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Abstract
We introduce

• certain finite dimensional algebras denoted by PCn and PFn,m which are certain
quotients of the plactic algebra Pn, had been introduced by A. Lascoux and M.-P.
Schützenberger [28]; we show that
dim(PFn,k) is equal to the number of symmetric plane partitions fit inside the box
n× k × k, dim(PCn) is equal to the number of alternating sign matrices of size n× n,
moreover,
dim(PFn,n) = TSPP (n)×TSSCPP (n), dim(PFn,n+1) = TSPP (n)×TSSCPP (n+
1), dim(PFn+2,n) = dim(PFn,n+1), dim(PFn+3,n) =

1
2 dim(PFn+1,n+1),

and study
• decomposition of the Cauchy kernels corresponding to the algebras PCn and PFn,m;
as well as introduce
• polynomials which are common generalizations of the (double) Schubert, β- Grothendieck,
Demazure (known also as key polynomials), (plactic) Key-Grothendieck, (plactic) Stan-
ley and stable β- Grothendieck polynomials.

Using a family of the Hecke type divided difference operators we introduce poly-
nomials which are common generalizations of the Schubert, β-Grothendieck, dual β-
Grothendieck, β-Demazure–Grothendieck, and Di–Francesco–Zin-Justin polynomials.

We also
• introduce and study some properties of the double affine nilCoxeter algebras and

related polynomials,
• put forward a quantum version of the Knuth relations and plactic algebra.

Keywords Plactic monoid and reduced plactic algebras; nilCoxeter and IdCoxeter algebras; Schubert,
β-Grothendieck, Key and (double) Key-Grothendieck polynomials ; Cauchy’s type kernels and symmetric,
totally symmetric plane partitions, and alternating sign matrices; double affine nilCoxeter algebras.
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1 Introduction
The Grothendieck polynomials had been introduced by A. Lascoux and M.-P. Schützenberger
in [29] and studied in detail in [37]. There are two equivalent versions of the Grothendieck
polynomials depending on a choice of a basis in the Grothendieck ring K⋆(F ln) of the
complete flag variety F ln. The basis {exp(ξ1), . . . , exp(ξn)} in K∗(F ln) is a one choice, and
another choice is the basis {1 − exp(−ξj), 1 ≤ j ≤ n}, where ξj, 1 ≤ j ≤ n} denote the
Chern classes of the tautological linear bundles Lj over the flag variety F ln. In the present
paper we use the basis in a deformed Grothendieck ring K∗,β(Fn) of the flag variety F ln
generated by the set of elements {xi = x

(β)
i = 1 − exp(β ξi), i = 1, . . . , n}. This basis has

been introduced and used for construction of the β-Grothendieck polynomials in [8],[9].
A basis in the classical Grothendieck ring of the flag variety in question corresponds to

the choice β = −1. For arbitrary β the ring generated by the elements {x(β)
i , 1 ≤ i ≤ n}

has been identified with the Grothendieck ring corresponding to the generalized cohomology
theory associated with the multiplicative formal group law F (x, y) = x+ y + β x y, see [15].
The Grothendieck polynomials corresponding to the classical K-theory ring K⋆(F ln), i.e. the
case β = −1, had been studied in depth by A. Lascoux and M.-P. Schützenberger in [30].
The β-Grothendieck polynomials has been studied in [8],[10], [15].

The plactic monoid over a finite totally ordered set A = {a < b < c < . . . < d} is the
quotient of the free monoid generated by elements from A subject to the elementary Knuth
transformations [21]

bca = bac & acb = cab, and bab = bba & aba = baa, (1.1)

for any triple {a < b < c} ⊂ A.
To our knowledge, the concept of “plactic monoid” has its origins in a paper by

C.Schensted [52], concerning the study of the longest increasing subsequence of a permu-
tation, and a paper by D. Knuth [21], concerning the study of combinatorial and algebraic
properties of the Robinson–Schensted correspondence 1.

As far as we know, this monoid and the (unital) algebra P(A) corresponding to that
monoid 2 , had been introduced, studied and used in [53], Section 5, to give the first complete
proof of the famous Littlewood–Richardson rule in the theory of Symmetric functions. A bit
later this monoid, was named the "monoïde plaxique" and studied in depth by A. Lascoux
and M.-P. Schützenberger [28]. The algebra corresponding to plactic monoid is commonly
known as plactic algebra. One of the basic properties of the plactic algebra [53] is that
it contains the distinguish commutative subalgebra which is generated by noncommutative

1See e.g. wiki/Robinson–Schensted _correspondence.
2If A = {1 < 2 < . . . < n}, the elements of the algebra P(A) can be identified with semistandard Young

tableaux. It was discovered by D. Knuth [21] that modulo Knuth equivalence the equivalence classes of
semistandard Young tableaux form an algebra, and he has named this algebra by tableaux algebra. It is easily
seen that the tableaux algebra introduced by D. Knuth is isomorphic to the algebra introduced by M.-P.
Schützenberger [53].
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elementary symmetric polynomials

ek(An) =
∑

i1>i2>...>ik

ai1ai2 · · · aik , k = 1, . . . , n, (1.2)

see e.g. [53], Corollary 5.9, [7].
We refer the reader to nice written overview [40] of the basic properties and applications

of the plactic monoid in Combinatorics.
It is easy to see that the plactic relations for two letters a < b, namely,

aba = baa, bab = bba,

imply the commutativity of noncommutative elementary polynomials in two variables. In
other words, the plactic relations for two letters imply that

ba(a+ b) = (a+ b)ba, a < b.

It has been proved in [7] that these relations together with the Knuth relations (1.1) for
three letters a < b < c, imply the commutativity of noncommutative elementary symmetric
polynomials for any number of variables.

In the present paper we prove that in fact the commutativity of nocommutative elementary
symmetric polynomials for n = 2 and n = 3 implies the commutativity of that polynomials
for all n, see Theorem 2.23 3.

One of the main objectives of the present paper is to study combinatorial properties of
the generalized plactic Cauchy kernel

C(Pn, U) =
n−1∏
i=1

{ i∏
j=n−1

(1 + pi,j−i+1 uj)
}
, (1.3)

where Pn stands for the set of parameters {pij, 2 ≤ i + j ≤ n + 1, i > 1, j > 1}, and
U := Un stands for a certain noncommutative algebra we are interested in, see Section 5.

We also want to bring to the attention of the reader on some interesting combinatorial
properties of rectangular Cauchy kernels

F(Pn,m, U) =
n−1∏
i=1

{ 1∏
j=m−1

(1 + p
i,i−j+1

(m) uj)
}
,

where Pn,m = {pij} 1≤i≤n
1≤j≤m

.
We treat these kernels in the (reduced) plactic algebras PCn and PFn,m correspondingly.

The algebras PCn and PFn,m are finite dimensional and have bases parameterized by certain
Young tableaux described in Section 5.1 and Section 6 correspondingly. Decomposition of the

3 Let us stress that conditions necessary and sufficient to assure the commutativity of noncommutative
elementary polynomials for the number of variables equals n = 2 and n = 3 turn out to be weaker then
that listed in [7]
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rectangular Cauchy kernel with respect to the basis in the algebra PFn,m mentioned above,
gives rise to a set of polynomials which are common generalizations of the (double) Schubert.
β-Grothendieck, Demazure and Stanley polynomials. To be more precise, the polynomials
listed above correspond to certain quotients of the plactic algebra PFn,m and appropriate
specializations of parameters {pij} involved in our definition of polynomials Uα({pij}), see
Section 6.

As it was pointed out in the beginning of Introduction, the Knuth (or plactic) relations
(1.1) have been discovered in [21] in the course of the study of algebraic and combinato-
rial properties of the Robinson–Schensted correspondence. Motivated by the study of basic
properties of a quantum version of the tropical/geometric Robinson–Schensted–Knuth
correspondence –work in progress, but see [1], [18], [19], [47], [48] for definition and basic
properties of the tropical/geometric RSK, – the author of the present paper came to a discov-
ery that a certain deformations of the Knuth relations preserve the Hilbert series (resp.the
Hilbert polynomials) of the plactic algebras Pn and Fn (resp. the algebras PCn and PFn).

More precisely, let {q2, . . . , qn} be a set of (mutually commuting) parameters, and Un :=
{u1, . . . , un} be a set of generators of the free associative algebra over Q of rank n. Let
Y, Z ⊂ [1, n] be subsets such that Y ∪Z = [1, n] and Y ∩Z = ∅. Let us set p(a) = 0 , if a ∈ Y
and p(a) = 1, if a ∈ Z.
Define super quantum Knuth relations among the generators u1, . . . , un as follows:
SPLq :

(−1)p(i)p(k) qk uj ui uk = uj uk ui, i < j ≤ k, (−1)p(i)p(k) qk ui uk uj = uk ui uj, i ≤ j < k.

We define
• deformed/quantum superplactic algebra SQPn to be the quotient of the free associative
algebra Q⟨u1, . . . , un⟩ by the two-sided ideal generated by the set of quantum Knuth relations
(SPLq),
• reduced deformed/quantum superplactic algebras SQPCn and SQPFn,m to be the quo-
tient of the algebra SQPn by the two-sided ideals described in Definitions 5.13 and 6.6
correspondingly.

We state Conjecture
The algebra SQPn and the algebras SQPCn and SQPFn,m, are flat deformations

of the algebras Pn, PCn and PFn,m correspondingly.

In fact one can consider more general deformation of the Knuth relations, for example
take a set of parameters Q := {qik, 1 ≤ i < k ≤ n} and impose on the set of generators
{u1, . . . , un} the following relations

qik uj ui uk = uj uk ui, i < j ≤ k, qik ui uk uj = uk ui uj, i ≤ j < k.

However we don’t know how to describe a set of conditions on parameters Q which imply the
flatness of the corresponding quotient algebra(s), as well as we don’t know an interpretation
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and dimension of the algebras SQPCn and SQPFn,m for a “generic” values of parameters Q.
We also mention and leave for a separate publication(s), the case of algebras and polynomials
associated with superplactic monoid [44], [27], which corresponds to the relations SPLq with
qi = 1, ∀i. Finally we point out on interesting and important paper [43] wherein the case
Z = ∅, and all deformation parameters are equal one, has been introduced and studied in
depth.

Let us repeat that the important property of plactic algebras Pn is that the noncommu-
tative elementary polynomials

ek(u1, . . . , nn−1) :=
∑

n−1≥a1≥a2≥ak≥1

ua1 · · ·uak , k = 1, . . . , n− 1,

generate a commutative subalgebra inside of the plactic algebra Pn, see e.g. [28], [7]. There-
fore the all our finite dimensional algebras introduced in the present paper, have a distinguish
finite dimensional commutative subalgebra. We have in mined to describe this algebras ex-
plicitly in a separate publication.

In Section 2 we state and prove necessary and sufficient conditions in order the elementary
noncommutative polynomials form a mutually commuting family. Surprisingly enough to
check the commutativity of noncommutative elementary polynomials for any n, it’s enough to
check these conditions only for n = 2, 3. However a combinatorial meaning of a generalization
of the Lascoux-Schützenberger plactic algebra Pn invented, is still missing.

The plactic algebra PFn,m introduced in Section 6, has a monomial basis parametrized by
the set of Young tableaux of shape λ ⊂ (nm) filled by the numbers from the set {1, . . . ,m}.
In the case n = m it is well-known [14], [25], [45], that this number is equal to the number
of symmetric plane partitions fit inside the cube n×n×n. Surprisingly enough this number
admits a factorization in the product of the number of totally symmetric plane partitions
(TSPP ) by the number of totally symmetric self-complementary plane partitions(TSSCPP)
fit inside the same cube. A similar phenomenon happens if |m− n| ≤ 2, see Section 6. More
precisely,we add to the well-known equalities

• #|B1,n| = 2n, #|B2,n| =
(
2n+1
n

)
, #|B3,n| = 2n Catn, [55], A003645,

#|B4,n| = 1
2
Catn Catn+1, [55], A000356, #|B5,n| =

(n+5
5 ) (n+7

7 ) (n+9
9 )

(n+2
2 )(n+4

4 )
, [55], A133348,

the following relations
• #|Bn,n = TSPP (n)× ASM(n), #|Bn,n+1 = TSPP (n)× ASM(n+ 1),

• #|Bn+2,n = #|Bn,n+1, #|Bn+3,n = 1
2
#|Bn+1,n+1,

• #|PP (n)| = TSPP (n)× ASMHT (2n) = CSSCPP (2n)× CSPP (n),
where AMSHT (2n) denotes the number of alternating sign matrices of size 2n × 2n

invariant under a half-turn and CSSPP (2n) denotes the set of cyclically symmetric self-
complementary plane partitions in the 2n-cube.
It is well-known that ASMHT (2n) = ASM(n) × CSPP (n), where CSPP (n) denotes the
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number of cyclically symmetric plane partitions in n-cube, and CSSCPP (2n) = ASM(n)2,
see e.g. [3], [26], [55], A006366.

Problem 1.1
• Construct bijection between the set of plane partitions fit inside n-cube and the set of

(ordered) triples (π1, π2, ℘), where (π1, π2) is a pair of TSSCPP (n) and ℘ is a cyclically
symmetric plane partition fit inside n-cube.
• Describe the involution κ : PP (n) −→ PP (n) which is induced by the involution

(π1, π2, wp) −→ (π2, π1, ℘) on the set TSSCPP (n)× TSSCP (n)× CSPP (n), and its fixed
points. Clearly one has #Fix(κ)| = ASMHT (2n).
• Characterize pairs of plane partitions (Π1,Π2) ∈ PP (n)× PP (n) such that

(a) ℘(Π1) = ℘(Π2); (b) (π1(Π1), π2(Π1)) = (π1(Π2), π2(Π2)).

These relations have strait forward proofs based on the explicit product formulas for the
numbers

SPP (n) =
∏

1≤i≤j≤k

n+ i+ j + k − 1

i+ j + k − 1
and TSPP (n) =

n∏
i=1

n∏
j=i

n∏
k=j

i+ j + k − 1

i+ j + k − 2
,

but bijective proofs of these identities are an open problem.

It follows from [28], [38] that the dimension of the (reduced) plactic algebra PCn is equal
to the number of alternating sign matrices of size n× n (ASM(n) = TSSCPP (n)). There-
fore the Key-Grothendieck polynomials can be obtained from U -polynomials (see Section 6,
Theorem 6.9) after the specialization pij = 0, if i+ j > n+ 1.

In Section 4 follow [20] we introduce and study a family of polynomials which are common
generalization of the Schubert, β-Grothendieck, duel β-Grothendieck, β-Key-Grothendieck
and Di-Francesco (see Section 4) polynomials. Namely, for any permutation w ∈ Sn, we
introduce polynomial

KN (β,α,γ)
w (Xn) = Tsi1

· · ·Tsiℓ
(xδn),

where Ti := T
(β,α,γ)
i =

−α + (α+ β + γ) xi + γ xi+1 + 1 + (α + γ)(β + γ) xi xi+1)∂i,i+1, i = 1, . . . , n− 1,

denotes a collection of divided difference operators which satisfy the Coxeter and Hecke
relations

Ti Tj Ti = Tj Ti Tj, if |i− j| = 1; Ti Tj = Tj Ti, if |i− j| ≥ 2,

T 2
i = (β − α)Ti + βα, i = 1, . . . , n− 1,

Tw := Tsi1
· · ·Tsiℓ

,

for any reduced decomposition w = si1 · · · siℓ of a permutation in question.
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If α = γ = 0, these polynomials coincide with the β- Grothendieck polynomials [8], if
β = α = 1, γ = 0 these polynomials coincide with the Di Francesco–Zin-Justin polynomials
[12], if β = γ = 0, these polynomials coincide with dual α- Grothendieck polynomials
Hα

w(X). We expect that polynomials KN (β,α,γ)
⋆ (Xn) have nonnegative coefficients, i.e.

KN (β,α,γ)
⋆ (Xn) ∈ N[α, β, γ][Xn] and have some geometrical meaning to be discovered.
More generally we study divided difference type operators of the form

Tij := T
(a,b,c,d,h,e)
ij = a+ (b xi + c xj + h+ e xi xj) ∂ij,

depending on parameters a, b, c, h, e and satisfying the 2D-Coxeter relations

Tij Tjk Tij = Tjk Tij Tjk, 1 ≤ i < j < k ≤ n, Tij Tkl = Tkl Tij, if {i, j} ∩ {k, l} = ∅.

We find that the necessary and sufficient condition which ensure the validity of the 2D-
Coxeter relations is the following relation among the parameters:

(a+b)(a-c)+h e = 0 .

Therefore, if the above relation between parameters a, b, c, d, h, e hold, the the for any per-
mutation w ∈ Sn the operator

Tw := T (a,b,c,d,h,e)
w = T

(a,b,c,d,h,e)
i1

· · ·T (a,b,c,d,h,e)
iℓ

,

where w = si1 · · · siℓ is any reduced decomposition of w, is well-defined. Hence under the
same assumption on parameters, for any permutation w ∈ Sn one can attach the well-defined
polynomial

G(a,b,c,d,h,e)
w (X, Y ) := T (x)

w

(a,b,c,d,h,e)
(

∏
i≥1,j≥1
i+j≤n+1

(xi + yj),

and in much the same fashion to define polynomials

D(a,b,c,d,h,e)
α (X, Y ) := T (x)

wα

(a,b,c,d,e)
(xα+

)

for any composition α such that αi ≤ n− i, ∀i. We have used the notation T (x)(a,b,c,d,h,e)

w to
point out that this operator acts only on the variables X = (x1, . . . , xn); for any composition
α ∈ Zn

≥0, α+ denotes a unique partition obtained from α by reordering its parts in (weakly)
decreasing order, and wα denotes a unique minimal length permutation in the symmetric
group Sn such that wα(α) = α+.

In the present paper we are interested in to list a conditions on parameters A :=
{a, b, c, d, h, e} with the constraint

(a+ b)(a− c) + h e = 0,

which ensure that the above polynomials G
(a,b,c,d,h,e)
w (X) and D

(a,b,c,d,h,e)
α (X) or their spe-

cialization xi = 1,∀i, have nonnegative coefficients. We state the following conjectures:
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• KN (β,α,γ)
w (Xn) ∈ N[α, β, γ][Xn],

• G
(−b,a+b+c,c,1,(b+c)(a+c)
w (Xn) ∈ N[a, b, c][Xn],

• G
(−b,a+b+c,c+d,1,(b+c+d)(a+c)
w (xi = 1, ∀i) ∈ N[a, b, c, d], where a, b, c, d are free parameters.

In the present paper we treat the case

A = (−β, β + α+ γ, γ, 1, (α + γ)(β + γ)).

