$\operatorname{RIMS-1814}$

Indecomposability of Anabelian Profinite Groups

By

Arata MINAMIDE

January 2015

京都大学 数理解析研究所

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES KYOTO UNIVERSITY, Kyoto, Japan

INDECOMPOSABILITY OF ANABELIAN PROFINITE GROUPS

ARATA MINAMIDE

ABSTRACT. Classically, it is well-known that various **anabelian profinite groups**, i.e., profinite groups which appear in *anabelian geometry*, are **center-free**. In this paper, we study the **indecomposability** which is also a group-theoretic property of profinite groups — of various **anabelian profinite groups**. For instance, we prove that the étale fundamental group of the configuration space of a hyperbolic curve over either a p-adic local field or a number field, as well as the étale fundamental group of an affine smooth curve over an algebraically closed field of positive characteristic, are **indecomposable**. Finally, we consider the topic of indecomposability in the context of the theory of combinatorial anabelian geometry and pose the question: Is the **Grothendieck-Teichmüller group** GT indecomposable? We give an affirmative answer to a pro-l version of this question.

Contents

Intr	Introduction	
0.	Notations and Conventions	4
1.	Indecomposability of Absolute Galois Groups	6
2.	Indecomposability of Geometric Fundamental Groups of Curves	9
3.	Indecomposability of Various Fundamental Groups	12
4.	Alternative Proof of the Indecomposability of the ${\rm Pro-}l$ Absolute	
	Galois Group of a Number Field	17
5.	Indecomposability of the Pro- <i>l</i> Grothendieck-Teichmüller Group	22
Ref	References	

INTRODUCTION

Classically, it is well-known that various **anabelian profinite groups**, i.e., profinite groups which appear in *anabelian geometry*, are **center-free**. For instance,

- the absolute Galois group of a *sub-p-adic field* [i.e., a field which is isomorphic to a subfield of a finitely generated extension field of \mathbb{Q}_p] is *center-free* [cf. [16], Lemma 15.8]
- the étale fundamental group of a hyperbolic curve over an algebraically closed field is center-free [cf., e.g., Proposition 2.4].

2010 Mathematics Subject Classification. Primary 14H30; Secondary 11R99.

In this paper, we study the **indecomposability** of various *anabelian profinite groups*. The term *indecomposability* is defined as follows [cf. Definition 1.1]:

We shall say that a profinite group G is *indecomposable* if, for any isomorphism of profinite groups $G \cong G_1 \times G_2$, where G_1, G_2 are profinite groups, it follows that either G_1 or G_2 is the trivial group.

For instance, in the case of *absolute Galois groups*, the following fact is known [cf. Theorem 1.2]:

Fact. Let k be a Hilbertian field [cf. [FJ], Chapter 12]. Then the absolute Galois group G_k of k is indecomposable.

In particular, the absolute Galois group of

- (i) a finitely generated extension field of \mathbb{Q}
- (ii) a finitely generated transcendental extension field of \mathbb{Q}_p
- (iii) a finitely generated transcendental extension field of \mathbb{F}_p

is indecomposable [cf. Corollary 1.4]. Here, we note that any *p*-adic local field [i.e., a finite extension field of \mathbb{Q}_p] is non-Hilbertian [cf. Remark 1.3]. But we can prove that for any *p*-adic local field k, the absolute Galois group G_k of k is also indecomposable [cf. Proposition 1.6]. On the other hand, any finite field is also non-Hilbertian [cf. Remark 1.3], but its absolute Galois group $[\cong \widehat{\mathbb{Z}}]$ is clearly decomposable!

Now we consider the case of *étale fundamental groups of curves*. For a connected noetherian scheme (-), we shall write

 $\Pi_{(-)}$

for the étale fundamental group of (-) [for some choice of basepoint]. First, we prove the following theorem [cf. Theorems 2.1, 2.2] which concerns the case where the base field is *algebraically closed*.

Theorem A. Let k be an algebraically closed field; X a smooth curve of type (g,r) such that the pair (g,r) satisfies 2g - 2 + r > 0 (respectively, $(g,r) \neq (0,0), (1,0)$) if the characteristic of k is zero (respectively, positive). Then Π_X is indecomposable.

The characteristic zero case of Theorem A is shown in [22], Proposition 3.2.

Next, we consider the case that the base field is *non-algebraically closed*. Let k be a field of characteristic $p \ge 0$; $l \ne p$ a prime number. Then for the pair (k, l), we consider the following condition:

 $(*_k^l)$ For any finite extension field k' of k, the *l*-adic cyclotomic character $\chi_{k'}: G_{k'} \to \mathbb{Z}_l^{\times}$ of k' is nontrivial.

We shall say that k is *l*-cyclotomically full if the pair (k, l) satisfies the condition $(*_k^l)$ [cf. Definition 3.2].

 $\mathbf{2}$

Then we prove the following theorem [cf. Theorem 3.4]:

Theorem B. Let k be a field of characteristic $p \ge 0$ such that G_k is centerfree and indecomposable; X a smooth curve of type (g, r) over k such that the pair (g, r) satisfies 2g-2+r > 0 (respectively, $(g, r) \ne (0, 0)$, (1, 0)) if the characteristic of k is zero (respectively, positive). Suppose that there exists a prime number $l \ne p$ such that k is *l*-cyclotomically full. Then Π_X is indecomposable.

Next, in the case of *étale fundamental group of the configuration space of a hyperbolic curve*, we prove the following [cf. Theorem 3.5]:

Theorem C. Let n be a positive integer; k a field of characteristic zero such that G_k is center-free and indecomposable; X a hyperbolic curve over k; X_n the n-th configuration space associated to X. Suppose that either k is algebraically closed, or *l*-cyclotomically full for a prime number l. Then Π_{X_n} is indecomposable.

For instance, Theorems B and C imply the following corollary [cf. Corollary 3.8]:

Corollary D. Let n be a positive integer; k a field; X a smooth curve of type (g, r) over k such that the pair (g, r) satisfies 2g-2+r > 0 (respectively, $(g, r) \neq (0, 0), (1, 0)$) if the characteristic of k is zero (respectively, positive); X_n the n-th configuration space associated to X. Then the following hold:

- (i) If k is a finitely generated transcendental extension field of \mathbb{F}_p , then Π_X is indecomposable.
- (ii) If k is a finitely generated extension field of either \mathbb{Q} or \mathbb{Q}_p , then Π_{X_n} is indecomposable.

Moreover, Theorem C implies the following *purely geometric result* [cf. Theorem 3.11]:

Theorem E. Let n be a positive integer; k a field of characteristic zero; X a hyperbolic curve over k; X_n the n-th configuration space associated to X. Suppose that there exists an isomorphism of k-schemes

$$X_n \xrightarrow{\sim} Y \times_k Z$$

— where Y, Z are k-varieties [i.e., schemes that are of finite type, separated, and geometrically integral over k]. Then it follows that either

$$Y \cong \operatorname{Spec}(k)$$
 or $Z \cong \operatorname{Spec}(k)$.

Finally, we consider the *Grothendieck-Teichmüller group* GT [cf. Definition 5.1]. One fundamental problem in the theory of GT is the issue of whether or not the well-known *injection*

$$G_{\mathbb{O}} \hookrightarrow \mathrm{GT}$$

is, in fact, *bijective*. On the other hand, from the point of view of the theory of *combinatorial anabelian geometry* [cf., e.g., [20], [10], [11], [12]], it is more natural to consider the issue of whether or not

GT exhibits analogous behavior / properties to $G_{\mathbb{Q}}$

[cf. [12], Introduction]. From this point of view, it is natural to pose the question:

Is GT indecomposable?

[Note that $G_{\mathbb{Q}}$ is *indecomposable* [cf. the above **Fact**].] In this paper, we give an *affirmative answer* to a *pro-l version* of this question. More precisely, we prove the following result [cf. Theorem 5.4]:

Theorem F. Let l be a prime number. Then the pro-l Grothendieck-Teichmüller group GT_l [cf. Definition 5.1] is indecomposable.

The present paper is organized as follows: In §1, we review various properties of absolute Galois groups. Also, we prove a [profinite] group-theoretic result [cf. Proposition 1.8] which is needed in §3. In §2, we prove the *inde*composability of the geometric fundamental group of a smooth [hyperbolic] curve [cf. Theorem A]. In §3, by applying the results of §1 and §2, we prove Theorems B, C and Corollary D. Moreover, by combining Theorem C with Lemma 3.10, we conclude Theorem E. In §4, we first give an alternative proof [cf. Theorem 4.7] of the indecomposability of the maximal pro-l quotient of the absolute Galois group of a number field without using the theory of Hilbertian fields. We then proceed to prove the indecomposability of a certain almost pro-l group arising from the configuration space of a hyperbolic curve over either an l-adic local field or a number field [cf. Theorem 4.10, (vi)]. Finally, in §5, after reviewing the definitions of GT and GT_l, we verify Theorem F as a consequence of a certain anabelian result over finite fields [cf. [7], Remark 6, (iv)].

Acknowledgements:

I would like to thank Professors Shinichi Mochizuki and Yuichiro Hoshi for their suggestions, many helpful discussions, and warm encouragement.

0. NOTATIONS AND CONVENTIONS

In this paper, we follow the terminology and conventions of [22], §0, "Topological Groups", "Curves"; [22], Definition 2.1; [21], Definition 1.1, (ii), (iii).

