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Extended Abstract

We introduce and study a certain class of quadratic algebras, which are nonhomogenious
in general, together with the distinguish set of mutually commuting elements inside of each, the
so-called Dunkl elements. We describe relations among the Dunkl elements in the case of a family
of quadratic algebras corresponding to a certain splitting of the universal classical Yang—Baxter
relations into two three term relations. This result is a further extension and generalization of
analogous results obtained in [26],[75] and [51]. As an application we describe explicitly the
set of relations among the Gaudin elements in the group ring of the symmetric group, cf [71].
We also study relations among the Dunkl elements in the case of (nonhomogeneous) quadratic
algebras related with the wuniversal dynamical classical Yang—Baxter relations. Some relations
of results obtained in papers [26], [52], [47] with those obtained in [35] are pointed out. We
also identify a subalgebra generated by the generators corresponding to the simple roots in the
extended Fomin—Kirillov algebra with the DAH A, see Section 4.3.

The set of generators of algebras in question, naturally corresponds to the set of edges of
the complete graph K, (to the set of edges and loops of the complete graph with loops IN(n
in dynamical case). More generally, starting from any subgraph I' of the complete graph with
loops K, we define a (graded) subalgebra 37\ (T) of the (graded) algebra 3T,§0)(I?n) [44]. In
the case of loop-less graphs I' C K,, we state Conjecture which relates the Hilbert polynomial
of the abelian quotient 37, 7SLO)(F)"“" of the algebra 370 (") and the chromatic polynomial of
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the graph I' we started with. We check our Conjecture for the complete graphs K, and the
complete bipartite graphs K, ,,. Besides, in the case of complete multipartite graph K, . n,

, we identify the commutative subalgebra in the algebra 3T](\?) (Knyyonn), N=n1+ - +n,,
generated by elements

‘93(]1\;) = ekj(9§v?1+1w--,9§v]\;))7 l<j<r 1<kj<mnj Nj:=nm+...4+nj No=0,

with the cohomology ring H*(Fly, ... n,,Z) of the partial flag variety Fl,, . n,.In other words,

the set of (additive) Dunkl elements {HEVIXLH, ce 0%}7)} plays a role of the Chern roots of the tau-

tological vector bundles &;, j = 1,...,r, over the partial flag variety Fl,, . n,,see Section 4.1.2 for

details. In a similar fashion, the set of multiplicative Dunkl elements {@E\J,\Ql IRTERRS @5\],\;)} plays
a role of the K -theoretic version of Chern roots of the tautological vector bundle §; over the par-
tial flag variety Fl,, . n,. As a byproduct for a given set of weights ¢ = {{;;}1<icj<, we
compute the Tutte polynomial T(Kr(f;),__,nk,x,y) of the f-weighted complete multipartite graph

K,(f;),,,_,nk, see Section 4, Definition 4.1 and Theorem 4.2. More generally, we introduce universal
Tutte polynomial

Tn({Qij}7 z, y) S Z[{Ql]}] [l‘, y]

in such a way that for any collection of non-negative integers m = {m;; }1<i<j<n and a subgraph

I'cC KT(Lm) of the weighted complete graph on n labeled vertices with each edge (i,7) € K}Lm)
appears with multiplicity m;;, the specialization
y™i -1

— , if edge (i,5) € T

gij — 0, if edge (i,7) € ', qij — [mij]y :=
of the universal Tutte polynomial is equal to the Tutte polynomial of graph I' multiplied by
(r — I)N(F), see Section 4.1.2, Comments and Fxamples, for details.

We also introduce and study a family of (super) 6-term relations algebras, and suggest a
definition of “ multiparameter quantum deformation “ of the algebra of the curvature of 2-forms
of the Hermitian linear bundles over the complete flag variety F1,,. This algebra can be treated
as a natural generalization of the (multiparameter) quantum cohomology ring QH™*(Fl,), see
Section 4.2.

Yet another objective of our paper is to describe several combinatorial properties of some spe-
cial elements in the associative quasi-classical Yang—Baxter algebra [47], including among others
the so-called Cozeter element and the longest element. In the case of Cozxeter element we relate
the corresponding reduced polynomials introduced in [88], with the S-Grothendieck polynomials

[27] for some special permutations W’(cn)

(8)
T
(n+ k + 1)-gon. In particular we show that the specialization QS;’B zb) (1) of the B-Grothendieck
(®) .
(™
to the number of diagonals involved. When the number of diagonals in a k-dissection is the
maximal possible (equals to n(2k — 1) — 1), we recover the well-known fact that the number
of k-triangulations of a convex (n + k + 1)-gon is equal to the value of a certain Catalan-Hankel
determinant, see e.g. [83].

