
RIMS-1804

On the fourth order PI equation and coalescing

phenomena of nonlinear turning points

Dedicated to Professor Takashi AOKI for his sixtieth birthday

By

Yoshitsugu TAKEI

May 2014

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES

KYOTO UNIVERSITY, Kyoto, Japan
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Abstract

In this report we present a conjecture for the fourth order PI equation with a large

parameter to show its importance in the exact WKB analysis. The conjecture is related to

coalescing phenomena of turning points and can be regarded as a nonlinear analogue of Hirose’s

result ([9]) for the Pearcey system. We also discuss some relations between the conjecture and

Dubrovin’s result ([7]) for the KdV equation.

§ 1. Introduction

The purpose of this report is to show the importance of the fourth order PI equation

(PI)2 η−4 d
4u

dt4
− 10η−2

[
2u
d2u

dt2
+
(du
dt

)2
]
+ 40u3 + 8cu− 8t = 0,

where η (> 0) denotes a large parameter and c ∈ C is a constant, in the exact WKB

analysis by presenting a conjecture for (PI)2.

Recently Hirose ([8, 9]) studies the exact WKB analysis for a completely integrable

system of linear differential equations with two independent variables and proves that

the Pearcey system, that is, the most degenerate hypergeometric system with two vari-

ables, gives the normal form at a critical point where two turning points coalesce. Our

conjecture can be regarded as a nonlinear analogue of Hirose’s result: As is well-known
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(e.g., [18, 19]), higher order Painlevé equations can be extended to completely inte-

grable systems of nonlinear differential equations. For example, (PI)2 is extended to the

most degenerate Garnier system with two variables. Then the conjecture claims that in

the study of completely integrable systems of nonlinear differential equations (with two

variables) the fourth order PI equation (PI)2 gives the normal form at a critical point

where two nonlinear turning points coalesce. To show the validity of the conjecture we

discuss the transformation between the fourth order PII equation and (PI)2 (to be more

precise, between the completely integrable systems of nonlinear equations corresponding

to them) in this report.

On the other hand, Dubrovin ([7]) shows that the fourth order PI equation is a

universal model at a point of gradient catastrophe for a solution of the KdV equation.

In fact, Dubrovin’s result is one of the motivations of our study for the fourth order PI

equation. At the end of this report we also discuss some possible relations between our

conjecture and Dubrovin’s result.

The paper is organized as follows: In Section 2 we briefly review the exact WKB

analysis and then recall Hirose’s result for the Pearcey system in Section 3. The main

claim (conjecture) will be given in Section 4. Section 5 is devoted to the discussion of the

transformation between the fourth order PII equation and the fourth order PI equation.

Finally in Section 6 we discuss relations between our conjecture and Dubrovin’s result.

§ 2. Brief review of the exact WKB analysis

In this section we briefly review the exact WKB analysis for ordinary differential

equations.

First, let us consider linear ordinary differential equations with a large parameter

η > 0:

(2.1)

((
η−1 d

dx

)m

+ a1(x)
(
η−1 d

dx

)m−1

+ · · ·+ am(x)

)
ψ = 0.

Equation (2.1) has a formal solution ψj(x, η) (j = 1, . . . ,m), called a WKB solution, of

the form

(2.2) ψj(x, η) = exp
(
η

∫ x

ζj(x) dx
) ∞∑

n=0

η−(n+1/2)ψj,n(x),

where ζj(x) is a root of the characteristic equation of (2.1):

(2.3) ζm + a1(x)ζ
m−1 + · · ·+ am(x) = 0.

In the exact WKB analysis we use the Borel resummation technique to endow a WKB

solution with analytic meaning. Several important properties of the Borel sum of a
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WKB solution are described in terms of turning points and Stokes curves, which are

defined as follows:

Definition 2.1. (i) A zero of the discriminant of (2.3) is called a turning point

of (2.1). In particular, a simple zero of the discriminant is called a simple turning point.