Numbers:

The notation \mathbb{Q} will be used to denote the field of *rational numbers*. The notation $\mathbb{Z} \subseteq \mathbb{Q}$ will be used to denote the set, group, or ring of *rational integers*. The *profinite completion* of the group \mathbb{Z} will be denoted by $\widehat{\mathbb{Z}}$. If p is a *prime number*, then the notation \mathbb{Q}_p (respectively, \mathbb{Z}_p) will be used to denote the *p*-adic completion of \mathbb{Q} (respectively, \mathbb{Z}). The notation \mathbb{F}_p will be used to denote the *finite field* $\mathbb{Z}/p\mathbb{Z}$.

A finite extension field of \mathbb{Q} (respectively, \mathbb{Q}_p) will be referred to as a number field (respectively, *p*-adic local field).

Topological groups:

Let G be a Hausdorff topological group, and $H \subseteq G$ a closed subgroup. Let us write

$$Z_G(H) \stackrel{\text{def}}{=} \{ g \in G \mid g \cdot h = h \cdot g, \ \forall h \in H \}$$

for the centralizer of H in G. Note that $Z_G(H)$ is always closed in G. We shall write $Z(G) \stackrel{\text{def}}{=} Z_G(G)$ for the center of G.

We shall say that a profinite group G is *elastic* if it holds that every topologically finitely generated closed normal subgroup $N \subseteq H$ of an open subgroup $H \subseteq G$ of G is either trivial or of finite index in G. If G is elastic, but *not* topologically finitely generated, then we shall say that G is *very elastic*.

We shall say that a profinite group G is *slim* if for every open subgroup $H \subseteq G$, the centralizer $Z_G(H)$ is trivial. A profinite group G is slim if and only if every open subgroup of G has *trivial center* [cf. [17], Remark 0.1.3]. Note that every *finite closed normal subgroup* $N \subseteq G$ of a slim profinite group G is *trivial*. [Indeed, this follows by observing that for any normal open subgroup $H \subseteq G$ such that $N \cap H = \{1\}$, consideration of the inclusion $N \hookrightarrow G/H$ reveals that the conjugation action of H on N is *trivial*, i.e., that $N \subseteq Z_G(H) = \{1\}$.]

Let p be a prime number. Then we shall write $G^{(p)}$ for the maximal pro-p quotient of a profinite group G, i.e., the inverse limit of the finite quotients of p-power order of G. We shall refer to a quotient $G \twoheadrightarrow Q$ as almost pro-p-maximal if, for some normal open subgroup $N \subseteq G$, $\text{Ker}(G \twoheadrightarrow Q)$ coincides with the kernel of the natural surjection from N to the maximal pro-p quotient of N. If G admits an open subgroup which is pro-p, then we shall say that G is almost pro-p.

We shall write G^{ab} for the *abelianization* of a profinite group G, i.e., the quotient of G by the closure of the commutator subgroup of G. We shall denote the group of automorphisms of G by $\operatorname{Aut}(G)$. Conjugation by elements of G determines a homomorphism $G \to \operatorname{Aut}(G)$ whose image consists of the *inner automorphisms* of G. We shall denote by $\operatorname{Out}(G)$ the quotient of $\operatorname{Aut}(G)$ by the [normal] subgroup consisting of the inner automorphisms. If, moreover, G is *topologically finitely genertaed*, then one verifies easily that the topology of G admits a basis of *characteristic open subgroups*. Any such basis determines a *profinite topology* on the group $\operatorname{Aut}(G)$, $\operatorname{Out}(G)$.

Curves:

Let S be a scheme and X a scheme over S. If (g, r) is a pair of nonnegative integers, then we shall say that $X \to S$ is a *smooth curve of type* (g, r) over S if there exist an S-scheme \overline{X} which is smooth, proper, of relative dimension 1 with geometrically connected fibers of genus g, and a closed subscheme

 $D \subseteq \overline{X}$ which is finite étale of degree r over S such that the complement of D in \overline{X} is isomorphic to X over S.

We shall say that X is a hyperbolic curve over S if there exists a pair (g, r) of nonnegative integers with 2g - 2 + r > 0 such that X is a smooth curve of type (g, r) over S. A tripod is a hyperbolic curve of type (0, 3).

Let $X \to S$ be a smooth curve of type (g, r). For positive integers $i, j \leq n$ such that i < j, write

$$p_{i,j}: P_n \stackrel{\text{def}}{=} X \times_S \ldots \times_S X \to X \times_S X$$

for the projection of the product P_n of n copies of $X \to S$ to the *i*-th and *j*-th factors. Then we shall refer to as the *n*-th configuration space associated to $X \to S$ the S-scheme

$$X_n \to S$$

which is the open subscheme determined by the complement in P_n of the union of the various inverse images via the $p_{i,j}$ [as (i, j) ranges over the pairs of positive integers $\leq n$ such that i < j] of the image of the diagonal embedding $X \hookrightarrow X \times_S X$.

Write E for the set [of cardinality n] of factors of P_n . Let $E' \subseteq E$ be a subset of cardinality n'; $E'' \stackrel{\text{def}}{=} E \setminus E'$; $n'' \stackrel{\text{def}}{=} n - n'$. Then by "forgetting" the factors of E that belong to E', we obtain a natural projection morphism

$$X_n \to X_{n''}$$

In this situation, we shall refer to n' as the *length* of this projection morphism. One verifies immediately that a projection $X_n \to X_{n-1}$ of length 1 may be regarded as a *smooth curve of type* (g, r + n - 1) over X_{n-1} .

Fundamental groups:

Let X be a connected noetherian scheme. Then we shall write

 Π_X

for the *étale fundamental group* of X [for some choice of basepoint]. For any field k, we shall write

G_k

for the absolute Galois group of k [for some choice of embedding to a separable closure of k]. We note that $G_k \xrightarrow{\sim} \Pi_{\text{Spec}(k)}$.

1. INDECOMPOSABILITY OF ABSOLUTE GALOIS GROUPS

In this section, we review various properties of *absolute Galois groups*. Also, we prove a [profinite] group-theoretic result [cf. Proposition 1.8] which is needed in §3.

 $\mathbf{6}$

Definition 1.1. (cf. [22], Definition 3.1) We shall say that a profinite group G is *indecomposable* if, for any isomorphism of profinite groups $G \cong G_1 \times G_2$, where G_1, G_2 are profinite groups, it follows that either G_1 or G_2 is the trivial group. We shall say that G is *strongly indecomposable* if every open subgroup of G is indecomposable.

Theorem 1.2. Let k be a Hilbertian field [cf. [FJ], Chapter 12]. Then G_k is very elastic, slim, and strongly indecomposable.

Proof. The very elasticity portion of Theorem 1.2 follows from [4], Lemma 16.11.5; [4], Proposition 16.11.6. Note that for any open subgroup H of G_k , there exists a finite separable extension k_H of k such that $G_{k_H} \xrightarrow{\sim} H$. Here, by [4], Corollary 12.2.3, k_H is also a Hilbertian field. Thus, to verify the slimness and the strong indecomposability portions of Theorem 1.2, it suffices to show that G_k is center-free and indecomposable. But this center-freeness (respectively, indecomposability) follows from [4], Proposition 16.11.6 (respectively, the theorem of Haran-Jarden [cf. [4], Corollary 13.8.4]).

Remark 1.3. Let k be either a finite field or a p-adic local field. Then k is always non-Hilbertian. Indeed, G_k is topologically finitely generated [cf. Proposition 1.6, below; [4], Lemma 16.11.5].

Corollary 1.4. The following types of fields are **Hilbertian**:

(i) finitely generated extension fields of \mathbb{Q} ,

(ii) finitely generated transcendental extension fields of \mathbb{Q}_p ,

(iii) finitely generated transcendental extension fields of \mathbb{F}_p .

In particular, their absolute Galois groups are very elastic, slim, and strongly indecomposable.

Proof. The first statement follows from [4], Theorem 13.4.2. The last statement follows from the first, together with Theorem 1.2. \Box

Lemma 1.5. Let G be a profinite group. If G is elastic, slim, and topologically finitely generated, then G is strongly indecomposable.

Proof. First, we note that any open subgroup of G is also *elastic*, *slim*, and topologically finitely generated. Thus, to verify the assertion, it suffices to show that G is *indecomposable*. Suppose that we have an isomorphism of profinite groups $G \cong G_1 \times G_2$ such that $G_1 \neq \{1\}$. Then since G_1 is a *nontrivial topologically finitely generated closed normal subgroup* of G, [by the *elasticity* of G] G_1 is of finite index in G. In particular, G_1 is an open subgroup of G. Thus, by the slimness of G, we have $G_2 \subseteq Z_G(G_1) = \{1\}$. \Box

Proposition 1.6. Let k be a p-adic local field. Then G_k , as well as any almost pro-p-maximal quotient $G_k \rightarrow Q_k$ of G_k , is elastic, slim, and topologically finitely generated. In particular, G_k and Q_k are strongly indecomposable.

Proof. The assertions follow from Lemma 1.5; [21], Theorem 1.7, (ii); [23], Theorem 7.4.1. $\hfill \Box$

Lemma 1.7. Let G_1, \ldots, G_n be profinite groups, where $n \ge 1$ is an integer;

$$\phi: \Pi \stackrel{\text{def}}{=} \prod_{i=1}^{n} G_i \twoheadrightarrow Q$$

a surjection of profinite groups. Then there exist normal closed subgroups $H_i \subseteq G_i$ [for i = 1, ..., n], $N \subseteq Q$ such that $N \subseteq Z(Q)$, and the composite $\Pi \twoheadrightarrow Q/N$ of ϕ with the surjection $Q \twoheadrightarrow Q/N$ induces an isomorphism

$$\overline{\Pi} \stackrel{\text{def}}{=} \prod_{i=1}^{n} \overline{G}_i \stackrel{\sim}{\to} Q/N$$

— where we write $\overline{G}_i \stackrel{\text{def}}{=} G_i/H_i$. In particular, if Q is center-free and indecomposable, then we obtain an isomorphism $\overline{G}_i \xrightarrow{\sim} Q$ for some $i \in \{1, \ldots, n\}$.

