr) corresponding to a composition α = (α1 ≤
α2 ≤ . . . ≤ αp) as follows

s(q)α (Xn1,...,nr) = det|e(q)j−i+αi
(Xn1,...,nr)|1≤i,j≤p.

Proposition 6.2 The (small) quantum cohomology ring QH∗(Fn1,···,nk
,Z) is isomorphic

to the quotient of the ring of polynomials Z[q1, . . . , qk−1] [Xn1,...,nk−1
] by the ideal In1,...,nk−1

generated by the elements

gr(Xn1,...,nk−1
) := s

(q1,...,qk−1)

(1nk , r) (Xn1,...,nk−1
)− qk−1 e

(q1,...,qk−2)
r−nk−1

(Xn1,...,nk−2
),

where nk + 1 ≤ r ≤ n.

It is easy to see that the Jacobi matrix( ∂

∂x
(i)
a

gr(Xn1,...,nk−1

)
{a=1,...,k−1, 1≤i≤na

nk+1≤r≤n}

corresponding to the set of polynomials gr(Xn1,...,nk−1
) nk ≤ r ≤ n, has nonzero

determinant, and the component of maximal degree nmax :=
∑

l<j ni nj in the ring
QH∗(Fn1,···,nk

,Z) is a Z[q1, . . . , qk−1]−module of rank one with generator

Λ =
k−1∏
i=1

na∏
a=1

(
x(i)a

)Mi

.
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Therefore, one can define a scalar product (the Grothendieck residue)

⟨•, •⟩ : HQ∗(Fn1,···,nk
,Z)×HQ∗(Fn1,···,nk

,Z) −→ Z[a1, . . . , qk−1]

setting for elements f and g of degrees a and b, ⟨f, h⟩ = 0, if a + b ̸= nmax, and
⟨f, h⟩ = λ(q), if a+ b = nmax and f h = λ(q) Λ. It is well known that the Grothendieck
pairing ⟨•, •⟩ is nondegenerate (for any choice of parameters q1, . . . , qk−1).

Finally we state “a mirror presentation” of the small quantum cohomology ring of
partial flag varieties. To start with, let n = n1 + . . .+ nk, k ∈ Zge2 be a composition of
size n, and consider the set

Σ(n) = {(i, j) ∈ Z× Z |1 ≤ i ≤ Na, Ma+1 + 1 ≤ j ≤Ma, a = 1, . . . , k − 1},

where Na = n1 + . . .+ na, N0 = 0, Nk = n Ma = na+1 + . . .+ nk, M0 = n,Mk = 0.
With these data given, let us introduce the set of variables

Zn = {zi,j | (i, j) ∈ Σ(n)},

and define “boundary conditions” as follows
• zi,Ma+1 = 0, if Na−1 + 2 ≤ i ≤ Na, a = 1, . . . , k − 1,
• zNa+1,j =∞, if Ma+1 + 2 ≤ j ≤Ma, a = 1, . . . , k − 1,
• zNa−1+1,Ma+1 = qa, a = 1, . . . , k, where q1, . . . , qk are “quantum parameters.
Now we are ready, follow [28], to define superpotential

Wq,n =
∑

(p,j)∈Σ(n)

(
zi,j+1

zi,j
+

zi,j
zi+1,j

).

Conjecture 6.1 (Cf. [28]) There exists an isomorphism of rings

QH∗
[2](F ln1,...,nk

,Z) ∼= Z[q±1
1 , . . . , q±1

k ][Z±1
n ]/J(Wq,n),

where QH∗
[2](F ln1,...,nk

,Z) denotes the subring of the ring QH∗(F ln1,...,nk
,Z) generated by

the elements from H2(F ln1,...,nk
,Z);

J(Wq,n) stands for the ideal generated by the partial derivatives of the superpoten-
tial Wq,n :

J(Wq,n) = ⟨
∂Wq

∂zi,j
⟩, (i, j) ∈ Σ(n)⟩.

Note that variables {zi,j ∈ Σ(n), i ̸= Na + 1, a = 0, . . . , k − 2} are redundant, whereas
the variables {za,j := z−1

Na+1,j, j = 1, . . . , na, a = 0, . . . , k − 2} satisfy the system of
algebraic equations.