As it was pointed above, in this case polynomials GA
w(X) are common generalization of

Schubert,β-Grothendieck and dual β-Grothendieck, and Di Francesco–Zin-Justin polynomi-
als. We expect a certain c interpretation of the polynomials GA

w for general β, α and γ.
As it was pointed out earlier, one of the basic properties of the plactic monoid Pn is

that the nonocommutative elementary symmetric polynomials {ek(u1, . . . , un−1)}1≤k≤n−1

generate a commutative subalgebra in the plactic algebra in question. One can reformulate
this statement as follows. Consider the generating function

Ai(x); =
i∏

a=n−1

(1 + x ua) =
i∑

a=0

ea(un−1, . . . , ui) x
i−a,

where we set e0(U) = 1. Then the commutativity property of noncommutative elementary
symmetric polynomials is equivalent to the following commutativity relation in the plactic
as well as in the generic plactic, algebras Pn and Pn, [7], and Theorem 2.23,

Ai(x) Ai(y) = Ai(y) Ai(x), 1 ≤ i ≤ n− 1.

Now let us consider the Cauchy kernel

C(Pn, U) = A1(z1) · · ·An−1(zn−1),

where we assume that the pairwise commuting variables z1, . . . , zn−1 commute with the all
generators of the algebras Pn and Pn. In what follows we consider the natural completion P̂n

of the plactic algebra Pn to allow consider elements of the form (1+x ui)
−1. Elements of this

form exist in any Hecke type quotient of the plactic algebra P̃n. Having in mind this assump-
tion, let us compute the action of divided difference operators ∂z

i,i+1 on the Cauchy kernel. In
the computation below, the commutativity property of the elements Ai(x) and Ai(y) plays
the key role. Let us start computation of ∂z

i,i+1(C(Pn, U)) = ∂z
i,i+1(A1(z1) · · ·An−1(zn−1)).

First of all write Ai+1(zi+1) = Ai(zi+1)(1 + zi+1 ui)
−1. According to the basic property of

the elements Ai(x), one sees that the expression Ai(zi) Ai(zi+1) is symmetric with respect
to zi and zi+1, and hence is invariant under the action of divided difference operator ∂z

i,i+1

Therefore.

∂z
i,i+1(C(Pn, U)) = A1(z1) · · ·Ai(zi) Ai(zi+1) ∂

z
i,i+1((1 + zi+1 ui)

−1) Ai+2(zi+2) · · ·An−1(zn−1).

It is clearly seen that ∂z
i,i+1((1 + zi+1 ui)

−1) = (1 + zi ui)
−1)(1 + zi+1 ui)

−1 ui. Therefore

∂z
i,i+1(C(Pn, U)) = A1(z1) · · ·Ai(zi) Ai+1(zi+1) (1 + zi ui)

−1 ui Ai+2(zi+2) · · ·An−1(zn−1).
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It is easy to see that if one adds Hecke’s type relations on the generators

u2
i = (a+ b) ui + a b, i = 1, . . . , n− 1,

then
(1 + z ui)

−1 ui =
ui − z a b

(1 + b z)(1− a z)
.

Therefore in the quotient of the plactic algebra Pn by the Hecke type relations listed above
and by the “locality” relations

ui uj = uj ui, if |i− j| ≥ 2,

one obtains

(−b+ (1 + zi b)) ∂
z
i,i+1

(
A1(z1) · · ·An−1(zn−1)

)
=

(
A1(z1) · · ·An−1(zn−1)

)
(
ei − b

1− a zi
).

Finally, if a = 0, then the above identity takes the following form

∂z
i,i+1

(
(1 + zi+1 b) A1(z1) · · ·An−1(zn−1)

)
=

(
A1(z1) · · ·An−1(zn−1)

)
(ei − b).

In other words the above identity is equivalent to the statement [9] that in the IdCoxeter alge-
bra ICn the Cauchy kernel C(Pn, U) is the generating function for the b-Grothendieck poly-
nomials. Moire over, each (generalized) double b-Grothendieck polynomial is a positive linear
combination of the key- Grothendieck polynomials. In the special case b = −1 and Pij =
xi + yj if 2 ≤ i+ j ≤ n+ 1, pij = 0, if i+ j > n+ 1 this result had been stated in [39].

As a possible mean to define affine versions of polynomials treated in the present paper,
we introduce the double affine nilCoxeter algebra of type A and give construction of a generic
family of Hecke’s type elements 4 we will be put to use in the present paper.

As Appendix we include several examples of polynomials studied in the present paper
to illustrate results obtained in these notes. We also include an expository text concerning
the MacNeille completion of a poset to draw attention of the reader to this subject. It is
the MacNeille completion of the poset associated with the (strong) Bruhat order on the
symmetric group, that was one of the main streams of the study in the present paper.

A bit of history. Originally these notes have been designed as a continuation of [8]. The
main purpose was to extend the methods developed in [10] to obtain by the use of plactic
algebra, a noncommutative generating function for the key (or Demazure) polynomials intro-
duced by A. Lascoux and M.-P. Schützenberger [34]. The results concerning the polynomials
introduced in Section 4, except the Hecke– Grothendieck polynomials, see Definition 4.6,

4 Remind that by the name a family of Hecke’s type elements we mean a set of elements {e1, · · · , cn} such
that
• (Hecke type relations) e2i = A ei +B, A,B are parameters,
• (Coxeter relations)

ci cj = cj ci, if |i− j| ≥ 2, ei ej ei = ej ei ej , if |i− j| = 1.
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has been presented in my lecture-courses “Schubert Calculus” have been delivered in the
Graduate School of Mathematical Sciences, the University of Tokyo, November 1995 -April
1996, and in the Graduate School of Mathematics, Nagoya University, October 1998 - April
1999. I want to thank Professor M. Noumi and Professor T. Nakanishi who made these
courses possible. Some early versions of the present notes are circulated around the world
and now I was asked to put it for the wide audience. I would like to thank Professor M.
Ishikawa (Department of Mathematics, Faculty of Education, University of the Ryukyus, Ok-
inawa, Japan) and Professor S.Okada (Graduate School of Mathematics, Nagoya University,
Nagoya, Japan) for valuable comments.

2 Plactic, nilplactic and idplactic algebras
Definition 2.1 ([28]) The plactic algebra Pn is an (unital) associative algebra over
Z generated by elements {u1, · · · , un−1} subject to the set of relations

(PL1) uj ui uk = uj uk ui, ui uk uj = uk ui uj, if i < j < k,

(PL2) ui uj ui = uj ui ui, uj ui uj = uj uj ui, if i < j.

Proposition 2.2 ([28])Tableau words in the alphabet U = {u1, · · · , un−1} form a basis in
the plactic algebra Pn.

In other words, each plactic class contain a unique tableau word. In particular,

Hilb(Pn, t) = (1− t)−n(1− t2)−(
n
2).

Remark 2.3 There exists another algebra over Z which has the same Hilbert series as that
of the plactic algebra Pn. Namely, define algebra Ln to be an associative algebra over Z
generated by the elements {e1, e2, . . . , en−1}, subject to the set of relations

(ei, (ej, ek)) := ei ej ek− ej ei ek− ej ek ei+ ek ej ei = 0, for all 1 ≤ i, j, k ≤ n−1, j < k.

Note that the number of defining relations in the algebra Ln is equal to 2
(
n
3

)
.

One can show that the dimension of the degree k homogeneous component L(k)
n of the algebra

Ln is equal to the number semistandard Young tableaux of the size k filled by the numbers
from the set {1, 2, . . . , n}.

Definition 2.4 The local plactic algebra LPn is an associative algebra over Z generated
by elements {u1, . . . , un−1} subject to the set of relations

ui uj = uj ui, if |i− j| ≥ 2, uju
2
i = uiujui, u2

jui = ujuiuj, if j = i+ 1.

One can show (A.K) that

Hilb(LPn, t) =
n∏

j=1

( 1

1− tj

)n+1−j

.
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Definition 2.5 (Nil Temperley-Lieb algebra)
Denote by T L(0)

n the quotient of the local plactic algebra LPn by the two-sided ideal gen-
erated by the elements {u2

1, . . . , u
2
n−1}.

It is well-known that dimT Ln = Cn, the n-th Catalan number. One also has
Hilb(T L(0)

4 , t) = (1, 3, 5, 4, 1), Hilb(T L(0)
5 , t) = (1, 4, 9, 12, 10, 4, 2),

Hilb(T L(0)
6 , t) = (1, 5, 14, 25, 31, 26, 16, 9, 4, 1).

Proposition 2.6
The Hilbert polynomial Hilb(T L(0)

n , t) is equal to the generating function for the number
of 321-avoiding permutations of the set {1, 2, ..., n} having inversion number equal to k, see
[55], A140717, for other combinatorial interpretations of polynomials Hilb(T L(0)

n , t).

We denote by T L(β)
n the quotient of the local plactic algebra LPn by the two-sided ideal

generated by the elements {u2
1 − β u1, . . . , u

2
n−1 − β un−1}.

Definition 2.7 The modified plactic algebraMPn is an associative algebra over Z gen-
erated by {u1, . . . , un−1} subject to the set of relations (PL1) and that

ujujui = ujuiui and uiujui = ujuiuj, if 1 ≤ i < j ≤ n− 1.

Definition 2.8 The (reduced) nilplactic algebra NPn is an associative algebra over Q
generated by {u1, · · · , un−1} subject to the relations 5

u2
i = 0, ui ui+1 ui = ui+1 ui ui+1, (2.4)

the set of relations (PL1), and that xi xj xi = 0, if |i− j| ≥ 2.

Proposition 2.9 ([32]) Each nilplactic class not containing 0, contains one and only one
tableau word.

Proposition 2.10 The nilplactic algebra NPn has finite
dimension, its Hilbert polynomial Hilb(NPn, t) has degree

(
n
2

)
and dim(NPn)(n2)

= 1.

5Original definition of the nilplactic relations given in [32] involves only relations (PL1) and

uiui+1ui
∼= ui+1uiui+1 & uiui

∼= 0, i = 1, . . . , n− 1.

It had been shown [33] that the Schensted construction for the plactic congruence extends to the nilplactic
case. However as it seen from the following example, as a consequence of relations (PL1) one has

(u1 + u2 + u3, u2u1 + u3u1 + u3u2) ≡ u1u3u1 − u3u1u3 + u2
3u1 − u3u

2
1,

and therefore noncommutative elementary symmetric polynomials e1(u1, u2, u3) and e2((u1, u2, u3) do not
commute modulo the nilplactic congruence defined in [32]. Indeed, u1u3u1 ̸≡ u3u1u3. In order to guarantee
the commutativity of all noncommutative elementary polynomials, we add relations

xi xj xi = 0, if |i− j| ≥ 2.

Cf with definition of idplactic relations listed in Definition 2.11.
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Example 2.11 Hilb(NP3, t) = (1, 2, 2, 1), Hilb(NP4, t) = (1, 3, 6, 6, 5, 3, 1),
Hilb(NP5, t) = (1, 4, 12, 19, 26, 26, 22, 15, 9, 4, 1), dim(NP5 = 139,
Hilb(NP6, t) = (1, 5, 20, 44, 84, 119, 147, 152, 140, 114, 81, 52, 29, 14, 5, 1), dim(NP6) = 1008.

Definition 2.12 The idplactic algebra IP (β)
n is an associative algebra over Q(β)

generated by {u1, · · · , un−1} subject to the relations

u2
i = βui, ui uj ui = uj ui uj, i < j, (2.5)

and the set of relations (PL1).

In other words, the idplactic algebra IPn is the quotient of the plactic algebra Pn by the the
two-sided ideal generated by elements {u2

i − βui, 1 ≤ i ≤ n− 1}.

Proposition 2.13 Each idlplactic class contains a unique tableau word of the smallest
length.

For each word w denote by rl(w) the length of a unique tableau word of minimal length
which is idplactic equivalent to w.

Example 2.14 Consider words in the alphabet {a < b < c < d}. Then
rl(dbadc) = 4 = rl(cadbd), rl(dbadbc) = 5 = rl(cbadbd). Indeed,

dbadc ∼ dbdac ∼ dbdca ∼ ddbca ∼ dbac,

dbadbc ∼ dbabdc ∼ dabadc ∼ adbdac ∼ abdbca ∼ abbdca ∼ dbabc.

Note that according to our definition, tableau words w = 31, w = 13 and w = 313
belong to different idplactic classes.

Proposition 2.15 The idplactic algebra IP (β)
n has finite dimension, and its Hilbert poly-

nomial has degree
(
n
2

)
.

Example 2.16
Hilb(IP3, t) = (1, 2, 2, 1), Hilb(IP4, t) = (1, 3, 6, 7, 5, 3, 1), dim(IP4) = 26,

Hilb(IP5, t) = (1, 4, 12, 22, 30, 32, 24, 15, 9, 4, 1), dim(IP5) = 154,
Hilb(IP6, t) = (1, 5, 20, 50, 100, 156, 188, 193, 173, 126, 84, 52, 29, 14, 5, 1), dim(IP6) = 1197.

Definition 2.17 The idplactic Temperly-Lieb algebra PT L(β)
n is define to be the quo-

tient of the idplactic algebra IP(β)
n by the two-sided ideal generated by the elements

{ui uj ui, ∀i ̸= j}.

For example, Hilb(PT L(0)
4 , t) = (1, 3, 6, 4, 1)t„ Hilb(PT L(0)

5 , t) = (1, 4, 12, 16, 14, 4, 2)t
Hilb(PT L(0)

6 , t) = (1, 5, 20, 40, 60, 46, 32, 10, 4, 1)t, Hilb(PT L(0)
7 , t) =

(1, 6, 30, 80, 170, 216, 238, 152, 96, 44, 14, 4, 2)t. One can show that degt Hilb(PT L(0)
n , t) =[

n2

4
], and CoefftmaxHilb(PT Ln, t) = 1, if n is even, and = 2, if n is odd.
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Definition 2.18 The nilCoxeter algebra NCn is defined to be the quotient of the nilplactic
algebra NPn by the two-sided ideal generated by elements {ui uj − uj ui, |i− j| ≥ 2}.

Clearly the nilCoxeter algebra NCn is a quotient of the modified plactic algebra MPn by
the two-sided ideal generated by the elements {uiuj − ujui, |i− j| ≥ 2}.

Definition 2.19 The idCoxeter algebra IC(β)n is defined to be the quotient of the
idplactic algebra IP (β)

n by the two-sided ideal generated by the elements {ui uj −
uj ui, |i− j| ≥ 2}.

It is well-known that the algebras NCn and IC(β)n have dimension n!, and the elements
{uw := ui1 · · ·uiℓ}, where w = si1 · · · siℓ is any reduced decomposition of w ∈ Sn, form a
basis in the nilCoxeter and idCoxeter algebras NCn and IC(β)n .

Remark 2.20 There is a common generalization of the algebras defined above which is
due to S.Fomin and C.Greene [7]. Namely, define generalized plactic algebra P̃n to be an
associative algebra generated by elements u1, · · · , un−1, subject to the relations (PL2) and
relations

ujui(ui + uj) = (ui + uj)ujui, i < j. (2.6)

The relation (2.5) can be written also in the form

uj(uiuj − ujui) = (uiuj − ujui)ui, i < j.

Theorem 2.21 ( [7]) For each pair of numbers 1 ≤ i < j ≤ n define

Ai,j(x) =
i∏

k=j

(1 + x uk).

Then the elements Ai,j(x) and Ai,j(y) commute in the generalized plactic algebra P̃n.

Corollary 2.22 Let 1 ≤ i < j ≤ n be a pair of numbers. Noncommutative elementary
polynomials eija :=

∑
j≥i1≥···≥ik≥i ui1 · · ·uia , i ≤ a ≤ j, generate a commutative

subalgebra Ci,j of rank j − i+ 1 in the plactic algebra Pn.
Moreover, the algebra C1,n is a maximal commutative subalgebra of Pn.

To establish Theorem 2.20 , we are going to prove more general result. To start with, let us
define generic plactic algebra Pn.

Definition 2.23 The generic plactic algebra Pn is an associative algebra over Z gener-
ated by {e1, · · · , en−1} subject to the set of relations

ej(ei, e) = (ei, ej)ei, if i < j, (2.7)

(ej, (ei, ek)) = 0, if i < j < k, (2.8)

(ej, ek)(ei, ek) = 0, if i < j < k. (2.9)
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Clearly seen that relations (2.6)−(2.8) are consequence of the plactic relations (PL1) and (PL2).

Theorem 2.24 Define

An(x) =
1∏

k=j

(1 + x ek).

Then the elements An(x) and An(y) commute in the generic plactic algebra Pn.
Moreover the elements An(x) and An(y) commute if and only if the generators {e1, . . . , en−1}

satisfy the relations (2.6)− (2.8).

Proof For n = 2, 3 the statement of Theorem 1.22 is obvious. Now assume that the
statement of Theorem 1.22 is true in the algebra Pn. We have to prove that the commuta-
tor [An+1(x), An+1(y)] is equal to zero. First of all, An+1(x) = (1 + xen)An(x). Therefore

[An+1(x), An+1(y)] = (1 + xen) [An(x), 1 + yen] An(y)− [An(y), 1 + xen] An(x).

Using the standard identity [ab, c] = a[b, c] + [a, c]b, one finds that

1

xy
[An(x), 1 + yen] =

n−1∑
i=

i+1∏
a=n−1

(1 + xea) (ei, en)
1∏

a=i−1

(1 + xea).

Using relations (2.7) we can move the commutator (ei, en) to the left, since i < a < n, till we
meet the term (1 + xen). Using relations (2.6) we see that (1 + xen)(ei, n) = (ei, n)(1 + xei).
Therefore we come to the following relation

1

xy
[An(x), 1 + yen] =

1∑
i=n−1

(ei, en)
(
(1 + xei)

1∏
a=n−1
a ̸=i

(1 + xea) An(y)− (1 + yei)
1∏

a=n−1
a̸=i

(1 + yea) An(x)
)
.

Finally let us observe that

(ei, en)
(
(1+xei)(1+xen−1)−(1+xen−1)(1+xei)

)
= x2 (ei, en)(ei, en−1) = 0, according to (2.8).

Indeed, (ei, en)(ei, en−1) = (ei, en)eien−1 − (ei, en)en−1ei = enen−1(ei, en) − en−1en(ei, en) =

0. Therefore 1
xy

[An(x), 1 + yen] =
(∑1

i=n−1(ei, en)
)
[An(x), An(y)] = 0 according to the

induction assumption.
Finally, if i < j, then (ei + ej, ejei) = 0⇐⇒ (2.6),

if i < j < k and the relations (2.6) hold, then (ei + ej + ek, ejei + ekej + ekei) = 0⇐⇒ (2.7),
if i < j < k and relations (2.6) and (2.7) hold, then (ei + ej + ek, ekejei) = 0 ⇐⇒ (2.8); the
relations (ejei + ekej + ekei, ekejei) = 0 are a consequence of the above ones.
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Let T be a semistandard tableau and w(T ) be the column reading word corresponding
to the tableau T . Denote by R(T ) (resp. IR(T )) the set of words which are plactic (resp.
idplactic) equivalent to w(T ). Let a = (a1, · · · , an) ∈ R(T ), where n := |T | (resp. a =
(a1, · · · , am) ∈ IR(T ), where m ≥ |T |).