When two characteristic roots ζj(x) and ζj′(x) merge at a turning point x = a, we say

that x = a is of type (j, j′).

(ii) Let x = a be a turning point of type (j, j′). Then a curve defined by

(2.4) Im

∫ x

a

(ζj(x)− ζj′(x)) dx = 0

is called a Stokes curve of type (j, j′).

Note that there exist m(m − 1)/2 types of turning points and Stokes curves for

an m-th order equation. Thus it is not necessary to specify their types for second

order equations, while it is essentially important to specify their types for higher order

equations.

As is discussed in [22], [6], [15], etc., in the case of second order equations a WKB

solution is Borel summable except on Stokes curves and Stokes phenomena for WKB

solutions occur only on Stokes curves. Furthermore, the structure of Stokes phenomena

for WKB solutions on a Stokes curve emanating from a simple turning point is well

understood by using a WKB theoretic transformation to the Airy equation near a

simple turning point. See [20] for the Borel summability of WKB solutions and see

[2], [15, Chapter 2] and [11] for WKB theoretic transformations to the Airy equation

near a simple turning point.

On the other hand, in the case of higher order equations, we encounter a problem

of “new Stokes curves” and “virtual turning points”.

Example 2.2 (BNR equation; cf. [5]).

(2.5)

((
η−1 d

dx

)3

+ 3η−1 d

dx
+ 2ix

)
ψ = 0.

Equation (2.5) has turning points at x = ±1. After numbering the characteristic roots

suitably, we find that x = −1 is of type (1, 2) and x = 1 is of type (2, 3). As the types

of these two turning points differ, Stokes curves emanating from them cross. Berk et

al ([5]) pointed out that Stokes phenomena for WKB solutions of (2.5) occur not only

on Stokes curves emanating from the turning points x = ±1 but also on a new Stokes

curve (of type (1, 3)) passing through the crossing points of Stokes curves. (To be more

precise, Stokes phenomena occur only on a solid portion, not on a broken portion, of a

new Stokes curve.) See Figure 1. Later Aoki et al ([3]) introduced the notion of virtual
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turning points through microlocal study of the Borel tranform of (2.5) and interpreted

this new Stokes curve as a Stokes curve emanating from a virtual turning point at x = 0.

x

1−1

“new Stokes curve”

“virtual turning point”

✐

✐

Figure 1. Stokes curves and a new Stokes curve of the BNR equation (2.5)

Although it is a troublesome problem to determine the complete structure of new

Stokes curves and virtual turning points for a generic higher order equation, we have

a concrete procedure, which is practically satisfactory, to determine it. For details see

[10] and references cited there.

Next, let us consider nonlinear ordinary differential equations of Painlevé type, that

is, Painlevé equations with a large parameter η > 0:

(PJ)
d2λ

dt2
= η2FJ(λ, t) +GJ

(
λ,
dλ

dt
, t

)
(J = I, II, . . . ,VI)

(where FJ(λ, t) and GJ (λ, µ, t) are some rational functions; for example, FI = 6λ2 + t,

FII = 2λ3 + tλ + c, GI = GII = 0, etc) and their higher order analogues (PJ)m (i.e.,

2m-th order J-th Painlevé equations). In the case of nonlinear equations such as (PJ)

there exists a formal power series solution, called a 0-parameter solution, of the form

(2.6) λ(0)(t, η) = λ
(0)
0 (t) + η−1λ

(0)
1 (t) + η−2λ

(0)
2 (t) + · · · .

There also exists a formal solution, called an instanton-type solution, with sufficiently

many free parameters for (PJ) and (PJ)m. Using 0-parameter solutions and instanton-

type solutions instead of WKB solutions, we can develop the exact WKB theory for

nonlinear equations of Painlevé type. In particular, turning points and Stokes curves

for (PJ)m are defined as follows:
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Definition 2.3. Let (∆PJ)m be the Fréchet derivative (or the linearized equa-

tion) of (PJ)m at a 0-parameter solution. Then a turning point and a Stokes curve of

(PJ)m are, by definition, a turning point and a Stokes curve of (∆PJ)m.

