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By
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§ 1. Introduction

This paper is the first step of our trial to cast a new light on Sato’s postulates
([11]) on the singularity structure of the S-matrix by assuming the Borel summability
([2]) of its perturbation series expansion in the coupling constant. In this paper we put
our emphasis on the study of its geometric aspect, particularly near its three particle
threshold (hereafter abbreviated as 3PT ). In order to make our study concrete and
simple, we assume that the space-time dimension is 2 and that all the masses associated
with internal lines are equal to m (
 0), and, having the 3 to 3 S-matrix element in
mind, we investigate, with the help of a computer, the concrete shape of the positive-α
Landau-Nakanishi surface determined by a hooked 3-lines diagram, whose definition is
given in Section 2.

Throughout this paper we use the same notations and terminologies used in [4]
except for the wording “Landau-Nakanishi surfaces” (instead of “Landau-Nakanishi va-
rieties”) that means the projection of the Landau-Nakanishi varieties to the base man-
ifold; for the sake of reference we also note that the notations and terminologies used
here are basically the same as in [11]. In what follows “Landau-Nakanishi surfaces” are
abbreviated to “LN surfaces“.
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Our conclusion is that the geometry is surprisingly simple and reasonable; we find
a concretely defined exceptional set N , which we believe to correspond to what Sato
([11]) had in mind, at least near 3PT , and we confirm (Section 3) that, outside a
neighborhood of N , we encounter only finitely many positive-α LN surfaces associated
with hooked 3-lines diagrams. Furthermore the singularities of the resulting surfaces
are quite natural despite the appearance of higher codimensional components basically
due to the existence of non-external vertices in hooked 3-lines diagrams. The higher
codimensional components we encounter are simply intersections of real hypersurfaces
(Sections 3 and 4), and we do not encounter any annoying singularities such as acnodes.
As we note in Section 4, the existence of an acnode indicates the existence of (possibly
infinitely many) complex singularities which accumulate to the acnode. The absence
of acnodes in positive-α LN surfaces is consistent with the strong asymptotic causality
(SAC) proposed in [1]. In Appendix A we further clarify the mechanism how acnodes
appear in the study of LN surfaces in the real domain. We want to emphasize that the
visualization of the LN surfaces with the help of a computer was an important step of
our study to understand the origin of acnodes in LN surfaces ([3]). To stand on the
safer side we note that we use the wording “pinch (point)” following the tradition in
geometry; thus it is different from “pinch” used, say, in [3]. Our “pinch point” means
the most singular point in Whitney’s umbrella. (Cf. Appendix A.)
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§ 2. Some preparations

As the first step toward a better understanding of the geometric aspect of Sato’s
postulates near the 3 particle threshold (= 3PT ) we study the positive-α Landau-
Nakanishi surface L+(hq) of a hooked 3-lines hq defined below, having in mind the
perturbation series expansion of the 3 to 3 S-matrix element. As noted in the introduc-
tion, we use the wording LN surfaces to mean the projection to the base manifold of the
LN varieties in the cotangent bundle. We note that, in some context of our discussions
below, we will be concerned with some particular higher codimensional components
which are contained in the “surfaces”.

In what follows we always assume that the space-time dimension is 2 and that the
masses associated to the internal lines of the graph hq are all equal to m > 0. We
assume the graph hq is oriented so that

(2.1) k`,0 > 0 holds for every internal line k` of hq.

Definition 2.1. (i) A hooked 3-lines hq with q hooks consists of 3 lines, the
upper line, the middle line and the lower line, such that the middle line moves in a
zigzag between the upper line and the lower line forming q hooks labeled by u (a hook
formed by the upper line and the middle line) or d (a hook formed by the lower line
and middle line) as shown below as an example in Figure 2.1.

d d d

u u u

h6 :

Figure 2.1. An example of a hooked 3-lines.

We identify, for example, h6 in Figure 2.1 with the sequence of labels

(2.2) duduud or dudu2d for short.

As a convention we assume that no up (p ≥ 3) or dq (q ≥ 3) appears in the label.
(ii) If 3 lines meet at one point we label the point $ and call it a pit. A hooked 3-lines
with a pit is called a pitted hooked 3-lines.



4 Naofumi Honda, Takahiro Kawai and Henry P. Stapp

Remark 2.2. (i) As we are interested in the geometric aspect of the problem we
have introduced the above convention; the positive-α LN surface associated with D1 in
Figure 2.2 coincides with that associated with D2 in the same figure.

D1 D2

Figure 2.2.

(ii) A pitted hooked 3-lines graph is important in studying the contraction of a hooked
3-lines diagram; for example let us contract the leftmost slant in Figure 2.3 below.

Figure 2.3.

Then we encounter the following pitted 3-lines in Figure 2.4.

Figure 2.4.

In order to avoid possible confusions we always qualify a hooked 3-lines as pitted when
it contains a pit.
(iii) In what follows, a bead means a part of the graph that has the form u2 or d2, using
this wording, we find that a hooked 3-lines without beans is nothing but a truss-bridge
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graph discussed in [4]. For example, the graph given in Figure 2.3 is a truss-bridge graph
with 3 trusses, i.e., T3 in the expressions of [4].

Definition 2.3. (i) We denote by H(q) the totality of hooked 3-lines with q

hooks.
(ii) We denote by $H(q) (resp. H$(q)) the totality of a pitted hooked 3-lines whose
leftmost (resp. rightmost) hook is a pit and which contains q hooks (including a pit).

Remark 2.4. For example, the graph given in Figure 2.4 belongs to $H(4).

We next introduce the set N , which plays a central role in studying the geometric
aspect of Sato’s postulates.

Definition 2.5. The set N is, by definition, N+ ∪ N−, where N± are given by
the following:

(2.3) N+ =
∪

k2=m2

{
(p1, p2, p3) ∈ R6;

pσ(1) = k and pσ(2) + pσ(3) = 2k hold

for some permutation σ of {1, 2, 3}

}
,

(2.4) N− =
∪

k2=m2

{
(p4, p5, p6) ∈ R6;

pτ(4) = k and pτ(5) + pτ(6) = 2k hold

for some permutation τ of {4, 5, 6}

}
.

