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Extended Abstract
We introduce and study a certain class of quadratic algebras, which are nonhomogenious

in general, together with the distinguish set of mutually commuting elements inside of each, the
so-called Dunkl elements. We describe relations among the Dunkl elements in the case of a family
of quadratic algebras corresponding to a certain splitting of the universal classical Yang–Baxter
relations into two three term relations. This result is a further extension and generalization of
analogous results obtained in [26],[76] and [51]. As an application we describe explicitly the
set of relations among the Gaudin elements in the group ring of the symmetric group, cf [71].
We also study relations among the Dunkl elements in the case of (nonhomogeneous) quadratic
algebras related with the universal dynamical classical Yang–Baxter relations. Some relations
of results obtained in papers [26], [52], [47] with those obtained in [35] are pointed out. We
also identify a subalgebra generated by the generators corresponding to the simple roots in the
extended Fomin–Kirillov algebra with the DAHA, see Section 4.3.

The set of generators of algebras in question, naturally corresponds to the set of edges of
the complete graph Kn (to the set of edges and loops of the complete graph with loops K̃n

in dynamical case). More generally, starting from any subgraph Γ of the complete graph with
loops K̃n we define a (graded) subalgebra 3T

(0)
n (Γ) of the (graded) algebra 3T

(0)
n (K̃n) [44]. In

the case of loop-less graphs Γ ⊂ Kn we state Conjecture which relates the Hilbert polynomial
of the abelian quotient 3T

(0)
n (Γ)ab of the algebra 3T

(0)
n (Γ) and the chromatic polynomial of
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the graph Γ we started with. We check our Conjecture for the complete graphs Kn and the
complete bipartite graphs Kn,m. Besides, in the case of complete multipartite graph Kn1,...,nr

, we identify the commutative subalgebra in the algebra 3T
(0)
N (Kn1,...,nr), N = n1 + · · · + nr,

generated by elements

θ
(N)
j,kj

:= ekj (θ
(N)
Nj−1+1, . . . , θ

(N)
Nj

), 1 ≤ j ≤ r, 1 ≤ kj ≤ nj , Nj := n1 + . . .+ nj , N0 = 0,

with the cohomology ring H∗(F ln1,...,nr ,Z) of the partial flag variety F ln1,...,nr . In other words,
the set of (additive) Dunkl elements {θ(N)

Nj−1+1, . . . , θ
(N)
Nj
} plays a role of the Chern roots of the tau-

tological vector bundles ξj , j = 1, . . . , r, over the partial flag variety F ln1,...,nr , see Section 4.1.2 for
details. In a similar fashion, the set of multiplicative Dunkl elements {Θ(N)

Nj−1+1, . . . ,Θ
(N)
Nj
} plays

a role of the K-theoretic version of Chern roots of the tautological vector bundle ξj over the par-
tial flag variety F ln1,...,nr . As a byproduct for a given set of weights ` = {`ij}1≤i<j≤r we
compute the Tutte polynomial T (K

(`)
n1,...,nk , x, y) of the `-weighted complete multipartite graph

K
(`)
n1,...,nk , see Section 4, Definition 4.1 and Theorem 4.2.

More generally, we introduce universal Tutte polynomial

Tn({qij}, x, y) ∈ Z[{qij}][x, y]

in such a way that for any collection of non-negative integers m = {mij}1≤i<j≤n and a subgraph
Γ ⊂ K

(m)
n of the weighted complete graph on n labeled vertices with each edge (i, j) ∈ K(m)

n

appears with multiplicity mij , the specialization

qij −→ 0, if edge (i, j) /∈ Γ, qij −→ [mij ]y :=
ymij − 1

y − 1
, if edge (i, j) ∈ Γ

of the universal Tutte polynomial is equal to the Tutte polynomial of graph Γ multiplied by
(x− 1)κ(Γ), see Section 4.1.2, Theorem 4.3, and Comments and Examples, for details.

We also introduce and study a family of (super) 6-term relations algebras, and suggest a
definition of “ multiparameter quantum deformation “ of the algebra of the curvature of 2-forms
of the Hermitian linear bundles over the complete flag variety F ln. This algebra can be treated
as a natural generalization of the (multiparameter) quantum cohomology ring QH∗(F ln), see
Section 4.2.

Yet another objective of our paper is to describe several combinatorial properties of some spe-
cial elements in the associative quasi-classical Yang–Baxter algebra [47], including among others
the so-called Coxeter element and the longest element. In the case of Coxeter element we relate
the corresponding reduced polynomials introduced in [90], with the β-Grothendieck polynomials
[27] for some special permutations π(n)

k . More generally, we identify the β-Grothendieck poly-
nomial G

(β)

π
(n)
k

(Xn) with a certain weighted sum running over the set of k-dissections of a convex

(n+ k + 1)-gon. In particular we show that the specialization G
(β)

π
(n)
k

(1) of the β-Grothendieck

polynomial G
(β)

π
(n)
k

(Xn) counts the number of k-dissections of a convex (n+k+ 1)-gon according

to the number of diagonals involved. When the number of diagonals in a k-dissection is the
maximal possible (equals to n(2k − 1) − 1), we recover the well-known fact that the number
of k-triangulations of a convex (n+ k+ 1)-gon is equal to the value of a certain Catalan-Hankel
determinant, see e.g. [85].

We also show that for a certain 5-parameters family of vexillary permutations, the special-
ization xi = 1,∀i ≥ 1, of the corresponding β-Schubert polynomials S

(β)
w (Xn) turns out to be
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coincide either with the Fuss-Narayana polynomials and their generalizations, or with a (q, β)-
deformation of V SASM or that of CSTCPP numbers, see Corollary 5.2, (B).. As examples we
show that

(a) the reduced polynomial corresponding to a monomial xn12 xm23 counts the number of
(n,m)-Delannoy paths according to the number of NE-steps, see Lemma 5.2;

(b) if β = 0, the reduced polynomial corresponding to monomial (x12 x23)n xk34, n ≥
k, counts the number of of n up, n down permutations in the symmetric group S2n+k+1, see
Proposition 5.9; see also Conjecture 18.

We also point out on a conjectural connection between the sets of maximal compatible se-
quences for the permutation σn,2n,2,0 and that σn,2n+1,2,0 from one side, and the set of V SASM(n)
and that of CSTCPP (n) correspondingly, from the other, see Comments 5.7 for details. Finally,
in Section 5.1.1 we introduce and study a multiparameter generalization of reduced polynomials
introduced in [90], as well as that of the Catalan, Narayana and (small) Schröder numbers.

In the case of the longest element we relate the corresponding reduced polynomial with the
Ehrhart polynomial of the Chan–Robbins–Yuen polytope, see Section 5.3. More generally, we
relate the (t, β)-reduced polynomial corresponding to monomial

n−1∏
J=1

x
aj
j,j+1

n−2∏
j=2

( n∏
k=j+2

xjk

)
, aj ∈ Z≥0, ∀j,

with positive t-deformations of the Kostant partition function and that of the Ehrhart polynomial
of some flow polytopes, see Section 5.3.
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1 Introduction

The Dunkl operators have been introduced in the later part of 80’s of the last century by Charles
Dunkl [21], [22] as a powerful mean to study of harmonic and orthogonal polynomials related
with finite Coxeter groups. In the present paper we don’t need the definition of Dunkl operators
for arbitrary (finite) Coxeter groups, see e.g. [21], but only for the special case of the symmetric
group Sn.
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Definition 1.1. Let Pn = C[x1, . . . , xn] be the ring of polynomials in variables x1, . . . , xn. The
type An−1 (additive) rational Dunkl operators D1, . . . , Dn are the differential-difference operators
of the following form

Di = λ
∂

∂xi
+
∑
j 6=i

1− sij
xi − xj

, (1.1)

Here sij, 1 ≤ i < j ≤ n, denotes the exchange (or permutation) operator, namely,

sij(f)(x1, . . . , xi, . . . , xj , . . . , xn) = f(x1, . . . , xj , . . . , xi, . . . , xn);

∂
∂xi

stands for the derivative w.r.t. the variable xi; λ ∈ C is a parameter.

The key property of the Dunkl operators is the following result.

Theorem 1.1. ( C.Dunkl [21] ) For any finite Coxeter group (W,S), where S = {s1, . . . , sl}
denotes the set of simple reflections, the Dunkl operators Di := Dsi and Dj := Dsj pairwise
commute: Di Dj = Dj Di, 1 ≤ i, j ≤ l.

Another fundamental property of the Dunkl operators which finds a wide variety of applica-
tions in the theory of integrable systems, see e.g. [36], is the following statement:

the operator
l∑

i=1

(Di)
2

“essentially” coincides with the Hamiltonian of the rational Calogero–Moser model related to the
finite Coxeter group (W,S).

Definition 1.2. Truncated (additive) Dunkl operator (or the Dunkl operator at critical level),
denoted by Di, i = 1, . . . , l, is an operator of the form (1.1) with parameter λ = 0.

For example, the type An−1 rational truncated Dunkl operator has the following form

Di =
∑
j 6=i

1− sij
xi − xj

.

Clearly the truncated Dunkl operators generate a commutative algebra.
The important property of the truncated Dunkl operators is the following result discovered and
proved by C.Dunkl [22]; see also [4] for a more recent proof.

Theorem 1.2. (C.Dunkl [22], Y.Bazlov [4]) For any finite Coxeter group (W,S) the algebra
over Q generated by the truncated Dunkl operators D1, . . . ,Dl is canonically isomorphic to the
coinvariant algebra AW of the Coxeter group (W,S).

Recall that for a finite crystallographic Coxeter group (W,S) the coinvariant algebra AW is
isomorphic to the cohomology ring H∗(G/B,Q) of the flag variety G/B, where G stands for the
Lie group corresponding to the crystallographic Coxeter group (W,S) we started with.

Example 1.1. In the case when W = Sn is the symmetric group, Theorem 1.2 states that the
algebra over Q generated by the truncated Dunkl operators Di =

∑
j 6=i

1−sij
xi−xj , i = 1, . . . , n, is

canonically isomorphic to the cohomology ring of the full flag variety F ln of type An−1

Q[D1, . . . ,Dn] ∼= Q[x1, . . . , xn]/Jn, (1.2)

where Jn denotes the ideal generated by the elementary symmetric polynomials {ek(Xn),
1 ≤ k ≤ n}.
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Recall that the elementary symmetric polynomials ei(Xn), i = 1, . . . , n, are defined through
the generating function

1 +

n∑
i=1

ei(Xn) ti =

n∏
i=1

(1 + t xi),

where we set Xn := (x1, . . . , xn). It is well-known that in the case W = Sn, the isomorphism
(1.2) can be defined over the ring of integers Z. �

Theorem 1.2 by C.Dunkl has raised a number of natural questions:
(A) What is the algebra generated by the truncated
• trigonometric,
• elliptic,
• super, matrix, . . .,
(a) additive Dunkl operators ?
(b) Ruijsenaars–Schneider–Macdonald operators ?
(c) Gaudin operators ?
(B) Describe commutative subalgebra generated by the Jucys–Murphy elements in
• the group ring of the symmetric group;
• the Hecke algebra ;
• the Brauer algebra, BMV algebra, . . ..
(C) Does there exist an analogue of Theorem 1.2 for
• Classical and quantum equivariant cohomology and equivariant K-theory rings of the

partial flag varieties ?
• Cohomology and K-theory rings of affine flag varieties ?
• Diagonal coinvariant algebras of finite Coxeter groups ?
• Complex reflection groups ?
The present paper is an extended Introduction to a few items from Section 5 of [47].
The main purpose of my paper “On some quadratic algebras, II” is to give some partial answers

on the above questions basically in the case of the symmetric group Sn.
The purpose of the present paper is to draw attention to an interesting class of nonhomo-

geneous quadratic algebras closely connected (still mysteriously !) with different branches of
Mathematics such as

Classical and Quantum Schubert and Grothendieck Calculi,
Low dimensional Topology,
Classical, Basic and Elliptic Hypergeometric functions,
Algebraic Combinatorics and Graph Theory,
Integrable Systems,
. . . . . . . . . . . . . . . .

What we try to explain in [47] is that upon passing to a suitable representation of the
quadratic algebra in question, the subjects mentioned above, are a manifestation of certain
general properties of that quadratic algebra.

From this point of view, we treat the commutative subalgebra generated by the additive (resp.
multiplicative) truncated Dunkl elements in the algebra 3Tn(β), see Definition 3.1, as universal
cohomology (resp. universal K-theory) ring of the complete flag variety F ln. The classical or
quantum cohomology (resp. the classical or quantum K-theory) rings of the flag variety F ln are
certain quotients of that universal ring.

For example, in [50] we have computed relations among the (truncated) Dunkl elements
{θi, i = 1, . . . , n} in the elliptic representation of the algebra 3Tn(β = 0). We expect that the
commutative subalgebra obtained is isomorphic to elliptic cohomology ring ( not defined yet, but
see [33] , [32]) of the flag variety F ln.
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Another example from [47]. Consider the algebra 3Tn(β = 0).
One can prove [47] the following identities in the algebra 3Tn(β = 0)

(A) Summation formula

n−1∑
j=1

( n−1∏
b=j+1

ub,b+1

)
u1,n

(j−1∏
b=1

ub,b+1

)
=

n−1∏
a=1

ua,a+1.

(B) Duality transformation formula Let m ≤ n, then

n−1∑
j=m

( n−1∏
b=j+1

ub,b+1

) [m−1∏
a=1

ua,a+n−1 ua,a+n

]
um,m+n−1

( j−1∏
b=m

ub,b+1

)
+

m∑
j=2

[m−1∏
a=j

ua,a+n−1 ua,a+n

]
um,n+m−1

(n−1∏
b=m

ub,b+1

)
u1,n =

m∑
j=1

[m−j∏
a=1

ua,a+n ua+1,a+n

] (n−1∏
b=m

ub,b+1

) [j−1∏
a=1

ua,a+n−1 ua,a+n

]
.

One can check that upon passing to the elliptic representation of the algebra 3Tn(β = 0),
see Section 3.1, or [47], Section 5.1.7, or [50], for the definition of elliptic representation, the
above identities (A) and (B) finally end up correspondingly, to be the Summation formula and
the N = 1 case of the Duality transformation formula for multiple elliptic hypergeometric series
(of type An−1), see e.g. [41] , or Appendix V, for the explicit forms of the latter. After passing
to the so-called Fay representation [47], the identities (A) and (B) become correspondingly to
be the Summation formula and Duality transformation formula for the Riemann theta functions
of genus g > 0, [47]. These formulas in the case g ≥ 2 seems to be new.
Worthy to mention that the relation (A) above can be treated as a ”non-commutative analogue”
of the well-known recurrence relation among the Catalan numbers. The study of “descendent
relations” in the quadratic algebras in question was originally motivated by the author attempts
to construct a monomial basis in the algebra 3T

(0)
n . This problem is still widely open, but gives

rise the author to discovery of
several interesting connections with
• classical and quantum Schubert and Grothendieck Calculi,
• combinatorics of reduced decomposition of some special elements in the symmetric group,
• combinatorics of generalized Chan–Robbins–Yuen polytopes,
• relations among the Dunkl and Gaudin elements,
• computation of Tutte and chromatic polynomials of the weighted complete multipartite

graphs, etc.
�

A few words about the content of the present paper.
Example 1.1 can be viewed as an illustration of the main problems we are treaded in Sections

2 and 3 of the present paper, namely the following ones.
• Let {uij , 1 ≤ i, j ≤ n} be a set of generators of a certain algebra over a commutative ring

K. The first problem we are interested in is to describe “a natural set of relations” among the
generators {uij}1≤i,j≤n which implies the pair-wise commutativity of dynamical Dunkl elements

θi = θ
(n)
i =:

n∑
j=1

uij , 1 ≤ i‘len.

• Should this be the case then we are interested in to describe the algebra generated by “the inte-
grals of motions”, i.e. to describe the quotient of the algebra of polynomials K[y1, . . . , yn] by the
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two- sided ideal Jn generated by non-zero polynomials F (y1, . . . , yn) such that F (θ1, . . . , θn) = 0
in the algebra over ring K generated by the elements {uij}1≤i,j≤n.
• We are looking for a set of additional relations which imply that the values of elementary

symmetric polynomials ek(y1, . . . , yn), 1 ≤ k ≤ n, on the Dunkl elements θ(n)
1 , . . . , θ

(n)
n do not

depend on the variables {uij , 1 ≤ i 6= j ≤ n}. If so, one can defined deformation of elementary
symmetric polynomials, and make use of it and the Jacobi–Trudi formula, to define deformed
Schur functions, for example. We try to realize this program in Sections 2 and 3.

In Section 2, see Definition 2.2, we introduce the so-called dynamical classical Yang–Baxter
algebra as “a natural quadratic algebra” in which the Dunkl elements form a pair-wise commuting
family. It is the study of the algebra generated by the (truncated) Dunkl elements that is the
main objective of our investigation in [47] and the present paper. In subsection 2.1 we describe
few representations of the dynamical classical Yang–Baxter algebra DCY Bn related with
• quantum cohomology QH∗(F ln) of the complete flag variety F ln, cf [25];
• quantum equivariant cohomology QH∗Tn×C∗(T

∗F ln) of the cotangent bundle T ∗F ln to the
complete flag variety, cf [35];
• Dunkl–Gaudin and Dunkl–Uglov representations, cf [71], [94].
In Section 3, see Definition 3.1, we introduce the algebra 3HTn(β), which seems to be the

most general (noncommutative) deformation of the (even) Orlik–Solomon algebra of type An−1,
such that it’s still possible to describe relations among the Dunkl elements, see Theorem 3.1.
As an application we describe explicitly a set of relations among the (additive) Gaudin / Dunkl
elements, cf [71].
II It should be stressed at this place that we treat the Gaudin elements/operators (either

additive or multiplicative) as images of the universal Dunkl elements/operators (additive or multi-
plicative) in the Gaudin representation of the algebra 3HTn(0). There are several other important
representations of that algebra, for example, the Calogero–Moser, Bruhat, Buchstaber–Felder–
Veselov (elliptic), Fay trisecant (τ -functions), adjoint, and so on, considered (among others) in
[47]. Specific properties of a representation chosen 3 (e.g. Gaudin representation) imply some
additional relations among the images of the universal Dunkl elements (e.g. Gaudin elements)
should to be unveiled. JJ

We start Section 3 with definition of algebra 3Tn(β) and its “Hecke” 3HTn(β) and “elliptic”
3MTn(β) quotients. In particular we define an elliptic representation of the algebra 3Tn(0),
[50], and show how the well-known elliptic solutions of the quantum Yang–Baxter equation due
to A. Belavin and V. Drinfeld, see e.g. [5], S. Shibukawa and K. Ueno [86], and G. Felder and
V.Pasquier [24], can be plug in to our construction, see Section 3.1.

In Subsection 3.2 we introduce a multiplicative analogue of the the Dunkl elements {Θj ∈
3Tn(β), 1 ≤ j ≤ n} and describe the commutative subalgebra in the algebra 3Tn(β) generated
by multiplicative Dunkl elements [51]. The latter commutative subalgebra turns out to be
isomorphic to the quantum equivariant K-theory of the complete flag variety F ln [51].

In Subsection 3.3 we describe relations among the truncated Dunkl–Gaudin elements. In this
case the quantum parameters qij = p2

ij , where parameters {pij = (zi − zj)−1, 1 ≤ i < j ≤ n}
satisfy the both Arnold and Plücker relations. This observation has made it possible to describe
a set of additional rational relations among the Dunkl–Gaudin elements, cf [71].

3For example, in the cases of either Calogero–Moser or Bruhat representations one has an additional constraint,
namely, u2

ij = 0 for all i 6= j. In the case of Gaudin representation one has an additional constraint u2
ij =

p2
ij , where the (quantum) parameters {pij = 1

xi−xj
, i 6= j}, satisfy simultaneously the Arnold and Plücker

relations, see Section 2, (II). Therefore, the (small) quantum cohomology ring of the type An−1 full flag variety
F ln and the Bethe subalgebra(s) (i.e. the subalgebra generated by Gaudin elements in the algebra 3HTn(0))
correspond to different specializations of ” quantum parameters” {qij := u2

ij} of the universal cohomology ring
(i.e. the subalgebra/ring in 3HTn(0) generated by (universal) Dunkl elements). For more details and examples,
see Section 2.1 and [47].
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In Subsection 3.4 we introduce an equivariant version of multiplicative Dunkl elements, called
shifted Dunkl elements in our paper, and describe (some) relations among the latter. This result
is a generalization of that obtained in Section 3.1 and [51]. However we don’t know any geometric
interpretation of the commutative subalgebra generated by shifted Dunkl elements.

In Section 4.1 for any subgraph Γ ⊂ Kn of the complete graph Kn we introduce 4 [47], [44],
algebras 3Tn(Γ) and 3T

(0)
n (Γ) which can be seen as analogues of algebras 3Tn and 3T

(0)
n cor-

respondingly 5.
II An analog of the algebras 3Tn and 3T

(β)
n , 3HTn, etc treated in the present paper,

can be defined for any (oriented or not) matroid M. We denote these algebras as 3T (M) and
3T (β)(M). One can show (A.K.) that the abelianization of the algebra 3T (β)(M), denoted by
3T (β)(M)

ab, is isomorphic to the Gelfand–Varchenko algebra corresponding to a matroid M,
whereas the algebra 3T (β=0)(M)

ab is isomorphic to the (even) Orlik–Solomon algebra OS+(M)
of a matroid M 6. We consider and treat the algebras 3T (M), 3HT (M),.... as equivariant
noncommutative (or quantum) versions of the (even) Orlik–Solomon algebras associated with
matroid (including hyperplane, graphic, ... arrangements). However a meaning of a quantum
deformation of the (even or odd) Orlik–Solomon algebra suggested in the present paper, is
missing, even for the braid arrangement of type An. Generalizations of the Gelfand–Varchenko
algebra has been suggested and studied in[45], [47] and in the present paper under the name
quasi-associative Yang–Baxter algebra, see Section 5.
JJ
In the present paper we basically study the abelian quotient of the algebra 3T

(0)
n (Γ), where

graph Γ has no loops and multiple edges, since we expect some applications of our approach to
the theory of chromatic polynomials of planar graphs, in particular to the complete multipartite
graphsKn1,...,nr and the grid graphs Gm,n 7. Our main results hold for the complete multipartite,
cyclic and line graphs. In particular we compute their chromatic and Tutte polynomials, see
Proposition 4.2 and Theorem 4.3. As a byproduct we compute the Tutte polynomial of the `-
weighted complete multipartite graph K(`)

n1,...,nr where ` = {`ij}1≤i<j≤r, is a collection of weights,
i.e. a set of non-negative integers.

More generally, for a set of variables {{qij}1≤i<j≤n, x, y} we define universal Tutte polynomial
Tn({qij}, x, y) ∈ Z[qij ][x, y] such that for any collection on non-negative integers {mij}1≤i<j≤n
and a subgraph Γ ⊂ K(m)

n of the complete graph Kn with each edge (i, j) comes with multiplicity
mij , the specialization

qij −→ 0, if edge (i, j) /∈ Γ, qij −→ [mij ]y :=
ymij − 1

y − 1
if edge (i, j) ∈ Γ

of the universal Tutte polynomial Tn({qij}, x, y) is equal to the Tutte polynomial of graph Γ
multiplied by the factor (t− 1)κ(Γ) :

(x− 1)κ(Γ Tutte(Γ, x, y) := Tn({qij}, x, y)

∣∣∣∣ qij=0, if (i,j)/∈Γ

qij=[mij ]
y
, if (i,j)∈Γ

.

Here and after κ(Γ) demotes the number of connected components of a graph Γ. In other
words, one can treat the universal Tutte polynomial Tn({qij}, x, y) as a “reproducing kernel” for

4 Independently the algebra 3T
(0)
n (Γ) has been studied in [9], where the reader can find some examples and

conjectures.
5To avoid confusions, it must be emphasized that the defining relations for algebras 3Tn(Γ) and 3Tn(Γ)(0) may

have more then three terms.
6 For a definition and basic properties of the Orlik– Solomon algebra corresponding to a matroid see e.g, Y.

Kawahara, On Matroids and Orlik-Solomon Algebras Annals of Combinatorics 8 (2004) 63-80.
7See e.g. wolfram.com/GridGraph.htm for a definition of grid graph Gm,n
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the Tutte polynomials of all graphs with the number of vertices not exceeded n.
We also state Conjecture 4.2 that for any loopless graph Γ (possibly with multiple edges) the

algebra 3T
(0)
|Γ| (Γ)

ab
is isomorphic to the even Orlik–Solomom algebra OS+(AΓ) of the graphic

arrangement associated with graph Γ in question.
At the end we emphasize that the case of the complete graph Γ = Kn reproduces the results
of the present paper and those of [47], i.e. the case of the full flag variety F ln. The case of the
complete multipartite graph Γ = Kn1,...,nr reproduces the analogue of results stated in the present
paper for the case of full flag variety F ln, to the case of the partial flag variety Fn1,...,nr , see [47]
for details.

In Section 4.1.3 we sketch how to generalize our constructions and some of our results to the
case of the Lie algebras of classical types 8.

In Section 4. 2 we briefly overview our results concerning yet another interesting family of
quadratic algebras, namely the six-term relations algebras 6Tn, 6T

(0)
n and related ones. These

algebras also contain a distinguished set of mutually commuting elements called Dunkl elements
{θi, i = 1, . . . , n} given by θi =

∑
j 6=i rij , see Definition 4.10.

In Subsection 4.2.2 we introduce and study the algebra 6TFn in greater detail. In particular
we introduce a “quantum deformation” of the algebra generated by the curvature of 2-forms of
of the Hermitian linear bundles over the flag variety F ln, cf [78].

In Subsection 4.2.3 we state our results concerning the classical Yang–Baxter algebra CY Bn
and the 6-term relation algebra 6Tn. In particular we give formulas for the Hilbert series of these
algebras. These formulas have been obtained independently in [3] The paper just mentioned,
contains a description of a basis in the algebra 6Tn, and much more.

In Subsection 4.2.4 we introduce a super analog of the algebra 6Tn, denoted by 6Tn,m, and
compute its Hilbert series.

Finally, in Subsection 4.3 we introduce extended nil-three term relations algebra 3Tn and
describe a subalgebra inside of it which is isomorphic to the double affine Hecke algebra of type
An−1, cf [15].

In Section 5 we describe several combinatorial properties of some special elements in the
associative quasi-classical Yang–Baxter algebra 9, denoted by ÂCY Bn. The main results in that
direction were motivated and obtained as a by-product, in the process of the study of the the
structure of the algebra 3HTn(β).More specifically, the main results of Section 5 were obtained in
the course of “hunting for descendant relations” in the algebra mentioned, which is an important
problem to be solved to construct a basis in the nil-quotient algebra 3T

(0)
n . This problem is still

widely-open.
The results of Section 5.1, see Proposition 5.1, items (1)–(5), are more or less well-known

among the specialists in the subject, while those of the item (6) seem to be new. Namely, we
show that the polynomial Qn(xij = ti) from [90], (6.C8), (c), essentially coincides with
the β-deformation [27] of the Lascoux-Schützenberger Grothendieck polynomial [57] for some
particular permutation. The results of Proposition 5.1, (6), point out on a deep connection
between reduced forms of monomials in the algebra ÂCY Bn and the Schubert and Grothendieck
Calculi. This observation was the starting point for the study of some combinatorial properties of
certain specializations of the Schubert, the β-Grothendieck [28] and the double β- Grothendieck
polynomials in Section 5.2 . One of the main results of Section 5.2 can be stated as follows.

Theorem 1.3.
8One can define an analogue of the algebra 3T

(0)
n for the root system of BCn and C∨nCn -types as well, but we

are omitted these cases in the present paper
9 The algebra ÂCY Bn can be treated as “one-half” of the algebra 3Tn(β). It appears, see Lemma 5.1, that the

basic relations among the Dunkl elements, which do not mutually commute anymore, are still valid, see Lemma
5.1.
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(1) Let w ∈ Sn be a permutation, consider the specialization x1 := q, xi = 1, ∀i ≥ 2, of the
β-Grothendieck polynomial G(β)

w (Xn). Then

Rw(q, β + 1) := G(β)
w (x1 = q, xi = 1, ∀i ≥ 2) ∈ N[q, 1 + β].

In other words, the polynomial Rw(q, β) has non-negative integer coefficients 10.
For late use we define polynomials

Rw(q, β) := q1−w(1) Rw(q, β).

(2) Let w ∈ Sn be a permutation, consider the specialization xi := q, yi = t, ∀i ≥ 1, of the
double β-Grothendieck polynomial G(β)

w (Xn, Yn). Then

G(β−1)
w (xi := q, yi := t,∀i ≥ 1) ∈ N[q, t, β].

(3) Let w be a permutation, then

Rw(1, β) = R1×w(0, β).

Note that Rw(1, β) = Rw−1(1, β), but Rw(t, β) 6= Rw−1(t, β), in general.

For the reader convenience we collect some basic definitions and results concerning the β-
Grothendieck polynomials in Appendix I.

Let us observe that Rw(1, 1) = Sw(1), where Sw(1) denotes the specialization xi :=
1, ∀i ≥ 1, of the Schubert polynomial Sw(Xn) corresponding to permutation w. Therefore,
Rw(1, 1) is equal to the number of compatible sequences [8] (or pipe dreams, see e.g. [85] )
corresponding to permutation w.

Problem 1.1.
Let w ∈ Sn be a permutation and l := `(w) be its length. Denote by CS(w) = {a = (a1 ≤

a2 ≤ · · · ≤ al) ∈ Nl } the set of compatible sequences [8] corresponding to permutation w.
• Define statistics r(a) on the set of all compatible sequences CSn :=

∐
w∈Sn

CS(w)

in a such way that ∑
a∈CS(w)

qa1 βr(a) = Rw(q, β).

• Find a geometric interpretation, and investigate combinatorial and algebra-geometric proper-
ties of polynomials S

(β)
w (Xn),

where for a permutation w ∈ Sn we denoted by S
(β)
w (Xn) the β-Schubert polynomial defined

as follows

S(β)
w (Xn) =

∑
a∈CS(w)

βr(a)

l:=`(w)∏
i=1

xai .

We expect that polynomial S(β)
w (1) coincides with the Hilbert polynomial of a certain graded

commutative ring naturally associated to permutation w.

Remark 1.1. It should be mentioned that, in general, the principal specialization

G(β−1)
w (xi := qi−1, ∀i ≥ 1)

of the (β − 1)-Grothendieck polynomial may have negative coefficients. �

10 For a more general result see Appendix I, Corollary 6.2.
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Our main objective in Section 5.2 is to study the polynomials Rw(q, β) for a special class of
permutations in the symmetric group S∞. Namely, in Section 5.2 we study some combinatorial
properties of polynomials R$λ,φ(q, β) for the five parameters family of vexillary permutations
{$λ,φ} which have the shape
λ := λn,p,b = (p(n− i+ 1) + b, i = 1, . . . , n+ 1) and flag
φ := φk,r = (k + r(i− 1), i = 1, . . . , n+ 1).
This class of permutations is notable for many reasons, including that the specialized value of

the Schubert polynomial S$λ,φ(1) admits a nice product formula 11 , see Theorem 5.6. Moreover,
we describe also some interesting connections of polynomials R$λ,φ(q, β) with plane partitions,
the Fuss-Catalan numbers 12 and Fuss-Narayana polynomials, k-triangulations and k-dissections
of a convex polygon, as well as a connection with two families of ASM . For example, let
λ = (bn) and φ = (kn) be rectangular shape partitions, then the polynomial R$λ,φ(q, β) defines
a (q, β)-deformation of the number of (ordinary) plane partitions 13 sitting in the box b× k×n.
It seems an interesting problem to find an algebra-geometric interpretation of polynomials
Rw(q, β) in the general case.

Question Let a and b be mutually prime positive integers. Does there exist a family of
permutations wa,b ∈ Sab(a+b) such that the specialization xi = 1 ∀i of the Schubert polynomial
Swa,b is equal o the rational Catalan number Ca/b ? That is

Swa,b(1) =
1

a+ b

(
a+ b

a

)
.

�
Many of the computations in Section 5.2 are based on the following determinantal formula

for β-Grothendieck polynomials corresponding to grassmannian permutations, cf [59].

Theorem 1.4. (see Comments 5.5)
If w = σλ is the grassmannian permutation with shape λ = (λ, . . . , λn) and a unique descent

at position n, then 14

(A) G(β)
σλ

(Xn) = DET |h(β)
λj+i,j

(Xn)|1≤i,j≤n =
DET |xλj+n−ji (1 + β xi)

j−1|1≤i,j≤n∏
1≤i<j≤n(xi − xj)

,

where Xn = (xi, x1, . . . , xn), and for any set of variables X,

h
(β)
n,k(X) =

k−1∑
a=0

(
k − 1

a

)
hn−k+a(X) βa,

11 One can prove a product formula for the principal specialization S$λ,φ(xi := qi−1, ∀i ≥ 1) of the corre-
sponding Schubert polynomial. We don’t need a such formula in the present paper.

12 We define the (generalized) Fuss-Catalan numbers to be FC
(p)
n (b) := 1+b

1+b+(n−1)p

(
np+b
n

)
. Connection of

the Fuss-Catalan numbers with the p-ballot numbers Balp(m,n) := n−mp+1
n+m+1

(
n+m+1
m

)
and the Rothe numbers

Rn(a, b) := a
a+bn

(
a+bn
n

)
can be described as follows

FC(p)
n (b) = Rn(b+ 1, p) = Balp−1(n, (n− 1)p+ b).

13 Let λ be a partition. An ordinary plane partition (plane partition for short)bounded by d and shape λ is
a filling of the shape λ by the numbers from the set {0, 1, . . . , d} in such a way that the numbers along columns
and rows are weakly decreasing.
A reverse plane partition bounded by d and shape λ is a filling of the shape λ by the numbers from the set
{0, 1, . . . , d} in such a way that the numbers along columns and rows are weakly increasing.

14 the equality

G(β)
σλ (Xn) =

DET |xλj+n−ji (1 + β xi)
j−1|1≤i,j≤n∏

1≤i<j≤n(xi − xj)
,

has been proved independently in [70].
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and hk(X) denotes the complete symmetric polynomial of degree k in the variables from the set
X.

(B) Gσλ(X,Y ) =
DET |

∏λj+n−j
a=1 (xi + ya + β xi ya) (1 + βxi)

j−1|1≤i,j≤n∏
1≤i<j≤n(xi − xj)

.

In Section 5.3 we give a partial answer on the question 6.C8(d) by R.Stanley [90]. In
particular, we relate the reduced polynomial corresponding to monomial

(
xa2

12 · · ·xn−1,n
an
) n−2∏
j=2

n∏
k=j+2

xjk, aj ∈ Z≥0,∀j,

with the Ehrhart polynomial of the generalized Chan–Robbins–Yuen polytope, if a2 = . . . =
an = m+ 1, cf [66], with a t-deformation of the Kostant partition function of type An−1 and the
Ehrhart polynomials of some flow polytopes, cf [67].

In Section 5.4 we investigate certain specializations of the reduced polynomials corresponding
to monomials of the form

xm1
12 · · ·x

mn
n−1,n, mj ∈ Z≥0.∀j.

First of all we observe that the corresponding specialized reduced polynomial appears to be
a piece-wise polynomial function of parameters m = (m1, . . . ,mn) ∈ (R≥0)n, denoted by Pm.
It is an interesting problem to compute the Laplas transform of that piece-wise polynomial
function. In the present paper we compute the value of the function Pm in the dominant chamber
Cn = (m1 ≥ m2 ≥ . . . ≥ mn ≥ 0), and give a combinatorial interpretation of the values of that
function in points (n,m) and (n,m, k), n ≥ m ≥ k.

For the reader convenience, in Appendix I–V we collect some useful auxiliary information
about the subjects we are treated in the present paper.

Almost all results in Section 5 state that some two specific sets have the same number of
elements. Our proofs of these results are pure algebraic. It is an interesting problem to find
bijective proofs of results from Section 5 which generalize and extend remarkable bijective proofs
presented in [98], [85], [91], [67] to the cases of
• the β-Grothendieck polynomials,
• the (small) Schröder numbers,
• k-dissections of a convex (n+ k + 1)-gon,
• special values of reduced polynomials.
We are planning to treat and present these bijections in (a) separate publication(s).

�
We expect that the reduced polynomials corresponding to the higher-order powers of the

Coxeter elements also admit an interesting combinatorial interpretation(s). Some preliminary
results in this direction are discussed in Comments 5.8.

At the end of Introduction I want to add two remarks.
(a) After a suitable modification of the algebra 3HTn, see [52], and the case β 6= 0 in

[47], one can compute the set of relations among the (additive) Dunkl elements (defined in
Section 2, (2.1)). In the case β = 0 and qij = qi δj−i,1, 1 ≤ i < j ≤ n, where δa,b is
the Kronecker delta symbol, the commutative algebra generated by additive Dunkl elements
(2.3) appears to be “almost” isomorphic to the equivariant quantum cohomology ring of the flag
variety F ln, see [52] for details. Using the multiplicative version of Dunkl elements (3.14), one
can extend the results from [52] to the case of equivariant quantum K-theory of the flag variety
F ln, see [47].
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(b) As it was pointed out previously, one can define an analogue of the algebra 3T
(0)
n for

any (oriented) matroidMn, and state a conjecture which connects the Hilbert polynomial of the
algebra 3T

(0)
n (Mn)ab, t) and the chromatic polynomial of matroidMn. We expect that algebra

3T
(β=1)
n (Mn)ab is isomorphic to the Gelfand–Varchenko algebra associated with matroidM. It

is an interesting problem to find a combinatorial meaning of the algebra 3T
(β)
n (Mn) for β = 0

and β 6= 0.
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2 Dunkl elements

Let Fn be the free associative algebra over Z with the set of generators {uij , 1 ≤ i, j ≤ n}. In
the subsequent text we will distinguish the set of generators {uii}1≤i≤n from that {uij}1≤i 6=j≤n,
and set

xi := uii, i = 1, . . . , n.

Definition 2.1. (Additive Dunkl elements)
The (additive) Dunkl elements θi, i = 1, . . . , n, in the algebra Fn are defined to be

θi = xi +
n∑
j=1
j 6=i

uij . (2.1)

We are interested in to find “natural relations” among the generators {uij}1≤i,j≤n such that
the Dunkl elements (2.1) are pair-wise commute. One of the natural conditions which is the
commonly accepted in the theory of integrable systems, is
• (Locality conditions)

(a) [xi, xj ] = 0, if i 6= j,

(b) uij ukl = ukl uij , if i 6= j, k 6= l and {i, j} ∩ {k, l} = ∅. (2.2)

Lemma 2.1.
Assume that elements {uij} satisfy the locality condition (2.1). If i 6= j, then

[θi, θj ] =

[
xi +

∑
k 6=i,j

uik, uij + uji

]
+

[
uij ,

n∑
k=1

xk

]
+
∑
k 6=i,j

wijk,

where

wijk = [uij , uik + ujk] + [uik, ujk] + [xi, ujk] + [uik, xj ] + [xk, uij ]. (2.3)

Therefore in order to ensure that the Dunkl elements form a pair-wise commuting family, it’s
natural to assume that the following conditions hold
• (Unitarity)

[uij + uji, ukl] = 0 = [uij + uji, xk] for all distinct i, j, k, l, (2.4)

i.e. the elements uij + uji are central.
• (“Conservation laws”)

[

n∑
k=1

xk , uij ] = 0 for all i, j, (2.5)

i.e. the element E :=
∑n

k=1 xk is central,
• (Unitary dynamical classical Yang–Baxter relations )

[uij , uik + ujk] + [uik, ujk] + [xi, ujk] + [uik, xj ] + [xk, uij ] = 0, (2.6)

if i, j, k are pair-wise distinct.
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Definition 2.2. (Dynamical six term relations algebra 6DTn)
We denote by 6DTn the quotient of the algebra Fn by the two-sided ideal generated by relations

(2.2)− (2.6).

Clearly, the Dunkl elements (2.1) generate a commutative subalgebra inside of the algebra
6DTn, and the sum

∑n
i=1 θi =

∑n
i=1 xi belongs to the center of the algebra 6DTn.

Remark Occasionally we will call the Dunkl elements of the form (2.1) by dynamical Dunkl
elements to distinguish the latter from truncated Dunkl elements, corresponding to the case
xi = 0, ∀i.

2.1 Some representations of the algebra 6DTn

2.1.1 Dynamical Dunkl elements and equivariant quantum cohomology

(I) (cf [25]) Given a set q1, . . . , qn−1 of mutually commuting parameters, define

qij =

j−1∏
a=i

qa, if i < j,

and set qij = qji in the case i > j. Clearly, that if i < j < k, then qijqjk = qik.
Let z1, . . . , zn be a set of (mutually commuting) variables. Denote by Pn := Z[z1, . . . , zn] the

corresponding ring of polynomials. We consider the variable zi, i = 1, . . . , n, also as the operator
acting on the ring of polynomials Pn by multiplication on the variable zi.

Let sij ∈ Sn be the transposition that swaps the letters i and j and fixes the all other letters
k 6= i, j. We consider the transposition sij also as the operator which acts on the ring Pn by
interchanging zi and zj , and fixes all other variables. We denote by

∂ij =
1− sij
zi − zj

, ∂i := ∂i,i+1,

the divided difference operators corresponding to the transposition sij and the simple transposi-
tion si := si,i+1 correspondingly. Finally we define operator (cf [25] )

∂(ij) := ∂i · · · ∂j−1∂j∂j−1 · · · ∂i, if i < j.

The operators ∂(ij), 1 ≤ i < j ≤ n, satisfy (among other things) the following set of relations (cf
[25])
• [zj , ∂(ik)] = 0, if j /∈ [i, k], [∂(ij),

∑j
a=i za] = 0,

• [∂(ij), ∂(kl)] = δjk [zj , ∂(il)] + δil [∂(kj), zi], if i < j, k < l.
Therefore, if we set uij = qij ∂(ij), if i < j, and u(ij) = −u(ji), if i > j, then for a triple

i < j < k we will have

[uij , uik + ujk] + [uik, ujk] + [zi, ujk] + [uik, zj ] + [zk, ujk] = qijqjk[∂(ij), ∂(jk)] + qik[∂(ik), zj ] = 0.

Thus the elements {zi, i = 1, . . . , n} and {uij , 1 ≤ i < j ≤ n} define a representation of the
algebra DCY Bn, and therefore the Dunkl elements

θi := zi +
∑
j 6=i

uij = zi −
∑
j<i

qji∂(ji) +
∑
j>i

qij∂(ij)

form a pairwise commuting family of operators acting on the ring of polynomials
Z[q1, . . . , qn−1][z1, . . . , zn], cf [25]. This representation has been used in [25] to construct the
small quantum cohomology ring of the complete flag variety of type An−1.

�
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(II) Consider degenerate affine Hecke algebra Hn generated by the central element h, the
elements of the symmetric group Sn, and the mutually commuting elements y1, . . . , yn, subject
to relations

siyi − yi+1si = h, 1 ≤ i < n, siyj = yjsi, j 6= i, i+ 1,

where si stand for the simple transposition that swaps only indices i and i + 1. For i < j, let
sij = si · · · sj−1sjsj−1 · · · si denotes the permutation that swaps only indices i and j. It is an easy
exercise to show that
• [yj , sik] = h[sij , sjk], if i < j < k,
• yisik − sikyk = h+ h sik

∑
i<j<k sjk, if i < k.

Finally, consider a set of mutually commuting parameters {pij , 1 ≤ i 6= j ≤ n, pij + pji = 0},
subject to the constraints

pijpjk = pikpij + pjkpik + pik, i < j < k.

Comments 2.1. If parameters {pij} are invertible, and satisfy relations

pijpjk = pikpij + pjkpik + β pik, i < j < k,

then one can rewrite the above displayed relations in the following form:

1 +
β

pik
=
(

1 +
β

pij

)(
1 +

β

pjk

)
, 1 ≤ i < j < k ≤ n.

Therefore there exist parameters {q1, . . . , qn} such that 1 + β/pij = qi/qj , 1 ≤ i < j ≤ n. In
other words, pij =

β qj
qj−qj , 1 ≤ i < j ≤ n. However in general, there are many other types

of solutions, for example, solutions related to the Heaviside function 15 H(x), namely, pij =
H(xi − xj), xi ∈ R, ∀i, and its discrete analogue, see Example (III) below. In the both cases
β = −1; see also Comments 2.3 for other examples.

�

To continue presentation of Example (II), define elements uij = pijsij , 1 ≤ i 6= j ≤ n.

Lemma 2.2. (Dynamical classical Yang–Baxter relations)

[uij , uik + ujk] + [uik, ujk] + [uik, yj ] = 0, 1 < i < j < k ≤ n. (2.7)

Indeed,

uijujk = uikuij + ujkuik + h piksijsjk, ujkuij = uijuik + uikujk + h piksjksik,

and moreover, [yj , uik] = h pik[sij , sjk]. �
Therefore, the elements

θi = yi − h
∑
j<i

uij + h
∑
i<j

uij , i = 1, . . . , n,

form a mutually commuting set of elements in the algebra Z[{pij}]⊗Z Hn.

Theorem 2.1. Define matrix Mn = (mi,j)1≤i,j≤n as follows:

mi,j(u; z1, . . . , zn) =


u− zi if i = j,

−h− pij if i < j,

pij if i > j.

15 http://en.wikipedia.org/wiki/Heaviside step function
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Then

DET

∣∣∣∣Mn(u; θ1, . . . , θn)

∣∣∣∣ =
n∏
j=1

(u− yj).

Moreover, let us set qij := h2(pij + p2
ij) = h2qiqj(qi − qj)−2, i < j, then

ek(θ1, . . . , θn) = e
(q)
k (y1, . . . , yn), 1 ≤ k ≤ n,

where ek(x1, . . . , xn) and e(q)
k (x1, . . . , xn) denote correspondingly the classical and multiparameter

quantum [26] elementary polynomials 16.

Let’s stress that the elements yi and θj do not commute in the algebra Hn, but the symmetric
functions of y1, . . . , yn, i.e. the center of the algebra Hn, do.

A few remarks in order. First of all, u2
ij = p2

ij are central elements. Secondly, in the case
h = 0 and yi = 0, ∀i, the equality

DET

∣∣∣∣Mn(u;x1, . . . , xn)

∣∣∣∣ = un

describes the set of polynomial relations among the Dunkl–Gaudin elements (with the following
choice of parameters pij = (qi− qj)−1 are taken). And our final remark is that according to [35],
Section 8, the quotient ring

Hq
n := Q[y1, . . . , yn]Sn ⊗Q[θ1, . . . , θn]⊗Q[h] /

〈
Mn(u; θ1, . . . , θn) =

n∏
j=1

(u− yj)
〉

is isomorphic to the quantum equivariant cohomology ring of the cotangent bundle T ∗F ln of the
complete flag variety of type An−1, namely,

Hq
n
∼= QH∗Tn×C∗(T

∗F ln)

with the following choice of quantum parameters: Qi := h qi+1/qi, i = 1, . . . , n− 1.

On the other hand, in [52] we computed the so-called multiparameter deformation of the
equivariant cohomology ring of the complete flag variety of type An−1.

A deformation defined in [52] depends on parameters {qij , 1 ≤ i < j ≤ n} without any
constraints are imposed. For the special choice of parameters

qij := h2 qi qj
(qi − qj)2

the multiparameter deformation of the equivariant cohomology ring of the type An−1 com-
plete flag variety F ln constructed in [52], is isomorphic to the ring Hq

n.