Although the (generalized) Borel summability of 0-parameter solutions and instanton-

type solutions are not in general verified yet, the framework of the exact WKB theory

for (PJ) and (PJ)m has been constructed in a parallel way to the exact WKB analysis

for linear equations (2.1). See, e.g., [13], [4], [14], [21], [12], [16] and [17]. For exam-

ple, as a nonlinear analogue of the transformation to the Airy equation near a simple

turning point, a formal WKB theoretic transformation to the second order PI equation

(PI) near a nonlinear simple turning point is constructed in [13], [14], [16] and [17]. The

appearance of a new Stokes curve for higher order Painlevé equations is also confirmed

in [12].

§ 3. Hirose’s result for the Pearcey system

Recently in [8] and [9], following the pioneering work of Aoki ([1]), Hirose discusses

the exact WKB analysis of a 3 × 3 completely integrable system of linear differential

equations with two independent variables

(3.1)





η−1 ∂

∂x1
Ψ = P (x)Ψ,

η−1 ∂

∂x2
Ψ = Q(x)Ψ,

(P (x), Q(x) : 3× 3 matrices).

In particular, he studies the Pearcey system, i.e., the most degenerate hypergeometric

system with two variables:

(3.2)





η−1 ∂

∂x1
Ψ = P (x)Ψ, P =




0 1 0

0 0 1

− x1/4 − x2/2 0


 ,

η−1 ∂

∂x2
Ψ = Q(x)Ψ, Q = P 2 +

x2
3

−
η−1

4




0 0 0

0 0 0

1 0 0


 ,

which is equivalent to

(3.3)





(
η−3 ∂

3

∂x31
+
x2
2
η−1 ∂

∂x1
+
x1
4

)
ψ = 0,

(
η−1 ∂

∂x2
− η−2 ∂

2

∂x21

)
ψ = 0.

Note that the restriction of the Pearcey system (3.2) or (3.3) to a complex line x2 =

Const. is equivalent to the BNR equation (2.5).
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A completely integrable system (3.1) has a WKB solution of the form

(3.4) Ψj(x, η) = exp

(
η

∫ x

ωj

) ∞∑

n=0

η−(n+1/2)Ψj,n(x)

with ωj being a closed 1-form defined by

(3.5) ωj = ζ1,j(x)dx1 + ζ2,j(x)dx2,

where ζ1,j(x) and ζ2,j(x) are eigenvalues of P (x) and Q(x), respectively. (Note that,

thanks to the complete integrability of (3.1), P (x) and Q(x) commute and hence they

are simultaneously diagonalizable.) In the case of a completely integrable system (3.1)

turning points and Stokes surfaces are defined as follows:

Definition 3.1. (i) A turning point of (3.1) is a common zero of the discriminant

of the characteristic equation of P (x) and that of Q(x), that is, a point where two

different 1-forms ωj = ζ1,j(x)dx1+ζ2,j(x)dx2 and ωj′ = ζ1,j′(x)dx1+ζ2,j′(x)dx2 merge.

When ωj and ωj′ merge at a turning point x = a, we say that x = a is of type (j, j′).

(ii) Let x = a be a turning point of type (j, j′). Then a surface defined by

(3.6) Im

∫ x

a

(ωj − ωj′) = 0

is called a Stokes surface of type (j, j′).

For example, the set of turning points of the Pearcey system (3.2) is given by

(3.7) 27x21 + 8x32 = 0.

This set of turning points of (3.2) has a cuspidal singularity at the origin and two

turning points with different types coalesce there (cf. Figure 2).

As is discussed in [8], a coalescing point of turning points plays an important role

in the exact WKB analysis of completely integrable systems and Hirose proves the

following intriguing result in [9].

