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INDECOMPOSABILITY OF ANABELIAN PROFINITE

GROUPS

ARATA MINAMIDE

Abstract. Classically, it is well-known that various anabelian profi-
nite groups, i.e., profinite groups which appear in anabelian geometry,
are center-free. In this paper, we study the indecomposability —
which is also a group-theoretic property of profinite groups — of various
anabelian profinite groups. For instance, we prove that the étale
fundamental group of the configuration space of a hyperbolic curve over
either a p-adic local field or a number field, as well as the étale funda-
mental group of an affine smooth curve over an algebraically closed field
of positive characteristic, are indecomposable. Finally, we consider
the topic of indecomposability in the context of the theory of combina-
torial anabelian geometry and pose the question: Is the Grothendieck-
Teichmüller group GT indecomposable? We give an affirmative an-
swer to a pro-l version of this question.
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Introduction

Classically, it is well-known that various anabelian profinite groups,
i.e., profinite groups which appear in anabelian geometry, are center-free.
For instance,

• the absolute Galois group of a sub-p-adic field [i.e., a field which is
isomorphic to a subfield of a finitely generated extension field of Qp]
is center-free [cf. [16], Lemma 15.8]

• the étale fundamental group of a hyperbolic curve over an alge-
braically closed field is center-free [cf., e.g., Proposition 2.4].
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In this paper, we study the indecomposability of various anabelian profi-
nite groups. The term indecomposability is defined as follows [cf. Definition
1.1]:

We shall say that a profinite group G is indecomposable if,
for any isomorphism of profinite groups G ∼= G1×G2, where
G1, G2 are profinite groups, it follows that either G1 or G2

is the trivial group.

For instance, in the case of absolute Galois groups, the following fact is
known [cf. Theorem 1.2]:

Fact. Let k be a Hilbertian field [cf. [FJ], Chapter 12]. Then the absolute
Galois group Gk of k is indecomposable.

In particular, the absolute Galois group of

(i) a finitely generated extension field of Q
(ii) a finitely generated transcendental extension field of Qp

(iii) a finitely generated transcendental extension field of Fp

is indecomposable [cf. Corollary 1.4]. Here, we note that any p-adic local
field [i.e., a finite extension field of Qp] is non-Hilbertian [cf. Remark 1.3].
But we can prove that for any p-adic local field k, the absolute Galois group
Gk of k is also indecomposable [cf. Proposition 1.6]. On the other hand, any
finite field is also non-Hilbertian [cf. Remark 1.3], but its absolute Galois

group [∼= Ẑ] is clearly decomposable!

Now we consider the case of étale fundamental groups of curves. For a
connected noetherian scheme (−), we shall write

Π(−)

for the étale fundamental group of (−) [for some choice of basepoint]. First,
we prove the following theorem [cf. Theorems 2.1, 2.2] which concerns the
case where the base field is algebraically closed.

Theorem A. Let k be an algebraically closed field; X a smooth curve
of type (g, r) such that the pair (g, r) satisfies 2g − 2 + r > 0 (respectively,
(g, r) ̸= (0, 0), (1, 0)) if the characteristic of k is zero (respectively, positive).
Then ΠX is indecomposable.

The characteristic zero case of Theorem A is shown in [22], Proposition 3.2.

Next, we consider the case that the base field is non-algebraically closed. Let
k be a field of characteristic p ≥ 0; l ̸= p a prime number. Then for the pair
(k, l), we consider the following condition:

(∗lk) For any finite extension field k′ of k, the l-adic cyclotomic character

χk′ : Gk′ → Z×
l of k′ is nontrivial.

We shall say that k is l-cyclotomically full if the pair (k, l) satisfies the
condition (∗lk) [cf. Definition 3.2].
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Then we prove the following theorem [cf. Theorem 3.4]:

Theorem B. Let k be a field of characteristic p ≥ 0 such that Gk is center-
free and indecomposable; X a smooth curve of type (g, r) over k such
that the pair (g, r) satisfies 2g−2+r > 0 (respectively, (g, r) ̸= (0, 0), (1, 0))
if the characteristic of k is zero (respectively, positive). Suppose that there
exists a prime number l ̸= p such that k is l-cyclotomically full. Then
ΠX is indecomposable.

Next, in the case of étale fundamental group of the configuration space of a
hyperbolic curve, we prove the following [cf. Theorem 3.5]:

Theorem C. Let n be a positive integer; k a field of characteristic zero
such that Gk is center-free and indecomposable; X a hyperbolic curve
over k; Xn the n-th configuration space associated to X. Suppose that
either k is algebraically closed, or l-cyclotomically full for a prime
number l. Then ΠXn is indecomposable.

For instance, Theorems B and C imply the following corollary [cf. Corollary
3.8]:

Corollary D. Let n be a positive integer; k a field; X a smooth curve of
type (g, r) over k such that the pair (g, r) satisfies 2g−2+r > 0 (respectively,
(g, r) ̸= (0, 0), (1, 0)) if the characteristic of k is zero (respectively, positive);
Xn the n-th configuration space associated to X. Then the following hold:

(i) If k is a finitely generated transcendental extension field of
Fp, then ΠX is indecomposable.

(ii) If k is a finitely generated extension field of either Q or Qp,
then ΠXn is indecomposable.

Moreover, Theorem C implies the following purely geometric result [cf. The-
orem 3.11]:

Theorem E. Let n be a positive integer; k a field of characteristic zero;
X a hyperbolic curve over k; Xn the n-th configuration space associated
to X. Suppose that there exists an isomorphism of k-schemes

Xn
∼→ Y ×k Z

— where Y , Z are k-varieties [i.e., schemes that are of finite type, sepa-
rated, and geometrically integral over k]. Then it follows that either

Y ∼= Spec(k) or Z ∼= Spec(k).

Finally, we consider the Grothendieck-Teichmüller group GT [cf. Defi-
nition 5.1]. One fundamental problem in the theory of GT is the issue of
whether or not the well-known injection

GQ ↪→ GT
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is, in fact, bijective. On the other hand, from the point of view of the theory
of combinatorial anabelian geometry [cf., e.g., [20], [10], [11], [12]], it is more
natural to consider the issue of whether or not

GT exhibits analogous behavior / properties to GQ

[cf. [12], Introduction]. From this point of view, it is natural to pose the
question:

Is GT indecomposable?

[Note that GQ is indecomposable [cf. the above Fact].] In this paper, we give
an affirmative answer to a pro-l version of this question. More precisely, we
prove the following result [cf. Theorem 5.4]:

Theorem F. Let l be a prime number. Then the pro-l Grothendieck-
Teichmüller group GTl [cf. Definition 5.1] is indecomposable.

The present paper is organized as follows: In §1, we review various proper-
ties of absolute Galois groups. Also, we prove a [profinite] group-theoretic
result [cf. Proposition 1.8] which is needed in §3. In §2, we prove the inde-
composability of the geometric fundamental group of a smooth [hyperbolic]
curve [cf. Theorem A]. In §3, by applying the results of §1 and §2, we prove
Theorems B, C and Corollary D. Moreover, by combining Theorem C with
Lemma 3.10, we conclude Theorem E. In §4, we first give an alternative
proof [cf. Theorem 4.7] of the indecomposability of the maximal pro-l quo-
tient of the absolute Galois group of a number field without using the theory
of Hilbertian fields. We then proceed to prove the indecomposability of a
certain almost pro-l group arising from the configuration space of a hyper-
bolic curve over either an l-adic local field or a number field [cf. Theorem
4.10, (vi)]. Finally, in §5, after reviewing the definitions of GT and GTl, we
verify Theorem F as a consequence of a certain anabelian result over finite
fields [cf. [7], Remark 6, (iv)].