Definition 2.25 (Compatible sequences b) Given a word a ∈ R(T ) (resp. a ∈ IR(T )), de-
note by C(a) (resp. IC(a)) the set of sequences of positive integers, called compatible
sequences, b := (b1 ≤ b2 ≤ · · · ≤ bm) such that

bi ≤ ai, and if ai ≤ ai+1, then bi < bi+1. (2.10)

Finally, define the set C(T ) (resp. IC(T )) to be the union
∪

C(a) (resp. the union∪
IC(a)), where a runs over all words which are plactic (resp. idplactic) equivalent to the

word w(T ).

Example 2.26 Take T =
2 3
3

. The corresponding tableau word is w(T ) = 323. We have

R(T ) = {232, 323} and IR(T ) = R(T )
∪
{2323, 3223, 3232, 3233, 3323, 32323, · · ·}.

Moreover,

C(T ) =
{
a : 232 323 323 323 323
b : 122 112 113 123 223

}
,

IC(T ) = C(T )
∪ {

a : 2323 3223 3232 3233 3323 32323
b : 1223 1123 1122 1123 1223 11223

}
.

Let P := Pn := {pi,j, i ≥ 1, j ≥ 1, 2 ≤ i+ j ≤ n+1} be the set of (mutually commuting)
variables.

Definition 2.27 (1) Let T be a semistandard tableau, and n := |T |. Define the double key
polynomial KT (P) corresponding to the tableau T to be

KT (P) =
∑

b∈C(T )

n∏
i=1

pbi,ai−bi+1. (2.11)

(2) Let T be a semistandard tableau, and n := |T |. Define the double key Grothendieck
polynomial GKT (P) corresponding to the tableau T to be

GKT (P) =
∑

b∈IC(T )

m∏
i=1

pbi,ai−bi+1. (2.12)

In the case when pi,j = xi + yj, ∀i, j, where X = {x1, . . . , xn} and Y = {y1, . . . , yn}
denote two sets of variables, we will write KT (X,Y ), GKT (X, Y ), . . . , instead of KT (P),
GKT (P), . . . .

Definition 2.28 Let T be a semistandard tableau, denote by α(T ) = (α1, · · · , αn) the expo-
nent of the smallest monomial in the set {xb :=

∏m
i=1 x

bi
i , b ∈ C(T )} with respect to the

lexicographic order.

We will call the composition α(T ) to be the bottom code of tableau T.
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3 Divided difference operators
In this subsection we remind some basic properties of divided difference operators will be put
to use in subsequent Sections. For more details, see [46].

Let f be a function of the variables x and y (and possibly other variables), and η ̸= 0 be
a parameter. Define the divided difference operator ∂xy(η) will as follows

∂xy(η) f(x, y) =
f(x, y)− f(η−1 y, η x)

x− η−1 y
.

Equivalently, (x− η−1 y) ∂xy(η) = 1− sηxy, where the operator sηxy acts on the variables
(x, y, . . .) according to the rule: sηxy transforms the pair (x, y) to (η−1 y, η x), and fixes all
other variables. We set by definition, sηyx := sη

−1

xy .
The operator ∂xy(η) takes polynomials to polynomials and has degree −1. The case η = 1

corresponds to the Newton divided difference operator ∂xy := ∂xy(1).

Lemma 3.1
(0) sηxy sηξxz = sξyz sηxy, sηxy sηξxz sξyz = sξyz sηξxz sηxy,
(1) ∂yx(η) = −η ∂xy(η

−1), sηxy ∂yz(ξ) = η−1∂xz(η ξ) sηxy,
(2) ∂xy(η)

2 = 0,
(3) (Three term relation)
∂xy(η) ∂yz(ξ) = η−1 ∂xz(η ξ) ∂xy(η) + ∂yz(ξ) ∂xz(η ξ).
(4) (Twisted Leibniz rule)
∂xy(η) (fg) = ∂xy(η) (f) g + sηxy(f) ∂xy(η) (g),
(5) (Crossing relations, cf [9], (4.6))
• x ∂xy(η) = η−1∂xy(η) y + 1, y ∂xy(η) = η ∂xy(η) x− η,
• ∂xy(η) y ∂yz(ξ) = ∂xz(η ξ) x ∂xy(η) + ξ−1∂yz(ξ) z ∂xz(η ξ),
(6) ∂xy ∂xz ∂yz ∂xz = 0.

Let x1, . . . , xn be independent variables, and let Pn := Q[x1, . . . , xn]. For each i < j put
∂ij := ∂xi xj

(1) and ∂ji = −∂ij. From Lemma 2.1 we have ∂2
ij = 0,

∂ij ∂jk + ∂ki ∂ij + ∂jk ∂ki = 0,
∂ij xj ∂jk + ∂ki xi ∂ij + ∂jk xk ∂ki, if i, j, k are distinct.

It is interesting to consider also an additive or affine analog ∂xy[k] of the divided difference
operators ∂xy(η), namely,

∂xy[k](f(x, y)) =
f(x, y)− f(y − k, x+ k)

x− y + k
.

We have ∂yx[k] = −∂xy[−k], and
∂xy[p] ∂yz[q] = ∂xz[p+ q] ∂xy[p] + ∂yz[q] ∂xz[p+ q].
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4 Schubert, Grothendieck and Key polynomials
Let w ∈ Sn be a permutation, X = (x1, · · · , xn) and Y = (y1, · · · , yn) be two sets of variables.
Denote by w0 ∈ Sn the longest permutation, and by δ := δn = (n−1, n−2, · · · , 1) the staircase
partition. For each partition λ define

Rλ(X, Y ) :=
∏

(i,j)∈λ

(xi + yj).

For i = 1, · · · , n− 1, let si = (i, i+1) ∈ Sn denote the simple transposition that interchanges
i and i+ 1 and fixes all other elements of the set {1, · · · , n}. If α = (α1, · · · , αi, αi+1, · · · , αn)
is a composition, we will write

siα = (α1, · · · , αi+1, αi, · · · , αn)

Definition 4.1
• For each permutation w ∈ Sn the double Schubert polynomial Sw(X,Y ) is

defined to be
∂
(x)

w−1 w0
(Rδn(X,Y )).

Let α be a composition.
• The key polynomials K[α](X) are defined recursively as follows:
if α is a partition, then K[α](X) = xα;
otherwise, if α and i are such that αi < αi+1, then

K[si(α)](X) = ∂i

(
xi K[α](X)

)
.

• The reduced key polynomials K̂[α](X) are defined recursively as follows:
if α is a partition, then K̂[α](X) = K[α](X) = xα;
otherwise, if α and i are such that αi < αi+1, then

K̂[si(α)](X) = xi+1 ∂i

(
K̂[α](X)

)
.

• For each permutation w ∈ Sn the double β-Grothendieck polynomial Gβw(X, Y )
is defined recursively as follows:
if w = w0 is the longest element, then Gw0(X,Y ) = Rδ(X, Y );
if w and i are such that wi > wi+1, i.e. l(wsi) = l(w)− 1, then

Gβwsi
(X, Y ) = ∂

(x)
i

(
(1 + β xi+1) Gβw(X,Y )

)
.

• For each permutation w ∈ Sn the double dual β-Grothendieck polynomial
Hβ

w(X,Y ) is defined recursively as follows:
if w = w0 is the longest element, then Hw0(X, Y ) = Rδ(X,Y );
if w and i are such that wi > wi+1, i.e. l(wsi) = l(w)− 1, then

Hβ
wsi

(X,Y ) = (1 + β xi) ∂
(x)
i

(
Hβ

w(X, Y )
)
.
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• The key β-Grothendieck polynomials KG[α](X; β) are defined recursively as
follows 6:
if α is a partition, then KG[α](X; β) = xα;
otherwise, if α and i are such that αi < αi+1, then

KG[si(α)](X; β) = ∂i

(
(xi + β xi xi+1) KG[α](X; β)

)
.

• The reduced key β-Grothendieck polynomials K̂G[α](X; β) are defined recur-
sively as follows:
if α is a partition, then K̂G[α](X; β) = xα;
otherwise, if α and i are such that αi < αi+1, then

K̂G[si(α)](X; β) = (xi+1 + β xi xi+1) ∂i

(
K̂G[α](X; β)

)
.

For brevity, we will write KG[α](X) and K̂G[α](X) instead of KG[α](X; β) and
K̂G[α](X; β).

Remark 4.2 We can also introduce polynomials Zw, which are defined recursively as follows:
if w = w0 is the longest element, then Zw0(X) = xδ;
if w and i are such that wi > wi+1, i.e. l(wsi) = l(w)− 1, then

Zwsi(X) = ∂i

(
(xi+1 + xixi+1) Zw(X)

)
.

However, one can show that

Zw(x1, · · · , xn) = (x1 · · · xn)
n−1Gw0ww0(x

−1
n , · · · , x−1

1 ).

Theorem 4.3 The polynomials Sw(X, Y ), K[α](X), K̂[α](X), Gw(X,Y ), Hw(X,Y ),

KG[α](X) and K̂G[α](X) have nonnegative integer coefficients.
6 In the case β = −1 divided difference operators Di := ∂i(xi − xi xi+1) [37], formula (6), had

been used by A.Lascoux to describe the transition on Grothendieck polynomials, i.e. stable decomposition
of any Grothendieck polynomial corresponding to a permutation w ∈ Sn. into a sum of Grasmannian ones
corresponding to a collection of Grasmannin permutations vλ ∈ S∞, see [37] for details. The above mentioned
operators Di had been used in [37] to construct a basis Ωα | α ∈ Z≥0 that deforms the basis which is built
up from the Demazure ( known also as key) polynomials. Therefore polynomials KG[α](X;β = −1) coincide
with those introduced by A. Lascoux in[37].
In [51] the authors give a conjectural construction for polynomials Ωα based on the use of extended Kohnert
moves, see e.g. [45], Appendix by N. Bergeron, for definition of the Kohnert moves. We state Conjecture
that

J (β)
α = KG[α](X;β),

where polynomials J
β)
α are defined in [51] using the K-theoretic versions of the Kohnert moves. For β = −1

this Conjecture has been stated in [51]. It seems an interesting problem to relate the K-theoretic Kohnert
moves with certain moves of 1′s introduced in [8].
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We will use notation Sw(X), Gw(X), ..., for polynomials Sw(X, 0), Gw(X, 0), ... .
• Di Francesco–Zin-Justin polynomials)

Definition 4.4 For each permutation w ∈ Sn the Di Francesco-Zinn-Justin polynomi-
als DZw(X) are defined recursively as follows:
if w is the longest element in Sn, then DZw(X) = Rδ(X, 0);
otherwise, if w and i are such that wi > wi+1, i.e. l(wsi) = l(w)− 1, then

DZwsi(X) =
(
(1 + xi)∂

(x)
i + ∂

(x)
i (xi+1 + xixi+1)

)
DZw(X).

Conjecture 4.5
(1) Polynomials DZw(X) have nonnegative integer coefficients.
(2) For each permutation w ∈ Sn the polynomial DZw(X) is a linear combination of key

polynomials K[α](X) with nonnegative integer coefficients.

As for definition of the double Di Francesco–Zin-Justin polynomials DZw(X, Y ) they are well
defined, but may have negative coefficients.
• (Hecke–Grothendieck polynomials)

Let β and α be two parameters, consider divided difference operator

Ti := T β,α
i = −β + ((β + α) + 1 + β α xixi+1) ∂i,i+1.

Definition 4.6
Let w ∈ Sn, define Hecke–Grothendieck polynomials KN β,α

w (Xn) to be

KN (β,α)
w (Xn) := T β,α

w (xδn),

where as before xδn := xn−1
1 xn−2

2 · · · xn−1; if u ∈ Sn, then set

T β,α
u := T β,α

i1
· · ·T β,α

iℓ
,

where u = si1 · · · siℓ is any reduced decomposition of a permutation taken.
• More generally, let β, α and γ be parameters, consider divided difference operators

Ti := T β,α,γ
i = −β+((α+β+γ) xi+γ xi+1+1+(β+γ)(α+γ)xi xi+1)∂i,i+1, i = 1, . . . , n−1.

For a permutation w ∈ Sn define polynomials

KN (β,α,γ)
w (Xn) := T β,α,γ

i1
· · ·T β,α,γ

iℓ
(xδn),

where w = si1 · · · siℓ is any reduced decomposition of w.

Remark 4.7 A few comments in order. (a) The divided difference operators {Ti :=

T
(β,α,γ)
i1

, i = 1, · · · , n− 1} satisfy the following relations
• (Hecke relations)

T 2
i = (α− β) Ti + α β,
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• (Coxeter relations)

TiTi+1Ti = Ti+1TiTi+1, TiTj = TjTi, if |i− j| ≥ 2.

Therefore the elements T β,α
w are well defined for any w ∈ Sn.

• (Inversion)

(1 + xTi)
−1 =

1 + (α− β)x− xTi

(1− β x)(1 + α x)
.

(b) Polynomials KN (β,α,γ)
w constitute a common generalization of

the β-Grothendieck polynomials , namely, G(β)w = KN (β,α=0,γ=0)

w0w−1 ,
the Di Francesco–Zin-Justin polynomials, namely, DZw = KN (β=α=1,γ=0)

w ,
the dual α-Grothendieck polynomials, namely, KN (β=0,α,γ=0)

w0w−1 = Hα
w(X).

Proposition 4.8
• (Duality) Let w ∈ Sn, ℓ = ℓ(w) denotes its length, then (α β ̸= 0)

KN (β,α)
w (1) = (βα)ℓ KN (α−1,β−1)

w−1 (1).

• (Stability) Let w ∈ Sn be a permutation and w = si1si2 · · · siℓ be any its reduced
decomposition. Assume that ia ≤ n − 3, ∀ 1 ≤ a ≤ ℓ, and define permutation w̃ :=
si1+1si2+1 · · · siℓ+1 ∈ Sn.Then

KN (β,α)
w (1) = KN (β,α)

w̃ (1).

It is well-known that
• the number KN (β=1,α=1)

w0
(1) is equal to the degree of the variety of pairs commuting

matrices of size n× n,
• the bidegree of the affine homogeneous variety Vw, w ∈ Sn, [12], is equal to

A(
n
2)−ℓ(w) B(n2)+ℓ(w) KN (β=α=A/B)

w (1).

see [12], [22], [11] for more details and applications.

Conjecture 4.9
• Polynomials KN (β,α,γ)

w (X) have nonnegative integer coefficients

KN (β,α,γ)
w (X) ∈ N[β, α, γ][Xn].

• Polynomials KN (β,α,γ)
w (x1 = 1, ∀i) have nonnegative integer coefficients

KN (β,α,γ)
w (xi = 1,∀i) ∈ N[β, α, γ].

• Double polyonomials

KN (β=0,α,γ)
w (X, Y ) = T β=0,α,γ

w (x)
∏

i+j≤n+1
i≥1,j≥1

(xi + yj)
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are well defined and have nonnegative integer coefficients.
Note that the assmption β = 0 is necessary.
• Consider permutation w = [n, 1, 2, · · · , n− 1] ∈ Sn. Clearly w = sn−1sn−2 · · · s2s1.

The number KN (β=1,α=1)
w (1) is equal to the number of Schröder paths of semilength (n-

1) in which the (2, 0)-steps come in 3 colors and with no peaks at level 1, see [55], A162326
for further properties of these numbers.

It is well-known, see e.g. [55], A126216, that the polynomial KN (β,α=0)
w (1) counts the

number of dissections of a convex (n + 1)-gon according the number of diagonals involved,
where as the polynomial KN (β,α)

w (1) (up to a normalization) is equal to the bidegree of certain
algebraic varieties introduced and studied by A. Knutson [22].

A few comments in order.
(a) One can consider more general family of polynomials KN (a,b,c,d)

w (Xn) by the use of
the divided difference operators T a,b,c,d

i := −b+((b+d) xi+c xi+1+1+d(b+c)xi xi+1) ∂
x
i,i+1

istead ot that T β,α,γ
i . However the polynomials KN (a,b,c,d)

w (1) ∈ Z[a, b, c, d] may have negative
coefficients in general. Conjecturaly, to ensure the positivity of polynomials KN (a,b,c,d)

w (Xn),
it is necessery take d := a+ c+ r. In this case we stae Conjecture

KN (a,b,c,a+c+r)
w (Xn) ∈ N[a, b, c, r].

We state more general Conjecture in Introduction. In the present paper we treat only the
case r = 0, since a combinatorial meaning of polynomials KN (a,b,c,a+c+r)

w (1) in the the case
r ̸= 0 is missed for the author.

(b) If γ ̸= 0, the polynomials KN (β,α,γ)
w (Xn) ∈ Z[α, β, γ][Xn] may have negative negative

coefficients in general.

Theorem 4.10 Let T be a semistandard tableau and α(T ) be its bottom code, see
Definition 2.27 Then

KT (X) = K[α(T )](X), KGT (X) = KG[α(T )](X).

Let α = (α1 ≤ α2 ≤ · · · ≤ αr) be a composition, define partition α+ = (αr ≥ · · · ≥ α1).

Proposition 4.11 If α = (α1 ≤ α2 ≤ · · · ≤ αr) is a composition and n ≥ r, then

K[α](Xn) = sα+(Xr).

For example, K[0, 1, 2, · · · , n− 1] =
∏

1≤i<j≤n(xi + xj). Note that
K̂[0, 1, 2, · · · , n− 1] =

∏n
i=2 x

i−1
i .

Proposition 4.12 If α = (α1 ≤ α2 ≤ · · · ≤ αr) is a composition and n ≥ r, then

KG[α](Xn) = G[α+](Xr).
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For example, KG[0, 1, 2, · · · , n− 1] =
∏

1≤i<j≤n(xi + xj + xixj). Note that
K̂G[0, 1, 2, · · · , n− 1] =

∏n
i=2 x

i−1
i

∏n−1
i=1 (1 + xi)

n−i.

Comments 4.1

Definition 4.13 Define degenerate affine 2d nil-Coxeter algebra ANC(2)n to be an associative
algebra over Q generated by the set of elements {{ui,j}1≤i<j≤n and x1, . . . , xn} subject
to the set of relations
• xixj = xjxi for all i ̸= j, xi uj,k = uj,k xi, if i ̸= j, k,
• ui.j uk,l = uk,l ui.j, if i, j, k, l are pairwise distinct,
• (2d-Coxeter relations) ui,j uj,k ui,j = Uj,k ui,j uj,k, if 1 ≤ i < j < k ≤ n,
• xi ui.j = ui,j xj + 1, xj ui.j = ui,j xi − 1.