Theorem 3.2 (Hirose [9]). The Pearcey system (3.2) gives the normal form at

a coalescing point of turning points for a completely integrable system (3.1).

To be more specific, let us assume that coalescence of turning points occurs at

x̃ = (0, 0) for a completely integrable system

(3.8)





η−1 ∂

∂x̃1
Ψ̃ = P̃ (x̃)Ψ̃,

η−1 ∂

∂x̃2
Ψ̃ = Q̃(x̃)Ψ̃.
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x2

x1
❘

“coalescing point of

turning points”

Figure 2. The set of turning points of the Pearcey system (3.2)

Then under some genericity condition we can find a coordinate transform

(3.9) x(x̃) = (x1(x̃1, x̃2), x2(x̃1, x̃2))

and a formal gauge transform of unknown functions

(3.10) T (x̃, η) =
∞∑

n=0

η−nTn(x̃) (Tn(x̃) : 3× 3 matrices)

near x̃ = (0, 0) so that the following relation holds:

(3.11) Ψ̃(x̃, η) = T (x̃, η)Ψ(x(x̃), η),

where Ψ(x, η) and Ψ̃(x̃, η) are unknown functions of the Pearcey system (3.2) and a

completely integrable system (3.8), respectively.

§ 4. Main claim (conjecture)

Now a natural question we want to ask in this report is

Question. What is the nonlinear analogue of Hirose’s result ?

Our answer to this question is the following

Claim (Conjecture) 1. The fourth order PI equation (PI)2 gives the normal

form at a coalescing point of nonlinear turning points for a higher order Painlevé equa-

tion.
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In what follows we explain some fundamental facts about the fourth order PI equation

to state the above claim in a more specific manner.

It is shown in [19] that the fourth order PI equation (PI)2 can be obtained by

restricting the most degenerate Garnier system G(9/2; 2) of two variables

(4.1) η−1 ∂λj
∂tk

=
∂Hk

∂µj
, η−1 ∂µj

∂tk
= −

∂Hk

∂λj
(j, k = 1, 2)

with the Hamiltonian

H1 =
µ2
1 − µ2

2

λ1 − λ2
−

(λ51 − λ52) + t2(λ
3
1 − λ32) + t1(λ

2
1 − λ22)

λ1 − λ2
,(4.2)

H2 =
λ1µ

2
2 − λ2µ

2
1

λ1 − λ2
− η−1µ1 − µ2

λ1 − λ2
(4.3)

+
λ1λ2
λ1 − λ2

{
(λ41 − λ42) + t2(λ

2
1 − λ22) + t1(λ1 − λ2)

}

onto the complex line {t2 = c}. As a matter of fact, introducing the symmetric variables

(u1, u2, v1, v2) of (λ1, λ2, µ1, µ2) by

(4.4)

u1 = λ1 + λ2, u2 = −λ1λ2,

v1 =
µ1 − µ2

λ1 − λ2
, v2 =

λ1µ2 − λ2µ1

λ1 − λ2
,

we find that (4.1) is expressed as




η−1 ∂u1
∂t1

= 2v1,

η−1 ∂u2
∂t1

= 2v2,

η−1 ∂v1
∂t1

= 3u21 + 2u2 + t2,

η−1 ∂v2
∂t1

= u31 + 4u1u2 − v21 + t2u1 + t1,

(4.5)





η−1 ∂u1
∂t2

=
2

3
v2,

η−1 ∂u2
∂t2

=
2

3
(v1u2 − u1v2)−

1

3
η−1,

η−1 ∂v1
∂t2

=
1

3
(u31 + 4u1u2 − v21 + t2u1 + t1),

η−1 ∂v2
∂t2

= −
1

3
(u41 + u2u

2
1 − 2u22 − u1v

2
1 + t2(u

2
1 − u2) + t1u1),

(4.6)

and that the restriction of (4.1) onto {t2 = c} exactly coincides with the fourth order

PI equation (PI)2 for u = u1. Note that the first Hamiltonian H1 of (4.1) gives the