Acknowledgements:

I would like to thank Professors Shinichi Mochizuki and Yuichiro Hoshi
for their suggestions, many helpful discussions, and warm encouragement.

0. Notations and Conventions

In this paper, we follow the terminology and conventions of [22], §0,
“Topological Groups”, “Curves”; [22], Definition 2.1; [21], Definition 1.1,
(ii), (iii).

Numbers:

The notation Q will be used to denote the field of rational numbers. The
notation Z ⊆ Q will be used to denote the set, group, or ring of rational

integers. The profinite completion of the group Z will be denoted by Ẑ. If p
is a prime number, then the notation Qp (respectively, Zp) will be used to
denote the p-adic completion of Q (respectively, Z). The notation Fp will
be used to denote the finite field Z/pZ.
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A finite extension field of Q (respectively, Qp) will be referred to as a
number field (respectively, p-adic local field).

Topological groups:

Let G be a Hausdorff topological group, and H ⊆ G a closed subgroup.
Let us write

ZG(H)
def
= {g ∈ G | g · h = h · g, ∀h ∈ H}

for the centralizer of H in G. Note that ZG(H) is always closed in G. We

shall write Z(G)
def
= ZG(G) for the center of G.

We shall say that a profinite group G is elastic if it holds that every
topologically finitely generated closed normal subgroup N ⊆ H of an open
subgroup H ⊆ G of G is either trivial or of finite index in G. If G is elastic,
but not topologically finitely generated, then we shall say that G is very
elastic.

We shall say that a profinite group G is slim if for every open subgroup
H ⊆ G, the centralizer ZG(H) is trivial. A profinite group G is slim if and
only if every open subgroup of G has trivial center [cf. [17], Remark 0.1.3].
Note that every finite closed normal subgroup N ⊆ G of a slim profinite
group G is trivial. [Indeed, this follows by observing that for any normal
open subgroup H ⊆ G such that N∩H = {1}, consideration of the inclusion
N ↪→ G/H reveals that the conjugation action of H on N is trivial, i.e., that
N ⊆ ZG(H) = {1}.]

Let p be a prime number. Then we shall write G(p) for the maximal pro-p
quotient of a profinite group G, i.e., the inverse limit of the finite quotients
of p-power order of G. We shall refer to a quotient G � Q as almost
pro-p-maximal if, for some normal open subgroup N ⊆ G, Ker(G � Q)
coincides with the kernel of the natural surjection from N to the maximal
pro-p quotient of N . If G admits an open subgroup which is pro-p, then we
shall say that G is almost pro-p.

We shall write Gab for the abelianization of a profinite group G, i.e.,
the quotient of G by the closure of the commutator subgroup of G. We
shall denote the group of automorphisms of G by Aut(G). Conjugation
by elements of G determines a homomorphism G → Aut(G) whose image
consists of the inner automorphisms of G. We shall denote by Out(G)
the quotient of Aut(G) by the [normal] subgroup consisting of the inner
automorphisms. If, moreover, G is topologically finitely genertaed, then one
verifies easily that the topology of G admits a basis of characteristic open
subgroups. Any such basis determines a profinite topology on the group
Aut(G), Out(G).

Curves:

Let S be a scheme andX a scheme over S. If (g, r) is a pair of nonnegative
integers, then we shall say that X → S is a smooth curve of type (g, r) over S
if there exist an S-scheme X which is smooth, proper, of relative dimension
1 with geometrically connected fibers of genus g, and a closed subscheme
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D ⊆ X which is finite étale of degree r over S such that the complement of
D in X is isomorphic to X over S.

We shall say that X is a hyperbolic curve over S if there exists a pair (g, r)
of nonnegative integers with 2g − 2 + r > 0 such that X is a smooth curve
of type (g, r) over S. A tripod is a hyperbolic curve of type (0, 3).

Let X → S be a smooth curve of type (g, r). For positive integers i, j ≤ n
such that i < j, write

pi,j : Pn
def
= X ×S . . .×S X → X ×S X

for the projection of the product Pn of n copies of X → S to the i-th and
j-th factors. Then we shall refer to as the n-th configuration space associated
to X → S the S-scheme

Xn → S

which is the open subscheme determined by the complement in Pn of the
union of the various inverse images via the pi,j [as (i, j) ranges over the
pairs of positive integers ≤ n such that i < j] of the image of the diagonal
embedding X ↪→ X ×S X.

Write E for the set [of cardinality n] of factors of Pn. Let E′ ⊆ E be a

subset of cardinality n′; E′′ def
= E \ E′; n′′ def

= n − n′. Then by “forgetting”
the factors of E that belong to E′, we obtain a natural projection morphism

Xn → Xn′′ .

In this situation, we shall refer to n′ as the length of this projection mor-
phism. One verifies immediately that a projection Xn → Xn−1 of length 1
may be regarded as a smooth curve of type (g, r + n− 1) over Xn−1.

Fundamental groups:

Let X be a connected noetherian scheme. Then we shall write

ΠX

for the étale fundamental group of X [for some choice of basepoint].

For any field k, we shall write

Gk

for the absolute Galois group of k [for some choice of embedding to a sepa-

rable closure of k]. We note that Gk
∼→ ΠSpec(k).

1. Indecomposability of Absolute Galois Groups

In this section, we review various properties of absolute Galois groups.
Also, we prove a [profinite] group-theoretic result [cf. Proposition 1.8] which
is needed in §3.



INDECOMPOSABILITY OF ANABELIAN PROFINITE GROUPS 7

Definition 1.1. (cf. [22], Definition 3.1) We shall say that a profinite group
G is indecomposable if, for any isomorphism of profinite groups G ∼= G1×G2,
where G1, G2 are profinite groups, it follows that either G1 or G2 is the
trivial group. We shall say that G is strongly indecomposable if every open
subgroup of G is indecomposable.

Theorem 1.2. Let k be a Hilbertian field [cf. [FJ], Chapter 12]. Then
Gk is very elastic, slim, and strongly indecomposable.

Proof. The very elasticity portion of Theorem 1.2 follows from [4], Lemma
16.11.5; [4], Proposition 16.11.6. Note that for any open subgroup H of Gk,

there exists a finite separable extension kH of k such that GkH
∼→ H. Here,

by [4], Corollary 12.2.3, kH is also a Hilbertian field. Thus, to verify the slim-
ness and the strong indecomposability portions of Theorem 1.2, it suffices to
show that Gk is center-free and indecomposable. But this center-freeness
(respectively, indecomposability) follows from [4], Proposition 16.11.6 (re-
spectively, the theorem of Haran-Jarden [cf. [4], Corollary 13.8.4]). �

Remark 1.3. Let k be either a finite field or a p-adic local field. Then k
is always non-Hilbertian. Indeed, Gk is topologically finitely generated [cf.
Proposition 1.6, below; [4], Lemma 16.11.5].

Corollary 1.4. The following types of fields are Hilbertian:

(i) finitely generated extension fields of Q,

(ii) finitely generated transcendental extension fields of Qp,

(iii) finitely generated transcendental extension fields of Fp.