Remark 2.6. We often regard N± as subsets in R10 = {(p1, . . . , p6) ∈ R12; p1 +
p2 + p3 = p4 + p5 + p6}.

Remark 2.7. We emphasize that pσ(1) and pτ(4) are confined to be on mass-shell.
As we will see in Section 3, this phenomenon is closely tied up with the existence of
non-external vertices in the graph, i.e., the fact that the graph contains vertices upon
which no external vectors are incident.
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§ 3. Finiteness theorem for the leading positive-α Landau-Nakanishi
surfaces outside N

Let us denote by L⊕(G) the leading positive-α LN surface determined by the graph
G, that is, the part of L+(G) where all α` 
 0. Our first theorem is:

Theorem 3.1. L⊕(Tn) ⊂ N for n ≥ 4.

We note that we are considering the problem under the assumption that the space-
time dimension is 2. Hence the following lemma is evident.

Lemma 3.2. Suppose

(3.1) k2
` = m2, k`,0 > 0 (` = 1, 2, 3, 4)

and

(3.2) k1 + k2 = k3 + k4.

Then we find either

(3.3) (k3, k4) = (k1, k2)

or

(3.4) (k3, k4) = (k2, k1).

Proof of Theorem 3.1. To prove Theorem 3.1 using Lemma 3.2, we first consider
the case n = 4. As will become clear later, the point is that T4 contains two non-external
vertices V and W below.

By applying Lemma 3.2 to the vertex V we find either [I] or [II] in Figure 3.1. Note
that we abbreviate k` as ` in the subsequent figures.

[I] or [II]

A

B

V

W

C

D

3

1

2

4

2

1

5

6

7 3

1

2

4

1

2

5

6

7

Figure 3.1.
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Let us first consider the case [I]. Then it follows from the closed loop condition for
the truss formed by B, V and W that

(3.5) k4 = k2.

Hence Lemma 3.2 applied to the vertex W implies

(3.6) k5 = k6 = k2.

Hence the closed loop condition for the trusses 4V WC and 4CWD respectively entails

(3.7) k1 = k2, and k7 = k2.

Finally the closed loop condition for the leftmost truss 4ABV reads as

(3.8) k3 = k2,

as k1 = k2. Thus all k`’s are the same, and hence we find

(3.9) L⊕(T4) ⊂ N

in case [I].

In case [II] we apply Lemma 3.2 to vertex W and separate the situation into 2
subcases [II.i] and [II.ii] in Figure 3.2 and Figure 3.3 respectively;

[II. i]

A

B

V

W

C

D

3

1

2

4

1

2

1

4

7

i.e. (k5, k6) = (k1, k4),

Figure 3.2.

[II. ii]

A

B

V

W

C

D

3

1

2

4

1

2

4

1

7

i.e. (k5, k6) = (k4, k1).

Figure 3.3.

Let us first consider the case [II.i]. First, the closed loop condition for the truss
4V WC implies

(3.10) k2 = k1.

Then the closed loop condition for the truss 4BV W entails

(3.11) k4 = k1.
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Hence the closed loop condition for the truss 4WCD leads to

(3.12) k7 = k1.

Similarly it follows from (3.10) that

(3.13) k3 = k1.

Thus we find all the internal lines are equal in [II.i]. The reasoning in the situation
[II.ii] is slightly subtler; we consider two trusses 4BV W and 4V WC simultaneously
to deduce from the closed loop conditions for them that

(3.14) k2 = k4.

Hence the closed loop condition for the truss 4BV W implies

(3.15) k1 = k2,

showing also

(3.16) k3 = k7 = k2.

Thus we have confirmed

(3.17) L⊕(T4) ⊂ N ;

we note that in our reasoning we have used only the fact that both V and W are non-
external vertices, together with the closed loop conditions for several trusses. Thus it
is clear that all the internal vectors that appear in the configuration of L⊕(Tn) (n ≥ 5)
are the same, and hence we find

(3.18) L⊕(Tn) ⊂ N.

This completes the proof of Theorem 3.1.

Remark 3.3. An important point in Theorem 3.1 is that, although the external
vector pr (r = 1, 2, . . . , 6) are not confined to the mass-shell manifold in the Landau-
Nakanishi equations, which we are using in this paper, some external vectors are confined
to the mass-shell manifold in the leading positive-α LN surfaces L⊕(Tn) (n ≥ 4).

In parallel with Theorem 3.1 we find the following.

Theorem 3.4. If the number q of the hooks is equal to or bigger than 12, then

(3.19) L⊕(hq) ⊂ N

holds.
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Proof. Let (p, k) be the set of vectors which realizes the diagram L⊕(hq), and let
{k`}`∈R be the totality of internal vectors that do not form a bead in hq. Then, by the
procedure to be described below, we use (p, {k`}`∈R) to form a configuration L⊕(Tn),
where Tn is a truss-bridge graph with q̃ vertices, where q̃ ≥ q/2.

d1 d2

Figure 3.4.

u1

d1 d2

ũ2 u2

Figure 3.5.

The procedure is as follows: first, we note that, for some bead (see Figure 3.4)
which is with some internal lines being incident upon each of vertices d1 and d2, we find
a part u1d1d2u2 in hq because of the convention that d3 is not allows in hq. Then we
can form a triangle using the vectors associated with u1d1 and u1d1 together with the
parallel displacement of the vector associated with d2u2 so that it may leave from d1 as
indicated in Figure 3.5 where d1ũ2 is parallel to d2u2. On the other hand, if two lines
entering d1 or two lines leaving from d2 are external, then we just collapse the bead
d1d2.

By this procedure we find a leading positive-α Landau-Nakanishi surface L⊕(Tn)
associated with a truss-bridge graph Tn with q̃ vertices, where

q̃ = q − #(beads in hq)/2 ≥ q/2.

Since q is supposed to be bigger than or equal to 12, the number of trusses in Tn, i.e.,
n is bigger than or equal to 4. Hence Theorem 3.1 entails the point p in question is in
N .

