$\operatorname{RIMS-1809}$

Visualization of the Landau-Nakanishi surfaces for truss-bridge graphs

By

Naofumi HONDA and Takahiro KAWAI

<u>August 2014</u>

京都大学 数理解析研究所

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES KYOTO UNIVERSITY, Kyoto, Japan

Visualization of the Landau-Nakanishi surfaces for truss-bridge graphs

By

Naofumi HONDA* and Takahiro KAWAI**

In this report we present several figures which describe the Landau-Nakanishi surfaces associated with the truss-bridge graph T_{ℓ} $(1 \leq \ell \leq 3)$ and its contractions such as the so-called ice-cream cone diagram, assuming the space-time dimension is 2. Our principal aim is to help the understanding of the reader of the paper

- [HKS] N. Honda, T. Kawai and H. P. Stapp, On the geometric aspect of Sato's postulates on the S-matrix, to appear in RIMS Kôkyûroku Bessatsu (Preprint version: RIMS preprint No. 1810 available at http://www.kurims.kyoto-u.ac.jp/preprint/index.html),
 - but we believe they are interesting in their own right.

We note that all figures in this report are described with the help of a computer by the method described in

[HK] N. Honda and T. Kawai, A computer-assisted study of the Landau-Nakanishi geometry, RIMS Kôkyûroku No. 1861, 2013, pp. 100-110.

All the notations used in this report are the same as those used in [HKS].

²⁰⁰⁰ Mathematics Subject Classification(s): (2010) Primary 81Q30; Secondary 32S40.

^{*}Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan. Supported in part by JSPS KAKENHI Grant Number 23540178.

e-mail: honda@math.sci.hokudai.ac.jp

^{**}Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 606-8502, Japan. Supported in part by JSPS KAKENHI Grant Number 24340026.

Contents

- **1.** $L^{\times}(T_1)$ and $L^{\oplus}(T_1)$
- **2.1.** $L^{\times}(T_2)$ and $L^{\oplus}(T_2)$
- **2.2.** $L^{\times}(T_2), L^{\oplus}$ (the ice-cream cone diagram) and 3PT
- **3.1.** $L^{\times}(T_3)$ and $L^{\oplus}(T_3)$
- **3.2.** Landau-Nakanishi surfaces associated with T_3 and its contractions outside the exceptional set N
- **3.3.** Landau-Nakanishi surfaces associated with T_3 and its contractions near the exceptional set N
 - 4. Enlarged figures of those in [HKS]

3

1. $L^{\times}(T_1)$ and $L^{\oplus}(T_1)$

Figure 1.1. T_1 , view(116, 287)

Figure 1.2. The positive part of T_1 , view(116, 287)

Figure 1.3. T_1 , total view at (116, 287)

Figure 1.4. T_1 , view(97, 287)

Figure 1.5. The positive part of T_1 , view(97, 287)

Figure 1.6. T_1 , total view at (97, 287)

Figure 1.7. T_1 , view(281, 299)

Figure 1.8. The positive part of T_1 , view(281, 299)

Figure 1.9. T_1 , total view at (281, 299)

2.1 $L^{\times}(T_2)$ and $L^{\oplus}(T_2)$

Figure 2.1. T_2 , (a, b) = (0.7, 0.95), view(101, 320)

Figure 2.2. T_2 with a positive part (red), (a, b) = (0.7, 0.95), view(101, 320)

Figure 2.3. T_2 , (a, b) = (0.7, 0.95), view(90, 320)

Figure 2.4. T_2 with a positive part (red), (a, b) = (0.7, 0.95), view(90, 320)

Figure 2.5. T_2 , (a, b) = (0.7, 0.95), view(90, 350)

Figure 2.6. T_2 with a positive part (red), (a, b) = (0.7, 0.95), view(90, 350)

Figure 2.7. T_2 , (a, b) = (0.7, 0.95), view(281, 291)

Figure 2.8. T_2 with a positive part (red), (a, b) = (0.7, 0.95), view(281, 291)

Figure 2.9. T_2 , (a, b) = (0.7, 0.95), view(278, 337)