Now for a set of parameters 7 A := (a, b, c, h, e) define elements

Tij := a+ (bxi + cxj + h+ e xi xj) ui,j i < j.

Lemma 4.14
(1) T 2

i,j = (2a+ b− c) Ti,j − a(a+ b− c),
if a = 0, then T 2

ij = (b− c) Tij.
(2) (2d-Coxeter relations) Relations

Ti,j Tj,k Ti,j = Tj,k Ti,j Tj,k,

are valid, if and only if the following relation among parameters a, b, c, e, h holds 8

(a+ b)(a− c) + h e = 0. (4.13)

(3) (Yang–Baxter relations) Relations

Ti,j Ti,k Tj.k = Tj,k Ti,k Ti,j

are valid if and only if b = c = e = 0, i.e. Tij = a+ d uij.
(4) T 2

ij = 1 if and only if a = ±1, c = b± 2, he = (b± 1)2.
(5) Assume that parameters a, b, c, h, e satisfy the conditions (4.13) and that b c+1 = h e.

Then
Tij xi Tij = (h e− b c) xj + (h+ (a+ b)(xi + xj) + e xi xj) Tij.

Some special cases
• (Representation of affine modified Hecke algebra [58])

If A = (a,−a, c, h, 0), then Tij xi Tij = a c xj + h Tij, i < j,

7By definition, a parameter assumed to be belongs to the center of the algebra in question
8 The relation (4.13) between parameters a, b, c, e, h defines a rational four dimensional hypersurface.

Its open chart {e h ̸= 0} contains, for example, the following set (cf [37]): {a = p1 p4 − p2 p3, b =
p2 p3, c = p1 p4, e = p1 p3, h = p2 p4}, where (p1, p2, p3, p4) are arbitrary parameters. However the points
(−b, a+ b+ c, c, 1, (a+ c)(b+ c), (a, b, c) ∈ N3} do not belong to this set
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• If A = (−a, a+ b+ c, c, 1, (a+ c)(b+ c), then
Tij xi Tij = a b xj + (1 + (b+ c)(xi + xj) + (a+ c)(b+ c)xi xj) Tij.

(6) ( Quantum Yang–Baxter relations, or baxterization of Hecke’s algebra generators.
) Assume that parameters a, b, c, h, e satisfy the conditions (4.13) and that β := 2a+b−c ̸=
0. Then (cf [40], [16] and the literature quoted therein)

the elements Rij(u, v) := 1 + λ−µ
βµ

Tij satisfy the twisted quantum Yang–Baxter rela-
tions

Rij(λi, µj)Rjk(λi, νk)Rij(µj, νk) = Rjk(µj, νk)Rij(λi, νk)Rjk(λi, µj), i < j < k,

where {λi, µi, νi}1≤i≤n are parameters. .

Corollary 4.15 If (a+ b)(a− c) + he = 0, then for any permutation w ∈ Sn the element

Tw := Ti1 · · ·Til ∈ ANC
(2)
n ,

where w = si1 · · · sil is any reduced decomposition of w, is well-defined.

Example 4.16
• Each of the set of elements

s
(h)
i = 1 + (xi+1 − xi + h) ui,i+1 and

t
(h)
i = −1 + (xi − xi+1 + h(1 + xi)(1 + xi+1)) uij, i = 1, . . . , n− 1,

by itself generate the symmetric group Sn.
• If one adds the affine elements s

(h)
0 := πsn−1((h)π

−1 and t
(h)
0 := πt

(h)
n−1π

−1, then each
of the set of elements {s(h)j , j ∈ Z/nZ} and {t(h)j , j ∈ Z/nZ by itself generate the affine
symmetric group Saff

n , see Comments 4.3 for a definition of the transformation π.
• It seems an interesting problem to classify all rational, trigonometric and elliptic divided

difference operators satisfying the Coxeter relations. A general divided difference operator
with polynomial coefficients had been constructed in [31], see also Lemma 4.14,(4.13). One
can construct a family of rational representations of the symmetric group (as well as its affine
extension) by “iterating” the transformations s(h)j , j ∈ Z/nZ. For example, take parameters
a and b, define secondary divided difference operator

∂[a,b]
xy := −1 + (b+ y − x) ∂[a]

xy , where ∂[a]
xy :=

1− s(a)xy

a− x+ y
, s(a)xy := −1 + (a+ x− y) ∂xy.

Observe that the set of operators {s[a,b]i := s
[a,b]
xi,xi+1 , i ∈ Z/nZ} gives rise to a rational repre-

sentation of the affine symmetric group Saff
n on the field of rational functions Z[a, b](Xn). In

the special case a := A, b := A/h, h := 1 − β/2 the operators s
[a,b]
i coincide with operators

Θi, i ∈ Z/nZ have been introduced in [23], (4.17).
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Comments 4.2 Let A = (a, b, c, h, e) be a sequence of integers satisfying the conditions
(4.5). Denote by ∂A

i the divided difference operator

∂A
i = a+ (b xi + c xi+1 + h+ e xi xi+1) ∂i, i = 1, . . . , n− 1.

It follows from Lemma 4.10 that the operators {∂A
i }1≤i≤n satisfy the Coxeter relations

∂A
i ∂A

i+1 ∂A
i = ∂A

i+1 ∂A
i ∂A

i+1, i = 1, . . . , n− 1.

Definition 4.17
(1) Let w ∈ Sn be a permutation. Define the generalized Schubert polynomial corre-

sponding to permutation w as follows

SA
w(Xn) = ∂A

w−1 w0
xδn , where xδn := xn−1

1 xn−2
2 · · · xn−1,

and w0 denotes the longest element in the symmetric group Sn.
(2) Let α be a composition with at most n parts, denote by wα ∈ Sn the permutation

such that wα(α) = α, where α denotes a unique partition corresponding to composition α.

Lemma 4.18 Let w ∈ Sn be a permutation.
• If A = (0, 0, 0, 1, 0), then SA

w(Xn) is equal to the Schubert polynomial Sw(Xn).
• If A = (−β, β, 0, 1, 0), then SA

w(Xn) is equal to the β-Grothendieck polynomial
G

(β)
w (Xn) introduced in [8].
• If A = (0, 1, 0, 1, 0) then SA

w(Xn) is equal to the dual Grothendieck polynomial.
• If A = (−1, 2, 0, 1, 1), then SA

w(Xn) is equal to the Di-Francesco–Zinn-Justin polyno-
mials introduced in [12].
• If A = (1,−1, 1, h, 0), then SA

w(Xn) is equal to the h-Schubert polynomials.

In all cases listed above the polynomials SA
w(Xn) have non-negative integer coeffi-

cients. .

Define the generalized key or Demazure polynomial corresponding to a composition α as
follows

KA
α (Xn) = ∂A

wα
xα.

• If A = (1, 0, 1, 0, 0), then KA
α (Xn) is equal to key (or Demazure) polynomial corresponding

to α.
• If A = (0, 0, 1, 0, 0), then KA

α (Xn) is equal to the reduced key polynomial.
• If A = (1, 0, 1, 0, β), then KA

α (Xn) is equal to the key Grothendieck polynomial
KGα(Xn).
• If A = (0, 0, 1, 0, β), then KA

α (Xn) is equal to the reduced key Grothendieck polyno-
mials.

In all cases listed above the polynomials SA
w(Xn) have non-negative integer coeffi-

cients. .
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• If A = (−1, q−1,−1, 0, 0) and λ is a partition, then (up to a scalar factor) polynomial
KA

λ (Xn) can be identify with a certain Whittaker function (of type A), see [2], Teorem A.
Note that operatos TA

i := −1 + (q−1 xi − xi+1) ∂i, 1 ≤ i ≤ n − 1, satisfy the Coxeter and
Hecke relations, namely (TA

i )2 = (q−1)−1) TA
i +q−1.In[2]theoperatorTA

i has been denoted by Ti.
• If A = (−β, β +α, 0, 1, βα) , then SA

w(Xn) constitutes a common generalization of the
Grothendieck and the Di Francesco–Zin-Justin polynomials.
• If A = (t,−1, t, 1, 0), then the operators and its baxterization

TA
i := t+ (−xi + t xi+1 + 1) ∂i, 1 ≤ i ≤ n− 1, and raising operator ϕ := (xn − 1) π,

where π denotes the q−1-shift opetrator, namely π(x1, . . . , xn) = (xn/q, x1, . . . , xn−1) can
be used to generate the interpolation Macdonald polynomials as well as the nonsymmetric
Macdonald polynomials, see [41] for details.

In similar fashion, rely on the operators and its baxterization

T β,α,γ
i := −β+((α+β+γ) xi+γ xi+1+1+(α+γ)(β+γ) xi xi+1) ∂i, 1 ≤ i ≤ n−1, and ϕ,

we introduce polynomials Mβ,α,γ,q
δ (Xn), where δ is a composition. These polynomials are

common generalization of the interpolation Macdonald polynomials Mδ(Xn; q, t) (the case
β = −t, α = −1, γ = t), as well as the Schubert, β-Grothendieck and its dual, Demazure
and Di Francesco–Zin-Justin polynomials, and conjecturally their affine analogues/versions.
Details will appear elsewhere.

Comments 4.3 (Double affine NilCoxeter algebra) Let t, q, a, b, c, h, d be parameters.

Definition 4.19 Define double affine nil-Coxeter algebra DANCn to be (unital) associative
algebra over Q(q±1, t±1) with the set of generators {e1, . . . , en−1, x1, . . . , xn, π±1} subject to
relations
• (NilCoxeter relations)

ei ej = ej ei, if |i− j| ≥ 2, e2i = 0, ∀i, ei ej ei = ej ei ej, if |i− j| = 1;

• (Crossing relations)

xi ek = ek xi, if k ̸= i, i+ 1, xi ei − ei xi+1 = 1, ei xi − xi+1 ei = 1;

• (Affine crossing relations)
π xi = xi+1 π, if i < n, π xn = q−1 x1 π,

π ei = ei+1 π, if i < n− 1, π2 en−1 = q e1 π2.

Now let us introduce elements e0 := π en−1 π−1 and

T0 := T a,b,c,h,d
0 = π Tn−1 π−1 = a+ (b xn + q−1 c x1 + h+ q−1 d x1 xn) e0.
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It is easy to see that π e0 = q e1 π,

π T a,b,c,h,d
0 = T a,b,c,q h,q−1d

1 e1 π = T a,b,c,h,d
1 + ((1− q) h+ (1− q−1) d x1 x2) e1.

Now let us assume that a = t, b = −t, d = e = 0, c = 1. Then,
Ti = t+ (xi+1 − t xi) ei, i = 1, . . . , n− 1, T0 = t+ (q−1 x1 − t xn) e0,

T 2
i = (t− 1) T + t, 0 ≤ i < n, Ti xi Ti = t xi+1, 1 ≤ i < n, T0 xn T0 = t q−1 x1,

T0 T1 T0 = T1 T0 T1, Tn−1 T0 Tn−1 = T0 Tn−1 T0, T0 Ti = Ti T0, if 2 ≤ i < n− 1.

The operators Ti := T t,−t,1,0,0
i , 0 ≤ i ≤ n−1 have been used in [41] to give an “elementary”

construction of nonsymmetric Macdonald polynomials. Indeed, one can realize the operator
π as follows:

π(f) = f(xn/q, x1, x2, . . . , xn−1), so that π−1(f) = (x2, . . . , xn, q x1),

and introduce the raising operator [41] to be

ϕ(f(Xn)) = (xn − 1) π(f(Xn)).

It is easily seen that ϕ Ti = Ti+1 ϕ, i = 0, · · · , n − 2, and ϕ2 Tn−1 = T1 ϕ2. It has
been established in [41] how to use the operators ϕ, T1, . . . , Tn−1 to to give formulas for the
interpolation Macdonald polynomials. Using operators ϕ, T

(a,b,c,h,d)
i , i = 1, . . . , n − 1

instead of ϕ, T1, . . . , Tn−1, 1 ≤ i ≤ n − 1, one get a 4-parameter generalization of the inter-
polation Macdonald polynomials, as well as the nonsymmetric Macdonald polynomials.

It follows from the nilCoxeter relations listed above, that the Dunkl–Cherednik elements,
cf [5]

Yi :=
( 1∏
a=i−1

T−1
a

)
π
( i+1∏
a=n−1

Ta

)
, i = 1, . . . , n,

where Ti = T t,−t,1,0,0
i , generate a commutative subalgebra in the double affine nilCoxeter al-

gebra DANCn. Note that the algebra DANCn contains lot of other interesting commutative
subalgebras, see e.g. [16].

It seems interesting to give an interpretation of polynomials generated by the set of oper-
ators T t,−t,1,h,e

i , i = 0, · · · , n− 1 in a way similar to that given in [41]. We expect that these
polynomials provide an affine version of polynomials KN (−t,−1,1,1,0)

w (X), w ∈ Sn ⊂ Saff
n , see

Remark 4.7.

Note that for any affine permutation v ∈ Saff
n , the operator

T (a,b,c,h,d)
v = T

(a,b,c,h,d)
i1

· · ·T (a,b,c,h,d)
iℓ

, where v = si1 · · · siℓ is any reduced decomposition of v, is well-defined up to the sign
±1. It seems an interesting problem to investigate properties of polynomials Lv[α](Xn),
where v ∈ Saff

n and α ∈ Zn
≥0, and find its algebra-geometric interpretationsons.
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5 Cauchy kernel
Let u1, u2, · · · , un−1 be a set of generators of the free algebra Fn−1, which assumed also to be
commute with the all variables Pn := {pi,j, 2 ≤ i+ j ≤ n+ 1, i ≥ 1, j ≥ 1}..

Definition 5.1 The Cauchy kernel C(Pn, U) is defined to be as the ordered product

C(Pn, U) =
n−1∏
i=1

{ i∏
j=n−1

(1 + pi,j−i+1 uj)
}
. (5.14)

For example,
C(P4, U) = (1 + p1,3 u3)(1 + p1,2 u2)(1 + p1,1 u1)(1 + p2,2 u3)(1 + p2,1 u2)(1 + p3,1 u3).

In the case {pij = xi, ∀j} we will write Cn(X,U) instead of C(Pn, U).

Lemma 5.2

C(Pn, U) =
∑

(a,b)∈Sn

p∏
j=1

p{aj ,bj} w(a,b), (5.15)

where a = (a1, . . . , ap), b = (b1, . . . , bp), w(a,b) =
∏p

j=1 uaj+bj−1, and the sum in (4.10)
runs over the set Sn :=

{(a,b) ∈ Np × Np | a = (a1 ≤ a2 ≤ . . . ≤ ap), ai + bi ≤ n, and if ai = ai+1 =⇒ bi > bi+1}.

We denote by S(0)
n the set {(a,b) ∈ Sn | w(a,b) is a tableau word}.

The number of terms in the right hand side of (5.15) is equal to 2(
n
2), and therefore is equal

to the number #|STY (δn,≤ n)| of semistandard Young tableaux of the staircase shape δn :=
(n−1, n−2, . . . , 2, 1) filled by the numbers from the set {1, 2, . . . , n}. It is also easily seen that
the all terms appearing in the RHS(4.10) are different, and thus #|Sn| = #|STY (δn,≤ n)|.

We are interested in the decompositions of the Cauchy kernel C(Pn, U) in the algebras
Pn, NPn, IPn, NCn and ICn.

5.1 Plactic algebra Pn

Let λ be a partition and α be a composition of the same size. Denote by S̃TY (λ, α) the
set of semistandard Young tableaux T of the shape λ and content α which must satisfy the
following conditions:
• for each k = 1, 2, · · · , the all numbers k are located in the first k columns of the

tableau T . In other words, the all entries T (i, j) of a semistandard tableau T ∈ S̃TY (λ, α)
have to satisfy the following conditions: Ti,j ≤ j.

For a given (semi-standard) Young tableau T let us denote by Ri(T ) the set of numbers
placed in the i-th row of T , and denote by S̃TY 0(λ, α) the subset of the set S̃TY 0(λ, α)
involving only tableaux T which satisfy the following constrains : R1(T ) ⊃ R2(T ) ⊃ R3(T ) ⊃
. . ..
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To continue, let us denote by An (respectively by A(0)
n ) the union of the sets S̃TY (λ, α)

(resp. that of S̃TY 0(λ, α)) for all partitions λ such that λi ≤ n − i for i = 1, 2, · · · , n − 1,
and all compositions α, l(α) ≤ n − 1. Finally, denote by An(λ) (resp.A(0)

n (λ)) the subset of
An (resp. A(0)

n (λ)) consisting of all tableaux of the shape λ.

Lemma 5.3
• |An(δn)| = 1, |An(δn−1)| = (n − 1)!, |An((n − 1))| = Cn−1 the n − 1-th Catalan

number. More generally,

|An((1
k))| =

(
n− 1

k

)
, |An((k))| =

n− k

n

(
n+ k − 1

k

)
, k = 0, . . . , n− 1,

cf [55], A009766,

|An((k, 1)) =
(n− k + 1)(n2 + n− k − 1)

(k + 1)(n+ 2)

(
n+ k

k − 1

)
, k = 1, . . . , n.

• There exists a bijection ρn : An −→ ASM(n) such that the image Im (A(0)
n ) contains

the set of n× n permutation matrices.
• The number of column strict, as well as row strict diagrams which are contained

inside the staircase diagram (n, n− 1, . . . , 2, 1) is equal to 2n.

Example 5.4 Take n = 5 so that ASM(5) = 429 and Cat(5) = 42. One has
|A(0)

5 | = |A
(0)
5 (∅)| + |A(0)

5 ((1))| + |A(0)
5 ((2))| + |A(0)

5 ((3))| + |A(0)
5 ((2, 1))| + |A(0)

5 ((4))| +
|A(0)

5 ((3, 1))|+ |A(0)
5 ((3, 2))|+ |A(0)

5 ((4, 1))|+ |A(0)
5 ((4, 2))|+ |A(0)

5 ((3, 2, 1))|+ |A(0)
5 ((4, 3))|+

|A(0)
5 ((4, 2, 1))|+ |A(0)

5 ((4, 3, 1))|+ |A(0)
5 ((4, 3, 2))|+ |A(0)

5 ((4, 3, 2, 1))| =
1 + 4 + 9 + 14 + 6 + 14 + 16 + 4 + 21 + 14 + 4 + 1 + 9 + 2 + 1 + 1 = 121,∑4

k=0 |A5((k))| = 1 + 4 + 9 + 14 + 14 = 42.

We expect that the image ρn(
∪n−1

k=0 An((k))) coincides with the set of n × n permutation
matrices corresponding to either 321-avoiding or 132-avoiding permutations.

Now we are going to define a statistic n(T ) on the set An.