Proof. This is the content of [22], Proposition 3.3.

Proposition 1.8. Let

 $1 \longrightarrow \Delta \longrightarrow \Pi \xrightarrow{p} G \longrightarrow 1$

be an exact sequence of profinite groups. Then the following hold:

(i) Suppose that Δ is indecomposable, and G is center-free and indecomposable. Then if the natural outer Galois representation

$$G \to \operatorname{Out}(\Delta)$$

associated to the above exact sequence is nontrivial, then Π is also indecomposable.

(ii) Suppose that Δ is nontrivial and center-free, and that G is nontrivial. Then if Π is indecomposable, then the natural outer Galois representation

$$G \to \operatorname{Out}(\Delta)$$

associated to the above exact sequence is **nontrivial**.

Proof. (i) Suppose that $\Pi = \Pi_1 \times \Pi_2$, where Π_1 , Π_2 are nontrivial closed normal subgroups of Π . Then since G is center-free, it follows from Lemma 1.7 that there exist normal closed subgroups $H_i \subseteq \Pi_i$ [for i = 1, 2] such that $\Pi_1/H_1 \times \Pi_2/H_2 \xrightarrow{\sim} G$. In particular, since G is indecomposable, we obtain that either $\Pi_1/H_1 = \{1\}$ or $\Pi_2/H_2 = \{1\}$. Without loss of generality, we may assume that $\Pi_1/H_1 = \{1\}$, so $\Pi_1 = H_1$, $\Pi_2/H_2 \xrightarrow{\sim} G$. Thus, we have $\Pi_1 \times H_2 \xrightarrow{\sim} \Delta$.

Now I claim that $H_2 \neq \{1\}$. Indeed, suppose that $H_2 = \{1\}$, so $\Pi_1 \xrightarrow{\sim} \Delta$, $\Pi_2 \xrightarrow{\sim} G$. Then the extension determined by the exact sequence that appears in the statement of Proposition 1.8 is isomorphic to the *trivial extension* of G by Δ

 $1 \ \longrightarrow \ \Delta \ \longrightarrow \ \Delta \times G \ \longrightarrow \ G \ \longrightarrow \ 1.$

Thus, the natural outer Galois representation $G \to \operatorname{Out}(\Delta)$ induced by the conjugation action of G on Δ factors through the *trivial morphism* $G \to \operatorname{Out}(\Delta)$. But this contradicts the assumption that the outer representation $G \to \operatorname{Out}(\Delta)$ is *nontrivial*. This completes the proof of the *claim*.

In light of the *claim*, by the *indecomposability* of Δ , we conclude that $\Pi_1 = \{1\}$, a contradiction. This completes the proof that Π is *indecomposable*.

(ii) Suppose that the representation $G \to \text{Out}(\Delta)$ is trivial. Note that both Δ and $Z_{\Pi}(\Delta)$ are normal closed subgroups of Π [cf. the discussion entitled "Topological groups" in §0]. Moreover, by the triviality of the representation $G \to \text{Out}(\Delta)$, it follows that Π is generated by Δ and $Z_{\Pi}(\Delta)$. Thus, since Δ is center-free, i.e., $\Delta \cap Z_{\Pi}(\Delta) = Z(\Delta) = \{1\}$, we obtain that $\Pi \cong \Delta \times Z_{\Pi}(\Delta)$. Here, we note that since $p(Z_{\Pi}(\Delta)) = G$ is nontrivial, we have $Z_{\Pi}(\Delta) \neq \{1\}$. Therefore, since Δ is nontrivial, we conclude that Π is not indecomposable, a contradiction. \Box

2. Indecomposability of Geometric Fundamental Groups of Curves

In this section, we prove the *indecomposability* of the *geometric fundamental group* of a smooth [hyperbolic] curve.

Theorem 2.1. Let k be an algebraically closed field of characteristic zero; X a hyperbolic curve over k. Then Π_X is elastic, slim, and topologically finitely generated. In particular, Π_X is strongly indecomposable.

Proof. The fact that Π_X is elastic (respectively, slim; topologically finitely generated) follows from [22], Theorem 1.5 (respectively, [22], Proposition 1.4; [26], EXPOSÉ XIII, Corollaire 2.12). In particular, the strong indecomposability of Π_X follows from Lemma 1.5 [cf. also [22], Proposition 3.2; [22], Remark 3.2.1].

Theorem 2.2. Let k be an algebraically closed field of characteristic p > 0; X a smooth curve of type (g,r) such that the pair (g,r) satisfies $(g,r) \neq (0,0), (1,0)$. Then $G \stackrel{\text{def}}{=} \Pi_X$ is strongly indecomposable.

Proof. First, we note that for any open subgroup H of G, there exists a connected finite étale covering $X_H \to X$ of X, where X_H is also a curve of $type \neq (0,0)$, (1,0) over k such that $\prod_{X_H} \xrightarrow{\sim} H$. Thus, to verify the assertion, it suffices to show that G is indecomposable. Suppose that we have an isomorphism of profinite groups $G \cong G_1 \times G_2$ such that $G_1 \neq \{1\}$, $G_2 \neq \{1\}$. In particular, by the slimness of G [cf. Proposition 2.4, below], it follows that G_1, G_2 are infinite [cf. §0].

Now I claim that

(*1) there exists an open subgroup U of G such that U is [isomorphic to] the fundamental group of a curve of genus ≥ 2 .

Indeed, this fact is elementary and well-known, but we give a short proof here for completeness. First, we consider the case where the genus of X is 0, i.e., the unique *smooth compactification* of X is \mathbb{P}^1_k . Here, note that if we identify the *function field* of \mathbb{P}^1_k with k(t), where t is an indeterminate, then for any Artin-Schreier equation

$$x^p - x = t^m \quad (m \in \mathbb{Z}_{>0}, \ p \nmid m),$$

one computes easily that the *normalization* of \mathbb{P}^1_k in the extension field $k(t)[x]/(x^p - x - t^m)$ of k(t) determines a finite ramified covering ϕ_m : $C_m \to \mathbb{P}^1_k$ of \mathbb{P}^1_k branched only at ∞ , where C_m is a smooth, proper curve of genus $\frac{(m-1)(p-1)}{2}$ [cf., e.g., [29], Example 8.16]. Thus, for any curve X of type (0, r), where r > 0, by taking m to be sufficiently large, we obtain a connected finite étale covering $X' \to X$ of X such that the genus of X' is ≥ 2 . Next, we consider the case where the genus of X is 1, i.e., the unique smooth compactification of X is an elliptic curve E. Note that by applying the Riemann-Roch Theorem to E, we obtain a finite morphism $E_1 \stackrel{\text{def}}{=} E \setminus \{p\} \to \mathbb{A}^1_k \text{ over } k, \text{ where } p \in E \setminus X \text{ is a closed point of } E. \text{ Next},$ let us observe that it follows from the genus 0 case, which has already been verified, that there exists a connected finite étale covering $C \to \mathbb{A}^1_k$ of \mathbb{A}^1_k such that the genus of C is ≥ 2 . Then any connected component of $E_1 \times_{\mathbb{A}^1_k} C$ determines a connected finite étale covering $C' \to E_1$ of E_1 . Moreover, by applying the Hurwitz formula to the compactification of the finite morphism $C' \hookrightarrow E_1 \times_{\mathbb{A}^1_h} C \to C$, it follows that the genus of C' is also ≥ 2 . Thus, for any curve X of type (1, r), where r > 0, we obtain a connected finite étale covering $X' \to X$ of X such that the genus of X' is ≥ 2 . This completes the proof of $(*_1)$.

In light of $(*_1)$ and the fact that G_1 , G_2 are *infinite*, we may assume, without loss of generality, that G is the fundamental group of a curve of genus ≥ 2 .

Next, I claim that

(*2) for every prime number $l \neq p$, there exist finite quotients $G_1 \twoheadrightarrow Q_1$, $G_2 \twoheadrightarrow Q_2$ such that l divides the order of Q_1, Q_2 .

Indeed, suppose that l does not divide the order of any finite quotient of G_1 . Now let $N_1 \subsetneq G_1$ be a proper normal open subgroup of G_1 . Note that by assumption, we have $N_1^{ab} \otimes \mathbb{Z}_l = \{1\}$. Write $N \stackrel{\text{def}}{=} N_1 \times G_2$. Then since the conjugation action of $G/N \cong G_1/N_1 \times \{1\}$ on

$$N^{\mathrm{ab}} \otimes \mathbb{Z}_l \cong (N_1^{\mathrm{ab}} \otimes \mathbb{Z}_l) \times (G_2^{\mathrm{ab}} \otimes \mathbb{Z}_l) \cong \{1\} \times (G_2^{\mathrm{ab}} \otimes \mathbb{Z}_l)$$

is trivial, by Proposition 2.4, below, we conclude that $G/N = \{1\}$, a contradiction. This completes the proof of $(*_2)$.