16 For the reader convenience we remind [26] a definition of the quantum elementary polynomial
eqk(x1, . . . , xn). Let q := {qij}1≤i<j≤n be a collection of “quantum parameters”, then

eqk(x1, . . . , xn) =
∑
`

∑
1≤i1<...<i`≤n
j1>i1...,j`>i`

ek−2`(XI∪J)
∏̀
a=1

qia,ja ,

where I = (i1, . . . .i`), J = (j1, . . . , j`) should be distinct elements of the set {1, . . . , n}, and XI∪J denotes set of
variables xa for which the subscript a is neither one of im nor one of the jm.
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Comments 2.2. Let us fix a set of independent parameters {q1, . . . , qn} and define new
parameters

{qij := h pij(pij + h) = h2 qi qj
(qi − qj)2

}, 1 ≤ i < j ≤ n, where pij =
qj

qi − qj
, i < j.

We set deg(qij) = 2, deg(pij) = 1, deg(h) = 1.
The new parameters {qij}1≤i<j≤n, do not free anymore, but satisfy rather complicated alge-

braic relations. We display some of these relations soon, having in mind a question:
is there some intrinsic meaning of the algebraic variety defined by the set of defining relations

among the “quantum parameters” {qij} ?
Let us denote by An,h the quotient ring of the ring of polynomials Q[h][xij , 1 ≤ i < j ≤ n]

modulo the ideal generating by polynomials f(xij) such that the specialization xij = qij of a
polynomial f(xij), namely f(qij), is equal to zero. The algebra An,h has a natural filtration,
and we denote by An = grAn,h the corresponding associated graded algebra.

To describe (a part of) relations among the parameters {qij} let us observe that parameters
{pij} and {qij} are related by the following identity

qijqjk − qik(qij + qjk) + h2qik = 2 pijpikpjk(pik + h), if i < j < k.

Using this identity we can find the following relations among parameters in question

q2
ijq

2
jk + q2

ijq
2
ik + h4q2

ikq
2
jk − 2 qijqikqjk(qij + qjk + qik)− 2 h2qik(qijqjk + qijqik + qjkqik)

= 8 h qij qik qjk pik,
(2.8)

if 1 ≤ i < j < k ≤ n.
Finally, we come to a relation of degree 8 among the “quantum parameters” {qij}(

LHS(2.8)
)2

= 64 h2 q2
ij q

3
ik q

2
jk, 1 ≤ i < j < k ≤ n.

There are also higher degree relations among the parameters {qij} some of whose in degree 16
follow from the deformed Plücker relation between parameters {pij}:

1

pikpjl
=

1

pijpkl
+

1

pilpjk
+

h

pijpjkpkl
, i < j < k < l.

However, we don’t know how to describe the algebra An,h generated by quantum parameters
{qij}1≤i<j≤n even for n=4.

The algebra An = gr(An,h) is isomorphic to the quotient algebra of Q[xij , 1 ≤ i < j ≤ n]
modulo the ideal generated by the set of relations between “quantum parameters”

{qij :=
( 1

zi − zj

)2
}1≤i<j≤n,

which correspond to the Dunkl–Gaudin elements {θi}1≤i≤n, see Section 3.2 below for details. In
this case the parameters {qij} satisfy the following relations

(q2
ijq

2
jk + q2

ijq
2
ik + q2

jkq
2
ik = 2 qijqikqjk(qij + qjk + qjk)

which correspond to the relations (2.8) in the special case h = 0. One can find a set of relations
in degrees 6, 7 and 8, namely for a given pair-wise distinct integers 1 ≤ i, j, k, l ≤ n, one has
• one relation in degree 6

q2
ijq

2
ikq

2
il + q2

ijq
2
jkq

2
jl + q2

ikq
2
jkq

2
kl + q2

ilq
2
jlq

2
kl−
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2 qijqikqilqjkqjlqkl

(qij
qkl

+
qkl
qij

+
qik
qjl

+
qjl
qik

+
qil
qjk

+
qjk
qil

)
+ 8 qijqikqilqjkqjlqkl = 0;

• three relations in degree 7

qik

(
qijqilqkl − qijqilqjk + qijqjkqkl − qilqjkqkl

)2
=

8 q2
ijq

2
ikqjkqkl

(
qjk + qjl + qkl

)
− 4 q2

ijq
2
ilqjl

(
q2
jk + q2

kl

)
,

• one relation in degree 8

q2
ijq

2
ilq

2
jkq

2
kl + q2

ijq
2
ikq

2
jlq

2
kl + q2

ikq
2
ilq

2
jkq

2
jl = 2 qijqikqilqjkqjlqkl

(
qijqkl + qikqjl + qilqjk

)
,

However we don’t know does the list of relations displayed above, contains the all independent
relations among the elements {qij}1≤i<j≤n in degrees 6, 7 and 8, even for n = 4. In degrees
≥ 9 and n ≥ 5 some independent relations should appear.

Notice that the parameters {pij =
h qj
qi−qj , i < j} satisfy the so-called Gelfand–Varchenko

relations, see e.g. [45]

pijpjk = pikpij + pjkpik + h pik, i < j < k,

whereas parameters {pij = 1
qi−qj , i < j} satisfy the so-called Arnold relations

pijpjk = pikpij + pjkpik, i < j < k.

Project 2.1. 17 Find Hilbert series Hilb(An, t) for n ≥ 4.

For example, Hilb(A3, t) = (1+t)(1+t2)
(1−t)2 .

Finally, if we set qi := exp(h zi) and take the limit limh→0
h2 qiqj
(qi−qj)2 , as a result we obtain the

Dunkl–Gaudin parameter qij = 1
(zi−zj)2 .

�

(III) Consider the following representation of the degenerate affine Hecke algebra Hn on the
ring of polynomials Pn = Q[x1, . . . , xn]:
• the symmetric group Sn acts on Pn by means of operators

si = 1 + (xi+1 − xi − h)∂i, i = 1, . . . , n− 1,

• yi acts on the ring Pn by multiplication on the variable xi: yi(f(x)) = xif(x), f ∈ Pn. Clearly,

yi si − yi+1 si = h, and yi(si − 1) = (si − 1)yi+1 + xi+1 − xi − h.

In the subsequent discussion we will identify the operator of multiplication by the variable xi,
namely the operator yi, with xi.

This time define uij = pij(si − 1), if i < j and set uij = −uji if i > j, where parameters
{pij} satisfy the same conditions as in the previous example.

17 This is a particular case of more general problem we are interested in. Namely, let {fα ∈ R[x1, . . . , xn]}1≤α≤N
be a collection of linear forms, and k ≥ 2 be an integer. Denote by I({fα}) the ideal in the ring of polynomials
R[z1, . . . , zN ] generated by polynomials Φ(z1, . . . , zN ) such that

Φ(f−k1 , . . . , f−kN ) = 0.

Compute the Hilbert polynomial of the quotient algebra R[z1, . . . , zN ]/I({fα}).
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Lemma 2.3. The elements {uij , 1 ≤ i < j ≤ n}, satisfy the dynamical classical Yang–Baxter
relations displayed in Lemma 2.2, (2.7).

Therefore, the Dunkl elements

θi :=
∑
j
j 6=i

uij , i = 1, . . . , n,

form a commutative set of elements.

Theorem 2.2. ([35]) Define matrix Mn = (mij)1≤i,j≤n as follows

mi,j(u; z1, . . . , zn) =


u− zi +

∑
j 6=i h pij if i = j,

−h− pij if i < j,

pij if i > j.

Then

DET

∣∣∣∣Mn(u; θ1, . . . , θn)

∣∣∣∣ =
n∏
j=1

(u− xj).

�

Comments 2.3. Let us list a few more representations of the dynamical classical Yang–Baxter
relations.
• (Trigonometric Calogero–Moser representation) Let i < j, define

uij =
xj

xi − xj
(sij − ε), ε = 0 or 1; sij(xi) = xj , sij(xj) = xi, sij(xk) = xk, ∀k 6= i, j.

• (Mixed representation)

uij = (
λj

λi − λj
− xj
xi − xj

)(sij − ε), ε = 0 or 1; sij(λk) = λk ∀k.

We set uij = −uji, if i > j. In all cases we define Dunkl elements to be θi =
∑

j 6=i uij .
Note that operators

rij = (
λi + λj
λi − λj

− xi + xj
xi − xj

)sij

satisfy the three term relations: rijrjk = rikrij + rjkrik, and rjkrij = rijrjk + rikrjk, and thus
satisfy the classical Yang–Baxter relations.

�

2.1.2 Dunkl–Uglov representation of degenerate affine Hecke algebra [94]

(Step functions and the Dunkl–Uglov representations of the degenerate affine Hecke algebras)

Consider step functions η± : R −→ {0, 1}

(Heaviside function) η+(x) =

{
1, if x ≥ 0,

0, if x < 0;
η−(x) =

{
1, if x > 0,

0, if x ≤ 0.

For any two real numbers xi and xj set η±ij = η±(xi − xj).
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Lemma 2.4. The functions ηij satisfy the following relations
• η±ij + η±ji = 1 + δxi,xj , (η±ij)

2 = η±ij ,

• η±ijη
±
jk = η±ikη

±
ij + η±jkη

±
ik − η

±
ik,

where δx,y denotes the Kronecker delta function.

To introduce the Dunkl–Uglov operators [94] we need a few more definitions and notation. To
start with, denote by ∆±i the finite difference operators: ∆±i (f)(x1, . . . , xn) = f(. . . , xi±1, . . .).
Let as before, {sij , 1 ≤ i 6= j ≤ n, sij = sji}, denotes the set of transpositions in the symmetric
group Sn. Recall that sij(xi) = xj sij(xk) = xk ∀k 6= i, j. Finally define Dunkl–Uglov operators
d±i : Rn −→ Rn to be

d±i = ∆±i +
∑
j<i

δxi,xj −
∑
j<i

η±ji sij +
∑
j>i

η±ij sij .

To simplify notation, set u±ij := η±ijsij , if i < j, and ∆̃±i = ∆±i +
∑

j<i δxi,xj .

Lemma 2.5. The operators {u±iu, 1 ≤ i < j ≤ n} satisfy the following relations

[u±ij , u
±
ik + u±jk] + [u±ik, u

±
jk] + [u±ik,

∑
j<i

δxi,xj ] = 0, if i < j < k. (2.9)

From now on we assume that xi ∈ Z, ∀i, that is, we will work with the restriction of the all
operators defined at beginning of Example (2.1 (c)), to the subset Zn ⊂ Rn. It is easy to see
that under the assumptions xi ∈ Z, ∀i, we will have

∆±j η
±
ij = (η±ij ∓ δxi,xj )∆

±
i . (2.10)

Moreover, using relations (2.13), (2.14) one can prove that

Lemma 2.6.
• [u±ij , ∆̃

±
i + ∆̃±j ] = 0,

• [u±ik, ∆̃
±
j ] = [u±ik,

∑
j<i δxi,xj ], i < j < k.

Corollary 2.1.
• The operators {u±ij , 1 ≤ i < j < k ≤ n, } and ∆̃±i , i = 1, . . . , n satisfy the dynamical

classical Yang–Baxter relations

[u±ij , u
±
ik + u±jk] + [u±ik, u

±
jk] + [u±ik, ∆̃j ]] = 0, if i < j < k.

• ([94]) The operators {si := si,i+1, 1 ≤ i < n, and ∆̃±j , 1 ≤ j ≤ n} give rise to
two representations of the degenerate affine Hecke algebra Hn. In particular, the Dunkl–Uglov
operators are mutually commute: [d±i , d

±
j ] = 0.

�

2.1.3 Extended Kohno–Drinfeld algebra and Yangian Dunkl–Gaudin elements

Definition 2.3. Extended Kohno–Drinfeld algebra is an associative algebra over Q[β] generated
by the elements {z1, . . . , zn} and {yij}1≤i 6=j≤n subject to the set of relations

(i) The elements {yij{1≤i 6=j≤n satisfy the Kohno–Drinfeld relations
• yij = yji, [yij , ykl] = 0, if i, j, k, l are distinct.
• [yij , yik + yjk] = 0 = [yij + yik, yjk], if i < j < k.
(ii) The elements z1, . . . , zn generate the free associative algebra Fn.
(iii) ( Crossing relations)
• [zi, yjk] = 0, if i 6= j, k, [zi, zj ] = β [yij , zi], if i 6= j.
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To define the (yangian) Dunkl-Gaudin elements, cf [35], let us consider a set of elements
{pij}1≤i 6=j≤n subject to relations
• pij + pji = β, [pij , ykl] = 0 = [pij , zk] for all i, j, k.
• pij pjk = pik

(
pjk − pji

)
, if i < j < k.

Let us set uij = pij yij , i 6= j, and define the (yangian) Dunkl–Gaudin elements as follows

θi = zi +
∑
j 6=i

uij , i = 1, . . . , n.

Proposition 2.1. ( Cf [35], Lemma 3.5)
The elements θ1, . . . , θn form a mutually commuting family.

Indeed, let i < j, then [θi, θj ] =

[zi, zj ] + β[zi, yij ] + pij [yij , zi + zj ] +
∑
k 6=i,j

(
pikpjk

[
yij + yik, yjk

]
+ pikpji

[
yij , yik + yjk

])
= 0.

A representation of the extended Kohno–Drinfeld algebra has been constructed in [35], namely
one can take

yij := T
(1)
ij T

(1)
ji − T

(1)
jj = yji, zi := β T

(2)
ii −

β

2
T

(1)
ii (T

(1)
ii − 1), pij :=

β qj
qi − qj

, i 6= j,

where q1, . . . , qn stands for a set of mutually commuting quantum parameters, and {T (s)
ij } 1≤i,j≤n

s∈Z≥0

denotes the set of generators of the Yangian Y (gln), see e.g. [69].
A proof that the elements {zi}1≤i≤n and {yij}1≤i 6=j≤n satisfy the extended Kohno–Drinfeld

algebra relations is based on the following relations, see e.g. [35], Section 3

[T
(1)
ij , T

(s)
kl ] = δilT

(s)
kj − δjkT

(s)
il , i, j, k, l = 1, . . . , n, s ∈ Z≥0.

2.2 “Compatible” Dunkl elements and Manin matrices

(“Compatible” Dunkl elements, Manin matrices and algebras related with weighted
complete graphs rKn )

Let us consider a collection of generators {u(α)
ij , 1 ≤ i, j ≤ n, α = 1, . . . , r}, subject to the

following relations
• either the unitarity (the case of sign “+”), or the symmetry relations (the case of sign “ -

”) 18

: u
(α)
ij ± u

(α)
ji = 0,∀, α, i, j, (2.11)

• (local 3-term relations)

u
(α)
ij u

(α)
jk + u

(α)
jk u

α)
ki + u

(α)
ki u

(α)
ij = 0. i, j, k are distinct, 1 ≤ α ≤ r. (2.12)

18 More generally one can impose the q-symmetry conditions

uij + quji = 0, 1 ≤ i < j ≤ n

and ask about relations among the local Dunkl elements to ensure the commutativity of the global ones. As
one might expect, the matrix Q := (θ

(a)
j ) 1≤a≤r

1≤j≤n
composed from the local Dunkl elements should be a q-Manin

matrix. See e.g. [16], or en.wikipedia.org/wiki/Manin.matrix for a definition and basic properties of the latter.
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We define global 3-term relations algebra 3T
(±)
n,r as “ compatible product” of the local 3-term

relations algebras. Namely, we require that the elements

U
(λ)
ij :=

r∑
α=1

λα u
(α)
ij , 1 ≤ i, j ≤ n,

satisfy the 3-term relations (1.4) for all values of parameters {λi ∈ R, 1 ≤ α ≤ r}.
It is easy to check that our request is equivalent to a validity of the following sets of relations

among the generators {u(α)
ij }

(a) (local 3-term relations) u
(α)
ij u

α)
jk + u

(α)
jk u

(α)
ki + u

α)
ki u

(α)
ij = 0,

(b) ( 6-term crossing relations)

u
(α)
ij u

(β)
jk + u

(β)
ij u

(α)
jk + u

(α)
k,i u

(β)
ij u

(α)
ki + u

(α)
jk u

(β)
ki + u

(β)
jk u

(α)
ki = 0,

i, j, k are distinct, α 6= β.
Now let us consider local Dunkl elements

θ
(α)
i :=

∑
j 6=i

u
(α)
ij , j = 1, . . . , n, α = 1, . . . , r.

It follows from the local 3-term relations (?) that for a fixed α ∈ [1, r] the local Dunkl elements
{θ(α)
i } 1≤i≤n

1≤α≤r
either mutually commute (the sign “+”), or pairwise anticommute (the sign “ -

”). Similarly, the global 3-term relations imply that the global Dunkl elements

θ
(λ)
i := λ1θ

(1)
i + · · ·+ λrθ

(r)
i =

∑
j 6=i

U
(λ)
ij i = 1, . . . , n

also either mutually commute (the case “ + “) or pairwise anticommute (the case “ - “).
Now we are looking for a set of relations among the local Dunkl elements which is a con-

sequence of the commutativity (anticommutativity) of the global Dunkl elements. It is quite
clear that if i < j, then

[θ
(a)
i , θ

(b)
j ]± =

r∑
a=1

λ2
a [θ

(a)
i , θ

(a)
j ]± +

∑
1≤a<b≤r

λa λb

(
[θ

(a)
i , θ

(b)
j ]± + [θ

(b)
i , θ

(a)
j ]±

)
,

and the commutativity (or anticommutativity) of the global Dunkl elements for all (λ1, . . . , λr) ∈
Rr is equivalent to the following set of relations
• [θi,

(a) , θ
(a)
j ]± = 0,

• [θ
(a)
i , θ

(b)
j ]± + [θ

(b)
i , θ

(a)
j ]± = 0, a < b and i < j,

where by definition we set [a, b]± := ab∓ ba.
In other words , the matrix Θn := (θ

(a)
i ) 1≤a≤r

1≤i≤n
should be either a Manin matrix (the case “ +

“), or its super analogue (the case “ - “). Clearly enough that a similar construction can be applied
to the algebras studied in Section 2, I-III.,and thus it produces some interesting examples of
the Manin matrices. It is an interesting problem to describe the algebra generated by the
local Dunkl elements {θ(a)

i } 1≤a≤r
1≤i≤n

and a commutative subalgebra generated by the global Dunkl
elements inside the former. It is also an interesting question whether or not the coefficients
C1, . . . , Cn of the column characteristic polynomial Detcol | Θn − t In |=

∑n
k=0Ck t

n−k of
the Manin matrix Θn generate a commutative subalgebra ? For a definition of the column
determinant of a matrix, see e.g. [16].
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However a close look at this problem and the question posed needs an additional treatment
and has been omitted from the content of the present paper.

Here we are looking for a “natural conditions” to be imposed on the set of generators {uαij} 1≤α≤r
1≤i,j≤n

in order to ensure that the local Dunkl elements satisfy the commutativity (or anticommutativity)
relations:

[θ
(α)
i , θ

(β)
j ]± = 0, for all 1 ≤ i < j ≤ n and 1 ≤ α, β ≤ r.

The “natural conditions” we have in mind are:
• (locality relations)

[u
(α)
ij , u

β)
kl ]± = 0, (2.13)

• (twisted classical Yang–Baxter relations)

[u
(α)
ij , u

(β)
jk ]± + [u

(α)
ik , u

(β)
ji ]± + [u

(α)
ik , u

(β)
jk ]± = 0, (2.14)

if i, j, k, l are distinct and 1 ≤ α, β ≤ r.
Finally we define a multiple analogue of the three term relations algebra, denoted by 3T±(rKn),

to be the quotient of the global 3-term relations algebra 3T±n,r modulo the two-sided ideal gener-
ated by the left hand sides of relations (1.5), (1.6) and that of the following relations

•
(
u

(α)
ij

)2

= 0, [u
(α)
ij , u

(β)
ij ]± = 0, for all i 6= j, α 6= β.

The outputs of this construction are
• noncommutative quadratic algebra 3T (±)(rKn) generated by the elements {u(α)

ij } 1≤i<j≤n
α=1,...,r

,

• a family of nr either mutually commuting (the case “+”), or pairwise anticommuting (the
case “ - ”) local Dunkl elements {θ(α)

i } i=1,...,n
α=1,...,r

.

We expect that the subalgebra generated by local Dunkl elements in the algebra 3T+(rKn)
is closely related (isomorphic for r = 2) with the coinvariant algebra of the diagonal action of
the symmetric group Sn on the ring of polynomials Q[X

(1)
n , . . . , X

(r)
n ], where X(j)

n stands for the
set of variables {x(j)

1 , . . . , x
(j)
n }. The algebra (3T−(2Kn))(−))anti has been studied in [47], and

[7]. In the present paper we state only our old conjecture.

Conjecture 2.1. (A.N. Kirillov, 2000)

Hilb((3T−(3Kn))anti, t) = (1 + t)n(1 + nt)n−2,

where for any algebra A we denote by Aanti the quotient of algebra A by the two-sided ideal
generated by the set of anticommutators {ab+ ba | (a, b) ∈ A×A}.

According to observation of M. Haiman [37], the number 2n (n+ 1)n−2 is thought of as being
equal to to the dimension of the space of triple coinvariants of the symmetric group Sn.

2.3 Miscellany

2.3.1 Non-unitary dynamical classical Yang–Baxter algebra DCY Bn

Let Ãn be the quotient of the algebra Fn by the two-sided ideal generated by the relations
(2.2), (2.5) and (2.6). Consider elements

θi = xi +
∑
a6=i

uia, and θ̄j = −xj +
∑
b 6=j

ubj , 1 ≤ i < j ≤ n.
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Clearly, if i < j, then

[θi, θ̄j ] + [xi, xj ] = [

n∑
k=1

xk , uij ] +
∑
k 6=i,j

wikj ,

where the elements wijk, i < j, have been defined in Lemma 2.1, (2.3).
Therefore the elements θi and θ̄j commute in the algebra Ãn.
In the case when xi = 0 for all i = 1, . . . , n, the relations

wijk := [uij , uik + ujk] + [uik, ujk] = 0, if i, j, k are all distinct)

are well-known as the non-unitary classical Yang-Baxter relations. Note that for a given
triple of pair-wise distinct (i, j, k) we have in fact 6 relations. These six relations imply that
[θi, θ̄j ] = 0. However, in general,

[θi, θj ] =

[∑
k 6=i,j

uik , uij + uji

]
6= 0.

• (Dynamical classical Yang–Baxter algebra DCY Bn)
In order to ensure the commutativity relations among the Dunkl elements (2.1), i.e. [θi, θj ] =

0 for all i, j, let us remark that if i 6= j, then [θ,θj ] = [xi + uij , xj + uji]+

[xi + xj , uij ] + [uij ,
n∑
k=1

xk] +
n∑
k=1
k 6=i,j

[uij + uik, ujk] + [uik,uji] + [xi, ujk] + [uik, xj ] + [xk, uij ].

Definition 2.4.
Define dynamical non-unitary classical Yang–Baxter algebra DNUCY Bn to be the

quotient of the free associative algebra Q〈{x1≤i≤n}, {uij}1≤i 6=j〉 by the two-sided ideal generated
by the following set of relations
• (Zero curvature conditions)

[xi + uij , xj + uji] = 0, 1 ≤ i 6= j ≤ n, (2.15)

• ( Conservation lows conditions)

[uij ,

n∑
k=1

xk] = 0, for all i 6= j, and k.

• (Crossing relations)
[xi + xj , uij ] = 0, i 6= j.

• (Twisted dynamical classical Yang–Baxter relations)

[uij + uik, ujk] + [uik,uji] + [xi, ujk] + [uik, xj ] + [xk, uij ] = 0, i, j, k are distinct, (2.16)

It is easy to see that the twisted classical Yang–Baxter relations

[uij + uik, ujk] + [uik,uji] = 0, i, j, k are distinct, (2.17)

for a fixed triple of distinct indices i, j, k contain in fact 3 different relations whereas the non-
unitary classical Yang–Baxter relations

[uij + uik, ujk] + [uik, uji], i, j, k are distinct,

contain 6 different relations for a fixed triple of distinct indices i, j, k.
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Definition 2.5.
• Define dynamical classical Yang–Baxter algebra DCY Bn to be the quotient of the

algebra DNUCY Bn by the two-sided ideal generated by the elements∑
k 6=i,j

[uik, uij + uji], for all i 6= j.

• Define classical Yang–Baxter algebra CY Bn to be the quotient of the dynamical
classical Yang–Baxter algebra DCY Bn by the set of relations

xi = 0 for i = 1, · · · , n.

Examples 2.1.
(a) Define

pij(z1, . . . , zn) =

{
zi

zi−zj , if 1 ≤ i < j ≤ n,
− zj

zj−zi , if n ≥ i > j ≥ 1.

Clearly, pij+pji = 1. Now define operators uij = pijsij , and the truncated Dunkl operators to be
θi =

∑
j 6=i uij , i = 1, . . . , n. All these operators act on the field of rational functions Q(z1, . . . , zn);

the operator sij = sji acts as the exchange operator, namely, sij(zi) = zj , sij(zk) = zk ∀k 6= i, j,
sij(zj) = zi.

Note that this time one has

p12p23 = p13p12 + p23p13−p13.

It is easy to see that the operators {uij , 1 ≤ i 6= j ≤ n} satisfy relations (3.1), Section 3, and
therefore, satisfy the twisted classical Yang–Baxter relations (2.11). As a corollary we obtain that
the truncated Dunkl operators {θi, i = 1, . . . , n} are pair-wise commute. Now consider the Dunkl
operator Di = ∂zi + h θi, i = 1, . . . , n, where h is a parameter. Clearly that [∂zi + ∂zj , uij ] = 0,
and therefore [Di, Dj ] = 0 ∀i, j. It easy to see that

si,i+1Di −Di+1si,i+1 = h, [Di, sj,j+1] = 0, if j 6= i, i+ 1.

In such a manner we come to the well-known representation of the degenerate affine Hecke algebra
Hn.

2.3.2 Equivariant multiparameter 3-term relations algebras

Let β,h = (h2, . . . , hn), and q = {qij}1≤i 6=j≤n, qij = qji be a collection of mutually commuting
parameters.

Definition 2.6. Denote by 3QTn(β,h) an associative algebra generated over the ring
Z[β, h]

[
{qij}1≤i<j≤n

]
by the set of generators {x1, . . . , xn} and that {uij}1≤i 6=j≤n} subject to the

set of relations
(1) (Locality conditions)
[xi, xj ] = 0, [uuj , ukl] = 0, [xk, uij ] = 0, if i, j, k, l are pairwise distinct,
(2) (Unitarity conditions)
uij + uji = β,
(3) (Hecke type conditions)
uij uji = −qij, if i 6= j,
(4) (Twisted 3-term relations)
uij ujk = ujk uik − uik uji, if i, j, k are distinct,
(5) (Crossing relations)
xi uji = −uij xj − hmax(i,j), if i 6= j.
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As before we define the (additive) Dunkl elements to be

θi = xi +
∑
j 6=i

uij , i = 1, . . . , n.

It is clearly seen from the defining relations listed in Definition 2.3 that for any triple of distinct
indices (i, j, k) the elements {xi, xj , xk, uji, uik, ujk} satisfy the twisted dynamical Yang–Baxter
relations, and thus the Dunkl elements {θi}1≤i≤n generate a commutative subalgebra in the
algebra 3QTn(β,h).

Theorem 2.3. ( Cf Theorem 3.3, Section 3)
Let k ≥ 1 be an integer. There exist polynomials

Rk(q,h, z1, . . . , zn) ∈ Z[β,q, {hj − hi}1≤i<j≤n][Zn] and Tk(β,h, z1, . . . , zn) ∈ Z[β,h][Zn]Sn

such that
(1) Rk(q,h, z1, . . . , zn) =

e
(q+h)
k (z1, . . . , zn) +monomials of total degree ≤ k − 2 w.r.t. variables {zi}1≤i≤n,

(2) Tk(β,h, z1, . . . , zn) = ek(z1, . . . , zn) +
∑

j<k cj,k ej(Xn), cj,k ∈ Z[β,h],
(3) Rk(θ1, . . . , θn) = Tk(x1, . . . , xn),
where e(q+h)

k (z1, . . . , zn) denotes the multiparameter quantum elementary polynomial corre-
sponding to the set of parameters {(q + h)} = {qij + hj}1≤i<j≤n.

It is not difficult to see that the unitarity and crossing conditions imply the following relations

[xi + xj , ukl] = 0 = [xi xj , ukl], and [x2
i , ukl] = 0

are valid for all indices i 6= j, k 6= l. As a consequence of these relations one can deduce that the
all symmetric polynomials ek(Xn) := ek(x1, . . . , xn), k = 1, . . . , n belong to the center of the alge-
bra 3QTn(q,h), and therefore one has [θi, ek(Xn)] = 0 for all i and k. Let us denote by QH(β,h)
a commutative subalgebra in the algebra 3QTn(β,h) generated by the elementary symmetric
polynomials {ek(Xn)}1≤k≤n and the Dunkl elements {θi}1≤i≤n. It is an interesting problem to
give a geometric/cohomological interpretation of the commutative algebra QH(β,h). We don’t
know any geometric interpretation of that commutative algebra, except the special case [52]

β = 0, hj = 1, ∀j, qij := qi δi+1,j . (2.18)

Proposition 2.2. ([52])
Under assumptions (2.12), the algebra QH(0,0) isomorphic to the equivariant quantum coho-

mology QH∗T (F ln) of the complete flag variety F ln.

Examples 2.2. Let us list the relations among the Dunkl elements in the algebra 3QTn(β,h).
(1) e1(θ1, . . . , θn) = e1(Xn) +

(
n
2

)
β,

(2) e
(q+h)
2 (θ1, . . . , θn) = e2(Xn) + (n− 1) β e1(Xn) + n(n−1)(n−2)(3 n−1)

24 β2, n ≥ 3,

(3) e
(q+h)
3 (θ1, θ2, θ3) = e3(X3) + h3 β,

e
(q+h)
3 (θ1, θ2, θ3, θ4) =
e3(X4) + β e2(X4) + 2 β2 e1(X4) + 6 β3 + β (h3 + 3 h4),

(4) e
(q+h)
4 (θ1, θ2, θ3, θ4) + β (h4 − h3) θ4 = e4(X4) + β h4 e1(X4) + 5 β2 h4.

Note that n(n−1)(n−2)(3 n−1)
24 = s(n− 2, 2) = e2(1, 2, . . . , n− 1) is equal to the Stirling number

of the first kind.

Conjecture 2.2. The polynomial Rk(q,h, Zn), see Theorem 2.3, can be written as a polynomial
in the variables {hij := hj − hi, 1 ≤ i < j ≤ n, z1, . . . , zn, β, qij , 1 ≤ i < j ≤ n} with
nonnegative coefficients.
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Exercises 2.1.
(1) (Pieri formula in the algebra 3Tn(0, h) , [52])
Assume that β = 0 and h2 = . . . = hn = h, and denote by θ(n)

i , i = 1, . . . , n the Dunkl
elements (2.1) in the algebra 3Tn(0, h) Show that

ek(θ
(n)
1 , . . . , θ(n)

m ) =
∑
r≥0

(−h)r N(m− k, 2 r)
{ ∑

S⊂[1,m]
I={ia}, J={ja}

XS ui1,j1 · · ·ui|I|,j|J|

}
,

where
N(a, 2b) = (2 b− 1)!!

(
a+ 2 b

2 b

)
,

XS =
∏
s∈S xs, and the second summation runs over triples of sets {S, I, J} such that S ⊂

[1,m], I ⊂ [1,m] \S, |I|+ |S|+ 2 r = k, |I| = |J |, 1 ≤ ia < m < ja ≤ n and j1 ≤ . . . ≤ j|I|.

2.3.3 Algebra 3QLn(β,h)

Let β = (β1, . . . , βn−1), h = (h2, . . . , hn) and {qij}1≤i<j≤n be collections of mutually commuting
parameters.

Definition 2.7.
Define the algebra 3QLn(β,h) as an associative algebra over the ring of polynomials Z[β,h, {qij}]

generated by the set of generators {xi}1≤i≤n and {uij}1≤6=j≤n subject to the relations (1), (3), (5)
displayed in Definition 2.3, and

(2a) (“generalized unitarity conditions”)
uij + uji = βmax(i,j)−1,

(4a) (associative twisted 3-term relations)
uij ujk = ujk uik − uik uji, if 1 ≤ i < j < k ≤ n.

We define the Dunkl elements θi, i = 1, . . . , n, by the formula (2.1). It is necessary to stress
that the Dunkl elements {θ}1≤i≤n do not commute in the algebra 3QLn(β,h) but satisfy a non-
commutative analogue of the relations displayed in Theorem 2.3. Namely, one needs to replace
the both elementary polynomials ek(Zn) and the quantum multiparameter elementary polyno-
mials e(q)

k (Zn) by its noncommutative versions. Recall that the noncommutative elementary
polynomial ek(Zn) is equal to ∑

1≤j1<j2<...<jk≤n
zj1 zj2 · · · zjk

and the noncommutative quantum multiparameters elementary polynomial e(q)
k (Zn) is equal to

∑
`

∑
1≤i1<...<j`≤n
i1<j1,...,i`<j`

ek−2`(ZI∪J)
∏̀
a=1

uia,ja ,

where I = (i1, . . . .i`), J = (j1, . . . , j`) should be distinct elements of the set {1, . . . , n}, and ZI∪J
denotes set of variables za for which the subscript a is neither one of im nor one of the jm.

Example 2.1.
• e

(q+h)
2 (θ1, . . . , θn) = e2(Xn) + (

∑n−1
j=1 βj) e1(Xn) +

∑
1≤a<b≤n−1 a b βa βb.
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• e
(q+h)
3 (θ1, θ2, θ3, θ4)+(β3−β1)(θ3 θ4 +q34 +h4 +β2(θ1 +θ2))+(β3−β2)((θ1 +θ2)θ4 +q14 +

q24 + 2 h4 + β1 θ3) = e3(X4) + β3e2(X4) + (β1β3 + β2β3 + β2
3 − β1β2)e1(X4) + (3β2

3 − β1β2)(β1 +
2β2) + β1(h3 + h4) + 2β2h4.
• e

(q+h)
4 (θ1, θ2, θ3, θ4)+(β2h4−β1h3)θ4 +h4(β2−β1)θ3 = e4(X4)+β2h4e1(X4)+β2h4(2β2 +

3β3).

Project 2.2. (Noncommutative universal Schubert polynomials)
Let w ∈ Sn be a permutation and Sw(Zn) be the corresponding Schubert polynomial.
(1) There exists a (noncommutative) polynomial Shw({uij}1≤i<j≤n) with non-negative in-

teger coefficients such that the following identity

Sw(θ1, . . . , θn) = Shw({uij}1≤i<j≤n)

holds in the algebra 3T
(0)
n , where {θj}1≤j≤n are the Dunkl elements in the algebra 3T

(0)
n .

(2) There exist polynomials Rw(β,q,h, Zn) ∈ N[β,q, hj − hi1≤i<j≤n][Zn] and Tw(β,h, Zn) ∈
Z[β,h][Zn] such that the following identity

Rw(β,q,h, θ1, . . . , θn) = Tw(β,h, Xn) + Shw({uij}1≤i<j≤n)

holds in the algebra 3QTn(β,h).
3) Let r ∈ Z≥2 and N = n1 + · · ·nr,, nj ∈ Z≥1,∀j, be a composition of N , and set

Nj = n1 + · · · + nj, j ≥ 1, N0 = 0, Eliminate the Dunkl elements θ(N)
Nr−1+1, . . . θ

(N)
N from the

set of relations among the Dunkl elements θ(N)
1 , . . . , θ

(N)
N in the algebra 3QTn(β,h), by the use

of the degree 1,. . . ,nr relations among the former. As a result one obtains a set consisting of
Nr−1 relations among the Nr−1 elements

θ
(N)
j.kj

:= e
(q)
kj

(θ
(N)
Nj−1+1, . . . , θ

(N)
Nj

), 1 ≤ kj ≤ nj , 1 ≤ j ≤ r − 1.

Give a geometric interpretation of the commutative subalgebra QHn1,...,nr(β,h) ⊂ 3QTn(β,h)

generated by the set of elements θ(N)
j,kj

, 1 ≤ kj ≤ nj , j = 1, . . . , r − 1.

2.3.4 Dunkl and Knizhnik–Zamolodchikov elements

• Assume that ∀i, xi = 0, and generators {uij , 1 ≤ i < j ≤ n} satisfy the locality conditions
(2.2) and the classical Yang–Baxter relations

[uij , uik + ujk] + [uik, ujk] = 0, if 1 ≤ i < j < k ≤ n.

Let y, z, t1, . . . , tn be parameters, consider the rational function

FCY B(z; t) := FCY B(z; t1, . . . , tn) =
∑

1≤i<j≤n

(ti − tj)uij
(z − ti)(z − tj)

.

Then
[FCY B(z; t), FCY B(y; t)] = 0, and Resz=tiFCY B(z; t) = θi.

• Now assume that a set of generators {cij , 1 ≤ i 6= j ≤ n} satisfy the locality and symmetry
(i.e. cij = cji) conditions, and the Kohno–Drinfeld relations:

[cij , ckl] = 0, if {i, j} ∩ {k, l} = ∅, [cij , cjk + cik] = 0 = [cij + cik, cjk], i < j < k.

Let y, z, t1, . . . , tn be parameters, consider the rational function

FKD(z; t) := FKD(z; t1, . . . , tn) =
∑

1≤i 6=j≤n

cij
(z − ti)(ti − tj)

=
∑

1≤i<j≤n

cij
(z − ti)(z − tj)

.
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Then
[FKD(z; t), FKD(y; t)] = 0, and Resz=tiFKD(z; t) = KZi,

where

KZi =
n∑
j=1
j 6=i

cij
ti − tj

denotes the truncated Knizhnik-Zamolodchikov element.

2.3.5 Dunkl and Gaudin operators

(a) (Rational Dunkl operators) Consider the quotient of the algebraDCY Bn, see Definition
2.2, by the two-sided ideal generated by elements

{[xi + xj , uij ]} and {[xk, uij ], k 6= i, j}.

Clearly the Dunkl elements (2.1) mutually commute. Now let us consider the so-called Calogero–
Moser representation of the algebraDCY Bn on the ring of polynomials Rn := R[z1, . . . , zn] given
by

xi(p(z)) = λ
∂ p(z)

∂zi
, uij(p(z)) =

1

zi − zj
(1− sij) p(z), p(z) ∈ Rn.

The symmetric group Sn acts on the ring Rn by means of transpositions sij ∈ Sn : sij(zi) =
zj , sij(zj) = zi, sij(zk) = zk, if k 6= i, j,

In the Calogero–Moser representation the Dunkl elements θi becomes the rational Dunkl
operators [21], see Definition 1.1. Moreover, one has [xk, uij ] = 0, if k 6= i, j, and

xi uij = uij xj +
1

zi − zj
(xi − xj − uij), xj uij = uij xi −

1

zi − zj
(xi − xj − uij).

(b) (Gaudin operators)
The Dunkl–Gaudin representation of the algebra DCY Bn is defined on the field of rational

functions Kn := R(q1, . . . , qn) and given by

xi(f(q)) := λ
∂ f(q)

∂qi
, uij =

sij
qi − qj

, f(q) ∈ Kn,

but this time we assume that w(qi) = qi, ∀i ∈ [1, n] and for all w ∈ Sn. In the Dunkl–
Gaudin representation the Dunkl elements becomes the rational Gaudin operators, see e.g. [71].
Moreover, one has [xk, uij ] = 0, if k 6= i, j, and

xi uij = uij xj −
uij

qi − qj
, xj uij = uij xi +

uij
qi − qj

.

Comments 2.4.
It is easy to check that if f ∈ R[z1, . . . , zn], then the following commutation relations are

true
xi f = f xi +

∂

∂zi
(f), uij f = sij(f) uij + ∂zi,zj (f).

Using these relations it easy to check that in the both cases (a) and (b) the elementary symmetric
polynomials ek(x1, . . . , xn) commute with the all generators {uij}1≤i,j≤n, and therefore commute
with the all Dunkl elements {θi}1≤i≤n. Let us stress that [θi, xk] 6= 0 for all 1 ≤ i, k ≤ n.

Project 2.3.

Describe a commutative algebra generated by the Dunkl elements {θi}1≤i≤n and the ele-
mentary symmetric polynomials {ek(x1, . . . , xn)}1≤k≤n.
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2.3.6 Representation of the algebra 3Tn on the free algebra Z〈t1, . . . , tn〉

.
Let Fn = Z〈t1, . . . , tn〉 be free associative algebra over the ring of integers Z, equipped with

the action of the symmetric group Sn: sij(ti) = tj , sij(tk) = tk, ∀k 6= i, j.
Define the action of uij ∈ 3Tn on the set of generators of the algebra Fn as follows

uij(tk) = δi,k ti tj − δj,k tj ti. (2.19)

The action of generator uij on the whole algebra Fn is defined by linearity and the twisted
Leibniz rule:

uij(1) = 0, uij(a+ b) = uij(a) + uij(b), uij(a b) = uij(a) b+ sij(a) uij(b).

It is easy to see from (2.15) that

sij ujk = uik sij , sij ukl = ukl sij , if {i, j} ∩ {k, l} = ∅, uij + uji = 0. (2.20)

Now let us consider operator

uijk := uij ujk − ujk uik − uik uij , 1 ≤ i < j < k ≤ n.

Lemma 2.7.
uijk(a b) = uijk(a) b+ sij sjk(a) uijk(b), a, b ∈ Fn

.

Lemma 2.8.
uijk(a) = 0 ∀a ∈ Fn.

Indeed,
uijk(ti) = −ujk(uij(ti))− uik(uij(ti)) = −ti ujk(tk)− uik(ti) tj = ti(tk tj)− (ti tk) tj = 0.

uijk(tk) = uij(ujk(tk))− ujk(uik(tk)) = −uij(tk tj) + ujk(tk ti) = tk (uij(tj) + ujk(tk) ti = 0,
uijk(tj) = uij(ujk(tj))− uik(uij(tj)) = −uij(tj) tk − tj uik(ti) = (tj ti) tk − tj (ti tk) = 0.
Therefore Lemma 2.8 follows from Lemma 2.7.

Let F•n be the quotient of the free algebra Fn by the two-sided ideal generated by elements
t2i tj − tj t2i , 1 ≤ i 6= j ≤ n. Since u2

i,j(ti) = ti t
2
j − t2j ti, one can define a representation of

the algebra 3T
(0)
n on that F•n. One can also define a representation of the algebra 3T

(0)
n on that

F (0)
n , where F (0)

n denotes the quotient of the algebra Fn by the two-sided ideal generated by
elements {t2i , 1 ≤ i ≤ n}. Note that (ui,k uj,k ui,j)(tk) = [ti tj ti, tk] 6= 0 in the algebra F (0)

n ,
but the elements ui,j ui,k uj,k ui,j , 1 ≤ i < j < k ≤ n, from the kernel of the Calogero–Moser
representation, act trivially both on the algebras F (0)

n and that F•n.
Note finally that the algebra F (0

n is Koszul and has Hilbert series Hilb(F (0)
n , t) = 1+t

1−(n−1) t ,
whereas the algebra F•n is not Koszul for n ≥ 3, and

Hilb(F•n, t) =
1

(1− t)(1− (n− 1)t)(1− t2)n−1
.

�
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2.3.7 Fulton universal ring, multiparameter quantum cohomology and FKTL

(The Fulton universal ring [31], multiparameter quantum cohomology of flag varieties [26] and
the full Kostant–Toda lattice [30])

Let Xn = (x1, . . . , xn) be be a set of variables, and

g := g(n) = {ga[b]
∣∣ a ≥ 1, b ≥ 1, a+ b ≤ n}

be a set of parameters; we put deg(xi) = 1 and deg(ga[b]) = b + 1 and gk[0] := xk, k =
1, . . . , n. For a subset S ⊂ [1, n] we denote by XS the set of variables {xi | i ∈ S}.
Let t be an auxiliary variable, denote by M = (mij)1≤i,j≤n the matrix of size n by n with the
following elements:

mi,j =


xi + t, if i = j,

gi[j − i], if j > i,

−1, if i− j = 1,

0, if i− j > 1.

Let Pn(Xn, t) = det|M |.

Definition 2.8. The Fulton universal ring Rn−1 is defined to be the quotient 19

Rn−1 = Z[g(n)][x1, . . . , xn]/

〈
Pn(Xn, t)− tn

〉
.

Lemma 2.9. Let Pn(Xn, t) =
∑n

k=0 ck(n)tn−k, c0(n) = 1. Then

ck(n) := ck(n;Xn,g
(n)) =

∑
1≤i1<i2<...<is<n
j1≥1,...,js≥1

m:=
∑

(ja+1)≤n

s∏
a=1

gia [ja] ek−m(X[1,n] \
⋃s
a=1 [ia,ia+ja]), (2.21)

where in the summation we assume additionally that the sets [ia, ia + ja] := {ia, ia + 1, . . . , ia +
ja}, a = 1, . . . , s, are pairwise disjoint.

It is clear that Rn−1 = Z[g(n)][x1, . . . , xn]/

〈
cn(1), . . . , cn(n)

〉
.

One can easily see that the coefficients ck(n) and gm[k] satisfy the following recurrence relations
[31]:

ck(n) = ck(n− 1) +

k−1∑
a=0

gn−a[a]ck−a−1(n− a− 1), c0(n) = 1, (2.22)

gm[k] = ck+1(m+ k)− ck+1(m+ k − 1)−
k−1∑
a=0

gm+k−a[a]ck−a(m+ k − a), gm[0] := xm.

On the other hand, let {qij}1≤i<j≤n be a set of (quantum) parameters, and e(q)
k (Xn) be the

multiparameter quantum elementary polynomial introduced in [26]. We are interested in to
19 If P (t,Xn) =

∑
k≥1 fk(Xn) tk, fk(Xn) ∈ Q[Xn] is a polynomial, we denote by〈

P (t,Xn)

〉
the ideal in the polynomial ring Q[Xn] generated by the coefficients {f1, f2, . . .}.
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describe a set of relations between the parameters {gi[j]} i≥1,j≥1
i+j≤n

and the quantum parameters

{qij}1≤i<j≤n which implies that

ck(n) = e
(q)
k (Xn), for k = 1, . . . , n.

To start with, let us recall the recurrence relations among the quantum elementary polynomials,
cf [76]. To do so, consider the generating function

En(Xn; {qij}1≤i<j≤n) =
n∑
k=0

e
(q)
k (Xn) tn−k.

Lemma 2.10. ([25],[76]) One has

En(Xn; {qij}1≤i<j≤n) = (t+ xn) En−1(Xn−1; {qij}1≤i<j≤n−1)+

n−1∑
j=1

qjn En−2(X[1,n−1] \{j}; {qa,b} 1≤a<b≤n−1
a6=j,b 6=j

.

Proposition 2.3.
Parameters {ga[b]} can be expressed polynomially in terms of quantum parameters {qij} and

variables x1, . . . , xn, in a such way that

ck(n) = e
(q)
k (Xn), ∀k, n.

Moreover,

• ga[b] =
a∑
k=1

qk,a+b

a+b−1∏
j=a+1

(xj − xk) + lower degree polynomials in x1, . . . , xn.

• The quantum parameters {qij} can be presented as rational functions in terms of variables
x1, . . . , xn and polynomially in terms of parameters {ga[b]} such that the equality ck(n) = e

(q)
k (Xn)

holds for all k, n.

In other words, the transformation

{qij}1≤i<j≤n ←→ {ga[b]} a+b≤n
a≥1, b≥1

defines a “birational transformation” between the algebra Z[g(n)][Xn]/

〈
Pn(Xn, t) − tn

〉
and

multiparameter quantum deformation of the algebra H∗(F ln,Z).