Definition 5.5 Let λ be a partition, α be a composition of the same size. For each tableau
T ∈ S̃TY (λ, α) ⊂ An(λ) define

n(T ) = αn = Card{(i, j) ∈ λ | T (i, j) = n}.

Clearly, n(T ) ≤ λ1.
Define polynomials

Aλ(t) :=
∑

T∈An(λ)

tλ1−n(T ).
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It is instructive to display the numbers {An(λ), λ ⊂ δn} as a vector of the length equals to
the n− th Catalan number. For example,
A4(∅, (1), (2), (1, 1), (3), (2, 1), (1, 1, 1), (3, 1), (2, 2), (2, 1, 1), (3, 2), (3, 1, 1), (2, 2, 1), (3, 2, 1))=
(1, 3, 5, 3, 5, 6, 1, 6, 3, 2, 3, 2, 1, 1).

It is easy to see that the above data, as well as the corresponding data for n = 5, coincide
with the list of refined totally symmetric self-complementary plane partitions that fit in the
box 2n× 2n× 2n (TSSCPP (n) for short) listed for n = 1, 2, 3, 4, 5 in [12], Appendix D.

In fact we have

Theorem 5.6 The sequence {An(λ), λ ⊂ δn} coincides with the set of refined TSSCPP (n)
numbers as defined in [12]. More precisely,
• |An(λ)| = det|

(
n−i

λ′
j−j+i

)
|1≤i,j≤n−1,

• We have

Aλ(t) := det|
(

n− i− 1

λ′
j − j + i− 1

)
+ t

(
n− i− 1

λ′
j − j + i

)
|1≤i,j≤n−1,

• Polynomial Aλ(t) is equal to a t-analog of refined TSSCPP (n) numbers Pn(λ
′
n−1 +

1, · · · , λ′
n−i + i, · · · , λ′

1 + n− 1 | t) introduced by means of recurrence relations in [12], (3.5).

In particular,
∑

λ⊂δn
Aλ(t) =

∑
1≤j≤n−1 An,j t

j−1, where An,j stands for the number of alter-
nating sign matrices (ASMn for short) of size n× n with a 1 on top of the j-th column.

Corollary 5.7 The number of different tableau subwords in the word

w0 :=
n−1∏
j=1

{ j∏
a=n−1

a
}

is equal to the number of alternating sign matrices of size n× n, i.e.

|An| = |TSSCPP (n)| = |ASMn|.

It is well-known [4] that

An,j =

(
n+ j − 2

j − 1

)
(2n− j − 1)!

(n− j)!

n−2∏
i=0

(3i+ 1)!

(n+ i)!
,

and the total number An of ASM of size n× n is equal to

An ≡ An+1,1 =
n∑

j=1

An,j =
n−1∏
i=0

(3i+ 1)!

(n+ i)!
.
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Comments 5.1
(1) Let as before STY (δn ≤ n) := ST n denotes the set of all semistandard Young

tableaux of the staircase shape δn = (n − 1, n − 2, . . . , 2, 1) filled by the numbers from the
set {1, . . . , n}. Denote by ST (0)

n the subset of “anti- diagonally” increasing tableaux, i.e.

ST (0)
n = {T ∈ STY (δn,≤ n) | Ti,j ≥ Ti−1,j+1 for all 2 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 2}.

One (A.K) can construct bijections

ιn : Sn ∼ ST n, ζn : An ∼ ST (0)
n

such that Im(ιn) = Im(ζn).
(2)

Proposition 5.8 ∑
λ=(λ1,...,λn)

ρn≥λ

Kρn,λ

(
n

m0(λ), m1(λ), . . . , mn(λ)

)
= 2(

n
2).

∑
λ=(λ1,...,λn)

ρn≥λ

(
n

m0(λ), m1(λ), . . . , mn(λ)

)
= Fn,

where Fn denotes the number of forests of trees on n labeled nodes;
Kρn,λ denotes the Kostka number, i.e. the number of semistandard Young tableaux of the

shape ρn := (n− 1, n− 2, . . . , 1) and content/weight λ;
for any partition λ = (λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0) we set mi(λ) = {j | λj = i}.

Let α be a composition, we denote by α+ the partition obtained from α by reordering of
its parts. For example, if α = (0, 2, 0, 3, 1, 0) then α+ = (3, 2, 1). Note that ℓ(α) = 6, but
ℓ(α+) = 3.

Now let α be a composition such that ρn ≥ α+, ℓ(α) ≤ n, that is αj = 0, if j > ℓ(α),
|α| =

(
n
2

)
and ∑

k≤j

(ρn)k ≥
∑
k≤j

(α+)k, ∀j.

There is a unique semistandard Young tableau Tn(α) of shape ρn and content α which corre-
sponds to the maximal configuration of type (ρn;α) and has all quantum numbers (riggings)
equal to zero. It follows from Proposition 4.8 that #{α | ℓ(α) ≤ n, ρn ≥ α+} = Fn.
Therefore there is a natural embedding of the set of forests on n labeled nodes to the set
of semistandard Young tableaux of shape ρn filled by the numbers from the set [1, . . . , n].
We denote by FT n ⊂ STY (ρn,≤ n) the subset {Tn(α) | ρn ≥ α+, ℓ(α) ≤ n}. Note that
the set Kn := {α |ℓ(α) = n, (α)+ = ρn} contains n! compositions, and under the rigged
configuration bijection the elements of the set Kn correspond to the key tableaux of shape
ρn.
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Let us say a few words about the Kostka numbers Kρn,α. First of all, it’s clear that if
α = (α1, α2, · · ·) is a composition such that α1 = n − 1, then Kρn,α = Kρn−1,α[1], where we
set α[1] := (α2, . . .).

Now assume that n = 2k + 1 is an odd integer, and consider partitions νn := (kn) and
µn := ((k + 1)k, kk). Then

Kρn,νn = Coeff(x1x2···xn)k

( ∏
1≤i<j≤n

(xi + xj)
)
,

(
2k

k

)
Kρn,µn = Kρn,νn .

It is well-known that the number Kρn,νn is equal to number of labeled regular tournaments
with n := 2k + 1 nodes, see e.g. [55], A007079.

In the case when n = 2k is an even number, one can show that

Kρn,νn = Kρn−1,νn−1 , Kρn,µn = Kρn+1,µn+1 .

Note that the rigged configuration bijection gives rise to an embedding of the set of labeled
regular tournaments with n := 2k + 1 nodes to the set STY (ρn,≤ n), if n is an odd integer,
and to the set STY (ρn−1,≤ n− 1), if n is even.

Theorem 5.9
(1) In the plactic algebra Pn the Cauchy kernel has the following decomposition

Cn(P, U) =
∑
T∈An

KT (P) uw(T ). (5.16)

(2) Let T ∈ An, and α(T ) be its bottom code. Then

KT (P)−
∏

(i,j)∈T

p{i,T (i,j)−j+1} ≥ 0,

and equality holds if and only if the bottom code α(T ) is a partition.

Note that the number of different shapes among the tableaux in the set An is equal to the
Catalan number Cn := 1

n+1

(
2n
n

)
.

Problem 5.10 Construct a bijection between the set An and the set of alternating sign
matrices ASMn.

Example 5.11 For n = 4 one has C4(X,U) = K[0]+
K[1]u1+
K[01]u2+
K[001]u3+
K[11](u12 + u22)+
K[2](u21 + u31)+
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K[101]u13+
K[02]u32+
K[011](u23 + u33)+
K[3]u321+
K[12](u312 + u322)+
K[21]u212+
K[111](u123 + u133 + u233 + u223 + u333)+
K[021]u323+
K[201](u313 + u213)+
K[31]u3212+
K[301]u3213+
K[22](u3132 + u2132 + u3232)+
K[121](u3123 + u3233 + u3223)+
K[211](u2123 + u2133 + u3133)+
K[32]u32132+
K[311](u32123 + u32133)+
K[221](u21323 + u31323 + u32323)+
K[321]u321323.

Let w ∈ Sn be a permutation with the Lehmer code α(w).

Definition 5.12 Define the plactic polynomial PLw(E) to be

PLw(U) =
{ ∑

T∈An,α(T )=α(w)

uw(T )

}
.

Comments 5.2 It is easily seen from a definition of the Cauchy kernel that

Cn(X,U) =
∑
α⊂δn

K[α](X) PLw0 w−1
α
(U),

where wα denotes a unique permutation in Sn with code equals α; K[α](X) denotes the
key polynomial corresponding to composition α ⊂ δn. The polynomials PLw0 w−1

α
can be

treated as a plactic version of noncommutative Schur and Schubert polynomials introduced
and studied in [21], [32], [7], [42], [38].

Now let X = {x1, . . . , xn} be a set of mutely commuting variables, and
I0 := {n− 1, n− 2, . . . , 2, 1︸ ︷︷ ︸

n−1

, . . . , n− 1, , n− 2, . . . , k + 1, k︸ ︷︷ ︸
n−k

, . . . , n− 1, n− 2, n− 1} be lexico-

graphically maximal reduced expression for the longest element w0 ∈ Sn. Let I be a tableau
subword 9 of the set I0. One can show (AK) that under the specialization

ui =

{
xi, if i ∈ I0 \ I,
1, if i ∈ I

9 For the reader convenience we recall a definition of a tableau word. Let T be a (regular shape)
semistandard Young tableau. The tableau word w(T ) associated with T is the reading word of T is the
sequence of entries of T obtained by concatenating the columns of T bottom to top consecutively starting
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the polynomial PLw0 w−1
α
(U) turns into the Schubert polynomial Swα(X). In a similar

fashion, consider the decomposition

Cn(X,U) =
∑
α⊂δn

KG[α](X;−β) PLw0 w−1
α
(U ; β).

One can show (AK) that under the same specialization as has been listed above, the poly-
nomial PLw0 w−1

α
(U ; β) turns into the β-Grothendieck polynomial Gβwα

(X).

Definition 5.13 Define algebra PCn to be the quotient of the plactic algebra Pn by the two-
sided ideal Jn by the set of monomials

{ui1ui2 · · ·uin}, 1 ≤ i1 ≤ i2 ≤ · · · ≤ in ≤ n, #{a | ia = j} ≤ j, ∀j = 1, . . . , n.

Theorem 5.14
• The algebra PCn has dimension equals to ASM(n),
• Hilb(PCn, q) =

∑
λ∈δn−1

|Aλ| q|λ|,
• Hilb((PCn+1)

ab, q) =
∑n

k=0
n−k+1
n+1

(
n+k
n

)
qk, cf [55], A009766.

Definition 5.15 Denote by PC♯n the quotient of the algebra PCn by the two-sided ideal
generated by the elements {uiuj − ujui, |i− j| ≥ 2}.

Proposition 5.16 Dimension dimPC♯n of the algebra PC♯n is equal to the number of Dyck
paths whose ascent lengths are exactly {1, 2, . . . , n+ 1}.

See [55],A107877 where the first few of these numbers are displayed.

Example 5.17 Hilb(PC♯5, t) = (1, 4, 12, 27, 48, 56, 54, 38, 20, 7, 1)t,
Hilb(PC♯6, t) = (1, 5, 18, 50, 116, 221, 321, 398, 414, 368, 275, 175, 89, 35, 9, 1)t,
dimPC♯7 = 28612.

Example 5.18 Hilb(PC3, q) = (1, 2, 3, 1)q, Hilb(PC4, q) = (1, 3, 8, 12, 11, 6, 1)q,
Hilb(PC5, q) = (1, 4, 15, 35, 69, 91, 98, 70, 35, 10, 1)q,
Hilb(PC6, q) = (1, 5, 24, 74, 204, 435, 783, 1144, 1379, 1346, 1037, 628, 275, 85, 15, 1)q,
Hilb(PC7, q) = (1, 6, 35, 133, 461, 1281, 3196, 6686, 12472, 19804, 27811, 33271, 34685, 30527,
22864, 14124, 7126, 2828, 840, 175, 21, 1)q.

from the first column. For example, take

T =

1 2 3 3
2 3 4
3 4
5

.

The corresponding tableau word is w(T ) = 5321432433. By definition, a tableau word is the tableau word
corresponding to some (regular shape) semistandard Young tableau. It is well-known [34] that the number
of tableau subwords contained in I0 is equal to the number of alternating sign matrices ASM(n).
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Problem 5.19 Denote by An the algebra generated by the curvature of 2-forms of the tau-
tological Hermitian linear bundles ξi, 1 ≤ i ≤ n, over the flag variety F ln, [54]. It is
well-known [50] that the Hilbert polynomial of the algebra An is equal to

Hilb(An, t) =
∑

F∈F(n)

tinv(F ) =
∑

F∈F(n)

tmaj(F ),

where the sum runs over the set F(n) of forests F on the n labeled vertices, and inv(F )
(resp. maj(F )) denotes the inversion index (resp. the major index) of a forest F. 10

Clearly that

dim(An)(n2)
) = dim(PCn)(n2) = dim(H⋆(F ln,Q)(n2)

= 1.

For example,
Hilb(PC6, t) = (1, 5, 24, 74, 204, 435, 783, 1144, 1379, 1346, 1037, 628, 275, 85, 15, 1)t,
Hilb(A6, t) = (1, 5, 15, 35, 70, 126, 204, 300, 405, 490, 511, 424, 245, 85, 15, 1)t,
Hilb(H⋆(F ln,Q), t) = (1, 5, 14, 29, 49, 71, 90, 101, 101, 90, 71, 49, 29, 14, 5, 1)t.
We expect that dim(PCn)(n2)−1 =

(
n
2

)
and dim(PCn)(n2)−2 = 3n+5

4

(
n+2
3

)
= s(n + 2, 2),

where s(n, k) demotes the Stirling number of the first kind, see e.g. [55], A000914.
Problems
(1) Is it true that Hilb(PCn, t)−Hilb(An, t) ∈ N[t] ?

If so, as we expect, does there exist an embedding of sets ι : F(n) ↪→ An such that
inv(F ) = n(ι(F )) for all F ∈ Fn ?

See Section 5.1 for definitions of the set An and statistics n(T ), T ∈ An, Definition 5.5.

(2) It is well-known that #|STY (δn,≤ n)| = 2δn = 2(
n
2), where

δn = (n− 1, n− 2, . . . , 2, 1), STY (δn,≤ n) denotes the set of semistandard Young tableaux of
shape δn with entries bounded by n,
2δn stands for the set of all subsets of boxes of the staircase diagram δn.

Define a “natural” bijection κ : STY (δn,≤ n) ←→ 2δn such that the set κ(MT (n))
admits a “nice” combinatorial description. Here MT (n) denotes the set of (increasing)
monotone triangles, i.e. the subset of STY (δn,≤ n) consisting of tableaux T = (ti,j) i+j≤n+1

i≥1,j≥1

such that ti,j ≥ ti−1,j+1, 2 ≤ i ≤ n, 1 ≤ j < n, cf [56].

Comments 5.3
10For the readers convenience we recall definitions of statistics inv(F ) and maj(F ). Given a forest F on

n labeled vertices, one can construct a tree T by adding a new vertex (root) connected with the maximal
vertices in the connected components of F.

The inversion index inv(F ) is equal to the number of pairs (i, j) such that 1 ≤ i < j ≤ n, and the vertex
labeled by j lies on the shortest path in T from the vertex labeled by i to the root.

The major index maj(F ) is equal to
∑

x∈Des(F ) h(x); here for any vertex x ∈ F , h(x) is the size of the
subtree rooted at x; the descent set Des(F ) of F consists of the vertices x ∈ F which have the labeling
strictly greater than the labeling of its child.
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One can ask a natural question :
when does noncommutative elementary polynomials e1(A), · · · , en(A) form a q-commuting

family, i.e. ei(A) ej(A) = q ej(A) ei(A), 1 ≤ i < j ≤ n ?
Clearly that in the case of two variables one needs to necessitate the following relations

ei ej ei + ej ej ei = q ej ei ei + q ej ei ej, i < j.

Having in mind to construct a quantization, or q-analogue of the plactic algebra Pn, one
would be forced to the following relations

q ej ei ej = ej ej ei and q ej ei ei = ei ei ej ei, i < j.

It is easily seen that these two relation are compatible iff q2 = 1. Indeed.

ej ej ei ej = q ej ei ej ei = q2 ej ej ei ei, =⇒ q2 = 1.

In the case q = 1 one comes to the Knuth relations (PL 1) and (PL 2). In the case
q = −1 one comes to the “odd” analogue of the Knuth relations, or “odd” plactic relations
(OPLn), i.e., (OPLn) :

uj ui uj = −uj uj ui, if i < j ≤ k ≤ n, and ui uj ui = −uj ui ui, if i ≤ j < k ≤ n.

Proposition 5.20 (AK) Assume that the elements {u1, . . . , un−1} satisfy the odd plactic
relations (OPLn). Then the noncommutative elementary polynomials e1(U), . . . , en(U)
are mutually anticommute.

More generally, let Qn := {qij}1≤i<j≤n−1 be a set of parameters. Define generalized plactic
algebra QPn to be (unital) associative algebra over the ring Z[{q±1

ij }1≤i<j≤n−1] generated by
elements u1, . . . , un−1 subject to the set of relations

qik uj ui uk = uj uk ui, if i < j ≤ k, and qik ui uk uj = uk ui uj, if i ≤ j < k. (5.17)

Proposition 5.21 Assume that qij := qj, ∀ 1 ≤ i < j.
Then the reduced generalized plactic algebra QPCn is a free Z[q±1

2 , . . . , q±1
n−1]-module of rank

equals to the number of alternating sign matrices ASM(n). Moreover,

Hilb(QPCn, t) = Hilb(PCn, t), Hilb(QPn, t) = Hilb(Pn, t).

Recall that reduced generalized plactic algebra is the quotient of the generalized plactic algebra
by the two-sided ideal Jn introduced in Definition 5.13.

Example 5.22
(A) (Super plactic monoid, [44], [27]) Assume that the set of generators U :=

{u1, . . . , un−1} is divided on two non-crossing subsets, say Y and Z, Y ∪Z = U, Y ∩Z = ∅.
To each element u ∈ U let us assign the weight wt(u) as follows: wt(u) = 0, if u ∈ Y , and
wt(u) = 1 if u ∈ Z. Finally, define parameters of the generalized plactic algebra QPn to
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be qij = (−1)wt(ui) wt(uj). As a result we led to conclude that the generalized plactic algebra
QPn in question coincides with the super plactic algebra PS(V ) introduced in [44]. We will
denote this algebra by SPk,l, where k = |Y |, l = |Z|. We refer the reader to papers [44] and
[27] for more details about connection of the super plactic algebra and super Young tableaux,
and super analogue of the Robinson–Schensted –Knuth correspondence. We are planning to
report on some properties of the Cauchy kernel in the super plactic algebra elsewhere.