In particular, their absolute Galois groups are very elastic, slim, and
strongly indecomposable.

Proof. The first statement follows from [4], Theorem 13.4.2. The last state-
ment follows from the first, together with Theorem 1.2. �

Lemma 1.5. Let G be a profinite group. If G is elastic, slim, and topo-
logically finitely generated, then G is strongly indecomposable.

Proof. First, we note that any open subgroup of G is also elastic, slim, and
topologically finitely generated. Thus, to verify the assertion, it suffices to
show that G is indecomposable. Suppose that we have an isomorphism of
profinite groups G ∼= G1 × G2 such that G1 ̸= {1}. Then since G1 is a
nontrivial topologically finitely generated closed normal subgroup of G, [by
the elasticity of G] G1 is of finite index in G. In particular, G1 is an open
subgroup of G. Thus, by the slimness of G, we have G2 ⊆ ZG(G1) = {1}. �
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Proposition 1.6. Let k be a p-adic local field. Then Gk, as well as any
almost pro-p-maximal quotient Gk � Qk of Gk, is elastic, slim, and
topologically finitely generated. In particular, Gk and Qk are strongly
indecomposable.

Proof. The assertions follow from Lemma 1.5; [21], Theorem 1.7, (ii); [23],
Theorem 7.4.1. �

Lemma 1.7. Let G1, . . . , Gn be profinite groups, where n ≥ 1 is an
integer;

ϕ : Π
def
=

n∏
i=1

Gi � Q

a surjection of profinite groups. Then there exist normal closed subgroups
Hi ⊆ Gi [for i = 1, . . . , n], N ⊆ Q such that N ⊆ Z(Q), and the composite
Π � Q/N of ϕ with the surjection Q � Q/N induces an isomorphism

Π
def
=

n∏
i=1

Gi
∼→ Q/N

— where we write Gi
def
= Gi/Hi. In particular, if Q is center-free and

indecomposable, then we obtain an isomorphism Gi
∼→ Q for some i ∈

{1, . . . , n}.

Proof. This is the content of [22], Proposition 3.3. �

Proposition 1.8. Let

1 −−−−→ ∆ −−−−→ Π
p−−−−→ G −−−−→ 1

be an exact sequence of profinite groups. Then the following hold:

(i) Suppose that ∆ is indecomposable, and G is center-free and
indecomposable. Then if the natural outer Galois represen-
tation

G → Out(∆)

associated to the above exact sequence is nontrivial, then Π is also
indecomposable.

(ii) Suppose that ∆ is nontrivial and center-free, and that G is non-
trivial. Then if Π is indecomposable, then the natural outer
Galois representation

G → Out(∆)

associated to the above exact sequence is nontrivial.
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Proof. (i) Suppose that Π = Π1 × Π2, where Π1, Π2 are nontrivial closed
normal subgroups of Π. Then since G is center-free, it follows from Lemma
1.7 that there exist normal closed subgroups Hi ⊆ Πi [for i = 1, 2] such that

Π1/H1 × Π2/H2
∼→ G. In particular, since G is indecomposable, we obtain

that either Π1/H1 = {1} or Π2/H2 = {1}. Without loss of generality, we

may assume that Π1/H1 = {1}, so Π1 = H1, Π2/H2
∼→ G. Thus, we have

Π1 ×H2
∼→ ∆.

Now I claim that H2 ̸= {1}. Indeed, suppose that H2 = {1}, so Π1
∼→ ∆,

Π2
∼→ G. Then the extension determined by the exact sequence that appears

in the statement of Proposition 1.8 is isomorphic to the trivial extension of
G by ∆

1 −−−−→ ∆ −−−−→ ∆×G −−−−→ G −−−−→ 1.

Thus, the natural outer Galois representation G → Out(∆) induced by the
conjugation action of G on ∆ factors through the trivial morphism G →
Out(∆). But this contradicts the assumption that the outer representation
G → Out(∆) is nontrivial. This completes the proof of the claim.

In light of the claim, by the indecomposability of ∆, we conclude that Π1 =
{1}, a contradiction. This completes the proof that Π is indecomposable.

(ii) Suppose that the representation G → Out(∆) is trivial. Note that
both ∆ and ZΠ(∆) are normal closed subgroups of Π [cf. the discussion
entitled “Topological groups” in §0]. Moreover, by the triviality of the rep-
resentation G → Out(∆), it follows that Π is generated by ∆ and ZΠ(∆).
Thus, since ∆ is center-free, i.e., ∆ ∩ ZΠ(∆) = Z(∆) = {1}, we obtain that
Π ∼= ∆ × ZΠ(∆). Here, we note that since p(ZΠ(∆)) = G is nontrivial, we
have ZΠ(∆) ̸= {1}. Therefore, since ∆ is nontrivial, we conclude that Π is
not indecomposable, a contradiction. �

2. Indecomposability of Geometric Fundamental Groups of
Curves

In this section, we prove the indecomposability of the geometric funda-
mental group of a smooth [hyperbolic] curve.

Theorem 2.1. Let k be an algebraically closed field of characteris-
tic zero; X a hyperbolic curve over k. Then ΠX is elastic, slim, and
topologically finitely generated. In particular, ΠX is strongly inde-
composable.

Proof. The fact that ΠX is elastic (respectively, slim; topologically finitely
generated) follows from [22], Theorem 1.5 (respectively, [22], Proposition 1.4;

[26], EXPOSÉ XIII, Corollaire 2.12). In particular, the strong indecompos-
ability of ΠX follows from Lemma 1.5 [cf. also [22], Proposition 3.2; [22],
Remark 3.2.1]. �
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Theorem 2.2. Let k be an algebraically closed field of characteristic
p > 0; X a smooth curve of type (g, r) such that the pair (g, r) satisfies

(g, r) ̸= (0, 0), (1, 0). Then G
def
= ΠX is strongly indecomposable.

Proof. First, we note that for any open subgroup H of G, there exists a
connected finite étale covering XH → X of X, where XH is also a curve
of type ̸= (0, 0), (1, 0) over k such that ΠXH

∼→ H. Thus, to verify the
assertion, it suffices to show that G is indecomposable. Suppose that we
have an isomorphism of profinite groups G ∼= G1 ×G2 such that G1 ̸= {1},
G2 ̸= {1}. In particular, by the slimness of G [cf. Proposition 2.4, below],
it follows that G1, G2 are infinite [cf. §0].

Now I claim that

(∗1) there exists an open subgroup U of G such that U is [isomorphic to]
the fundamental group of a curve of genus ≥ 2.