Example 2.2. Clearly,
gn−1[1] =

∑n−1
j=1 qj,n, n ≥ 2 and gn−2[2] =

∑n−2
j=1 qjn (xn−1 − xj), n ≥ 3. Moreover

g1[3] = q14

(
(x2 − x1)(x3 − x1) + q23 − q12

)
+ q24

(
q13 − q12

)
,

g2[3] = q15

(
(x3 − x1)(x4 − x1) + q24 + q34 − q12 − q13

)
+

q25

(
(x3 − x2)(x4 − x2) + q14 + q34 − q12 − q23

)
+ q35

(
q14 + q24 − q13 − q23

)
.
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Comments 2.5. The full Kostant–Toda lattice (FKTL for short) has been introduced in the end
of 70′s of the last century by B. Kostant and since that time has been extensively studied both
in Mathematical and Physical literature. We refer the reader to the original paper by B.Kostant
[30] (a), and [30] (b), for the definition of the FKTL and its basic properties. In the present
paper we just want to point out on a connection of the Fulton universal ring and hence the
multiparameter deformation of the cohomology ring of complete flag varieties, and polynomial
integral of motion of the FKTL. Namely,

Polynomials ck(n;Xn,g
(n)) defined by (2.17) coincide with

the polynomial integrals of motion of the FKTL.

It seems an interesting task to clarify a meaning of the FKTL rational integrals of motion
in the context of the universal Schubert Calculus [31] and the algebra 3HTn(0), as well as any
meaning of universal Schubert or Grothendieck polynomials in the context of the Toda or full
Kostant-Toda lattices.

3 Algebra 3HTn

Consider the twisted classical Yang–Baxter relation

[uij + uia, uja] + [uia, uji] = 0, where i, j, k are distinct.

Having in mind applications of the Dunkl elements to Combinatorics and Algebraic Geometry,
we split the above relation into two relations

uij ujk = ujk uik − uik uji and ujk uij = uik ujk − uji uik (3.1)

and impose the following unitarity constraints

uij + uji = β,

where β is a central element. Summarizing, we come to the following definition.

Definition 3.1.
Define algebra 3Tn(β) to be the quotient of the free associative algebra

Z[β] 〈 uij , 1 ≤ i < j ≤ n 〉

by the set of relations
• ( Locality) uij ukl = ukl uij , if {i, j} ∩ {k, l} = ∅,
• ( 3-term relations)

uij ujk = uik uij + ujk uik − β uik, and ujk uij = uij uik + uik ujk − β uik,
if 1 ≤ i < j < k ≤ n.

It is clear that the elements {uij , ujk, uik, 1 ≤ i < j < k ≤ n} satisfy the classical Yang–
Baxter relations, and therefore, the elements {θi :=

∑
j 6=i uij , 1 = 1, . . . , n} form a mutually

commuting set of elements in the algebra 3Tn(β).

Definition 3.2. We will call θ1, . . . , θn by the (universal) additive Dunkl elements.

For each pair of indices i < j, we define element qij := u2
ij − β uij ∈ 3Tn(β).
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Lemma 3.1.
(1) The elements {qij , 1 ≤ i < j ≤ n} satisfy the Kohno– Drinfeld relations
( known also as the horizontal four term relations)

qij qkl = qkl qij , if {i, j} ∩ {k, l} = ∅,

[qij , qik + qjk] = 0, [qij + qik, qjk] = 0, if i < j < k.

(2) For a triple (i < j < k) define uijk := uij − uik + ujk. Then

u2
ijk = β uijk + qij + qik + qjk.

(3) (Deviation from the Yang–Baxter and Coxeter relations)
uij uik ujk − ujk uik uij = [uik, qij ] = [qjk, uik],
uij ujk uij − ujk uij ujk = qij uik − uik qjk.

Comments 3.1. It is easy to see that the horizontal 4-term relations listed in Lemma 3.1,
(1), are consequences of the locality conditions among the generators {qij}, together with the
commutativity conditions among the Jucys–Murphy elements

di :=
n∑

j=i+1

qij , i = 2, . . . , n,

namely, [di, dj ] = 0. In [47] we describe some properties of a commutative subalgebra generated
by the Jucys-Murphy elements in the (nil) Kohno–Drinfeld algebra. It is well-known that the
Jucys–Murphy elements generate a maximal commutative subalgebra in the group ring of the
symmetric group Sn. It is an open problem

describe defining relations among the Jucys–Murphy elements
in the group ring Z[Sn].

�

Finally we introduce the “Hecke quotient” of the algebra 3Tn(β), denoted by 3HTn(β).

Definition 3.3. Define algebra 3HTn(β) to be the quotient of the algebra 3Tn(β) by the set of
relations

qij qkl = qkl qij , for all i, j, k, l.

In other words we assume that the all elements {qij , 1 ≤ i < j ≤ n} are central in the
algebra 3Tn(β). From Lemma 3.1 follows immediately that in the algebra 3HTn(β) the elements
{uij} satisfy the multiplicative (or quantum) Yang–Baxter relations

uij uik ujk = ujk uik uij , if i < j < k. (3.2)

3.1 Modified three term relations algebra 3MTn(β, ψ)

Let β, {qij = qji, ψij = ψji, 1 ≤ i, j ≤ n}, be a set of mutually commuting elements.

Definition 3.4. Modified 3-term relation algebra 3MTn(β, ψ) is an associative algebra over
the ring of polynomials Z[β, qij , ψij ] with the set of generators {uij , 1 ≤ i, j ≤ n} subject to the
set of relations
• uij + uji = 0, uij ukl = ukl uij, if {i, j} ∩ {k, l} = ∅;
• ( three term relations )

uij ujk + uki uij + ujk uki = 0, if i, j, k are distinct;
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• u2
ij = β uuj + qij + ψij , if i 6= j;

• uij ψkl = ψkl uij, if {i, j} ∩ {k, l} = ∅;
• (exchange relations) uij ψjk = ψik uij, if i, j, k are distinct;
• elements β, {qij , 1 ≤ i, j ≤ n} are central.

It is easy to see that in the algebra 3MTn(β, ψ) the generators {uij} satisfy the modified
Coxeter and modified quantum Yang–Baxter relations, namely
• (modified Coxeter relations) uij ujk uij − ujk uij ujk = (qij − qjk) uik,
• ( modified quantum Yang–Baxter relations)

uij uik ujk − ujk uik uij = (ψjk − ψij) uik,

if i, j, k are distinct
Clearly the additive Dunkl elements {θi :=

∑
j 6=i uij , i = 1, . . . , n} generate a commutative

subalgebra in 3MTn(β, ψ).
It is still possible to describe relations among the additive Dunkl elements [47], cf [50]. However

we don’t know any geometric interpretation of the commutative algebra obtained. It is not
unlikely that this commutative subalgebra is a common generalization of the small quantum
cohomology and elliptic cohomology (remains to be defined !) of complete flag varieties.

The algebra 3MTn(β = 0, ψ) has an elliptic representation [47], [50]. Namely,

uij := σλi−λj (zi − zj) sij , qij = ℘(λi − λj), ψij = −℘(zi − zj),

where {λi, i = 1, . . . , n} is a set of parameters (e.g. complex numbers), and {z1, . . . , zn} is a set
of variables; sij , i < j, denotes the transposition that swaps i on j and fixes all other variables;

σλ(z) :=
θ(z − λ) θ

′
(0)

θ(z)θ(λ)

denotes the Kronecker sigma function; ℘(z) denotes the Weierstrass P -function.
I I (“Multiplicative” version of the elliptic representation)
Let q be parameter. In this place we will use the same symbol θ(x) to denote the “multiplica-

tive” version of the Riemann theta function

θ(x) := θ(x; q) = (x; q)∞ (q/x; q)∞,

where by definition (x; q)∞ = (x)∞ =
∏
k≥0(1− x qk). Let us state some well-known properties

of the Riemann theta function :
•| θ(qx; q) = θ(1/x; q) = −x−1 θ(x; q),
• (Functional equation)

x/y θ(u x±1) θ(y v±1) + θ(u v±1) θ(x y±1) = θ(u y±1) θ(x v±1),

where by definition θ(x y±1) := θ(x y) θ(x y−1).
• (Jacobi triple product identity)

(q; q)∞ θ(x; q) =
∑

n∈Z (−x)n q(
n
2).

One can easily check that after the change of variables

x := (
z2

λ w
)1/2, y := (

w

λ
)1/2, u := (

w

λ µ2
)1/2, v := (w λ)1/2,

the functional equation for the Riemann theta function θ(x) takes the following form

σλ(z) σµ(w) = σλµ(z)σµ(w/z) + σλµ(w) σλ(z/w),
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where
σλ(z) :=

θ(z/λ)

θ(z) θ(λ−1

denotes the Kronecker sigma function. Therefor, the operators

uij(f) := σλi/λj (zi/zj) sij(f),

where sij denotes the exchange operator which swaps the variables zi and zj , namely sij(zi) =
zj , sij(zj) = zi, sij(zk) = zk, ∀k 6= i, j, and sij acts trivially on dynamical parameters λi,
namely, sij(λk) = λk, ∀k, give rise to a representation of the algebra 3MTn(0, ψ).
J J
The 3-term relations among the elements {uij} are consequence (in fact equivalent) to the

famous Jacobi-Riemann 3-term relation of degree 4 among the theta function θ(z), see e.g. [97],
p.451, Example 5. In several cases, see Introduction, relations (A) and (B), identities among
the Riemann theta functions can be rewritten in terms of the elliptic Kronecker sigma functions
and turn out to be a consequence of certain relations in the algebra 3MTn(0, ψ) for some integer
n, and vice versa 20.

The algebra 3HTn(β) is the quotient of algebra 3MTn(β, ψ) by the two-sided ideal generated
by the elements {ψij}. Therefore the elements {uij} of the algebra 3HTn(β) satisfy the quantum
Yang– Baxter relations uij uik ujk = ujk uik uij , i < j < k, and as a consequence, the
multiplicative Dunkl elements

Θi =

1∏
a=i−1

(1 + h ua,i)
−1

n∏
a=i+1

(1 + h ui,a), i = 1, . . . , n, u0,i = ui,n+1 = 0

generate a commutative subalgebra in the algebra 3HTn(β), see Section 3.1. We emphasize
that the Dunkl elements Θj , j = 1, . . . , n, do not pairwise commute in the algebra 3MTn(β, ψ),
if ψij 6= 0 for some i 6= j. One way to construct a multiplicative analog of additive Dunkl
elements θi :=

∑
j 6=i uij is to add a new set of mutually commuting generators denoted by

{ρij , ρij + ρji = 0, 1 ≤ i 6= j ≤ n} subject to crossing relations
• ρij commutes with β, qkl and ψk,l for all i, j, k, l,
• ρij ukl = ukl ρij , if {i, j} ∩ {k, l} = ∅,
ρij ujk = ujk ρik, if i, j, k are distinct,
• ρ2

ij − β ρij + ψij = ρ2
jk − β ρjk + ψjk for all triples 1 ≤ i < j < k ≤ n.

Under these assumptions one can check that elements

Rij := ρij + uij , 1 ≤ i < j ≤ n

satisfy the quantum Yang–Baxter relations

Rij Rik Rjk = Rjk Rik Rij , i < j < k.

In the case of elliptic representation defined above, one can take

ρij := σµ(zi − zj),

where µ ∈ C∗ is a parameter. This solution to the quantum Yang– Baxter equation has been
discovered in [86]. It can be seen as an operator form of the famous (finite dimensional) solution
to QY BE due to A. Belavin and V. Drinfeld [5]. One can go one step more and add to the
algebra in question new set of generators corresponding to the shift operators Ti,q : zi −→ q zi,
cf [24]. In this case one can define multiplicative Dunkl elements which are closely related with
the elliptic Ruijsenaars–Schneider–Macdonald operators.

20 It is commonly believed that any identity between the Riemann theta functions is a consequence of the
Jacobi–Riemann three term relations among the former. However we do not expect that the all hypergeomet-
ric type identities among the Riemann theta functions can be obtained from certain relations in the algebra
3MTn(0, ψ) after applying the elliptic representation of the latter.



On some quadratic algebras 39

3.2 Multiplicative Dunkl elements

Since the elements uij , uik and ujk, i < j < k, satisfy the classical and quantum Yang–Baxter
relations (3.1) and(3.2), one can define a multiplicative analogue denoted by Θi, 1 ≤ i ≤
n, of the Dunkl elements θi. Namely, to start with, we define elements

hij := hij(t) = 1 + t uij , i 6= j.

We consider hij(t) as an element of the algebra 3̃HTn := 3HTn(β)⊗ Z[[q±1
ij , t, x, y, . . .]], where

we assume that the all parameters {qij , t, x, y, . . .} are central in the algebra 3̃HTn.

Lemma 3.2.
(1a) hij(x) hij(y) = hij(x+ y + β xy) + qij xy,
(1b) hij(x) hji(y) = hij(x− y) + β y − qij x y, if i < j.
It follows from (1b) that hij(t) hji(t) = 1 + β t− t2 qij , if i < j, and therefore the elements

{hij} are invertible in the algebra 3̃HTn.
(2) hij(x) hjk(y) = hjk(y) hik(x) + hik(y) hij(x)− hik(x+ y + β xy).
(3) (Multiplicative Yang–Baxter relations)

hij hik hjk = hjk hik hij , if i < j < k.

(4) Define multiplicative Dunkl elements (in the algebra 3̃HTn) as follows

Θj := Θj(t) =
( 1∏

a=j−1

h−1
aj

) ( j+1∏
a=n

hja

)
, 1 ≤ j ≤ n. (3.3)

Then the multiplicative Dunkl elements pair-wise commute.

Clearly

n∏
j=1

Θj = 1, Θj = 1 + t θj + t2(. . .), and ΘI

∏
i/∈I,j∈I
i<j

(1 + tβ − t2 qij) ∈ 3HTn.

Here for a subset I ⊂ [1, n] we use notation ΘI =
∏
a∈I Θa,

Our main result of this Section is a description of relations among the multiplicative Dunkl
elements.

Theorem 3.1. ( A.N. Kirillov and T.Maeno, [51])
In the algebra 3HTn(β) the following relations hold true∑

I⊂[1,n]
|I|=k

ΘI

∏
i/∈I,j∈J
i<j

(1 + t β − t2 qij) =

[
n

k

]
1+tβ

.

Here
[
n
k

]
q
denotes the q-Gaussian polynomial.

Corollary 3.1.
Assume that qij 6= 0 for all 1 ≤ i < j ≤ n. Then the all elements {uij} are invertible and

u−1
ij = q−1

ij (uij − β) Now define elements Φi ∈ 3̃HTn as follows

Φi =
{ 1∏
a=i−1

u−1
ai

} { i+1∏
a=n

uia

}
, i = 1, . . . , n.
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Then we have
(1) (Relationship among Θj and Φj )

tn−2j+1 Θj(t
−1) |t=0 = (−1)j Φj .

(2) The elements {Φi, 1 ≤ i ≤ n, } generate a commutative subalgebra in the algebra 3̃HTn.
(3) For each k = 1, . . . , n, the following relation in the algebra 3HTn among the elements

{Φi} holds ∑
I⊂[1,n]
|I|=k

∏
i/∈I, j∈I
i<j

(−qij) ΦI = βk(n−k),

where ΦI :=
∏
a∈I Φa.

In fact the element Φi admits the following “reduced expression” (i.e. one with the minimal
number of terms involved) which is useful for proofs and applications

Φi =
{−→∏
j∈I

{−−→∏
i∈Ic+
i<j

u−1
ij

}} {−−→∏
j∈Ic+

{−→∏
i∈I
i<j

uij

}}
. (3.4)

Let us explain notations. For any (totally) ordered set I = (i1 < i2 < . . . < ik) we denote by
I+ the set I with the opposite order, i.e. I+ = (ik > ik−1 > . . . > i1);

if I ⊂ [1, n], then we set Ic := [1, n] \ I. For any (totally) ordered set I we denote by
−−−→∏
i∈I the

ordered product according to the order of the set I.
Note that the total number of terms in the RHS of (3.4) is equal to i(n− i).

Finally, from the “reduced expression” (3.4) for the element Φi one can see that∏
i/∈I,j∈I
i<j

(−qij) ΦI =
{−→∏
j∈I

{−−→∏
i∈Ic+
i<j

(β − uij)
}} {−−→∏

j∈Ic+

{−→∏
i∈I
i<j

uij

}}
:= Φ̃I ∈ 3HTn.

Therefore the identity ∑
I⊂[1,n]
|I|=k

Φ̃I = βk(n−k)

is true in the algebra 3HTn for any set of parameters {qij}.

Comments 3.2.
In fact from our proof of Theorem 3.1 we can deduce more general statement, namely,

consider integers m and k such that 1 ≤ k ≤ m ≤ n. Then∑
I⊂[1,m]
|I|=k

ΘI

∏
i∈[1,m]\I,j∈J

i<j

(1 + t β − t2 qij) =

[
m

k

]
1+tβ

+
∑

A⊂[1,n],B⊂[1,n]
|A|=|B|=r

uA,B, (3.5)

where , by definition, for two sets A = (i1, . . . , ir) and B = (j1, . . . , jr) the symbol uA,B is
equal to the (ordered) product

∏r
a=1 uia,ja . Moreover, the elements of the sets A and B have

to satisfy the following conditions:
• for each a = 1, . . . , r one has 1 ≤ ia ≤ m < ja ≤ n, and k ≤ r ≤ k(n− k).

Even more, if r = k, then sets A and B have to satisfy the following additional conditions:
• B = (j1 ≤ j2 ≤ . . . ≤ jk), and the elements of the set A are pair-wise distinct.

In the case β = 0 and r = k, i.e. in the case of additive (truncated) Dunkl elements, the
above statement, also known as the quantum Pieri formula, has been stated as Conjecture in
[26], and has been proved later in [76].
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Corollary 3.2. ([51])
In the case when β = 0 and qij = qi δj−i,1, the algebra over Z[q1, . . . , qn−1] generated by

the multiplicative Dunkl elements {Θi and Θ−1
i , 1 ≤ i ≤ n} is canonically isomorphic to the

quantum K-theory of the complete flag variety F ln of type An−1.

It is still an open problem to describe explicitly the set of monomials {uA,B} which appear
in the RHS of (3.5) when r > k.

3.3 Truncated Gaudin operators

Let {pij 1 ≤ i 6= j ≤ n} be a set of mutually commuting parameters. We assume that
parameters {pij}1≤i<j≤n are invertible and satisfy the Arnold relations

1

pik
=

1

pij
+

1

pjk
, i < j, k.

For example one can take pij = (zi − zj)−1, where z = (z1, . . . , zn) ∈ (C\0)n.

Definition 3.5. Truncated (rational) Gaudin operator corresponding to the set of parameters
{pij}, is defined to be

Gi =
∑
j 6=i

p−1
ij sij , 1 ≤ i ≤ n,

where sij denotes the exchange operator which switches variables xi and xj , and fixes parameters
{pij}.

We consider the Gaudin operator Gi as an element of the group ring Z[{p±1
ij }][Sn], call this

element Gi ∈ Z[{p±1
ij }][Sn], i = 1, . . . , n, by Gaudin element and denoted it by θ(n)

i .

It is easy to see that the elements uij := p−1
ij sij , 1 ≤ i 6= j ≤ n, define a representation of

the algebra 3HTn(β) with parameters β = 0 and qij = u2
ij = p2

ij .
Therefore one can consider the (truncated) Gaudin elements as a special case of the (trun-

cated) Dunkl elements. Now one can rewrite the relations among the Dunkl elements, as well as
the quantum Pieri formula [26] , [76], in terms of the Gaudin elements.

The key observation which allows to rewrite the quantum Pieri formula as a certain relation
among the Gaudin elements, is the following one:

parameters {p−1
ij } satisfy the Plücker relations

1

pik pjl
=

1

pij pkl
+

1

pil pjk
, if i < j < k < l.

To describe relations among the Gaudin elements θ(n)
i , i = 1, . . . , n, we need a bit of nota-

tion. Let {pij} be a set of invertible parameters as before. ia < ja, a = 1, . . . , r. Define
polynomials in the variables h = (h1, . . . , hn)

G
(n)
m,k,r(h, {pij}) =

∑
I⊂[1,n−1]

|I|=r

1∏
i∈I pin

∑
J⊂[1,n]

|I|+m=|J |+k

(
n− |I

⋃
J |

n−m− |I|

)
h̃J , (3.6)

where
h̃J =

∑
K⊂J, L⊂J,

|K|=|L|, K
⋂
L=∅

∏
j∈J\(K

⋃
L)

hj
∏

ka∈K, la∈L
p2
ka,la ,

and summation runs over subsets K = {k1 < k2 < . . . < kr} and L = {l1 < l2 < . . . < lr} ⊂
J}, such that ka < la a = 1, . . . , r.
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Theorem 3.2. (Relations among the Gaudin elements, [47], cf [71])
Under the assumption that elements {pij , 1 ≤ i < j ≤ n} are invertible, mutually commute and
satisfy the Arnold relations, one has

• G
(n)
m,k,r(θ

(n)
1 , . . . , θ(n)

n , {pij}) = 0, if m > k, (3.7)

• G
(n)
0,0,r(θ

(n)
1 , . . . , θ(n)

n , {pij}) = er(d2, . . . , dn),

where d2, . . . , dn denote the Jucys–Murphy elements in the group ring Z[Sn] of the symmetric
group Sn, see Comments 3.1 for a definition of the Jucys–Murphy elements.

• Let J = {j1 < j2 . . . < jr} ⊂ [1, n], define matrix MJ := (ma,b)1≤a,b≤r, where

ma,b := ma,b(h; {pij}) =


hja , if a = b,

pja,jb , if a < b,

−pjb,ja if a > b.

Then
h̃J = DET |MJ |.

Examples 3.1. (1) Let us display the polynomials G
(n)
m,k,r(h, {pij}) a few cases.

• G
(n)
m,0,r(h, {pij}) =

∑
I⊂[1,n−1]
|I|=r

∏
i∈I

p−1
in

( ∑
J⊂[1,n]

|J|=m+r,I⊂J

h̃J

)
.

• G
(n)
m,k,0(h, {pij}) =

(
n−m+ k

k

)
eqm−k(h1, . . . , hn).

• G
(n)
m,1,r(h, {pij}) =

∑
I⊂[1,n−1]
|I|=r

∏
i∈I

p−1
in

( ∑
J⊂[1,n]

I⊂J, |J|=m+r

(n−m− r + 1) h̃J+

∑
J⊂[1,n]

|J|=m+r−1, |I∪J|=m+r

h̃J

)
.

(2) Let us list the relations (3.6) among the Gaudin elements in the case n = 3. First of all,
the Gaudin elements satisfy the “standard” relations among the Dunkl elements θ1 +θ2 +θ3 =
0, θ1θ2 + θ1θ3 + θ2θ3 + q12 + q13 + q23 = 0,

θ1θ2θ3 +q12 θ3 +q13 θ2 +q23 θ1 = 0. Moreover, we have additional relations which are specific
for the Gaudin elements

G
(3)
2,0,1 =

1

p13

(
θ1θ2 + θ1θ3 + q12 + q13

)
+

1

p23

(
θ1θ2 + θ2θ3 + q12 + q23

)
= 0,

the elements p23 θ1 + p13 θ2 and θ1 θ2 are central. �

It is well-known that the elementary symmetric polynomials er(d2, . . . , dn) := Cr, r =
1, . . . , n − 1, generate the center of the group ring Z[p±1

ij ][Sn], whereas the Gaudin elements

{θ(n)
i , i = 1, . . . , n}, generate a maximal commutative subalgebra B(pij), the so-called Bethe subalgebra,

in Z[p±1
ij ][Sn]. It is well-known, see e.g. [71], that B(pij) =

⊕
λ`n Bλ(pij), where Bλ(pij) is the

λ−isotypic component of B(pij). On each λ−isotypic component the value of the central element
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Ck is the explicitly known constant ck(λ).
It follows from [71] that the relations (3.6) together with relations

G0,0,r(θ
(n)
1 , . . . , θ(n)

n , {pij}) = cr(λ),

are the defining relations for the algebra Bλ(pij).
Let us remark that in the definition of the Gaudin elements we can use any set of mutually

commuting, invertible elements {pij} which satisfies the Arnold conditions. For example, we can
take

pij :=
qj−2(1− q)

1− qj−i
, 1 ≤ i < j ≤ n.

It is not difficult to see that in this case

lim
q→0

θ
(n)
J

p1j
= −dj = −

j−1∑
a=1

saj ,

where as before, dj denotes the Jucys–Murphy element in the group ring Z[Sn] of the symmetric
group Sn. Basically from relations (2.15) one can deduce the relations among the Jucys–Murphy
elements d2, . . . , dn after plugging in (3.6) the values pij := qj−2(1−q)

1−qj−i and passing to the limit
q → 0. However the real computations are rather involved.

Finally we note that the multiplicative Dunkl / Gaudin elements {Θi, 1, . . . , n} also generate
a maximal commutative subalgebra in the group ring Z[p±1

ij ][Sn]. Some relations among the
elements {Θl} follow from Theorem 3.2, but we don’t know an analogue of relations (3.6) for the
multiplicative Gaudin elements, but see [71].

Exercises 3.1.
Let A = (ai,j) be a 2m× 2m skew-symmetric matrix. The Pfaffian and Hafnian of A are

defined correspondingly by the equations

Pf(A) =
1

2mm!

∑
σ∈S2m

sgn(σ)

m∏
i=1

aσ(2i−1),σ(2i), Hf(A) =
1

2mm!

∑
σ∈S2m

m∏
i=1

aσ(2i−1),σ(2i) (3.8)

where S2m is the symmetric group and sgn(σ) is the signature of a permutation σ ∈ S2m, see e.g.
http://en.wikipedia.org/wiki/Pfaffian.

Now let n be a positive integer, and {pij , 1 ≤ i 6= j ≤ n, pij + pji = 0} be a set of
skew-symmetric, invertible and mutually commuting elements. We set pii = 0 for all i, and
q := {p2

ij}1≤i<j≤n.
Now let us assume that the elements {pij}1≤i<j≤n satisfy the Plüker relations for the elements

{p−1
ij }1≤i<j≤n, namely,

1

pik pjl
=

1

pij pkl
+

1

pil pjk
for all 1 ≤ i < j < k < l ≤ n,

(a) Let n be an even positive integer. Let us define An(pij) := (pij)1≤i,j≤n to be the n× n
skew-symmetric matrix corresponding to the family {pij}1≤i<j≤n.

Show that
DET | An(pij) |= Hf(An(p2

ij)).

(b) Let n be a positive integer, and z1, . . . , zn be a set of mutually commuting variables,
define polynomials Hi(z1, . . . , zn | {pij}), i = 1, . . . , n from the equation

DET | diag(t+ z1, . . . , t+ zn) +An(pij) |= tn +
n∑
i=1

Hi(z1, . . . , zn | {pij}) tn−i,
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where diag(t+ z1, . . . , t+ zn) means the diagonal matrix.
Show that
For k = 1, . . . , n the polynomial Hk(z1, . . . , zn | {pij}) is equal to the multiparameter quantum

elementary polynomial e(q)
k (z1, . . . , zn), see e.g. [26], or Theorem 2.1.

For example, take n = 4, then DET | A(pij) |= (p12 p34 − p13 p24 + p14 p23)2 = p2
12 p

2
34 +

p2
13 p

2
24 + p2

14 p
2
23 − 2 p12p13 p23 p14 p24 p34

(
1

p12 p34
− 1

p13 p24
+ 1

p14 p23

)
=

p2
12 p

2
34 + p2

13 p
2
24 + p2

14 p
2
23 = Hf(A4({pij}).

On the other hand, if one assumes that a set of skew symmetric parameters {rij}1≤i<j≤n,
rij + rji = 0, satisfies the “standard” Plüker relations, namely

rik rjl = rij rkl + ril rjk, i < j < k < l,

then DET | An(rij) |= 0.

3.4 Shifted Dunkl elements di and Di

As it was stated in Corollary 3.2, the truncated additive and multiplicative Dunkl elements
in the algebra 3HTn(0) generate over the ring of polynomials Z[q1, . . . , qn−1] correspondingly
the quantum cohomology and quantum K − theory rings of the full flag variety F ln. In order
to describe the corresponding equivariant theories, we will introduce the shifted additive and
multiplicative Dunkl elements. To start with we need at first to introduce an extension of the
algebra 3HTn(β).

Let {z1, . . . , zn} be a set of mutually commuting elements and {β,h = (h1, . . . , hn−1), t, qij =
qji, 1 ≤ i, j ≤ n} be a set of parameters. We set hn := 0.

Definition 3.6. Cf Definition 2.4)
Define algebra 3THn(β,h) to be the semi-direct product of the algebra 3THn(β) and the ring

of polynomials Z[h, t][z1, . . . , zn] with respect to the crossing relations
(1) zi ukl = ukl zi if i /∈ {k, l},
(2) zi uij = uij zj + β zi + hj, zj uij = uij zi − β zi − hj−1, if 1 ≤ i < j < k ≤ n.

Now we set as before hij := hij(t) = 1 + t uij .

Definition 3.7.
• Define shifted additive Dunkl elements to be

di = zi −
∑
i<j

uij +
∑
i<j

uji.

• Define shifted multiplicative Dunkl elements to be

Di =
( 1∏
a=i−1

h−1
ai

)
(1 + zi)

( i+1∏
a=n

hia

)
.

Lemma 3.3.
[di, dj ] = 0, [Di,Dj ] = 0 for all i, j.

Now we stated an analogue of Theorem 3.1. for shifted multiplicative Dunkl elements.
As a preliminary step, for any subset I ⊂ [1, n] let us set DI =

∏
a∈I Da. It is clear that

DI

∏
i/∈I, j∈I
i<j

(1 + t β − t2 qij) ∈ 3HTn(β,h).
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Theorem 3.3.
In the algebra 3HTn(β,h) the following relations hold true∑

I⊂[1,n]
|I|=k

DI

∏
i/∈I,j∈J
i<j

(1 + t β − t2 qij) =

∑
I⊂[1,n]

I={1≤i1<...<ik≤n}

k∏
a=1

(1 + t β)n−k−ia+a

(
zia(1 + t β)ia−a + 1 + hia

(1 + t β)ia−a − 1

β

)
.

In particular, if β = 0, we will have

Corollary 3.3. In the algebra 3HTn(0,h) the following relations hold

∑
I⊂[1,n]
|I|=k

DI

∏
i/∈I,j∈J
i<j

(1− t2 qij) =
∑
I⊂[1,n]

I={1≤i1,...,ik≤n}

k∏
a=1

(
zia + 1 + t hia (ia − a)

)
. (3.9)

Conjecture 3.1. If h1 = · · · = hn−1 = 1, t = 1 and qij = δi,j+1, then the subalgebra generated
by multiplicative Dunkl elements Di, i = 1, . . . , n, in the algebra 3HTn(0,h = 1) (and t = 1), |
is isomorphic to the equivariant quantum K-theory of the complete flag variety F ln.

Our proof is based on induction on k and the following relations in the algebra 3HTn(β,h)

hji � (1 + xj) = hj−1 + β xj − xi + (1 + xi) � hji, hjihjk = hjkhki + hikhji − 1− β,

if i < j < k, and we set hij := hij(1). These relations allow to reduce the left hand side of the
relations listed in Theorem 3.3 to the case when zi = 0, hi = 0, ∀i. Under these assumptions
one needs to proof the following relations in the algebra 3HTn(β), see Theorem 3.1,∑

I⊂[1,n]
|I|=k

DI

∏
i/∈I,j∈J
i<j

(1 + t β − t2 qij) =

[
n

k

]
1+tβ

. (3.10)

In the case β = 0 the identity (3.9) has been proved in [51]
One of the main steps in our proof of Theorem 3.1. is the following explicit formula for the

elements DI .

Lemma 3.4. One has

D̃I := DI

∏
i/∈I, j∈I
i<j

(1 + t β − t2 qij) =

↗∏
b∈I

( ↘∏
a/∈I
a<b

hba

) ↗∏
a∈I

(
(1 + za)

↘∏
b/∈I
a<b

hab

)
.

Note that if a < b, then hba = 1 + βt− uab. Here we have used the symbol

↗∏
b∈I

( ↘∏
a/∈I
a<b

hba

)
to denote the following product. At first, for a given element b ∈ I let us define the set I(b) :=

{a ∈ [1, n]\I, a < b} := (a
(b)
1 < . . . < a

(b)
p ) for some p (depending on b). If I = (b1 < b2 . . . <

bk) i.e. bi = a
(b)
i , then we set

↗∏
b∈I

( ↘∏
a/∈I
a<b

hba

)
=

k∏
j=1

(
ubj ,as ubj ,as−1 · · ·ubj ,a1

)
.
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For example, let us take n = 6 and I = (1, 3, 5), then
D̃I = h32h54h52(1 + z1)h16h14h12(1 + z3)h36h34(1 + z5)h56.

Let us stress that the element D̃I ∈ 3HTn(β) is a linear combination of square free monomials
and therefore, a computation of the left hand side of the equality stated in Theorem 3.3 can be
performed in the “classical case” that is in the case qij = 0,∀i < j. This case corresponds to the
computation of the classical equivariant cohomology of the type An−1 complete flag variety F ln,
if h = 1.

A proof of the β = 0 case given in [51], Theorem 1, can be immediately extended to the case
β 6= 0.

Exercises 3.2.
(1) Show that ∑

1≤i1<...<ik≤n

k∏
a=1

(1 + β)n−k−ia+a =

[
n

k

]
1+tβ

.

(2) ((β, h)-Stirling polynomials of the second type)
Define polynomials Sn.k(β, h) as follows

Sn.k(β, h) =
∑
I⊂[1,n]

I={1≤i1,...,ik≤n}

k∏
a=1

(
βn−k−ia+a + h

βn−k−ia+a − 1

β − 1

)
.

Show that

Sn,k(1, 1) =

{
n+ 1

k + 1

}
, Sn,k(β, 0) =

[
n

k

]
β

.

4 Algebra 3T
(0)
n (Γ) and Tutte polynomial of graphs

4.1 Graph and nil-graph subalgebras, and partial flag varieties

Let’s consider the set Rn := {(i, j) ∈ Z×Z | 1 ≤ i < j ≤ n} as the set of edges of the complete
graph Kn on n labeled vertices v1, . . . , vn. Any subset S ⊂ Rn is the set of edges of a unique
subgraph Γ := ΓS of the complete graph Kn.

Definition 4.1. (Graph and nil-graph subalgebras)
The graph subalgebra 3Tn(Γ) (resp. nil-graph subalgebra 3T

(0)
n (Γ)) corresponding to a

subgraph Γ ⊂ Kn of the complete graph Kn, is defined to be the subalgebra in the algebra 3Tn
(resp.3T (0)

n ) generated by the elements {uij | (i, j) ∈ Γ}.

In subsequent Subsections 4.1.1 and 4.1.2 we will study some examples of graph subalgebras
corresponding to the complete multipartite graphs, cycle graphs and linear graphs.

4.1.1 NilCoxeter and affine nilCoxeter subalgebras in 3T
(0)
n

Our first example is concerned with the case when the graph Γ corresponds to either the set
S := {(i, i+ 1) | i = 1, . . . , n− 1} of simple roots of type An−1, or the set Saff := S

⋃
{(1, n)}

of affine simple roots of type A(1)
n−1.

Definition 4.2. (a) Denote by ÑCn subalgebra in the algebra 3T
(0)
n generated by the elements

ui,i+1, 1 ≤ i ≤ n− 1.

(b) Denote by ÃNCn subalgebra in the algebra 3T
(0)
n generated by the elements ui,i+1, 1 ≤

i ≤ n− 1 and −u1,n.
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Theorem 4.1.
(A) (cf [4]) The subalgebra ÑCn is canonically isomorphic to the NilCoxeter algebra NCn.

In particular, Hilb(ÑCn, t) = [n]t!.

(B) The subalgebra ÃNCn has finite dimension and its Hilbert polynomial is equal to
Hilb(ÃNCn, t) = [n]t

∏
1≤j≤n−1[j(n− j)]t= [n]t!

∏
1≤j≤n−1[j]tn−j .

In particular, dim ÃNCn = (n− 1)! n!, degt Hilb(ÃNCn, t)=
(
n+1
3.

)
(C) The kernel of the map π : ÃNCn −→ ÑCn, π(u1,n) = 0, π(ui,i+1) = ui,i+1, 1 ≤ i ≤ n−1,

is generated by the following elements:

f (k)
n =

1∏
j=k

n−k+j−1∏
a=j

ua,a+1, 1 ≤ k ≤ n− 1.

Note that deg f
(k)
n = k(n− k).

The statement (C) of Theorem 4.1 means that the element f (k)
n which does not contain the

generator u1,n, can be written as a linear combination of degree k(n − k) monomials in the
algebra ÃNCn, each contains the generator u1,n at least once. By this means we obtain a
set of all extra relations (i.e. additional to those in the algebra ÑCn) in the algebra ÃNCn.
Moreover, each monomialM in all linear combinations mentioned above, appears with coefficient
(−1)#|u1,n∈M |+1. For example,
f

(1)
4 := u1,2u2,3u3,4 = u2,3u3,4u1,4 + u3,4u1,4u1,2 + u1,4u1,2u2,3; f

(2)
4 := u2,3u3,4u1,2u2,3 =

u1,2u3,4u2,3u1,4 + u1,2u2,3u1,4u1,2 + u2,3u1,4u1,2u3,4 + u3,4u2,3u1,4u3,4 − u1,4u1,2u3,4u1,4.

Remark 4.1. More generally, let (W,S) be a finite crystallographic Coxeter group of rank l
with the set of exponents 1 = m1 ≤ m2 ≤ · · · ≤ ml.

Let BW be the corresponding Nichols–Woronowicz algebra, see e.g. [4]. Follow [4], denote
by ÑCW the subalgebra in BW generated by the elements [αs] ∈ BW corresponding to simple
roots s ∈ S. Denote by ÃNWCW the subalgebra in BW generated by ÑCW and the element
[aθ], where [aθ] stands for the element in BW corresponding to the highest root θ for W. In other
words, ÃNWCW is the image of the algebra ÃNCW under the natural map BE(W ) −→ BW ,
see e.g. [4], [49]. It follows from [4], Section 6, that Hilb(ÑCW , t) =

∏l
i=1[mi + 1]t.

Conjecture 4.1. (Y. Bazlov and A.N. Kirillov, 2002)

Hilb(ÃNWCW , t) =

l∏
i=1

1− tmi+1

1− tmi

l∏
i=1

1− tai
1− t

= Paff (W, t)

l∏
i=1

(1− tai),

where

Paff (W, t) :=
∑

w∈Waff

tl(w) =

l∏
i=1

(1 + t+ · · ·+ tmi)

1− tmi

denotes the Poincaré polynomial corresponding to the affine Weyl group Waff , see [12], p.245;
ai := (2ρ, α∨i ), 1 ≤ i ≤ l, denote the coefficients of the decomposition of the sum of positive
roots 2ρ in terms of the simple roots αi.

In particular, dim ÃNWCW = |W |
∏l
i=1 ai∏l
i=1 mi

and degHilb(ÃNWCW , t) =
∑l

1=1 ai.

It is well-known that the product
∏l
i=1

1−tai
1−tmi is a symmetric (and unimodal ?) polynomial

with non–negative integer coefficients.
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Example 4.1. (a)

Hilb(ÃNC3, t) = [2]2t [3]t, Hilb(ÃNC4, t) = [3]2t [4]2t , Hilb(ÃNC5, t) = [4]2t [5]t[6]2t .

(b) Hilb(BE2, t) = (1 + t)4(1 + t2)2,

Hilb(ÃNCB2 , t) = (1 + t)3(1 + t2)2 = Paff (B2, t)(1− t3)(1− t4).

(c) Hilb(ÃNCB3 , t) =

(1 + t)3(1 + t2)2(1 + t3)(1 + t4)(1 + t+ t2)(1 + t3 + t6) = Paff (B3, t)(1− t5)(1− t8)(1− t9).

Indeed, mB3 = (1, 3, 5), aB3 = (5, 8, 9).

�

Definition 4.3. Let 〈ÃNCn〉 denote the two-sided ideal in 3T
(0)
n generated by the elements

{ui,i+1}, 1 ≤ i ≤ n− 1, and u1,n. Denote by Un the quotient Un = 3T 0
n/〈ÃNCn〉.

Proposition 4.1.

U4
∼= 〈u1,3, u2,4〉 ∼= Z2 × Z2; U5

∼= 〈u1,4, u2,4, u2,5, u3,5, u1,3〉 ∼= ÃNC5.

In particular, Hilb(3T
(0)
5 , t) =

[
Hilb(ÃNC5, t)

]2
.

4.1.2 Parabolic 3-term relations algebras and partial flag varieties

In fact one can construct an analogue of the algebra 3HTn and a commutative subalgebra inside
it, for any graph Γ = (V,E) on n vertices, possibly with loops and multiple edges, [47]. We denote
this algebra by 3Tn(Γ), and denote by 3T

(0)
n (Γ) its nil-quotient, which may be considered as a

“classical limit of the algebra 3Tn(Γ)”.
The case of the complete graph Γ = Kn reproduces the results of the present paper and those
of [47], i.e. the case of the full flag variety F ln. The case of the complete multipartite graph
Γ = Kn1,...,nr reproduces the analogue of results stated in the present paper for the full flag
variety F ln, to the case of the partial flag variety Fn1,...,nr , see [47] for details.
We expect that in the case of the complete graph with all edges having the same multiplicity
m, denoted by Γ = K

(m)
n , or mKn in the present paper, the commutative subalgebra generated

by the Dunkl elements in the algebra 3T
(0)
n (Γ) is related to the algebra of coinvariants of the

diagonal action of the symmetric group Sn on the ring of polynomials Q[X
(1)
n , . . . , X

(m)
n ], where

we set X(i)
n = {x(i)

1 , . . . , x
(i)
n }.

Example 4.2. Take Γ = K2,2. The algebra 3T (0)(Γ) is generated by four elements {a = u13, b =
u14, c = u23, d = u24} subject to the following set of (defining) relations
• a2 = b2 = c2 = d2 = 0, c b = b c, a d = d a,
• a b a+ b a b = 0 = a c a+ c a c, b d b+ d b d = 0 = c d c+ d c d,
a b d− b d c− c a b+ d c a = 0 = a c d− b a c− c d b+ d b a,
• a b c a+ a d b c+ b a d b+ b c a d+ c a d c+ d b c d = 0.
It is not difficult to see that 21

Hilb(3T (0)(K2,2), t) = [3]2t [4]2t , Hilb(3T (0)(K2,2)ab, t) = (1, 4, 6, 3).

Here for any algebra A we denote by Aab its abelianization 22.
21Hereinafter we shell use notation

(a0, a1, . . . , ak)t := a0 + a1t+ · · ·+ akt
k.

22 See groupprops.subwiki.org/wiki/Abelianization
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The commutative subalgebra in 3T (0)(K2,2), which corresponds to the intersection
3T (0)(K2,2)

⋂
Z[θ1, θ2, θ3, θ4], is generated by the elements c1 := θ1 + θ2 = (a+ b+ c+ d) and

c2 := θ1 θ2 = (ac + ca + bd + db + ad + bc). The elements c1 and c2 commute and satisfy the
following relations

c3
1 − 2 c1 c2 = 0, c2

2 − c2
1 c2 = 0.

The ring of polynomials Z[c1, c2] is isomorphic to the cohomology ring H∗(Gr(2, 4),Z) of the
Grassmannian variety Gr(2, 4).

�

To continue exposition, let us take m ≤ n, and consider the complete multipartite graph
Kn,m which corresponds to the grassman variety Gr(n,m+ n.) One can show

Hilb(3T
(0)
n+m(Kn,m)ab, t) =

n−1∑
k=0

(−1)k (1 + (n− k) t)m−1
n−k∏
j=1

(1 + j t)

{
n

n− k

}

= tn+m−1 Tutte(Kn,m, 1 + t−1, 0),

where
{
n
k

}
:= S(n, k) denotes the Stirling numbers of the second kind, that is the number of

ways to partition a set of n labeled objects into k nonempty unlabeled subsets, and for any
graph Γ, Tutte(Γ, x, y) denotes the Tutte polynomial 23 corresponding to graph Γ.

It is well-known that the Stirling numbers S(n, k) satisfy the following identities

n−1∑
k=0

(−1)k S(n, n− k)

n−k∏
j=1

(1 + j t) = (1 + t)n,
∑
n≥k

{
n

k

}
xn

n!
=
ex − 1)k

k!
.

Let us observe that dim(3T (0)(Kn,n)ab =

n−1∑
k=0

(−1)k (n+ 1− k)n−1 (n+ 1− k)!

{
n

n− k

}
= A048163, [87].

Moreover, if m ≥ 0, then∑
n≥1

dim(3T (0)(Kn,n+m)ab) tn =
∑
k≥1

kk+m−1 (k − 1)! tk∏k−1
j=1(1 + k j t)

,

∑
n≥1

Hilb(3T (0)(Kn,m)ab, t) zn−1 =
∑
k≥0

(1 + k t)m−1
k∏
j=1

z (1 + j t)

1 + j z
.

Comments 4.1. Poly-Bernoulli numbers
Based on listed above identities involving the Stirling numbers S(n, k), one can prove the

following combinatorial formula

dim(3T (0)(Kn,m)ab) =

min(n,m)∑
j=1

(j!)2

{
n+ 1

j + 1

} {
m+ 1

j + 1

}
= B(−m)

n = B(−n)
m , (4.1)

23See e.g. http://en.wikipedia.org/wiki/Tutte.polynomial. It is well-known that

Tutte(Γ, 1 + t, 0) = (−1)|Γ| t−κ(Γ) Chrom(Γ,−t),

where for any graph Γ, |Γ| is equal to the number of vertices and κ(Γ) is equal to the number of connected
components of Γ. Finally Chrom(Γ, t) denotes the chromatic polynomial corresponding to graph Γ, see e.g., [96],
or http://en.wikipedia/wiki/Chromatic.polynomial.
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where B
(k)
n denotes the poly-Bernoulli number introduced by M. Kaneko [42].

For the reader’s convenient, we recall below a definition of poly-Bernoulli numbers. To start
with, let k be an integer, consider the formal power series

Lik(z) :=
∞∑
n=1

zn

nk
.

If k ≥ 1, Lik(z) is the k-th polylogarithm, and if k ≤ 0, then Lik(z) is a rational function. Clearly
Li1(z) = −ln(1− z). Now define poly-Bernoulli numbers through the generating function

Lik(1− e−z)
1− e−z

=

∞∑
n=0

B(k)
n

zn

n!
.

Note that a combinatorial formula for the numbers B(−k)
n stated in (4.1) is a consequence of the

following identity [42]

∞∑
n=0

∞∑
k=0

B(−k)
n

xn

n!

zk

k!
=

ex+z

1− (1− ex)(1− ez)
.

�

Now let θ(n+m)
i =

∑
j 6=i uij , 1 ≤ i ≤ n + m, be the Dunkl elements in the algebra

3T (0)(Kn+m), define the following elements the in the algebra 3T (0)(Kn,m)

ck := ek(θ
(n+m)
1 , . . . , θ(n+m)

n ), 1 ≤ k ≤ n, cr := er(θ
(n+m)
n+1 , . . . , θ

(n+m)
n+m , 1 ≤ r ≤ m.

Clearly,

(1 +

n∑
k=1

ck t
k)(1 +

m∑
r=1

cr t
r) =

n+m∏
j=1

(1 + θ
(n+m)
j ) = 1.

Moreover, there exist the natural isomorphisms of algebras

H∗(Gr(n, n+m),Z) ∼= Z[c1, . . . , cn]/

〈
(1 +

n∑
k=1

ck t
k)(1 +

m∑
r=1

cr t
r)− 1

〉
,

QH∗(Gr(n, n+m)) ∼= Z[q][c1, . . . , cn]/

〈
(1 +

n∑
k=1

ck t
k)(1 +

m∑
r=1

cr t
r)− 1− q tn+m

〉
.