Remark 3.5. Although the number 4 in Theorem 3.1 is the best possible one,
the number 12 in Theorem 3.4 is not so. For example we can easily confirm

(3.20) L⊕(u2dud2) ⊂ N.

But, at the same time, one can confirm that L⊕(u2du2d) is not contained in N , as we
find the following configuration described in Figure 3.6 by making use of the so-called
ice-cream cone diagram in Figure 3.7. (See Section 5 [II] for the details.) By examining



10 Naofumi Honda, Takahiro Kawai and Henry P. Stapp

p1

p2

p3

p4

p5

p6

k

k

k

k k

k

k

p3

Figure 3.6.

p

p5

p4

Figure 3.7.

all the cases individually we can find that the best possible number q in Theorem 3.4 is
8; we find

(3.21) L⊕(hq) ⊂ N if q ≥ 8.

We leave the concrete verification of (3.21) to the reader, but as a typical example we
show how to confirm

(3.22) L⊕(u2d2u2d2) ⊂ N.

It is clear that the truss-bridge graph used in the proof of Theorem 3.4 is T2. However,
by keeping the beads in the diagram in Figure 3.8 below, we confirm (3.22) as follows:
in Figure 3.8 Lemma 3.2 implies DE = DG = k and BE = DE = `. Hence ` = k.

A B

C D

E F

G

k

k

ℓ

ℓ

Figure 3.8.

Then the closed loop conditions entail BC = FG = k. Again by using Lemma 3.2 we
then find all internal lines in L⊕(u2d2u2d2) are equal to k. By the reasoning of this sort
we can confirm

(3.23) L⊕(h) ⊂ N for any h in H(8)
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by checking all hooked 3-lines with 8 hooks individually. On the other hand, it follows
from the definition of a hooked 3-lines diagram that, if

(3.24) L⊕(h) ⊂ N holds for every h in H(q),

then

(3.25) L⊕(h̃) ⊂ N holds for any h̃ in H(q + 1).

Thus we can prove Theorem 3.4 by the induction on q, starting from q = 8.

Remark 3.6. In the course of the study mentioned in the preceding remark, we
have obtained the following list of hooked 3-lines whose leftmost hook is u and that
gives us leading positive-α LN surfaces that are not contained in N . We have listed
only one graph among graphs which are topologically isomorphic, like D1 and D2 in
Figure 3.9.

D1 D2

Figure 3.9.

[I] H(1): The diagram in Figure 3.10.

Figure 3.10. H(1).

[II] H(2): The ones in Figures 3.11 and 3.12.
[III] H(3): The ones in Figures 3.13 and 3.14.
[IV] H(4): The ones in Figures 3.15, 3.16, 3.17 and 3.18.
[V] H(5): The ones in Figures 3.19, 3.20, 3.21, 3.22 and 3.23.
[VI] H(6): The ones in Figures 3.24 and 3.25.
[VII] H(7): The one in Figure 3.26.
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Figure 3.11. H(2).
Figure 3.12. H(2).

Figure 3.13. H(3).
Figure 3.14. H(3).

Figure 3.15. H(4). Figure 3.16. H(4).

Figure 3.17. H(4) T2.

Figure 3.18. H(4).
Figure 3.19. H(5). Figure 3.20. H(5).

Figure 3.21. H(5). Figure 3.22. H(5). Figure 3.23. H(5) T3.
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Figure 3.24. H(6). Figure 3.25. H(6).

Figure 3.26. H(7).

Remark 3.7. The leading positive-α LN surfaces associated with Figures 3.15
and 3.19 might be regarded to be contained in N , because all the internal lines are
parallel, but we keep them in this list in view of our definition of N , which is given in
terms of the conditions on external lines.

Remark 3.8. The diagram in Figure 3.24 is the same as that of Figure 3.6 in
Remark 3.5. The leading positive-α LN surfaces for diagrams in Figures 3.20, 3.22,
3.25 and 3.26 can be found also with the help of the ice-cream cone diagram in Figure
3.7.

Remark 3.9. All diagrams listed in Remark 3.6 play important roles in our sub-
sequent reasoning. Although some of them (e.g., those mentioned in Remark 3.8) are
of higher codimension, they are all intersections of real hypersurfaces, as we will see
later. We also note that, with the understanding in Remark 3.7, we first find in H(6)
a hooked 3-lines diagram whose leading positive-α LN surface is contained in N , like
Figures 3.27, 3.28, 3.29 and so on.

Figure 3.27. Figure 3.28. Figure 3.29.

Needless to say, T4 is among them, as we have seen in Theorem 3.1.
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In Section 4 we further need the following.

Theorem 3.10. For h in $H(q) (q ≥ 4) we find

(3.26) L⊕(h) ⊂ N.

Proof. In view of the definition of $H(q), we find that it suffices to confirm (3.26)

B

C

Dk

k

Figure 3.30.

A

B

C D

k

k

Figure 3.31.

for h in $H(4). Clearly we may assume without loss of generality that the leftmost
two hooks of h is $u. Since $ may be regarded as either u or d arbitrarily, $u2 is not
allowed by our convention. Hence h has the form $udu or $ud2; the leading positive-α
LN surface of $udu is described as L⊕(”the diagram in Figure 3.30”).