Figure 2.10. T_2 with a positive part (red), (a, b) = (0.7, 0.95), view(278, 337)

NAOFUMI HONDA AND TAKAHIRO KAWAI

2.2 $L^{\times}(T_2)$, L^{\oplus} (the ice-cream cone diagram) and 3PT

Figure 2.11. T_2 , (a, b) = (0.7, 0.95), view(133, 128)

Figure 2.12. T_2 and its positive part (black) with a transparent mode, (a,b) = (0.7, 0.95), view(133, 128)

Figure 2.13. T_2 (blue) and the ice-cream cone (yellow), (a,b) = (0.7, 0.95), view(133, 128)

Figure 2.14. T_2 (blue) and the ice-cream cone (yellow), a transparent mode, (a,b) = (0.7, 0.95), view(133, 128)

Figure 2.15. The positive part of T_2 (black) and the ice-cream cone (yellow), (a,b) = (0.7, 0.95), view(133, 128)

Figure 2.16. The positive part of T_2 (black) and the ice-cream cone (yellow), (a,b) = (0.7, 0.95), view(0, 149)

Figure 2.17. T_2 (blue) and 3PT (yellow), (a, b) = (0.7, 0.95), view(133, 128)

Figure 2.18. The positive part of T_2 (black) and 3PT (yellow), (a,b) = (0.7, 0.95), view(133, 128)

Figure 2.19. The positive part of T_2 (black) and 3PT (yellow), (a,b) = (0.7, 0.95), view(0, 128)

NAOFUMI HONDA AND TAKAHIRO KAWAI

3.1 $L^{\times}(T_3)$ and $L^{\oplus}(T_3)$

Figure 3.1. T_3 , (a, b) = (0, 9, 1.95), view(119, 306)

Figure 3.2. T_3 (blue) and the codim 2 component (purple), (a,b) = (0,9,1.95), view(119,306)

Figure 3.3. T_3 (blue) and its positive part (red), (a, b) = (0, 9, 1.95), view(119, 306)

Figure 3.4. The positive part of T_3 (red), (a, b) = (0, 9, 1.95), view(119, 306)

Figure 3.5. T_3 , (a, b) = (0, 9, 1.95), view(124, 293)

Figure 3.6. T_3 (blue) and the codim 2 component (purple), (a,b) = (0,9,1.95), view(124,293)

Figure 3.7. T_3 (blue) and its positive part (red), (a, b) = (0, 9, 1.95), view(124, 293)

Figure 3.8. The positive part of T_3 (red), (a, b) = (0, 9, 1.95), view(124, 293)

Figure 3.9. T_3 , (a, b) = (0, 9, 1.95), view(141, 340)

Figure 3.10. T_3 (blue) and the codim 2 component (purple), (a,b) = (0,9,1.95), view(141,340)

Figure 3.11. T_3 (blue) and its positive part (red), (a, b) = (0, 9, 1.95), view(141, 340)

Figure 3.12. The positive part of T_3 (red), (a, b) = (0, 9, 1.95), view(141, 340)

Figure 3.13. T_3 , (a, b) = (0, 9, 1.95), view(77, 101)

Figure 3.14. T_3 (blue) and the codim 2 component (purple), (a,b) = (0,9,1.95), view(77,101)

Figure 3.15. T_3 (blue) and its positive part (red), (a, b) = (0, 9, 1.95), view(77, 101)

Figure 3.16. The positive part of T_3 (red), (a, b) = (0, 9, 1.95), view(77, 101)

Figure 3.17. T_3 , (a, b) = (0, 9, 1.95), view(76, 113)

Figure 3.18. T_3 (blue) and the codim 2 component (purple), (a,b) = (0,9,1.95), view(76,113)

Figure 3.19. T_3 (blue) and its positive part (red), (a, b) = (0, 9, 1.95), view(76, 113)

Figure 3.20. The positive part of T_3 (red), (a, b) = (0, 9, 1.95), view(76, 113)

3.2 Landau-Nakanishi surfaces associated with T_3 and its contractions outside the exceptional set N

Figure 3.21. T_3 (green), (a, b) = (0.85, 2.15), view(84, 98)

Figure 3.22. T_3 (green), (a, b) = (0.85, 2.15), view(99, 272)

Figure 3.23. T_3 (green) and the codim 2 component (purple), (a,b) = (0.85, 2.15), view(99, 272).