Let us recall, see Section 2, footnote 16, that for a commutative ring R and a polynomial
p(t) =

∑s
j=1 gj t

j ∈ R[t], we denote by
〈
p(t)

〉
the ideal in the ring R generated by the coeffi-

cients g1, . . . , gs.

These examples are illustrative of the similar results valid for the general complete multi-
partite graphs Kn1,...,nr , i.e. for the partial flag varieties [47].

To state our results for partial flag varieties we need a bit of notation. Let N := n1 + . . . +
nr, nj > 0, ∀j, be a composition of size N.We set Nj := n1 + · · ·+nj , j = 1, . . . , r, and N0 = 0,

Now, consider the commutative subalgebra in the algebra 3T
(0)
N (KN ) generated by the set of

Dunkl elements {θ(N)
1 , . . . , θ

(N)
N }, and define elements {c(j,N)

kj
∈ 3T

(0)
N (Kn1,...,nr)} to be the degree

kj elementary symmetric polynomials of the Dunkl elements θ
(N)
Nj−1+1, . . . , θ

(N)
Nj

, namely

c
(j)
k := c

(j,N)
kj

= ek(θ
(N)
Nj−1+1, . . . , θ

(N)
Nj

), 1 ≤ kj ≤ nj , j = 1, . . . , r, c
(j)
0 = 1, ∀j.
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Clearly
r∏
j=1

(

nj∑
a=0

c(j)
a ta) =

N∏
j=1

(1 + θ
(N)
j tj) = 1.

Theorem 4.2.
The commutative subalgebra generated by the elements {c(j)

kj
, 1 ≤ kj ≤ nj , 1 ≤ j ≤ r−1}, in the

algebra 3T
(0)
N (Kn1,...,nr) is isomorphic to the cohomology ring H∗(F ln1,...,nr ,Z) of the partial

flag variety F ln1,...,nr .

I In other words, we treat the Dunkl elements {θ(N)
Nj−1+a, 1 ≤ a ≤ nj}, j = 1, . . . , r, as the

Chern roots of the vector bundles {ξj := Fj/Fj−1}, j = 1, . . . , r, over the partial flag variety
F ln1,...,nr .

Recall that a point F of the partial flag variety F ln1,...,nr , n1 + · · ·+ nr = N, is a sequence
of embedded subspaces

F = {0 = F0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fr = CN} such that dim(Fi/Fi−1) = ni, i = 1, . . . , r.

By definition, the fiber of the vector bundle ξi over a point F ∈ F ln1,...,nr is the ni-dimensional
vector space Fi/Fi−1.
J
A meaning of the algebra 3T

(0)
n (Γ) and the corresponding commutative subalgebra inside it

for a general graph Γ, is still unclear.

Conjecture 4.2.
(1) Let Γ = (V,E) be a connected subgraph of the complete graph Kn on n vertices. Then

Hilb(3T (0)
n (Γ)ab, t) = t|V |−1 Tutte(Γ; 1 + t−1, 0).

(2) Let Γ = (V,E, {mij), (ij) ∈ E}) be a connected subgraph of the complete graph Km
n with

multiple edges such that an edge (ij) ∈ Kn has the multiplicity mij. Let 3T
(0)
n (Γ,m) denotes the

subalgebra in the algebra 3T
(0)
n (m) generated by elements {u(α(ij))

ij , (ij) ∈ E, ! ≤ α(ij) ≤ mij},
see Section 4.2.5. Let A(Γ, {mij}) denotes the graphic arrangement corresponding to the graph
(Γ, {mij}), that is the set of hyperplanes {H(ij),a = (xi − xj = a), 0 ≤ a ≤ mij − 1, (ij) ∈ E}.
Then

3T (0)
n (Γ,m)ab = OS+(A(Γ, {mij})),

where for any arrangements of hyperplanes A, OS+(A) denotes the even Orlik–Salamon algebra
of the arrangement A, [75].
In the case when mij = 1, ∀ 1 ≤ i < j ≤ n, 3T

(0)
n (Γ)anti = OS(A(Γ)).

Examples 4.1.
(1) Let G = K2,2 be complete bipartite graph of type (2, 2). Then,
Hilb(3T 0

4 (2, 2)ab, t) = (1, 4, 6, 3) = t2 (1 + t) + t (1 + t)2 + (1 + t)3,
and the Tutte polynomial for the graph K2,2 is equal to x+ x2 + x3 + y.

(2) Let G = K3,2 be complete bipartite graph of type (3, 2). Then,
Hilb(3T 0

5 (3, 2)ab, t) = (1, 6, 15, 17, 7) = t3 (1 + t) + 3 t2 (1 + t)2 + 2t (1 + t)3 + (1 + t)4,
and the Tutte polynomial for the graph K3,2 is equal to x+ 3 x2 + 2 x3 + x4 + y + 3 x y + y2.

(3) Let G = K3,3 be complete bipartite graph of type (3, 3). Then
Hilb(3T 0

6 (3, 3)ab, t) = (1, 9, 36, 75, 78, 31) =
(1 + t)5 + 4t(1 + t)4 + 10t2(1 + t)3 + 11t3(1 + t)2 + 5t4(1 + t),
and the Tutte polynomial of the bipartite graph K3,3 is equal to
5x+ 11x2 + 10x3 + 4x4 + x5 + 15xy + 9x2y + 6xy2 + 5y + 9y2 + 5y3 + y4.
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(4) Consider complete multipartite graph K2,2,2. One can show that

Hilb(3T
(0)
6 (K2,2,2)ab, t) = (1, 12, 58, 137, 154, 64) =

11 t4(1 + t) + 25 t3(1 + t)2 + 20 t2(1 + t)3 + 7 t(1 + t)4 + (1 + t)5,

and Tutte(K2,2,2, x, y) = x(11, 25, 20, 7, 1)x + y (11, 46, 39, 8)x + y2(32, 52, 12)x + y3(40, 24)x+
y4(29, 6)x + 15y5 + 5y6 + y7.

�
The above examples show that the Hilbert polynomial Hilb(3T 0

n(G)ab, t) appears to be a
certain specialization of the Tutte polynomial of the corresponding graph G. Instead of using
the Hilbert polynomial of the algebra 3T 0

n(G)ab one can consider the graded Betti numbers
polynomial Betti(3T 0

n(G)ab, x, y). For example,

Betti(3T 0
3 (K3)ab, x, y) = 1 + 4 x y + x2 (2 y + 3 y2) + 2 x3 y2,

Betti(3T 0
4 (K2,2)ab, x, y) = 1 + x (4 y + y2) + x2 (9 y2 + y3) + x3 (3 y2 + 6 y3) + 3 x4 y3,

Betti(3T 0
4 (K4)ab, x, y) =

1+10 x y+x2 (10 y+24 y2)+x3 (46 y2 +15 y3)+x4 (25 y2 +36 y3)+x5 (6 y2 +25 y3)+6 x6 y3.

Claim Let G = (V,E) be a connected graph without loops. Then (n = |V (G)| =
number of vertices, e = |E(G)| = number of edges)

Betti(3T 0
n(G)ab,−x, x) = (1− x)e Hilb(3T 0

n(G)ab, x),

Question Let G be a connected subgraph of the complete graphKn. Does the graded Betti
polynomial Betti(3T 0

n(G)ab, x, y) is a certain specialization of the Tutte polynomial T (G, x, y) ?

Conjecture 4.3. Let n = (n1, . . . , nr) be a composition of n ∈ Z≥1, then

Hilb(3T (0)(Kn1,...,nr)
ab, t) =

∑
k=(k1,...,kr)

0<kj≤nj

(−t)|n|−|k|
r∏
j=1

{
nj
kj

} |k|−1∏
j=1

(1 + jt),

where we set |k| := k1 + . . .+ kr.

Corollary 4.1. If Conjecture (4.3) is true, then

(a) 1 + t(t− 1)
∑

(n1,...,nr)∈Zr≥0 \0r
Hilb(3T (0)(Kn1,...,nr)

ab, t)
xn1

1

n1!
· · · x

nr
r

nr!
=

(
1 + t

r∑
j=1

(e−xj − 1)
)1−t

.

(b)
∑

(n1,n2,...,nr)∈Z≥0\0r
dim(3T (0)(Kn1,...,nr)

ab x
n1

n1!
· · · x

nr

nr!
= −log

(
1− r +

r∑
j=1

e−xj
)
.

(c) Hilb(3T (0)(Kn1,...,nr)
ab, t) = (−t)|n| Chrom(Kn1,...,nr ,−t−1),

where for any graph Γ we denote by Chrom(Γ, x) the chromatic polynomial of that graph.
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Indeed, one can show 24

Proposition 4.2. If r ∈ Z≥1, then

Chrom(Kn1,...,nr , t) =
∑

k=(k1,...,kr)

r∏
j=1

{
nj
kj

}
(t)|k|,

where by definition (t)m :=
∏m−1
j=1 (t− j), (t)0 = 1, (t)m = 0, if m < 0.

Finally we describe explicitly the exponential generating function for the Tutte polynomials
of the weighted complete multipartite graphs. We refer the reader to [68] for a definition and a
list of basic properties of the Tutte polynomial of a graph.

Definition 4.4. Let r ≥ 2 be a positive integer and {S1, . . . , Sr} be a collection of sets of
cardinalities #|Sj | = nj , j = 1, . . . , r. Let ` := {`ij}1≤i<j≤n be a collection of non- negative
integers.

The `-weighted complete multipartite graph K(`)
n1,...,nr is a graph with the set of vertices equals

to the disjoint union
∐r
j=1 Si of the sets S1, . . . , Sr, and the set of edges {(αi, βj), αi ∈ Si, βj ∈

Sj}1≤i<j≤r of multiplicity `ij each edge 9α,βj).

Theorem 4.3. Let us fix an integer r ≥ 2 and a collection of non-negative integers ` :=
{`ij}1≤i<j≤r. Then

1 +
∑

n=(n1,...,nr)∈Zr≥0
n 6=0

(x− 1)κ(`,n) Tutte(K(`)
n1,...,nr , x, y)

tn1
1

n1!
· · · t

nr
r

nr!
=

( ∑
m=(m1,...,mr)∈Zr≥0

y
∑

1≤i<j≤r `ij mimj (y − 1)−|m|
tm1
1

m1!
· · · t

mr
r

mr!

)(x−1)(y−1)
,

where κ(`,n) denotes the number of connected components of the graph K(`)
n1,...,nr .

• (Comments and Examples)
(a) Clearly the condition `ij = 0 means that there are no edges between vertices from the

sets Si and Sj . Therefore Theorem 4.3 allows to compute the Tutte polynomial of any (finite)
graph. For example,
Tutte(K

(16)
2,2,2,2, x, y) = {(0, 362, 927, 911, 451, 121, 17, 1)x, (362, 2154, 2928, 1584, 374, 32)x,

(1589, 4731, 3744, 1072, 96)x, (3376, 6096, 2928, 448, 16)x, (4828, 5736, 1764, 152)x,
(5404, 4464, 900, 32)x, (5140, 3040, 380)x, (4340, 1840, 124)x, (3325, 984, 24)x, (2331, 448)x,
(1492, 168)x, (868, 48)x, (454, 8)x, 210, 84, 28, 7, 1}y.

(b) One can show that a formula for the chromatic polynomials from Proposition 4.2 corre-
sponds to the specialization y = 0 (but not direct substitution !) of the formula for generating
function for the Tutte polynomials stated in Theorem 4.3.

(c) The Tutte polynomial Tutte(K(`)
n1,..., x, y) does not symmetric with respect to parameters

{`ij}1≤i<j≤n. For example, let us write ` = (`12, `23, `13, `14, `24, `34), then Tutte(K(6,3,4,5,2,4)
2,2,2,2 , 1, 1) =

24 If r = 1, the complete unipartite graph K(n) consists of n distinct points, and

Chrom(K(n), x) = xn =

n−1∑
k=0

{
n

k

}
(x)k.

Let us stress that to abuse of notation the complete unipartite graph K(n) consists of n disjoint points with the
Tutte polynomial equals to 1 for all n ≥ 1, whereas the complete graph Kn is equal to the complete multipartite
graph K(1n).
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28 ·3 ·5 ·113 ·241 = 1231760640. On the other hand, Tutte(K(6,4,3,5,2,4)
2,2,2,2 , 1, 1) = 213 ·3 ·7 ·112 ·61 =

1269768192.
V (d) (Universal Tutte polynomials)
Let m = (mij , 1 ≤ i < j ≤ n) be a collection of non-negative integers. Define generalized

Tutte polynomial T̃n(m, x, y) as follows : T̃n(m, x, y) =

Coeff[t1···tn]

( ∑
`1,...,`n

`i∈{0,1},∀i

y
∑

1≤i<j≤n mij `i`j (y − 1)−
∑
J `j

t`11
`1!
· · · t

`n
n

`n!

)(x−1)(y−1)
.

Clearly that if Γ ⊂ K
(`)
n is a subgraph of the weighted complete graph K(`)

n :
def
= K

(`)
1n , then the

Tutte polynomial of graph Γ multiplied by (x− 1)κ(Γ) is equal to the following specialization

mij = 0, if edge (i, j) /∈ Γ, mij = `ij , if edge (i, j) ∈ Γ

of the generalized Tutte polynomial

(x− 1)κ(Γ) Tutte(Γ, x, y) = T̃n(m, x, y)

∣∣∣∣ mij=0, if (i,j)/∈Γ

mij=`ij if (i,j)∈Γ

.

For example,
(a) Take n = 6 and Γ = K6 \ {15, 16, 24, 25, 34, 36} , then Tutte(Γ, x, y) = {(0, 4, 9, 8, 4, 1)x,

(4, 13, 9)x, (8, 7)x, 5, 1}y.
(b) Take n = 6 and Γ = K6 \ {15, 26, 34}, then Tutte(Γ, x, y) =
{(0, 11, 25, 20, 7, 1)x, (11, 46, 39, 8)x, (32, 52, 12)x, (40, 24)x, (29, 6)x, 15, 5, 1}y.
(c) Take n = 6 and Γ = K6 \ {12.34.56} = K2,2,2. As a result one obtains an expression for

the Tutte polynomial of the graph K2,2,2 displayed in Example 4.1.

Now set us set
qij :=

ymij − 1

y − 1
.

Lemma 4.1. The generalized Tutte polynomial T̃n(m, x, y) is a polynomial in the variables
{qij}1≤i<j≤n, x and y.

Definition 4.5. The universal Tutte polynomial Tn({qij}, x, y) is defined to be the polynomial
in the variables {qij}, x, and y defined in Lemma 4.1.

Explicitly, Tn({qij}, x, y) =

Coeff[t1···tn]

( ∑
`1,...,`n

`i∈{0,1},∀i

∏
1≤i<j≤n

(qij (y − 1) + 1)`i`j (y − 1)−
∑
J `j

t`11
`1!
· · · t

`n
n

`n!

)(x−1)(y−1)
.

Corollary 4.2. Let {mij}1≤i<j≤n be a collection of positive integers. Then the specialization

qij −→ [mij ]y :=
ymij − 1

y − 1

of the universal Tutte polynomial Tn({qij}, x, y) is equal to the Tutte polynomial of the complete
graph Kn with each edge (i, j) of the multiplicity mij.

Further specialization qij −→ 0, if edge(i, j) /∈ Γ allows to compute the Tutte polynomial
for any graph. �
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Exercises 4.1.
(1) Assume that `ij = ` for all 1 ≤ i < j ≤ r. Based on the above formula for the

exponential generating function for the Tutte polynomials of the complete multipartite graphs
Kn1,...,nr , deduce the following well-known formula

Tutte(K(`)
n1,...,nr , 1, 1) = `N−1 N r−2

r∏
j=1

(N − nj)nj−1,

where N := n1 + · · ·+nr. It is well-known that the number Tutte(Γ, 1, 1) is equal to the number
of spanning trees of a connected graph Γ.

(2) Take r = 3 and let n1, n2, n3 and `12, `13, `23 be positive integers. Set N := `12`13n1 +
`12`23n2 + `13`23n3 Show that

Tutte(K`1,`2,`3
n1,n2,n3

, 1, 1) = N (`12n2 + `13n3)n1−1(`12n1 + `13n3)n2−1)(`13n1 + `23n2)n3−1.

(3) Let r ≥ 2, consider weighted complete multipartite graph K(`)
n, . . . , n︸ ︷︷ ︸

r

, where ` = (`ij) such

that `1,j = `, j = 1, . . . , r and `ij = k, 2 ≤ i < j ≤ r. Show that

Tutte(K
(`)
n, . . . , n︸ ︷︷ ︸

r

, 1, 1) = kn (r − 1)n−1
(

(r − 1)`+ k
)r−2 (

(r − 2)`+ k
)(r−1)(n−1)

nnr−1.

�

Let Γn(∗) be a spanning star subgraph of the complete graph Kn. For example, one can take
for a graph Γn(∗) the subgraph K1,n−1 with the set of vertices V := {1, 2, . . . , n} and that of
edges E := {(i, n), i = 1, . . . , n − 1}. The algebra 3T

(0)
n (K1,n−1) can be treated as a

“noncommutative analog” of the projective space Pn−1.
We have θ1 = u12 + u13 + . . .+ u1n. It is not difficult to see that
Hilb(3T

(0)
n (K1,n−1)ab, t) = (1 + t)n−1, and θn1 = 0.

Let us observe that Chrom(Γn(?), t) = t(t− 1)n−1.

Problem 4.1. Compute the Hilbert series of the algebra 3T
(0)
n (Kn1,...,nr).

The first non-trivial case is that of projective space, i.e. the case r = 2, n1 = 1, n2 = 5.

On the other hand, if Γn = {(1, 2)→ (2, 3)→ . . .→ (n− 1, n)} is the Dynkin graph of type
An−1, then the algebra 3T

(0)
n (Γn) is isomorphic to the nil-Coxeter algebra of type An−1, and if

Γ
(aff)
n = {(1, 2)→ (2, 3)→ . . .→ (n− 1, n)→ −(1, n)} is the Dynkin graph of type A(1)

n−1, i.e. a
cycle, then the algebra 3T

(0)
n (Γ

(aff)
n ) is isomorphic to a certain quotient of the affine nil-Coxeter

algebra of type A(1)
n−1 by the two-sided ideal which can be described explicitly [47]. Moreover,

ibid,

Hilb(3T 0)
n (Γ(aff)), t) = [n]t

n−1∏
j=1

[j(n− j)]t,

see Theorem 4.1. Therefore, the dimension dim(3T (0)(Γaff )) is equal to n! (n− 1)! and is equal
also to the number of (directed) Hamiltonian cycles in the complete bipartite graph Kn,n, see
[87], A010790.
It is not difficult to see that

Hilb(3T (0)
n (Γn)ab, t) = (t+ 1)n−1, Hilb(3T (0)(Γaffn )ab, t) = t−1 ((t+ 1)n − t− 1),
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whereas

Chrom(Γn, t) = t(t− 1)n−1, Chrom(Γaffn , t) = (t− 1)n + (−1)n (t− 1).

Exercises 4.2. Let Kn1,...,nr be complete multipartite graph, N := n1 + · · ·+ nr.
Show that 25

Hilb(3TN (Kn1,...,nr), t) =

∏r
j=1

∏nj−1
a=1 (1− a t)∏N−1

j=1 (1− j t)
.

4.1.3 Quasi-classical and associative classical Yang–Baxter algebras of type Bn.

In this Section we introduce an analogue of the algebra 3Tn(β) for the classical root systems.

Definition 4.6.
(A) The quasi-classical Yang–Baxter algebra ̂ACY B(Bn) of type Bn is an associative

algebra with the set of generators {xij , yij , zi, 1 ≤ i 6= j ≤ n} subject to the set of defining
relations

(1) xij + xij = 0, yij = yji, if i 6= j,
(2) zi zj = zj zi,
(3) xij xkl = xkl xij , xij ykl = ykl xij , yij ykl = ykl yij , if i, j, k, l are distinct,
(4) zi xkl = xkl zi, zi ykl = ykl zi, if i 6= k, l,
(5) (Three term relations)
xij xjk = xik xij + xjk xik − β xik, xij yjk = yik xij + yjk yik − β yik,
xik yjk = yjk yij + yij xik + β yij , yik xjk = xjk yij + yij yik + β yij ,
if 1 ≤ i < j < k ≤ n,
(6) (Four term relations)
xij zj = zi xij + yij zi + zj yij − β zi,
if i < j.
(B) The associative classical Yang–Baxter algebra ACY B(Bn) of type Bn is the

special case β = 0 of the algebra ̂ACY B(Bn).

Comments 4.2.
• In the case β = 0 the algebra ACY B(Bn) has a rational representation

xij −→ (xi − xj)−1, yij −→ (xi + xj)
−1, zi −→ x−1

i .

• In the case β = 1 the algebra ̂ACY B(Bn) has a “trigonometric” representation

xij −→ (1− qxi−xj )−1, yij −→ (1− qxi+xj )−1, zi −→ (1 + qxi)(1− qxi)−1.

Definition 4.7. The bracket algebra E(Bn) of type Bn is an associative algebra with the
set of generators {xij , yij , zi, 1 ≤ i 6= j ≤ n} subject to the set of relations (1) − (6) listed in
Definition 4.6, and the additional relations

(5a) xjk xij = xij xik + xik xjk − β xik, yjk xij = xij yik + yik yjk − β yik,
yjk xik = yij yjk + xik yij + β yij , xjk yik = yij xjk + yik yij + β yij ,
if 1 ≤ i < j < k ≤ n,
(6a) zj xij = xij zi + zi yij + yij zj − β zi,
if i < j.

25 It should be remembered that to abuse of notation, the complete graph Kn, by definition, is equal to the
complete multipartite graph K((1, . . . , 1)︸ ︷︷ ︸

n

), whereas the graph K(n) is a collection of n distinct points.
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Definition 4.8. The quasi-classical Yang–Baxter algebra ̂ACY B(Dn) of type Dn, as well as the
algebras ACY B(Dn) and E(Dn), are defined by putting zi = 0, i = 1, . . . , n, in the corresponding
Bn-versions of algebras in question.

Conjecture 4.4. The both algebras E(Bn) and E(Dn) are Koszul, and

Hilb(E(Bn), t) =
( n∏
j=1

(1− (2j − 1)t)
)−1

; if n ≥ 4, Hilb(E(Dn), t) =
(n−1∏
j=1

(1− 2j t)
)−1

.

Example 4.3. Hilb(ACY B(B2), t) = (1− 4t+ 2t2)−1,
Hilb(ACY B(B3), t) = (1− 9t+ 16t2 − 4t3)−1,
Hilb(ACY B(B4), t) = (1− 16t+ 64t2 − 60t3 + 9t4)−1,
Hilb(ACY B(D4), t) = (1− 12t+ 18t2 − 4t3)−1.
However, Hilb(ACY B(B5), t) = (1− 25t+ 180t2 − 400t3 + 221t4 − 31t5)−1.

�

Let us introduce the following Coxeter type elements:

hBn :=

n−1∏
a=1

xa,a+1 zn ∈ E(Bn), and hDn :=

n−1∏
a=1

xa,a+1 yn−1,n ∈ E(Dn). (4.2)

Let us bring the element hBn (resp. hDn ) to the reduced form in the algebra E(Bn) that is, let
us consecutively apply the defining relations (1)−(6), (5a, 6a) to the element hBn (resp. apply to
hDn the defining relations for algebra E(Dn) ) in any order until unable to do so. Denote the the
resulting (noncommutative) polynomial by PBn(xij , yij , z) (resp. PDn(xij , yij)). In principal,
this polynomial itself can depend on the order in which the relations (1) − (6), (5a, 6a) are
applied.

Conjecture 4.5. (Cf [90], 6.C5, (c))
(1) Apart from applying the commutativity relations (1)−(4) , the polynomial PBn(xij , yij , z) (resp.

PDn(xij , yij)) does not depend on the order in which the defining relations have been applied.
(2) Define polynomial PBn(s, r, t) (resp. PDn(s, r)) to be the the image of that PBn(xij , yij , z)

(resp. PDn(xij , yij)) under the specialization

xij −→ s, yij −→ r, zi −→ t.

Then
PBn(1, 1, 1) = 1

2

(
2n
n

)
= 1

2 CatBn .

Note that PBn(1, 0, 1) = CatAn−1 .

Problem 4.2. Investigate the Bn and Dn types reduced polynomials corresponding to the Coxeter
elements (4.2), and the reduced polynomials corresponding to the longest elements

wBn :=

n∏
J=1

zj

( ∏
1≤i<j≤n

xij yij

)
, wDn =

∏
1≤i<j≤n

xij yij .

4.2 Super analogue of 6-term relations and classical Yang–Baxter algebras

4.2.1 Six term relations algebra 6Tn, its quadratic dual (6Tn)!, and algebra 6HTn

Definition 4.9. The 6 term relations algebra 6Tn is an associative algebra (say over Q)
with the set of generators {ri,j , 1 ≤ i 6= j < n}, subject to the following relations:
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1) ri,j and rk,l commute, if {i, j} ∩ {k, l} = ∅,
2) (unitarity condition) rij + rji = 0,
3) (Classical Yang–Baxter relations)

[rij , rik + rjk] + [rik, rjk] = 0, if i, j, k are distinct.

We denote by CY Bn, named by classical Yang–Baxter algebra, an associative algebra over Q
generated by elements {rij , 1 ≤ i 6= j ≤ n} subject to relations 1) and 3).

Note that the algebra 6Tn is given by
(
n
2

)
generators and

(
n
3

)
+ 3

(
n
4

)
quadratic relations.

Definition 4.10. Define Dunkl elements in the algebra 6Tn to be

θi =
∑
j 6=i

rij , i = 1, . . . , n.

It easy to see that the Dunkl elements {θi}1≤i≤n generate a commutative subalgebra in the
algebra 6Tn.

Example 4.4. (Some “rational and trigonometric” representations of the algebra
6Tn)

Let A = U(sl(2)) be the universal enveloping algebra of the Lie algebra sl(2). Recall that the
algebra sl(2) is spanned by the elements e, f, h, such that [h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

Let’s search for solutions to the CY BE in the form

ri,j = a(ui, uj) h⊗ h+ b(ui, uj) e⊗ f + c(ui, uj) f ⊗ e,

where a(u, v), b(u, v) 6= 0, c(u, v) 6= 0 are meromorphic functions of the variables (u, v) ∈ C2,
defined in a neighborhood of (0, 0), taking values in A ⊗ A. Let aij := a(ui, uj) (resp. bij :=
b(ui, uj), cij := c(ui, uj)).

Lemma 4.2. The elements ri,j := aij h⊗ h+ bij e⊗ f + cij f ⊗ e satisfy CYBE iff
bij bjk cik = cij cjk bik and 4 aik = bij bjk/bik − bik cjk/bij − bik cij/bjk,
for 1 ≤ i < j < k ≤ n.

It is not hard to see that
• there are three rational solutions:

r1(u, v) =
1/2 h⊗ h+ e⊗ f + f ⊗ e

u− v
, r2(u, v) =

u+ v

4(u− v)
h⊗ h+

u

u− v
e⊗ f +

v

u− v
f ⊗ e,

and r3(u, v) := −r2(v, u).
• there is a trigonometric solution

rtrig(u, v) =
1

4

q2u + q2v

q2u − q2v
h⊗ h+

qu+v

q2u − q2v

(
e⊗ f + f ⊗ e

)
.

Notice that the Dunkl element θj :=
∑

a6=j rtrig(ua, uj) corresponds to the truncated (or
level 0) trigonometric Knizhnik–Zamolodchikov operator.

In fact, the “sln-Casimir element” Ω = 1
2

(∑n
i=1 Eii ⊗Eii

)
+
∑

1≤i<j≤n Eij ⊗Eji satisfies

the 4-term relations
[Ω12,Ω13 + Ω23] = 0 = [Ω12 + Ω13,Ω23],

and the elements rij :=
Ωij
ui−uj , 1 ≤ i < j ≤ n, satisfy the classical Yang–Baxter relations.

Recall that the set {Eij := (δik δjl)1≤k,l≤n, 1 ≤ i, j ≤ n}, stands for the standard basis of
the algebra Mat(n,R). �
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Definition 4.11. Denote by 6T
(0)
n the quotient of the algebra 6Tn by the (two-sided) ideal gen-

erated by the set of elements {r2
i,j , 1 ≤ i < j ≤ n}.

More generally, let {β, qij , 1 ≤ i < j ≤ n} be a set of parameters. Let R := Q[β][q±1
ij ].

Definition 4.12. Denote by 6HTn the quotient of the algebra 6Tn ⊗ R by the (two-sided) ideal
generated by the set of elements {r2

i,j − β ri,j − qij , 1 ≤ i < j ≤ n}.

All these algebras are naturally graded, with deg(ri,j) = 1, deg(β) = 1, deg(qij) = 2.

It is clear that the algebra 6T
(0)
n can be considered as the infinitesimal deformation Ri,j :=

1 + ε ri,j , ε −→ 0, of the Yang-Baxter group 26 Y Bn.

Corollary 4.3. Define hij = 1 + rij ∈ 6HTn. Then the following relations in the algebra 6HTn
are satisfied:

(1) rij rik rjk = rjk rik rij for all pairwise distinct i, j and k;
(2) (Yang-Baxter relations) hij hik hjk = hjk hik hij , if 1 ≤ i < j < k ≤ n.

Note, the item (1) includes three relations in fact.

Proposition 4.3.
(1) The quadratic dual (6Tn)! of the algebra 6Tn is a quadratic algebra generated by the

elements {ti,j , 1 ≤ i < j ≤ n} subject to the set of relations
(i) t2i,j = 0 for all i 6= j;
(ii) (Anticommutativity) tij tk,l + tk,l ti,j = 0 for all i 6= j and k 6= l;
(iii) ti,j ti,k = ti,k tj,k = ti,j tj,k, if i, j, k are distinct.
(2) The quadratic dual (6T

(0)
n )! of the algebra 6T

(0)
n is a quadratic algebra with generators

{ti,j , 1 ≤ i < j ≤ n} subject to the relations (ii)-(iii) above only.

4.2.2 Algebras 6T
(0)
n and 6TFn

We are reminded that the algebra 6T
(0)
n is the quotient of the six term relation algebra 6Tn

by the two-sided ideal generated by the elements {rij}1≤i<j≤n. Important consequence of the
classical Yang–Baxter relations and relations r2

ij = 0,∀i 6= j, is that the both additive Dunkl
elements {θi}1≤i≤n and multiplicative ones {Θi =

∏1

a=i−1
h−1
ai

∏n

a=i+1
hia}1≤i≤n generate

commutative subalgebras in the algebra 6T
(0)
n (and in the algebra 6Tn as well), see Corollary 4.3.

The problem we are interested in, is to describe commutative subalgebras generated by additive
(resp. multiplicative) Dunkl elements in the algebra 6T

(0)
n . Notice that the subalgebra generated

by additive Dunkl elements in the abelianization 27 of the algebra 6Tn(0) has been studied in
[85],[78]. In order to state the result from [78] we need, let us introduce a bit of notation. As
before, let F ln denotes the complete flag variety, and denote by An the algebra generated by the
curvature of 2-forms of the standard Hermitian linear bundles over the flag variety F ln, see e.g
[78]. Finally, denote by In the ideal in the ring of polynomials Z[t1, . . . , tn] generated by the set
of elements

(ti1 + · · ·+ tik)k(n−k)+1,

26 For the reader convenience we recall the definition of the Yang–Baxter group

Definition 4.13. The Yang–Baxter group Y Bn is a group generated by elements {R±1
ij , 1 ≤ i < j ≤ n},

subject to the set of defining relations
• RijRkl = RklRij , if i, j, k, l, are distinct,
• (Quantum Yang–Baxter relations)

RijRikRjk = RjkRikRij , if 1 ≤ i < j < k ≤ n.

27See e.g. http://mathworld.wolfram.com/Abelianization.html
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for all sequences of indices 1 ≤ i1 < i2 < . . . < ik ≤ n, k = 1, . . . , n.

Theorem 4.4. ([85],[78])
(A) There exists a natural isomorphism

An −→ Z[t1, . . . , tn]/In,

(B) Hilb(An, t) = t(
n
2) Tutte(Kn, 1 + t, t−1).

Therefore the dimension of An (as a Z-vector space) is equal to the number F(n) of forests
on n labeled vertices. It is well-known that∑

n≥1

F(n)
xn

n!
= exp

(∑
n≥1

nn−1x
n

n!

)
− 1.

For example, Hilb(A3, t) = (1, 2, 3, 1), Hilb(A4, t) = (1, 3, 6, 10, 11, 6, 1),
Hilb(A5, t) = (1, 4, 10, 20, 35, 51, 64, 60, 35, 10, 1),
Hilb(A6, t) = (1, 5, 15, 35, 70, 126, 204, 300, 405, 490, 511, 424, 245, 85, 15, 1).

Problem 4.3. Describe subalgebra in (6T
(0)
n )ab generated by the multiplicative Dunkl elements

{Θi}1≤i≤n.

On the other hand, the commutative subalgebra Bn generated by the additive Dunkl elements
in the algebra 6T

(0)
n , n ≥ 3, has infinite dimension. For example,

B3
∼= Z[x, y]/〈 xy(x+ y) 〉,

and the Dunkl elements θ(3)
j , j = 1, 2, 3, have infinite order.

Definition 4.14. Define algebra 6TFn to be the quotient of that 6T
(0)
n by the two-sided ideal

generated by the set of “cyclic
relations”

m∑
j=2

m∏
a=j

ri1,ia

j∏
a=2

ri1,ia = 0

for all sequences {1 ≤ i1, i2, . . . , im ≤ n} of pairwise distinct integers, and all integers 2 ≤ m ≤ n
.

For example,
• Hilb(6TF3 , t) = (1, 3, 5, 4, 1) = (1 + t)(1, 2, 3, 1).

• Subalgebra (over Z) in the algebra 6TF3 generated by Dunkl elements θ1 and θ2 has the
Hilbert polynomial equal to (1,2,3,1), and the following presentation: Z [x, y]/I3, where I3

denotes the ideal in Z[x, y] generated by x3, y3, and (x+ y)3.

• Hilb(6TF4 , t) = (1, 6, 23, 65, 134, 164, 111, 43, 11, 1)t.
As a consequence of the cyclic relations, one can check that for any integer n ≥ 2 the n-th power
of the additive Dunkl element θi is equal to zero in the algebra 6TFn for all i = 1, . . . , n. Therefore,
the Dunkl elements generate a finite dimensional commutative subalgebra in the algebra 6TFn .
There exist natural homomorphisms

6TFn −→ 3T (0)
n , Bn

π̃−−−−→ An −→ H∗(F ln,Z) (4.3)

The first and third arrows in (4.19) are epimorphism. We expect that the map π̃ is also epimor-
phism 28, and looking for a description of the kernel ker(π̃).

28 Contrary to the case of the map prn : Z[θ1, . . . , θn] −→ (3Tn(0))ab, where the image Im(prn) has dimension
equals to the number of permutations in Sn with (n-1) inversions see [87],A001892.
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Comments 4.3.
• Let us denote by Bmultn and Amultn the subalgebras generated by multiplicative Dunkl

elements in the algebras 6T
(0)
n and (6T

(0)
n )ab correspondingly. One can define a sequence of maps

Bmultn −→ Amultn
φ̃−−−−→ K∗(F ln), (4.4)

which is a K-theoretic analog of that (4.3). It is an interesting problem to find a geometric
interpretation of the algebra Amultn and the map φ̃.
• (“Quantization”) Let β and {qij = qji, 1 ≤ i, j ≤ n} be parameters.

Definition 4.15. Define algebra 6HTn to be the quotient of the algebra 6Tn by the two sided
ideal generated by the elements {r2

ij − β rij − qij}1≤i,j≤n.

Lemma 4.3. The both additive {θi}1≤i≤n and multiplicative {Θi}1≤i≤n Dunkl elements generate
commutative subalgebras in the algebra 6HTn.

Therefore one can define algebras 6HBn and 6HAn which are a “quantum deformation” of
algebras Bn and An respectively. We expect that in the case β = 0 and a special choice of
“arithmetic parameters” {qij}, the algebra HAn is connected with the Arithmetic Schubert and
Grothendieck Calculi, cf [93], [85]. Moreover, for a “general”set of parameters {qij}1≤i,j≤n and
β = 0, we expect an existence of a natural homomorphism

HAmultn −→ QK∗(F ln),

where QK∗(F ln) denotes a multiparameter quantum deformation of the K-theory ring K∗(F ln),
[47], [51]; see also Section 3.1. Thus, we treat the algebra HAmultn as the K-theory version of a
multiparameter quantum deformation of the algebra Amultn which is generated by the curvature
of 2-forms of the Hermitian linear bundles over the flag variety F ln.
• One can define an analogue of the algebras 6T

(0)
n , 6HTn etc, denoted by 6T (Γ), etc, for

any subgraph Γ ⊂ Kn of the complete graph Kn, and in fact for any oriented matroid. It is
known that Hilb((6Tn(Γ)ab, t) = te(Γ) Tutte(Γ, 1 + t, t−1), see e.g. [6] and the literature quoted
therein.

4.2.3 Hilbert series of algebras CY Bn and 6Tn
29

Examples 4.2. Hilb(6T3, t) = (1− 3t+ t2)−1,
Hilb(6T4, t) = (1− 6t+ 7t2 − t3)−1, Hilb(6T5, t) = (1− 10t+ 25t2 − 15t3 + t4)−1,
Hilb(6T6, t) = (1− 15t+ 65t2 − 90t3 + 31t4 − t5)−1.

Hilb(6T
(0)
3 , t) = [2][3](1− t)−1, Hilb(6T

(0)
4 , t) = [4](1− t)−2(1− 3t+ t2)−1.

In fact, the following statements are true.

Proposition 4.4. (Cf [3]) Let n ≥ 2, then
• The algebras 6Tn and CY Bn are Koszul;
• We have

Hilb(6Tn, t) =

(n−1∑
k=0

(−1)k
{

n

n− k

}
tk
)−1

,

where
{
n
k

}
stands for the Stirling numbers of the second kind, i.e. the number of ways to partition

a set of n things into k nonempty subsets.
29Results of this Subsection have been obtained independently in [3]. This paper contains, among other things,

a description of a basis in the algebra 6Tn, and much more.
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•

Hilb(CY Bn, t) =

(n−1∑
k=0

(−1)k (k + 1)! N(k, n) tk
)−1

,

where N(k, n) = 1
n

(
n
k

) (
n
k+1

)
denotes the Narayana number, i.e the number of Dyck n-paths with

exactly k peaks.

Corollary 4.4.
(A) The Hilbert polynomial of the quadratic dual of the algebra 6Tn is equal to

Hilb(6T !
n, t) =

n−1∑
k=0

{
n

n− k

}
tk.

It is well-known that ∑
n≥0

(n−1∑
k=0

{
n

n− k

}
tk
)
zn

n!
= exp

(exp(zt)− 1

t

)
.

Therefore,
dim(6Tn)! = Belln,

where Belln denotes the n-th Bell number, i.e. the number of ways to partition n things into
subsets, see [87]

Recall, that
∑

n≥0Belln
zn

n! = exp(exp(z)− 1)).
(B) The Hilbert polynomial of the quadratic dual of the algebra CY Bn is equal to

Hilb((CY Bn)!, t) =
n−1∑
k=0

(k + 1)! N(k, n) tk = (n− 1)! L
(α=1)
n−1 (−t−1) tn−1,

where L(α)
n (x) = x−αex

n!
dn

dxn (e−xxn+α) denotes the generalized Laguerre polynomial.
It is well-known that∑

n≥0

(n−1∑
k≥0

(k + 1)!N(k, n) tk
)
zn

n!
= exp

(
z(1− zt)−1

)
.

Comments 4.4. Let En(u), u 6= 0, 1, be the Yokonuma-Hecke algebra, see e.g. [83]
and the literature quoted therein. It is known that the dimension of the Yokonuma–Hecke
algebra En(u) is equal to n! Bn, where Bn denotes as before the n-th Bell number. Therefore,
dim(En(u)) = dim((6Tn)!oSn), where (6Tn)!oSn denotes the semi-direct product of the algebra
(6Tn)! and the symmetric group Sn. It seems an interesting task to check whether or not the
algebras (6Tn)! o Sn and En(u) are isomorphic. �

Remark 4.2. Denote by MY Bn the group algebra over Q of the monoid corresponding to
the Yang–Baxter group Y Bn, see e.g. Definition 4.10. Let P (MY Bn, s, t) denotes the Poincare
polynomial of the algebraMY Bn. One can show that

Hilb(6Tn, s) = P (MY Bn,−s, 1)−1.

For example,
P (MY B3, s, t) = 1 + 3s t + s2 t3, P (MY B4, s, t) = 1 + 6s t + s2 (3t2 + 4t3) + s3 t6,

P (MY B5, s, t) = 1 + 10s t+ s2 (15t2 + 10t3) + s3 (10t4 + 5t6) + s4 t10.
Note that Hilb(MY Bn, t) = P (MY Bn,−1, t)−1 and P (MY Bn, 1, 1) = Belln, the n-th Bell

number.
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Conjecture 4.6.
P (MY Bn, s, t) =

∑
π

s#(π) tn(π),

where the sum runs over all partitions π = (I1, . . . , Ik) of the set [n] := [1, . . . , n] into nonempty
subsets I1, . . . , Ik, and we set by definition, #(π) := n− k, n(π) :=

∑k
a=1

(|Ia|
2

)
.

�

Remark 4.3. For any finite Coxeter group (W,S) one can define the algebra CY B(W ) :=
CY B(W,S) which is an analog of the algebra CY Bn = CY B(An−1) for other root systems.

Conjecture 4.7. (A.N. Kirillov, Y. Bazlov) Let (W,S) be a finite Coxeter group with the root
system Φ. Then
• the algebra CY B(W ) is Koszul;

• Hilb(CY B(W ), t) =

{∑|S|
k=0 rk(Φ) (−t)k

}−1

,

where rk(Φ) is equal to the number of subsets in Φ+ which constitute the positive part of a root
subsystem of rank k. For example, r1(Φ) = |Φ+|, and r2(Φ) is equal to the number of defining
relations in a representation of the algebra CY B(W ).

Example 4.5. Hilb(CY B(B2)!, t) = (1, 4, 3), Hilb(CY B(B3)!, t) = (1, 9, 13, 2),
Hilb(CY B(B4)!, t) = (1, 16, 46, 28, 5), Hilb(CY B(B5)!, t) = (1, 25, 130, 200, 101, 12);
Hilb(CY B(D4)!, t) = (1, 12, 34, 24, 4), Hilb(CY B(D5)!, t) = (1, 20, 110, 190, 96, 11),

Exercises 4.3.
(1) Show that

exp(z (1− zt)−q) = 1 +
∑
n≥1

(
1 +

n−1∑
k=1

(
n− 1

k

) k−1∏
a=0

(a+ (n− k) q) tk
) zn

n!
.

(2) The even generic Orlik–Solomon algebra

Definition 4.16. The even generic Orlik–Solomon algebra OS+(Γn) is defined to be an asso-
ciative algebra (say over Z) generated by the set of mutually commuting elements yi,j , 1 ≤
i 6= j ≤ n, subject to the set of cyclic relations

yi,j = yj,i, yi1,i2 yi2,i3 · · · yik−1,ik yi1,ik = 0, for k = 2, . . . , n,

and all sequences of pairwise distinct integers 1 ≤ i1, . . . , ik ≤ n.

• Show that the number of degree k, k ≥ 3, relations in the definition of the Orlik–Solomon
algebra OS‘+(Γn) is equal to 1

2 (k − 1)!
(
n
k

)
and also is equal to the maximal number of

k-cycles in the complete graph Kn.
Note that if one replaces the commutativity condition in the above Definition on the condition

that yi,j
′
s pairwise anticommute, then the resulting algebra appears to be isomorphic to the

Orlik–Solomon algebra OS(Γn) corresponding to the generic hyperplane arrangement Γn, see
[79]. It is known, ibid, Corollary 5.3, that

Hilb(OS(Γn), t) =
∑
F

t|F |,

where the sum runs over all forests F on the vertices 1, . . . , n, and |F | denotes the number of
edges in a forest F.
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It follows from Corollary 4.4, that

∑
n≥1

Hilb(OS(Γn), t)
zn

n!
= exp

(∑
n≥1

nn−2 tn−1 zn

n!

)
.

It is not difficult to see thatHilb(OS+(Γn), t) = Hilb(OS(Γn), t). In particular, dim OS+(Γn) =
F(n). Note also that a sequence {Hilb(OS(Γn),−1)}n≥2 appears in [87], A057817. The poly-
nomials Hilb(An, t), Fn(x, t) and Hilb(OS+(Γn), t) can be expressed, see e.g. [78], as certain
specializations of the Tutte polynomial T (G;x, y) corresponding to the complete graph G := Kn.
Namely,

Hilb(An, t) = t(
n
2)T (Kn; 1 + t, t−1), Hilb(OS+(Γn), t) = tn−1T (Kn; 1 + t−1, 1).

4.2.4 Super analogue of 6-term relations algebra

Let n, m be non-negative integers.

Definition 4.17. The super 6-term relations algebra 6Tn,m is an associative algebra over
Q generated by the elements {xi,j , 1 ≤ i 6= j ≤ n} and { yα,β, 1 ≤ α 6= β ≤ m} subject to the
set of relations

(0) xi,j + xj,i = 0, yα,β = yβ,α;

(1) xi,j xk,l = xk,l xi,j, xi,j yα,β = yα,β xi,j , yα,β yγ,δ + yγ,δ yα,β = 0,

if tuples (i, j, k, l), (i, j, α, β), as well as (α, β, γ, δ) consist of pair-wise distinct integers;
(2) ( Classical Yang–Baxter relations and theirs super analogue)
[xi,k, xj,i + xj,k] + [xi,j , xj,k] = 0,

if 1 ≤ i, j, k ≤ n are distinct,
[xi,k, yj,i + yj,k] + [xi,j , yj,k] = 0,

if 1 ≤ i, j, k ≤ min(n,m) are distinct,
[yα,γ , yβ,α + yβ,γ ]+ + [yα,β, yβ,γ ]+ = 0,

if 1 ≤ α, β, γ ≤ m are distinct.

Recall that [a, b]+ := a b+ b a denotes the anticommutator of elements a and b.

Conjecture 4.8.
• The algebra 6Tn,m is Koszul.

Theorem 4.5. Let n,m ∈ Z≥1, one has
• Hilb((6Tn)!, t) Hilb((6Tm)!, t) =

min(n,m)−1∑
k=0

{
min(n,m)

min(n,m)− k

}
Hilb((6Tn−k,m−k)

!, t) t2k,

where as before
{

n
n−k
}
denotes the Stirling numbers of the second kind, see for e.g. [87], A008278.

Corollary 4.5. Let n,m ∈ Z≥1. One has
(a) (Symmetry) Hilb(6Tn,m, t) = Hilb(6Tm,n, t).

(b) Let n ≤ m, then Hilb((6Tn,m)!, t) =

n−1∑
k=0

s(n− 1, n− k) Hilb((6Tn−k)
!, t) Hilb((6Tm−k)

!, t) t2k,



On some quadratic algebras 65

where s(n− 1, n− k) denotes the Stirling numbers of the first kind, i.e.

n−1∑
k=0

s(n− 1, n− k) tk =

n−1∏
j=1

(1− j t).

(c) dim(6Tn,n)! is equal to the number of pairs of partitions of the set {1, 2, . . . , n} whose
meet is the partition {{1}, {2}, . . . , {n}}, see e.g. [87], A059849.