In light of the (*2), by replacing G by the maximal pro-l quotient of a suitable open subgroup of G for some $l \neq p$, we may assume without loss of generality that G, G_1 , G_2 are pro-l groups. Then since G is slim [cf. Proposition 2.4, below], it follows that G_1 , G_2 are nonabelian pro-l groups, so $\dim_{\mathbb{F}_l} H^1(G_1, \mathbb{F}_l) \geq 2$, $\dim_{\mathbb{F}_l} H^1(G_2, \mathbb{F}_l) \geq 2$ [cf. [25], Theorem 7.8.1]. In particular, since we have an inclusion $H^1(G_1, \mathbb{F}_l) \otimes H^1(G_2, \mathbb{F}_l) \subseteq$ $H^2(G, \mathbb{F}_l)$, we obtain that $\dim_{\mathbb{F}_l} H^2(G, \mathbb{F}_l) \geq 4$. This contradicts the fact that $\dim_{\mathbb{F}_l} H^2(G, \mathbb{F}_l)$ is either 0 or 1. [Indeed, $H^2(G, \mathbb{F}_l)$ is isomorphic to the second étale cohomology group $H^2_{\text{\acute{e}t}}(X, \mathbb{F}_l)$ of X [cf. [19], Proposition 1.1]; the dimension over \mathbb{F}_l of this last cohomology group is either 0 or 1 [cf. [5], Theorem 7.2.9 (ii); Proposition 7.2.10].] Therefore, G is indecomposable. \Box

Remark 2.3. In the situation of Proposition 2.2, if X is an affine curve, then Π_X is never finitely generated. [In fact, the maximal pro-p quotient of Π_X is a free pro-p group of rank |k| — cf. [27], Theorem 12.] In particular, we cannot apply Lemma 1.5 to Proposition 2.2.

The following result is well-known [cf., e.g., [28], Proposition 1.11; [22], Proposition 1.4], but we review it briefly for the sake of completeness.

Proposition 2.4. Let k be an algebraically closed field of characteristic $p \ge 0$; $l \ne p$ a prime number; X a smooth curve of type (g,r) over k such that the pair (g,r) satisfies 2g - 2 + r > 0 (respectively, $(g,r) \ne (0,0)$, (1,0)) if the characteristic of k is zero (respectively, positive). Then for any normal open subgroup N of $G \stackrel{\text{def}}{=} \Pi_X$ such that the connected finite étale covering $X_N \rightarrow X$ corresponding to N has genus ≥ 2 , the conjugation action of G/N on $N^{\text{ab}} \otimes \mathbb{Z}_l$ is faithful. In particular, Π_X , as well as its maximal pro-l quotient $\Pi_X^{(l)}$, is slim.

Proof. The *faithfulness* portion of Proposition 2.4 follows immediately from the argument given in [3], Lemma 1.14. The *slimness* portion of Proposition 2.4 follows formally from the *faithfulness* portion of Proposition 2.4. \Box

3. INDECOMPOSABILITY OF VARIOUS FUNDAMENTAL GROUPS

In this section, by applying the results of §1 and §2, we prove the *in-decomposability* of various *fundamental groups*. Moreover, by applying an indecomposability result, we prove the "scheme-theoretic indecomposability" of the configuration space of a hyperbolic curve over a field of characteristic zero [cf. Theorem 3.11].

Lemma 3.1. Let k be a field; \overline{k} an algebraic closure of k; X a quasicompact, geometrically connected scheme over k. Then the sequence of schemes $X \times_k \overline{k} \xrightarrow{\operatorname{pr}_1} X \to \operatorname{Spec}(k)$ determines an exact sequence of profinite groups

 $1 \longrightarrow \Pi_{X \times_k \overline{k}} \longrightarrow \Pi_X \longrightarrow G_k \longrightarrow 1.$

Proof. This is the content of [26], EXPOSÉ IX, Théorème 6.1.

Definition 3.2. Let k be a field of characteristic $p \ge 0$; $l \ne p$ a prime number. Then for the pair (k, l), we consider the following condition:

 $(*_k^l)$ For any finite extension field k' of k, the *l*-adic cyclotomic character $\chi_{k'}: G_{k'} \to \mathbb{Z}_l^{\times}$ of k' is nontrivial.

We shall say that k is *l*-cyclotomically full if the pair (k, l) satisfies the condition $(*_k^l)$.

Lemma 3.3. In the notation of Definition 3.2, the following hold:

- (i) k is *l*-cyclotomically full if and only if for any finite extension field k' of k, there exists a positive integer n such that k' does not contain a primitive lⁿ-th root of unity.
- (ii) Let K be an extension field of k. Then if K is l-cyclotomically full, then the same is true of k. Suppose further that K is a finitely generated extension field of k. Then if k is l-cyclotomically full, then the same is true of K.
- (iii) k is *l*-cyclotomically full if and only if the image of the *l*-adic cyclotomic character $\chi_k : G_k \to \mathbb{Z}_l^{\times}$ of k is infinite.
- (iv) Let X be a smooth curve of type (g,r) over k such that the pair (g,r) satisfies $(g,r) \neq (0,0)$, (0,1) (respectively, $(g,r) \neq (0,0)$) if the characteristic of k is zero (respectively, positive); \overline{k} an algebraic closure of k. Write $X_{\overline{k}} \stackrel{\text{def}}{=} X \times_k \overline{k}$. Suppose, moreover, that k is l-cyclotomically full. Then the image of the natural outer Galois representation

$$o_k: G_k \to \operatorname{Out}(\Pi_{X_{\overline{\tau}}})$$

associated to the exact sequence of profinite groups

 $1 \longrightarrow \Pi_{X_{\overline{k}}} \longrightarrow \Pi_X \longrightarrow G_k \longrightarrow 1$

[cf. Lemma 3.1] is infinite, hence, in particular, nontrivial. If, moreover, $(g,r) \neq (0,1)$, then the image of the naturally induced pro-l outer Galois representation

$$\rho_k^{(l)}: G_k \to \operatorname{Out}(\Pi_{X_{\overline{k}}}^{(l)})$$

is infinite, hence, in particular, nontrivial.

(v) Let l, p be two distinct prime numbers; $k \in \{\mathbb{Q}, \mathbb{Q}_l, \mathbb{Q}_p, \mathbb{F}_p\}$. Suppose that K is a finitely generated extension field of k. Then K is *l*-cyclotomically full.

Proof. Assertion (i) follows immediately from the definitions.

Assertion (ii) follows immediately from (i) and the well-known fact that the algebraic closure of k in K is a finite extension of k. [In fact, let $E \subseteq K$ be the algebraic closure of k in K; $\{x_1, \ldots, x_n\} \subseteq K$ a transcendence basis of K/k. Then we obtain that $[E:k] = [E(x_1, \ldots, x_n) : k(x_1, \ldots, x_n)] \leq$ $[K:k(x_1, \ldots, x_n)] < +\infty$.]

We consider assertion (iii). First, let us prove *necessity*. Suppose that the image of χ_k is *finite*. Then the *kernel* H of χ_k is an *open subgroup* of G_k . Thus, there exists a *finite extension* k' of k such that $G_{k'} \xrightarrow{\sim} H$. In particular, the *l*-adic cyclotomic character $\chi_{k'} : G_{k'} \xrightarrow{\sim} H \hookrightarrow G_k \to \mathbb{Z}_l^{\times}$ of k' is *trivial* — a contradiction. Next, we prove *sufficiency*. To this end, let k' be a *finite extension field* of k. Write $\chi_{k'} : G_{k'} \to \mathbb{Z}_l^{\times}$ for the *l*-adic cyclotomic character of k', H for the *kernel* of χ_k . Then if we identify $G_{k'}$ with an *open subgroup* of G_k , then $G_{k'}/G_{k'} \cap H$ [$\xrightarrow{\sim}$ Im $(\chi_{k'})$] corresponds to an *open subgroup* of G_k/H [$\xrightarrow{\sim}$ Im (χ_k)]. On the other hand, since Im (χ_k) is *infinite*, we thus conclude that Im $(\chi_{k'})$ is also *infinite*, hence, in particular, *nontrivial*. This completes the proof of assertion (iii).

Next, we consider assertion (iv). First, suppose that (q,r) = (0,1) [so p > 0]. Then observe that one verifies immediately — by considering a suitable Artin-Schreier covering of X as in the proof of Theorem 2.2 over a suitable finite extension of k and applying [8], Lemma 23, (i), (iii) — that the infiniteness [hence, in particular, the nontriviality] of the image of ρ_k follows from the corresponding infiniteness in the case of $g \ge 1$. Here, we note that, although, in [8], Lemma 23, " Δ " [in the notation of [8], Lemma 23] is assumed to be *topologically finitely generated*, one verifies immediately that this assumption is in fact unnecessary. Thus, in the remainder of the proof of assertion (iv), we may assume without loss of generality that $(g,r) \neq (0,1)$. Next, observe that to verify the *infiniteness* of ρ_k , it suffices to verify the *infiniteness* of $\rho_k^{(l)}$. Moreover, by replacing k by a suitable finite extension of k, it suffices to verify that $\rho_k^{(l)}$ is nontrivial. Suppose that $\rho_k^{(l)}$ is *trivial.* First, we assume that $g \geq 1$. Write $J(\overline{X})$ for the Jacobian variety of the smooth compactification \overline{X} of X, $T_l(J(\overline{X}))$ for the *l*-adic Tate module of J(X). Then it follows that the natural *l*-adic Galois representation

$$G_k \to \operatorname{Aut}(T_l(J(\overline{X})))$$

associated to J(X) is trivial. Then since, as is well-known [cf. the natural isomorphisms $\bigwedge^{2g} H^1_{\text{ét}}(\overline{X}_{\overline{k}}, \mathbb{Z}_l) \xrightarrow{\sim} H^{2g}_{\text{ét}}(\overline{X}_{\overline{k}}, \mathbb{Z}_l) \xrightarrow{\sim} \mathbb{Z}_l(-g)$ of $\mathbb{Z}_l[G_k]$ -modules discussed in [14], Remark 15.5; [13], Theorem 11.1, (a)], the determinant of this representation is a positive power of the *l*-adic cyclotomic character of k, we conclude that some positive power of the *l*-adic cyclotomic character of k is trivial. But this contradicts (iii). Next, we assume that g = 0 and $r \geq 2$. Then since $r \geq 2$, we may identify $X_{\overline{k}}$ with an open subscheme of $\mathbb{A}^1_{\overline{k}} \setminus \{0\}$. Thus, by considering the maximal pro-*l* abelian quotient of $\Pi_{\mathbb{A}^1_{\overline{k}} \setminus \{0\}}$, we conclude that the *l*-adic cyclotomic character of k is trivial.