In the case of complete flag variety F ln corresponds to partition n = (1n) and the
superpotential Wq,1n is equal to

Wq,1n =
∑

1≤i<j≤n−1

(zi,j+1

zi,j
+

zi,j
zi−1,j+1

)
,
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where we set zi,n := qi, i = 1, . . . , n. The ideal J(Wq,1n) is generated by elements

∂Wq,1n

zi,j
=

1

zi,j−1

+
1

zi−1,j+1

− zi,j+1 + zi−1,j−1

z2i,j
.

One can check that the ideal J(Wq,1n) can be also generated by elements of the form

i∑
j=0

A
(i)
j (q1, . . . , qn−i+1, zn−1, . . . , zn−i+1) z

j−i−1
n−i = 1, A

(i)
0 = q1 · · · qn−i+1,

where zi := z−1
1,i , i = 1, . . . n− 1. For example,

zn1 q1 . . . qn = 1, q1 q2 z
2
n−1 − q2 zn−2 = 1,

q1 q2 q3 z
3
n−2 − 2 q1 q2 q3 zn−1 zn−2 zn−3 + q2 q3 z

2
n−3 + q3 zn−4 = 1.

Therefore the number of critical points of the superpotential Wq is equal to n! =
dimH∗(F ln,Z), as it should be. Note also that QH∗(F ln,Z) = QH∗

[2](F ln,Z).

6.3 Appendix III Koszul dual of quadratic algebras and Betti
numbers

Let k be a field of zero characteristic, F (n) := k < x1, . . . , xn >=
⊕

j≥0 F
(n)
j be the free

associative algebra generated by {xi, 1 ≤ i ≤ n}. Let A = F (n)/I be a quadratic algebra,
i.e. the ideal of relations I is generated by the elements of degree 2, I ⊂ F

(n)
2 . Let F (n)∗ =

Hom(Fn, k) =
⊕

j≥0 F
(n)∗
j with a multiplication induced by the rule fg(ab) = f(a)g(b),

f ∈ F (n)∗
i , g ∈ F (n)∗

j , a ∈ F (n)
i , b ∈ F (n)

j . Let I⊥2 = {f ∈ F (n)∗
2 , f(I2) = 0}, and denote

by I⊥ the two-sided ideal in F (n)∗ generated by the set I⊥2 .

Definition 6.5 The Koszul (or quadratic) dual A! of a quadratic algebra A is
defined to be A! := F (n)∗/I⊥.

The Koszul dual of a quadratic algebra A is a quadratic algebra and (A!)! = A.

Examples 6.1 (1) Let A = F (n) be the free associative algebra, then the quadratic duel
A! = k < y1, . . . , yn > /(yiyj, 1 ≤ i, j ≤ n).

(2) If A = k[x1, . . . , xn] is the ring of polynomials, then

A! = k[y1, . . . , yn]/([yi, yj]_, 1 ≤ i, j ≤ n),

where we put by definition [yi, yj]_ = yiyj + yjyi, if i ̸= j, and [yi, yi]_ = y2i .

(3) (cf [49], (b), Chapter 5) Let A = F (n)/(f1, . . . , fr), where fi =
∑

1≤j,k≤n aijkxj xk,

i = 1, . . . , r are linear independent elements of degree 2 in F (n). Then the quadratic
dual of A is equal to the quotient algebra A! = k < y1, · · · , yn > /J, where the ideal
J =< g1, . . . , gs >, s = n2 − r, is generated by elements gm =

∑
1≤j,k≤n bmjk yj yk.

The coefficients bmjk,m = l, . . . , s, 1 ≤ j, k ≤ n, can be defined from the system of linear
equations

∑
1≤j,k≤n aijk bmjk = 0, i = 1, . . . , r, m = 1, . . . , s.
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Let A =
⊕

j≥0Aj be a graded finitely generated algebra over field k.

Definition 6.6 The Hilbert series of a graded algebra A is defined to be the generating
function of dimensions of its homogeneous components: Hilb(A, t) =

∑
k≥0 dimAk t

k.
The Betti numbers BA(n,m) of a graded algebra A are defined to be BA(i, j) :=

dimTorAi (k, k)j.
The Poincarè series of algebra A is defined to be the generating function for the

Betti numbers: PA(s, t) :=
∑

i≥0,j≥0BA(i, j)s
itj.