Example 4.6. Hilb((6T3,2)!, t) = Hilb((6T2,3)!, t) = (1, 4, 3),
Hilb((6T2,4)!, t) = Hilb((6T4,2)!, t) = (1, 7, 12, 5), Hilb((6T3,3)!, t) = (1, 6, 8),
Hilb((6T2,5)!, t) = Hilb((6T5,2)!, t) = (1, 11, 34, 34, 9),
Hilb((6T3,4)!, t) = Hilb((6T4,3)!, t) = (1, 9, 23, 16), Hilb((6T4,4)!, t) = (1, 12, 44, 50, 6),
Hilb((6T3,5)!, t) = Hilb((6T5,3)!, t) = (1, 13, 53, 79, 34),
Hilb((6T4,5)!, t) = Hilb((6T5,4)!, t) = (1, 16, 86, 182, 131, 12),
Hilb((6T5,5)!, t) = (1, 20, 140, 410, 462, 120).

Now let us define in the algebra 6Tn,m the Dunkl elements θi :=
∑

j 6=i xi,j , 1 ≤ i ≤ n, and
θ̄α :=

∑
β 6=α yα,β, 1 ≤ α ≤ m.

Lemma 4.4. One has
• [θi, θj ] = 0,

• [θi, θ̄α] = [xi,α, yi,α],

• [θ̄α, θ̄β]+ = 2 y2
α,β, if α 6= β.

Remark 4.4. (“Odd” six-term relations algebra) In particular, one can define an “odd”
analog 6T

(−)
n = 6T0,n of the six term relations algebra 6Tn. Namely, the algebra 6T

(−)
n is given

by the set of generators {yij , 1 ≤ i < j ≤ n}, and that of relations:
1) yi,j and yk,l anticommute if i, j, k, l are pairwise distinct;
2) [yi,j , yi,k + yj,k]+ + [yi,k, yj,k]+ = 0, if 1 ≤ i < j ≤ k ≤ n, where [x, y]+ = xy + yx denotes

the anticommutator of x and y.
The “odd” three term relations algebra 3T−n can be obtained as the quotient of the algebra

6T−n by the two-sided ideal generated by the three term relations
yij yjk + yjk yki + yki yij = 0, if i, j, k are pairwise distinct.
One can show that the Dunkl elements θi and θj , i 6= j, given by formula

θi =
∑
j 6=i

yij , i = 1, . . . , n,

form an anticommutative family of elements in the algebra 6T
(−)
n .

In a similar fashion one can define an “odd” analogue of the dynamical six term relations
algebra 6DTn, see Definition 2.2 and Section 2.2, as well as define an “odd’ analogues of the
algebra 3HQn(β,0), see Definition 2.6, the Kohno–Drinfeld algebra, the Hecke algebra and few
others considered in the present paper. Details are omitted in the present paper.

More generally, one can ask what are natural q-analogues of the six term and three term
relations algebras ? In other words to describe relations which ensure the q-commutativity of
Dunkl elements defined above. First of all it would appear natural that the “q-locality and
q-symmetry conditions” hold among the set of generators {yij , 1 ≤ i 6= j ≤ n}, that is
yij + q yji = 0, yij ykl = q ykl yij if i < j, k < l, and {i, j} ∩ {k, l} = ∅.
Another natural condition is the fulfillment of q-analogue of the classical Yang–Baxter rela-

tions, namely
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[yik, yjk]q + [yik, yji]q + [Yij , yjk]q = 0, if i < j < k, where [x, y]q := x y − q y x denotes
the q-commutator. However we are not able to find the q-analogue of the classical Yang– Baxter
relation listed above in the Mathematical and Physical literature yet. Only cases q = 1 and
q = −1 have been extensively studied.

�

4.2.5 Compatible Dunkl elements and Manin matrices

(Compatible Dunkl elements, Manin matrices and algebras related with weighted
complete graphs rKn )

Let us consider a collection of generators {u(α)
ij , 1 ≤ i, j ≤ n, α = 1, . . . , r}, subject to the

following relations
• either the unitarity (the case of sign “+”), or the symmetry relations (the case of sign “ -

”) 30

u
(α)
ij ± u

(α)
ji = 0, ∀, α, i, j, (4.5)

• (local 3-term relations)

u
(α)
ij u

(α)
jk + u

(α)
jk u

α)
ki + u

(α)
ki u

(α)
ij = 0. i, j, k are distinct, 1 ≤ α ≤ r. (4.6)

We define global 3-term relations algebra 3T
(±)
n,r as “ compatible product” of the local 3-term

relations algebras. Namely, we require that the elements

U
(λ)
ij :=

r∑
α=1

λα u
(α)
ij , 1 ≤ i, j ≤ n,

satisfy the 3-term relations (1.4) for all values of parameters {λi ∈ R, 1 ≤ α ≤ r}.
It is easy to check that our request is equivalent to a validity of the following sets of relations

among the generators {u(α)
ij }

(a) (local 3-term relations) u
(α)
ij u

α)
jk + u

(α)
jk u

(α)
ki + u

α)
ki u

(α)
ij = 0,

(b) ( 6-term crossing relations)

u
(α)
ij u

(β)
jk + u

(β)
ij u

(α)
jk + u

(α)
k,i u

(β)
ij u

(α)
ki + u

(α)
jk u

(β)
ki + u

(β)
jk u

(α)
ki = 0,

i, j, k are distinct, α 6= β.
Now let us consider local Dunkl elements

θ
(α)
i :=

∑
j 6=i

u
(α)
ij , j = 1, . . . , n, α = 1, . . . , r.

It follows from the local 3-term relations (?) that for a fixed α ∈ [1, r] the local Dunkl elements
{θ(α)
i } 1≤i≤n

1≤α≤r
either mutually commute (the sign “+”), or pairwise anticommute (the sign “ -

”). Similarly, the global 3-term relations imply that the global Dunkl elements

θ
(λ)
i := λ1θ

(1)
i + · · ·+ λrθ

(r)
i =

∑
j 6=i

U
(λ)
ij i = 1, . . . , n

30 More generally one can impose the q-symmetry conditions

uij + quji = 0, 1 ≤ i < j ≤ n

and ask about relations among the local Dunkl elements to ensure the commutativity of the global ones. As
one might expect, the matrix Q := (θ

(a)
j ) 1≤a≤r

1≤j≤n
composed from the local Dunkl elements should be a q-Manin

matrix. See e.g. [16], or en.wikipedia.org/wiki/Manin.matrix for a definition and basic properties of the latter.
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also either mutually commute (the case “ + “) or pairwise anticommute (the case “ - “).
Now we are looking for a set of relations among the local Dunkl elements which is a con-

sequence of the commutativity (anticommutativity) of the global Dunkl elements. It is quite
clear that if i < j, then

[θ
(a)
i , θ

(b)
j ]± =

r∑
a=1

λ2
a [θ

(a)
i , θ

(a)
j ]± +

∑
1≤a<b≤r

λa λb

(
[θ

(a)
i , θ

(b)
j ]± + [θ

(b)
i , θ

(a)
j ]±

)
,

and the commutativity (or anticommutativity) of the global Dunkl elements for all (λ1, . . . , λr) ∈
Rr is equivalent to the following set of relations
• [θi,

(a) , θ
(a)
j ]± = 0,

• [θ
(a)
i , θ

(b)
j ]± + [θ

(b)
i , θ

(a)
j ]± = 0, a < b and i < j,

where by definition we set [a, b]± := ab∓ ba.
In other words , the matrix Θn := (θ

(a)
i ) 1≤a≤r

1≤i≤n
should be either a Manin matrix (the case “ +

“), or its super analogue (the case “ - “). Clearly enough that a similar construction can be applied
to the algebras studied in Section 2, I-III.,and thus it produces some interesting examples of
the Manin matrices. It is an interesting problem to describe the algebra generated by the
local Dunkl elements {θ(a)

i } 1≤a≤r
1≤i≤n

and a commutative subalgebra generated by the global Dunkl
elements inside the former. It is also an interesting question whether or not the coefficients
C1, . . . , Cn of the column characteristic polynomial Detcol | Θn − t In |=

∑n
k=0Ck t

n−k of
the Manin matrix Θn generate a commutative subalgebra ? For a definition of the column
determinant of a matrix, see e.g. [16].

However a close look at this problem and the question posed needs an additional treatment
and has been omitted from the content of the present paper.

Here we are looking for a “natural conditions” to be imposed on the set of generators {uαij} 1≤α≤r
1≤i,j≤n

in order to ensure that the local Dunkl elements satisfy the commutativity (or anticommutativity)
relations:

[θ
(α)
i , θ

(β)
j ]± = 0, for all 1 ≤ i < j ≤ n and 1 ≤ α, β ≤ r.

The “natural conditions” we have in mind are:
• (locality relations)

[u
(α)
ij , u

β)
kl ]± = 0, (4.7)

• (twisted classical Yang–Baxter relations)

[u
(α)
ij , u

(β)
jk ]± + [u

(α)
ik , u

(β)
ji ]± + [u

(α)
ik , u

(β)
jk ]± = 0, (4.8)

if i, j, k, l are distinct and 1 ≤ α, β ≤ r.
Finally we define a multiple analogue of the three term relations algebra, denoted by 3T±(rKn),

to be the quotient of the global 3-term relations algebra 3T±n,r modulo the two-sided ideal gener-
ated by the left hand sides of relations (4.7), (4.8) and that of the following relations

•
(
u

(α)
ij

)2

= 0, [u
(α)
ij , u

(β)
ij ]± = 0, for all i 6= j, α 6= β.

The outputs of this construction are
• noncommutative quadratic algebra 3T (±)(rKn) generated by the elements {u(α)

ij } 1≤i<j≤n
α=1,...,r

,

• a family of nr either mutually commuting (the case “+”), or pairwise anticommuting (the
case “ - ”) local Dunkl elements {θ(α)

i } i=1,...,n
α=1,...,r

.

We expect that the subalgebra generated by local Dunkl elements in the algebra 3T+(rKn)
is closely related (isomorphic for r = 2) with the coinvariant algebra of the diagonal action of
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the symmetric group Sn on the ring of polynomials Q[X
(1)
n , . . . , X

(r)
n ], where X(j)

n stands for the
set of variables {x(j)

1 , . . . , x
(j)
n }. The algebra (3T−(2Kn))(−))anti has been studied in [47], and

[7]. In the present paper we state only our old conjecture.

Conjecture 4.9. (A.N. Kirillov, 2000)

Hilb((3T−(3Kn))anti, t) = (1 + t)n(1 + nt)n−2,

where for any algebra A we denote by Aanti the quotient of algebra A by the two-sided ideal
generated by the set of anticommutators {ab+ ba | (a, b) ∈ A×A}.

According to observation of M. Haiman [37], the number 2n (n+ 1)n−2 is thought of as being
equal to to the dimension of the space of triple coinvariants of the symmetric group Sn.

4.3 Four term relations algebras / Kohno–Drinfeld algebras

4.3.1 Kohno–Drinfeld algebra 4Tn and that CY Bn

Definition 4.18. The 4 term relations algebra (or the Kohno–Drinfeld algebra, or infinites-
imal pure braids algebra) 4Tn is an associative algebra (say over Q) with the set of generators
yi,j , 1 ≤ i < j ≤ n, subject to the following relations

1) yi,j and yk,l are commute, if i, j, k, l are all distinct;
2) [yi,j , yi,k + yj,k] = 0, [yi,j + yi,k, yj,k] = 0, if 1 ≤ i < j ≤ k ≤ n.

Note that the algebra 4Tn is given by
(
n
2

)
generators and 2

(
n
3

)
+ 3

(
n
4

)
quadratic relations,

and the element
c :=

∑
1≤i<j≤n

yi,j

belongs to the center of the Kohno–Drinfeld algebra.

Definition 4.19.
Denote by 4T 0

n the quotient of the algebra 4Tn by the (two-sided) ideal generated by by the set
of elements {y2

i,j , 1 ≤ i < j ≤ n}.
More generally, let β, {qij , 1 ≤ i < j ≤ n} be the set of parameters, denote by 4HTn the

quotient of the algebra 4Tn by the two-sided ideal generated by the set of elements {y2
ij − βyij −

qij , 1 ≤ i < j ≤ n}.

These algebras are naturally graded, with deg(yi,j) = 1, deg(β) = 1, deg(qij) = 2, as well as
each of that algebras has a natural filtration by setting deg(yi,j) = 1, deg(β) = 0, deg(qij) =
0, ∀i 6= j.

It is clear that the algebra 4Tn can be considered as the infinitesimal deformation gi,j :=
1 + ε yi,j , ε −→ 0, of the pure braid group Pn.

There is a natural action of the symmetric group Sn on the algebra 4Tn ( and also on 4T 0
n

) which preserves the grading: it is defined by w · yi,j = yw(i),w(j) for w ∈ Sn. The semi-direct
product QSnn4Tn (and also that QSnn4T 0

n) is a Hopf algebra denoted by Bn (respectively B0
n).

Remark 4.5. There exists the natural map

CY Bn −→ 4Tn, given by yi,j := ui,j + uj,i.

Indeed, one can easily check that

[yij , yik + yjk] = wijk + wjik − wkij − wkji,

see Section 2.3.1, Definition 2.5 for a definition of the classical Yang–Baxter algebra CY Bn, and
Section 2, (2.3), for a definition of the element wijk.
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Remark 4.6. It follows from the classical 3-term identity (“Jacobi identity”)

1

(a− b)(a− c)
− 1

(a− b)(b− c)
+

1

(a− c)(b− c)
= 0, (4.9)

that if elements {yi,j | 1 ≤ i < j ≤ n} satisfy the 4-term algebra relations, see Definition 4.18,
and t1, · · · , tn, a set of (pairwise) commuting parameters, then the elements

ri,j :=
yi,j
ti − tj

satisfy the 6-term relations algebra 6Tn, see Section 4.2.1„ Definition 4.9. In particular, the
Knizhnik–Zamolodchikov elements

KZj :=
∑
i 6=j

yi,j
ti − tj

, 1 ≤ j ≤ n,

form a pairwise commuting family (by definition, we put yi,j = yj,i, if i > j).

Example 4.7. (1) (Cf Subsection 4.2.1, Example 4.4)
(Yang representation of the 4Tn).
Let Sn be the symmetric group acting identically on the set of variables {x1, . . . , xn}. Clearly

that the elements {yi,j := sij}1≤i<j≤n, yi,j := yj,i, if i > j, satisfy the Kohno-Drinfeld relations
listed in Definition 4.18. Therefore the operators uij defined by

uij = (xi − xj)−1 sij

give rise to a representation of the algebra 3Tn on the field of rational functions Q(x1, . . . , xn).
The Dunkl-Gaudin elements

θi =
∑
j,j 6=i

yij , i = 1, . . . , n

correspond to the truncated Gaudin operators acting in the tensor space (Cn)⊗n.
(2) Let A = U(sl(2)) be the universal enveloping algebra of the Lie algebra sl(2). Recall that

the algebra sl(2) is spanned by the elements e, f, h, so that [h, e] = 2e, [h, f ] = −2f, [e, f ] = h.
Consider the element Ω = 1

2 h⊗h+ e⊗ f + f ⊗ e. Then the map yi,j −→ Ωi,j ∈ A⊗n defines a
representation of the Kohno–Drinfeld algebra 4Tn on that A⊗n. The element KZj defined above,
corresponds to the truncated (or at critical level ) rational Knizhnik–Zamolodchikov operator.

Proposition 4.5. (T. Kohno, V. Drinfeld)

Hilb(4Tn, t) =
n−1∏
j=1

(1− jt)−1 =
∑
k≥0

{
n+ k − 1

n− 1

}
tk,

where
{
n
k

}
stands for the Stirling numbers of the second kind, i.e. the number of ways to partition

a set of n things into k nonempty subsets.

Remark 4.7. It follows from [2] that Hilb(4Tn, t) is equal to the generating function

1 +
∑
d≥1

v
(n)
d td

for the number v
(n)
d of Vassiliev invariants of order d for n-strand braids. Therefore, one

has the following equality:

v
(n)
d =

{
n+ d− 1

n− 1

}
,
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i.e. the number of Vassiliev invariants of order d for n-strand braids is equal to the Stirling
number of the second kind

{
n+d−1
n−1

}
.

We expect that the generating function

1 +
∑
d≥1

v̂
(n)
d td

for the number v̂
(n)
d of Vassiliev invariants of order d for n-strand virtual braids is

equal to the Hilbert series Hilb(4NTn, t) of the nonsymmetric Kohno-Drinfeld algebra 4NTn,
see Section 4.3.2.

Proposition 4.6. (Cf [3]) The algebra 4NTn, t) is Koszul, and

Hilb(4NTn, t) =

(n−1∑
k=0

(k+1)! N(k, n) (−t)k
)−1

, Hilb((4NTn)!, t) = (n−1)! L
(α=1)
n−1 (−t−1) tn−1,

where N(k, n) := 1
n

(
n
k

) (
n
k+1

)
denotes the Narayana number, i.e. the number of Dyck n-paths

with exactly k peaks;

L(α)
n (x) =

xα ex

n!

dn

dxn

(
ex x

n+α

)
denotes the generalized Laguerre polynomial.

See also Theorem 4.6 below.

It is well-known that the quadratic dual 4T !
n of the Kohno–Drinfeld algebra 4Tn is isomorphic

to the Orlik–Solomon algebra of type An−1, as well as the algebra 3T antin . However the algebra
4T 0

n is failed to be Koszul.

Examples 4.3.
Hilb(4T 0

3 , t) = [2]2[3], Hilb(4T 0
4 , t) = (1, 6, 19, 42, 70, 90, 87, 57, 23, 6, 1).

Hilb((4T 0
3 )!, t)(1− t) = (1, 2, 2, 1), Hilb((4T 0

4 )!, t)(1− t)2 = (1, 4, 6, 2,−4,−3),

Hilb((4T 0
5 )!, t)(1− t)2 = (1, 8, 26, 40, 24,−3,−6).

We expect that Hilb((4T 0
n)!, t) is a rational function with the only pole at t = 1 of order

[n/2], cf. Examples 4.1.

Remark 4.8. One can show that if n ≥ 4, then Hilb(4T 0
n , t) < Hilb(3T 0

n , t) contrary to the
statement of Conjecture 9.6 from [45].

4.3.2 Nonsymmetric Kohno–Drinfeld algebra 4NTn, and McCool algebra PΣn

(Nonsymmetric Kohno–Drinfeld algebra 4NTn, and McCool algebras PΣn and PΣ+
n )

Definition 4.20. The nonsymmetric 4 term relations algebra (or the nonsymmetric
Kohno–Drinfeld algebra) 4NTn is an associative algebra (say over Q) with the set of genera-
tors yi,j , 1 ≤ i 6= j ≤ n, subject to the following relations

1) yi,j and yk,l are commute, if i, j, k, l are all distinct;
2) [yi,j , yi,k + yj,k] = 0, if i, j, k are all distinct.

We denote by 4NT+
n the quotient of the algebra 4NTn by the two- sided ideal generated by

the elements {yij + yji = 0, 1 ≤ i 6= j ≤ n}.
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Theorem 4.6. One has

Hilb(4NTn, t) = Hilb(CY Bn, t), Hilb(4NT+
n , t) = Hilb(6Tn, t)

for all n ≥ 2.

We expect that the both algebras 4NTn and 4NT+
n are Koszul.

Definition 4.21.
(1) Define the McCool algebra PΣn to be the quotient of the nonsymmetric Kohno–

Drinfeld algebra 4NTn by the two-sided ideal generated by the elements

{yik yjk − yjk yik}

for all pairwise distinct i, j and k.
(2) Define the upper triangular McCool algebra PΣ+

n to be the quotient of the McCool
algebra PΣn by the two-sided ideal generated by the elements

{yij + yji},

1 ≤ i 6= j ≤ n.

Theorem 4.7. The quadratic duals of the algebras PΣn and PΣ+
n have the following Hilbert

polynomials

Hilb(PΣ!
n, t) = (1 + nt)n−1, Hilb((PΣ+

n )!, t) =
n−1∏
j=1

(1 + jt).

Proposition 4.7.
(1) The quadratic dual PΣ!

n of the algebra PΣn admits the following description. It is
generated over Z by the set of pairwise anticommuting elements

{yij , 1 ≤ i 6= j ≤ n},

subject to the set of relations
(a) y2

ij = 0, yij yji = 0, 1 ≤ i 6= j ≤ n,
(b) yik yjk = 0, for all distinct i, j, k,
(c) yij yjk + yik yij + ykj yik = 0, for all distinct i, j, k.
(2) The quadratic dual (PΣ+

n )! of the algebra PΣ+
n admits the following description. It is

generated over Z by the set of pairwise anticommuting elements {zij , 1 ≤ i < j ≤ n}, subject
to the set of relations

(a) z2
ij = 0 for all i < j,

(b) zij zjk = zij zik for all 1 ≤ i < j < k ≤ n.

Comments 4.5. The McCool groups and algebras
The McCool group PΣn is by definition, the group of pure symmetric automorphisms of

the free group Fn consisting of all automorphism that, for a fixed basis {x1, . . . , xn}, send each
xi to a conjugate of itself. This group is generated by automorphisms αij , 1 ≤ i 6= j ≤ n, defined
by

αij(xk) =

{
xj xi x

−1
j , k = i;

xk, k 6= i.



72 A.N. Kirillov

McCool have proved that the relations
[αij , αkl] = 1, i, j, k, l are distinct,
[αij , αji] = 1, i 6= j,

[αij , αik αjk] = 1, i, j, k are distinct.

form the set of defining relations for the group PΣn The subgroup of PΣn generated by the αij
for 1 ≤ i < j ≤ n is denoted by PΣ+

n and is called by upper triangular McCool group. It
is easy to see that the McCool algebras PΣn and PΣ+

n are the “ infinitesimal deformations ” of
the McCool groups PΣn and PΣ+

n respectively.

Theorem 4.8.
(1) ([39]) There exists a natural isomorphism

H∗(PΣn,Z) ' PΣ!
n

of the quadratic dual PΣ!
n of the McCool algebra PΣn and the cohomology ring H∗(PΣn,Z) of

the McCool group PΣn.
(2) ([17]) There exists a natural isomorphism

H∗(PΣ+
n ,Z) ' (PΣ+

n )!

of the quadratic dual (PΣ+
n )! of the upper triangular McCool algebra PΣ+

n and the cohomology
ring H∗(PΣ+

n ,Z) of the upper triangular McCool group PΣ+
n .

�

4.3.3 Algebras 4TTn and 4STn

Definition 4.22.
(I) Algebra 4TTn is generated over Z by the set of elements {xij , 1 ≤ i 6= j ≤ n}, subject to

the set of relations
(1) xij xkl = xkl xij , if all i, j, k, l are distinct,
(2) [xij + xjk, xik] = 0, [xji + xkj , xki] = 0, if i < j < k.
(II) Algebra 4STn is generated over Z by the set of elements {xij , 1 ≤ i 6= j ≤ n}, subject

to the set of relations
(1) [xij , xkl] = 0, [xij , xji] = 0, if i, j, k, l are distinct;
(2) [xij , xik] = [xik, xjk] = [xjk, xij ], [xji, xki] = [xki, xkj ] = [xkj , xii],
(3) [xij , xki] = [xkj , xij ] = [xji, xik] = [xik, xkj ] = [xki, xjk] = [xjk, xji],
if i < j < k.

Proposition 4.8. One has

t
∑
n≥2

Hilb((4TTn)!, t)
zn

n!
=
exp(−tz)
(1− z)2t

− 1− tz.

Therefore, dim(4TTn)! is equal to the number of permutations of the set [1, ..., n+ 1] having no
substring [k, k+1]; also, for n ≥ 1 equals to the maximal permanent of a nonsingular n×n (0, 1)-
matrix, see [87], A000255 31. Moreover, one has

Hilb((4STn)!, t) = (1 + t)n (1 + nt)n−2,

cf. Conjecture 4.9.
31 See also a paper by F. Hivert, J-C. Novelli and J-Y. Thibon Commutative combinatorial Hopf algebras, J.

Algebraic Combin. 28 (2008), no. 1, 65–95, Section 3.8.4, for yet another combinatorial interpretation of the
dimension of the algebra (4TTn)!.
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We expect that The both algebras 4TTn and 4STn are Koszul.

Problem. Give a combinatorial interpretation of polynomials Hilb((4TTn)!, t) and construct
a monomial basis in the algebras (4TTn)! and 4STn.

4.4 Subalgebra generated by Jucys–Murphy elements in 4T 0
n

Definition 4.23. The Jucys–Murphy elements dj , 2 ≤ j ≤ n, in the quadratic algebra 4Tn
are defined as follows

dj =
∑

1≤i<j
yi,j , j = 2, ..., n. (4.10)

It is clear that Jucys–Murphy’s elements dj are the infinitesimal deformation of the elements
D1,j ∈ Pn.

Theorem 4.9.
10 The Jucys–Murphy elements dj , 2 ≤ j ≤ n, commute pairwise in the algebra 4Tn.
20 In the algebra 4T 0

n the Jucys–Murphy elements dj , 2 ≤ j ≤ n, satisfy the following relations

(d2 + · · ·+ dj) d
2j−3
j = 0, 2 ≤ j ≤ n.

30 Subalgebra (over Z) in 4T 0
n generated by the Jucys–Murphy elements d2, · · · , dn has the

following Hilbert polynomial
∏n−1
j=1 [2j].

40 There exists an (birational) isomorphism Z [x1, . . . , xn−1]/Jn−1 −→ Z [d2, . . . , dn] defined
by dj :=

∏n−j
i=1 xi, 2 ≤ j ≤ n, where Jn−1 is a (two-sided) ideal generated by ei(x2

1, . . . , x
2
n−1),

1 ≤ i ≤ n− 1, and ei(x1, . . . , xn−1) stands for the i− th elementary symmetric polynomial in the
variables x1, . . . , xn−1.

Remark 4.9.
(1) It is clearly seen that the commutativity of the Jucys–Murphy elements is equivalent

to the validity of the Kohno-Drinfeld relations and the locality relations among the generators
{yi,j}1≤i<j≤n.

(2) Let’s stress that d2j−2
j 6= 0 in the algebra 4T 0

n , for j = 3, . . . , n. For example, d4
3 =

y13 y23 y13 y23 + y23 y13 y23 y13 6= 0 since dim(4T 0
3 )4 = 1 and it is generated by the element d4

3.
(3) The map ι : yi,j −→ yn+1−j,n+1−i preserves the relations 1) and 2) in the definition of

the algebra 4Tn, and therefore defines an involution of the Kohno–Drinfeld algebra. Hence the
elements

d̂j :=
n∑

k=j+1

yj,k = ι(dn+1−j), 1 ≤ j ≤ n− 1

also form a pairwise commuting family.

�

Problems 4.1. (a) Compute Hilbert series of the algebra 4T 0
n and its quadratic dual algebra

(4T 0
n)!.
(b) Describe subalgebra in the algebra 4HTn generated by the Jucys–Murphy elements dj , 2 ≤

j ≤ n.

It is well-known that the Kohno–Drinfeld algebra 4Tn is Koszul, and its quadratic dual 4T !
n

is isomorphic to the anticommutative quotient 3T 0,anti
n of the algebra 3T

(−),0
n .

On the other hand, if n ≥ 3 the algebra 4T 0
n is not Koszul, and its quadratic dual is isomorphic

to the quotient of the ring of polynomials in the set of anticommutative variables {ti,j | 1 ≤ i <
j ≤ n}, where we do not impose conditions t2ij = 0, modulo the ideal generated by Arnold’s
relations {ti,j tj,k + ti,k (ti,j − tj,k) = 0} for all pairwise distinct i, j and k.
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4.5 Nonlocal Kohno–Drinfeld algebra NL4Tn

Definition 4.24. Nonlocal Kohno–Drinfeld algebra NL4Tn is an associative algebra over
Z with the set of generators {yij , 1 ≤ i < j ≤ n} subject to the set of relations

(1) yij ykl = ykl yij if (i− k)(i− l)(j − k)(j − l) > 0,

(2) [yij ,
∑j

a=i yak] = 0, if i < j < k,

(3) [yjk,
∑k

a=j yia] = 0, if i < j < k.

It’s not difficult to see that relations (1)− (3) imply the following relations
(4) [xij ,

∑j−1
a=i+1 (yia + yaj)] = 0, if i < j.

Let’s introduce in the nonlocal Kohno–Drinfeld algebra NL4Tn the Jucys–Murphy elements
(JM-elements for short) dj and the dual JM-elements d̂j as follows

dj =

j−1∑
a=1

yaj , d̂j =
n∑

a=n−j+2

, yn−j+1,a j = 2, . . . , n. (4.11)

It follows from relations (1) and (2) (resp. (1) and (3)) that the Jucys–Murphy elements d2, . . . , dn
(resp. d̂2, . . . , d̂n) form a commutative subalgebra in the algebra NL4Tn.. Moreover, it follows
from relations (1) − (3) that the element c1 :=

∑n
j=2 dj =

∑n
j=2 d̂j belongs to the center of

the algebra NL4Tn.

Theorem 4.10.
(1) The algebra NL4Tn is Koszul, and

Hilb((NL4Tn)!, t) =
n−1∑
k=0

Ck

(
n+ k − 1

2k

)
tk,

where Ck = 1
k+1

(
2k
k

)
stands for the k-th Catalan number.

(2) The quadratic dual (NL4Tn)! of the nonlocal Kohno - Drinfeld algebra NL4Tn is an
associative algebra generated by the set of mutually anticommuting elements {tij 1 ≤ i < j ≤ n}
subject to the set of relations
• t2ij = 0, if 1 ≤ i < j ≤ n,
• (Arnold’s relations) tij tjk + tik tij + tjk tik = 0, if i < j < k,

• (Disentanglement relations) tik tjl + til tik + tjl til = 0, if i < j < k < l.

Therefore the algebra (NL4Tn)! is the quotient of the the Orlik-Solomon algebra OSn by the
ideal generated by Disentanglement relations, and dim((NL4Tn+1)!) is equal to the number of
Schroeder paths , i.e. paths from (0, 0) to (2n, 0) consisting of steps U = (1, 1), D = (1,−1), H =
(2, 0) and never going below the x − axis. The Hilbert polynomial Hilb((NL4Tn)!, t) is the
generating function of such paths with respect to the number of U ′s, see [87], A088617.

Remark 4.10.
Denote by Hn(q) “the normalized” Hecke algebra of type An, i.e. an associative algebra

generated over Z[q, q−1] by elements T1, . . . , Tn−1 subject to the set of relations
(a) Ti Tj = Tj Ti, if |i− j| > 1, Ti Tj Ti = Tj Ti Tj , if |i− j| = 1,

(b) T 2
i = (q − q−1) Ti + 1 for i = 1, . . . , n− 1.

If 1 ≤ i < j ≤ n− 1, let’s consider elements T(ij) := Ti Ti+1 · · ·Tj−1 Tj Tj−1 · · ·Ti+1 Ti.

Lemma 4.5. The elements {T(ij), 1 ≤ i < j < n − 1} satisfy the defining relations of the
non-local Kohno-Drinfeld algebra NL4Tn−1, see Definition 4.23.

Therefore the map yij → H(ij) defines a epimorphism ιn : NL4Tn −→ Hn+1(q).
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Definition 4.25. Denote by NL4Tn the quotient of the non-local Kohno-Drinfeld algebra NL4Tn
by the two-sided ideal In generated by the following set of degree three elements:

(1) zij := yi,j+1 yij yj,j+1 − yj,j+1 yij yi,j+1, if 1 ≤ i < j ≤ n,

(2) ui := yi,i+1

( i−1∑
a=1

i−1∑
b=1, b 6=a

yai yb,i+1

)
−
( i−1∑
a=1

i−1∑
b=1, b 6=a

yb,i+1 yai

)
yi,i+1, if 1 ≤ i ≤ n−1,

(3) vi := yi,i+1

( n∑
a=i+1

n∑
b=i+1 b6=a

yi+1,a yi,b

)
−
( n∑
a=i+1

n∑
b=i+1 b6=a

yi+1,ayi,b

)
yi,i+1,

if 1 ≤ i ≤ n− 1.

Proposition 4.9.
(1) The ideal Tn belongs to the kernel of the epimorphism ιn: In ⊂ Ker(ιn),
(2) Let d2, . . . , dn (resp. d̂2, . . . , d̂n) be the Jucys-Murphy elements (resp. dual JM-elements)

in the algebra NL4Tn given by the formula (4.11).
Then the all elementary symmetric polynomials ek(d2, . . . , dn) (resp. ek(d̂2, . . . , d̂n)) of de-

gree k, 1 ≤ k < n, in the Jucys–Murphy elements d2, . . . , dn, (resp. in the dual JM-elements
d̂2, . . . , d̂n,) commute in the algebra NL4Tn with the all elements yi,i+1, i = 1, . . . , n− 1.

Therefore, there exists an epimorphism of algebras NL4Tn −→ Hn(q), and images of the
elements ek(d2, . . . , dn), (resp. ek(d̂2, . . . , d̂n) 1 ≤ k < n, belongs to the center of the “normalized”
Hecke algebra Hn(q), and in fact generate the center of algebra Hn(q).

Few comments in order:
(A) LetN`4Tn be an associative algebra over Z with the set of generators {yij , 1 ≤ i < j ≤ n}

subject to the set of relations
(1) yij ykl = ykl yij , if (i− k)(i− l)(j − k)(j − l) > 0,

(2) [yij ,
∑j

a=i yak] = 0, if i < j < k.

Proposition 4.10.
(1) The algebra N`4Tn is Koszul and has the Hilbert series equals to

Hilb(N`4Tn, t) = (

n−1∑
k=0

(−1)k N(k, n) tk)−1,

where N(k, n) := 1
n

(
n
k

) (
n
k+1

)
denotes the Narayana number, i.e. the number of Dyck n-paths

with exactly k peaks, see e.g. [87], A001263.
Therefore, dim(N`4Tn)! = 1

n+1

(
2 n
n

)
, the n-th Catalan number.

(2) Elementary symmetric polynomials ek(d2, . . . , dn) of degree k, 1 ≤ k < n, in the Jucys–
Murphy elements d2, . . . , dn, commute in the algebra N`4Tn with the all elements yi,i+1,
i = 1, . . . , n− 1.

(B) The kernel of the epimorphism NL4Tn −→ Hn(q) contains the elements

{yi,i+1 yi+1,i+2 yi,i+1 − yi+1,i+2 yi,i+1 yi+1,i+2, i = 1, . . . , n− 2}, {T 2
i,i+1 − (q− q−1) Ti,i+1 − 1},

as well as the following set of commutators

[yij , ek(di, . . . , dj)], 1 ≤ k ≤ j − i+ 1.

It is an interesting task to find defining relations among the Jucys– Murphy elements {dj , j =
2, . . . , n} in the algebra NL4Tn or that N`4Tn. We expect that the Jucys–Murphy element dk
satisfies the following relation (= minimal polynomial) in the Hecke algebra Hn(q), n ≥ k,

k−1∏
a=1

(dk −
q − q2a+1

1− q2
) (dk +

q−1 − q−2a−1

1− q−2
) = 0. (4.12)

�
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4.5.1 On relations among JM-elements in Hecke algebras

Let Hn(q) be the “normalized” Hecke algebra of type An, see Remark 4.10. Let λ ` n be a
partition of n. For a box x = (i, j) ∈ λ define

cλ(x; q) := q
1− q2 (j−i)

1− q2
(4.13)

It is clear that if q = 1, cq=1(x) is equal to the content c(x) of a box x ∈ λ. Denote by

Λ(n)
q = Z[q, q−1] [z1, . . . , zn]Sn

the space of symmetric polynomials over the ring Z[q, q−1] in variables {z1, . . . , zn}.

Definition 4.26. Denote by J (n)
q the set of symmetric polynomials f ∈ Λ

(n)
q such that for any

partition λ ` n one has
f(cλ(x; q) | x ∈ λ) = 0.

For example, one can check that symmetric polynomial

e2
1 − (q2 + 1 + q−2) e2 − 2 (q − q−1) e1 − 3

belongs to the set J (3)
q .

Finally, denote by J(n)
q the ideal in the ring Z[q, q−1] [z1, . . . , zn] generated by the set J (n)

q .

Conjecture 4.10. The algebra over Z[q, q−1] generated by the Jucys–Murphy elements d2, . . . , dn
corresponding to the the Hecke algebra Hn(q) of type An−1, is isomorphic to the quotient of the
algebra Z[q, q−1] [z1, . . . , zn] by the ideal J(n)

q .

It seems an interesting problem to find a minimal set of generators for the ideal J(n)
q .

Comments 4.6. Denote by JM(n) the algebra over Z generated by the JM-elements d2, . . . , dn,
deg(di = 1,∀i, corresponding to the symmetric group Sn. In this case one can check Conjecture 8
for n < 8, and compute the Hilbert polynomial(s) of the associated graded algebra(s) gr(JM(n)).
For example 32

Hilb(gr(JM(2), t) = (1, 1), Hilb(gr(JM(3), t) = (1, 2, 1),, Hilb(gr(JM(4), t) = (1, 3, 4, 2),
Hilb(gr(JM(5), t) = (1, 4, 8, 9, 4), Hilb(gr(JM(6), t) = (1, 5, 13, 21, 21, 12, 3),
Hilb(gr(JM(7), t) = (1, 6, 19, 40, 59, 60, 37, 10).

It seems an interesting task to find a combinatorial interpretation of the polynomials
Hilb(gr(JM(n)), t) in terms of standard Young tableaux of size n.

�
Let {χλ, λ ` n} be the characters of the irreducible representations of the symmetric group

Sn, which form a basis of the center Zn of the group ring Z[Sn]. The famous result by A.
Jucys [40] states that for any symmetric polynomial f(z1, . . . , zn) the character expansion of
f(d2, . . . , dn, 0) ∈ Zn is

f(d2, . . . , dn, 0) =
∑
λ`n

f(Cλ)

Hλ
χλ, (4.14)

where Hλ =
∏
x∈λ hx denotes the product of all hook-lengths of λ, and Cλ := {c(x)}x∈λ denotes

the set of contents of all boxes of λ.
32 I would like to thank DR. S. Tsuchioka for computation the Hilbert polynomials Hilb(JM(n), t), as well

as the sets of defining relations among the Jucys–Murphy elements in the symmetric group Sn for n ≤ 7.
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Recall that the Jucys–Murphy elements {dHj }2≤j≤n in the (normalized) Hecke algebra Hn(q)

are defined as follows: dHj :=
∑

i<j T(ij), where T(ij) := Ti · · ·Tj−1 Tj Tj−1 · · ·Ti. Finally de-

note by Hλ(q) and C(q)
λ the hook polynomial and the set {cλx; q)}x ∈ λ. Then for any symmetric

polynomial f(z1, . . . , zn) one has

f(dH2 , . . . , d
H
n , 0) =

∑
λ`n

f(C
(q)
λ )

Hλ(q)
χλq , (4.15)

where chiλq denotes the q-character of the algebra Hn(q).
Therefore, if f ∈ J (n)

q , then f(dH2 , . . . , d
H
n , 0) = 0. It is an open problem to prove/disprove

that if f(dH2 , . . . , d
H
n , 0) = 0, then f(C

(q)
λ ) = 0 for all partitions of size n (even in the case q = 1).

4.6 Extended nil-three term relations algebra and DAHA, cf [15]

Let A := {q, t, a, b, c, h, e, f, . . .} be a set of parameters.

Definition 4.27. Extended nil-three term relations algebra 3Tn is an associative algebra over
Z[q±1, t±1, a, b, c, h, e, . . .] with the set of generators {ui,j , 1 ≤ i 6= j ≤ n, xi, 1 ≤ i ≤ n, π}
subject to the set of relations

(0) ui,j + uj,i = 0, u2
i,j = 0,

(1) xi xj = xj xi, ui,j uk,l = uk,l ui,j , if i, j, k, l are distinct,
(2) xi ukl = uk,l xi, if i 6= k, l,
(3) xi ui,j = ui,j xj + 1, xj ui,j = ui,j xi − 1,
(4) ui,j uj,k + uk,i ui,j + uj,k uk,i = 0, if i, j, k are distinct,
(5) π xi = xi+1 π, if 1 ≤ i < n, π xn = t−1 x1 π,
(6) π uij = ui+1,j+1, if 1 ≤ i < j < n, πj un−j+1,n = t u1,j π

j, 2 ≤ j ≤ n.

Note that the algebra 3Tn contains also the set of elements {πa ujn, 1 ≤ a ≤ n− j}.

Definition 4.28. (Cf. [58]) Let 1 ≤ i < j ≤ n, define

Ti,j = a+ (b xi + c xj + h+ e xi xj) ui,j .

Lemma 4.6.
(1) T 2

i,j = (2a+ b− c) Ti,j − a(a+ b− c), if a = 0, then T 2
ij = (b− c) Tij.

(2) (Coxeter relations) Relations

Ti,j Tj,k Ti,j = Tj,k Ti,j Tj,k,

are valid, if and only if the following relation holds

(a+ b)(a− c) + h e = 0. (4.16)

(3) (Yang–Baxter relations) Relations

Ti,j Ti,k Tj.k = Tj,k Ti,k Ti,j

are valid if and only if b = c = e = 0, i.e. Tij = a+ d uij.
(4) T 2

ij = 1 if and only if a = ±1, c = b± 2, he = (b± 1)2.
(5) Assume that parameters a, b, c, h, e satisfy the conditions (4.16) and that b c+ 1 = h e.

Then
Tij xi Tij = xj + (h+ (a+ b)(xi + xj) + e xi xj) Tij .

(6) ( Quantum Yang–Baxterization) Assume that parameters a, b, c, h, e satisfy the condi-
tions (4.5) and that β := 2a+ b− c 6= 0. Then (cf [60], [38] and the literature quoted therein)
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the elements Rij(u, v) := 1 + λ−µ
βµ Tij satisfy the twisted quantum Yang–Baxter relations

Rij(λi, µj)Rjk(λi, νk)Rij(µj , νk) = Rjk(µj , νk)Rij(λi, νk)Rjk(λi, µj), i < j < k,

where {λi, µi, νi}1≤i≤n are parameters. .

Corollary 4.6. If (a+ b)(a− c) + he = 0, then for any permutation w ∈ Sn the element

Tw := Ti1 · · ·Til ∈ 3Tn,

where w = si1 · · · sil is any reduced decomposition of w, is well-defined.

Example 4.8.
Each of the set of elements

s
(h)
i = 1 + (xi+1 − xi + h) ui,i+1 and

t
(h)
i = −1 + (xi − xi+1 + h(1 + xi)(1 + xi+1)uij , i = 1, . . . , n− 1,

by itself generate the symmetric group Sn.

Comments 4.7. Let A = (a, b, c, h, e) be a sequence of integers satisfying the conditions (4.5).
Denote by ∂Ai the divided difference operator

∂Ai = (a+ (b xi + c xi+1 + h+ e xi xi+1) ∂i, i = 1, . . . , n− 1.

It follows from Lemma 4.5 that the operators {∂Ai }1≤i≤n satisfy the Coxeter relations

∂Ai ∂Ai+1 ∂
A
i = ∂Ai+1 ∂

A
i ∂Ai+1, i = 1, . . . , n− 1.

Definition 4.29.
(1) Let w ∈ Sn be a permutation. Define the generalized Schubert polynomial corresponding

to permutation w as follows

SA
w(Xn) = ∂Aw−1 w0

xδn , where xδn := xn−1
1 xn−2

2 · · ·xn−1,

and w0 denotes the longest element in the symmetric group Sn.
(2) Let α be a composition with at most n parts, denote by wα ∈ Sn the permutation such

that wα(α) = α, where α denotes a unique partition corresponding to composition α.

Proposition 4.11. ([46]) Let w ∈ Sn be a permutation.
• If A = (0, 0, 0, 1, 0), then SA

w(Xn) is equal to the Schubert polynomial Sw(Xn).

• If A = (−β, β, 0, 1, 0), then SA
w(Xn) is equal to the β-Grothendieck polynomial G(β)

w (Xn)
introduced in [27].
• If A = (0, 1, 0, 1, 0) then SA

w(Xn) is equal to the dual Grothendieck polynomial, [59], [46].
• If A = (−1, 2, 0, 1, 1), then SA

w(Xn) is equal to the Di-Francesco–Zinn-Justin polynomials
introduced in [18] and [46].

In all cases listed above the polynomials SA
w(Xn) have non-negative integer coefficients.

• If A = (1,−1, 1,−h, 0), then SA
w(Xn) is equal to the h-Schubert polynomials introduced in

[46].

Define the generalized key or Demazure polynomial corresponding to a composition α as follows

KA
α (Xn) = ∂wα x

α.
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• If A = (1, 0, 1, 0, 0), then KA
α (Xn) is equal to key (or Demazure) polynomial corresponding to

α.
• If A = (0, 0, 1, 0, 0), then KA

α (Xn) is equal to the reduced key polynomial introduced in
[46].
• If A = (1, 0, 1, 0, β), then KA

α (Xn) is equal to the key Grothendieck polynomial KGα(Xn)
introduced in [46].
• If A = (0, 0, 1, 0, β), then KA

α (Xn) is equal to the reduced key Grothendieck polynomial,
[46].

In all cases listed above the polynomials SA
w(Xn) have non-negative integer coefficients.

Exercises 4.4.
(1) Let b, c, h, e be a collection of integers, define elements Pij := fijuij ∈ 3T, where fij :=

bxi + cxj + h+ exi xj .

Show that
• P 2

ij = (b− c)Pij,
• PijPjkPij = fijfikfjk uijujkuij + (bc− eh)Pij,
PjkPijPjk = fijfikfjk uijujkuij − (bc− eh)Pjk.

(2) Assume that a = q, b = −q, c = q−1, h = e = 0, and introduce elements

eij := (q xi − q−1xj) uij , 1 ≤ i < j < k ≤ n.

(a) Show that if i, j, k are distinct, then

eijejkeij = eij + (qxi − q−1xj)(q xi − q−1xk)(q xj − q−1xk) uijujk uij , e2
ij = (q + q−1) eij .

(b) Assume additionally that

uijujkuij = 0, if i, j, k are distinct.

Show that the elements {ei := ei,i+1, i = 1, . . . , n− 1}, generate a subalgebra in 3Ln which is
isomorphic to the Temperly–Lieb algebra TLn(q + q−1).

(3) Let us set Ti := Ti,i+1, i = 1, . . . , n− 1, and define

T0 := πTn−1π
−1.

Show that if (a+ b)(a− c) + eh = 0, then

T1T0T1 = T1T0T1, Tn−1T0Tn−1 = T0Tn−1T0,

Recall that T 2
i = (2a+ b− c)Ti − a(a+ b− c), 0 ≤ i ≤ n− 1.

�
In what follows we take a = q, b = −q, c = q−1, h = e = 0. Therefore, T 2

i,j = (q−q−1)Ti,j+1.
We denote by Hn(q) a subalgebra in 3Tn generated by the elements Ti := Ti,i+1, i = 1, . . . , n−1.

Remark 4.11. Let us stress on a difference between elements Tij as a part of generators of
the algebra 3Tn, and the elements

T(ij) := Ti · · ·Tj−1TjTj−1 · · ·Ti ∈ Hn(q).

Whereas one has [Tij , Tkl] = 0, if i, j, k, l are distinct, the relation [T(ij), T(kl)] = 0 in the
algebra Hn(q) holds (for general q and i ≤ k) if and only if either one has i < j < k < l, or
i < k < l < j. �
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Lemma 4.7.
(1) Tij Tkl = Tkl Tij , if i, j, k, l are distinct,
(2) Ti,j xi Ti,j = xj , if 1 ≤ i < j ≤ n,
(3) πTi,j = Ti+1,j+1, if 1 ≤ i < j < n, πj Tn−j+1,n = T1,j π

j .