Hamiltonian structure for (PI)2.
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For the Garnier system (4.1), or its symmetric form (4.5) and (4.6), there exists a

0-parameter solution

(4.7)




u
(0)
j = u

(0)
j,0(t) + η−1u

(0)
j,1(t) + · · ·

v
(0)
j = v

(0)
j,0 (t) + η−1v

(0)
j,1 (t) + · · ·

(j = 1, 2),

where its top order term (u
(0)
1,0, u

(0)
2,0, v

(0)
1,0, v

(0)
2,0), abbreviated to (û1, û2, v̂1, v̂2) in what

follows, satisfies a system of algebraic equations

(4.8) 5û31 + t2û1 − t1 = 0, 3û21 + 2û2 + t2 = 0, v̂1 = v̂2 = 0

and its higher order terms (u
(0)
1,l , u

(0)
2,l , v

(0)
1,l , v

(0)
2,l ) (l ≥ 1) are recursively determined. In

particular, its first component u
(0)
1 gives a 0-parameter solution of the fourth order PI

equation (PI)2.

For a system of nonlinear differential equations such as the Garnier system (4.1),

combining Definitions 2.3 and 3.1, we can define a turning point and a Stokes surface

in terms of this 0-parameter solution. That is, a turning point and a Stokes surface of

(4.1) are, by definition, a turning point and a Stokes surface of the Fréchet derivative

of (4.1) at a 0-parameter solution. Note that the Fréchet derivative is a system of

linear differential equations and consequently its turning point and Stokes surface can

be defined by applying Definition 3.1. Let (∆PI)2 denote the Fréchet derivative of (4.1)

at the above 0-parameter solution. (It may be an abuse of notation but, we think, there

will be no fear of confusions caused by this.) Then by straightforward computations we

see that the characteristic equation of (∆PI)2 in the t1 direction is

(4.9) ν41 − 20û1ν
2
1 + 16

(
6û21 − û2

)
= 0.

Hence zeros of the discriminant of (4.9) are given by

(4.10)

{
6û21 − û2 = 0 (“1st kind”),

(10û1)
2
− 16

(
6û21 − û2

)
= 4

(
û21 + 4û2

)
= 0 (“2nd kind”).

Similarly the characteristic equation of (∆PI)2 in the t2 direction is

(4.11) ν42 −
4

9
û1

(
2û21 + 3û2

)
ν22 +

16

81
û22

(
6û21 − û2

)
= 0

and zeros of its discriminant are given by

(4.12)




û22

(
6û21 − û2

)
= 0 (“1st kind”),

4

81

(
2û21 − û2

)2 (
û21 + 4û2

)
= 0 (“2nd kind”).
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Hence the set of turning points of the most degenerate Garnier system (4.1) is explicitly

described by

(4.13)
6û21 − û2 = 0, i.e., 135t21 + 4t32 = 0 (“1st kind”),

û21 + 4û2 = 0, i.e., 5t21 + 2t32 = 0 (“2nd kind”).

Note that, since the turning points of the fourth order PI equation (PI)2 are defined

by the characteristic equation of (∆PI)2 in the t1 direction, they exactly coincide with

those of the most degenerate Garnier system (4.1). Thus we now observe that the set of

turning points of (4.1) or (PI)2 has a cuspidal singularity at the origin and a coalescing

phenomenon of turning points occurs there. More precisely, two turning points (with

different types) of the 1st kind and those of the 2nd kind simultaneously coalesce at the

origin in this case (cf. Figure 3).

t2

t1

2nd kind turning point

1st kind turning point

❘

“coalescing point of

nonlinear turning points”

Figure 3. The set of turning points of the fourth order PI equation (PI)2

In a manner similar to the case of (PI)2 a higher order Painlevé equation can be in

general extended to a completely integrable system of nonlinear differential equations

(cf. [18, 19]) and we conjecture that the most degenerate Garnier system (4.1) corre-

sponding to the fourth order PI equation (PI)2 gives the normal form at a coalescing

point of nonlinear turning points in such a class of systems of nonlinear equations; this

is a more precise statement of our conjecture.