Definition 6.7 A quadratic algebra A is called Koszul iff the Betti numbers BA(i, j)
are equal to zero unless i = j.

(♣) It is well-known that Hilb(A, t)PA(−1, t) = 1, and a quadratic algebra A is Koszul,
if and only if BA(i, j) = 0 for all i ̸= j. In this case Hilb(A, t) Hilb(A!,−t) = 1.

Example 6.1 Let F (0)
n be a quotient of the free associative algebra Fn over field k with

the set of generators {x1, . . . , xn} by the two-sided ideal generated by the set of ele-
ments {x21, . . . , x2n}. Then the algebra F (0)

f n is Koszul, and Hilb(F (0)
n , t) = 1+t

1−(n−1)t
.

6.4 Appendix IV Hilbert series Hilb(3T 0
n , t) and Hilb((3T 0

n)
!, t):

Examples 28

Examples 6.2 Hilb(3T 0
3 , t) = [2]2[3], Hilb(3T 0

4 , t) = [2]2[3]2[4]2,
Hilb(3T 0

5 , t) = [4]4[5]2[6]4, Hilb(3T 0
6 , t)

= (1, 15, 125, 765, 3831, 16605, 64432, 228855, 755777, 2347365, 6916867, 19468980,
52632322, 137268120, 346652740, 850296030, · · ·).
= Hilb(3T 0

5 , t)(1, 5, 20, 70, 220, 640, 1751, 4560, 11386, 27425, 64015, 145330, 321843,
696960, 1478887, 3080190, · · ·).
Hilb(3T 0

7 , t) = Hilb(3T 0
6 , t)(1, 6, 30, 135, 560, 2190, 8181, 29472, 103032, 351192,

1170377, · · ·).
Hilb(3T 0

8 , t) = Hilb(3T 0
7 , t)(1, 7, 42, 231, 1190, 5845, 27671, 127239, 571299, 2514463,

Hilb((3T 0
3 )

!, t)(1− t) = (1, 2, 2, 1), Hilb((3T 0
4 )

!, t)(1− t)2 = (1, 4, 6, 2,−5,−4,−1),
Hilb((3T 0

5 )
!, t)(1− t)2 = (1, 8, 26, 40, 19,−18,−22,−8,−1),

Hilb((3T 0
6 )

!, t)(1− t)3 = (1, 12, 58, 134, 109,−112,−245,−73, 68, 50, 12, 1),
Hilb((3T 0

7 )
!, t)(1−t)3 = (1, 18, 136, 545, 1169, 1022,−624,−1838,−837, 312, 374, 123, 18, 1).

We expect that Hilb((3T 0
n)

!, t) is a rational function with the only pole at t = 1 of
order [n/2], and the polynomial Hilb((3T 0

n)
!, t)(1− t)[n/2] has degree equals to [5n/2]− 4,

if n ≥ 2.

28 All computations in this Section were performed by using the computer system Bergman, except
computations of Hilb(3T 0

6 , t) in degrees from twelfth till fifteenth. The last computations were made
by J. Backelin, S. Lundqvist and J.-E. Roos from Stockholm University, using the computer algebra
system aalg mainly developed by S. Lundqvist.
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6.5 Appendix V Summation and Duality transformation for-
mulas [32]

.
Summation Formula Let a1 + · · ·+ am = b. Then

m∑
i=1

[ai]
(∏

j ̸=i

[xi − xj + aj]

[xi − xj]

) [xi + y − b]
[xi + y]

= [b]
∏

1≤i≤m

[y + xi − ai]
[y + xi]

.

Duality transformation Let a1 + · · ·+ am = b1 + · · ·+ bn. Then

m∑
i=1

[ai]
∏
j ̸=i

[xi − xj + aj]

[xi − xj]
∏

1≤k≤n

[xi + yk − bk]
[xi + yk]

=

n∑
k=1

[bk]
∏
l ̸=k

[yk − yl + bl]

[yk − yl]
∏

1≤i≤m

[yk + xi − ai]
[yk + xi]

.
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