Definition 4.30. Let 1 ≤ i < j ≤ n, set

Yi,j = T−1
i−1,j−1T

−1
i−2,j−2 · · ·T

−1
1,j−i+1 π

j−i Tn−j+i,n · · ·Ti+1,j+1Ti,j , 1 ≤ i < j ≤ n,

and Yn = T−1
n−1,n · · ·T

−1
1,2 π.

For example, Y1,j = πj−1 Tn−j+1,n · · ·T1,j , j ≥ 2,
Y2,j = T−1

1,j−1π
j−2 Tn−j+2,n · · ·T2,j , and so on,

Yj−1,j = T−1
j−2,j−1 · · ·T

−1
1,2 π Tn−1,n · · ·Tj−1,j .

Proposition 4.12.
(1) xjxj Tij = Tij xixj ,
(2) Yi,j = Ti,j Yi+1,j+1 Ti,j , if 1 ≤ i < j < n,
(3) Yi,j Yi+k,j+k = Yi+k,j+k Yi,, if 1 ≤ i < j ≤ n− k,
(4) One has

xi−1 Y
−1
i,j = Y −1

i,j xi−1 T
2
i−1,j−1, 2 ≤ i < j ≤ n,

(5) Yi,j x1 x2 · · ·xn = t x1x2 · · ·xn Yi,j ,
(6) xi Y1 Y2 · · ·Yn = t−1 Y1 Y2 · · ·Yn xi,
where we set Yi := Yi,i+1, 1 ≤ i < j < n.

Conjecture 4.11.
Subalgebra of 3Tn generated by the elements {Ti := Ti,i+1, 1 ≤ i < n, Y1, . . . , Yn,

and x1, . . . , xn}, is isomorphic to the double affine Hecke algebra DAHAq,t(n).

Note that the algebra 3Tn contains also two additional commutative subalgebras generated
by additive {θi =

∑
j 6=i uij}1≤i≤n and multiplicative

{Θi =
i−1∏
a=1

(1− uai)
n∏

a=i+1

(1 + uia)}1≤i≤n

Dunkl elements correspondingly.
Finally we introduce (cf [15]) a (projective) representation of the modular group SL(2,Z) on

the extended affine Hecke algebra Ĥn over the ring Z[q±1, t±1] generated by elements

{T1, . . . , Tn−1}, π, and {x1, . . . , xn}.

It is well-known that the group SL(2,Z) can be generated by two matrices

τ+ =

(
1 1
0 1

)
τ− =

(
1 0
1 1

)
.

which satisfy the following relations

τ+τ
−1
− τ+ = τ−1

− τ+τ
−1
− , (τ+τ

−1
− τ+)6 = I2×2.

Let us introduce operators τ+ and τ− acting on the extended affine algebra Ĥn. Namely,

τ+(π) = x1π, τ+(Ti) = Ti, τ+(xi) = xi, ∀ i,

τ−(π) = π, τ−(Ti) = Ti, τ−(xi) =
( 1∏
a=i−1

Ta

)
π
( i∏
a=n

Ta

)
xi.
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Lemma 4.8.
• τ+(Yi) =

(∏1
a=i−1 T−1

a

) (∏i−1
a=1 T

−1
a

)
xi Yi,

• τ−(xi) =
(∏1

a=i−1 Ta
) (∏i−1

a=1 Ta
)
Yi xi,

• (τ+τ
−1
− τ+)(xi) = Y −1

i = (τ−1
− τ+τ

−1
− )(xi),

• (τ+τ
−1
− τ+)(Yi) = t xi

(∏1
a=i−1 Ta

)(
T1 · · ·Tn−1

) (∏i
a=n−1 Ta

)
,

i = 1, . . . , n.

In the last formula we set Tn = 1 for convenience.

5 Combinatorics of associative Yang–Baxter algebras

Let α and β be parameters.

Definition 5.1 ([47]).
(1) The associative quasi-classical Yang–Baxter algebra of weight (α, β), denoted by

ÂCY Bn(α, β), is an associative algebra, over the ring of polynomials Z[α, β], generated by
the set of elements {xij , 1 ≤ i < j ≤ n}, subject to the set of relations

(a) xij xkl = xkl xij , if {i, j} ∩ {k, l} = ∅,
(b) xij xjk = xik xij + xjk xik + β xik + α, if 1 ≤ 1 < i < j ≤ n.
(2) Define associative quasi-classical Yang–Baxter algebra of weight β ,denoted

by ÂCY Bn(β), to be ÂCY Bn(0, β).

Comments 5.1.
The algebra 3Tn(β), see Definition 3.1, is the quotient of the algebra ÂCY Bn(−β), by the

“dual relations”
xjkxij − xij xik − xik xjk + β xik = 0, i < j < k.

The (truncated) Dunkl elements θi =
∑

j 6=i xij , i = 1, . . . , n, do not commute in the algebra
ÂCY Bn(β). However a certain version of noncommutative elementary polynomial of degree
k ≥ 1, still is equal to zero after the substitution of Dunkl elements instead of variables, [47]. We
state here the corresponding result only “in classical case”, i.e. if β = 0 and qij = 0 for all i, j.

Lemma 5.1. ([47]) Define noncommutative elementary polynomial Lk(x1, . . . , xn) as follows

Lk(x1, . . . , xn) =
∑

I=(i1<i2<...<ik)⊂[1,n]

xi1 xi2 · · ·xik .

Then Lk(θ1, θ2, . . . , θn) = 0.
Moreover, if 1 ≤ k ≤ m ≤ n, then one can show that the value of the noncommutative

polynomial Lk(θ
(n)
1 , . . . , θ

(n)
m ) in the algebra ÂCY Bn(β) is given by the Pieri formula, see [26],

[76].

5.1 Combinatorics of Coxeter element

Consider the “Coxeter element” w ∈ ÂCY Bn(α, β) which is equal to the ordered product of
“simple generators”:

w := wn =

n−1∏
a=1

xa,a+1.

Let us bring the element w to the reduced form in the algebra ÂCY Bn(α, β), that is, let us
consecutively apply the defining relations (a) and (b) to the element w in any order until unable
to do so. Denote the resulting (noncommutative) polynomial by Pn(xij ;α, β). In principal, the
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polynomial itself can depend on the order in which the relations (a) and (b) are applied. We set
Pn(xij ;β) := Pn(xij ; 0, β).

Proposition 5.1. (Cf [90], 8.C5, (c); [65])
(1) Apart from applying the relation (a) (commutativity), the polynomial Pn(xij ;β)

does not depend on the order in which relations (a) and (b) have been applied, and can be written
in a unique way as a linear combination:

Pn(xij ;β) =
n−1∑
s=1

βn−s−1
∑
{ia}

s∏
a=1

xia,ja ,

where the second summation runs over all sequences of integers {ia}sa=1 such that n− 1 ≥ i1 ≥
i2 ≥ . . . ≥ is = 1, and ia ≤ n − a for a = 1, . . . , s − 1; moreover, the corresponding sequence
{ja}n−1

a=1 can be defined uniquely by that {ia}n−1
a=1 .

• It is clear that the polynomial P (xij ;β) also can be written in a unique way as a linear
combination of monomials

∏s
a=1 xia,ja such that j1 ≥ j2 . . . ≥ js.

(2) Let us set deg(xij) = 1, deg(β) = 0. Denote by Tn(k, r) the number of degree k
monomials in the polynomial P (xij ;β) which contain exactly r factors of the form x∗,n. (Note
that 1 ≤ r ≤ k ≤ n− 1). Then

Tn(k, r) =
r

k

(
n+ k − r − 2

n− 2

) (
n− 2

k − 1

)
.

In other words,
Pn(t, β) =

∑
1≤r≤k<n

Tn(k, r) tr βn−1−k,

where Pn(t, β) denotes the following specialization

xij −→ 1, if j < n, xin −→ t, ∀ i = 1, . . . , n− 1

of the polynomial Pn(xij ;β).
In particular, Tn(k, k) =

(
n−2
k−1

)
, and Tn(k, 1) = T (n− 2, k − 1), where

T (n, k) :=
1

k + 1

(
n+ k

k

) (
n

k

)
is equal to the number of Schröder paths (i.e. consisting of steps U = (1, 1), D = (1,−1), H =
(2, 0) and never going below the x-axis) from (0, 0) to (2n, 0), having k U ’s, see [87], A088617.

Moreover, Tn(n− 1, r) = Tab(n− 2, r − 1), where

Tab(n, k) :=
k + 1

n+ 1

(
2n− k
n

)
= F

(2)
n−k(k)

is equal to the number of standard Young tableaux of the shape (n, n−k), see [87], A009766. Recall
that F

(p)
n (b) = 1+b

n

(
np+b
n−1

)
stands for the generalized Fuss–Catalan number.

(3) After the specialization xij −→ 1 the polynomial P (xij) is transformed to the polynomial

Pn(β) :=
n−1∑
k=0

N(n, k) (1 + β)k,
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where N(n, k) := 1
n

(
n
k

) (
n
k+1

)
, k = 0, . . . , n− 1, stand for the Narayana numbers.

Furthermore, Pn(β) =
∑n−1

d=0 sn(d) βd, where

sn(d) =
1

n+ 1

(
2n− d
n

) (
n− 1

d

)
is the number of ways to draw n − 1 − d diagonals in a convex (n + 2)-gon, such that no two
diagonals intersect their interior.

Therefore, the number of (nonzero) terms in the polynomial P (xij ;β) is equal to the n-th
little Schröder number sn :=

∑n−1
d=0 sn(d), also known as the n-th super-Catalan number, see e.g.

[87], A001003.

(4) Upon the specialization x1j −→ t, 1 ≤ j ≤ n, and that xij −→ 1, if 2 ≤ i < j ≤ n, the
polynomial P (xij ;β) is transformed to the polynomial

Pn(β, t) = t

n∑
k=1

(1 + β)n−k
∑
π

tp(π),

where the second summation runs over the set of Dick paths π of length 2n with exactly k picks
(UD-steps), and p(π) denotes the number of valleys (DU-steps) that touch upon the line x = 0.

(5) The polynomial P (xij ;β) is invariant under the action of anti-involution φ ◦ τ, see
Section 5.1.1 [47] for definitions of φ and τ.

(6) Follow [90], 6.C8, (c), consider the specialization

xij −→ ti, 1 ≤ i < j ≤ n,

and define Pn(t1, . . . , tn−1;β) = Pn(xij = ti;β).
One can show, ibid , that

Pn(t1, . . . , tn−1;β) =
∑

βn−k ti1 · · · tik , (5.1)

where the sum runs over all pairs {(a1, . . . , ak), (i1, . . . , ik) ∈ Z≥1 × Z≥1} such that 1 ≤ a1 <
a2 < . . . < ak, 1 ≤ i1 ≤ i2 . . . ≤ ik ≤ n and ij ≤ aj for all j.

Now we are ready to state our main result about polynomials Pn(t1, . . . , tn;β).

Let π := πn ∈ Sn be the permutation π=
(

1 2 3 . . . n
1 n n− 1 . . . 2

)
. Then

Pn(t1, . . . , tn−1;β) =
(n−1∏
i=1

tn−ii

)
G(β)
π (t−1

1 , . . . , t−1
n−1),

where G
(β)
w (x1, . . . , xn−1) denotes the β-Grothendieck polynomial corresponding to a permutation

w ∈ Sn, [27], or Appendix I.
In particular,

G(β)
π (x1 = 1, . . . , xn−1 = 1) =

n−1∑
k=0

N(n, k) (1 + β)k,

where N(n, k) denotes the Narayana numbers, see item (3) of Proposition 5.1.
More generally, write Pn(t, β) =

∑
k P

(k)
n (β) tk. Then

G(β)
π (x1 = t, xi = 1,∀i ≥ 2) =

n−1∑
k=0

P
(k)
n−1(β−1)βk tn−1−k.
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Comments 5.2.
• Note that if β = 0, then one has G

(β=0)
w (x1, . . . , xn−1) = Sw(x1, . . . , xn−1), that is the

β-Grothendieck polynomial at β = 0, is equal to the Schubert polynomial corresponding to the

same permutation w. Therefore, if π=
(

1 2 3 . . . n
1 n n− 1 . . . 2

)
, then

Sπ(x1 = 1, . . . , tn−1 = 1) = Cn−1, (5.2)

where Cm denotes the m-th Catalan number. Using the formula (5.20) it is not difficult to check
that the following formula for the principal specialization of the Schubert polynomial Sπ(Xn) is
true

Sπ(1, q, . . . , qn−1) = q(
n−1

3 ) Cn−1(q), (5.3)

where Cm(q) denotes the Carlitz - Riordan q-analogue of the Catalan numbers, see e.g. [88]. The
formula (5.20) has been proved in [29] using the observation that π is a vexillary permutation,
see [61] for the a definition of the latter. A combinatorial/bijective proof of the formula (5.20)
is is due to A.Woo [98].
• The Grothendieck polynomials defined by A. Lascoux and M.-P. Schützenberger, see e.g.

[57], correspond to the case β = −1. In this case Pn(−1) = 1, if n ≥ 0, and therefore the
specialization G

(−1)
w (x1 = 1, . . . , xn−1 = 1) = 1 for all w ∈ Sn. �

Exercises 5.1.

(1) Let as before, π=
(

1 2 3 . . . n
1 n n− 1 . . . 2

)
. Show that

Sπ(x1 = q, xj = 1,∀j 6= i) =
n−2∑
a=0

n− a− 1

n− 1

(
n+ a− 2

a

)
qa.

Note that the number
n− k + 1

n+ 1

(
n+ k

k

)
is equal to the dimension of irreducible representation of the symmetric group Sn+k that corre-
sponds to partition (n+ k, k).

(2) Consider the commutative quotient ÃCY B
ab

n (α, β) of the algebra ÃCY Bn(α, β),
i.e. assume that the all generators {xij | 1 ≤ i < j ≤ n are mutually commute. Denote by

Pn(xij ;α, β) the image of polynomial the Pn(xij ;α, β) ∈ ÃCY Bn(α, β) in the algebra ÃCY B
ab

n (α, β). Fi-
nally, define polynomials Pn(t, α, β) to be the specialization

xij −→ 1, if j < n, xin −→ t, if 1 ≤ i < n.

Show that
(a) Polynomial Pn(t, α, β) does not depend on on order in which relations (a) and (b), see

Definition 5.1, have been applied.
(b)

Pn(1, α = 1, β = 0) =
∑
k≥0

(2n− 2k)!

k! (n+ 1− k) ! (n− 2k)!
,

see [87], A052709(n), for combinatorial interpretations of these numbers.
For example,

P7(t, α, β) = t7 + 6(1 + β) t6 +
[
(20, 35, 15)β + 6 α

]
t5 +

[
(48, 112, 84, 20)β +
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α(34, 29)β

]
t4 +

[
(90, 252, 252, 105, 15)β + α(104, 155, 55)β + 14α2

]
t3 +[

(132, 420, 504, 280, 70, 6)β + α(216, 428, 265, 50)β + α2(70, 49)β

]
t2 +[

(132, 462, 630, 420, 140, 21, 1)β + α(300, 708, 580, 190, 20)β + α2(168, 203, 56)β +

14α3
]
t+ α(132, 330, 300, 120, 20, 1)β + α2(168, 252, 112, 14)β + α3(42, 21)β.

(c) Show that in fact

Pn(1, α, 0) =
∑
k≥0

1

n+ 1

(
2n− 2k

n

)(
n+ 1

k

)
αk =

∑
k≥0

Tn+2(n− k, k + 1)

2n− 1− 2k
αk,

see Proposition 5.1,(2), for definition of numbers Tn(k, r). As for a combinatorial interpretation
of the polynomials Pn(1, α, 0), see [87], A117434, A085880.

(3) Consider polynomials Pn(t, β) as it has been defined in Proposition 5. 1, (2).
Show that

Pn(t, β) = 1 +

n∑
r=1

tr
(n−1−r∑

k=0

r

n

(
n

k + r

) (
n− r − 1

k

)
(1 + β)n−r−k

)
,

cf, e.g., [87], A033877.
A few comments in order. Several combinatorial interpretations of the integer numbers

Un(r, k) :=
r

n+ 1

(
n+ 1

k + r

) (
n− r
k

)
are well-known. For example,
if r = 1, the numbers Un(1, k) = 1

n

(
n
k+1

)(
n
k

)
are equal to the Narayana numbers, see e.g. [87],

A001263;
if r = 2, the number Un(2, k) counts the number of Dyck (n + 1)-paths whose last descent

has length 2 and which contain n− k peaks, see [87] , A108838 for details.
Finally, it’s easily seen, that Pn(1, β) = A127529(n), and Pn(t, 1) = A033184(n), see [87].

5.1.1 Multiparameter deformation of Catalan, Narayana and Schröder numbers

Let b = (β1, . . . , βn−1) be a set of mutually commuting parameters. We define a multiparameter
analogue of the associative quasi-classical Yang–Baxter algebra ̂MACY Bn(b) as follows.

Definition 5.2. (Cf Definition 2.4) The multiparameter associative quasi- classical Yang–
Baxter algebra of weight b, denoted by ̂MACY Bn(b), is an associative algebra, over the ring
of polynomials Z[β1, . . . , βn−1], generated by the set of elements {xij , 1 ≤ i < j ≤ n}, subject to
the set of relations

(a) xij xkl = xkl xij , if {i, j} ∩ {k, l} = ∅,
(b) xij xjk = xik xij + xjk xik + βi xik, if 1 ≤ 1 < i < j ≤ n.

Consider the “Coxeter element” wn ∈ ̂MACY Bn(b) which is equal to the ordered product of
“simple generators”:

wn :=

n−1∏
a=1

xa,a+1.

Now we can use the same method as in [90], 8.C5, (c) , see Section 5.1, to define the reduced
form of the Coxeter element wn. Namely, let us bring the element wn to the reduced form in
the algebra ̂MACY Bn(b), that is, let us consecutively apply the defining relations (a) and (b)
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to the element wn in any order until unable to do so. Denote the resulting (noncommutative)
polynomial by P (xij ; b). In principal, the polynomial itself can depend on the order in which the
relations (a) and (b) are applied.

Proposition 5.2 (Cf [90], 8.C5, (c); [65]). Apart from applying the relation (a) (commutativity),
the polynomial P (xij ; b) does not depend on the order in which relations (a) and (b) have been
applied.

To state our main result of this Subsection, let us define polynomials

Q(β1, . . . , βn−1) := P (xij = 1,∀i, j ;β1 − 1, β2 − 1, . . . , βn−1 − 1).

Example 5.1.
Q(β1, β2) = 1 + 2 β1 + β2 + β2

1 ,

Q(β1, β2, β3) = 1 + 3β1 + 2β2 + β3 + 3β2
1 + β1β2 + β1β3 + β2

2 + β3
1 ,

Q(β1, β2, β3, β4) = 1+4β1+3β2+2β3+β4+β1(6β1+3β2+3β3+2β4)+β2(3β2+β3+β4)+β2
3+

β2
1 (4β1 + β2 + β3 + β4) + β1(β2

2 + β2
3) + β3

2 + β4
1 .

Theorem 5.1.
Polynomial Q(β1, . . . , βn−1) has non-negative integer coefficients.

It follows from [90] and Proposition 5.1, that

Q(β1, . . . , βn−1)
∣∣∣
β1=1,...,βn−1=1

= Catn.

Polynomials Q(β1, . . . , βn−1) and Q(β1 + 1, . . . , βn−1 + 1) can be considered as a multiparameter
deformation of the Catalan and (small) Schröder numbers correspondingly, and the homogeneous
degree k part of Q(β1, . . . , βn−1) as a multiparameter analogue of Narayana numbers.

5.2 Grothendieck and q-Schröder polynomials

5.2.1 Schröder paths and polynomials

Definition 5.3. A Schröder path of the length n is an over diagonal path from (0, 0) to (n, n)
with steps (1, 0), (0, 1) and steps D = (1, 1) without steps of type D on the diagonal x = y.

If p is a Schröder path, we denote by d(p) the number of the diagonal steps resting on the
path p, and by a(p) the number of unit squares located between the path p and the diagonal
x = y. For each (unit) diagonal step D of a path p we denote by i(D) the x-coordinate of the
column which contains the diagonal step D. Finally, define the index i(p) of a path p as the some
of the numbers i(D) for all diagonal steps of the path p.

Definition 5.4. Define q-Schröder polynomial Sn(q;β) as follows

Sn(q;β) =
∑
p

qa(p)+i(p) βd(p), (5.4)

where the sum runs over the set of all Schröder paths of length n.

Example 5.2.
S1(q;β) = 1, S2(q;β) = 1 + q+β q, S3(q;β) = 1 + 2 q+ q2 + q3 +β (q+ 2q2 + 2q3) +β2 q3,

S4(q;β) = 1 + 3q + 3q2 + 3q3 + 2q4 + q5 + q6 + β(q + 3q2 + 5q3 + 6q4 + 3q5 + 3q6) + β2(q3 +
2q4 + 3q5 + 3q6) + β3 q6.
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Comments 5.3.
The q-Schröder polynomials defined by the formula (5.22) are different from the q-analogue

of Schröder polynomials which has been considered in [11]. It seems that there are no simple
connections between the both.

Proposition 5.3. ( Recurrence relations for q-Schröder polynomials )
The q-Schröder polynomials satisfy the following relations

Sn+1(q;β) = (1 + qn +β qn) Sn(q;β) +

k=n−1∑
k=1

(qk +β qn−k) Sk(q; q
n−k β) Sn−k(q;β), (5.5)

and the initial condition S1(q;β) = 1.

Note that Pn(β) = Sn(1;β) and in particular, the polynomials Pn(β) satisfy the following
recurrence relations

Pn+1(β) = (2 + β) Pn(β) + (1 + β)
n−1∑
k=1

Pk(β) Pn−k(β). (5.6)

Theorem 5.2. ( Evaluation of the Schröder – Hankel Determinant )
Consider permutation

π
(n)
k =

(
1 2 . . . k k + 1 k + 2 . . . n
1 2 . . . k n n− 1 . . . k + 1

)
.

Let as before

Pn(β) =
n−1∑
j=0

N(n, j) (1 + β)j , n ≥ 1, (5.7)

be Schröder polynomials. Then

(1 + β)(
k
2) G

(β)

π
(n)
k

(x1 = 1, . . . , xn−k = 1) = Det |Pn+k−i−j(β) |1≤i,j≤k. (5.8)

Proof is based on an observation that the permutation π(n)
k is a vexillary one and the recurrence

relations (5.5).

Comments 5.4.
(1) In the case β = 0, i.e. in the case of Schubert polynomials, Theorem 5.1 has been proved

in [29].
(2) In the cases when β = 1 and 0 ≤ n − k ≤ 2, the value of the determinant in the

RHS(5.8) is known, see e.g. [11], or M. Ichikawa talk Hankel determinants of Catalan, Motzkin
and Schrd̈er numbers and its q-analogue, http:/denjoy.ms.u-tokyo.ac.jp. One can check that in
the all cases mentioned above, the formula (5.8) gives the same results.

(3) Grothendieck and Narayana polynomials
It follows from the expression (5.7) for the Narayana-Schröder polynomials that Pn(β − 1) =

Nn(β), where

Nn(β) :=
n−1∑
j=0

1

n

(
n

j

) (
n

j + 1

)
βj ,

denotes the n-th Narayana polynomial. Therefore, Pn(β−1) = Nn(β) is a symmetric polynomial
in β with non-negative integer coefficients. Moreover, the value of the polynomial Pn(β − 1) at
β = 1 is equal to the n-th Catalan number Cn := 1

n+1

(
2n
n

)
.
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It is well-known, see e.g. [92], that the Narayana polynomial Nn(β) is equal to the generating
function of the statistics π(p) = (number of peaks of a Dick path p)− 1 on the set Dickn of
Dick paths of the length 2n

Nn(β) =
∑
p

βπ(p).

Moreover, using the Lindström–Gessel–Viennot lemma, see e.g.,
http://en.wikipedia.org/wiki/Lindström–Gessel–Viennot lemma,
one can see that

DET |Nn+k−i−j(β)|1≤i,j≤k = β(k2)
∑

(p1,...,pk)

βπ(p1)+...+π(pk), (5.9)

where the sum runs over k-tuple of non-crossing Dick paths (p1, . . . , pk) such that the path pi
starts from the point (i− 1, 0) and has length 2(n− i+ 1), i = 1, . . . , k.

We denote the sum in the RHS(5.9) by N
(k)
n (β). Note that N(k)

k−1(β) = 1 for all k ≥ 2.

Thus, N(k)
n (β) is a symmetric polynomial in β with non-negative integer coefficients, and

N(k)
n (β = 1) = C(k)

n =
∏

1≤i≤j≤n−k

2k + i+ j

i+ j
=

∏
2 a ≤n−k−1

(
2n−2a

2k

)(
2k+2a+1

2k

) .
As a corollary we obtain the following statement

Proposition 5.4. Let n ≥ k, then

G
(β−1)

π
(n)
k

(x1 = 1, . . . , xn = 1) = N(k)
n (β).

Summarizing, the specialization G
(β−1)

π
(n)
k

(x1 = 1, . . . , xn = 1) is a symmetric polynomial in β

with non-negative integer coefficients, and coincides with the generating function of the statistics∑k
i=1 π(pi) on the set k-Dickn of k-tuple of non-crossing Dick paths (p1, . . . , pk). �

Example 5.3. Take n = 5, k = 1.Then π(5)
1 = (15432) and one has

G
(β)

π
(5)
1

(1, q, q2, q3) = q4(1, 3, 3, 3, 2, 1, 1) + q5 (1, 3, 5, 6, 3, 3) β + q7(1, 2, 3, 3)β2 + q10β3.

It is easy to compute the Carlitz-Riordan q-analogue of the Catalan number C5, namely,
C5(q) = (1, 3, 3, 3, 2, 1, 1).

Remark 5.1. The value Nn(4) of the Narayana polynomial at β = 4 has the following
combinatorial interpretation :

Nn(4) is equal to the number of different lattice paths from the point (0, 0) to that (n, 0)
using steps from the set Σ = {(k, k) or (k,−k), k ∈ Z>0}, that never go below the x-axis, see
[87], A059231.

Exercises 5.2. (a) Show that

γk,n :=
C

(k+1)
n

C
(k)
n

=
(2n− 2k)! (2k + 1) !

(n− k) ! (n+ k + 1) !
.

(b) Show that
γk,n ≤ 1, if k ≤ n ≤ 3k + 1, and γk,n ≥ 2n−3k−1, if n > 3k + 1.

�
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(4) Polynomials Fw(β), Hw(β), Hw(q, t; β) and Rw(q; β)

Let w ∈ Sn be a permutation and G
(β)
w (Xn) and G

(β)
w (Xn, Yn) be the corresponding β-

Grothendieck and double β-Grothendieck polynomials. We denote by G
(β)
w (1) and by G

(β)
w (1; 1)

the specializationsXn := (x1 = 1, . . . , xn = 1), Yn := (y1 = 1, . . . , yn = 1) of the β-Grothendieck
polynomials introduced above.

Theorem 5.3. Let w ∈ Sn be a permutation. Then
(i) The polynomials Fw(β) := G

(β−1)
w (1) and Hw(β) := G

(β−1)
w (1; 1)

have both non-negative integer coefficients.
(ii) One has

Hw(β) = (1 + β)`(w) Fw(β2).

(iii) Let w ∈ Sn be a permutation, define polynomials

Hw(q, t;β) := G(β)
w (x1 = q, x2 = q, . . . , xn = q, y1 = t, y2 = t, . . . , yn = t)

to be the specialization {xi = q, yi = t, ∀i}, of the double β-Grothendieck polynomial G(β)
w (Xn, Yn).

Then
Hw(q, t;β) = (q + t+ β q t)`(w) Fw((1 + β q)(1 + β t)).

In particular, Hw(1, 1;β) = (2 + β)`(w) Fw((1 + β)2).
(iv) Let w ∈ Sn be a permutation, define polynomial

Rw(q;β) := G(β−1)
w (x1 = q, x2 = 1, x3 = 1, . . .)

to be the specialization {x1 = q, xi = 1, ∀i ≥ 2}, of the (β − 1)-Grothendieck polynomial
G

(β−1)
w (Xn). Then

Rw(q;β) = qw(1)−1 Rw(q;β),

where Rw(q;β) is a polynomial in q and β with non-negative integer coefficients, and Rw(0;β =
0) = 1.

(v) Consider permutation w(1)
n := [1, n, n− 1, n− 2, · · · , 3, 2] ∈ Sn.

Then H
w

(1)
n

(1, 1; 1) = 3(n−1
2 ) Nn(4).

In particular, if w(k)
n = (1, 2, . . . , k, n, n− 1, . . . , k + 1) ∈ Sn, then

S
(β−1)

w
(k)
n

(1; 1) = (1 + β)(
n−k

2 ) S
(β−1)

w
(k)
n

(β2).

See Remark 5.1 for a combinatorial interpretation of the number Nn(4).

Example 5.4.

Consider permutation v = [2, 3, 5, 6, 8, 9, 1, 4, 7] ∈ S9 of the length 12, and set
x := (1 + βq)(1 + βt). One can check that

Hv(q, t;β) = x12 (1 + 2 x)(1 + 6x+ 19x2 + 24x3 + 13x4),

and Fv(β) = (1 + 2β)(1 + 6β + 19β2 + 24β3 + 13β4).
Note that Fv(β = 1) = 27 × 7, and 7 = AMS(3), 26 = CSTCTPP (3), cf Conjecture 5.4,

Section 5.2.4. �

Remark 5.2.
One can show, cf [61], p. 89, that if w ∈ Sn, then Rw(1, β) = Rw−1(1, β). However, the

equality Rw(q, β) = Rw−1(q, β) can be violated, and it seems that in general, there are no
simple connections between polynomials Rw(q, β) and Rw−1(q, β), if so.

From this point we shell use the notation (a0, a1, . . . , ar)β :=
∑r

j=0 aj β
j , etc.
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Example 5.5. Let us take w = [1, 3, 4, 6, 7, 9, 10, 2, 5, 8]. Then Rw(q, β) =

(1, 6, 21, 36, 51, 48, 26)β + qβ (6, 36, 126, 216, 306, 288, 156)β+

q2β3 (20, 125, 242, 403, 460, 289)β + q3β5 (6, 46, 114, 204, 170)β. Moreover,
Rw(q, 1) = (189, 1134, 1539, 540)q. On the other hand,
w−1 = [1, 8, 2, 3, 9, 4, 5, 10, 6, 7], and Rw−1(q, β) = (1, 6, 21, 36, 51, 48, 26)β+

qβ (1, 6, 31, 56, 96, 110, 78)β + q2β (1, 6, 27, 58, 92, 122, 120, 78)β+

q3β (1, 6, 24, 58, 92, 126, 132, 102, 26)β + q4β (1, 6, 22, 57, 92, 127, 134, 105, 44)β+

q5β (1, 6, 21, 56, 91, 126, 133, 104, 50)β + q6β (1, 6, 21, 56, 91, 126, 133, 104, 50)β.
Moreover, Rw−1(q, 1) = (189, 378, 504, 567, 588, 588, 588)q.

Notice that w = 1× u, where u = [2, 3, 5, 6, 8, 9, 1, 4, 7]. One can show that
Ru(q, β) = (1, 6, 11, 16, 11)β + qβ2 (10, 20, 35, 34)β + q2β4 (5, 14, 26)β. On the other hand,
u−1 = [7, 1, 2, 8, 3, 4, 9, 5, 6] and Ru−1(1, β) = (1, 6, 21, 36, 51, 48, 26)β = Ru(1, β).

[ Recall that by our definition (a0, a1, . . . , ar)β :=
∑r

j=0 aj β
j .]

5.2.2 Grothendieck polynomials and k-dissections

Let k ∈ N and n ≥ k − 1, be a integer, define a k-dissection of a convex (n + k + 1)-gon to be
a collection E of diagonals in (n+ k + 1)-gon not containing (k + 1)-subset of pairwise crossing
diagonals and such that at least 2(k−1) diagonals are coming from each vertex of the (n+k+1)-
gon in question. One can show that the number of diagonals in any k-dissection E of a convex
(n + k + 1)-gon contains at least (n + k + 1)(k − 1) and at most n(2k − 1) − 1 diagonals. We
define the index of a k-dissection E to be i(E) =n(2k − 1)− 1−#|E|. Dnote by

T (k)
n (β) =

∑
E
βi(E)

the generating function for the number of k-dissections with a fixed index, where the above sum
runs over the set of all k-dissections of a convex (n+ k + 1)-gon.

Theorem 5.4.
G

(β)

π
(n)
k

(x1 = 1, . . . , xn = 1) = T (k)
n (β).

Mopre generally, let n ≥ k > 0 be integers, consider a convex (n+k+1)-gon Pn+k+1 and a ver-
tex v0 ∈ Pn+k+1. Let us label clockwise the vertices of Pn+k+1 by the numbers 1, 2, . . . , n+k+ 1
starting from the vertex v0. Let Dis(Pn+k+1) denotes the set of all k-dissections of the (n+k+1)-
gon Pn+k+1. We denote by D0 := Dis0(Pn+k+1 the “minimal” k-dissection of the (n + k + 1)-
gon Pn+k+1 in question cosisting of the set of diagonals connecting vertices va and va+r, where
2 ≤ r ≤ k, 1 ≤ a ≤ n+k+1, and for any positive integer a we denote by a a unique integer such
that 1 ≤ a ≤ n+ k+ 1 and a ≡ a (mod (n+ k+ 1)). For examle, if k = 1, then Dis0(Pn+2) = ∅;
if k = 3 and n = 4, in other words, P8 is a octagon, the minimal 3-dissection consists of 16
diagonals connecting vertices with the folloing labels
1→ 3→ 5→ 7→ 9 = 1; 2→ 4→ 6→ 8→ 10 = 2;
1→ 4→ 7→ 10 = 2→ 5→ 8→ 11 = 3→ 6→ 9 = 1.

Now let D ∈ Dis(Pn+k+1) be a dissection. Consider a diagonal dij ∈ (D \D0), i < j which
connects vertex vi with that vj . We attach variable xi to the diagonal dij in question and consider
the folloeing expression

TPn+k+1
(Xn+k+1) =

∑
D∈Diss(Pn+k+1)

β#|D\D0|
∑

dij∈(D\D0)

i<j

∏
xi.
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Theorem 5.5. One has

TPn+n+1(Xn+k+1) = βk(n−k)
n∏
a=1

xmin(n−a+1,n−k)
a Gβ−1

wnk
(x−1

1 , . . . , x−1
n ).

=

Exercises 5.3. It is not difficult to check that
Gβ

15432(X5) = β3 x3
1 x

3
2 x

2
3 x4 +β2 (x3

1 x
3
2 x3 + 2 x3

1 x
3
2 x3 x4 + 3 x3

1 x
2
2 x

2
3 x4 + 3 x2

1 x
3
2 x

2
3 x4)+

+β (x3
1 x

3
2 x3 +x3

1 x
3
2 x4 +2 x3

1 x
2
2 x3 +2 x2

1 x
3
2 x

2
3 +3 x3

1 x
2
2 x3 x4 +3 x3

1 x2 x
2
3 x4 +3 x2

1 x
3
2 x3 x4 +

3 x2
1 x

2
2 x

2
3 x4+3 x1 x

3
2 x

2
3 x4)+ x3

1 x
2
2 x3+x3

1 x
2
2 x4+x3

1 x2 x
2
3+x3

1 x2 x3 x4+x3
1 x

2
3 x4+x2

1 x
3
2 x3+

x2
1 x

3
2 x4 +x2

1 x
2
2 x

2
3 +x2

1 x
2
2 x3 x4 +x2

1 x2 x
2
3 x4 +x1 x

3
2 x

2
3 +x1 x

3
2 x3 x4 +x1 x

2
2 x

2
3 x4 +x3

2 x
2
3 x4.

Describe
bijection between dissections of hexagon P6 (the case k=1, n=4) and the above listed monomials

involved in the β-Grothendieck polynomial Gβ
15432(x1, x2, x3, x4).

�
A k-dissection of a convex (n + k + 1)-gon with the maximal number of diagonals (which

is equal to n(2k − 1) − 1), is called k-triangulation. It is well-known that the number of k-
triangulations of a convex (n+k+1)-gon is equal to the Catalan-Hankel number C(k)

n−1. Explicit
bijection between the set of k-triangulations of a convex (n + k + 1)-gon and the set of k-tuple
of non-crossing Dick paths (γ1, . . . , γk) such that the Dick path γi connects points (i− 1, 0) and
(2n− i− 1, 0), has been constructed in [85], [91].

5.2.3 Grothendieck polynomials and q-Schröder polynomials

Let π(n)
k = 1k × w(n−k)

0 ∈ Sn be the vexillary permutation as before, see Theorem 5.1. Recall
that

π
(n)
k =

(
1 2 . . . k k + 1 k + 2 . . . n
1 2 . . . k n n− 1 . . . k + 1

)
.

(A) Principal specialization of the Schubert polynomial S
π

(n)
k

Note that π(n)
k is a vexillary permutation of the staircase shape λ = (n−k−1, . . . , 2, 1) and has

the staircase flag φ = (k+ 1, k+ 2, . . . , n− 1). It is known, see e.g. [95], [61], that for a vexillary
permutation w ∈ Sn of the shape λ and flag φ = (φ1, . . . , φr), r = `(λ), the corresponding
Schubert polynomial Sw(Xn) is equal to the multi-Schur polynomial sλ(Xφ), where Xφ denotes
the flagged set of variables , namely, Xφ = (Xφ1 , . . . , Xφr) and Xm = (x1, . . . , xm). Therefore
we can write the following determinantal formula for the principal specialization of the Schubert
polynomial corresponding to the vexillary permutation π(n)

k

S
π

(n)
k

(1, q, , q2, . . .) = DET
([n− i+ j − 1

k + i− 1

]
q

)
1≤i,j≤n−k

,

where
[
n
k

]
q
denotes the q-binomial coefficient.

Let us observe that the Carlitz–Riordan q-analogue Cn(q) of the Catalan number Cn is equal
to the value of the q-Schröder polynomial at β = 0, namely, Cn(q) = Sn(q, 0).

Lemma 5.2. Let k, n be integers and n > k, then

(1) DET
([n− i+ j − 1

k + i− 1

]
q

)
1≤i,j≤n−k

= q(
n−k

3 ) C(k)
n (q),

(2) DET
(
Cn+k−i−j(q)

)
1≤i,j≤k

= qk(k−1)(6n−2k−5)/6 C(k)
n (q).
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(B) Principal specialization of the Grothendieck polynomial G(β)

π
(n)
k

Theorem 5.6.
q(
n−k+1

3 )−(k−1)(n−k2 ) DET |Sn+k−i−j(q; q
i−1β)|1≤i,j≤k =

qk(k−1)(4k+1)/6
k−1∏
a=1

(1 + qa−1β) G
π

(n)
k

(1, q, q2, . . .).

Corollary 5.1. (1) If k = n− 1, then

DET |S2n−1−i−j(q; q
i−1β)|1≤i,j≤n−1 = q(n−1)(n−2)(4n−3)/6

n−2∏
a=1

(1 + qa−1β)n−a−1,

(2) If k = n− 2, then

qn−2 DET |S2n−2−i−j(q; q
i−1β)|1≤i,j≤n−2 =

q(n−2)(n−3)(4n−7)/6
n−3∏
a=1

(1 + qa−1β)n−a−2
{(1 + β)n−1 − 1

β

}
.

• Generalization
Let n = (n1, . . . , np) ∈ Np be a composition of n so that n = n1 + · · · + np. We set n(j) =

n1 + · · ·+ nj , j = 1, . . . , p, n(0) = 0.

Now consider the permutation w(n) = w
(n1)
0 × w(n2)

0 × · · · × w(np)
0 ∈ Sn,

where w(m)
0 ∈ Sm denotes the longest permutation in the symmetric group Sm. In other words,

w(n) =

(
1 2 . . . n1 n(2) . . . n1 + 1 . . . n(p−1) . . . n

n1 n1 − 1 . . . 1 n1 + 1 . . . n(2) . . . n . . . n(p−1)+1

)
.

For the permutation w(n) defined above, one has the following factorization formula for the
Grothendieck polynomial corresponding to w(n), [61],

G
(β)

w(n) = G
(β)

w
(n1)
0

×G
(β)

1n1×w(n2)
0

×G
(β)

1n1+n2×w(n3)
0

× · · · ×G
(β)

1n1+...np−1×w(np)
0

.

In particular, if

w(n) = w
(n1)
0 × w(n2)

0 × · · · × w(np)
0 ∈ Sn, (5.10)

then the principal specialization G
(β)

w(n) of the Grothendieck polynomial corresponding to the
permutation w, is the product of q-Schröder–Hankel polynomials. Finally, we observe that from
discussions in Section 5.2,1, Grothendieck & Narayana polynomials, one can deduce that

G
(β−1)

w(n) (x1 = 1, . . . , xn = 1) =

p−1∏
j=1

N
(n(j))

n(j+1) (β).

In particular, the polynomial G
(β−1)

w(n) (x1, . . . , xn) is a symmetric polynomial in β with non-
negative integer coefficients.



On some quadratic algebras 93

Example 5.6.
(1) Let us take (non vexillary) permutation w = 2143 = s1 s3. One can check that

G
(β)
w (1, 1, 1, 1) = 3 + 3 β + β2 = 1 + (β + 1) + (β + 1)2, and N4(β) = (1, 6, 6, 1), N3(β) =

(1, 3, 1), N2(β) = (1, 1). It is easy to see that

β G
(β)
w (1, 1, 1, 1) = DET

∣∣∣∣ N4(β) N3(β)
N3(β) N2(β)

∣∣∣∣ . On the other hand,

DET

∣∣∣∣ P4(β) P3(β)
P3(β) P2(β)

∣∣∣∣ = (3, 6, 4, 1) = (3 + 3β + β2) (1+β). It is more involved to check that

q5(1 + β) G(β)
w (1, q, q2, q3) = DET

∣∣∣∣ S4(q;β) S3(q;β)
S3(q; qβ) S2(q; qβ)

∣∣∣∣ .
(2) Let us illustrate Theorem 5.5 by a few examples. For the sake of simplicity, we consider

the case β = 0, i.e. the case of Schubert polynomials. In this case Pn(q;β = 0) = Cn(q) is equal
to the Carlitz– Riordan q-analogue of Catalan numbers. We are reminded that the q-Catalan–
Hankel polynomials are defined as follows

C(k)
n (q) = qk(1−k)(4k−1)/6 DET |Cn+k−i−j(q)|1≤i,j≤n.

In the case β = 0 the Theorem 5.5 states that if n = (n1, . . . , np) ∈ Np and the permutation
w(n) ∈ Sn is defined by the use of (5.10), then

Sw(n)(1, q, q2, . . .) = q
∑

(ni3 ) C
(n1)
n1+n2

(q)× C(n1+n2)
n1+n2+n3

(q)× C(n−np)
n (q).

Now let us consider a few examples for n = 6.

• n = (1, 5), =⇒ Sw(n)(1, q, . . .) = q10 C
(1)
6 (q) = C5(q).

• n = (2, 4), =⇒ Sw(n)(1, q, . . .) = q4 C
(2)
6 (q)=DET

∣∣∣∣ C6(q) C5(q)
C5(q) C4(q)

∣∣∣∣ .
Note that Sw(2,4)(1, q, . . .) = Sw(1,1,4)(1, q, . . .).

• n = (2, 2, 2) =⇒ Sw(n)(1, q, . . .) = C
(2)
4 (q) C

(4)
6 (q).

• n = (1, 1, 4) =⇒ Sw(n)(1, q, . . .) = q4 C
(1)
2 (q) C

(2)
4 (q) = q4 C

(2)
4 (q),

the last equality follows from that C
(k)
k+1(q) = 1 for all k ≥ 1.

• n = (1, 2, 3) =⇒ Sw(n)(1, q, . . .) = q C
(1)
3 (q) C

(3)
6 (q). On the other hand,

• n = (3, 2, 1) =⇒ Sw(n)(1, q, . . .) = q C
(3)
5 (q) C

(5)
6 (q) = q C

(3)
5 (q) = q(1, 1, 1, 1).

Note that C(k)
k+2(q) =

[
k+1

1

]
q
.

Exercises 5.4.
Let 1 ≤ k ≤ m ≤ n be integers, n ≥ 2k + 1. Consider permutation

w =

(
1 2 . . . k k + 1 . . . n
m m− 1 . . . m− k + 1 n . . . . . . 1

)
∈ Sn.

Show that
Sw(1, q, . . .) = qn(D(w)) C

(m)
n−m+k(q),

where for any permutation w, n(D(w)) =
∑(

di(w)
2

)
and di(w) denotes the number of boxes in

the i-th column of the (Rothe ) diagram D(w) of the permutation w, see [61]. p.8.

�
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(C) A determinantal formula for the Grothendieck polynomials G
(β)

π
(n)
k

Define polynomials

Φ(m)
n (Xn) =

n∑
a=m

ea(Xn) βa−m,

Ai,j(Xn+k−1) =
1

(i− j)!

( ∂

∂β

)j−1
Φ

(n+1−i)
k+n−i (Xk+n−i), if 1 ≤ i ≤ j ≤ n,

and

Ai,j(Xk+n−1) =

i−j−1∑
a=0

en−i−a(Xn+k−i)

(
i− j − 1

a

)
, if 1 ≤ j < i ≤ n.

Theorem 5.7.
DET |Ai,j |1≤i,j≤n = G

(β)

π
(k)
k+n

(Xk+n−1).

Comments 5.5.
(a) One can compute the Grothendieck polynomials for yet another interesting family of

permutations. namely, grassmannian permutations

σ
(n)
k =

(
1 2 . . . k − 1 k k + 1 k + 2 . . . n+ k
1 2 . . . k − 1 n+ k k k + 1 . . . n+ k − 1

)
=

sksk+1 . . . sn+k−1 ∈ Sn+k.

Then

G
(β)

σk(n)(x1, . . . , xn+k) =
k−1∑
j=0

s(n,1j)(Xk) β
j ,

where s(n,1j)(Xk) denotes the Schur polynomial corresponding to the hook shape partition
(n, 1j) and the set of variables Xk := (x1, . . . , xk). In particular,

G
(β)

σk(n)(xj = 1,∀j) =

(
n+ k − 1

k

)(k−1∑
j=0

k

n+ j

(
k − 1

j

)
βj
)

=
k−1∑
j=0

(
n+ j − 1

j

)
(1 + β)j .

(b) Grothendieck polynomials for grassmannian permutations
In the case of a grassmannian permutation w := σλ ∈ S∞ of the shape λ = (λ1 ≥ λ2 ≥

. . . ≥ λn) where n is a unique descent of w, one can prove the following formulas for the
β-Grothendieck polynomial

G(β)
σλ

(Xn) =
DET |xλj+n−ji (1 + β xi)

j−1|1≤i,j≤n∏
1≤i<j≤n(xi − xj)

= (5.11)

DET |h(β)
λj+i,j

(X[i,n])|1≤i,j≤n = DET |h(β)
λj+i,j

(Xn)|1≤i,j≤n, (5.12)

where X[i,n] = (xi, xi+1, . . . , xn), and for any set of variables X,

h
(β)
n,k(X) =

k−1∑
a=0

(
k − 1

a

)
hn−k+a(X) βa,

and hk(X) denotes the complete symmetric polynomial of degree k in the variables from the set
X.
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A proof is a straightforward adaptation of the proof of special case β = 0 (the case of Schur
polynomials) given by I. Macdonald [61], Section 2, (2.10) and Section 4, (4.8).