Indeed, this fact is elementary and well-known, but we give a short proof
here for completeness. First, we consider the case where the genus of X is
0, i.e., the unique smooth compactification of X is P1

k. Here, note that if we
identify the function field of P1

k with k(t), where t is an indeterminate, then
for any Artin-Schreier equation

xp − x = tm (m ∈ Z>0, p - m),

one computes easily that the normalization of P1
k in the extension field

k(t)[x]/(xp − x − tm) of k(t) determines a finite ramified covering ϕm :
Cm → P1

k of P1
k branched only at ∞, where Cm is a smooth, proper curve

of genus (m−1)(p−1)
2 [cf., e.g., [29], Example 8.16]. Thus, for any curve X

of type (0, r), where r > 0, by taking m to be sufficiently large, we obtain
a connected finite étale covering X ′ → X of X such that the genus of X ′

is ≥ 2. Next, we consider the case where the genus of X is 1, i.e., the
unique smooth compactification of X is an elliptic curve E. Note that by
applying the Riemann-Roch Theorem to E, we obtain a finite morphism

E1
def
= E \ {p} → A1

k over k, where p ∈ E \X is a closed point of E. Next,
let us observe that it follows from the genus 0 case, which has already been
verified, that there exists a connected finite étale covering C → A1

k of A1
k

such that the genus of C is ≥ 2. Then any connected component of E1×A1
k
C

determines a connected finite étale covering C ′ → E1 of E1. Moreover, by
applying the Hurwitz formula to the compactification of the finite morphism
C ′ ↪→ E1 ×A1

k
C → C, it follows that the genus of C ′ is also ≥ 2. Thus, for

any curve X of type (1, r), where r > 0, we obtain a connected finite étale
covering X ′ → X of X such that the genus of X ′ is ≥ 2. This completes the
proof of (∗1).

In light of (∗1) and the fact that G1, G2 are infinite, we may assume,
without loss of generality, that G is the fundamental group of a curve of
genus ≥ 2.

Next, I claim that
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(∗2) for every prime number l ̸= p, there exist finite quotients G1 � Q1,
G2 � Q2 such that l divides the order of Q1, Q2.

Indeed, suppose that l does not divide the order of any finite quotient of G1.
Now let N1 ( G1 be a proper normal open subgroup of G1. Note that by

assumption, we have Nab
1 ⊗ Zl = {1}. Write N

def
= N1 ×G2. Then since the

conjugation action of G/N ∼= G1/N1 × {1} on

Nab ⊗ Zl
∼= (Nab

1 ⊗ Zl)× (Gab
2 ⊗ Zl) ∼= {1} × (Gab

2 ⊗ Zl)

is trivial, by Proposition 2.4, below, we conclude that G/N = {1}, a contra-
diction. This completes the proof of (∗2).

In light of the (∗2), by replacing G by the maximal pro-l quotient of
a suitable open subgroup of G for some l ̸= p, we may assume without
loss of generality that G, G1, G2 are pro-l groups. Then since G is slim
[cf. Proposition 2.4, below], it follows that G1, G2 are nonabelian pro-l
groups, so dimFl

H1(G1,Fl) ≥ 2, dimFl
H1(G2,Fl) ≥ 2 [cf. [25], Theorem

7.8.1]. In particular, since we have an inclusion H1(G1,Fl)⊗H1(G2,Fl) ⊆
H2(G,Fl), we obtain that dimFl

H2(G,Fl) ≥ 4. This contradicts the fact
that dimFl

H2(G,Fl) is either 0 or 1. [Indeed, H2(G,Fl) is isomorphic to the
second étale cohomology group H2

ét(X,Fl) of X [cf. [19], Proposition 1.1];
the dimension over Fl of this last cohomology group is either 0 or 1 [cf. [5],
Theorem 7.2.9 (ii); Proposition 7.2.10].] Therefore, G is indecomposable. �

Remark 2.3. In the situation of Proposition 2.2, if X is an affine curve,
then ΠX is never finitely generated. [In fact, the maximal pro-p quotient of
ΠX is a free pro-p group of rank |k| — cf. [27], Theorem 12.] In particular,
we cannot apply Lemma 1.5 to Proposition 2.2.

The following result is well-known [cf., e.g., [28], Proposition 1.11; [22],
Propostion 1.4], but we review it briefly for the sake of completeness.

Proposition 2.4. Let k be an algebraically closed field of characteristic
p ≥ 0; l ̸= p a prime number; X a smooth curve of type (g, r) over k
such that the pair (g, r) satisfies 2g − 2 + r > 0 (respectively, (g, r) ̸= (0, 0),
(1, 0)) if the characteristic of k is zero (respectively, positive). Then for any

normal open subgroup N of G
def
= ΠX such that the connected finite étale

covering XN → X corresponding to N has genus ≥ 2, the conjugation
action of G/N on Nab ⊗ Zl is faithful. In particular, ΠX , as well as its

maximal pro-l quotient Π
(l)
X , is slim.

Proof. The faithfulness portion of Proposition 2.4 follows immediately from
the argument given in [3], Lemma 1.14. The slimness portion of Proposition
2.4 follows formally from the faithfulness portion of Proposition 2.4. �
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3. Indecomposability of Various Fundamental Groups

In this section, by applying the results of §1 and §2, we prove the in-
decomposability of various fundamental groups. Moreover, by applying an
indecomposability result, we prove the “scheme-theoretic indecomposability”
of the configuration space of a hyperbolic curve over a field of characteristic
zero [cf. Theorem 3.11].

Lemma 3.1. Let k be a field; k an algebraic closure of k; X a quasi-
compact, geometrically connected scheme over k. Then the sequence

of schemes X ×k k
pr1→ X → Spec(k) determines an exact sequence of

profinite groups

1 −−−−→ ΠX×kk
−−−−→ ΠX −−−−→ Gk −−−−→ 1.

Proof. This is the content of [26], EXPOSÉ IX, Théorème 6.1. �

Definition 3.2. Let k be a field of characteristic p ≥ 0; l ̸= p a prime
number. Then for the pair (k, l), we consider the following condition:

(∗lk) For any finite extension field k′ of k, the l-adic cyclotomic character

χk′ : Gk′ → Z×
l of k′ is nontrivial.

We shall say that k is l-cyclotomically full if the pair (k, l) satisfies the
condition (∗lk).

Lemma 3.3. In the notation of Definition 3.2, the following hold:

(i) k is l-cyclotomically full if and only if for any finite extension
field k′ of k, there exists a positive integer n such that k′ does not
contain a primitive ln-th root of unity.

(ii) Let K be an extension field of k. Then if K is l-cyclotomically
full, then the same is true of k. Suppose further that K is a finitely
generated extension field of k. Then if k is l-cyclotomically full,
then the same is true of K.

(iii) k is l-cyclotomically full if and only if the image of the l-adic
cyclotomic character χk : Gk → Z×

l of k is infinite.

(iv) Let X be a smooth curve of type (g, r) over k such that the pair
(g, r) satisfies (g, r) ̸= (0, 0), (0, 1) (respectively, (g, r) ̸= (0, 0)) if
the characteristic of k is zero (respectively, positive); k an algebraic

closure of k. Write Xk
def
= X ×k k. Suppose, moreover, that k is l-

cyclotomically full. Then the image of the natural outer Galois
representation

ρk : Gk → Out(ΠXk
)

associated to the exact sequence of profinite groups

1 −−−−→ ΠXk
−−−−→ ΠX −−−−→ Gk −−−−→ 1
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[cf. Lemma 3.1] is infinite, hence, in particular, nontrivial. If,
moreover, (g, r) ̸= (0, 1), then the image of the naturally induced
pro-l outer Galois representation

ρ
(l)
k : Gk → Out(Π

(l)
Xk

)

is infinite, hence, in particular, nontrivial.

(v) Let l, p be two distinct prime numbers; k ∈ {Q,Ql,Qp,Fp}. Suppose
that K is a finitely generated extension field of k. Then K is
l-cyclotomically full.

Proof. Assertion (i) follows immediately from the definitions.