Then Lemma 3.2 implies that BC = BD = k, and hence by the closed loop
conditions we find that all the internal vectors are equal to k. Thus we find (3.26) for
h = $udu. For the leading positive-α LN surface of h = $ud2, the configuration is
given by L⊕(”the diagram in Figure 3.31”). Again by Lemma 3.2 we find that AC =
BC = k, and hence by the closed loop condition we find that all internal vectors are
equal to k. Thus we have confirmed (3.26) for h in $H(4), completing the proof of
Theorem 3.10.
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§ 4. Landau-Nakanishi surfaces near the 3 particle threshold (= 3PT )

The result in Section 3 give the impression that the exceptional set that [11] men-
tions is the set N near 3PT . However, a wider region might be needed in the context
of [11] p. 25, because we have so far discussed positive-α LN surfaces; as [3] p. 106
indicates, a positive-α LN surface, as an object in the real domain by its definition,
might contain singularities originating from complexified LN surfaces. For example, if
there were two real-valued real analytic function f(p) and g(p) such that there exists a
real point p0 in 3PT , but outside N , where

(4.1) f(p0) = g(p0) = 0,

and

(4.2) gradp f(p) and gradp g(p) are linearly independent at p0,

and if the complexification of the positive-α LN surface had components Ln (n =
1, 2, 3, . . . ) given by

(4.3) (f(p) +
√
−1ng(p))(f(p) −

√
−1ng(p)) = 0,

then such a point p0 should be included in the exceptional set in the sense of [11] p. 25.
Although non-existence of such points in the leading positive-α LN surfaces follow from
the strong asymptotic causality condition ([1], [7]) we want to confirm this directly and,
more important, in a domain ”slightly” outside physical region. For this purpose we
want to study concretely ∪hL+(h) near 3PT , but outside N , where h ranges over
∪qH(q). The subtlety of the notion of the complexification in this context is explained
in Appendix A.

Thus our first task is to list up all positive-α LN surfaces associated with hooked
3-lines diagrams that may have some intersections with 3PT outside N . We will then
study their geometric characters in detail in Section 5. Here we note that it is not
in general enough to employ the complex Landau-Nakanishi equations to describe the
characteristic variety of the holonomic system that the Feynman function in question
satisfies. To be more precise, Landau-Nakanishi equations are not adequate to describe
the cotangential component of the characteristic variety in consideration except for
rather restricted cases. (Cf. [9], [11].) Hence in this paper and the subsequent one ([6])
we first consider positive-α LN surfaces and their local complexification, and we then
try to dominate the characteristic variety by the union of the closure of the conormal
set of each stratum of the stratification of the locally complexified LN surfaces. The
discussion in what follows is designed to be the first step toward this program.

To begin with we show the following.



16 Naofumi Honda, Takahiro Kawai and Henry P. Stapp

Proposition 4.1. Positive-α LN surfaces associated with ∪q
$H(q) that may

intersect with 3PT outside N are given by some of the following diagrams (a) ∼ (e)
below if we list up only one among isomorphic ones such as diagrams in Figures 4.1 and
4.2.

Figure 4.1. Figure 4.2.

(a)

(b)

(c)

(d)

(e)

Figure 4.3.

Proof. As $H(1) contains only the diagram in Figure 4.4, we study elements in

Figure 4.4.

$H(q) with q ≥ 2. We choose $u in $H(2), which is isomorphic to another element $d
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in $H(2). The positive-α LN surface associated with $u is a two particle threshold
given by (b), and it is not our main concern. But it still intersect with 3PT , and
it plays an important role in making our subsequent induction run smoothly. As a
representative element of $H(3), we can choose without loss of generality the so-called

Figure 4.5.

Figure 4.6.

ice-cream cone diagram in Figure 4.5, whose positive-α LN surface (i.e., the union of
LN surfaces associated with some contraction of the ice-cream cone diagram) contains
the diagram in Figure 4.6. For h in $H(4) we know by Theorem 3.10 that

(4.4) L⊕(h) ⊂ N,

and hence we have to contract some internal lines of h to find positive-α LN surfaces
which are not contained in N . We may assume without loss of generality that h in
$H(4) to be studied has the form in Figure 4.7 or Figure 4.8.

A

B

C

D

Figure 4.7.

A

B

C D

Figure 4.8.

Let us first consider the case in Figure 4.7. Then we can readily confirm that the
contractions of the diagram in Figure 4.7 result in

• the diagram in Figure 4.9 through the contraction of AB,

• the one in Figure 4.10 through the contraction of BC,

• the one in Figure 4.11 through the contraction of AC,

• the one in Figure 4.12 through the contraction of BD,
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Figure 4.9.
Figure 4.10.

Figure 4.11.
Figure 4.12. Figure 4.13.

• or the one in Figure 4.13 through the contraction of CD.

Here we note that the contraction of AC (resp. BD) forces the contraction of
4ABC (resp. 4BCD) because of the orientation of relevant segments. We also note
that we regard both-ends-pitted elements such as Figure 4.13 to be equivalent to Figure
4.12, as we are concerned with the geometric aspect of the problem.

Figure 4.14. Figure 4.15.
Figure 4.16. Figure 4.17.

Next we consider the case in Figure 4.8. Then we find that its contractions result
in

• the diagram in Figure 4.14 through the contraction of AB,

• the one in Figure 4.15 through the contraction of BC,

• the one in Figure 4.16 through the contraction of AC (and hence that of 4ABC),

• or the one in Figure 4.17 through the contraction of CD.

Thus we have found (a) ∼ (d); the remaining one (e) found by examining h is in
$H(5).
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A

B

C

Figure 4.18.

A B

C

Figure 4.19. Figure 4.20.

We may assume the left-most 3 hooks of h to be studied has the form in Figure
4.18. Then by contracting AB, we find an element in $H(4), whereas the contraction
of BC results in a diagram in which Figure 4.19 is hinged at its right-end with another
element g in $H(3); actually if the starting h in $H(5) is the diagram in Figure 4.20,
the diagram g is the ice-cream cone diagram. Thus we find (e).

By examining other elements in $H(5) whose left-most 3 hooks are $ud, namely,
$udu2 and $ud2u, we find the diagrams (a) ∼ (e) cover all the cases.

For h in $H(q) (q ≥ 6), we know

(4.5) L⊕(h) ⊂ N,

and hence we should contract some internal lines of h to find a positive-α LN surface
outside N . If the contraction is made in the ice-cream cone diagram located in the
left-most part of h, the same reasoning as that used for Figure 4.20 yields some h̃ in
$H(q′) (q′ ≤ q − 1) or the diagram in Figure 4.21 hinged with some g in $H(q − 2)

Figure 4.21. Figure 4.22.

from the right since we regard the diagram in Figure 4.22 to be the same as the one in
Figure 4.21 in this paper, the resulting diagram is given by one of (a) ∼ (e). If the
contraction is made in other parts, we find a both-ends-pitted diagram hinged with g̃

in $H(q′) (q′ ≤ q − 2) from right; since the both-sides-pitted part is regarded to be
equivalent to Figure 4.21, the resulting diagram is again given by one of (a) ∼ (e).
This completes the proof of the proposition.