(B) (q-analogue of plactic algebra)
Now let q ̸= 0,±1 be a parameter, and assume that qij = q, ∀ 1 ≤ i < j ≤ n− 1. This

case has been treated recently in [43]. We expect that the generalized Knuth relations (5.17)
are related with quantum version of the tropical/geometric RSK-correspondence (work in
progress), and, probably, with a q-weighted version of the Robinson– Schensted algorithm,
presented in [48]. Another interesting problem is to understand a meaning of Q-plactic
polynomials coming from the decomposition of the Cauchy kernels Cn and Fn in the reduced
generalized plactic algebra QPCn.

5.2 Nilplactic algebra NPn

Let λ be a partition and α be a composition of the same size. Denote by ŜTY (λ, α) the set
of columns and rows strict Young tableaux T of the shape λ and content α such that the
corresponding tableau word w(T ) is reduced, i.e. l(w(T )) = |T |.

Denote by Bn the union of the sets ŜTY (λ, α) for all partitions λ such that λi ≤ n − i
for i = 1, 2, · · · , n− 1, and all compositions α, α ⊂ δn.

For example, |Bn| = 1, 2, 6, 25, 139, 1008, · · · , for n = 1, 2, 3, 4, 5, 6, · · · .

Theorem 5.23
(1) In the nilplactic algebra NPn the Cauchy kernel has the following decomposition

Cn(P, U) =
∑
T∈Bn

KT (P) uw(T ). (5.18)

(2) Let T ∈ Bn be a tableau, and assume that its bottom code is a partition. Then

KT (P) =
∏

(i,j)∈T

p{i,T (i,j)−j+1}.

Example 5.24 For n = 4 one has C4(X,U) =
K[0] +K[1]u1 +K[01]u2 +K[001]u3 +K[11]u12 +K[2](u21 + u31) +K[101]u13+
K[02]u32 +K[011]u23 +K[3]u321 +K[12]u312 +K[21]u212+
K[111]u123 +K[021]u323 +K[201]u213 +K[31]u3212+
K[301]u3213 +K[22]u2132 +K[121]u3123 +K[211]u2123 +K[32]u32132+
K[311]u32123 +K[221]u21323 +K[321]u321323.

36



5.3 Idplactic algebra IPn

Let λ be a partition and α be a composition of the same size. Denote by S̃TY (λ, α) the
set of columns and rows strict Young tableaux T of the shape λ and content α such that
l(w(T )) = rl(w(T )), i.e. the tableau word w(T ) is a unique tableau word of minimal length
in the idplactic class of w(T ), cf Example 1.9.

Denote by Dn the union of the sets S̃TY (λ, α) for all partitions λ such that λi ≤ n − i
for i = 1, 2, · · · , n− 1, and all compositions α, l(α) ≤ n− 1.

For example, |Dn| = 1, 2, 6, 26, 154, 1197, · · · , for n = 1, 2, 3, 4, 5, 6, · · · .

Theorem 5.25
In the idplactic algebra IPn the Cauchy kernel has the following decomposition

Cn(X,Y, U) =
∑
T∈Dn

KGT (X, Y ) uw(T ). (5.19)

(2) Let T ∈ Dn be a tableau, and assume that its bottom code is a partition. Then

KGT (X, Y ) = KT (X, Y ) =
∏

(i,j)∈T

(xi + yT (i,j)−j+1).

Example 5.26 For n = 4 one has C4(X,U) =
KG[0]+KG[1]u1+KG[01]u2+KG[001]u3+KG[11]u12+KG[2](u21+u31)+KG[101]u13+
KG[02]u32 +KG[011]u23 +KG[3]u321 +KG[12]u312 +KG[21]u212+
KG[111]u123 +KG[021]u323 +KG[201](u313 + u213) +K[31]u3212+
KG[301]u3213 +KG[22]u2132 +KG[121]u3123 +KG[211]u2123 +KG[32]u32132+
KG[311]u32123 +KG[221]u21323 +KG[321]u321323.

Theorem 5.27 For each composition α the key Grothendieck polynomial KG[α](X) is a
linear combination of key polynomials K[β](X) with nonnegative integer coefficients.

5.4 NilCoxeter algebra NCn
Theorem 5.28 In the nilCoxeter algebra NCn the Cauchy kernel has the following decom-
position

Cn(X, Y, U) =
∑
w∈Sn

Sw(X,Y ) uw. (5.20)

Let w ∈ Sn be a permutation, denote by R(w) the set of all its reduced decompositions. Since
the nilCoxeter algebra NCn is the quotient of the nilplactic algebra NPn, the set R(w) is the
union of nilplactic classes of some tableau words w(Ti) : R(w) =

∪
C(Ti). Moreover, R(w)

consists of only one nilplactic class if and only if w is a vexillary permutation. In general
case we see that the set of compatible sequences CR(w) for permutation w is the union of
sets C(Ti).
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Corollary 5.29 Let w ∈ Sn be a permutation of length l, then
(1) Sw(X,Y ) =

∑
b∈CR(w) xb1 · · · xbl .

(2) Double Schubert polynomial Sw(X, Y ) is a linear combination of double key polyno-
mials KT (X, Y ), T ∈ Bn, w = w(T ), with nonnegative integer coefficients.

5.5 IdCoxeter algebras IC±n
Theorem 5.30 In the IdCoxeter algebra IC+n with β = 1, the Cauchy kernel has the following
decomposition

Cn(X, Y, U) =
∑
w∈Sn

Gw(X,Y ) uw. (5.21)

Theorem 5.31 In the IdCoxeter algebra IC−n with β = −1, one has the following decompo-
sition

n−1∏
i=1

{ i∏
j=n−1

((1 + xi)(1 + yj−i+1) + (xi + yj−i+1) uj)
}
=

∑
w∈Sn

Hw(X,Y ) uw. (5.22)

A few remarks in order.
(a) The (dual) Cauchy identity (5.21) is still valid in the idplactic algebra with constrain

u2
i = −βui, i = 1, . . . , n− 1.
(b) The left hand side of the identity (5.21) can be written in the following form

∏
1≤i,j≤n
i+j≤n

(xi + yj)
n−1∏
i=1

{ i∏
j=n−1

1

1− (xi + yj−i+1 + β xi yj−i+1) uj

}
.

Indeed, (1 + β x+ x ui)(1− x ui) = 1 + β x, since u2
i = −β ui.

Let w ∈ Sn be a permutation, denote by IR(w) the set of all decompositions in the
idCoxeter algebra ICn of the element uw as the product of the generators ui, 1 ≤ i ≤ n− 1,
of the algebra ICn. Since the idCoxeter algebra ICn is the quotient of the idplactic algebra
IPn, the set IR(w) is the union of idplactic classes of some tableau words w(Ti) : IR(w) =∪

IR(Ti). Moreover, the set of compatible sequences IC(w) for permutation w is the union
of sets IC(Ti).

Corollary 5.32 Let w ∈ Sn be a permutation of length l, then
(1) Gw(X, Y ) =

∑
b∈IC(w)

∏l
i=1(xbi + yai−bi+1).

(2) Double Grothendieck polynomial Gw(X,Y ) is a linear combination of double key
Grothendieck polynomials KGT (X,Y ), T ∈ Bn, w = w(T ), with nonnegative integer coef-
ficients.
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6 F-kernel and symmetric plane partitions
Let us fix natural number n and k, and a partition λ ⊂ (nk). Clearly the number of such
partitions is equal to

(
n+k
n

)
; note that in the case n = k the number

(
2n
n

)
is equal to the

Catalan number of type Bn .
Denote by Bn,k(λ) the set of semistandard Young tableaux of shape λ filled by the numbers

from the set {1, 2, . . . , n}. For a tableau T ∈ Bn,k set as before,

n(T ) := Card {(i, j) ∈ λ | T (i, j) = n},

and define polynomial
Bn,k(λ)(q) :=

∑
T∈Bn,k(λ)

qλ1−n(T ).

Denote by Bn,k :=
∪

λ⊂(nk) Bn,k(λ).

Lemma 6.1 ( [14],[25] ) The number of elements in the set Bn,k is equal to

#|Bn,k| =
∏

1≤i≤j≤k

i+ j + n− 1

i+ j − 1
=

∏
a≥0

4a≤2k−1

(
n+2k−2a−1

n+2a

)(
2k−2a−1

2a

) =
∏
a≥0

(
n+2k+1−2a

n

)(
n+2([(k−2)/2]−a)

n

) .
See also [55], A073165 for other combinatorial interpretations of the numbers #|Bn,k|. For
example, the number #|Bn,k| is equal to the number of symmetric plane partitions fit inside
the box n× k × k.

Proposition 6.2 One has

• #|Bn,n| := SPP (n) = TSPP (n)× ASM(n), #|Bn,n+1| = TSPP (n)× ASM(n+ 1),

where TSPP (n) denotes the number of totally symmetric plane partitions fit inside the n×
n × n-box, see e.g. [55], A005157, whereas ASM(n) = TSSCPP (2n) denotes the of n × n
alternating sign matrices, and TSSCPP (2n) denotes the number of totally symmetric self-
complimentary plane partitions fit inside the 2n× 2n× 2n-box.
• #|Bn+2,n| = #|Bn,n+1|.

Note that in the case n = k the number Bn := Bn,n is equal to the number of symmetric
plane portions fit inside the n×n×n-box, see [55], A049505. Let us point to that in general
it may happen that the number #|Bn,n+2| does not divisible by any ASM(m),m ≥ 3. For
example, B3,5 = 4224 = 25 × 3 × 11. On the other hand, it’s possible that the number
#|Bn,n+2| is divisible by ASM(n = 1), but does not divisible by ASM(n+ 2). For example,
B4,6 = 306735 = 715× 429, but 306735 ∤ 7436 = ASM(6).

Problem 6.3 Let a is equal to either 0 or 1. Construct bijection between the set
PP (n, n + a, n + a) of symmetric plane partitions fit inside the box n × n + a × n + a and
and the set of pairs (P,M) where P is the totally symmetric plane partitions fit inside the
box n× n× n and M is an alternating sign matrix of size n+ a× n+ a.
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Example 6.4 Take n = 3. The number of partitions λ ⊂ (33) is equal to 20, namely, namely,
the partitions {∅, (1), (2), (1, 1), (3), (2, 1), (13), (3, 1), (2, 2), (2, 12), (3, 2), (3, 12), (22, 1), (32),
(3, 2, 1), (23), (32, 1), (3, 22), (32, 2), (33)}, and

B3(q) :=
∑

λ⊂(33)

#|B3(λ)| q|λ| = (1, 3, 9, 19, 24, 24, 19, 9, 3, 1) = (1 + q)3(1 + q2)(1 + 5q2 + q4).

Note, however, that∑
λ⊂(44)

#|B4(λ)| q|λ| = (1, 4, 16, 44, 116, 204, 336, 420, 490, 420, 336, 204, 116, 44, 16, 4, 1)

is an irreducible polynomial, but its value at q = 1 is equal to 2772 = 66× 42.

Let p = (pi,j)1≤i≤n, 1≤j≤k be a n× k matrix of variables.

Definition 6.5 Define the kernel Fn,k(p, U) as follows

Fn,k(p, U) =
k−1∏
i=1

1∏
j=n−1

(1 + p
i,j−i+1

(n) uj),

where for a fixed n ∈ N and an integer a ∈ Z, we set

a = a(n) :=

{
a, if a ≥ 1,

n+ a− 1 if a ≤ 0.

For example, F3(p, U) = (1 + p1,2 u2)(1 + p1,1 u1)(1 + p2,1 u2)(1 + p2,2 u1).
In the plactic algebra FP3,3 one has F3,3(p, U) = 1

+ (p1,1 + p2,2) u1

+ (p1,2 + p2,1)u2

+ p1,1 p2,1 u11

+ p1,1 p2,1 u12

+ (p1,2 p1,1 + p1,2 p2,2 + p2,1 p2,2) u21

+ p1,2 p2,1 u22

+ (p1,1 p1,2 p2,2 + p1,2 p2,2 p2,1) u212

+ (p1,1 p1,2 p2,2 + p1,1 p2,2 p2,1) u211

+ p1,1 p1,2 p2,1 p2,2 u2121.

Definition 6.6 Define algebra PFn,k to be the quotient of the plactic algebra Pn by the
two-sided ideal In generated by the set of monomials

{ui1ui2 · · ·uik}, 1 ≤ i1 ≤ i2 ≤ · · · ≤ ik ≤ n− 1.
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Theorem 6.7
• Hilb(PFn,k, q) = Bn−1,k−1(q),
In particular,
• The algebra PFn,n has dimension equals to the number of symmetric plane partitions

SPP (n− 1),

• Hilb(PFn,k, q) = q
kn
2 so( k

2
)n (q±1, . . . , q±1︸ ︷︷ ︸

k

, 1),

where so( k
2
)n (q±1, . . . , q±1︸ ︷︷ ︸

k

, 1) denotes the specialization x2j = q, x2j−1 = q−1, 1 ≤ j ≤

k, of the character soλ(x1, x
−1
1 . . . , xk, x

−1
k , 1) of the odd orthogonal Lie algebra so(2k + 1)

corresponding to the highest weight λ = (
k

2
, . . . ,

k

2
)︸ ︷︷ ︸

n

.

• degq Hilb(PFn,k, q) = (n− 1)(k − 1), and dim(PFn,k)(n−1)(k−1) = 1,
• The Hilbert polynomial Hilb(PFn,k, q) is symmetric (unimodal ?) polynomial in the

variable q,
• Hilb((PFn,k)

ab, q) =
∑k−1

j=0

(
n+j−2
n−2

)
qj.

The key step in proofs of Lemma 6.1 and Theorem 6.5 is based on the following identity∑
λ⊂(nk)

sλ(x1, . . . , xk) = (x1 · · · xk)
n/2 so( k

2
)n(x1, x

−1
1 , . . . , xk, x

−1
k , 1), (6.23)

see e.g., [45], Ch.I, Sec.5, Ex.19, [25] and the literature quoted therein.

Problem 6.8
Let Γ := Γn,m

k,ℓ = (nk,mℓ), n ≥ m be a “fat hook”. Find generalizations of the identity
(6.21) and those listed in [17], p. 71, to the case of fat hooks, namely to find “nice” expressions
for the following sums

•
∑
λ⊂Γ

sλ(Xk+ℓ,
∑
λ⊂Γ

sλ(Xk+ℓ sλ(Yk+ℓ,

• Find “bosonic” type formulas for these sum at the limit n −→∞, ℓ −→∞, m, k are
fixed.

Example 6.9 Hilb(PF2,3, q) = (1, 3, 9, 9, 9, 3, 1)q, dim(PF2,4) = 35 = 5 × 7, and
dim(PF2,5) = 126 = 3× 42
Hilb(PF3,5, q) = (1, 4, 16, 44, 81, 120, 140, 120, 81, 44, 16, 4, 1)q, dim(PF3,5) = 672 = 16×42,
Hilb(PF5, q) = (1, 4, 16, 44, 116, 204, 336, 420, 490, 420, 336, 204, 116, 44, 16, 4, 1)q, dim(PF5,5) =
2772 = 66× 42.
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Proposition 6.10

• Hilb(PF3,n, q) =
2n∑
k=0

(
n[
k
2

]) (
n[

k+1
2

]) qk, dim(PF3,n) =

(
2n− 1

n

)
.

Therefore, Hilb(PF3,n, q) is equal to the generating function for the number of symmetric
Dyck paths of semilength 2n− 1 according to the number of peaks, see [55], A088855.

• dim(PF4,n+1) = 2n Catn+1, if n ≥ 4.

For example, dim(PF4,7) = 27456 = 64× 429, Hilb(PF4,7, q) =
(1, 6, 36, 146, 435, 1056, 2066, 3276, 4326, 4760, 4326, 3276, 2066, 1056, 435, 146, 36, 6, 1). Several
interesting interpretations of these numbers are given in [55], A003645.

Theorem 6.11
• (Symmetric plane partitions and Catalan numbers)

#|B4,n| = 1
2
Catn+1 × Catn+2.

• (Symmetric plane partitions and alternating sign matrices)

#|Bn+3,n| = 1
2

TSPP (n+ 1)× ASM(n+ 1) = 1
2
#|Bn+1,n+1|.

• (Plane partitions and alternating sign matrices invariant under a half-turn)

#|PP (n)| = ASM(n)× ASMHT (2n),

where PP (n) denotes the number of plane partitions fit inside an n×n×n box; ASMHT (2n)
denotes the number of alternating sign 2n× 2n-matrices invariant under a half-turn, see e.g.
[56], [26], [49], [4], [55], A005138.

• (Plactic decomposition of the Fn-kernel)

Fn,m =
∑

T uT UT ({pij}),
where summation runs over the set of semistandard Young tableaux T of shape λ ⊂ (n)m

filled by the numbers from the set {1, . . . ,m}.
• UT ({pij = 1,∀i, j}) = dimV

gl(m)

λ′ , where λ denotes the shape of a tableau T , and λ
′

denotes the conjugate/transpose of a partition λ.

7 Appendix

7.1 Some explicit formulas for n = 4 and compositions α such that
αi ≤ n− i for i = 1, 2, · · ·.

(1) Schubert and (−β)-Grothendieck polynomials G−[α] := G−β[α] for n = 4
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S1234 = S[0] = 1 = G−[0],
S2134 = S[1] = x1 = G−[1],
S1324 = S[01] = x1 + x2 = G−[01] + β G−[11],
S1243 = S[001] = x1 + x2 + x3 = G−[001] + β G−[011] + β2 G−[111],
S3124 = S[2] = x2

1 = G−[2],
S2314 = S[11] = x1x2 = G−[11],
S2143 = S[101] = x2

1 + x1x2 + x1x3 = G−[101] + β G−[201] + β2 G−[111],
S1342 = S[011] = x1x2 + x1x3 + x2x3 = G−[011] + 2β G−[111],
S1423 = S[02] = x2

1 + x1x2 + x2
2 = G−[02] + β G−[12] + β2 G−[22],

S4123 = S[3] = x3
1 = G−[3],

S3214 = S[21] = x2
1x2 = G−[21],

S2341 = S[111] = x1x2x3 = G−[111],
S2413 = S[12] = x2

1x2 + x1x
2
2 = G−[12] + β G−[22],

S1432 = S[021] = x2
1x2 + x2

1x3 + x1x
2
2 + x2

2x3 + x1x2x3 = G−[021] + 2β G−[121] + β G−[22] +
β2 G−[221],
S3142 = S[201] = x2

1x2 + x2
1x3 = G−[201] + β G−[211],

S4213 = S[31] = x3
1x2 = G−[31],

S3412 = S[22] = x2
1x

2
2 = G−[22],

S4132 = S[301] = x3
1x2 + x3

1x3 = G−[301] + β G−[311],
S3241 = S[211] = x2

1x2x3 = G−[211],
S2431 = S[121] = x2

1x2x3 + x1x
2
2x3 = G−[121] + β G−[221],

S4312 = S[32] = x3
1x

2
2 = G−[32],

S4231 = S[311] = x3
1x2x3 = G−[311],

S3421 = S[221] = x2
1x

2
2x3 = G−[211],

S4321 = S[321] = x3
1x

2
2x3 = G−[321].