Assertion (ii) follows immediately from (i) and the well-known fact that
the algebraic closure of k in K is a finite extension of k. [In fact, let E ⊆ K
be the algebraic closure of k in K; {x1, . . . , xn} ⊆ K a transcendence basis
of K/k. Then we obtain that [E : k] = [E(x1, . . . , xn) : k(x1, . . . , xn)] ≤
[K : k(x1, . . . , xn)] < +∞.]

We consider assertion (iii). First, let us prove necessity. Suppose that
the image of χk is finite. Then the kernel H of χk is an open subgroup of
Gk. Thus, there exists a finite extension k′ of k such that Gk′

∼→ H. In
particular, the l-adic cyclotomic character χk′ : Gk′

∼→ H ↪→ Gk → Z×
l of

k′ is trivial — a contradiction. Next, we prove sufficiency. To this end,
let k′ be a finite extension field of k. Write χk′ : Gk′ → Z×

l for the l-adic
cyclotomic character of k′, H for the kernel of χk. Then if we identify Gk′

with an open subgroup of Gk, then Gk′/Gk′ ∩H [
∼→ Im(χk′)] corresponds to

an open subgroup of Gk/H [
∼→ Im(χk)]. On the other hand, since Im(χk) is

infinite, we thus conclude that Im(χk′) is also infinite, hence, in particular,
nontrivial. This completes the proof of assertion (iii).

Next, we consider assertion (iv). First, suppose that (g, r) = (0, 1) [so
p > 0]. Then observe that one verifies immediately — by considering a
suitable Artin-Schreier covering of X as in the proof of Theorem 2.2 over a
suitable finite extension of k and applying [8], Lemma 23, (i), (iii) — that
the infiniteness [hence, in particular, the nontriviality] of the image of ρk
follows from the corresponding infiniteness in the case of g ≥ 1. Here, we
note that, although, in [8], Lemma 23, “∆” [in the notation of [8], Lemma
23] is assumed to be topologically finitely generated, one verifies immediately
that this assumption is in fact unnecessary. Thus, in the remainder of
the proof of assertion (iv), we may assume without loss of generality that
(g, r) ̸= (0, 1). Next, observe that to verify the infiniteness of ρk, it suffices

to verify the infiniteness of ρ
(l)
k . Moreover, by replacing k by a suitable finite

extension of k, it suffices to verify that ρ
(l)
k is nontrivial. Suppose that ρ

(l)
k is

trivial. First, we assume that g ≥ 1. Write J(X) for the Jacobian variety of
the smooth compactification X of X, Tl(J(X)) for the l-adic Tate module
of J(X). Then it follows that the natural l-adic Galois representation

Gk → Aut(Tl(J(X)))
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associated to J(X) is trivial. Then since, as is well-known [cf. the natural

isomorphisms
∧2g H1

ét(Xk,Zl)
∼→ H2g

ét (Xk,Zl)
∼→ Zl(−g) of Zl[Gk]-modules

discussed in [14], Remark 15.5; [13], Theorem 11.1, (a)], the determinant of
this representation is a positive power of the l-adic cyclotomic character of
k, we conclude that some positive power of the l-adic cyclotomic character
of k is trivial. But this contradicts (iii). Next, we assume that g = 0 and
r ≥ 2. Then since r ≥ 2, we may identify Xk with an open subscheme

of A1
k
\ {0}. Thus, by considering the maximal pro-l abelian quotient of

ΠA1
k
\{0}, we conclude that the l-adic cyclotomic character of k is trivial —

a contradiction. [Here, we recall that H1
ét(A1

k
\ {0},Zl) ∼= Zl(−1).]

Finally, we consider assertion (v). To verify the assertion, it suffices to
show that k is l-cyclotomically full [cf. (ii)]. Thus, to verify the assertion,
it suffices to show that, for any finite extension field k′ of k, there exists
a positive integer n such that k′ does not contain a primitive ln-th root of
unity [cf. (i)]. But this follows from the well-known fact that for any finite
extension field k′ of k, the group of roots of unity in k′ is finite [cf. [15],
Chapter 5; [24], Chapter 2, §4.3, §4.4]. �

Theorem 3.4. Let k be a field of characteristic p ≥ 0 such that Gk is
center-free and indecomposable; X a smooth curve of type (g, r) over
k such that the pair (g, r) satisfies 2g−2+r > 0 (respectively, (g, r) ̸= (0, 0),
(1, 0)) if the characteristic of k is zero (respectively, positive). Suppose that
there exists a prime number l ̸= p such that k is l-cyclotomically full.
Then ΠX is center-free and indecomposable.

Proof. Let k be an algebraic closure of k. Write Xk
def
= X ×k k. Then by

Lemma 3.1, we have the following exact sequence of profinite groups

1 −−−−→ ΠXk
−−−−→ ΠX −−−−→ Gk −−−−→ 1.

In particular, since Gk and ΠXk
are center-free [cf. Proposition 2.4], it

follows that ΠX is also center-free. Here, we note that both Gk and ΠXk
are

indecomposable [cf. Theorems 2.1, 2.2]. Thus, since the natural outer Galois
representation

Gk → Out(ΠXk
)

associated to the above sequence is nontrivial [cf. Lemma 3.3, (iv)], it follows
from Proposition 1.8, (i), that ΠX is also indecomposable. �

Theorem 3.5. Let n be a positive integer; k a field of characteristic zero
such that Gk is center-free and indecomposable; X a hyperbolic curve
over k; Xn the n-th configuration space associated to X. Suppose that
either k is algebraically closed, or l-cyclotomically full for a prime
number l. Then ΠXn is center-free and indecomposable.
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Proof. First, we note that for n ≥ 1, any projection morphism Xn → Xn−1

of length one determines a natural exact sequence of profinite groups [cf.
[22], Proposition 2.2, (i)]

1 −−−−→ Π(Xn)x −−−−→ ΠXn −−−−→ ΠXn−1 −−−−→ 1

— where x is a geometric point of Xn−1; we write X0
def
= Spec(k); (Xn)x

denotes the fiber of Xn → Xn−1 over x. In particular, by applying induc-
tion on n, we conclude from Proposition 2.4 and Theorem 3.4 that ΠXn

is center-free. Here, we note that Π(Xn)x and ΠX1 are indecomposable [cf.
Theorems 2.1, 3.4]. Moreover, it is well-known that the natural outer Galois
representation

ΠXn−1 → Out(Π(Xn)x)

associated to the above exact sequence is nontrivial. [In the case where k
is an algebraically closed field, the above representation is, in fact, injective
— cf. [2], Theorem 1.] Thus, by induction on n, it follows from Proposition
1.8, (i), that ΠXn is indecomposable. �

Corollary 3.6. Let n be a positive integer; k a Hilbertian field of char-
acteristic p ≥ 0; X a smooth curve of type (g, r) over k such that the pair
(g, r) satisfies 2g− 2+ r > 0 (respectively, (g, r) ̸= (0, 0), (1, 0)) if the char-
acteristic of k is zero (respectively, positive); Xn the n-th configuration
space associated to X. Suppose that there exists a prime number l ̸= p such
that k is l-cyclotomically full. Also, if p > 0, then we assume further that
n = 1. Then ΠXn is center-free and indecomposable.

Proof. These assertions follow immediately from Corollary 1.2 and Theo-
rems 3.4, 3.5. �

Remark 3.7. The center-freeness asserted in Theorems 3.4, 3.5 and Corol-
lary 3.6 holds even if one does not assume that k is l-cyclotomically full.