Completely in parallel with Proposition 4.1 we find

Proposition 4.2. Positive-α LN surfaces associated with ∪qH
$(q) that may

intersect with 3PT outside N are given by some of the following diagrams (a′) ∼ (e′)
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given below, if we list only one among isomorphic ones such as Figure 4.23 and Figure
4.24.

Figure 4.23. Figure 4.24.

(a
′
)

(b
′
)

(c
′
)

(d
′
)

(e
′
)

Figure 4.25.

To summarize our results in Theorem 4.6 below we prepare the following definitions.

Definition 4.3. If a hooked 3-lines diagram h has the form

(4.6) g · g′

where g (resp. g′) is in H$(q) (resp. $H(q′)) and g · g′ means they are hinged at the
rightmost (resp. leftmost) pit of g (resp. g′), then we say h is a pinned 3-lines diagram,
and the totality of pinned 3-lines diagrams is denoted by ℘.

Remark 4.4. A typical example of a pinned 3-lines diagram is the one in Figure
4.26 which appears as the contraction of the middle slant u2d2 of T4 given in Figure
4.27.
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Figure 4.26.

u2

d2

Figure 4.27.

Definition 4.5. Let L denote

(4.7) ∪h∈BL+(h),

where B denotes the following set:

(4.8)
(∪q≤5H(q))

∪
(∪q≤3($H(q) ∪ H$(q)))

∪
{h ∈ ℘ with h = g · g′, where g ∈ ∪q≤3H

$(q) and g′ ∈ ∪q≤3
$H(q) } .

With these terminologies we find

Theorem 4.6. For any h in H(q) (q ≥ 6) its positive-α LN surface L+(h) is
contained in L outside N .

Proof. Let us first consider the case when h is in H(6). Then we find the following
two diagrams h(1) in Figure 4.28 and h(2) in Figure 4.29 are the elements in H(6) whose
leading positive-α LN surfaces are not contained in N . (Cf. Remark 3.6 [VI].) As is
noted in Remark 3.8, their leading positive-α LN surfaces are realized respectively as
configurations in Figures 4.30 and Figures 4.31.

A B

C

D E

Figure 4.28. h(1). Figure 4.29. h(2).
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A B

C

D E

F

Figure 4.30.

Figure 4.31.

Let us first consider the case in Figure 4.30. In this case AB, BC, CD and DE

are all parallel. Hence, by keeping all vectors (p, k) intact, we can slide the vertices B

and D so that either of them may coincide with C; thus we find

(4.9) L⊕(h(1)) ⊂ L⊕(h(3)) ∩ L⊕(h(4)),

where h(3) and h(4) are in Figures 4.32 and 4.33 respectively.

A
B, C

D E

Figure 4.32. h(3).

A B C

D E

Figure 4.33. h(4).

Since we are concerned only with the location of singularities, ignoring the problem
related to the multiplicity, we find L⊕(h(3)) and L⊕(h(4)) coincide; they are described
by the pinned diagram (b′) · (c). If we want to consider the positive-α LN surface
determined by some contraction of h(1), it is almost evident that it should be handled
by some hooked 3-lines, possibly pitted or pinned, with q hooks with q ≤ 5. To stand on
the safer side, let us described the procedure concretely. We hope the argument below
may help the reader to understand logical structure of our reasoning.
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If the contraction is performed at a bead, then the resulting diagram belongs to
H(5). Hence its positive-α LN surface is contained in L. If we contract a slant (i.e., ud

or du) a pit appears and hence the contracted diagram either belongs to H$(5) or has
the pinned form

(4.10) g · g′

where g (resp. g′) is in H$(`) (resp. $H(r)) with ` + r ≤ 6 (`, r ≥ 1). (In general, it
may belong to $H(5), but in the case of h(1) this cannot be observed. We encounter
some element in $H(5) in the same reasoning applied to h(2).) Parenthetically we
note that, because of the orientation of the diagram in question, contraction of internal
lines which are neither slants nor beads forces some slant automatically contracted; for
example if BD in h(1) is contracted, then the triangle 4BCD is contracted out.

Let us return to (4.10); if ` (resp. r) is equal to or bigger than 4, then we further
contract internal lines of g (resp. g′) to find a positive-α LN surface outside N . Thus
we eventually find

(4.11) `, r ≤ 3

in (4.10). Thus we have confirmed that the positive-α LN surface determined by h(1)
(including its contractions) is contained in L.

The above reasoning for h(1) is equally applicable to h(2); this time the counterpart
of (4.9) is

(4.12) L⊕(h(2)) ⊂ L⊕(h(5)),

where h(5) denotes the hinged ice-cream cone diagrams given by Figure 4.26. Then the
rest of the reasoning in dealing with the contracted diagrams is exactly the same as in
the case of h(1).

It is now clear how to argue for h in H(6) which is different from h(1) or h(2). For
such h we know

(4.13) L⊕(h) ⊂ N

and hence we are to contract some of its internal lines. Then the argument is exactly the
same as in handling the contracted diagrams of h(1). Thus we have confirmed Theorem
4.6 for h in H(6).

The above reasoning equally applies to H(7); the only element in H(7) whose
leading positive-α LN surface is not contained in N is

(4.14) h(6) = ud2ud2u,

and L⊕(h(6)) is realized by the following configuration in Figure 4.34 where AB, BC,
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A B

C

D E

Figure 4.34.

BD, CD and DE are all parallel. As in the case of h(1), we then find

(4.15) L⊕(h(6)) ⊂ L⊕(h(5));

thus the geometric result is the same for h(2), and the reasoning for handling the
contraction goes equally well as in the case of h(1), since our understanding of LN

surfaces for h in H(6) has already been completed. It is clear that the treatment of
other elements in H(7) can be done in a similar manner.