§ 5. Toward the proof of the main claim

In this section, to show the validity of our conjecture, we discuss the transformation

between a degenerate Garnier system with two variables corresponding to the fourth

order PII equation and the most degenerate Garnier system (4.1).
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Let us consider the following degenerate Garnier system with two variables:

(5.1) η−1 ∂λ̃j

∂t̃k
=
∂H̃k

∂µ̃j
, η−1 ∂µ̃j

∂t̃k
= −

∂H̃k

∂λ̃j
(j, k = 1, 2)

with the Hamiltonian

H̃1 =
1

2

µ̃2
1 − µ̃2

2

λ̃1 − λ̃2
−
λ̃31µ̃1 − λ̃32µ̃2

λ̃1 − λ̃2
− t̃2

λ̃1µ̃1 − λ̃2µ̃2

λ̃1 − λ̃2
(5.2)

−
t̃1
2

µ̃1 − µ̃2

λ̃1 − λ̃2
− α(λ̃1 + λ̃2) +

1

2
t̃1t̃2,

H̃2 =
1

2

λ̃1µ̃
2
2 − λ̃2µ̃

2
1

λ̃1 − λ̃2
+ λ̃1λ̃2

λ̃21µ̃1 − λ̃22µ̃2

λ̃1 − λ̃2
+ t̃2λ̃1λ̃2

µ̃1 − µ̃2

λ̃1 − λ̃2
(5.3)

−
t̃1
2

λ̃1µ̃2 − λ̃2µ̃1

λ̃1 − λ̃2
−
η−1

2

µ̃1 − µ̃2

λ̃1 − λ̃2
− αλ̃1λ̃2 +

1

8
t̃21 +

1

2
t̃2,

where α ∈ C is a complex constant. The restriction of (5.1) onto the complex line

{t2 = c} becomes the fourth order PII equation (PII)2.

In what follows we assume α 6= 0. We then find that coalescence of nonlinear

turning points for (5.1) occurs at four points determined by

(5.4) 9t̃22 + 10α = 0, 135t̃21 + 512t̃32 = 0.

In this situation our conjecture can be stated in a specific manner as follows:

Claim (Conjecture) 2. Let (t̃†1, t̃
†
2) be a point satisfying (5.4), that is, a co-

alescing point of nonlinear turning points for (5.1). Then near (t̃†1, t̃
†
2) there exist a

formal coordinate transformation (t1, t2) = (t1(t̃1, t̃2, η), t2(t̃1, t̃2, η)) of the form

t1(t̃1, t̃2, η) =
∞∑

n=0

η−nt1,n(t̃1, t̃2),(5.5)

t2(t̃1, t̃2, η) =
∞∑

n=0

η−nt2,n(t̃1, t̃2),(5.6)

and a formal transformation of unknown functions

(5.7) x(x̃, t̃1, t̃2, η) =
∞∑

n=0

η−nxn(x̃, t̃1, t̃2),

such that the following relations hold:

(5.8) λ
(0)
j (t1(t̃1, t̃2, η), t2(t̃1, t̃2, η), η) = x(λ̃

(0)
j (t̃1, t̃2, η), t̃1, t̃2, η) (j = 1, 2),

where λ
(0)
j (t1, t2, η) and λ̃

(0)
j (t̃1, t̃2, η) denote (λ-component of) the 0-parameter solution

(i.e., the formal power series solution) of (4.1) and (5.1), respectively.
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In a sense our conjecture can be thought of a generalization of a transformation

to the second order PI equation (PI) near a nonlinear simple turning point developed

in [13], [14], [16] and [17], and our strategy for the proof of the conjecture follows the

strategy employed in these previous works. That is, to construct the transformations

(5.5)–(5.7), we make full use of the isomonodromic deformation theory for (4.1) and

(5.1) (or (PI)2 and (PII)2). Otherwise stated, we use the Lax pairs of linear differential

equations associated to (4.1) and (5.1).