Indeed, consider β-divided difference operators π
(β)
j , j = 1, . . . , n − 1, and π

(β)
w , w ∈ Sn,

introduced in [27]. For example,
π

(β)
j (f) = 1

xj−xj+1

(
(1 + βxj+1)f(Xn)− (1 + βxj)f(sj(Xn)

)
.

Now let w0 := w
(n)
0 be the longest element in the symmetric group Sn. The same proves of

the statements (2.10), (2.16) from [61] show that

π(β)
w0

= a−1
δ w0

(∑
σ∈Sn

(−1)`(σ)
n−1∏
j=1

(1 + βxj)
n−j σ

)
,

where aδ =
∏

1≤i<j≤n (xi − xj).
On the other hand, the same arguments as in the proof of statement (4.8) from [61] show that

G(β)
σλ

(Xn) = π
(β)

w(0)(x
λ+δn).

Application of the formula for operator π(β)

w
(0)
n

displayed above to the monomial xλ+δn finishes the
proof of the first equality in (5.11). The statement that the right hand side of the equality (5.12)
coincides with determinants displayed in the identity (5.12) can be checked by means of simple
transformations..

�

Problems 5.1.
(1) Give a bijective prove of Theorem 3.3, i.e. construct a bijection between
• the set of k-tuple of mutually non-crossing Schröder paths (p1, . . . , pk) of lengths (n, n −

1, . . . , n− k + 1) correspondingly, and
• the set of pairs (m, T ), where T is a k-dissection of a convex (n+ k + 1)-gon, and m is a

upper triangle (0, 1)-matrix of size (k − 1)× (k − 1),
which is compatible with natural statistics on the both sets.
(2) Let w ∈ Sn be a permutation, and CS(w) be the set of compatible sequences corresponding

to w, see e.g. [8].
Define statistics c(•) on the set CS(w) such that

G(β−1)
w (x1 = 1, x2 = 1, . . .) =

∑
a∈CS(w)

βc(a).

(3) Let w be a vexillary permutation.
Find a determinantal formula for the β-Grothendieck polynomial G(β)

w (X).
(4) Let w be a permutation

Find a geometric interpretation of coefficients of the polynomials S
(β)
w (xi = 1) and S

(β)
w (xi =

q, xj = 1,∀j 6= i).
For example, let w ∈ Sn be an involution, i.e. w2 = 1, and w

′ ∈ Sn+1 be the image of w under
the natural embedding Sn ↪→ Sn+1 given by w ∈ Sn −→ (w, n+ 1) ∈ Sn+1.
It is well-known, see e.g. [53], [98], that the multiplicity me,w of the 0-dimensional Schubert
cell {pt} = Y

w
(n+1)
0

in the Schubert variety Y w′ is equal to the specialization Sw(xi = 1) of

the Schubert polynomial Sw(Xn). Therefore one can consider the polynomial S(β)
w (xi = 1) as a

β-deformation of the multiplicity me,w.

Question What is a geometrical meaning of the coefficients of the polynomial S(β)
w (xi =

1) ∈ N[β] ?

Conjecture 5.1. The polynomial S(β)
w (xi = 1) is a unimodal polynomial for any permutation

w.
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5.2.4 Specialization of Schubert polynomials

Let n, k, r be positive integers and p, b be non-negative integers such that r ≤ p + 1. It is
well-known [61] that in this case there exists a unique vexillary permutation $ := $λ,φ ∈ S∞
which has the shape λ = (λ1, . . . , λn+1) and the flag φ = (φ1, . . . , φn+1), where

λi = (n− i+ 1) p+ b, φi = k + 1 + r (i− 1), 1 ≤ i ≤ n+ 1− δb,0.

According to a theorem by M.Wachs [95], the Schubert polynomial S$(X) admits the following
determinantal representation

S$(X) = DET

(
hλi−i+j(Xφi)

)
1≤i,j≤n+1

.

Therefore we have S$(1) := S$(x1 = 1, x2 = 1, . . .) =

DET

((
(n− i+ 1)p+ b− i+ j + k + (i− 1)r

k + (i− 1)r

))
1≤i,j≤n+1

.

We denote the above determinant by D(n, k, r, b, p).

Theorem 5.8. D(n, k, r, b, p) =

∏
(i,j)∈An,k,r

i+ b+ jp

i

∏
(i,j)∈Bn,k,r

(k − i+ 1)(p+ 1) + (i+ j − 1)r + r(b+ np)

k − i+ 1 + (i+ j − 1)r
,

where
An,k,r =

{
(i, j) ∈ Z2

≥0 | j ≤ n, j < i ≤ k + (r − 1)(n− j)
}
,

Bn,k,r =
{

(i, j) ∈ Z2
≥1 | i+ j ≤ n+ 1, i 6= k + 1 + r s, s ∈ Z≥0

}
.

�
It is convenient to re-wright the above formula for D(n, k, r, b, p) in the following form

D(n, k, r, b, p) =

n+1∏
j=1

(
(n− j + 1)p+ b+ k + (j − 1)(r − 1)

)
! (n− j + 1)!(

k + (j − 1)r
)

!
(

(n− j + 1)(p+ 1) + b
)

!
×

∏
1≤i≤j≤n

(
(k − i+ 1)(p+ 1) + jr + (np+ b)r

)
.

Corollary 5.2. (Some special cases)
(A) The case r = 1

We consider below some special cases of Theorem 5.7 in the case r = 1. To simplify no-
tation, we set D(n, k, b, p) := D(n, k, r = 1, b, p). Then we can rewrite the above formula for
D(n, k, r, b, p) as follows D(n, k, b, p) =

n+1∏
j=1

(
(n+ k − j + 1)(p+ 1) + b

)
!
(

(n− j + 1)p+ b+ k
)

! (j − 1)!(
(n− j + 1)(p+ 1) + b

)
!
(

(k + n− j + 1)p+ b+ k
)

! (k + j − 1)!
.
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(1) If k ≤ n+ 1, then D(n, k, b, p) =

k∏
j=1

(
(n+ k + 1− j)(p+ 1) + b

n− j + 1

) (
(k − j)p+ b+ k

j

)
j! (k − j)! (n− j + 1)!

(n+ k − j + 1)!
.

In particular,
• If k = 1, then

D(n, 1, b, p) =
1 + b

1 + b+ (n+ 1)p

(
(p+ 1)(n+ 1) + b

n+ 1

)
:= F

(p+1)
n+1 (b),

where F pn(b) := 1+b
1+b+(p−1)n

(
pn+b
n

)
denotes the generalized Fuss-Catalan number.

• if k = 2, then

D(n, 2, b, p) =
(2 + b)(2 + b+ p)

(1 + b)(2 + b+ (n+ 1)p)(2 + b+ (n+ 2)p)
F

(p+1)
n+1 (b) F

(p+1)
n+2 (b).

In particular,

D(n, 2, 0, 1) =
6

(n+ 3)(n+ 4)
Catn+1 Catn+2.

See [87], A005700 for several combinatorial interpretations of these numbers.

(2) (R.A. Proctor [82]) Consider the Young diagram

λ := λn,p,b = {(i, j) ∈ Z≥1 × Z≥1 | 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ (n+ 1− i)p+ b}.

For each box (i, j) ∈ λ define the numbers c(i, j) := n+ 1− i+ j, and

l(i,j)(k) =

{
k+c(p,j)
c(i,j) , if j ≤ (n+ 1− i)(p− 1) + b,

(p+1)k+c(i,j)
c(i,j) , if (n+ 1− i)(p− 1) < j − b ≤ (n+ 1− i)p.

Then

D(n, k, b, p) =
∏

(i,j)∈λ

l(i,j)(k). (5.13)

Therefore, D(n, k, b, p) is a polynomial in k with rational coefficients.
(3) If p = 0, then

D(n, k, b, 0) = dim V
gl(b+k)

(n+1)k
=

n+k∏
j=1

(
j + b

j
)min(j,n+k+1−j),

where for any partition µ, `(µ) ≤ m, V
gl(m)
µ denotes the irreducible gl(m)-module with the

highest weight µ. In particular,

• D(n, 2, b, 0) =
1

n+ 2 + b

(
n+ 2 + b

b

)(
n+ 2 + b

b+ 1

)
is equal to the Narayana number N(n+ b+ 2, b);

• D(1, k, b, 0) =
(b+ k)! (b+ k + 1)!

k!b!(k + 1)!(b+ 1)!
:= N(b+ k + 1, k),
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and therefore the number D(1, k, b, 0) counts the number of pairs of non-crossing lattice paths
inside a rectangular of size (b+1)×(k+1), which go from the point (1, 0) (resp. from that (0, 1))
to the point (b+ 1, k) (resp. to that (b, k+ 1)), consisting of steps U = (1, 0) and R = (0, 1), see
[87], A001263, for some list of combinatorial interpretations of the Narayana numbers.

(4) If p = b = 1, then

D(n, k, 1, 1) = C
(k)
n+k+1 :=

∏
1≤i≤j≤n+1

2k + i+ j

i+ j
.

(5) ( R.A. Proctor [80],[81] ) If p = 1 and b is odd integer, then D(n, k, b, 1) is equal to
the dimension of the irreducible representation of the symplectic Lie algebra Sp(b+ 2n+ 1) with
the highest wright kωn+1.

(6) If p = 1 and b = 0, then

D(n, k, 1, 0) = D(n− 1, k, 1, 1) =
∏

1≤i≤j≤n

2k + i+ j

i+ j
= C

(k)
n+k,

see subsection Grothendieck and Narayana polynomials.
(7) ( Cf [29] ) Let $λ be a unique dominant permutation of shape λ := λn,p,b and ` :=

`n,p,b = 1
2(n+ 1)(np+ 2b) be its length. Then

∑
a∈R($λ)

∏̀
i=1

(x+ ai) = `! B(n, x, p, b).

Here for any permutation w of length l, we denote by R(w) the set {a = (a1, . . . , al)} of all
reduced decompositions of w.

Exercises 5.5.
Show that

• DET

∣∣∣∣F (2)
n+i+j−2(b)

∣∣∣∣
1≤i,j≤k

=

k∏
j=1

F
(2)
n+k−1(b)

(
k+1

2

)
!∏

1≤i≤k−1
1≤j≤k

(n+ i+ j)
.

• D(n, k, b, 1) =
k∏
j=1

F
(2)
n+j

∏
1≤i≤j≤k(b+ i+ j − 1)∏

1≤i≤k−1
1≤j≤k

(n+ b+ i+ j + 1)
.

Clearly that if b = 0, then F (2)
n (0) = Cn, and D(n, k, 0, 1) is equal to the Catalan–Hankel deter-

minant C(k)
n .

Finally we recall that the generalized Fuss-Catalan number F (p+1)
n+1 (b) counts the number of lattice

paths from (0, 0) to (b+ np, n) that do not go above the line x = py, see e.g. [55].

Comments 5.6.
It is well-known, see e.g. [82], or [88], vol.2, Exercise 7.101.b, that the number D(n, k, b, p)

is equal to the total number ppλn,p,b(k) of plane partitions 33 bounded by k and contained in
the shape λn,b,p.

More generally, see e.g. [29], for any partition λ denote by wλ ∈ S∞ a unique dominant
permutation of shape λ, that is a unique permutation with the code c(w) = λ. Now for any

33 Let λ be a partition. A plane (ordinary) partition bounded by d and shape λ is a filling of the shape λ by the
numbers from the set {0, 1, . . . , d} in such a way that the numbers along columns and rows are weakly decreasing.
A reverse plane partition bounded by d and shape λ is a filling of the shape λ by the numbers from the set
{0, 1, . . . , d} in such a way that the numbers along columns and rows are weakly increasing.
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non-negative integer k consider the so-called shifted dominant permutation w(k)
λ which has the

shape λ and the flag φ = (φi = k + i− 1, i = 1, . . . , `(λ)). Then

S
w

(k)
λ

(1) = ppλ(≤ k),

where ppλ(≤ k) denotes the number of all plane partitions bounded by k and contained in λ.
Moreover, ∑

π∈PPλ(≤k)

q|π| = qn(λ) S
w

(k)
λ

(1, q−1, q−2, . . .),

where PP λ(≤ k) denotes the set of all plane partitions bounded by k and contained in λ.

Exercises 5.6.
(1) Show that

lim
k→∞

S
w

(k)
λ

(1, q, q2, . . .) =
qn(λ)

Hλ(q)
,

where Hλ(q) =
∏
x∈λ (1− qh(x)) denotes the hook polynomial corresponding to a given partition

λ.
(2) Let λ = ((n+ `)`, `n) be a fat hook.
Show that

lim
k→∞

qn(λ) S
w

(k)
λ

(1, q−1, q−2, . . .) = qs(`,n) Kλ(q)

M`(2n+ 2`− 1; q)
,

where a(`, n) is a certain integer we don’t need to specify in what follows;

M`(N ; q) =
N∏
j=1

(
1

1− qj

)min(j,N+1−j,`)

denotes the MacMahon generating function for the number of plane partitions fit inside the
box N ×N × ` ; Kλ(q) is a polynomial in q such that Kλ(0) = 1.

(a) Show that

(1− q)|λ| Kλ(q)

M`(2n+ 2`− 1; q)

∣∣∣∣
q=1

=
1∏

x∈λ h(x)
.

(b) Show that
• Kλ(q) ∈ N[q] and Kλ(1) = M(n, n, `),

whereM(a, b, c) denotes the number of plane partitions fit inside the box a×b×c. It is well-known,
see e.g.[62], p. 81, that

M(a, b, c) =
∏

1≤i≤a,
1≤j≤b,
1≤k≤c

i+ j + k − 1

i+ j + k − 2
=

c∏
i=1

(a+ b+ i− 1)! (i− 1)!

(a+ i− 1)! (b+ 1− 1)!
= dim V

glb+c
(ac) .

• Kλ(q) =
∑

π∈Bn,n,`

qwt`(π),

where the sum runs over the set of plane partitions π = (πij)1≤i,j≤n fit inside the box Bn,n,` :=
n× n× `, and

wt`(π) =
∑
i,j

πij + `
∑
i

πii.
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(c) Assume as before that λ := ((n+ `)`, `n).
Show that

lim
n→∞

Kλ(q) = M`(q)
∑
µ

`(µ)≤`

q|µ|

(
qn(µ)∏

x∈µ(1− qh(x))

)2

,

where the sum runs over the set of partitions µ with the number of parts at most `, and
n(µ) =

∑
i (i− 1) µi;

M`(q) :=
∏
j≥1

(1− qj)min(j,`).

Therefore the generating function PP (`,0)(q) :=
∑

π∈PP (`,0) q|π| is equal to

∑
µ

`(µ)≤`

q|µ|

(
qn(µ)∏

x∈µ(1− qh(x))

)2

,

where PP (`,k) := {π = (πij)i,j≥1 | πij ≥ 0, π`+1,`+1 ≤ k}, |π| =
∑

i,j πij.
(d) Show that

PP (`,0)(q) =
1

M`(q)2

∑
µ,

`(µ)≤`

(−q)|µ| qn(µ)+n(µ
′
)
(

dimq V
gl(`)
µ

)2
, (5.14)

where µ′ denotes the conjugate partition of µ, therefore n(µ
′
) =

∑
i≥1

(
µi
2

)
.

The formula (5.14) is the special case n = m of Theorem 1.2, [72]. In particular, if ` = 1
then one come to following identity

1

(q; q)2
∞

∑
k≥0

(−1)k q(
k+1

2 ) =
∑
k≥0

qk
( 1

(q; q)k

)2
.

(e) Let k ≥ 0, ` ≥ 1 be integers.
Show that the (fermionic) generating function for the number of plane partitions π = (πij) ∈

PP (`,k) is equal to ∑
π∈PP (`,k)

q|π| =
∑
µ

µ`+1≤k

q|µ|

(
qn(µ)∏

x∈µ(1− qh(x))

)2

.

�

(B) The case k = 0
(1) D(n, 0, 1, p, b) = 1 for all nonnegative n, p, b.
(2) D(n, 0, 2, 2, 2) = V SASM(n), i.e. the number of alternating sign 2n + 1 × 2n + 1

matrices symmetric about the vertical axis, see e.g. [87], A005156.
(3) D(n, 0, 2, 1, 2) = CSTCPP (n), i.e. the number of cyclically symmetric transpose com-

plement plane partitions, see e.g. [87], A051255.

Theorem 5.9. Let $n,k,p be a unique vexillary permutation of the shape λn.p := (n, n −
1, . . . , 2, 1)p and flag φn,k := (k + 1, k + 2, . . . , k + n− 1, k + n). Then

• G(β−1)
$n,1,p(1) =

n+1∑
j=1

1

n+ 1

(
n+ 1

j

) (
(n+ 1)p

j − 1

)
βj−1.

• If k ≥ 2, then Gn,k,p(β) := G
(β−1)
$n,k,p(1) is a polynomial of degree nk in β, and

Coeff[βnk](Gn,k,p(β)) = D(n, k, 1, p− 1, 0).
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The polynomial
n∑
j=1

1

n

(
n

j

) (
pn

j − 1

)
tj−1 := FNn(t)

is known as the Fuss-Narayana polynomial and can be considered as a t-deformation of the
Fuss-Catalan number FCpn(0).

Recall that the number 1
n

(
n
j

) (
pn
j−1

)
counts paths from (0, 0) to (np, 0) in the first quadrant,

consisting of steps U = (1, 1) and D = (1,−p) and have j peaks (i.e. UD’s), cf. [87], A108767.
For example, take n = 3, k = 2, p = 3, r = 1, b = 0. Then
$3,2,3 = [1, 2, 12, 9, 6, 3, 4, 5, 7, 8, 10, 11] ∈ S12, and G3,2,3(β) =

(1, 18, 171, 747, 1767, 1995, 1001). Therefore, G3,2,3(1) = 5700 = D(3, 2, 3, 0) and
Coeff[β6](G3,2,3(β)) = 1001 = D(3, 2, 2, 0).

Proposition 5.5. ([73]) The value of the Fuss–Catalan polynomial at t = 2, that is the number

n∑
j=1

1

n

(
n

j

) (
pn

j − 1

)
2j−1

is equal to the number of hyperplactic classes of p-parking functions of length n, see [73] for
definition of p-parking functions, its properties and connections with some combinatorial Hopf
algebras.

Therefore, the value of the Grothendieck polynomial G
(β=1)
$n,1,p(1) at β = 1 and xi = 1, ∀i,

is equal to the number of p-parking functions of length n + 1. It is an open problem to find
combinatorial interpretations of the polynomials G(β)

$n,k,p(1) in the case k ≥ 2. Note finally, that
in the case p = 2, k = 1 the values of the Fuss–Catalan polynomials at t = 2 one can find in
[87], A034015. �

Comments 5.7. (=⇒) The case r=0
It follows from Theorem 5.7 that in the case r = 0 and k ≥ n, one has

D(n, k, 0, p, b) = dim V
gl(k+1)
λn,p,b

= (1 + p)(
n+1

2 )
n+1∏
j=1

((n−j+1)p+b+k−j+1
k−j+1

)(
(n−j+1)(p+1)+b

n−j+1

) .

Now consider the conjugate ν := νn,p,b := ((n + 1)b, np, (n − 1)p, . . . , 1p) of the partition
λn,p,b, and a rectangular shape partition ψ = (k, . . . , k︸ ︷︷ ︸

np+b

). If k ≥ np + b, then there exists a

unique grassmannian permutation σ := σn,k,p,b of the shape ν and the flag ψ, [61]. It is easy to
see from the above formula for D(n, k, 0, p, b), that

Sσn,k,p,b(1) = dim V gl(k−1)
νn,p,b

=

(1 + p)(
n
2)
(
k + n− 1

b

) n∏
j=1

(p+ 1)(n− j + 1)

(n− j + 1)(p+ 1) + b

n∏
j=1

( k+j−2
(n−j+1)p+b

)(
(n−j+1)(p+1)+b−1

n−j
) .

After the substitution k := np+ b+ 1 in the above formula we will have

Sσn,np+b+1,p,b
(1) = (1 + p)(

n
2)

n∏
j=1

(np+b+j−1
(n−j+1)p

)(
j(p+1)−1
j−1

) .
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In the case b = 0 some simplifications are happened, namely

Sσn,k,p,0(1) = (1 + p)(
n
2)

n∏
j=1

( k+j−2
(n−j+1)p

)(
(n−j+1)p+n−j

n−j
) .

Finally we observe that if k = np+ 1, then

n∏
j=1

( np+j−1
(n−j+1)p

)(
(n−j+1)p+n−j

n−j
) =

n∏
j=2

( np+j−1
(p+1)(j−1)

)(
j(p+1)−1
j−1

) =
n−1∏
j=1

j! (n(p+ 1)− j − 1)!

((n− j)(p+ 1))! ((n− j)(p+ 1)− 1)!
:= A(p)

n ,

where the numbers A(p)
n are integers that generalize the numbers of alternating sign matrices

(ASM) of size n× n, recovered in the case p = 2, see [74], [19] for details.

Examples 5.1.
(1) Let us consider polynomials Gn(β) := G

(β−1)
σn,2n,2,0(1).

• If n = 2, then σ2,4,2,0 = 235614 ∈ S6, and G2(β) = (1, 2,3) := 1 + 2β + 3β2.
Moreover, Rσ2,4,2,0(q;β) = (1,2)β + 3 qβ2.
• If n = 3, then σ3,6,2,0 = 235689147 ∈ S9, and G3(β) = (1, 6, 21, 36, 51, 48,26).
Moreover, Rσ3,6,2,0(q;β) = (1, 6, 11, 16,11)β + q β2(10, 20, 35, 34)β + q2β4(5, 14,26)β;
Rσ3,6,2,0(q; 1) = (45, 99, 45)q.
• If n = 4, then σ4,8,2,0 = [2, 3, 5, 6, 8, 9, 11, 12, 1, 4, 7, 10] ∈ S12, and G4(β) =
(1, 12, 78, 308, 903, 2016, 3528, 4944, 5886, 5696, 4320, 2280,646).
Moreover, Rσ4,8,2,0(q;β) = (1, 12, 57, 182, 392, 602, 763, 730, 493,170)β +
qβ2(21, 126, 476, 1190, 1925, 2626, 2713, 2026, 804)β +
q2β4(35, 224, 833, 1534, 2446, 2974, 2607, 1254)β + q3β6(7, 54, 234, 526, 909, 1026,646)β;
Rσ4,8,2,0(q; 1) = (3402, 11907, 11907, 3402)q = 1701 (2, 7, 7, 2)q.
• If n = 5, then σ5,10,2 = [2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 1, 4, 7, 10, 13] ∈ S15, and G5(β) =

(1, 20, 210, 1420, 7085, 27636, 87430, 230240, 516375, 997790, 1676587, 2466840,
3204065, 3695650, 3778095, 3371612, 2569795, 1610910, 782175, 262200,45885).
Moreover, Rσ5,10,2,0(q;β) = (1, 20, 174, 988, 4025, 12516, 31402, 64760, 111510, 162170,
202957, 220200, 202493, 153106, 89355, 35972,7429)β+
qβ2(36, 432, 2934, 13608, 45990, 123516, 269703, 487908, 738927, 956430, 1076265,
1028808, 813177, 499374, 213597, 47538)β +
q2β4(126, 1512, 9954, 40860, 127359, 314172, 627831, 1029726, 1421253, 1711728,
1753893, 1492974, 991809, 461322, 112860)β +
q3β6(84, 1104, 7794, 33408, 105840, 255492, 486324, 753984, 1019538, 1169520, 1112340,
825930, 428895, 117990)β +
q4β8(9, 132, 1032, 4992, 17730, 48024, 102132, 173772, 244620, 276120, 240420, 144210,
45885)β.
Rσ5,10,2,0(q; 1) = (1299078, 6318243, 10097379, 6318243, 1299078)q =
59049(22, 107, 171, 107, 22)q.[
We are reminded that over the paper we have used the notation (a0, a1, . . . , ar)β :=∑r

j=0 aj β
j , etc

]
.

One can show that deg[β]Gn(β) = n(n − 1), deg[q]Rσn,2n,2,0(q, 1) = n − 1, and looking on
the numbers 3, 26, 646, 45885 we made

Conjecture 5.2. Let a(n) := Coeff [βn(n−1)]
(
Gn(β)

)
. Then

a(n) = V SASM(n) = OSASM(n) =
n−1∏
j=1

(3j + 2)(6j + 3)! (2j + 1)!

(4j + 2)! (4j + 3)!
,
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where
V SASM(n) is the number of alternating sign 2n + 1 × 2n + 1 matrices symmetric about

the vertical axis;
OSASM(n) is the number of 2n× 2n off-diagonal symmetric alternating sign matrices.
See [87], A005156, [74] and references therein, for details.

Conjecture 5.3.
Polynomial Rσn,2n,2,0(q; 1) is symmetric and Rσn,2n,2,0(0; 1) = A20342(2n− 1), see [87].

(2) Let us consider polynomials Fn(β) := G
(β−1)
σn,2n+1,2,0(1).

• If n = 1, then σ1,3,2,0 = 1342 ∈ S4, and F2(β) = (1,2) := 1 + 2β.
• If n = 2, then σ2,5,2,0 = 1346725 ∈ S7, and F3(β) = (1, 6, 11, 16,11).
Moreover, Rσ2,5,2,0(q;β) = (1, 2,3)β + qβ(4, 8, 12)β + q2β3(4,11)β.
• If n = 3, then σ3,7,2,0 = [1, 3, 4, 6, 7, 9, 10, 2, 5, 8] ∈ S10, and F4(β) =
(1, 12, 57, 182, 392, 602, 763, 730, 493,170).
Moreover,
Rσ3,7,2,0(q;β) = (1, 6, 21, 36, 51, 48,26)β + q β (6, 36, 126, 216, 306, 288, 156)β
+ q2β3(20, 125, 242, 403, 460, 289)β + q3β5(6, 46, 114, 204,170)β;
Rσ3,7,2,0(q; 1) = (189, 1134, 1539, 540)q = 27 (7, 42, 57, 20)q.
• If n = 4, then σ4,9,2,0 = [1, 3, 4, 6, 7, 9, 10, 12, 13, 2, 5, 8, 11] ∈ S13, and F5(β) =
(1, 20, 174, 988, 4025, 12516, 31402, 64760, 111510, 162170, 202957, 220200, 202493,
153106, 89355, 35972,7429).
Moreover,
Rσ4,9,2,0(q;β) = (1, 12, 78, 308, 903, 2016, 3528, 4944, 5886, 5696, 4320, 2280,646)β+
qβ (8, 96, 624, 2464, 7224, 16128, 28224, 39552, 47088, 45568, 34560, 18240, 5168)β+
q2β3(56, 658, 3220, 11018, 27848, 53135, 78902, 100109, 103436, 84201, 47830, 14467)β+
q3β5(56, 728, 3736, 12820, 29788, 50236, 72652, 85444, 78868, 50876, 17204)β+
q4β7(8, 117, 696, 2724, 7272, 13962, 21240, 24012, 18768,7429)β;
Rσ4,9,2,0(q; 1) = (30618, 244944, 524880, 402408, 96228)q = 4374 (7, 56, 120, 92, 22)q.
One can show that Fn(β) is a polynomial in β of degree n2, and looking on the numbers

2, 11, 170, 7429 we made

Conjecture 5.4. Let b(n) := Coeff
[β(n−1)2 ]

(
Fn(β)

)
. Then

b(n) = CSTCPP (n). In other words, b(n) is equal to the number of cyclically symmetric
transpose complement plane partitions in an 2n× 2n× 2n box. This number is known to be

n−1∏
j

(3j + 1)(6j)! (2j)!

(4j + 1)! (4j)!
,

see [87], A051255, [10], p.199.

It ease to see that polynomial Rσn,2n+1,2,0(q; 1) has degree n.

Conjecture 5.5.

• Coeff[βn]

(
Rσn,2n+1,2,0(q; 1)

)
= A20342(2n),

see [87];

• Rσn,2n+1,2,0(0; 1) = A
(1)
QT (4n; 3) = 3n(n−1)/2 ASM(n),

see [56], Theorem 5, or [87], A059491.
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Proposition 5.6. One has

Rσ4,2n+1,2,0(0;β) = Gn(β) = G(β−1)
σn,2n,2,0(1), Rσn,2n,2,0(0, β) = Fn(β) = G(β−1)

σn,2n+1,2,0
(1).

Finally we define (β, q)-deformations of the numbers V SASM(n) and CSCTPP (n). To ac-
complish these ends, let us consider permutations

w−k = (2, 4, . . . , 2k, 2k − 1, 2k − 3, . . . , 3, 1) and w+
k = (2, 4, . . . , 2k, 2k + 1, 2k − 1, . . . , 3, 1).

Proposition 5.7. One has

Sw−k
(1) = V SAM(k), Sw+

k
(1) = CSTCPP (k).

Therefore the polynomials G
(β−1)

w−k
(x=q, xj = 1, ∀j ≥ 2) and G

(β−1)

w+
k

(x=q, xj = 1,∀j ≥ 2)

define (β, q)-deformations of the numbers V SAM(k) and CSTCPP (k) respectively. Note that
the inverse permutations (w−k )−1 = (2k, 1︸︷︷︸, . . . , 2k + 1− i, i︸ ︷︷ ︸, . . . , k + 1, k︸ ︷︷ ︸) and (w+

k )−1 =

(2k + 1, 1︸ ︷︷ ︸, . . . , 2k + 2− j, j︸ ︷︷ ︸, . . . , k + 2, k︸ ︷︷ ︸, k + 1) also define a (β, q)-deformation of the numbers

considered above.

Problem 5.1.
It is well-known, see e.g. [23], p.43, that the set VSASM(n) of alternating sign (2n +

1) × (2n + 1) matrices symmetric about the vertical axis has the same cardinality as the set
SY T2(λ(n),≤ n) of semistandard Young tableaux of the shape λ(n) := (2n− 1, 2n− 3, . . . , 3, 1)
filled by the numbers from the set {1, 2, . . . , n}, and such that the entries are weakly increasing
down the anti-diagonals.

On the other hand, consider the set CS(w−k ) of compatible sequences, see e.g. [8], [27],
corresponding to the permutation w−k ∈ S2k.

Challenge Construct bijections between the sets CS(w−k ), SY T2(λ(k),≤ k) and VSASM(k).
�

Remarks 5.1. One can compute the principal specialization of the Schubert polynomial
corresponding to the transposition tk,n := (k, n − k) ∈ Sn that interchanges k and n − k, and
fixes all other elements of [1, n].

Proposition 5.8. q(n−1)(k−1) Stk,n−k(1, q−1, q−2, q−3, . . .) =

k∑
j=1

(−1)j−1 q(
j
2)
[
n− 1

k − j

]
q

[
n− 2 + j

k + j − 1

]
q

=

n−2∑
j=1

qj
([j + k − 2

k − 1

]
q

)2
.

Exercises 5.7. (1) Show that if k ≥ 1, then

Coeff[qkβ2k]

(
Rσn,2n,2,0(q; t)

)
=

(
2n− 1

2k

)
, Coeff[qkβ2k−1]

(
Rσn,2n+1,2,0(q; t)

)
=

(
2n

2k − 1

)
.

(2) Let n ≥ 1 be a positive integer, consider “zig-zag” permutation

w =

(
1 2 3 4 . . . 2k + 1 2k + 2 . . . 2n− 1 2n
2 1 4 3 . . . 2k + 2 2k + 1 . . . 2n 2n− 1

)
∈ S2n.

Show that

Rw(q, β) =
n−1∏
k=0

(
1− β2k

1− β
+ qβ2k

)
.
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(3) Let σk,n,m be grassmannian permutation with shape λ = (nm) and flag φ = (k+ 1)m, i.e.

σk,n,m =

(
1 2 . . . k k + 1 . . . k + n k + n+ 1 . . . k + n+m
1 2 . . . k k +m+ 1 . . . k +m+ n k + 1 . . . k +m

)
.

Clearly σk+1,n,m = 1× σk,n,m.
Show that

the coefficient Coeffβm

(
Rσk,n,m(1, β)

)
is equal to the Narayana numberN(k+n+m, k).

(4) Consider permutation w := w(n) = (w1, . . . , w2n+1), where w2k−1 = 2k + 1 for k =
1, . . . , n, w2n+1 = 2n, w2 = 1 and w2k = 2k − 2 for k = 2, . . . , n. For example, w(3) =
(3152746). We set w(0) = 1.

Show that
the polynomial S

(β)
w (xi = 1, ∀i) has degree n(n− 1) and the coefficient

Coeffβn(n−1)

(
S

(β)
w (xi = 1, ∀i)

)
is equal to the n-th Catalan number Cn.

Note that the specialization S
(β)
w (xi = 1)|β=1 is equal to the 2n-th Euler (or up/down) number,

see [87], A000111.

More generally, consider permutation w(n)
k := 1k × w(n) ∈ Sk+2n+1, and polynomials

Pk(z) =
∑
j≥0

(−1)j S
w

(j)
k−2j

(xi = 1) zk−2j , k ≥ 0.

Show that ∑
k≥0

Pk(z)
tk

k!
= exp(tz) sech(t).

The polynomials Pk(z) are well-known as Swiss-Knife polynomials, see [87], A153641, where one
can find an overview of some properties of the Swiss-Knife polynomials.

(5) Assume that n = 2k+3. k ≥ 1, and consider permutation vn = (v1, . . . , vn) ∈ Sn, where
v2a+1 = 2a + 3, a = 0, . . . , n − 1, w2 = 1 and w2a = 2a − 2, a = 2, . . . , k + 1. For example,
v4 = [31527496, 11, 8, 10] and Sv4(1) = 50521 = E10.

Show that

Svn(q, xi = 1, ∀i ≥ 2) = (n−2) En−3 q
2 + · · ·+qk−1 (k−1)! qk+2, Svn(xi = 1,∀i ≥ 1) = En−1.

(6) Consider permutation u := un = (u1, . . . , u2n) ∈ S2n, n ≥ 2, where
u1 = 2, u2k+1 = 2k−1, k = 1, . . . , n, u2k = 2k+2, k = 1, . . . , n−1, u2n = 2n−1. For example,
u4 = (24163857).

Now consider polynomial

R(k)
n (q) = S1k×un(x1 = q, xi = 1, ∀i ≥ 2).

Show that
• R

(k)
n (1) =

(
2n+k−1

k

)
E2n−1, where E2k−1, k ≥ 1, denotes the Euler number, see [87], A00111.

In particular, R(1)
n (1) = 22n−1 Gn, where Gn denotes the unsigned Genocchi number, see [87],

A110501.

• degqR
(k)
n (q) = n and Coeffqn

(
R

(0)
n (q)

)
= (2n− 3)!!.

(7) Consider permutation wk := (2k + 1, 2k − 1, . . . , 3, 1, 2k, 2k − 2, . . . , 4, 2) ∈ S2k+1, Show
that

S(β−1)
wk

(x1 = q, xj = 1,∀j ≥ 2) = q2k (1 + β)(
n
2).
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(8) Consider permutations σ+
k = (1, 3, 5, . . . , 2k+1, 2k+2, 2k, . . . , 4, 2) and σ−k = (1, 3, 5, . . . , 2k+

1, 2k, 2k − 2, . . . , 4, 2), and define polynomials

S±k (q) = Sσ±k
(x1 = q, xj = 1,∀j ≥ 2).

Show that S+
k (0) = V SASM(k), S+

k (1) = V SASM(k + 1),
∂
∂qS

+
k (q)|q=0 = 2k S+

k (0) Coeffqk
(
S+
k (q)

)
= CSTCPP (k + 1).

S−k (0) = CSTCPP (k), S−k (1) = CSTCPP (k + 1),
∂
∂qS

−
k (q)|q=0 = (2k − 1) S−k (0), Coeffqk

(
S−k (q)

)
= V SASM(k).

Let’s observe that σ±k = 1× τ±k−1, where τ
+
k = (2, 4, . . . , 2k, 2k + 1, 2k − 1, . . . , 3, 1) and

τ−k = (2, 4, . . . , 2k, 2k − 1, 2k − 3, . . . , 3, 1). Therefore,

Sτ±k
(x1 = q, xj = 1, ∀j ≥ 2) = q S±k−1(q).

Recall that CSTCPP (n) denotes the number of cyclically symmetric transpose compliment
plane partitions in a 2 n×2 n box, see e.g. [87], A051255, and V SASM(n) denotes the number
of alternating sign 2 n+1×2 n+1 matrices symmetric t6he vertical axis, see e.g. [87], A005156.
• It might be well to point out that

Sσ+
n−1

(x1 = x, xi = 1, ∀i ≥ 2) = G2n−1,n−1(x, y = 1),

Sσ−n
(x1 = x, xi = 1, ∀i ≥ 2) = F2n,n−1(x, y = 1),

where (homogeneous) polynomials Gm,n(x, y) and Fm.n(x, y) are defined in [77], and related
with integral solutions to Pascal’s hexagon relations

fm−1,n fm+1,n + fm,n−1 fm,n+1 = fm−1,n−1 fm+1,n+1, (m,n) ∈ Z2.

(9) Consider permutation

un =

(
1 2 . . . n n+ 1 n+ 2 n+ 3 . . . 2n
2 4 . . . 2n 1 3 5 . . . 2n− 1

)
,

and set u(k)
n := 12k+1 × un.

Show that

G
(β−1)

u
(k)
n

(xi = 1, ∀i ≥ 1) = (1 + β)(
n+1

2 ) G
((β)2−1)

1k×w(n+1)
0

(xi = 1,∀i ≥ 1),

where w(n+)
0 denotes the permutation (n+ 1, n, n− 1, . . . , 2, 1).

(10) Let n ≥ 0 be an integer.
• Conceder permutation un = 1n × 321 ∈ S3+n. Show That

Sun(x1 = t, xi = 1, ∀i ≥ 2) =
1

4

(
2 n+ 2

3

)
+

n

2

(
2n+ 2

1

)
t +

1

2

(
2n+ 2

1

)
t2.

• Consider permutation vn := 1n × 4321 ∈ Sn+4.
Show that Svn(x1 = t, xi = 1, ∀i ≥ 2) =

1

24

(
2n+ 4

5

) (
2n+ 2

1

)
+

1

2

(
2n+ 4

5

)
t+

n

4

(
2n+ 4

3

)
t2 +

1

4

(
2n+ 4

3

)
t3.

(11) Show that

∑
(a,b,c)∈(Z≥0)3

qa+b+c

[
a+ b

b

]
q

[
a+ c

c

]
q

[
b+ c

b

]
q

=
1

(q; q)3
∞

(∑
k≥2

(−1)k
(
k

2

)
q(
k
2)−1

)
.
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It is not difficult to see that the left hand side sum of the above identity counts the weighted
number of plane partitions π = (πij) such that

πi,j ≥ 0, πij ≥ max(πi+1,j , πi,j+1), πij ≤ 1, if i ≥ 2 ana j ≥ 2,

and the weight wt(π) :=
∑

i,j πij .
(12) Let λ = (λ1 ≥ λ2 ≥ . . . ≥ λp > 0) be a partition of size n. For an integer k such that

1 ≤ k ≤ n− p define a grassmannian permutation

w
(k)
λ = [1, . . . , k, λp + k + 1, λp−1 + k + 2, . . . , λ1 + k + p, a1, . . . , an−p−k],

where we denote by (a1 < a2 < . . . < an−k−p) the complement [1, n]\(1, . . . , k, λp + k+ 1, λp−1 +
k + 2, . . . , λ1 + k + p)].
• Show that the Grothendieck polynomial

Gλ(β) := Gβ−1
wλk

(1n)

is a polynomial of β with nonnegative coefficients.
Clearly, Gλ(1) = dimV

Gl(k+`(λ))
λ .

• Find a combinatorial interpretations of polynomial Gλ(β). �

Final remark, it follows from the seventh exercise listed above, that the polynomialsS(β)

σ±k
(x1 =

q, xj = 1,∀j ≥ 2) define a (q, β)-deformation of the number V SASM(k) (the case σ+
k ) and the

number CSTCPP (k) (the case σ−k ), respectively.

5.2.5 Specialization of Grothendieck polynomials

Let p, b, n and i, 2i < n be positive integers. Denote by T (i)
p,b,n the trapezoid, i.e. a convex

quadrangle having vertices at the points

(ip, i), (ip, n− i), (b+ ip, i) and (b+ (n− i)p, n− i).

Definition 5.5. Denote by FC(i)
b,p,n the set of lattice path from the point (ip, i) to that (b+ (n−

i)p, n − i) with east steps E = (0, 1) and north steps N = (1, 0), which are located inside of the
trapezoid T (i)

p,b,n.

If p ∈ FC(i)
b,p,n is a path, we denote by p(p) the number of peaks, i.e.

p(p) = NE(p) + Ein(p) +Nend(p),

where NE(p) is equal to the number of steps NE resting on path p; Ein(p) is equal to 1, if the
path p starts with step E and 0 otherwise; Nend(p) is equal to 1, if the path p ends by the
step N and 0 otherwise.

Note that the equality Nend(p) = 1 may happened only in the case b = 0.

Definition 5.6. Denote by FC(k)
b,p,n the set of k-tuples P = (p1, . . . , pk) of non-crossing lattice

paths, where for each i = 1, . . . , k, pi ∈ FC(i)
b,p,n.

Let
FC

(k)
b,p,n(β) :=

∑
P∈FC(k)

b,p,n

βp(P)

denotes the generating function of the statistics p(P) :=
∑k

i=1 p(pi) − k.
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Theorem 5.10. The following equality holds

G(β)
σn,k,p,b

(x1 = 1, x2 = 1, . . .) = FC
(k)
p,b,n+k(β + 1),

where σn,k,p,b is a unique grassmannian permutation with shape ((n + 1)b, np, (n − 1)p, . . . , 1p)
and flag (k, . . . , k)︸ ︷︷ ︸

np+b

.

5.3 The “longest element” and Chan–Robbins–Yuen polytope

5.3.1 The Chan–Robbins–Yuen polytope CRYn

Assume additionally, cf [90], 6.C8, (d), that the condition (a) in Definition 5.1 is replaced by
that

(a′) : xij and xkl commute for all i, j, k and l.

Consider the element w(n)
0 :=

∏
1≤i<j≤n xij . Let us bring the element w(n)

0 to the reduced

form, that is, let us consecutively apply the defining relations (a′) and (b) to the element w(n)
0

in any order until unable to do so. Denote the resulting polynomial by Qn(xij ;α, β). Note that
the polynomial itself depends on the order in which the relations (a′) and (b) are applied.

We denote by Qn(β) the specialization xij = 1 for all i and j, of the polynomial Qn(xij ;α =
0, β).

Example 5.7.
Q3(β) = (2, 1) = 1 + (β + 1), Q4(β) = (10, 13, 4) = 1 + 5(β + 1) + 4(β + 1)2,

Q5(β) = (140, 336, 280, 92, 9) = 1 + 16(β + 1) + 58(β + 1)2 + 56(β + 1)3 + 9(β + 1)4,
Q6(β) = 1 + 42(β+ 1) + 448(β+ 1)2 + 1674(β+ 1)3 + 2364(β+ 1)4 + 1182(β+ 1)5 + 169(β+ 1)6.
Q7(β) = (1, 99, 2569, 25587, 114005, 242415, 248817, 118587, 22924, 1156)β+1

Q8(β) = (1, 219, 12444, 279616, 2990335, 16804401, 52421688, 93221276, 94803125,
53910939, 16163947, 2255749, 108900)β+1.

What one can say about the polynomial Qn(β) := Qn(xij ;β)|xij=1,∀i,j ?
It is known, [90], 6.C8, (d), that the constant term of the polynomial Qn(β) is equal to

the product of Catalan numbers
∏n−1
j=1 Cj . It is not difficult to see that if n ≥ 3, then

Coeff[β+1](Qn(β)) = 2n − 1−
(
n+1

2

)
.

Theorem 5.11. One has

Qn(β − 1) =
(∑
m≥0

ι(CRYn+1,m) βm
)

(1− β)(
n+1

2 )+1,

where CRYm denotes the Chan–Robbins-Yuen polytope [13], [14], i.e. the convex polytope given
by the following conditions :
CRYm =

{
(aij) ∈Matm×m(Z≥0)

}
such that

(1)
∑

i aij = 1,
∑

j aij = 1,
(2) aij = 0, if j > i+ 1.
Here for any integral convex polytope P ⊂ Zd, ι(P, n) denotes the number of integer points

in the set nP ∩ Zd.

In particular, the polynomial Qn(β) does not depend on the order in which the relations (a′)
and (b) have been applied.

Now let us denote by Qn(t;α, β) the specialization

xij = 1, i < j < n, and xi,n = t, if i = 1, . . . , n− 1,
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of the (reduced) polynomial Qn(xij ;α, β) obtained by applying the relations (a′) and (b) in a
certain order. The polynomial itself depends on the order selected.

Conjecture 5.6. (A) Let n ≥ 4 and write

Qn(t = 1;α, β) :=
∑
k≥0

(1 + β)k ck,n(α), then ck,n(α) ∈ Z≥0[α].

(B)

• The polynomial Qn(t, β) has degree dn := [ (n−1)2

4 ].
• Write

Qn(t, β) = tn−2
dn∑
k=0

c(k)
n (t).

Then
c(dn)
n (1) = a2

n for some non− negative integer an.

Moreover, there exists a polynomial an(t) ∈ N[t] such that

c(dn)
n (t) = an(1) an(t), an(0) = an−1.

(C) The all roots of the polynomial Qn(β) belong to the set R<−1.

For example,
(a) Q4(t = 1;α, β) = (1, 5, 4)β+1 + α (5, 7)β+1 + 3 α2, Q5(t = 1;α, β) =

(1, 16, 58, 56, 9)β+1 + α (16, 109, 146, 29)β+1 + α2 (51, 125, 34)β+1 + α3 (35, 17)β+1.

(b) c
(6)
6 = 13 (2, 3, 3, 3, 2), c

(9)
7 (t) = 34 (3, 5, 6, 6, 6, 5, 3),

c
(12)
8 (t) = 330 (13, 27, 37, 43, 45, 45, 43, 37, 27, 13).

Comments 5.8.
(1) We expect that for each integer n ≥ 2 the set

Ψn+1 := {w ∈ S2n−1 | Sw(1) =

n∏
j=1

Catj}

is non empty, whereas the set {w ∈ S2n−2 | Sw(1) =
∏n
j=1Catj} is empty. For example,

Ψ4 = { [1, 5, 3, 4, 2] }, Ψ5 = { [1, 5, 7, 3, 2, 6, 4], [1, 5, 4, 7, 2, 6, 3] },
Ψ6 = { w := [1, 3, 2, 8, 6, 9, 4, 5, 7], w−1, ... }, Ψ7 = {???}, but one can check that for

w = [2358, 10, 549, 12, 11] ∈ S12, Sw(1) = 776160 =
∏6
j=2 Catj .

More generally, for any positive integer N define

κ(N) = min{n | ∃w ∈ Sn such that Sw(1) = N}.

It is clear that κ(N) ≤ N + 1.
Problem Compute the following numbers

κ(n!), κ(
n∏
j=1

Catj), κ(ASM(n)), κ((n+ 1)n−1)

For example, 10 ≤ κ(ASM(6) = 7436) ≤ 12. Indeed, take w = [716983254, 10, 12, 11] ∈
S12. One can show that

Sw(x1 = t, xi = 1, ∀i ≥ 2) = 13t6(t+ 10)(15t+ 37),
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so that Sw(1) = ASM(6); κ(64) = 9, namely, one can take w = [157364298].
Question Let N be a positive integer. Does there exist a vexillary (grassmannian ?)

permutation w ∈ Sn such that n ≤ 2κ(N) and Sw(1) = N ?
For example, w = [1, 4, 5, 6, 8, 3, 5, 7] ∈ S8 is a grassmannian permutation such that Sw(1) =

140, and Rw(1, β) = (1, 9, 27, 43, 38, 18, 4).