Since

(4.16) L⊕(h) ⊂ N

holds for any h in H(q) (q ≥ 8), we can confirm by the induction on q that L+(h) is
contained in L for any h in H(q) (q ≥ 8). This completes the proof of Theorem 4.6.
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§ 5. Concrete description of Landau-Nakanishi surfaces of some basic
diagrams in ∪H(q)

In view of Theorem 4.6 we now want to study the concrete shape of the positive-α
LN surfaces associated with a (possibly pitted or pinned) hooked 3-lines diagrams in B,
so that we may confirm that they do not contain, at least near 3PT , any pathological
singularities such as acnodes; as we will show in Appendix A there are some delicate
issues relevant to acnodes and cusps from the theoretical viewpoint. As this paper is
designed to be the first step in the better understanding of [11], we content ourselves
here in concretely describing the LN surfaces associated with some basic diagrams in
B with the help of a computer. Here we note that we use a computer so that it may
draw a figure using the exact formula. See Appendix A for example.

In our subsequent paper ([6]) we plan to make some more analytic (vs. geometric)
study of this issue from the view point of holonomic structure of Feynman integrals in
question.

[I] The first diagram we want to study is the ice-cream cone diagram IR:

Figure 5.1.

The leading real (i.e., not necessarily positive-α) LN surface L×(IR) is described in
[4] Figure 1. The surface presents the so-called Whitney’s umbrella, as shown below in
Figure 5.2. Here we observe a pinch point singularity at N− and a cusp (self-intersection
points) emanating from the pinch point. An important point is that, outside N−, the
cusp does not appear in the positive-α LN surface L+(IR). Thus its “slice” outside N−

takes the form in Figure 5.3, where the dotted part designates the slice of non-positive-α
part of L×(IR); the curved segment C2C3 shrinks as we let the slice approach to N−,
and eventually at N− they coincide with N−. Thus we do not observe any pathologies
near C3 outside N−.
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2

2.05

2.1

2.15

2.2

2.25 2.533.544.5

-4

-2

0

2

4

6

8

10

Self intersection (cusps)

Pinch point

Figure 5.2. The shapes of L×(IR) and L⊕(IR) are the almost same as those of T1. See
Figures A.2 and A.3 in Appendix A also.

2PT

3PT

Figure 5.3.



On the geometric aspect of Sato’s postulates on the S-matrix 27

[II] The second example we study is T2, which is the same as the so-called crossed
square diagram given by Figure 5.4.

A

B

C

D

Figure 5.4.

Assuming that we consider its leading real LN surface outside N , it takes the form
in Figure 5.5.

2

2.002

2.004

2.006

2.008

2.01

1.05
1.1

1.15
1.2

1.25
1.3

1.35

1

1.01

1.02

1.03

1.04

1.05

1.06

3 pinch points

Figure 5.5. L×(T2) viewed in the far
distance.

2

2.002

2.004

2.006

2.008

2.01

2.012

2.014

1.35

1.4

1.45

1.5

1.55

1.6

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

a:Pinch pont

b

cd

e

Intersecton

Figure 5.6. The positive-α parts of L×(T2)
are 4abc and 4ade on the surface.

We observe 3 pinch points and several cusps passing through the pinch points.
However, we can confirm that the cusps are not contained in the positive-α region. At
the same time we also find that at least 2 pinch points P1 and P3 are associated with
the positive-α Landau-Nakanishi diagram. (The pinch point P2 is a limiting point of
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a sequence of points in positive-α LN surface.) These 3 pinch points merge at N , but
more important is the following fact; the pinch point P1 is associated with the following
diagram D0 in Figure 5.7:

A

B

C

D

k

k

k

q1

q2

Figure 5.7. The diagram D0.

Ã D

C

p5

p6

p4

q1

q2

k

k

Figure 5.8.

In order to confirm that L⊕(D0) can be realized in the above form, we argue as
follows: first we consider L⊕(”the diagram in Figure 5.8”) which has the form

(5.1) {p; ϕ(pC , pD) = 0, where pC = p5 + p6}.

Then (q1, q2, k) is determined by pc and pD, as u-vectors in the LN equations are
described in this case by grad(pC ,pD) ϕ. Using (q1, q2, k), we realize the configuration D0

in Figure 5.9 by choosing the triangle 4BCD to be the same as 4ÃCD, uB −uA = αk

A

B

C

D

q1

q2

k

k k

Figure 5.9. The configuration D0.

for an arbitrary positive number α and (pA, pB) = (2k, q1). This construction of the
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diagram D0 shows

(5.2) L⊕(D0) ⊂ {ϕ(pC , pD) = 0} ∩ {pA = 2k}.

Thus we find

(5.3) codim L⊕(D0) = 3.

Needless to say, we have

(5.4) p2
A = 4m2,

and hence

(5.5) L⊕(D0) ⊂ {ϕ(pC , pD) = 0} ∩ {p2
A = 4m2}.

In view of this geometry, we feel it worth noting its resemblance to, and at the same
time, its difference from Figure 5.10. (Cf. Remark 3.8; this configuration appears,
when we delete the leftmost bead in Figure 3.6 to simplify the logical structure of the
discussion below.) In diagram D1, we use the flexibility of the vertex F so that we may

A

B

F D

C

D1 = udu
2
d :

Figure 5.10. D1 = udu2d.