Corollary 3.8. Let n be a positive integer; k a field; X a smooth curve of
type (g, r) over k such that the pair (g, r) satisfies 2g−2+r > 0 (respectively,
(g, r) ̸= (0, 0), (1, 0)) if the characteristic of k is zero (respectively, positive);
Xn the n-th configuration space associated to X. Then the following hold:

(i) If k is a finitely generated transcendental extension field of
Fp, then ΠX is center-free and indecomposable.

(ii) If k is a finitely generated extension field of either Q or Qp,
then ΠXn is center-free and indecomposable.

Proof. First, we note that every field k which appears in Corollary 3.8 is
l-cyclotomically full for some prime number l [cf. Lemma 3.3, (v)]. Thus, in
the case that k is Hilbertian [cf. Corollary 1.4] (respectively, non-Hilbertian,
i.e., p-adic local), the assertions follow from Corollary 3.6 (respectively,
Proposition 1.6 and Theorem 3.5). �
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Definition 3.9. (cf. [9], Definition 2.5) Let k be a field of characteristic
zero, k an algebraic closure of k. Let X be a variety over k [i.e., a scheme
that is of finite type, separated, and geometrically integral over k]. Then we
shall say that X is of LFG-type if, for any normal variety Y over k and any
morphism Y → X ×k k over k that is not constant, the image of the outer
homomorphism ΠY → ΠX×kk

is infinite.

Lemma 3.10. Let n be a positive integer; k a field of characteristic zero;
X a hyperbolic curve over k; Xn the n-th configuration space associated
to X. Then Xn is of LFG-type.

Proof. This follows immediately from [9], Proposition 2.7. �

Theorem 3.11. Let n be a positive integer; k a field of characteristic
zero; X a hyperbolic curve over k; Xn the n-th configuration space as-
sociated to X. Suppose that there exists an isomorphism of k-schemes

Xn
∼→ Y ×k Z

— where Y , Z are k-varieties [cf. Definition 3.9]. Then it follows that
either

Y ∼= Spec(k) or Z ∼= Spec(k).

Proof. We may assume that k is algebraically closed. Then to verify the
assertion, it suffices to show that either dim(Y ) = 0 or dim(Z) = 0. First,

we note that by the Künneth formula [cf. [26], EXPOSÉ XIII, Proposition
4.6], there exists an isomorphism of profinite groups

ΠXn

∼→ ΠY ×ΠZ .

Then since ΠXn is indecomposable by Theorem 3.5, we may without loss
of generality that ΠY = {1}. Now we fix a k-rational point z ∈ Z(k) of

Z. Then we obtain a closed immersion Y
∼→ Y ×k {z} ↪→ Y ×k Z

∼→ Xn.
Write Y ′ → Y for the [surjective] morphism obtained by normalizing Y .
Here, if we assume that dim(Y ) ≥ 1, then the composite Y ′ → Y ↪→ Xn is
nonconstant. Thus, sinceXn is of LFG-type by Lemma 3.10, the image of the
outer homomorphism ΠY ′ → ΠXn is infinite — a contradiction. Therefore,
we conclude that dim(Y ) = 0. �



INDECOMPOSABILITY OF ANABELIAN PROFINITE GROUPS 17

4. Alternative Proof of the Indecomposability of the Pro-l
Absolute Galois Group of a Number Field

In this section, we first give an alternative proof [cf. Theorem 4.7] of the
indecomposability of the maximal pro-l quotient of the absolute Galois group
of a number field without using the theory of Hilbertian fields. [In fact, this
indecomposability is an easy consequence of the theorem of Haran-Jarden
[cf. [4], Corollary 13.8.4] in the theory of Hilbertian fields.] Finally, we
prove the indecomposability of a certain almost pro-l group arising from the
configuration space of a hyperbolic curve over either an l-adic local field or
a number field [cf. Theorem 4.10, (vi)].

Definition 4.1. Let G be a profinite group. We shall say that G is meta-
abelian if there exists an abelian closed normal subgroup H of G such that
the quotient group G/H is also abelian.

Lemma 4.2. Let G be a meta-abelian profinite group. Then the fol-
lowing hold:

(i) Let H be a closed subgroup of G. Then H is also meta-abelian.

(ii) Let H be a closed normal subgroup of G. Then the quotient G/H
is also meta-abelian.

(iii) Let G1, G2 be meta-abelian profinite groups. Then the direct
product G1 ×G2 is also meta-abelian.

Proof. These assertions follow immediately from the definitions. �

Theorem 4.3. Let k be a p-adic local field; Vk ⊆ Gk the ramification
group of Gk. Then Vk is a free pro-p group, and the quotient group
Gk/Vk [i.e., the Galois group of the maximal tamely ramified extension of k]
is meta-abelian. In particular, for any prime l ̸= p, the maximal pro-l

quotient G
(l)
k of Gk is also meta-abelian.

Proof. The fact that Vk is free pro-p (respectively, Gk/Vk is meta-abelian)
follows from [23], Proposition 7.5.1 (respectively, [the proof of] [23], Theorem
7.5.3). The last statement follows, by applying the maximal pro-l quotient
functor [which is right exact] to the following natural exact sequence of
profinite groups

1 −−−−→ Vk −−−−→ Gk −−−−→ Gk/Vk −−−−→ 1,

from the fact that V
(l)
k = {1} and Lemma 4.2, (ii). �

Lemma 4.4. Let l be a prime number; F a nonabelian free pro-l group.
Then every abelian closed normal subgroup of F is trivial.
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Proof. This is the content of [25], Proposition 8.7.2. �

Lemma 4.5. Let l be a prime number; G1 a meta-abelian pro-l group;
G2 a free pro-l group; φ : G1 → G2 a morphism of profinite groups. Then
Im(φ) is abelian.

Proof. Write G
def
= Im(φ). First, we note that, by [25], Corollary 7.7.5, G is

free pro-l. Now suppose that G is nonabelian. Here, since G is meta-abelian
[cf. Lemma 4.2, (ii)], there exists an abelian closed normal subgroup H of
G such that G/H is also abelian. Then by Lemma 4.4, it follows that H is

trivial, so that G
∼→ G/H, a contradiction. Therefore, G is abelian. �

Lemma 4.6. Let l be a prime number; k a number field; k an algebraic
closure; Gk � Qk an almost pro-l-maximal quotient of Gk. Then Qk

is slim.

Proof. First, we note that, via the same arguments as the arguments applied
to prove [18], Proposition 2.1, we conclude the following:

Let k be a number field. Then:

(i) The natural surjection Gk � Qk induces an isomorphism

H i(Qk,Fl(1))
∼→ H i(Gk,Fl(1))

for all integers i ≥ 0.

(ii) Write k̃ ⊆ k for the extension of k defined by Ker(Gk � Qk). Then

for any automorphism σ of the field k̃ that preserves and acts non-

trivially on k ⊆ k̃, the automorphism induced by σ of the set of
one-dimensional Fl-subspaces of the Fl-vector space

H2(Qk,Fl(1))

is nontrivial.

[Here, we remark that, just as in the proof of [18], Proposition 2.1, (ii),
assertion (i) is used in the proof of assertion (ii).]

Then by applying assertion (ii), via the same argument as the argument
applied to prove [18], Corollary 2.2, we conclude that Qk is slim. �

Theorem 4.7. Let l be a prime number; k a number field. Then G
(l)
k is

strongly indecomposable.
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Proof. To verify the assertion, it suffices to show that G
(l)
k is indecomposable.