For example, let us first consider the Lax pair for (4.1), which is given as follows:

(5.9)





η−1 ∂

∂x
Ψ=AΨ,

η−1 ∂

∂t1
Ψ=B1Ψ,

η−1 ∂

∂t2
Ψ=B2Ψ.

Here A = A(x, t, λ, µ, η) and Bk = Bk(x, t, λ, µ, η) (k = 1, 2) are 2× 2 matrices given by

A =




v1x+ v2 2(x2−u1x−u2)
1

2

[
x3+u1x

2+(t2+u2+u
2
1)x+(t2u1+2u1u2+u

3
1+t1−v

2
1)
]

−(v1x+ v2)


 ,

(5.10)

B1 =




0 2
1

2
(x+ 2u1) 0


 ,

B2 =




v1
3

2

3
(x− u1)

1

6

[
x2+u1x+(t2+2u2+u

2
1)
]

−
v1
3


 ,

where (u1, u2, v1, v2) are the symmetric variables of (λ1, λ2, µ1, µ2) introduced by (4.4).

Note that the compatibility condition of (5.9) is equivalent to (4.1).

We now substitute a 0-parameter solution (4.7) of (4.5) and (4.6) into the coeffi-

cients A and Bk of the Lax pair (5.9). We then find the following

Proposition 5.1 ([12, Proposition 2.1.1]). The first equation η−1 ∂

∂x
Ψ = AΨ of

the Lax pair (5.9) has two double turning points at x = λ̂j (j = 1, 2) and one simple

turning point at x = −2(λ̂1 + λ̂2) (denoted by â in what follows), where λ̂j denotes the

top order term of a 0-parameter solution of (4.1) corresponding to (4.7).

Furthermore, as is also verified in [12], the Stokes geometry, i.e., turning points and

Stokes surfaces, of the nonlinear system (4.1) has a close relationship with that of its

Lax pair (5.9) to the following effect:
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Proposition 5.2 ([12, Propositions 2.1.4 & 2.1.5]). (i) At a turning point of the

1st kind (resp., the 2nd kind) of (4.1) two double turning points (resp., one double

turning point and one simple turning point) of the first equation of (5.9) merge.

(ii) If t = (t1, t2) lies on a Stokes surface of (4.1) emanating from a turning point of

the 1st kind (resp., the 2nd kind), two double turning points (resp., one double turning

point and one simple turning point) of the first equation of (5.9) are connected by its

Stokes curve.

Note that a key relation for the proof of Proposition 5.2 is the following integral

relation.

(5.11)
1

2

∫ (t1,t2)

(0,0)

(
(ν+1,j − ν−1,j) dt1 + (ν+2,j − ν−2,j) dt2

)
=

∫ λ̂j

â

(α+ − α−) dx (j = 1, 2),

where α± denote the eigenvalues of the top order term of A and ν±1,j (resp., ν±2,j) denote

the characteristic roots of the Fréchet derivative of (4.5) (resp., (4.6)) at a 0-parameter

solution (4.7). As a consequence of Proposition 5.2, at a coalescing point of nonlinear

turning points of (4.1) or (PI)2, we can also observe the following

Proposition 5.3. At the coalescing point (t1, t2) = (0, 0) of nonlinear turning

points of (PI)2, the three turning points x = λ̂1, x = λ̂2 and x = â of the first equation

of (5.9) merge to one point.