D2 :

A B

D

C

Figure 5.11. D2.

reach the configuration D2 in Figure 5.11 with keeping the external vectors (and hence
the internal vectors also) intact. Although

(5.6) L⊕(D2) ⊂ {ϕ(pC , pD) = 0} ∩ {p2
A = 4m2},

we cannot reach D2 by changing the Landau constants α`’s in D0. This difference
of D0 and D1 indicates the difference of holonomic structure of FT2 and Fh (h =
udu2d). Actually, as we will see in [6], FT2 satisfies a simple holonomic microdifferential
equations, whereas the multiplicity of the holonomic system that Fh satisfies is bigger
than 1.
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As the principal purpose of this paper is to clarify the geometric situation of the
intersection of 3PT and the positive-α LN surfaces associated with hooked 3-lines
diagrams, and as the pinch point in question is away from 3PT outside N , we had better
stop our discussion around here concerning the problems relevant to the pinch points.
But we cannot resist the temptation to raise, at least, the following question: through
the contraction of CD in Figure 5.9 we encounter an ice-cream cone diagram, and hence
we expect L⊕(T2) and L⊕(”the diagram in Figure 5.12”) touch near the pinch point in

Figure 5.12. The ice-cream cone diagram.

question. This is really the case as show in Figure 5.13 below.

2

2.002

2.004

2.006

2.008

2.01

2.012

2.014

1.35

1.4

1.45

1.5

1.55

1.6

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

Ice-cream cone

The leading surface 

Pinch pont

Figure 5.13.

On the other hand, FT2(p), the Feynman integral associated with T2 is well-defined
near the intersection of the closure of L⊕(T2) and L⊕(”the diagram in Figure 5.12”) as
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a microfunction. (Cf. [11], [9].)

Now, is it possible to write it more explicitly without using the integration proce-
dure?

Remark 5.1. In conjunction with the above problem in microlocal analysis, we
note that it seems not to be appropriate to mention ([8] p. 115) FT2 as an possible
example of applications of general theory of simple holonomic systems with non-singular
characteristic variety; in fact the cusps observed in Figure 5.5 seem to be wilder than
that expected in [8] p. 116. We plan to discuss this point in more detail in our future
work.

To end this item concerning T2, we show how the closure of L⊕(T2) intersects
with 3PT ; as is expected outside N it cleanly intersect with 3PT along a submanifold
of codimension 2 in the closure of L⊕(T2); the intersection is realized through the
contraction of AB and DC in Figure 5.4. See the concrete figure shown in Figure 5.14.

1.95

1.96

1.97

1.98

1.99

2

2.01

2.02

2.03

2.04

2.05 1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1 3PT

The leading surface

Figure 5.14.
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[III] Finally let us study T3. Although L×(T3) presents several interesting features, we
concentrate our attention on its behavior near 3PT . As some of the figures below are
too complicated to grasp their details, we present in [5] some colored figures which may
help the understanding of the reader.

Concerning the geometric feature of the leading LN surface L×(T3), the most
remarkable one is the existence of codimension 2 component in L×(T3) (actually in
L⊕(T3) as we see below). See also [4].

The relevance of the codimension 2 component and the codimension 1 component
of L×(T3) is seen in Figure 5.15 below. Here we show the figure away from N . See
Appendix B and [5] for the figure near N .

2
2.005

2.01
2.015

2.02
2.025

2.03
1.21.31.41.51.61.71.8

1.9

1.95

2

2.05

codimension 1 component

codimension 2 component

pinch points

Figure 5.15.
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D0 :

A

B

C

D

E

Figure 5.16. D0.

As is observed in [4], the codimension 2 component is given by the following con-
figuration D0 in Figure 5.16. The flexibility of the vertex C indicates that

(5.7) L⊕(D0) ⊂ L⊕(IL) ∩ L⊕(IR)

should hold, where IL is in Figure 5.17 and IR is in Figure 5.18, and we can validate

IL :

Figure 5.17. IL.

IR :

Figure 5.18. IR.

(5.7) by the actual computation as shown in Figure 5.19.
Furthermore Figure 5.20 below shows how L⊕(T3), L⊕(IL), L⊕(IR) and 3PT are

located outside N . We note that the cusps in L×(T3) do not appear in L⊕(T3). We
also note, just in parallel with the case of [L⊕(T2)], that [L⊕(T3)] touches 3PT along
a submanifold of 3PT with codimension 2, which corresponds to the simultaneous con-
traction of AB and DE. The intersection of [L⊕(T3)] and 3PT that corresponds to the
contraction of the pair (BC, DE) or the pair (AB, CD) is not covered in Figure 5.20.
The shape of L×(T3) and its relevance to 3PT are visualized in Appendix B and [5].
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Figure 5.19.
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Figure 5.20.
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§ 6. Future problems and concluding remarks

The obvious problem that remains to be done is to extend the results in this paper
to the situation where the space-time dimension ν is 4. At this point we only point
out that we need to study hooked 3-twine diagrams instead of hooked 3-lines diagram;
it will remove the somewhat artificial impression on the definition of a hooked 3-lines
where the middle line plays a special role; study of hooked 3-twine diagrams will enable
us to study diagrams of the form in Figure 6.1 for example.

Figure 6.1.

Such an extension is certainly important and interesting, still we think we had
better first deepen our analysis in the 2-dimensional case. The reason is as follows:
since we are primarily concerned with the finiteness problem near 3PT , we have not fully
discussed in this article the geometrically interesting problem related to pinch points
and cusps. At the same time, cusps appear in mixed-α (i.e., not necessarily positive-α)
LN surfaces and they play important roles in studying the bubble diagram functions,
a basic objects in analytic S-matrix theory. (See [9], [10] and references cited therein.)
Furthermore our experience strongly indicates that better understanding of cusps should
be important in analyzing the holonomic structure of Feynman integrals and the S-
matrix. We also believe that some systematic understanding of pinch points and acnodes
should be mathematically important and charming problem. The background of this
belief is explained in Appendix A. Although the result there is, from the mathematical
viewpoint, an elementary one, we believe no explanation of the origin of acnodes has
ever been given at least in the literature of the S-matrix theory. Thus we see so many
important and intriguing geometric problems remain in the study of LN surfaces even
when the space-time dimension is 2. Further, the study of holonomic structure of
Feynman integrals and the S-matrix has not yet been begun in this paper. We hope
our geometric study in this paper will become a nice starting point of such analysis.