Finally, we consider assertion (v). To verify the assertion, it suffices to show that k is *l*-cyclotomically full [cf. (ii)]. Thus, to verify the assertion, it suffices to show that, for any finite extension field k' of k, there exists a positive integer n such that k' does not contain a primitive l^n -th root of unity [cf. (i)]. But this follows from the well-known fact that for any finite extension field k' of k, the group of roots of unity in k' is finite [cf. [15], Chapter 5; [24], Chapter 2, §4.3, §4.4].

Theorem 3.4. Let k be a field of characteristic $p \ge 0$ such that G_k is center-free and indecomposable; X a smooth curve of type (g,r) over k such that the pair (g,r) satisfies 2g-2+r > 0 (respectively, $(g,r) \ne (0,0)$, (1,0)) if the characteristic of k is zero (respectively, positive). Suppose that there exists a prime number $l \ne p$ such that k is *l*-cyclotomically full. Then Π_X is center-free and indecomposable.

Proof. Let \overline{k} be an algebraic closure of k. Write $X_{\overline{k}} \stackrel{\text{def}}{=} X \times_k \overline{k}$. Then by Lemma 3.1, we have the following exact sequence of profinite groups

 $1 \longrightarrow \Pi_{X_{\overline{k}}} \longrightarrow \Pi_X \longrightarrow G_k \longrightarrow 1.$

In particular, since G_k and $\Pi_{X_{\overline{k}}}$ are *center-free* [cf. Proposition 2.4], it follows that Π_X is also *center-free*. Here, we note that both G_k and $\Pi_{X_{\overline{k}}}$ are *indecomposable* [cf. Theorems 2.1, 2.2]. Thus, since the *natural outer Galois* representation

$$G_k \to \operatorname{Out}(\Pi_{X_{\overline{\tau}}})$$

associated to the above sequence is *nontrivial* [cf. Lemma 3.3, (iv)], it follows from Proposition 1.8, (i), that Π_X is also *indecomposable*.

Theorem 3.5. Let n be a positive integer; k a field of characteristic zero such that G_k is center-free and indecomposable; X a hyperbolic curve over k; X_n the n-th configuration space associated to X. Suppose that either k is algebraically closed, or *l*-cyclotomically full for a prime number l. Then Π_{X_n} is center-free and indecomposable. Proof. First, we note that for $n \ge 1$, any projection morphism $X_n \to X_{n-1}$ of length one determines a natural exact sequence of profinite groups [cf. [22], Proposition 2.2, (i)]

$$1 \longrightarrow \Pi_{(X_n)_{\overline{x}}} \longrightarrow \Pi_{X_n} \longrightarrow \Pi_{X_{n-1}} \longrightarrow 1$$

— where \overline{x} is a geometric point of X_{n-1} ; we write $X_0 \stackrel{\text{def}}{=} \operatorname{Spec}(k)$; $(X_n)_{\overline{x}}$ denotes the fiber of $X_n \to X_{n-1}$ over \overline{x} . In particular, by applying induction on n, we conclude from Proposition 2.4 and Theorem 3.4 that Π_{X_n} is center-free. Here, we note that $\Pi_{(X_n)_{\overline{x}}}$ and Π_{X_1} are indecomposable [cf. Theorems 2.1, 3.4]. Moreover, it is well-known that the natural outer Galois representation

$$\Pi_{X_{n-1}} \to \operatorname{Out}(\Pi_{(X_n)_{\overline{x}}})$$

associated to the above exact sequence is *nontrivial*. [In the case where k is an algebraically closed field, the above representation is, in fact, *injective* — cf. [2], Theorem 1.] Thus, by induction on n, it follows from Proposition 1.8, (i), that Π_{X_n} is *indecomposable*.

Corollary 3.6. Let n be a positive integer; k a **Hilbertian field** of characteristic $p \ge 0$; X a **smooth curve** of type (g, r) over k such that the pair (g, r) satisfies 2g - 2 + r > 0 (respectively, $(g, r) \ne (0, 0)$, (1, 0)) if the characteristic of k is zero (respectively, positive); X_n the n-th **configuration space** associated to X. Suppose that there exists a prime number $l \ne p$ such that k is *l*-cyclotomically full. Also, if p > 0, then we assume further that n = 1. Then \prod_{X_n} is **center-free** and **indecomposable**.

Proof. These assertions follow immediately from Corollary 1.2 and Theorems 3.4, 3.5. $\hfill \Box$

Remark 3.7. The *center-freeness* asserted in Theorems 3.4, 3.5 and Corollary 3.6 holds even if one does not assume that k is *l*-cyclotomically full.

Corollary 3.8. Let n be a positive integer; k a field; X a smooth curve of type (g, r) over k such that the pair (g, r) satisfies 2g-2+r > 0 (respectively, $(g, r) \neq (0, 0), (1, 0)$) if the characteristic of k is zero (respectively, positive); X_n the n-th configuration space associated to X. Then the following hold:

- (i) If k is a finitely generated transcendental extension field of \mathbb{F}_p , then Π_X is center-free and indecomposable.
- (ii) If k is a finitely generated extension field of either \mathbb{Q} or \mathbb{Q}_p , then Π_{X_n} is center-free and indecomposable.

Proof. First, we note that every field k which appears in Corollary 3.8 is *l*-cyclotomically full for some prime number l [cf. Lemma 3.3, (v)]. Thus, in the case that k is Hilbertian [cf. Corollary 1.4] (respectively, non-Hilbertian, i.e., *p*-adic local), the assertions follow from Corollary 3.6 (respectively, Proposition 1.6 and Theorem 3.5).

Definition 3.9. (cf. [9], Definition 2.5) Let k be a field of characteristic zero, \overline{k} an algebraic closure of k. Let X be a variety over k [i.e., a scheme that is of finite type, separated, and geometrically integral over k]. Then we shall say that X is of *LFG-type* if, for any normal variety Y over \overline{k} and any morphism $Y \to X \times_k \overline{k}$ over \overline{k} that is not constant, the image of the outer homomorphism $\Pi_Y \to \Pi_{X \times_k \overline{k}}$ is infinite.

Lemma 3.10. Let n be a positive integer; k a field of characteristic zero; X a hyperbolic curve over k; X_n the n-th configuration space associated to X. Then X_n is of LFG-type.

Proof. This follows immediately from [9], Proposition 2.7.

Theorem 3.11. Let n be a positive integer; k a field of characteristic zero; X a hyperbolic curve over k; X_n the n-th configuration space associated to X. Suppose that there exists an isomorphism of k-schemes

$$X_n \xrightarrow{\sim} Y \times_k Z$$

— where Y, Z are k-varieties [cf. Definition 3.9]. Then it follows that either

$$Y \cong \operatorname{Spec}(k)$$
 or $Z \cong \operatorname{Spec}(k)$.

Proof. We may assume that k is algebraically closed. Then to verify the assertion, it suffices to show that either $\dim(Y) = 0$ or $\dim(Z) = 0$. First, we note that by the Künneth formula [cf. [26], EXPOSÉ XIII, Proposition 4.6], there exists an isomorphism of profinite groups

$$\Pi_{X_n} \xrightarrow{\sim} \Pi_Y \times \Pi_Z.$$

Then since Π_{X_n} is *indecomposable* by Theorem 3.5, we may without loss of generality that $\Pi_Y = \{1\}$. Now we fix a k-rational point $z \in Z(k)$ of Z. Then we obtain a *closed immersion* $Y \xrightarrow{\sim} Y \times_k \{z\} \hookrightarrow Y \times_k Z \xrightarrow{\sim} X_n$. Write $Y' \to Y$ for the [*surjective*] morphism obtained by *normalizing* Y. Here, if we assume that $\dim(Y) \ge 1$, then the composite $Y' \to Y \hookrightarrow X_n$ is *nonconstant*. Thus, since X_n is of *LFG-type* by Lemma 3.10, the image of the outer homomorphism $\Pi_{Y'} \to \Pi_{X_n}$ is *infinite* — a *contradiction*. Therefore, we conclude that $\dim(Y) = 0$.

16

4. Alternative Proof of the Indecomposability of the Pro-*l* Absolute Galois Group of a Number Field

In this section, we first give an alternative proof [cf. Theorem 4.7] of the indecomposability of the maximal pro-l quotient of the absolute Galois group of a number field without using the theory of Hilbertian fields. [In fact, this indecomposability is an easy consequence of the theorem of Haran-Jarden [cf. [4], Corollary 13.8.4] in the theory of Hilbertian fields.] Finally, we prove the indecomposability of a certain almost pro-l group arising from the configuration space of a hyperbolic curve over either an l-adic local field or a number field [cf. Theorem 4.10, (vi)].