One important point is that these propositions also hold for the Garnier system

(5.1) corresponding to (PII)2. Having this resemblance between the Stokes geometry of

the Lax pair for (PI)2 and that for (PII)2 in mind, we now construct a formal coordinate

transformation

(5.12)





x= x(x̃, t̃1, t̃2, η) =
∞∑

n=0

η−nxn(x̃, t̃1, t̃2),

t1 = t1(t̃1, t̃2, η) =
∞∑

n=0

η−nt1,n(t̃1, t̃2),

t2 = t2(t̃1, t̃2, η) =

∞∑

n=0

η−nt2,n(t̃1, t̃2)

that transforms the Lax pair associated to (PII)2 to (5.9), the Lax pair associated to

(PI)2, in an open set Ω̃ containing three turning points
̂̃
λ1,

̂̃
λ2 and ̂̃a of (the first equation

of) the Lax pair associated to (PII)2 (cf. Figure 4). Then, in view of the relationship

between the Stokes geometry of the Garnier system (4.1) or (PI)2 (as well as (5.1) or

(PII)2) and that of its underlying Lax pair ensured by Proposition 5.2, we can expect

that the transformation (5.12) thus constructed gives a transformation from (PII)2 to

(PI)2 required in our claim (conjecture) 2.
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x̃
̂̃
λ1

̂̃
λ2

̂̃aΩ̃

Lax pair for (PII)2

✲

{
x = x(x̃, t̃, η)

tk = tk(t̃, η)

x

λ̂1

λ̂2

â

Ω

Lax pair for (PI)2

Figure 4. Formal transformation between two Lax pairs

This is our strategy to prove the conjecture. We hope we can provide a complete

proof of the conjecture based on this strategy in our forthcoming paper.

§ 6. Discussion — relation with Dubrovin’s result for the KdV equation

In this final section we discuss some relation between our conjecture and Dubrovin’s

result for the KdV equation.

In [7] Dubrovin showed the following intriguing result: Let

(6.1) u(t, ǫ) = u0(t) + ǫ2u2(t) + · · ·

be a perturbative solution of the KdV equation

(6.2)
∂u

∂t
+ u

∂u

∂x
+ αǫ2

∂3u

∂x3
= 0,

where ǫ (> 0) is a small parameter and α is a constant. The top order term u0(t)

satisfies a first order nonlinear wave equation

(6.3)
∂u0
∂t

+ u0
∂u0
∂x

= 0.

It is well known that a shock wave occurs with a solution of (6.3) since the propagation

speed of a solution u0 of (6.3) depends on the modulus |u0| of u0. Let (t0, x0) be a

point where a shock occurs with a solution u0 of (6.3). (Dubrovin called such a point “a

point of gradient catastrophe”; cf. Figure 5.) Then at a point of gradient catastrophe

Dubrovin showed the following

Theorem 6.1 (Dubrovin [7]). Under some genericity condition the behavior of

the perturbative solution (6.1) of the KdV equation near a point of gradient catastrophe

is described by a (special) solution of (PI)2.
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t

x

t0

x0

u0(t0, x)

x

“point of gradient catastrophe”

u0(t0, x0)

x0

❄

Figure 5. Wave propagation for (6.3) and appearance of gradient catastrophe

Note that the independent variables x and t of the KdV equation correspond to

the independent variable t and the parameter c of (PI)2 (or the independent variables

t1 and t2 of the most degenerate Garnier system (4.1)), respectively.

Remark. It is also shown in [7] that the above result holds universally for any

Hamiltonian perturbations of the equation

(6.4)
∂u

∂t
+ a(u)

∂u

∂x
= 0.

In view of Theorem 6.1, a natural question arises: Why does (PI)2 appear in the

description of the behavior of solutions of the KdV equation near a point of gradient

catastrophe ? This question is one of the motivations of our study on the fourth order

PI equation. Our tentative answer to this question is that some coalescing phenomenon

of nonlinear turning points may be occurring at a point of gradient catastrophe of the

KdV equation and consequently Dubrovin’s result can be deduced from our conjecture.

However, the definition of a turning point is not known yet for the KdV equation and

at the present stage this is still just a guess. We hope this guess will be appropriately

formulated and rigorously verified in some future.
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B5(2008), 153–198.
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