In this context we note that the study of holonomic systems with higher multi-
plicities is particularly important in rectifying Sato’s postulates, which assume that
relevant holonomic systems are simple ([11]). The estimation of the multiplicities of
holonomic systems involved would lead to some tameness, other than holonomicity, of
the singularity structure of the S-matrix even near m-particle threshold (m ≥ 3) if we
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could appropriately combine the result with the Borel summability of the perturba-
tion series expansion of the S-matrix in the coupling constant. At this point we dare
say also that it should be an interesting problem to study the Borel summability, or
even the Borel transformability, of the perturbation series expansion of the S-matrix in
energy-momentum space.

In ending this paper, we emphasize that the study of holonomic structure of indi-
vidual Feynman integrals near N is an important problem, although our study in this
paper is basically concerned with the points away from N . Concerning this point, we
refer the reader to Appendix B where the concrete figure of L×(T3) near N is shown,
together with L×(IL) and L×(IR).
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§ Appendix A. Geometric study of L×(T1)

The purpose of this appendix is twofold; first we want to show concretely how to
visualize the leading LN surface L×(T1) with the help of a computer. The techniques
shown below are equally applicable to the study L×(T2) etc. given in Section 5. Sec-
ond we clarify why some complex singularities creep into the study of the singularity
structure of Feynman integrals despite the fact that such singularities seem not to be
anticipated from their behavior on the physical region. (Cf. [3] p. 106.) Although
L×(T1) is basically irrelevant to 3PT , its simplicity helps the reader to understand the
core of the discussions in Section 5. Having these in mind, we include some elementary
expositions here.

T1 :

p1

p3

p2k1

k2 k3

Figure A.1.

Our target is the diagram in Figure A.1 where all internal lines are attached with
equal mass m = 1. In view of the over-all energy-momentum conservation law, the
(leading) LN surface L×(T1) of T1 is drawn in R2

p1
× R2

p2
. We further employ the

coordinate transformation of R2
(p̃1,p̃2)

to R2
(x̃1,x̃2)

given by

(A.1) x̃1 = p̃0 + p̃1, x̃2 = p̃0 − p̃1.

Thus the Minkowsky metric on R2
(x̃1,x̃2)

is given by

(A.2) x̃1x̃2.

We may assume without loss of generality that

(A.3) p1 = (p, 0) with p > 0.

Hence L×(T1) is described by 3 real variables (x, y, z) which satisfy

(A.4) p1 = (x, x), p2 = (y, z).

Since we are considering the problem in the 2-dimensional situation, the closed loop
condition is satisfied for any triplet (k1, k2, k3), if we set aside the positivity assumption
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on the Landau constants α`’s. Hence in view of the Minkowsky metric (A.2), we find
that L×(T1) is described by the following relations with positive parameters (s, t):

(A.5) x = s + s−1,

(A.6) y = s + t,

(A.7) z = s−1 + t−1,

if we choose

(A.8) k1 = (s, s−1), k2 = (s−1, s), k3 = (t, t−1).

Then the computation (with a computer) gives us the following figure (Figure A.2).
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4.5

5

Pinch point

Figure A.2.

Furthermore the closed loop condition with positive α`’s is met, barring the case
where two k`’s (and hence all k`’s under the closed loop condition) are equal, if

(A.9) s−1 < s < t, i.e., 1 < s < t

or

(A.10) t < s < s−1, i.e., 0 < t < s < 1.
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Here we have compared the first component of k`’s, having in mind their Minkowsky
lengths are equal. Thus we find L⊕(T1) in the following Figure A.3.
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Figure A.3.

Thus there are no singular points in L⊕(T1) except for the pinch point; the pint
point corresponds to the following configuration in Figure A.4, where p3 = 0 and all
k`’s are equal.

p1 p2

Figure A.4.

The cusp (i.e., self-intersection points) in L×(T1) is outside L⊕(T1). Thus, outside
N , we do not observe any pathologies in L⊕(T1). At the same time Figure A.2 indicates
that L×(T1) should be isomorphic to the so-called Whitney’s umbrella W given by

(A.11) X2 = ZY 2, Z ≥ 0.

It is really the case, and hence the “complexification” of L×(T1) requires some attention.
Actually the complexification of some portion of Whitney’s umbrella may be interpreted
in either one of the following two interpretations:
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(i) If we want to complexify W locally outside its pinch point (i.e., X=Y=Z= 0), i.e., if
we consider a small complex neighborhood of w0 (6= 0) in W , then it suffices to extend
W in the neighborhood; in this case, for example, the points where X2 = ZY 2 with
Z < 0 are irrelevant to the complexification if the neighborhood is sufficiently small.
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Figure A.5.

(ii) If we want to regard W as a complex variety defined globally, the points where
X2 = ZY 2 with Z < 0 are automatically contained in the complexification. Thus, if we
use polynomials to define LN surfaces, as physicists usually do, then it means that we
employ the standpoint (ii). Actually the cubic equation that Eden et al. use to describe
L×(T1) (cf. [3] p. 62; (2.3.17)) assumes the following form in our variables (x, y, z):

(A.12) (y − x)(z − x)yz + (z − y)2 = 0.

Then the extra component {x = y = z} appears in the real domain as is shown in
Figure A.5. The appearance of this codimension 2 component in the real domain is a
prototype of the acnodes in L×(T2) that was studied in detail in [3] and the references
cited there, in conjunction with the Mandelstam representation.
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§ Appendix B. Geometric study of L×(T3) near N

As we concentrate our attention on the geometric study of LN surfaces outside N in
Section 5, we present here some instructive figures near N with some simple comments.
The details will be discussed in [6]. We refer the reader to see [5] where some colored
figures are shown.

First we show the following figure (Figure B.1) that shows the shape of L×(T3)
near N .
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Figure B.1. The surface forms a double covering over a cone.

The following figure (Figure B.2) shows how [L×(T3)] touches with 3PT . This
makes a clear contrast to Figure 5.20.

In order to show how special the set N is we present Figure B.3 below, although
it might be too complicated to decipher. We call the attention of the reader to the fact
that [L×(T3)], [L×(IL)], [L×(IR)] all meet at N . Thus the set N is seen to be important
in studying the holonomic structure of the individual Feynman integral, say FT3 . We
plan to discuss this point in more detail in [6].
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