Definition 4.1. Let G be a profinite group. We shall say that G is *meta-abelian* if there exists an abelian closed normal subgroup H of G such that the quotient group G/H is also abelian.

Lemma 4.2. Let G be a meta-abelian profinite group. Then the following hold:

- (i) Let H be a closed subgroup of G. Then H is also meta-abelian.
- (ii) Let H be a closed normal subgroup of G. Then the quotient G/H is also meta-abelian.
- (iii) Let G_1 , G_2 be meta-abelian profinite groups. Then the direct product $G_1 \times G_2$ is also meta-abelian.

Proof. These assertions follow immediately from the definitions.

Theorem 4.3. Let k be a p-adic local field; $V_k \subseteq G_k$ the ramification group of G_k . Then V_k is a free pro-p group, and the quotient group G_k/V_k [i.e., the Galois group of the maximal tamely ramified extension of k] is meta-abelian. In particular, for any prime $l \neq p$, the maximal pro-l quotient $G_k^{(l)}$ of G_k is also meta-abelian.

Proof. The fact that V_k is free pro-p (respectively, G_k/V_k is meta-abelian) follows from [23], Proposition 7.5.1 (respectively, [the proof of] [23], Theorem 7.5.3). The last statement follows, by applying the maximal pro-l quotient functor [which is right exact] to the following natural exact sequence of profinite groups

 $1 \longrightarrow V_k \longrightarrow G_k \longrightarrow G_k / V_k \longrightarrow 1,$ from the fact that $V_k^{(l)} = \{1\}$ and Lemma 4.2, (ii).

Lemma 4.4. Let l be a prime number; F a nonabelian free pro-l group. Then every abelian closed normal subgroup of F is trivial.

Proof. This is the content of [25], Proposition 8.7.2.

Lemma 4.5. Let l be a prime number; G_1 a **meta-abelian pro-**l **group**; G_2 a **free pro-**l **group**; $\varphi : G_1 \to G_2$ a morphism of profinite groups. Then $\operatorname{Im}(\varphi)$ is abelian.

Proof. Write $G \stackrel{\text{def}}{=} \text{Im}(\varphi)$. First, we note that, by [25], Corollary 7.7.5, G is free pro-l. Now suppose that G is nonabelian. Here, since G is meta-abelian [cf. Lemma 4.2, (ii)], there exists an abelian closed normal subgroup H of G such that G/H is also abelian. Then by Lemma 4.4, it follows that H is trivial, so that $G \xrightarrow{\sim} G/H$, a contradiction. Therefore, G is abelian.

Lemma 4.6. Let l be a prime number; k a number field; \overline{k} an algebraic closure; $G_k \rightarrow Q_k$ an almost pro-l-maximal quotient of G_k . Then Q_k is slim.

Proof. First, we note that, via the same arguments as the arguments applied to prove [18], Proposition 2.1, we conclude the following:

Let k be a number field. Then:

(i) The natural surjection $G_k \twoheadrightarrow Q_k$ induces an *isomorphism*

$$H^i(Q_k, \mathbb{F}_l(1)) \xrightarrow{\sim} H^i(G_k, \mathbb{F}_l(1))$$

for all integers $i \ge 0$.

(ii) Write $k \subseteq \overline{k}$ for the extension of k defined by $\operatorname{Ker}(G_k \twoheadrightarrow Q_k)$. Then for any automorphism σ of the field \widetilde{k} that preserves and acts nontrivially on $k \subseteq \widetilde{k}$, the automorphism induced by σ of the set of one-dimensional \mathbb{F}_l -subspaces of the \mathbb{F}_l -vector space

$$H^2(Q_k, \mathbb{F}_l(1))$$

is nontrivial.

[Here, we remark that, just as in the proof of [18], Proposition 2.1, (ii), assertion (i) is used in the proof of assertion (ii).]

Then by applying assertion (ii), via the same argument as the argument applied to prove [18], Corollary 2.2, we conclude that Q_k is *slim*.

Theorem 4.7. Let *l* be a prime number; *k* a number field. Then $G_k^{(l)}$ is strongly indecomposable.

Proof. To verify the assertion, it suffices to show that $G_k^{(l)}$ is indecomposable. Suppose that we have an isomorphism of profinite groups $G_k^{(l)} \cong G_1 \times G_2$ such that $G_1 \neq \{1\}, G_2 \neq \{1\}$. In particular, since G_1, G_2 are nontrivial pro-l groups, it follows that $\dim_{\mathbb{F}_l} H^1(G_1, \mathbb{F}_l) \geq 1$, $\dim_{\mathbb{F}_l} H^1(G_2, \mathbb{F}_l) \geq 1$. Now I claim that it holds that

either
$$\dim_{\mathbb{F}_l} H^2(G_1, \mathbb{F}_l) \ge 1$$
 or $\dim_{\mathbb{F}_l} H^2(G_2, \mathbb{F}_l) \ge 1$.

Indeed, suppose that $\dim_{\mathbb{F}_l} H^2(G_1, \mathbb{F}_l) = \dim_{\mathbb{F}_l} H^2(G_2, \mathbb{F}_l) = 0$. Then by [25], Theorem 7.7.4, it follows that G_1 , G_2 are free pro-l groups. Now, by Lemma 4.8, below, there exists a nonarchimedean valuation v of k such that the residue characteristic p of the completion k_v of k at v satisfies $l \mid p - 1$. [In particular, there exists a primitive *l*-th root of unity in k_v .] Then we may identify G_{k_v} with a closed subgroup of G_k [well-defined up to conjugation in G_k]. Thus, we have a commutative diagram

$$\begin{array}{cccc} G_{k_v} & \stackrel{\iota}{\longrightarrow} & G_k \\ & & & \downarrow \\ & & & \downarrow \\ G_{k_v}^{(l)} & \stackrel{\iota^{(l)}}{\longrightarrow} & G_k^{(l)} \end{array}$$

— where the vertical arrows are the natural surjections; the upper horizontal arrow ι is the natural inclusion; the lower horizontal arrow $\iota^{(l)}$ is the morphism obtained by applying the maximal pro-l quotient functor to ι . Here, we note that $\iota^{(l)}$ is also injective [cf. [23], Theorem 9.4.3]. We shall write $p_i: G_k^{(l)} \cong G_1 \times G_2 \twoheadrightarrow G_i \ [i = 1, 2]$ for the *i*-th projection. Then since $G_{k_v}^{(l)}$ is a meta-abelian pro-l group [cf. Theorem 4.3], by applying Lemma 4.5 to the morphism

$$p_i \circ \iota^{(l)} : G_{k_v}^{(l)} \to G_i,$$

it follows that $p_i(\operatorname{Im}(\iota^{(l)}))$ is abelian. Since we have

$$G_{k_v}^{(l)} \xrightarrow{\sim} \operatorname{Im}(\iota^{(l)}) \hookrightarrow p_1(\operatorname{Im}(\iota^{(l)})) \times p_2(\operatorname{Im}(\iota^{(l)})),$$

we thus conclude that $G_{k_v}^{(l)}$ is *abelian*. This contradicts the fact that $G_{k_v}^{(l)}$ is *nonabelian* [cf. [23], Theorem 7.5.3]. This completes the proof of the *claim*.

On the other hand, by the K inneth formula in group cohomology, we have an *inclusion*

$$H^{3}(G_{k}^{(l)}, \mathbb{F}_{l}) \supseteq (H^{1}(G_{1}, \mathbb{F}_{l}) \otimes H^{2}(G_{2}, \mathbb{F}_{l})) \oplus (H^{2}(G_{1}, \mathbb{F}_{l}) \otimes H^{1}(G_{2}, \mathbb{F}_{l})).$$

Thus, in light of the *claim*, we obtain that $\dim_{\mathbb{F}_l} H^3(G_k^{(l)}, \mathbb{F}_l) \ge 1$.

Now suppose that either k is totally imaginary or $l \neq 2$. Then we obtain a contradiction to the well-known fact that the *l*-cohomological dimension of G_k is ≤ 2 [cf. [23], Proposition 8.3.18]. Therefore, we conclude that $G_k^{(l)}$ is indecomposable if either k is totally imaginary or $l \neq 2$. Note that this implies that $G_k^{(l)}$ is strongly indecomposable if either k is totally imaginary or $l \neq 2$.

It remains to consider the case where k is not totally imaginary, and l = 2. Thus, k does not contain a primitive cubic root of unity. Let k' be a quadratic extension of k generated by a primitive cubic root of unity $\zeta_3 \in k'$.

Thus, the field extension k'/k determines a open subgroup $H_{k'} \subseteq G_k^{(l)}$ of $G_k^{(l)}$. On the other hand, since $G_k^{(l)}$ is slim [cf. Lemma 4.6], the proof of the strong indecomposability of $G_k^{(l)}$ may be reduced to that of $H_{k'}$ [cf., e.g., the proof of Theorem 2.2]. But this has already been shown. This completes the proof in the case where k is not totally imaginary, and l = 2.

Lemma 4.8. Let n be a positive integer. Then there exist infinitely many prime numbers $p \equiv 1 \pmod{n}$.

Proof. This is a special case of the *Dirichlet's prime number theorem*. In fact, in this case, an elementary proof may be given by applying the theory of *cyclotomic polynomials* [cf., e.g., [6], Chapter 8, Corollary 5.0.1]. \Box

Corollary 4.9. Let *l* be a prime number; *k* a **number field**. Then any almost pro-*l*-maximal quotient $G_k \rightarrow Q_k$ of G_k is strongly indecomposable.