Figure 3.24. T_3 (green) and the codim 2 component (purple), (a,b) = (0.85, 2.15), view(136, 274).

Figure 3.25. T_3 (green) and 3PT (yellow), (a, b) = (0.85, 2.15), view(73, 251).

Figure 3.26. T_3 (green) and 3PT (yellow), (a, b) = (0.85, 2.15), view(83, 262).

Figure 3.27. The ice-cream cones (blue) and the codim 2 component (purple), (a, b) = (0.85, 2.15), view(57, 26).

Figure 3.28. The ice-cream cones (blue) and the codim 2 component (purple), (a, b) = (0.85, 2.15), view(120, 350).

Figure 3.29. The ice-cream cones (blue) and 3PT (yellows), (a, b) = (0.85, 2.15), view(60, 77).

Figure 3.30. The ice-cream cones (blue) and 3PT (yellows), (a, b) = (0.85, 2.15), view(80, 66).

Figure 3.31. The right ice-cream cone (blue) and T_3 (green), (a,b) = (0.85, 2.15), view(71, 105).

Figure 3.32. The right ice-cream cone (blue) and T_3 (green), (a,b) = (0.85, 2.15), view(88, 262).

Figure 3.33. The left ice-cream cone (blue) and T_3 (green), (a,b) = (0.85, 2.15), view(82, 87).

Figure 3.34. The left ice-cream cone (blue) and T_3 (green), (a,b) = (0.85, 2.15), view(0, 268).

Figure 3.35. The ice-cream cones (blue), 3PT (yellow) and T_3 (green), (a,b) = (0.85, 2.15), view(81, 98).

Figure 3.36. The ice-cream cones (blue), 3PT (yellow) and T_3 (green), (a,b) = (0.85, 2.15), view(96, 250).
3.3 Landau-Nakanishi surfaces associated with T_3 and its contractions near the exceptional set N

Figure 3.37. T_3 (green), (a, b) = (1.0, 2.0), view(73, 103)

Figure 3.38. T_3 (green), (a, b) = (1.0, 2.0), view(138, 295)

Figure 3.39. T_3 (green) and 3PT (yellow), $(a,b)=(1.0,2.0),\,\mathrm{view}(62,53)$

Figure 3.40. T_3 (green) and 3PT (yellow), (a, b) = (1.0, 2.0), view(80, 49)

Figure 3.41. The ice-cream cones (blue) and the codim 2 component (purple), (a, b) = (1.0, 2.0), view(40, 302)

Figure 3.42. The ice-cream cones (blue), 3PT (yellow) and T_3 (green), (a,b) = (1.0, 2.0), view(81, 61)

Figure 3.43. The ice-cream cones (blue), 3PT (yellow) and T_3 (green), (a,b) = (1.0, 2.0), view(78, 81)

Figure 3.44. The ice-cream cones (blue), 3PT (yellow) and T_3 (green), (a,b) = (1.0, 2.0), view(114, 98)

4. Enlarged figures of those in [HKS]

Figure 4.1. Figure 5.2 in [HKS]

Figure 4.2. Figure 5.5 in [HKS]

Figure 4.3. Figure 5.6 in [HKS]

Figure 4.4. Figure 5.13 in [HKS]

Figure 4.5. Figure 5.14 in [HKS]

Figure 4.6. Figure 5.15 in [HKS]

Figure 4.7. Figure 5.19 in [HKS]

Figure 4.8. Figure 5.20 in [HKS]

Figure 4.9. Figure A.2 in [HKS]

Figure 4.10. Figure A.3 in [HKS]

Figure 4.11. Figure A.5 in [HKS]

Figure 4.12. Figure B.1 in [HKS]

Figure 4.13. Figure B.2 in [HKS]

Figure 4.14. Figure B.3 in [HKS]