Theorem 7.1 (cf [30], Section 5.5)
Each Schubert polynomial is a linear combination of (−β)- Grothendieck polynomials with

nonnegative coefficients from the ring N[β].

(2) Key and reduced key polynomials.

K[0] = 1 = K̂[0],

K[1] = x1 = K̂[1],

K[01] = x1 + x2, K̂[01] = x2,

K[001] = x1 + x2 + x3, K̂[001] = x3,

K[2] = x2
1 = K̂[2],

K[11] = x1x2 = K̂[11],

K[101] = x1x2 + x1x3, K̂[101] = x1x3,

K[02] = x2
1 + x1x2 + x2

2, K̂[02] = x1x2 + x2
2,

K[011] = x1x2 + x1x3 + x2x3, K̂[011] = x2x3,

K[3] = x3
1 = K̂[3],
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K[21] = x2
1x2 = K̂[21],

K[111] = x1x2x3 = K̂[111],

K[12] = x2
1x2 + x1x

2
2, K̂[12] = x1x

2
2,

K[021] = x2
1x2 + x2

1x3 + x1x
2
2 + x2

2x3 + x1x2x3, K̂[021] = x1x2x3 + x2
2x3,

K[201] = x2
1x2 + x2

1x3, K̂[201] = x2
1x3,

K[31] = x3
1x2 = K̂[31],

K[22] = x2
1x

2
2 = K̂[22],

K[211] = x2
1x2x3 = K̂[211],

K[301] = x3
1x2 + x3

1x3, K̂[301] = x3
1x3,

K[121] = x2
1x2x3 + x1x

2
2x3, K̂[121] = x1x

2
2x3,

K[32] = x3
1x

2
2 = K̂[32],

K[311] = x3
1x2x3 = K̂[311],

K[221] = x2
1x

2
2x3 = K̂[221],

K[321] = x3
1x

2
2x3 = K̂[321];

Note that if n = 4, then S[α] = K[α] for all α ⊂ δ4, except α = (101) in which
S[101] = K[2] +K[101].

(3) Grothendieck and dual Grothendieck polynomials for β = 1.

G1234 = G[0] = 1 = S[0],
H[0] = (1 + x1)

3(1 + x2)
2(1 + x3),

G2134 = G[1] = x1 = S[1],
H[1] = (1 + x1)

2(1 + x2)
2(1 + x3)G[1],

G1324 = G[01] = x1 + x2 + x1x2 = S[01] + S[11],
H[01] = (1 + x1)

2(1 + x2)(1 + x3)G[01],
G1243 = G[001] = x1 + x2 + x3 + x1x2 + x1x3 + x2x3 + x1x2x3 = S[001] + S[011] + S[111],
H[001] = (1 + x1)

2(1 + x2)G[001],
G3124 = G[2] = x2

1 = S[2],
H[2] = (1 + x1)(1 + x2)

2(1 + x3)G[2],
G2314 = G[11] = x1x2 = S[11],
H[11] = (1 + x1)

2(1 + x2)(1 + x3)G[11],
G2143 = G[101] = x2

1 + x1x2 + x1x3 + x2
1x2 + x2

1x3 + x1x2x3 + x2
1x2x3 = S[101] + S[201] +

S[111] + S[211],
H[101] = (1 + x1)(1 + x2)G[101],
G1342 = G[011] = x1x2 + x1x3 + x2x3 + 2 x1x2x3 = S[011] + 2 S[111],
H[011] = (1 + x1)

2(1 + x2)(x1x2 + x1x3 + x2x3 + x1x2x3),
G1423 = G[02] = x2

1 + x1x2 + x2
2 + x2

1x2 + x1x
2
2 = S[02] + S[12],

H[02] = (1 + x1)(1 + x3)(x
2
1 + x1x2 + x2

2 + 2 x2
1x2 + 2 x1x

2
2 + x2

1x
2
2),

G4123 = G[3] = x3
1 = S[3],

H[3] = (1 + x1)
2(1 + x3)G[3],

G3214 = G[21] = x2
1x2 = S[21],
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H[21] = (1 + x1)(1 + x2)(1 + x3)G[21],
G2341 = G[111] = x1x2x3 = S[111],
H[111] = (1 + x1)

2(1 + x2)G[111],
G2413 = G[12] = x2

1x2 + x1x
2
2 + x2

1x
2
2 = S[12] + S[22],

H[12] = (1 + x1)(1 + x3)G[12],
G1432 = G[021] = x2

1x2 + x2
1x3 + x1x

2
2 + x2

2x3 + x1x2x3 + 2 x1x2x3(x1 + x2) + x2
1x

2
2 + x2

1x
2
2x3 =

S[021] + 2 S[121] + S[22] + S[211],
H[021] = (1 + x1)G[021],
G3142 = G[201] = x2

1x2 + x2
1x3 + x2

1x2x3 = S[201] + S[211],
H[201] = (1 + x1)(1 + x2)G[201],
G4213 = G[31] = x3

1x2 = S[31],
H[31] = (1 + x2)(1 + x3)G[31],
G3412 = G[22] = x2

1x
2
2 = S[22],

H[22] = (1 + x1)(1 + x3)G[22],
G4132 = G[301] = x3

1x2 + x3
1x3 + x3

1x2x3 = S[301] + S[311],
H[301] = (1 + x2)G[301],
G3241 = G[211] = x2

1x2x3 = S[211],
H[211] = (1 + x2)G[211],
G2431 = G[121] = x2

1x2x3 + x1x
2
2x3 + x2

1x
2
2x3 = S[121] + S[221],

H[121] = (1 + x1)(1 + x2)G[121],
G4312 = G[32] = x3

1x
2
2 = S[32],

H[32] = (1 + x3)G[32],
G4231 = G[311] = x3

1x2x3 = S[311],
H[311] = (1 + x2)G[311],
G3421 = G[221] = x2

1x
2
2x3 = S[221],

H[221] = (1 + x1)G[221],
G4321 = G[321] = x3

1x
2
2x3 = S[321] = H[321].

Clearly that any β-Grothendieck polynomial is a linear combination of Schubert polyno-
mials with coefficients from the ring N[β].

(4) Key and reduced key Grothendieck polynomials.
KG[0] = 1 = K̂G[0],

KG[1] = x1 = K̂G[1],

KG[01] = x1 + x2 + x1x2, K̂G[01] = x2 + x1x2,

KG[001] = x1+x2+x3+x1x2+x1x3+x2x3+x1x2x3, K̂G[001] = x3+x1x3+x2x3+x1x2x3,

KG[2] = x2
1 = K̂G[2],

KG[11] = x1x2 = K̂G[11],

KG[101] = x1x2 + x1x3 + x1x2x3, K̂G[101] = x1x3 + x1x2x3,

KG[02] = x2
1 + x1x2 + x2

2 + x2
1x2 + x1x

2
2, K̂G[02] = x1x2 + x2

2 + x2
1x2 + x1x

2
2,

KG[011] = x1x2 + x1x3 + x2x3 + 2 x1x2x3, K̂G[011] = x2x3 + x1x2x3,

KG[3] = x3
1 = K̂G[3],
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KG[21] = x2
1x2 = K̂G[21],

KG[111] = x1x2x3 = K̂G[111],

KG[12] = x2
1x2 + x1x

2
2 + x2

1x
2
2, K̂G[12] = x1x

2
2 + x2

1x
2
2,

KG[201] = x2
1x2 + x2

1x3 + x2
1x2x3, K̂G[201] = x2

1x3 + x2
1x2x3,

KG[021] = x2
1x2 + x2

1x3 + x1x
2
2 + x1x2x3 + x2

2x3 + 2 x2
1x2x3 + 2 x1x

2
2x3 + x2

1x
2
2 + x2

1x
2
2x3,

K̂G[021] = x1x2x3 + x2
2x3 + x2

1x2x3 + 2 x1x
2
2x3 + x2

1x
2
2x3,

KG[31] = x3
1x2 = K̂G[31],

KG[22] = x2
1x

2
2 = K̂G[22],

KG[211] = x2
1x2x3 = K̂G[211],

KG[301] = x3
1x2 + x3

1x3 + x3
1x2x3, K̂G[301] = x3

1x3 + x3
1x2x3,

KG[121] = x2
1x2x3 + x1x

2
2x3 + x2

1x
2
2x3, K̂G[121] = x1x

2
2x3 + x2

1x
2
2x3,

KG[32] = x3
1x

2
2 = K̂G[32],

KG[311] = x3
1x2x3 = K̂G[311],

KG[221] = x2
1x

2
2x3 = K̂G[221],

KG[321] = x3
1x

2
2x3 = K̂G[321],

(5) 42 (deformed) double key polynomials for n = 4.

Kid = 1,
K1 = p1,1,
K2 = p1,2 + p2,1,
K3 = p1,3 + p2,2 + p3,1,
K12 = p1,1 p2,1,
K21 = p1,2 p1,1,
K23 = p1,2 p2,2 + p1,2 p3,1 + p2,1 p3,1,
K32 = p1,3 p1,2 + p1,3 p2,1 + p2,2 p2,1,
K13 = p1,1 p2,2 + p1,1 p3,1,
K31 = p1,3 p1,1,
K22 = p1,2 p2,1,
K33 = p1,3 p2,2 + p1,3 p3,1 + p2,2 p3,1,
K123 = p1,1 p2,1 p3,1,
K133 = p1,1 p2,2 p3,1,
K212 = p1,2 p1,1 p2,1,
K213 = p1,2 p1.1 p2,2 + p1,2 p1,1 p3,1,
K223 = p1,2 p2,1 p3,1,
K233 = p1,2 p2,2 p3,1,
K321 = p1,3 p1,2 p1,1,
K312 = p1,3 p1,1 p2,1 + q−1

13 p1,1 p2,2 p2,1,
K313 = p1,3 p1,1 p2,2 + p1,3 p1,1 p3,1,
K322 = p1,3 p1,2 p2,1 + q−1

23 p1,2 p2,2 p2,1,
K323 = p1,3 p1,2 p2,2 + p1,3 p1,2 p3,1 + p1,3 p2,1 p3,1 + p2,2 p2,1 p3,1 + q23 p1,3 p2,2 p2,1

46



K333 = p1,3 p2,2 p3,1,
K2123 = p1,2 p1,1 p2,1 p3,1,
K2132 = p1,2 p1,1 p2,2 p2,1,
K2133 = p1,2 p1,1 p2,2 p3,1,
K3123 = p1,3 p1,1 p2,1 p3,1 + q−1

13 p1,1 p2,2 p2,1 p3,1,
K3132 = p1,3 p1,1 p2,2 p2,1,
K3133 = p1,3 p1,2 p2,2 p3,1,
K3212 = p1,3 p1,2 p1,1 p2,1,
K3213 = p1,3 p1,2 p1,1 p2,2 + p1,3 p1,2 p1,1 p3,1,
K3223 = p1,3 p1,2 p2,1 p3,1 + q−1

23 p1,2 p2,2 p2,1 p3,1,
K3232 = p1,3 p1,2 p2,2 p2,1,
K3233 = p1,3 p1,2 p2,2 p3,1 + q23 p1,3 p2,2 p2,1 p3,1,
K21323 = p1,2 p1,1 p2,2 p2,1 p3,1,
K31323 = p1,3 p1,1 p2,2 p2,1 p3,1,
K32123 = p1,3 p1,2 p1,1 p2,1 p3,1,
K32132 = p1,3 p1,2 p1,1 p2,2 p2,1,
K32133 = p1,3 p1,2 p1,1 p2,2 p3,1,
K32323 = p1,3 p1,2 p2,2 p2,1 p3,1,
K321323 = p1,3 p1,2 p1,1 p2,2 p2,1 p3,1.

Theorem 7.2 (cf [39], the case β = −1)
Each double β-Grothendieck polynomials is a linear combination of double key polynomials

with the coefficients from the ring N[β].

Let us remind that the total number of double key polynomials is equal to the number of
alternating sign matrices. We expect that the interrelations between double key polynomials
which follow from the structure of the plactic algebra PCn, see Section 5.1, can be identi-
fied with the graph corresponding to the MacNeile completion of the poset associated with
the Bruhat order on the symmetric group Sn, see Section 8.2 for a definition of the Mac-
Neile completion. It is an interesting problem to describe interrelation graph associated with
the (rectangular) key polynomials corresponding to the Cauchy kernel for the algebra PFn,m.

(6) 26 double key Grothendieck polynomials for n = 4.

GKid = 1,
GK1 = p1,1 = K1

GK2 = p1,2 + p2,1 + p1,2 p2,1 = K2 +K22,
GK3 = p1,3 + p1,2 + p3,1 + p1,3 p2,2 + p1,3 p3,1 + p2,2 p3,1 + p1,3 p2,2 p3,1 = K3 +K33 +K333,
GK12 = p1,1 p2,1 = K12,
GK21 = p2,1 p1,1 = K21,
GK13 = p1,1 p2,2 + p1,1 p3,1 + p1,1 p2,2 p3,1 = K13 +K133,
GK31 = p3,1 p1,1 = K31,
GK23 = p1,1 p2,2 + p1,2 p3,1 + p2,1 p3,1 + p1,2 p2,1 p3,1 + p1,2 p2,2 p3,1 = K23 +K223 +K233,
GK32 = p1,3 p1,2 + p1,3 p2,1 + p2,2 p2,1 + p1,3 p1,2 p2,1 + p1,2 p2,1 p2,2 = K32 +K322,
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GK123 = p1,1 p2,1 p3,1 = K123,
GK212 = p1,2 p1,1 p2,1 = K212,
GK213 = p1,2 p1,1 p2,2 + p2,1 p1,1 p3,1 + p1,2 p1,1 p2,2 p3,1 = K213 +K2133,
GK312 = p1,3 p1,1 p2,1 + p1,1 p2,2 p2,1 + p1,2 p1,1 p2,2 p2,1 = K312 +K2132,
GK313 = p1,3 p1,1 p2,2 + p1,3 p1,1 p3,1 + p1,3 p1,1 p2,2 p3,1 = K313 +K3133,
GK321 = p1,1 p1,2 p1,3 = K123,
GK323 = p1,3 p1,2 p2,2 + p1,3 p1,2 p3,1 + p1,3 p2,1 p3,1 + p2,2 p2,1 p3,1 + p1,3 p2,2 p2,1 +
+ p1,3 p1,2 p2,1 p2,2 + p1,2 p2,1 p2,2 p3,1 + p1,3 p1,2 p2,2 p3,1 + p1,3 p1,2 p2,1 p3,1
+ p1,2 p2,2 p2,1 p3,1 + p1.3 p1,2 p2,2 p2,1 p3,1 = K323 +K3232 +K3233 +K3223 +K32323,
GK2123 = p1,2 p1,1 p2,1 p3,1 = K2123,
GK2132 = p1,2 p1,1 p2,2 p2,1 = K2132,
GK3123 = p1,3 p1,1 p2,1 p3,1 p1,1 p2,2 p2,1 p3,1 + p1,3 p1,1 p2,2 p2,1 p3,1 = K3123 +K31323,
GK3212 = p1,3 p1,2 p1,1 p2,1 = K3212,
GK3213 = p1,3 p1,2 p1,1 p2,2 + p1,3 p1,2 p1,1 p3,1 + p1,3 p1,2 p1,1 p2,2 p3,1 = K3213 +K32133,
GK21323 = p1,2 p1.1 p2,2 p2,1 p3,1 = K21323,
GK32123 = p1,3 p1,2 p1,1 p2,1 p31 = K32123,
GK32132 = p1,3 p1,2 p1,1 p2,2 p2,1 = K32132,
GK321323 = p3,1 p2,1 p1,1 p2,2 p2,1 p3,1 = K321323.

(7) 14 double local key polynomials for n = 4.

LKid = 1,
LK1 = K1,
LK2 = K2,
LK3 = K3,
LK12 = K12,
LK21 = K21 +K212,
LK13 = K13 +K31 +K313,
LK23 = K23,
LK32 = K32 +K323,
LK123 = K123,
LK213 = K213 +K2123,
LK312 = K312 +K3123,
LK321 = K321 +K3212 +K3213 +K32123 +K32132 +K321323,
LK2132 = K2132 +K21323.

(8) 35 (3, 2)-key polynomials.
Uid = 1,

U1 = p11 + p23,
U2 = p12 + p21,
U3 = p13 + p22,
U11 = p11p23,
U12 = p11p21,
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U13 = p11p22,
U21 = p12p11 + p12p23 + p21p23,
U23 = p12p22,
U22 = p12p21,
U31 = p13p11 + p13p23 + p22p23,
U32 = p13p12 + p13p21 + p22p21,
U33 = p13p22,
U211 = p12p11p23 + p11p21p23,
U212 = p12p11p21 + p12p21p23,
U213 = p12p11p22 + p12p22p23,
U311 = p13p11p23 + p11p22p23,
U312 = p13p11p21 + p11p22p21,
U313 = p13p11p22 + p13p22p23,
U321 = p13p12p11 + p13p12p23 + p13p21p23 + p22p21p23,
U322 = p13p12p21 + p12p22p21,
U323 = p13p12p22 + p13p22p21,
U2121 = p12p11p21p23,
U2131 = p12p11p22p23,
U2132 = p12p11p22p23,
U3132 = p13p11p22p23,
U3131 = p13p11p22p23,
U3232 = p13p21p22p23,
U3211 = p13p12p11p23 + p13p11p21p23 + p11p22p21p23,
U3212 = p13p12p11p22 + p13p12p21p23 + p12p21p22p23,
U3213 = p13p12p11p21 + p13p22p21p23 ++p12p22p21p23,
U32121 = p12p11p22p21p23 + p13p12p11p21p23,
U32131 = p13p12p11p22p23 + p13p11p22p21p23,
U32132 = p13p12p11p22p21 + p13p12p22p21p23,
U321321 = p13p12p11p22p21p23.

(9) Polynomials KNw := KN (β,α)
w (1) for n = 4.