Proof. Since Q_k is slim [cf. Lemma 4.6], the strong indecomposability of Q_k follows from Theorem 4.7 [cf., e.g., the proof of Theorem 2.2].

Theorem 4.10. Let l be a prime number; n a positive integer; k a field of characteristic zero; \overline{k} an algebraic closure of k; X a hyperbolic curve over k; X_n the n-th configuration space associated to X; Δ the maximal pro-l quotient of $\prod_{X_n \times_k \overline{k}}$; \prod the quotient of \prod_{X_n} by the kernel of the natural surjection $\prod_{X_n \times_k \overline{k}} \twoheadrightarrow \Delta$; $\rho : G_k \to \text{Out}(\Delta)$ the natural outer Galois representation associated to the lower exact sequence of the following commutative diagram of profinite groups [cf. Lemma 3.1]

Then the following hold:

- (i) Δ is slim, topologically finitely generated, and indecomposable.
- (ii) The profinite group $Out(\Delta)$ is almost pro-l.
- (iii) Suppose that k is *l*-cyclotomically full. Then ρ is nontrivial.
- (iv) Suppose that G_k is center-free and indecomposable, and that k is *l*-cyclotomically full. Then Π is center-free and indecomposable.

(v) Any open normal **pro-l** subgroup N of $Out(\Delta)$ [cf. (ii)] determines an almost **pro-l-maximal quotient**

$$p_N: G_k \twoheadrightarrow G_k^{(N)}$$

of G_k , as well as a factorization $\rho = \rho_N \circ p_N$, for a uniquely determined morphism

$$\rho_N: G_k^{(N)} \to \operatorname{Out}(\Delta).$$

(vi) In the notation of (v), suppose that $G_k^{(N)}$ is center-free and indecomposable, and that k is *l*-cyclotomically full. Then the profinite group

$$\Delta \stackrel{\text{out}}{\rtimes} G_k^{(N)} \stackrel{\text{def}}{=} \operatorname{Aut}(\Delta) \times_{\operatorname{Out}(\Delta)} G_k^{(N)}$$

is center-free and indecomposable. In particular, if k is an ladic local field or a number field, then $\Delta \stackrel{\text{out}}{\rtimes} G_k^{(N)}$ is center-free and indecomposable.

Proof. First, we consider assertion (i). The fact that Δ is slim and topologically finitely generated is the content of [22], Proposition 2.2, (ii). Thus, we verify the indecomposability of Δ . Write $X_{\overline{k}} \stackrel{\text{def}}{=} X \times_k \overline{k}$. Let $(X_{\overline{k}})_n$ be the *n*-th configuration space associated to the hyperbolic curve $X_{\overline{k}}$. [In particular, we have a natural isomorphism $(X_{\overline{k}})_n \xrightarrow{\sim} X_n \times_k \overline{k}$ of \overline{k} -schemes.] Here, we note that, for $n \geq 1$, any projection morphism $(X_{\overline{k}})_n \to (X_{\overline{k}})_{n-1}$ of length one determines a natural exact sequence of profinite groups [cf. [22], Proposition 2.2, (i)]

$$1 \longrightarrow \Pi^{(l)}_{((X_{\overline{k}})_n)_{\overline{x}}} \longrightarrow \Pi^{(l)}_{(X_{\overline{k}})_n} \longrightarrow \Pi^{(l)}_{(X_{\overline{k}})_{n-1}} \longrightarrow 1$$

— where \overline{x} is a geometric point of $(X_{\overline{k}})_{n-1}$; we write $(X_{\overline{k}})_0 \stackrel{\text{def}}{=} \operatorname{Spec}(\overline{k})$; $((X_{\overline{k}})_n)_{\overline{x}}$ denotes the fiber of $(X_{\overline{k}})_n \to (X_{\overline{k}})_{n-1}$ over \overline{x} . Also, note that $\Pi^{(l)}_{((X_{\overline{k}})_n)_{\overline{x}}}$ and $\Pi^{(l)}_{(X_{\overline{k}})_1}$ are indecomposable [cf. [22], Proposition 3.2]. Moreover, it is well-known that the natural outer Galois representation

$$\Pi^{(l)}_{(X_{\overline{k}})_{n-1}} \to \operatorname{Out}(\Pi^{(l)}_{((X_{\overline{k}})_n)_{\overline{x}}})$$

associated to the above exact sequence is *injective* [cf. [2], Remark following the proof of Theorem 1], hence, in particular, *nontrivial*. Thus, by induction on n, it follows from Proposition 1.8, (i), that Δ is *indecomposable*. Assertion (ii) follows from (i) and [1], Corollary 7.

Next, we consider assertion (iii). Suppose that ρ is *trivial*. Then by considering the composites of the *first projections*

$$X_n \to X_{n-1} \to \ldots \to X_1,$$

it follows immediately that the natural outer Galois representation

$$G_k \to \operatorname{Out}(\Pi_{X_{\overline{k}}}^{(l)})$$

is trivial. But this contradicts Lemma 3.3, (iv). Thus, ρ is nontrivial.

Next, we consider assertion (iv). The *center-freeness* of Π follows immediately from (i) and the assumption that G_k is *center-free*. Moreover, in light of (i) and (iii), by applying Proposition 1.8, (i), to the exact sequence

 $1 \longrightarrow \Delta \longrightarrow \Pi \longrightarrow G_k \longrightarrow 1,$

we conclude that Π is *indecomposable*. Assertion (v) follows immediately from the various definitions involved.

Finally, we consider assertion (vi). Since Δ is *center-free* [cf. (i)], by *pulling back* the natural exact sequence of profinite groups

$$1 \longrightarrow \Delta \longrightarrow \operatorname{Aut}(\Delta) \longrightarrow \operatorname{Out}(\Delta) \longrightarrow 1$$

via ρ_N , we obtain the following exact sequence of profinite groups

$$1 \longrightarrow \Delta \longrightarrow \Delta \stackrel{\text{out}}{\rtimes} G_k^{(N)} \longrightarrow G_k^{(N)} \longrightarrow 1.$$

In particular, the center-freeness of $\Delta \stackrel{\text{out}}{\rtimes} G_k^{(N)}$ follows immediately from (i) and the assumption that $G_k^{(N)}$ is center-free. Moreover, in light of (i) and (iii) [cf. also (v)], by applying Proposition 1.8, (i), we conclude that $\Delta \stackrel{\text{out}}{\rtimes} G_k^{(N)}$ is indecomposable. Finally, in the case where k is an *l*-adic local field or a number field, recall that $G_k^{(N)}$ is center-free [cf. Proposition 1.6, Lemma 4.6] and indecomposable [cf. Proposition 1.6, Corollary 4.9], and that k is *l*-cyclotomically full [cf. Lemma 3.3, (v)].

5. Indecomposability of the Pro-*l* Grothendieck-Teichmüller Group

In this section, we verify the indecomposability of the pro-l Grothendieck-Teichmüller group GT_l [cf. Theorem 5.4] as a consequence of a certain anabelian result over finite fields [cf. [7], Remark 6, (iv)].

Definition 5.1. (cf. [20], Definition 1.11, (i)) Let l be a prime number; k an algebraically closed field of characteristic zero; X the tripod $\mathbb{P}^1_k \setminus \{0, 1, \infty\}$ over k; X_2 the second configuration space associated to X. Suppose that $\Pi_1 \in \{\Pi_X, \Pi_X^{(l)}\}$. Write

$$\Pi_2 \stackrel{\text{def}}{=} \begin{cases} \Pi_{X_2}, & \text{if } \Pi_1 = \Pi_X, \\ \Pi_{X_2}^{(l)}, & \text{if } \Pi_1 = \Pi_X^{(l)}. \end{cases}$$

Then for n = 1, 2, we shall write

$$\operatorname{Out}^{\operatorname{FC}}(\Pi_n) \subseteq \operatorname{Out}(\Pi_n)$$

for the subgroup of $Out(\Pi_n)$ consisting of *FC-admissible* outomorphisms of Π_n [cf. [20], Definition 1.1, (ii)];

$$\operatorname{Out}^{\operatorname{FCS}}(\Pi_n) \subseteq \operatorname{Out}^{\operatorname{FC}}(\Pi_n)$$

for the subgroup of $Out(\Pi_n)$ consisting of *FC*-admissible outomorphisms of Π_n that commute with the outer modular symmetries [cf. [20], Definition 1.1, (vi)];

$$\operatorname{Out}^{\operatorname{FC}}(\Pi_1)^{\Delta +} \subseteq \operatorname{Out}^{\operatorname{FC}}(\Pi_1)$$

for the *image* of $\operatorname{Out}^{\mathrm{FCS}}(\Pi_2)$ via the natural injection $\operatorname{Out}^{\mathrm{FC}}(\Pi_2) \hookrightarrow \operatorname{Out}^{\mathrm{FC}}(\Pi_1)$ induced by the first projection $X_2 \to X$ [cf. [20], Definition 1.11, (i); [20], Corollary 1.12, (ii); [20], Corollary 4.2, (i)]. We shall refer to

$$\mathrm{GT} \stackrel{\mathrm{def}}{=} \mathrm{Out}^{\mathrm{FC}}(\Pi_X)^{\Delta +}$$
 (respectively, $\mathrm{GT}_l \stackrel{\mathrm{def}}{=} \mathrm{Out}^{\mathrm{FC}}(\Pi_X^{(l)})^{\Delta +}$)

as the Grothendieck-Teichmüller group (respectively, pro-l Grothendieck-Teichmüller group).

Remark 5.2. GT as defined in Definition 5.1 coincides with the Grothendieck-Teichmüller group as defined in more classical works [cf. [20], Remark 1.11.1].