Remark 5.3. We expect that for n ≥ 5 there are no permutations w ∈ S∞ such that Qn(β) =

S
(β)
w (1).

(3) The numbers Cn :=
∏n
j=1Catj appear also as the values of the Kostant partition function

of the type An−1 on some special vectors. Namely,

Cn = KΦ(1n)(γn), where γn = (1, 2, 3, . . . , n− 1,−
(
n

2

)
),

see e.g. [90], 6.C10, and [43], 173–178. More generally [43], (7,18), (7.25),one has

KΦ(1n)(γn,d) = ppδn(d) Cn−1 =
n+d−2∏
j=d

1

2j + 1

(
n+ d+ j

2j

)
,

where γn,d = (d+1, d+2, . . . , d+n−1,−n(2d+n−1)/2), ppδn(d) denotes the set of reversed
(weak) plane partitions bounded by d and contained in the shape δn = (n − 1, n − 2, . . . , 1).
Clearly, ppδn(1) =

∏
1≤i<j≤n

i+j+1
i+j−1 = Cn, where Cn is the n-th Catalan number 34.

Conjecture 5.7.
For any permutation w ∈ Sn there exists a graph Γw = (V,E), possibly with multiple edges,

such that the reduced volume ṽol(FΓw) of the flow polytope FΓw , see e.g. [89] for a definition of
the former, is equal to Sw(1). �

For a family of vexillary permutations wn,p of the shape λ = pδn+1 and flag φ = (1, 2, . . . , n−
1, n) the corresponding graphs Γn,p have been constructed in [66], Section 6. In this case the re-
duced volume of the flow polytope FΓn,p is equal to the Fuss-Catalan number 1

1+(n+1)p

(
(n+1)(p+1)

n+1

)
=

Swn,p(1), cf Corollary 5.2

Exercises 5.8.
(a) Show that
the polynomialRn(t) := t1−n Qn(t; 0, 0) is symmetric (unimodal ?), and Rn(0) =

∏n−2
k=1 Catk.

For example, R4(t) = (1 + t)(2 + t+ 2 t2), R5(t) = 2 (5, 10, 13, 14, 13, 10, 5)t.
R6(t) = 10 (2, 3, 2)t (7, 7, 10, 13, 10, 13, 10, 7, 7)t.
Note that Rn(1) =

∏n−1
k=1 Catk.

(b) More generally, write Rn(t, β) := Qn(t; 0, β) =
∑

k≥0 R
(k)
n (t) βk.

Show that the polynomials R(k)
n (t) are symmetric for all k.

(c) Consider a reduced polynomial Rn({xij}) of the element∏
1≤i<j≤n

(i,j)6=(n−1,n)

xij ∈ ÂCY B(α = β = 0)ab,

34 For example, if n = 3, there exist 5 reverse (weak) plane partitions of shape δ3 = (2, 1) bounded by 1,

namely reverse plane partitions

{(
0 0
0

)
,

(
0 0
1

)
,

(
0 1
0

)
,

(
0 1
1

)
,

(
1 1
1

)}
.
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see Definition 5.1. Here we assume additionally, that all elements {xij} are mutually commute.
Define polynomial R̃n(q, t) to be the following specialization

xij −→ 1, if i < j < n− 1, xi,n−1 −→ q, xi,n −→ t, ∀i

of the polynomial Rn({xij}) in question.
Show that polynomials R̃n(q, t) are well-defined, and

R̃n(q, t) = R̃n(t, q).

Examples 5.2.
R4(t, β) = (2, 3, 3, 2)t + (4, 5, 4)t β + (2, 2)t β

2, R5(t, β) =
(10, 20, 26, 28, 26, 20, 10)t + (33, 61, 74, 74, 61, 33)t β + (39, 65, 72, 65, 39)t β

2+
(19, 27, 27, 19)t β

3 + (3, 3, 3)t β
4, R6(t, β) =

(140, 350, 550, 700, 790, 820, 790, 700, 550, 350, 140)t+

(686, 1640, 2478, 3044, 3322, 3322, 3044, 2478, 1640, 686)t β+

(1370, 3106, 4480, 5280, 5537, 5280, 4480, 3106, 1370)t β
2+

(1420, 3017, 4113, 4615, 4615, 4113, 3017, 1420)t β
3+ ,

(800, 1565, 1987, 2105, 1987, 1565, 800)t β
4+

(230, 403, 465, 465, 403, 230)t β
5+

(26, 39, 39, 39, 26)t β
6.

R6(1, β) = (5880, 22340, 34009, 26330, 10809, 2196, 169)β.

R7(t, β) = (5880, 17640, 32340, 47040, 59790, 69630, 76230, 79530, 79530, 76230,
69630, 59790, 47040, 32340, 17640, 5880)t +
(39980, 116510, 208196, 295954, 368410, 420850, 452226, 462648, 452226, 420850, 368410,
295954, 208196, 116510, 39980)t β +
(118179, 333345, 578812, 802004, 975555, 1090913, 1147982, 1147982, 1090913, 975555,
802004, 578812, 333345, 118179)t β

2 +
(198519, 539551, 906940, 1221060, 1447565, 1580835, 1624550, 1580835, 1447565, 1221060,
906940, 539551, 198519)t β

3 +
(207712, 540840, 875969, 1141589, 1314942, 1398556, 1398556, 1314942, 1141589, 875969,
540840, 207712)t β

4 +
(139320, 344910, 535107, 671897, 749338, 773900, 749338, 671897, 535107, 344910,
139320)t β

5

+(59235, 137985, 203527, 244815, 263389, 263389, 244815, 203527, 137985, 59235)t β
6 +

(15119, 32635, 45333, 51865, 53691, 51865, 45333, 32635, 15119)t β
7 +

(2034, 3966, 5132, 5532, 5532, 5132, 3966, 2034) β8 + (102, 170, 204, 204, 204, 170, 102)t β
9.

R7(1, β) =
(776160, 4266900, 10093580, 13413490, 10959216, 5655044, 1817902, 343595, 33328, 1156)β.

�

5.3.2 The Chan–Robbins–Mészáros polytope Pn,m

Let m ≥ 0 and n ≥ 2 be integers, consider the reduced polynomial Qn,m(t, β) corresponding to
the element

Mn.m :=
( n∏
j=2

x1j

)m+1
n−2∏
j=2

n∏
k=j+2

xjk.
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For example Q2,4(t, β) = (4, 7, 9, 10, 10, 9, 7, 4)t + (10, 17, 21, 22, 21, 17, 10)t β
+(8, 13, 15, 15, 13, 8)tβ

2 + (2, 3, 3, 3, 2)t β
3, Q2,4(1, β) = (60, 118, 72, 13)β .

Q2,5(t, β) = (60, 144, 228, 298, 348, 378, 388, 378, 348, 298, 228, 144, 60)t
+(262, 614, 948, 1208, 1378, 1462, 1462, 1378, 1208, 948, 614, 262)t β
+(458, 1042, 1560, 1930, 2142, 2211, 2142, 1930, 1560, 1042, 458)t β

2

+(405, 887, 1278, 1526, 1640, 1640, 1526, 1278, 887, 405)t β
4

+(187, 389, 534, 610, 632, 610, 534, 389, 187)t β
4

+ (41, 79, 102, 110, 110, 102, 79, 41)t β
5 + (3, 5, 6, 6, 6, 5, 3)t β

6,
Q2,5(1, β) = (3300, 11744, 16475, 11472, 4072, 664, 34)β ,
Q2,6(1, β) = (660660, 3626584, 8574762, 11407812, 9355194, 4866708, 1589799,
310172, 32182, 1320)β , Q2,7(β) = (1, 213, 12145, 279189, 3102220, 18400252,
61726264, 120846096, 139463706, 93866194, 5567810, 7053370, 626730, 16290)β+1.

Theorem 5.12. One has

(a) Qm,n(1, 1) =
n−2∏
k=1

Catk
∏

1≤i<j≤n−1

2(m+ 1) + i+ j − 1

i+ j − 1

(b)
∑
k≥0

ι(Pn,m; k)βk =
Qm,n(1, β − 1)

(1− β)(
n+1

2 )+1
,

where Pn,m denotes the generalized Chan-Robbins–Yuen polytope defined in [66], and for any
integral convex polytope P, ι(P, k) denotes the Ehrhart polynomial of polytope P.

Conjecture 5.8. Let n ≥ 3,m ≥ 0 be integers, , write

Qm,n(t, β) =
∑
k≥0

c(k)
m,n(t) βk, and set b(m,n) := max(k | c(k)

m,n(t) 6= 0).

Denote by c̃m,n(t) the polynomial obtained from that c(b(m,n)
m,n (t) by dividing the all coefficients of

the latter on their GCD. Then
c̃n,m(t) = an+m(t),

where the polynomials an(t) := c0,n(t) have been defined in Conjecture 16, (B.

For example, c2,5(t) = 4 a7(t), c2,6(t) = 10 a8(t), c3,5(t) = a8(t),

c2,7(t) = 10 (34, 78, 118, 148, 168, 178, 181, 178, 168, 148, 118, 78, 34)
?
= 10 a9(t).

�
It is known [43], [65] that

n−2∏
k=1

Catk
∏

1≤i<j≤n−1

2(m+ 1) + i+ j − 1

i+ j − 1
=

m+n−2∏
j=m+1

1

2j + 1

(
n+m+ j

2 j

)
=

KAn=1(m+ 1,m+ 2, . . . , n+m,−mn−
(
n

2

)
).

Conjecture 5.9.
Let a = (a2, a3, . . . , an) be a sequence of non-negative integers, consider the following element

M(a) =
( n∏
j=2

x
aj
1j

) n−2∏
j=2

( n∏
k=j+2

xjk

)
.

Then
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(1) Let Ra(t1, . . . , tn−1, α, β) be the following specialization

xij −→ tj−1 for all 1 ≤ i < j ≤ n

of the reduced polynomial Ra(xij) of monomial Ma ∈ ÂCY Bn(α, β).
Then the polynomial Ra(t1, . . . , tn−1, α, β) is well-defined, i.e. does not depend on an

order in which relations (a′) and (b) , Definition 5.1, have been applied.

(2) QMa(1, 1) = KAn+1(a2 + 1, a3 + 2, . . . , an + n− 1,−
(
n

2

)
−

n∑
j=2

aj).

(3) Write
QMa(t, β) =

∑
k≥0

c
(k)
a (t) βk.

The polynomials c
(k)
a (t) are symmetric (unimodal ?) for all k.

Example 5.8. Let’s take n = 5,a = (2, 1, 1, 0). One can show that the value of the Kostant
partition function KA5(3, 3, 4, 4,−14) is equal to 1967. On the other hand, one has
Q(2,1,1,0)(t, β) t−3 = (50, 118, 183, 233, 263, 273, 263, 233, 183, 118, 50)t+

(214, 491, 738, 908, 992, 992, 908, 738, 491, 214)t β + (365, 808, 1167, 1379, 1448, 1379,
1167, 808, 365)t β

2 + (313, 661, 906, 1020, 1020, 906, 661, 313)t β
3+

(139, 275, 351, 373, 351, 275, 139)t β
4 + (29, 52, 60, 60, 52, 29)t β

5 + (2, 3, 3, 3, 2)t β
6.

Q(2,1,1,0)(1, β) = (1967, 6686, 8886, 5800, 1903, 282, 13) = (1, 34, 279, 748, 688, 204, 13)β+1.

Exercises 5.9.
(1) Show that

Rn(t,−1) = t2(n−2) Rn−1(−t−1, 1).

(2) Show that the ratio
Rn(0, β)

(1 + β)n−2

is a polynomial in (β + 1) with non-negative coefficients.
(3) Show that polynomial Rn(t, 1) has degree en := (n+ 1)(n− 2)/2, and

Coeff [ten ] Rn(t, 1) =
n−1∏
k=1

Catk.

Problems 5.2.
(1) Assume additionally to the conditions (a′) and (b) above that

x2
ij = β xij + 1, if 1 ≤ i < j ≤ n.

What one can say about a reduced form of the element w0 in this case ?
(2) According to a result by S. Matsumoto and J. Novak [64], if π ∈ Sn is a permutation of

the cyclic type λ ` n, then the total number of primitive factorizations (see definition in [64])
of π into product of n− `(λ) transpositions, denoted by Primn−`(λ)(λ), is equal to the product of
Catalan numbers:

Primn−`(λ)(λ) =

`(λ)∏
i=1

Catλi−1.
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Recall that the Catalan number Catn := Cn = 1
n

(
2n
n

)
. Now take λ = (2, 3, . . . , n+ 1). Then

Qn(1) =

n∏
a=1

Cata = Prim(n2)
(λ).

Does there exist “a natural” bijection between the primitive factorizations and monomials which
appear in the polynomial Qn(xij ;β) ?

(3) Compute in the algebra ÂCY Bn(α, β) the specialization

xij −→ 1, if j < n, xij −→ t, 1 ≤ i < n,

denoted by Pwn(t, α, β), of the reduced polynomial Psij ({xij}, α, β) corresponding to the trans-

position sij :=
(∏j−2

k=i xk,k+1

)
xj−1,j

(∏i
k=j−2 xk,k+1

)
∈ ÂCY Bn(α, β).

For example, Ps14(t, α, β) = t5 + 3(1 + β)t4 + ((3, 5, 2)β + 3α)t3 + (2(1 + β)2 + α(5 + 4β))t2

((1 + β((1 + 3α) + 2α2)t+ α+ α2.

5.4 Reduced polynomials of certain monomials

In this subsection we compute the reduced polynomials corresponding to dominant monomials
of the form

xm := xm1
1,2 x

m2
23 · · ·x

mn−1

n−1,n ∈ (ÂCY Bn(β))ab,

where m = (m1 ≥ m2 ≥ . . . ≥ mn−1 ≥ 0) is a partition, and we apply the relations (a′) and (b)

in the algebra (ÂCY Bn(β))ab, see Definition 5.1, and Section 5.3.1, successively, starting from
xm1

12 x23.

Proposition 5.9. The function

Zn−1
≥0 −→ Zn−1

≥0 , m −→ Pm(t = 1;β = 1)

can be extended to a piece-wise polynomial function on the space Rn−1
≥0 .

We start with the study of powers of Coxeter elements. Namely, for powers of Coxeter elements,
one has 35

P(x12 x23)2(β) = (6, 6, 1), P(x12 x23 x34)2(β) = (71, 142, 91, 20, 1) = (1, 16, 37, 16, 1)β+1,
P(x12x23x34)3(β)=(1301, 3903, 4407, 2309, 555, 51, 1) = (1, 45, 315, 579, 315, 45, 1)β+1,
P(x12 x23 x34 x45)2(β) = (1266, 3798, 4289, 2248, 541, 50, 1) = (1, 44, 306, 564, 306, 44, 1)β+1,
P(x12x23x34)3(β = 1) = 12527, P(x12x23x34)4(β = 0) = 26599,
P(x12x23x34)4(β = 1) = 539601, P(x12 x23 x34 x45)2(β = 1) = 12193,
P(x12 x23 x34 x45)3(β = 0) = 50000, P(x12 x23 x34 x45)3(β = 1) = 1090199.

Lemma 5.3. One has

Pxn12 xm23
(β) =

min(n,m)∑
k=0

(
n+m− k

m

) (
m

k

)
βk =

min(n,m)∑
k=0

(
n

k

) (
m

k

)
(1 + β)k.

Moreover,
• polynomial P(x12x23···xn−1,n)m(β − 1) is a symmetric polynomial in β with non-negative coeffi-
cients.
• polynomial Pxn12 xm23

(β) counts the number of (n,m)-Delannoy paths according to the number
of NE steps 36.

35To simplify notation we set Pw(β) := Pw(xij = 1;β).
36 Recall that a (n,m)-Delannoy path is a lattice paths from (0, 0) to (n,m) with steps E = (1, 0),

N = (0, 1) and NE = (1, 1) only.
For the definition and examples of the Delannoy paths and numbers, see [87],A001850, A008288, and

http://mathworld.wolfram.com/DelannoyNumber.html.
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Proposition 5.10. Let n and k, 0 ≤ k ≤ n, be integers. The number

P(x12x23)n (x34)k(β = 0)

is equal to the number of n up, n down permutations in the symmetric group S2n+k+1, see [87],
A229892 and Exercises 5.3, (2).

Conjecture 5.10. Let n,m, k be nonnegative integers. Then the number

Pxn12 xm23 xk34
(β = 0)

is equal to the number of n up, m down and k up permutations in the symmetric group Sn+m+k+1.

For example,
• Take n = 2, k = 0, the six permutations in S5 with 2 up, 2 down are 12543, 13542,

14532, 23541, 24531, 34521.
• Take n = 3, k = 1, the twenty permutations in S7 with 3 up, 3 down are 1237654,

1247653, 1257643, 1267543, 1347652, 1357642, 1367542, 1457632, 1467532, 1567432,
2347651, 2357641, 2367541, 2457631, 2467531, 2567431, 3457621, 3467521, 3567421,
4567321, see [87], A229892,
• Take n = 3,m = 2, k = 1, the number of 3 up, 2 down and 1 up permutations in S7 is

equal to 50 = P321(0) : 1237645, 1237546, . . . , 4567312.
• Take n = 1,m = 3, k = 2, the number of 1 up, 3 down and 2 up permutations in S7 is

equal to 55 = P132(0), as it can be easily checked.
On the other hand, Px4

12 x3
23 x2

34x45
(β = 0) = 7203 < 7910, where 7910 is the number of 4 up,

3 down, 2 up and 1 down permutations in the symmetric group S11.

Conjecture 5.11. Let k1, . . . , kn−1 be a sequence of non-negative integer numbers, consider
monomial M := xk1

12x
k2
23 · · ·x

kn−1

n−1,n. Then
• reduced polynomial PM (β−1) is a unimodal polynomial in β with non-negative coefficients.

Example 5.9.
P3,2,1(β) = (1, 14, 27, 8)β+1 = P1,2,3(β), P2,3,1(β) = (1, 15, 30, 9)β+1 = P1,3,2(β),

P3,1,2(β) = (1, 11, 18, 4)β+1 = P2,1,3(β), P4,3,2,1(β) = (1, 74, 837, 2630, 2708, 885, 68)β+1,
P4,3,2,1(0) = 7203 = 3× 74, P5,4,3,2,1(β) = (1, 394, 19177, 270210, 1485163, 3638790,
4198361, 2282942, 553828, 51945, 1300)β+1, P5,4,3,2,1(0) = 12502111 = 1019× 12269.

Exercises 5.10.
(1) Show that if n ≥ m, then

xnij x
m
jk


xij=1=xjk

=

n∑
a=0

(
m+ a− 1

a

)(n−a∑
p=0

(
m

p

)
βp

)
xm+a
ik .

(2) Show that if n ≥ m ≥ k, then Pxn12 xm23 xk34
(β) = Pxn12 xm23

(β)+

∑
a≥1
b,p≥0

(
m

p

) (
k

a

) (
a− 1

b

) (
n+ 1

p+ a− b

) (
m+ a− 1− b

a

)
(β + 1)p+a.

In particular, if n ≥ m ≥ k, then

Pxn12 xm23 xk34
(0) =

(
m+ n

n

)
+
∑
a≥1

(
k

a

)( a∑
b=1

(
m+ n+ 1

m+ b

) (
a− 1

b− 1

) (
m+ b− 1

a

))
.



116 A.N. Kirillov

Note that the set of relations from the item (1) allows to give an explicit formula for the
polynomial PM (β) for any dominant sequence M = (m1 ≥ m2 ≥ . . . ≥ mk) ∈ (Z>0)k. Namely,
PM (β + 1) = ∑

a

k∏
j=2

(
mj + aj−1 − 1

aj−1

) (∑
b

k−1∏
j=1

(
mj+1

bj

)
βbj
)
,

where the first sum runs over the following set A(M) of integer sequences a = (a1, . . . , ak−1)

A(M) := {0 ≤ aj ≤ mj + aj−1, j = 1, . . . , k − 1}, a0 = 0,

and the second sum runs over the set B(M) of all integer sequences b = (b1, . . . , bk−1)

B(M) :=
⋃

a∈A(M)

{0 ≤ bj ≤ min(mj+1,mj − aj + aj−1)}, j = 1, . . . , k − 1.

(3) Show that

#|A(n, 1k−1)| = n+ 1

k

(
2k + n

k − 1

)
= f (n+k,k),

where f (n+k,k) denotes the number of standard Young tableaux of shape (n+k, k). In particular,
#|A(1k)| = Ck+1.

(4) Let n ≥ m ≥ 1 be integers and set M = (n,m, 1k). Show that

PM (xij = 1;β = 0) =

n∑
p=0

m+ p+ 1

k

(
m+ p− 1

p

)(
m+ 2k + p

k − 1

)
:= Pk(n,m).

In particular, P1(n,m) =
(
n+m
n

)
+m

(
n+m+1

n

)
,

Pk(n, 1) =
n+ 1

k + 1

(
2k + 2 + n

k

)
, Pk(2, 2) = (79k2 + 341k + 360)

(2k + 2)!

k! (k + 5)!
.

(5) Let T ∈ STY ((n+ k, k)) be a standard Young tableau of shape (n+ k, k).
Denote by r(T ) the number of integers j ∈ [1, n+k] such that the integer j belongs to the second
row of tableau T, whereas the number j + 1 belongs to the first row of T. Show that

Pxn12x23···xk+1,k+2
(β − 1) =

∑
T∈STY ((n+k,k))

βr(T ).

(6) Let M = (m1,m2, . . . ,mk−1) ∈ Zk−1
>0 be a composition. Denote by

←−
M the composition

(mk−1,mk−2, . . . ,m2,m1), and set for short PM (β) := P∏k−1
i=1 x

mi
i,i+1

(xij = 1;β).

Show that PM (β) = P←−
M

(β).
Note that in general, P∏k−1

i=1 x
mi
i,i+1

(xij ;β) 6= P∏k−1
i=1 x

mk−i
i,i+1

(xij ;β).

(7) Define polynomial PM (t, β) to be the following specialization

xij −→ 1, if i < j < n, and xin −→ t, if i = 1, . . . , n− 1

of a polynomial P∏k−1
i=1 x

mi
i,i+1

(xij ;β).

Show that if n ≥ m, then

Pxn12 xm23
(t, β) =

m∑
j=0

(
m

j

)(n+m−j−1∑
k=m−1

(
k

m− 1

)
tk−m+1

)
βj .
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See Lemma 5.2 for the case t = 1.
(8) Define polynomials R̃n(t) as follows

R̃n(t) := P(x12x23x34)n(−t−1, β = −1) (−t)3n.

Show that polynomials R̃n(t) have non-negative coefficients, and

R̃n(0) =
(3n) !

6 (n !)3
.

(9) Consider reduced polynomial Pn,2,2(β) corresponding to monomial xn12 (x23x34)2

and set P̃n,2,2(β) := Pn,2,2(β − 1). Show that

P̃n,2,2(β) ∈ N[β] and P̃n,2,2(1) = T (n+ 5, 3),

where the numbers T (n, k) are defined in [87],A110952, A001701.

Conjecture 5.12. Let λ be a partition. The element sλ(θ
(n)
1 , . . . , θ

(n)
m ) of the algebra 3T

(0)
n

can be written in this algebra as a sum of(∏
x∈λ

h(x)
)
× dim Vλ′

(gl(n−m)) × dim Vλ
(gl(m))

monomials with all coefficients are equal to 1.
Here sλ(x1, . . . , xm) denotes the Schur function corresponding to the partition λ and the set

of variables {x1, . . . , xm}; for x ∈ λ, h(x) denotes the hook length corresponding to a box x;

V
(gl(n))
λ denotes the highest weight λ irreducible representation of the Lie algebra gl(n).

Problems 5.3.
(1) Define a bijection between monomials of the form

∏s
a=1 xia,ja involved in the polynomial

P (xij ;β), and dissections of a convex (n + 2)-gon by s diagonals, such that no two diagonals
intersect their interior.

(2) Describe permutations w ∈ Sn such that the Grothendieck polynomial Gw(t1, . . . , tn) is
equal to the “reduced polynomial” for a some monomial in the associative quasi-classical Yang–
Baxter algebra ̂ACY Bn(β). ?

(3) Study “reduced polynomials” corresponding to the monomials
• (transposition) s1n := (x12x23 · · ·xn−2,n−1)2 xn−1,n,

• (powers of the Coxeter element) (x12x23 · · ·xn−1,n)k.

in the algebra ÂCY Bn(α, β)ab.

(4) Construct a bijection between the set of k-dissections of a convex (n + k + 1)-gon and “
pipe dreams” corresponding to the Grothendieck polynomial G(β)

π
(n)
k

(x1, . . . , xn). As for a definition

of “pipe dreams” for Grothendieck polynomials, see [54]; see also [27].

Comments 5.9. We don’t know any “good” combinatorial interpretation of polynomials
which appear in Problem 5.3, (3) for general n and k. For example,
Ps13(xij = 1;β) = (3, 2)β, Ps14(xij = 1;β) = (26, 42, 19, 2)β,
Ps15(xij = 1;β) = (381, 988, 917, 362, 55, 2)β and Ps15(xij = 1; 1) = 2705. On the other hand,
P(x12x23)2 x34 (x45)2(xij = 1;β) = (252, 633, 565, 212, 30, 1), that is in deciding on different reduced
decompositions of the transposition s1n. one obtains in general different reduced polynomials.

One can compare these formulas for polynomials Psab(xij = 1;β) with those for the β-
Grothendieck polynomials corresponding to transpositions (a, b), see Comments 5.5.
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6 Appendixes

6.1 Appendix I Grothendieck polynomials

Definition 6.1. Let β be a parameter. The Id-Coxeter algebra IdCn(β) is an associative
algebra over the ring of polynomials Z[β] generated by elements

〈
e1, . . . , en−1

〉
subject to the set

of relations
• eiej = ejei, if

∣∣∣i− j∣∣∣ ≥ 2,

• eiejei = ejeiej , if
∣∣∣i− j∣∣∣ = 1,

• e2
i = β ei, 1 ≤ i ≤ n− 1.

It is well-known that the elements {ew, w ∈ Sn} form a Z[β]-linear basis of the algebra
IdCn(β). Here for a permutation w ∈ Sn we denoted by ew the product ei1ei2 · · · ei` ∈ IdCn(β),
where (i1, i2, . . . , i`) is any reduced word for a permutation w, i.e. w = si1si2 · · · si` and ` = `(w)
is the length of w.

Let x1, x2, . . . , xn−1, xn = y, xn+1 = z, . . . be a set of mutually commuting variables. We
assume that xi and ej commute for all values of i and j. Let us define

hi(x) = 1 + xei, and Ai(x) =
i∏

a=n−1

ha(x), i = 1, . . . , n− 1.

Lemma 6.1. One has
(1) (Addition formula)

hi(x) hi(y) = hi(x⊕ y),

where we set (x⊕ y) := x+ y + βxy;

(2) (Yang–Baxter relation)

hi(x)hi+1(x⊕ y)hi(y) = hi+1(y)hi(x⊕ y)hi+1(x).

Corollary 6.1.
(1) [hi+1(x)hi(x), hi+1(y)hi(y)] = 0.

(2) [Ai(x), Ai(y)] = 0, i = 1, 2, . . . , n− 1.

The second equality follows from the first one by induction using the Addition formula,
whereas the fist equality follows directly from the Yang–Baxter relation.

Definition 6.2. (Grothendieck expression)

Gn(x1, . . . , xn−1) := A1(x1)A2(x2) · · ·An−1(xn−1).

Theorem 6.1. ([27]) The following identity

Gn(x1, . . . , xn−1) =
∑
w∈Sn

G(β)
w (Xn−1) ew

holds in the algebra IdCn ⊗ Z[x1, . . . , xn−1].

Definition 6.3. We will call polynomial G(β)
w (Xn−1) as the β-Grothendieck polynomial corre-

sponding to a permutation w.
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Corollary 6.2.
(1) If β = −1, the polynomials G

(−1)
w (Xn−1) coincide with the Grothendieck polynomials

introduced by Lascoux and M.-P. Schützenberger [57].
(2) The β-Grothendieck polynomial G(β)

w (Xn−1) is divisible by xw(1)−1
1 .

(3) For any integer k ∈ [1, n − 1] the polynomial G(β−1)
w (xk = q, xa = 1,∀a 6= k) is a

polynomial in the variables q and β with non-negative integer coefficients.

Proof (Sketch) It is enough to show that the specialized Grothendieck expression Gn(xk =
q, xa = 1,∀a 6= k) can be written in the algebra IdCn(β − 1) ⊗ Z[q, β] as a linear combination
of elements {ew}w∈Sn with coefficients which are polynomials in the variables q and β with
non-negative coefficients. Observe that one can rewrite the relation e2

k = (β − 1)ek in the
following form ek(ek + 1) = β ek. Now, all possible negative contributions to the expression
Gn(xk = q, xa = 1, ∀a 6= k) can appear only from products of a form ca(q) := (1 + qek)(1 + ek)

a.
But using the Addition formula one can see that (1 + qek)(1 + ek) = 1 + (1 + qβ)ek. It follows by
induction on a that ca(q) is a polynomial in the variables q and β with non-negative coefficients.

�

Definition 6.4.
• The double β-Grothendieck expression Gn(Xn, Yn) is defined as follows

Gn(Xn, Yn) = Gn(Xn) Gn(−Yn)−1 ∈ IdCn(β)⊗ Z[Xn, Yn].

• The double β-Grothendieck polynomials {Gw(Xn, Yn)}w∈Sn are defined from the decomposition

Gn(Xn, Yn) =
∑
w∈Sn

Gw(Xn, Yn) ew

of the double β-Grothendieck expression in the algebra IdCn(β).

More details about β-Grothendieck and related polynomials can be found in [59], [48]. �

6.2 Appendix II Cohomology of partial flag varieties

Let n = n1 + · · ·+ nk, ni ∈ Z≥1 ∀i, be a composition of n, k ≥ 2. For each j = 1, . . . , k define
the numbers Nj = n1 + · · · + nj , N0 = 0, and Mj = nj + · · · + nk. Denote by X := Xn1,...,nk =

{x(i)
a | i = 1, . . . , k, 1 ≤ a ≤ ni} (resp. Y, ...) a set of variables of the cardinality n. We set

deg(x
(i)
a ) = a, i = 1, . . . , k. For each i = 1, . . . , k define quasihomogeneous polynomial of degree

ni in variables X(i) = {x(i)
a | 1 ≤ a ≤ ni}

pni(X
(i), t) = tni +

ni∑
a=1

x(i)
a tni−a,

and put pn1,...,nk(X, t) =
∏k
i=1 pni(X

(i), t). We summarize in the theorem below some well–
known results about the classical and quantum cohomology and K-theory rings of type An−1

partial flag varieties F ln1,...,nk . Let q1, . . . , qk−1, deg(qi) = ni + ni+1, i = 1, . . . , k− 1, be a set
of “quantum parameters.”

Theorem 6.2. There are canonical isomorphisms

H∗(F ln1,...,nk ,Z) ∼= Z[Xn1,...,nk ]/

〈
pn1,...,nk(X, t)− tn

〉
;
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K•(F ln1,...,nk ,Z) ∼= Z[Y±1]/

〈
pn1,...,nk(Y, t)− (1 + t)n

〉
;

H∗T (F ln1,...,nk ,Z) ∼= Z[X,Y]/

〈 k∏
i=1

ni∏
a=1

(x(i)
a + t)− pn1,...,nk(Y, t)

〉
;

(Cf. [1] ) QH∗(F ln1,...,nk) ∼= Z[Xn1,...,nk , q1, . . . , qk−1]/

〈
∆n1,...,nk(X, t)− tn

〉
,

(Cf. [1] ) QH∗T (F ln1,...,nk) ∼= Z[X,Y, q1, . . . , qk−1]/

〈
∆n1,...,nk(X, t)− pn1,...,nk(Y, t)

〉
,

where 37 ∆n1,...,nk(X, t) =

det

∣∣∣∣∣∣∣∣∣∣∣∣∣

pn1(X(1), t) q1 0 · · · · · · · · · 0

−1 pn2(X(2), t) q2 0 · · · · · · 0

0 −1 pn3(X(3), t) q3 0 · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · · · · 0 −1 pnk−1
(X(k−1), t) qk−1

0 · · · · · · · · · 0 −1 pnk(X(k), t)

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Here for any polynomial P (x, t) =
∑r

j=0 bj(x)tr−j in variables x = (x1, x2, . . .), we denote

by
〈
P (x, t)

〉
the ideal in the ring Z[x] generated by the coefficients b0(x), . . . , br(x). A similar

meaning have the symbols
〈∏k

i=1

∏ni
a=1(x

(i)
a + t) − pn1,...,nk(y, t)

〉
,

〈
∆n1,...,nk(x, t) − tn

〉
and

so on.
Note that dim(Fn1,··· ,nk) =

∑
i<j ni nj and the Hilbert polynomial Hilb(Fn1,··· ,nk , q) of the

partial flag variety Fn1,...,nk is equal to the q-multinomial coefficient
[

n
n1,...,nk

]
q
, and also is equal

to the q-dimension of the weight (n1, . . . , nk) subspace of the n-th tensor power (Cn)⊗n of the
fundamental representation of the Lie algebra gl(n).

Comments 6.1. The cohomology and (small) quantum cohomology rings H∗(Fn1,··· ,nk ,Z) and
QH∗(Fn1,··· ,nk ,Z), of the partial flag variety Fn1,··· ,nk admit yet another representations we are
going to present. To start with, let as before n = n1 + . . .+ nk, ni ∈ Z≥1 ∀i, be a composition.
Consider the set of variables X̂ = Xn1,...,nk−1

:= {x(i)
a | 1 ≤ i ≤ na, a = 1, . . . , k− 1}, and set as

before deg x(i)
a = a. Note that the number of variables X̂ is equal to n − nk. To continue, let’s

define elementary quasihomogeneous polynomials of degree r

er(X̂) =
∑
I,A

x(i1)
a1
· · ·x(is)

as , e0(X̂) = 1, e−r(X̂) = 0, if r > 0,

where the sum runs over sequences of integers I = (i1, . . . , is) and A = (a1, . . . , as) such that
• 1 ≤ i1 < . . . is ≤ k − 1,
• 1 ≤ aj ≤ nij , j = 1, . . . , s, and r = a1 + · · · , as,
and complete homogeneous polynomials of degree p

hp(X̂) = det|ej−i+1(X̂)|1≤i,j≤p.

Finally, let’s define the ideal Jn1,...,nk in the ring of polynomials Z[Xn1,...,nk−1
] generated by

polynomials
hnk+1(X̂), . . . , hn(X̂).

Note that the ideal Jn1,...,nk is generated by n− nk = #(Xn1,...,nk−1
) elements.

37We prefer to use quantum parameters {qi | 1 ≤ i ≤ k−1} instead of the parameters {(−1)niqi | 1 ≤ i ≤ k−1}
have been used in [1].
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Proposition 6.1. There exists an isomorphism of rings

H∗(Fn1,··· ,nk ,Z) ∼= Z[Xn1,...,nk−1
]/Jn1,...,nk .

In a similar way one can describe relations in the (small) quantum cohomology ring of the
partial flag variety Fn1,··· ,nk . To accomplish this let’s introduce quantum quasihomogeneous ele-
mentary polynomials of degree j, e

(q)
j (Xn1,...,nr) through the decomposition

∆n1,...,nr(Xn1,...,nr) =

Nr∑
j=0

e
(q)
j (Xn1,...,nr) t

Nr−j , e
(q)
0 (x) = 1, e

(q)
−p (x) = 0, if p > 0.

To exclude redundant variables {x(k)
a , 1 ≤ a ≤ nk},, let us define quantum quasihomogeneous

Schur polynomials s(q)
α (Xn1,...,nr) corresponding to a composition α = (α1 ≤ α2 ≤ . . . ≤ αp) as

follows
s(q)
α (Xn1,...,nr) = det|e(q)

j−i+αi(Xn1,...,nr)|1≤i,j≤p.

Proposition 6.2. The (small) quantum cohomology ring QH∗(Fn1,··· ,nk ,Z) is isomorphic to the
quotient of the ring of polynomials Z[q1, . . . , qk−1] [Xn1,...,nk−1

] by the ideal In1,...,nk−1
generated

by the elements

gr(Xn1,...,nk−1
) := s

(q1,...,qk−1)
(1nk , r) (Xn1,...,nk−1

)− qk−1 e
(q1,...,qk−2)
r−nk−1

(Xn1,...,nk−2
),

where nk + 1 ≤ r ≤ n.

It is easy to see that the Jacobi matrix( ∂

∂x
(i)
a

gr(Xn1,...,nk−1

)
{a=1,...,k−1, 1≤i≤na

nk+1≤r≤n}

corresponding to the set of polynomials gr(Xn1,...,nk−1
) nk ≤ r ≤ n, has nonzero determinant,

and the component of maximal degree nmax :=
∑

l<j ni nj in the ring QH∗(Fn1,··· ,nk ,Z) is a
Z[q1, . . . , qk−1]−module of rank one with generator

Λ =
k−1∏
i=1

na∏
a=1

(
x(i)
a

)Mi

.

Therefore, one can define a scalar product (the Grothendieck residue)

〈•, •〉 : HQ∗(Fn1,··· ,nk ,Z)×HQ∗(Fn1,··· ,nk ,Z) −→ Z[a1, . . . , qk−1]

setting for elements f and g of degrees a and b, 〈f, h〉 = 0, if a + b 6= nmax, and 〈f, h〉 =
λ(q), if a+ b = nmax and f h = λ(q) Λ. It is well known that the Grothendieck pairing 〈•, •〉 is
nondegenerate (for any choice of parameters q1, . . . , qk−1).

Finally we state “a mirror presentation” of the small quantum cohomology ring of partial flag
varieties. To start with, let n = n1 + . . .+nk, k ∈ Zge2 be a composition of size n, and consider
the set

Σ(n) = {(i, j) ∈ Z× Z |1 ≤ i ≤ Na, Ma+1 + 1 ≤ j ≤Ma, a = 1, . . . , k − 1},

where Na = n1 + . . .+ na, N0 = 0, Nk = n Ma = na+1 + . . .+ nk, M0 = n,Mk = 0.
With these data given, let us introduce the set of variables

Zn = {zi,j | (i, j) ∈ Σ(n)},
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and define “boundary conditions” as follows
• zi,Ma+1 = 0, if Na−1 + 2 ≤ i ≤ Na, a = 1, . . . , k − 1,

• zNa+1,j =∞, if Ma+1 + 2 ≤ j ≤Ma, a = 1, . . . , k − 1,

• zNa−1+1,Ma+1 = qa, a = 1, . . . , k, where q1, . . . , qk are “quantum parameters.
Now we are ready, follow [34], to define superpotential

Wq,n =
∑

(p,j)∈Σ(n)

(zi,j+1

zi,j
+

zi,j
zi+1,j

)
.

Conjecture 6.1. (Cf. [34]) There exists an isomorphism of rings

QH∗[2](F ln1,...,nk ,Z) ∼= Z[q±1
1 , . . . , q±1

k ][Z±1
n ]/J(Wq,n),

where QH∗[2](F ln1,...,nk ,Z) denotes the subring of the ring QH∗(F ln1,...,nk ,Z) generated by the
elements from H2(F ln1,...,nk ,Z);

J(Wq,n) stands for the ideal generated by the partial derivatives of the superpotential Wq,n :

J(Wq,n) = 〈∂Wq

∂zi,j
〉, (i, j) ∈ Σ(n)〉.

Note that variables {zi,j ∈ Σ(n), i 6= Na + 1, a = 0, . . . , k − 2} are redundant, whereas
the variables {za,j := z−1

Na+1,j , j = 1, . . . , na, a = 0, . . . , k − 2} satisfy the system of algebraic
equations.

In the case of complete flag variety F ln corresponds to partition n = (1n) and the superpo-
tential Wq,1n is equal to

Wq,1n =
∑

1≤i<j≤n−1

(zi,j+1

zi,j
+

zi,j
zi−1,j+1

)
,

where we set zi,n := qi, i = 1, . . . , n. The ideal J(Wq,1n) is generated by elements

∂Wq,1n

zi,j
=

1

zi,j−1
+

1

zi−1,j+1
− zi,j+1 + zi−1,j−1

z2
i,j

.

One can check that the ideal J(Wq,1n) can be also generated by elements of the form

i∑
j=0

A
(i)
j (q1, . . . , qn−i+1, zn−1, . . . , zn−i+1) zj−i−1

n−i = 1, A
(i)
0 = q1 · · · qn−i+1,

where zi := z−1
1,i , i = 1, . . . n− 1. For example,

zn1 q1 . . . qn = 1, q1 q2 z
2
n−1 − q2 zn−2 = 1,

q1 q2 q3 z
3
n−2 − 2 q1 q2 q3 zn−1 zn−2 zn−3 + q2 q3 z

2
n−3 + q3 zn−4 = 1.

Therefore the number of critical points of the superpotentialWq is equal to n! = dimH∗(F ln,Z), as
it should be. Note also that QH∗(F ln,Z) = QH∗[2](F ln,Z).
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6.3 Appendix III Koszul dual of quadratic algebras and Betti numbers

Let k be a field of zero characteristic, F (n) := k < x1, . . . , xn >=
⊕

j≥0 F
(n)
j be the free

associative algebra generated by {xi, 1 ≤ i ≤ n}. Let A = F (n)/I be a quadratic alge-
bra, i.e. the ideal of relations I is generated by the elements of degree 2, I ⊂ F

(n)
2 . Let

F (n)∗ = Hom(Fn, k) =
⊕

j≥0 F
(n)∗
j with a multiplication induced by the rule fg(ab) = f(a)g(b),

f ∈ F (n)∗
i , g ∈ F (n)∗

j , a ∈ F (n)
i , b ∈ F (n)

j . Let I⊥2 = {f ∈ F (n)∗
2 , f(I2) = 0}, and denote by I⊥

the two-sided ideal in F (n)∗ generated by the set I⊥2 .

Definition 6.5. The Koszul (or quadratic) dual A! of a quadratic algebra A is defined to
be A! := F (n)∗/I⊥.

The Koszul dual of a quadratic algebra A is a quadratic algebra and (A!)! = A.

Examples 6.1. (1) Let A = F (n) be the free associative algebra, then the quadratic duel A! =
k < y1, . . . , yn > /(yiyj , 1 ≤ i, j ≤ n).

(2) If A = k[x1, . . . , xn] is the ring of polynomials, then

A! = k[y1, . . . , yn]/([yi, yj ]_, 1 ≤ i, j ≤ n),

where we put by definition [yi, yj ]_ = yiyj + yjyi, if i 6= j, and [yi, yi]_ = y2
i .

(3) (cf [63], (b), Chapter 5) Let A = F (n)/(f1, . . . , fr), where fi =
∑

1≤j,k≤n aijkxj xk,

i = 1, . . . , r are linear independent elements of degree 2 in F (n). Then the quadratic dual of A
is equal to the quotient algebra A! = k < y1, · · · , yn > /J, where the ideal J =< g1, . . . , gs >
, s = n2 − r, is generated by elements gm =

∑
1≤j,k≤n bmjk yj yk. The coefficients bmjk,m =

l, . . . , s, 1 ≤ j, k ≤ n, can be defined from the system of linear equations
∑

1≤j,k≤n aijk bmjk =
0, i = 1, . . . , r, m = 1, . . . , s.

�

Let A =
⊕

j≥0Aj be a graded finitely generated algebra over field k.

Definition 6.6. The Hilbert series of a graded algebra A is defined to be the generating
function of dimensions of its homogeneous components: Hilb(A, t) =

∑
k≥0 dimAk t

k.

The Betti numbers BA(n,m) of a graded algebra A are defined to be BA(i, j) := dimTorAi (k, k)j .
The Poincarè series of algebra A is defined to be the generating function for the Betti

numbers: PA(s, t) :=
∑

i≥0,j≥0BA(i, j)sitj .

Definition 6.7. A quadratic algebra A is called Koszul iff the Betti numbers BA(i, j) are equal
to zero unless i = j.

(♣) It is well-known that Hilb(A, t)PA(−1, t) = 1, and a quadratic algebra A is Koszul, if
and only if BA(i, j) = 0 for all i 6= j. In this case Hilb(A, t) Hilb(A!,−t) = 1.

Example 6.1. Let F (0)
n be a quotient of the free associative algebra Fn over field k with the set

of generators {x1, . . . , xn} by the two-sided ideal generated by the set of elements {x2
1, . . . , x

2
n}.

Then the algebra F (0)
f n is Koszul, and Hilb(F (0)

n , t) = 1+t
1−(n−1)t .

6.4 Appendix IV Hilbert series Hilb(3T 0
n , t) and Hilb((3T 0

n)!, t): Examples 38

38 All computations in this Section were performed by using the computer system Bergman, except computa-
tions of Hilb(3T 0

6 , t) in degrees from twelfth till fifteenth. The last computations were made by J. Backelin, S.
Lundqvist and J.-E. Roos from Stockholm University, using the computer algebra system aalg mainly developed
by S. Lundqvist.
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Examples 6.2. Hilb(3T 0
3 , t) = [2]2[3], Hilb(3T 0

4 , t) = [2]2[3]2[4]2,

Hilb(3T 0
5 , t) = [4]4[5]2[6]4, Hilb(3T 0

6 , t)

= (1, 15, 125, 765, 3831, 16605, 64432, 228855, 755777, 2347365, 6916867, 19468980,

52632322, 137268120, 346652740, 850296030, · · · ).
= Hilb(3T 0

5 , t)(1, 5, 20, 70, 220, 640, 1751, 4560, 11386, 27425, 64015, 145330, 321843,

696960, 1478887, 3080190, · · · ).
Hilb(3T 0

7 , t) = Hilb(3T 0
6 , t)(1, 6, 30, 135, 560, 2190, 8181, 29472, 103032, 351192,

1170377, · · · ).
Hilb(3T 0

8 , t) = Hilb(3T 0
7 , t)(1, 7, 42, 231, 1190, 5845, 27671, 127239, 571299, 2514463,

Hilb((3T 0
3 )!, t)(1− t) = (1, 2, 2, 1), Hilb((3T 0

4 )!, t)(1− t)2 = (1, 4, 6, 2,−5,−4,−1),

Hilb((3T 0
5 )!, t)(1− t)2 = (1, 8, 26, 40, 19,−18,−22,−8,−1),

Hilb((3T 0
6 )!, t)(1− t)3 = (1, 12, 58, 134, 109,−112,−245,−73, 68, 50, 12, 1),

Hilb((3T 0
7 )!, t)(1− t)3 = (1, 18, 136, 545, 1169, 1022,−624,−1838,−837, 312, 374, 123, 18, 1).

We expect that Hilb((3T 0
n)!, t) is a rational function with the only pole at t = 1 of order

[n/2], and the polynomial Hilb((3T 0
n)!, t)(1− t)[n/2] has degree equals to [5n/2]− 4, if n ≥ 2.

6.5 Appendix V Summation and Duality transformation formulas [41]

.
Summation Formula Let a1 + · · ·+ am = b. Then

m∑
i=1

[ai]
(∏
j 6=i

[xi − xj + aj ]

[xi − xj ]

) [xi + y − b]
[xi + y]

= [b]
∏

1≤i≤m

[y + xi − ai]
[y + xi]

.

Duality transformation, case N = 1 Let a1 + · · ·+ am = b1 + · · ·+ bn. Then

m∑
i=1

[ai]
∏
j 6=i

[xi − xj + aj ]

[xi − xj ]
∏

1≤k≤n

[xi + yk − bk]
[xi + yk]

=

n∑
k=1

[bk]
∏
l 6=k

[yk − yl + bl]

[yk − yl]
∏

1≤i≤m

[yk + xi − ai]
[yk + xi]

.

�
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