Suppose that we have an isomorphism of profinite groups G
(l)
k

∼= G1 × G2

such that G1 ̸= {1}, G2 ̸= {1}. In particular, since G1, G2 are nontrivial
pro-l groups, it follows that dimFl

H1(G1,Fl) ≥ 1, dimFl
H1(G2,Fl) ≥ 1. Now

I claim that it holds that

either dimFl
H2(G1,Fl) ≥ 1 or dimFl

H2(G2,Fl) ≥ 1.

Indeed, suppose that dimFl
H2(G1,Fl) = dimFl

H2(G2,Fl) = 0. Then by
[25], Theorem 7.7.4, it follows that G1, G2 are free pro-l groups. Now, by
Lemma 4.8, below, there exists a nonarchimedean valuation v of k such that
the residue characteristic p of the completion kv of k at v satisfies l | p− 1.
[In particular, there exists a primitive l-th root of unity in kv.] Then we may
identify Gkv with a closed subgroup of Gk [well-defined up to conjugation in
Gk]. Thus, we have a commutative diagram

Gkv

����

� � ι // Gk

����

G
(l)
kv

� � ι(l) // G
(l)
k

—where the vertical arrows are the natural surjections; the upper horizontal
arrow ι is the natural inclusion; the lower horizontal arrow ι(l) is the mor-
phism obtained by applying the maximal pro-l quotient functor to ι. Here,
we note that ι(l) is also injective [cf. [23], Theorem 9.4.3]. We shall write

pi : G
(l)
k

∼= G1 × G2 � Gi [i = 1, 2] for the i-th projection. Then since G
(l)
kv

is a meta-abelian pro-l group [cf. Theorem 4.3], by applying Lemma 4.5 to
the morphism

pi ◦ ι(l) : G(l)
kv

→ Gi,

it follows that pi(Im(ι(l))) is abelian. Since we have

G
(l)
kv

∼→ Im(ι(l)) ↪→ p1(Im(ι(l)))× p2(Im(ι(l))),

we thus conclude that G
(l)
kv

is abelian. This contradicts the fact that G
(l)
kv

is

nonabelian [cf. [23], Theorem 7.5.3]. This completes the proof of the claim.
On the other hand, by the Künneth formula in group cohomology, we

have an inclusion

H3(G
(l)
k ,Fl) ⊇ (H1(G1,Fl)⊗H2(G2,Fl))⊕ (H2(G1,Fl)⊗H1(G2,Fl)).

Thus, in light of the claim, we obtain that dimFl
H3(G

(l)
k ,Fl) ≥ 1.

Now suppose that either k is totally imaginary or l ̸= 2. Then we obtain
a contradiction to the well-known fact that the l-cohomological dimension

of Gk is ≤ 2 [cf. [23], Proposition 8.3.18]. Therefore, we conclude that G
(l)
k

is indecomposable if either k is totally imaginary or l ̸= 2. Note that this

implies that G
(l)
k is strongly indecomposable if either k is totally imaginary

or l ̸= 2.
It remains to consider the case where k is not totally imaginary, and

l = 2. Thus, k does not contain a primitive cubic root of unity. Let k′ be a
quadratic extension of k generated by a primitive cubic root of unity ζ3 ∈ k′.
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Thus, the field extension k′/k determines a open subgroup Hk′ ⊆ G
(l)
k of

G
(l)
k . On the other hand, since G

(l)
k is slim [cf. Lemma 4.6], the proof of the

strong indecomposability of G
(l)
k may be reduced to that of Hk′ [cf., e.g., the

proof of Theorem 2.2]. But this has already been shown. This completes
the proof in the case where k is not totally imaginary, and l = 2. �

Lemma 4.8. Let n be a positive integer. Then there exist infinitely many
prime numbers p ≡ 1 (mod n).

Proof. This is a special case of the Dirichlet’s prime number theorem. In
fact, in this case, an elementary proof may be given by applying the theory
of cyclotomic polynomials [cf., e.g., [6], Chapter 8, Corollary 5.0.1]. �

Corollary 4.9. Let l be a prime number; k a number field. Then any
almost pro-l-maximal quotient Gk � Qk of Gk is strongly indecom-
posable.

Proof. Since Qk is slim [cf. Lemma 4.6], the strong indecomposability of Qk

follows from Theorem 4.7 [cf., e.g., the proof of Theorem 2.2]. �

Theorem 4.10. Let l be a prime number; n a positive integer; k a field
of characteristic zero; k an algebraic closure of k; X a hyperbolic curve
over k; Xn the n-th configuration space associated to X; ∆ the maxi-
mal pro-l quotient of ΠXn×kk

; Π the quotient of ΠXn by the kernel of the

natural surjection ΠXn×kk
� ∆; ρ : Gk → Out(∆) the natural outer Ga-

lois representation associated to the lower exact sequence of the following
commutative diagram of profinite groups [cf. Lemma 3.1]

1 // ΠXn×kk
//

����

ΠXn
//

����

Gk
// 1

1 // ∆ // Π // Gk
// 1.

Then the following hold:

(i) ∆ is slim, topologically finitely generated, and indecompos-
able.

(ii) The profinite group Out(∆) is almost pro-l.

(iii) Suppose that k is l-cyclotomically full. Then ρ is nontrivial.

(iv) Suppose that Gk is center-free and indecomposable, and that k
is l-cyclotomically full. Then Π is center-free and indecom-
posable.
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(v) Any open normal pro-l subgroup N of Out(∆) [cf. (ii)] determines
an almost pro-l-maximal quotient

pN : Gk � G
(N)
k

of Gk, as well as a factorization ρ = ρN ◦ pN , for a uniquely deter-
mined morphism

ρN : G
(N)
k → Out(∆).

(vi) In the notation of (v), suppose that G
(N)
k is center-free and in-

decomposable, and that k is l-cyclotomically full. Then the
profinite group

∆
out
o G

(N)
k

def
= Aut(∆)×Out(∆) G

(N)
k

is center-free and indecomposable. In particular, if k is an l-

adic local field or a number field, then ∆
out
o G

(N)
k is center-free

and indecomposable.

Proof. First, we consider assertion (i). The fact that ∆ is slim and topo-
logically finitely generated is the content of [22], Proposition 2.2, (ii). Thus,

we verify the indecomposability of ∆. Write Xk
def
= X ×k k. Let (Xk)n

be the n-th configuration space associated to the hyperbolic curve Xk. [In

particular, we have a natural isomorphism (Xk)n
∼→ Xn ×k k of k-schemes.]

Here, we note that, for n ≥ 1, any projection morphism (Xk)n → (Xk)n−1
of

length one determines a natural exact sequence of profinite groups [cf. [22],
Proposition 2.2, (i)]

1 −−−−→ Π
(l)
((Xk)n)x

−−−−→ Π
(l)
(Xk)n

−−−−→ Π
(l)
(Xk)n−1

−−−−→ 1

— where x is a geometric point of (Xk)n−1
; we write (Xk)0

def
= Spec(k);

((Xk)n)x denotes the fiber of (Xk)n → (Xk)n−1
over x. Also, note that

Π
(l)
((Xk)n)x

and Π
(l)
(Xk)1

are indecomposable [cf. [22], Proposition 3.2]. More-

over, it is well-known that the natural outer Galois representation

Π
(l)
(Xk)n−1

→ Out(Π
(l)
((Xk)n)x

)

associated to the above exact sequence is injective [cf. [2], Remark following
the proof of Theorem 1], hence, in particular, nontrivial. Thus, by induction
on n, it follows from Proposition 1.8, (i), that ∆ is indecomposable. Assertion
(ii) follows from (i) and [1], Corollary 7.