KN id = 1,
KN 1 = KN 2 = KN 3 = β + 1 + α β,
KN 12 = 1 + 2α + α2 + 3α β + 3α2 β + α β2 + 2α2 β2, (13)
KN 21 = 2 + 3α + α2 + β + 3α β + 2α2 β + α2 β2, (13),
KN 13 = 1 + 2α + α2 + 2α β + 2α2 β + α2 β2 = (1 + α + α β)2, (9),
KN 23 = KN 12,
KN 32 = KN 21,
KN 132 = 2+5α+4α2+α3+β+7α β+10α2 β+4α3 β+2αβ2+7α2 β2+5α3 β2+α2 β3+2α3 β3 =
(1 + α + α β)(2 + 3α+ α2 + β + 4α β + 3α2 β + α β2 + 2α2 β2), (51),

KN 121 = 1+3α+3α2+α3+4α β+7α2 β+3α3 β+α β2+4α2β2+3α3 β2+α3 β3, (31),
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KN 321 = 5 + 10α + 6α2 + α3 + 5β + 14 α β + 12α2 β + 3α3 β + β2 + 4α β2 + 6α2 β2 +
3α3 β2 + α3 β3, (71),
KN 232 = KN 121,

KN 123 = 1 + 3α + 3α2 + α3 + 6α β + 12α2 β + 6α3 β + 4 α β2 + 14α2 β2 + 10α3 β2 +

α β3 + 5α2 β3 + 5α3 β3 = β3α3 KN (β−1,α−1)
321 (1), (71),

KN 213 = (α β)3 KN (α−1,β−1)
132 ,

KN 3121 = 3+ 10α+ 12α2 + 6α3 + α4 + 2β + 16α β + 29α2 β + 19α3 β + 4α4 β + 7α β2 +
21α2 β2 + 20α3 β2 + 6α4 β2 + α β3 + 4α2 β3 + 7α3 β3 + 4α4 β3 + α4 β4, (173),
KN 2321 = (α β)4 KN (α−1,β−1)

3121 ,

KN 1213 = 1+4α+6α2+4α3+α4+7α β+20α2 β+19α3 β+6α4 β+4α β2+21α2 β2+
29α3 β2 + 12α4 β2 + α β3 + 7α2 β3 + 16 α3 β3 + 10α4 β3 + 2α3 β4 + 3α4 β4, (173),
KN 1232 = (α β)4 KN (α−1,β−1)

1213 ,

KN 2132 = 3+9α+10α2+5α3+α4+3β+16α β+28α2 β+20α3 β+5α4 β+β2+7α β2+
24α2 β2+28α3 β2+10α4 β2+7α2 β3+16α3 β3+9α4 β3+α2 β4+3α3 β4+3α4 β4, (209),

KN 21321 = 3+12α+19α2 +15α3 +6α4 +α5 +3β+21α β +49α2 β+52α3 β+26α4 β+
5α5β+β2+9α β2+39α2 β2+64α3 β2+43α4 β2+10α5 β2+10α2 β3+32α3 β3+32α4 β3+
10α5 β3 + α2 β4 + 5α3 β4 + 9α4 β4 + 5α5 β4 + α5 β5, (483),

KN 12312 = 1+5α+10α2+10α3+5α4+α5+9α β+32α2 β+43α3 β+26 α4 β+6 α5 β+
5α β2 + 32α2 β2 + 64α3 β2 + 52α4 β2 + 15 α5 β2 + α β3 + 10α2 β3 + 39α3 β3 + 49α4 β3 +
19α5 β3 + 9α3 β4 + 21 α4 β4 + 12α5 β4 + α3 β5 + 3α4 β5 + 3α5 β5, (483),

KN 12321 = 2+ 9α+ 16α2 + 14α3 + 6α4 + α5 + β + 18α β + 54α2 β + 64α3 β + 33 α4 β +
6 α5 β + 14α β2 + 65α2 β2 + 101α3 β2 + 64α4 β2 + 14 α5 β2 + 6α β3 + 33α2 β3 + 65α3 β3 +
54α4 β3 +16α5 β3 +α β4 +6α2 β4 +14α3 β4 +18α4 β4 +9α5 β4 +α4 β5 +2α5 β5, (707),

KN 121321 = 1+6α+15α2+20α3+15α4+6α5+α6+10α β+45α2 β+81α3 β+73α4 β+
33α5 β + 6α6 β + 5α β2 + 44α2 β2 + 116α3 β2 + 135α4 β2 + 73α5 β2 + 15α6 β2 + α β3 +
15α2 β3 +69α3 β3 +116α4 β3 +81α5 β3 +20α6 β3 +α2 β4 +15α3 β4 +44α4 β4 +45α5 β4 +
15α6 β4 + α3 β5 + 5α4 β5 + 10α5 β5 + 6α6 β5 + α6 β6 =

β6α6 KN (α−1,β−1)
121321 (1), (1145).

(10) Polynomials KN (β,α,γ)
w := KN (β,α,γ)

w (1) for n = 3.

KN (β,α,γ)
id = 1,

KN (β,α,γ)
1 = KN (β,α,γ)

2 = 1 + (β + γ)(1 + α + γ), (7),
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KN (β,α,γ)
12 = 1 + 2α + α2 + 3α β + 3α2 β + α β2 + 2α2 β2 + 5γ + 8α γ + 3α2 γ + 4β γ +

11α β γ + 4α2 β γ + β2 γ + 4α β2 γ + 9γ2 + 10α γ2 + 2α2 γ2 + 8β γ2 + 8α β γ2 + 2β2 γ2 +
7γ3 + 4α γ3 + 4β γ3 + 2γ4, (109),

KN (β,α,γ)
21 = 2+3α+α2+β+3α β+2α2 β+α2 β2+7γ+8α γ+2α2 γ+4β γ+7α β γ+

2α2 β γ+2α β2 γ+9 γ2+7α γ2+α2 γ2+5β γ2+4α β γ2+β2 γ2+5γ3+2α γ3+2β γ3+γ4, (82),

KN (β,α,γ)
121 = 1+3α+3α2+α3+4α β+7α2 β+3α3 β+α β2+4α2 β2+3α3 β2+α3 β3+

6γ+15α γ+12α2 γ+3α3 γ+3β γ+20α β γ+22α2 β γ+6α3 β γ+7α β2 γ+12α2 β2 γ+
3α3 β2 γ + 3α2 β3 γ + 15γ2 + 30α γ2 + 18α2 γ2 + 3α3 γ2 + 12β γ2 + 37α β γ2 + 24α2 β γ2 +
3 α3β γ2 + 3β2 γ2 + 15α β2 γ2 + 9α2 β2 γ2 + 3α β3 γ2 + 20γ3 + 30α γ3 + 12α2 γ3 + α3 γ3 +
18β γ3+30α β γ3+9α2 β γ3+6β2 γ3+9α β2 γ3+β3 γ3+15γ4+15α γ4+3α2 γ4+12β γ4+
9α β γ4 + 3β2 γ4 + 6γ5 + 3α γ5 + 3β γ5 + γ6, (521).

(11) Few more examples.

KN (β,α,γ=0)
4321 (1) = 14+35α+30 α2+10α3+α4+21β+65α β+70α2 β+30α3 β+4α4 β+

9β2+35α β2+50α2 β2+30α3 β2+6α4 β2+β3+5α β3+10α2 β3+10α3 β3+4α4 β3+α4 β4.

KN (β=1,α=1,γ)
4321 (1) = (441, 1984, 3754, 3882, 2385, 885, 192, 22, 1)γ,

KN (β=1,α=1,γ)
54321 = (1 + γ)(2955, 13297, 25678, 27822, 18553, 7852, 2094, 336, 29, 1)γ.

Note that polynomial Ln(γ) := KN (β=1,α=1,γ)
n,n−1,...,2,1 (1) has degree 2n and Ln(γ = −1) = 0.

KN (a=1,b=1,c,r)
121 (1) = 31 + 112c+ 168c2 + 124c3 + 44c4 + 6c5 + (60 + 176c+ 195c2 + 93c3 +

16c4)r + (38 + 85c+ 61c2 + 14c3)r2 + (8 + 12c+ 4c2)r3.

Problem 7.3 Let n ≥ k ≥ 0 be integers, consider permutation wn,k := [k, k − 1, . . . 1, n, n−
1, n− 2, . . . , k + 1] ∈ Sn. Give combinatorial interpretations of polynomials Ln,k(α, β, γ) :=
KN (α,β,γ)

wm,k
(1).

Conjecture 7.4 Set d := γ − 1.
• For any permutation w ∈ Sn, KN (β,α=1,γ=d−1)

w (1) is a polynomial in β and d with
non-negative coefficients.
• The polynomial Ln(d) has non-negative coefficients, and polynomial Ln(d) + dn is

symmetric and unimodal.
• Ln,1(α = 1, β, d) ∈ d N[β, d].
• Ln,1(α, β = 0, d) ∈ dn−1 (α + d) N[α, d],
Ln,1(α = 1, β = 0, d = 1) = 2 Schn+1, Ln,1(α = 0, β = 0, d = 2) = 2n Schn+1 (see [55],

A156017 for a combinatorial interpretation of these numbers),
where Schn denotes the n-th Schröder number, see e.g. [55], A001003.
• Ln,1(α = 0, β = t− 1, γ) ∈ N[t, γ],
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Ln,1(α = 0, β = −1, γ = 1) is equal to the number of Dyck (n + 1)-paths (see [55],
A000108) in which each up step (U) not at ground level is colored red (R) or blue (B), [55],
A064062,

Note that the number 2 Schn known also as Large Schrödeder number, see e.g. [55], A006318.
For example,
L3,1(α = 1, β, d) = d(β2+5β d+4β2 d+5d2+14β d2+6β2 d2+β3 d2+10d3+12β d3+3β2 d3+

6d4 + 3β d4 + d5), L7,1(1, 1, d) = d(1, 27, 260, 1245, 3375, 5495, 5494, 3375, 1245, 260, 27, 1)d,
L7,1(α, β = 0, d) = d6(α+ d)(1+α+ d)(1+14α+36α2+14α3+α4+14d+72α d+42α2 d+
4α3 d+ 36d2 + 42α d2 + 6α2 d2 + 14d3 + 4α d3 + d4),
L7,1(α = 0, β = t− 1, γ = 1) = (14589, 39446, 39607, 18068, 3627, 246, 1)t

We expect a similar conjecture for polynomials Ln,k(α = 1, β = 1, γ), k ≥ 1.

7.2 MacMeille completion of a partially ordered set 11

Let (Σ,≤) be a partially ordered set (poset for short) and X ⊆ Σ. Define
• The set of upper bounds for X, namely,

Xup := {z ∈ Σ | x ≤ z ∀x ∈ X},

• The set of lower bounds for X, namely,

X lo := {z ∈ Σ | z ≤ x ∀x ∈ X},

• A poset (MN (Σ),≤), namely,

MN (Σ) := {MN (X) | X ⊆ Σ}, where MN (X) :=
(
Xup

)lo

.

Clearly, X ⊆MN (X) and MN (MN (X)) =MN (X),
• A map κ : Σ −→MN (Σ), namely, κ(X) =MN (X), X ⊆ Σ.

Proposition 7.5
• The map κ is an embedding, that is for X,Y ⊆ Σ,

X ≤ Y if and only if κ(X) ⊆ κ(Y ),

• Poset (MN (Σ),≤) is a lattice, called the MacNeille completion of poset (Σ,≤).

Proposition 7.6 ([59])
Let (Σ,≤) be a poset. Then there is a poset (L,≤) and a map κ : Σ −→ L such that
(1) κ is an embedding,

11For the reader convenience we review a definition and basic facts concerning the MacNeille completion
of a poset, see for example, notes by E.Turunen on web-site

math.tut.fi/ eturunen/AppliedLogics007/Mac1.pdf
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(2) (L,≤) is a complete lattice 12,
(3) For each element a ∈ L one has
(a) MN ({x ∈ Σ | κ(x) ≤ a}) = {x ∈ Σ | κ(x) ≤ a},
(b) a =

∨
{κ(x) | x ∈ Σ, κ(x) ≤ a}.

Moreover, the pair (κ, (L,≤)) is defined uniquely up to an order preserving isomorphism.

Therefore, the lattice (L,≤), is an order isomorphic to the MacNeille completionMN (Σ) of
a poset Σ.

Problem 7.7
Let Σ be a (finite) graded poset 13 , denote by

rΣ(t) :=
∑
a∈Σ

tr(a)

the rank generating function of a poset Σ. Here r(a) denotes the rank/degree of an element
a ∈ Σ.

Describe polynomial rMN (Σ)(t).

In the present paper we are interesting in properties of the MacNeille completion of the
Bruhat poset Bn = B(Sn) corresponding to the symmetric group Sn. Below we briefly describe
a construction of the MacNeille completion Ln(Sn) :=MN n(Bn) follow [28], and [57], v. 2,
p. 552, d.

Let w = (w1w2 . . . wn) ∈ Sn, associate wit w a semistandard Young tableaux T (w) of the
staircase shape δn = (n − 1, n − 2, . . . , 2, 1) filled by integer numbers from the set [1, n] :=
{1, 2, . . . , n} as follows :

the i-th row of of T (w) , denoted by Ri(w), consists of the numbers w1, . . . , wn−i+1 in
increasing order. Clearly the tableaux T (w) = [Ti,j(w)]1≤i<j≤n−1 obtained in such a manner,
satisfies the so-called monotonic and flag conditions, namely,

(1) (monotonic conditions) T1,i ≥ T2,i−1 ≥ · · · ≥ Ti,1, i = 1, . . . , n− 1,
(2) (flag conditions) R1(w) ⊃ R2(w) ⊃ · · · ⊃ Rn−1(w).
Denote by L(Sn) the subset of the set of all Young tableaux T ∈ STY (δn ≤ n) consisting

of that T which satisfies the monotonicity conditions (1). The set L(Sn) has the natural
poset structure denoted by ′′ ≥ ′′, and defined as follows:
if T (1) = [t

(1)
ij ]1≤i<j≤n−1 and T (2) = [t

(2)
ij ]1≤i<j≤n−1 belong to the set L(Sn), then by definition

T (1) ≥ T (2) if and only if t
(1)
ij ≥ t

(2)
ij for all 1 ≤ i < j ≤ n− 1.

It is clearly seen that the set L(Sn) is closed under the following operations
• (meet T (1) T (2))

∧
(T (1), T (2)) := T (1)

∧
T (2) = [min(t

(1)
i,j , t

(2)
i,j )],

• (join T (1) T (2))
∨
((T (1), T (2)) := T (1)

∨
T (2) = [max(t

(1)
i,j , t

(2)
i,j )].

12That is every subset of L has a meet and join, see e.g. [57], v.1, p.249.
13 See e.g. [57], v.1, p. 244, or
en.wikipedia.org/wiki/Graded_poset.
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Theorem 7.8 ([28])
The poset L(Sn) is a complete distributive lattice with number of vertices equals to the

number ASM(n) that is the number of alternating sigh matrices of size n×n. Moreover, the
lattice L(Sn) is order isomorphic to the MacNeille completion of the Bruhat poset Bn.

Indeed it is not difficult to prove that the set of all monotonic triangles obtained by applying
repeatedly operation

∨
(=meet) to the set {T (w), w ∈ Sn of triangles corresponding to all

elements of the symmetric group Sn, coincides with the set of all monotonic triangles L(S⋉.
The natural map κ : Sn −→ L(Sn is obviously embedding, and all other conditions of
Proposition 7.2 are satisfied. Therefore L(Sn) =MN (Bn.the fact that the lattice L(Sn is a
distributive one follows from the well-known identity

max(x,min(y, z)) = min(max(x, y),max(x, z)), x, y, z ∈R
≥0)

3.

In the lattice L(Sn this identity can be written in the following forms

T (1)
∨

(T (2)
∧

T (3)) = (T (1)
∧

T (2))
∨

(T (1)
∧

T (3)),

T (1)
∧

(T (2)
∨

T (3)) = (T (1)
∨

T (2))
∧

(T (1)
∨

T (3)).

Finally the fact that the cardinality of the lattice L(Sn) is equal to the number ASM(n) had
been proved by A. Lascoux and M.-P. Schützenberger [28].

If T = [tij] ∈ L(Sn), define rank of T , denoted by r(T ), as follows:

r(T ) =
∑

1≤i<j≤n−1

tij −
(
n

3

)
.

It had been proved by C. Ehresmann [6] that
• v ≤ w with respect to the Bruhat order in the symmetric group Sn if and only if

Ti,j(v) ≤ Ti,j(w) for all 1 ≤ i < j ≤ n− 1.
It follows from an improved tableau criterion for Bruhat order on the symmetric group

[3] that 14

• The length ℓ(w) of a permutation w ∈ Sn can be computed as follows

ℓ(w) = r(T (w))−
∑

(i,j)∈I(w)

(j − i− 1),

14 It has been proved in [3], Corollary 5, that the Ehresmann criterion stated above is equivalent to either
the criterion

T
(1)
i,j ≤ T

(2)
i,j for all j such that wj > wj+1 and 1 ≤ i ≤ j,

or that
T

(1)
i,j ≤ T

(2)
i,j for all j ∈ {1, 2, . . . , n− 1}\{k | vk > vk+1} and 1 ≤ i ≤ j.
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where I(w) := {(i, j) | 1 ≤ i < j ≤ n, wi > wj} denotes the set of inversions of permutation
w; a detailed proof can be found in [24].

For example, consider permutation w = [4, 6, 2, 7, 5, 1, 3]. Then the code c(w) of w is
equal to c(w) = (3, 4, 1, 3, 2), and w has the length ℓ(w) = 13. The corresponding Young
tableau or monotonic triangle displayed below

T (w) =


1 2 4 5 6 7
2 4 5 6 7
2 4 6 7
2 4 6
4 6
4

 ,

Wherefore, r(T (w)) = |T (w)| −
(
7
3

)
= 94− 56 = 38. On the other hand, the inversion set

I(w) = {(1, 3), (1, 6), (1, 7), (2, 3), (2, 5), (2, 6), (2, 7), (3, 6), (4, 5), (4, 6), (4, 7), (5, 6), (5, 7)},
hence

∑
(i,j)∈I(w)(j− i− 1) = 10+9+2+3+1 = 25 and ℓ(w) = 38− 25 = 13, as it should

be.

It is easily seen that the polynomial rMNn(t) is symmetric and deg(rMNn(t)) =
(
n+1
3

)
,

For example,
r(MN 3) = (1, 2, 1, 2, 1), r(MN 4) = (1, 3, 3, 5, 6,6, 6, 5, 3, 3, 1),

r(MN 5) = (1, 4, 6, 10, 16, 20, 27, 34, 37, 40,39, 40, 37, 34, 27, 20, 16, 10, 6, 4, 1);
r(S3 ⊂MN 3) = (1, 2, 0, 2, 1), r(S4 ⊂MN 4) = (1, 3, 1, 4, 2,2, 2, 4, 1, 3, 1)),

r(S5 ⊂MN 5) = (1, 4, 3, 6, 7, 6, 4, 10, 6, 10,6, 10, 6, 10, 4, 6, 7, 6, 3, 4, 1).

Conjecture 7.9
• The number Coeff[(n+1

3 )/2]rMNn(t) is a divisor of the number ASM(n);
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