The following result is well-known.

Lemma 5.3. Let l be a prime number. Then GT, GT_l are slim.

Proof. The asserted slimness follows immediately from the [pro-l] Grothendieck Conjecture over number fields [i.e., [16], Theorem A, applied to a tripod over a number field] and [11], Lemma 3.5.

Theorem 5.4. Let l be a prime number. Then GT_l is strongly indecomposable.

Proof. To verify the assertion, it suffices to show that for any open subgroup $U \subseteq \operatorname{GT}_l$ of GT_l , U is *indecomposable*. Let F be a *finite field* of characteristic $\neq l$. Write Δ for the maximal pro-l quotient of the étale fundamental group of the *tripod* $\mathbb{P}^1_{\overline{F}} \setminus \{0, 1, \infty\}$ over \overline{F} , where \overline{F} is an algebraic closure of F, and

$$\rho: G_F \to \operatorname{Out}(\Delta)$$

for the pro-l outer Galois representation associated to $\mathbb{P}_F^1 \setminus \{0, 1, \infty\}$. It follows immediately from the various definitions involved that $G \stackrel{\text{def}}{=} \rho(G_F)$ is contained in $\operatorname{GT}_l \subseteq \operatorname{Out}(\Delta)$. Thus, by replacing F by a suitable finite extension of F, we may assume without loss of generality that $G \subseteq U$. Moreover, since $\operatorname{Out}(\Delta)$ is almost pro-l [cf. [1], Corollary 7], by replacing Fby a suitable finite extension of F, we may assume without loss of generality that ρ factors through the maximal pro-l quotient $G_F \twoheadrightarrow G_F^{(l)}$ of G_F . Here, note that since G is infinite [cf. Lemmas 3.3, (i); 3.3, (iv)], we have $G \cong \mathbb{Z}_l$.

Now suppose that we have an isomorphism of profinite groups $U \cong H_1 \times H_2$. In the following, we shall *identify* U and $H_1 \times H_2$ via this isomorphism. Then I *claim* that it holds that

either
$$G \cap H_1 \neq \{1\}$$
 or $G \cap H_2 \neq \{1\}$.

Indeed, suppose that $G \cap H_1 = \{1\}$ and $G \cap H_2 = \{1\}$. In particular, it follows that, for i = 1, 2, the composite

$$G \hookrightarrow U = H_1 \times H_2 \xrightarrow{\operatorname{pr}_i} H_i$$

— where pr_i is *i*-th projection — is *injective*. Thus, if we write $K_i \subseteq H_i$ for the *image* of the above composite, we obtain that $G \xrightarrow{\sim} K_i [\cong \mathbb{Z}_l]$. Here, note that we have *inclusions*

$$G \subseteq K \stackrel{\text{def}}{=} K_1 \times K_2 \subseteq H_1 \times H_2.$$

Thus, since $K \cong \mathbb{Z}_l \times \mathbb{Z}_l$ is *abelian*, we obtain that

$$K \subseteq Z_{\mathrm{GT}_l}(G) \, \hookrightarrow \, \mathbb{Z}_l^{\times}$$

— where " \hookrightarrow " is induced by the morphism "deg_P" of [7], Definition 3.1, which is *injective* by [7], Remark 6, (iv); [11], Lemma 3.5. In particular, by considering a suitable open subgroup of K, we obtain that $\mathbb{Z}_l \times \mathbb{Z}_l \cong \mathbb{Z}_l$, a contradiction. This completes the proof of the *claim*.

In light of the *claim*, we may assume without loss of generality that

$$G \cap H_1 \neq \{1\}.$$

Then since $G \cap H_1 \subseteq G$ is a *nontrivial* closed subgroup of $G \cong \mathbb{Z}_l$, it follows that $G \cap H_1$ is *open* in G. Thus, by replacing F by a suitable finite extension, we may assume without loss of generality that $G \subseteq H_1$. In particular, we obtain that

$$H_2 \subseteq Z_{\mathrm{GT}_l}(G) \hookrightarrow \mathbb{Z}_l^{\times}$$

— where " \hookrightarrow " denotes the arrow " \hookrightarrow " in the final display of the proof of the above *claim*. Thus, it follows that H_2 is *abelian*. On the other hand, since H_2 is *center-free* [cf. Lemma 5.3], we obtain that $H_2 = \{1\}$. Therefore, we conclude that U is *indecomposable*, as desired.

References

- M. P. Anderson, Exactness properties of profinite completion functors, *Topology* 13 (1974), pp. 229-239.
- [2] M. Asada, The Faithfulness of the Monodromy Representations Associated with Certain Families of Algebraic Curves, J. Pure Appl. Algebra 159 (2001), pp. 123-147.
- [3] P. Deligne and D. Mumford, The Irreducibility of the Moduli Space of Curves of Given Genus, *IHES Publ. Math.* 36 (1969), pp. 75-109.
- [4] M. Fried and M. Jarden, Field Arithmetic (Second Edition), Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge, A Series of Modern Surveys in Mathematics 11, Springer-Verlag (2005).
- [5] L. Fu, Etale Cohomology Theory, Nankai Tracts in Mathematics 13, World Scientific (2011).
- [6] P. Garrett, Abstract Algebra, http://www.math.umn.edu/~garrett/m/algebra/.
- [7] Y. Hoshi, Absolute Anabelian Cuspidalization of Configuration Spaces of Proper Hyperbolic Curves over Finite Fields, *Publ. Res. Inst. Math. Sci.* 45 (2009), pp. 611-744.
- [8] Y. Hoshi, On Monodromically Full Points of Configuration Spaces of Hyperbolic Curves, The Arithmetic of Fundamental Groups — PIA 2010, Contributions in Mathematical and Computational Sciences 2, Springer-Verlag (2012), pp. 167-207.
- [9] Y. Hoshi, The Grothendieck Conjecture for Hyperbolic Polycurves of Lower Dimension, RIMS Preprint 1764 (December 2012).
- [10] Y. Hoshi and S. Mochizuki, Topics Surrounding the Combinatorial Anabelian Geometry of Hyperbolic curves I: Inertia groups and profinite Dehn twists, *Galois-Teichmüller Theory and Arithmetic Geometry*, Adv. Stud. Pure Math. 63, Math. Soc. Japan (2012), pp. 659-811.
- [11] Y. Hoshi and S. Mochizuki, Topics Surrounding the Combinatorial Anabelian Geometry of Hyperbolic curves II, RIMS Preprint 1762 (November 2012).
- [12] Y. Hoshi and S. Mochizuki, Topics Surrounding the Combinatorial Anabelian Geometry of Hyperbolic curves III, RIMS Preprint 1763 (November 2012).
- [13] J. S. Milne, *Étale Cohomology*, Princeton Mathematical Series 33, Princeton University Press (1980).
- [14] J. S. Milne, Abelian Varieties, Arithmetic Geometry, Springer-Verlag (1986), pp. 103-150.
- [15] J. S. Milne, Algebraic Number Theory, http://www.jmilne.org/math/CourseNotes/ant.html.
- [16] S. Mochizuki, The Local Pro-p Anabelian Geometry of Curves, Invent. Math. 138 (1999), pp. 319-423.
- [17] S. Mochizuki, The Absolute Anabelian Geometry of Hyperbolic Curves, Galois Theory and Modular Forms, Kluwer Academic Publishers (2004), pp. 77-122.
- [18] S. Mochizuki, Global Solvably Closed Anabelian Geometry, Math. J. Okayama Univ. 48 (2006), pp. 55-71.
- [19] S. Mochizuki, Absolute anabelian cuspidalizations of proper hyperbolic curves, J. Math. Kyoto Univ. 47 (2007), pp. 451-539.
- [20] S. Mochizuki, On the Combinatorial Cuspidalization of Hyperbolic Curves, Osaka J. Math. 47 (2010), pp. 651-715.
- [21] S. Mochizuki, Topics in Absolute Anabelian Geometry I: Generalities, J. Math. Sci. Univ. Tokyo 19 (2012), pp. 139-242.
- [22] S. Mochizuki and A. Tamagawa, The Algebraic and Anabelian Geometry of Configuration Spaces, *Hokkaido Math. J.* 37 (2008), pp. 75-131.
- [23] J. Neukirch, A. Schmidt, K. Wingberg, Cohomology of Number Fields (Second Edition), Grundlehren der mathematischen Wissenschaften **323**, Springer-Verlag (2008).

- [24] A. Robert, A Course in p-adic Analysis, Graduate Texts in Mathematics 198, Springer-Verlag (2000).
- [25] L. Ribes and P. Zalesskii, Profinite Groups (Second Edition), Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge, A Series of Modern Surveys in Mathematics 40, Springer-Verlag (2009).
- [26] A. Grothendieck, Revêtements Étales et Groupe Fondamental, Lecture Notes in Mathematics (SGA1) 224, Springer-Verlag (1971).
- [27] T. Szamuely, Heidelberg Lectures on Fundamental Groups, The Arithmetic of Fundamental Groups — PIA 2010, Contributions in Mathematical and Computational Sciences 2, Springer-Verlag (2012), pp. 53-74.
- [28] A. Tamagawa, The Grothendieck Conjecture for Affine Curves, Compositio Math. 109 (1997), pp. 135-194.
- [29] K. Ueno, Algebraic Geometry 3, Translation of Mathematical Monographs 218, American Mathematical Society (2003).

Research Institute for Mathematical Sciences Kyoto University Kyoto 606-8502 Japan minamide@kurims.kyoto-u.ac.jp