Next, we consider assertion (iii). Suppose that ρ is trivial. Then by
considering the composites of the first projections

Xn → Xn−1 → . . . → X1,

it follows immediately that the natural outer Galois representation

Gk → Out(Π
(l)
Xk

)

is trivial. But this contradicts Lemma 3.3, (iv). Thus, ρ is nontrivial.
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Next, we consider assertion (iv). The center-freeness of Π follows imme-
diately from (i) and the assumption that Gk is center-free. Moreover, in
light of (i) and (iii), by applying Proposition 1.8, (i), to the exact sequence

1 −−−−→ ∆ −−−−→ Π −−−−→ Gk −−−−→ 1,

we conclude that Π is indecomposable. Assertion (v) follows immediately
from the various definitions involved.

Finally, we consider assertion (vi). Since ∆ is center-free [cf. (i)], by
pulling back the natural exact sequence of profinite groups

1 −−−−→ ∆ −−−−→ Aut(∆) −−−−→ Out(∆) −−−−→ 1

via ρN , we obtain the following exact sequence of profinite groups

1 −−−−→ ∆ −−−−→ ∆
out
o G

(N)
k −−−−→ G

(N)
k −−−−→ 1.

In particular, the center-freeness of ∆
out
o G

(N)
k follows immediately from

(i) and the assumption that G
(N)
k is center-free. Moreover, in light of (i)

and (iii) [cf. also (v)], by applying Proposition 1.8, (i), we conclude that

∆
out
o G

(N)
k is indecomposable. Finally, in the case where k is an l-adic local

field or a number field, recall that G
(N)
k is center-free [cf. Proposition 1.6,

Lemma 4.6] and indecomposable [cf. Proposition 1.6, Corollary 4.9], and
that k is l-cyclotomically full [cf. Lemma 3.3, (v)]. �

5. Indecomposability of the Pro-l Grothendieck-Teichmüller
Group

In this section, we verify the indecomposability of the pro-l Grothendieck-
Teichmüller group GTl [cf. Theorem 5.4] as a consequence of a certain
anabelian result over finite fields [cf. [7], Remark 6, (iv)].

Definition 5.1. (cf. [20], Definition 1.11, (i)) Let l be a prime number; k an
algebraically closed field of characteristic zero; X the tripod P1

k \ {0, 1,∞}
over k; X2 the second configurartion space associated to X. Suppose that

Π1 ∈ {ΠX ,Π
(l)
X }. Write

Π2
def
=

{
ΠX2 , if Π1 = ΠX ,

Π
(l)
X2

, if Π1 = Π
(l)
X .

Then for n = 1, 2, we shall write

OutFC(Πn) ⊆ Out(Πn)

for the subgroup of Out(Πn) consisting of FC-admissible outomorphisms of
Πn [cf. [20], Definition 1.1, (ii)];

OutFCS(Πn) ⊆ OutFC(Πn)
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for the subgroup of Out(Πn) consisting of FC-admissible outomorphisms of
Πn that commute with the outer modular symmetries [cf. [20], Definition
1.1, (vi)];

OutFC(Π1)
∆+ ⊆ OutFC(Π1)

for the image of OutFCS(Π2) via the natural injection OutFC(Π2) ↪→ OutFC(Π1)
induced by the first projection X2 → X [cf. [20], Definition 1.11, (i); [20],
Corollary 1.12, (ii); [20], Corollary 4.2, (i)]. We shall refer to

GT
def
= OutFC(ΠX)∆+ (respectively, GTl

def
= OutFC(Π

(l)
X )∆+)

as the Grothendieck-Teichmüller group (respectively, pro-l Grothendieck-
Teichmüller group).

Remark 5.2. GT as defined in Definition 5.1 coincides with the Grothendieck-
Teichmüller group as defined in more classical works [cf. [20], Remark
1.11.1].

The following result is well-known.

Lemma 5.3. Let l be a prime number. Then GT, GTl are slim.

Proof. The asserted slimness follows immediately from the [pro-l]Grothendieck
Conjecture over number fields [i.e., [16], Theorem A, applied to a tripod over
a number field] and [11], Lemma 3.5. �

Theorem 5.4. Let l be a prime number. Then GTl is strongly indecom-
posable.

Proof. To verify the assertion, it suffices to show that for any open subgroup
U ⊆ GTl of GTl, U is indecomposable. Let F be a finite field of characteristic
̸= l. Write ∆ for the maximal pro-l quotient of the étale fundamental group
of the tripod P1

F
\{0, 1,∞} over F , where F is an algebraic closure of F , and

ρ : GF → Out(∆)

for the pro-l outer Galois representation associated to P1
F \ {0, 1,∞}. It

follows immediately from the various definitions involved that G
def
= ρ(GF )

is contained in GTl ⊆ Out(∆). Thus, by replacing F by a suitable finite
extension of F , we may assume without loss of generality that G ⊆ U .
Moreover, since Out(∆) is almost pro-l [cf. [1], Corollary 7], by replacing F
by a suitable finite extension of F , we may assume without loss of generality

that ρ factors through the maximal pro-l quotient GF � G
(l)
F of GF . Here,

note that since G is infinite [cf. Lemmas 3.3, (i); 3.3, (iv)], we have G ∼= Zl.
Now suppose that we have an isomorphism of profinite groups U ∼= H1 ×

H2. In the following, we shall identify U and H1×H2 via this isomorphism.
Then I claim that it holds that

either G ∩H1 ̸= {1} or G ∩H2 ̸= {1}.
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Indeed, suppose that G ∩ H1 = {1} and G ∩ H2 = {1}. In particular, it
follows that, for i = 1, 2, the composite

G ↪→ U = H1 × H2

pri� Hi

— where pri is i-th projection — is injective. Thus, if we write Ki ⊆ Hi

for the image of the above composite, we obtain that G
∼→ Ki [∼= Zl]. Here,

note that we have inclusions

G ⊆ K
def
= K1 × K2 ⊆ H1 × H2.

Thus, since K [∼= Zl × Zl] is abelian, we obtain that

K ⊆ ZGTl
(G) ↪→ Z×

l

— where “↪→” is induced by the morphism “degP” of [7], Definition 3.1,
which is injective by [7], Remark 6, (iv); [11], Lemma 3.5. In particular, by
considering a suitable open subgroup of K, we obtain that Zl × Zl

∼= Zl, a
contradiction. This completes the proof of the claim.

In light of the claim, we may assume without loss of generality that

G ∩H1 ̸= {1}.
Then since G∩H1 ⊆ G is a nontrivial closed subgroup of G ∼= Zl, it follows
that G∩H1 is open in G. Thus, by replacing F by a suitable finite extension,
we may assume without loss of generality that G ⊆ H1. In particular, we
obtain that

H2 ⊆ ZGTl
(G) ↪→ Z×

l

— where “↪→” denotes the arrow “↪→” in the final display of the proof of the
above claim. Thus, it follows that H2 is abelian. On the other hand, since
H2 is center-free [cf. Lemma 5.3], we obtain that H2 = {1}. Therefore, we
conclude that U is indecomposable, as desired. �
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