We also show that for a certain 5-parameters family of vexillary permutations, the special-

More generally, we identify the S-Grothendieck poly-

nomial & (X,) with a certain weighted sum running over the set of k-dissections of a convex

polynomial &/ (X,) counts the number of k-dissections of a convex (n+ k+ 1)-gon according

ization z; = 1,Vi > 1, of the corresponding S-Schubert polynomials G&ﬁ) (Xp) turns out to be
coincide either with the Fuss-Narayana polynomials and their generalizations, or with a (¢, 3)-
deformation of V.SASM or that of C'STC PP numbers, see Corollary 5.2, (B).. As examples we
show that
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(a) the reduced polynomial corresponding to a monomial z7, xbs counts the number of
(n,m)-Delannoy paths according to the number of N E-steps, see Lemma 5.2;

(b) if 3 = 0, the reduced polynomial corresponding to monomial (212 w23)" %, n >
k, counts the number of of n up, n down permutations in the symmetric group Sop4r+1, see
Proposition 5.9; see also Conjecture 18.

We also point out on a conjectural connection between the sets of mazimal compatible se-
quences for the permutation oy, 25, 2,0 and that oy, 2,41,2,0 from one side, and the set of V.SASM (n)
and that of CSTCPP(n) correspondingly, from the other, see Comments 5.7 for details. Finally,
in Section 5.1.1 we introduce and study a multiparameter generalization of reduced polynomials
introduced in (88|, as well as that of the Catalan, Narayana and (small) Schroder numbers.

In the case of the longest element we relate the corresponding reduced polynomial with the
Ehrhart polynomial of the Chan—Robbins—Yuen polytope, see Section 5.3. More generally, we
relate the (¢, 5)-reduced polynomial corresponding to monomial

n—2

n—1 n

a; .
IT #% IT (IT @) a5 €220, ¥,
J=1

=2 k=j+2

with positive t-deformations of the Kostant partition function and that of the Ehrhart polynomial
of some flow polytopes, see Section 5.3.
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Introduction

The Dunkl operators have been introduced in the later part of 80’s of the last century by Charles
Dunkl [20], [21] as a powerful mean to study of harmonic and orthogonal polynomials related
with finite Coxeter groups. In the present paper we don’t need the definition of Dunkl operators
for arbitrary (finite) Coxeter groups, see e.g. [20], but only for the special case of the symmetric
group Sy,.

Definition 1.1. Let P, = Clz1,...,x,] be the ring of polynomials in variables x1,...,x,. The
type An—1 (additive) rational Dunkl operators D1, ..., D,, are the differential-difference operators
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of the following form
0 1— s;;
Ao+ — —le’ (1.1)
oGk

Here s;5, 1 <i < j <n, denotes the exchange (or permutation) operator, namely,

sig(f) (@1, @iy, ) = f(T1, 0, X, Ty T);
8%1’ stands for the derivative w.r.t. the variable x;; X € C is a parameter.
The key property of the Dunkl operators is the following result.

Theorem 1.1. ( C.Dunkl [20] ) For any finite Coxeter group (W, S), where S = {s1,...,s}
denotes the set of simple reflections, the Dunkl operators D; := Dy, and Dj := D, pairwise
commute: D; D;j=D; D;, 1<i,j<I.

Another fundamental property of the Dunkl operators which finds a wide variety of applica-
tions in the theory of integrable systems, see e.g. [36], is the following statement:
the operator

> (D)

i=1
“essentially” coincides with the Hamiltonian of the rational Calogero—Moser model related to the
finite Coxeter group (W, S).

Definition 1.2. Truncated (additive) Dunkl operator (or the Dunkl operator at critical level),
denoted by D;, i=1,...,1, is an operator of the form (1.1) with parameter A = 0.

For example, the type A,_1 rational truncated Dunkl operator has the following form

Di = le—xj

JFi

Clearly the truncated Dunkl operators generate a commutative algebra.
The important property of the truncated Dunkl operators is the following result discovered and
proved by C.Dunkl [21]; see also [4] for a more recent proof.

Theorem 1.2. (C.Dunkl [21], Y.Bazlov [{]) For any finite Cozeter group (W,S) the algebra
over Q generated by the truncated Dunkl operators D1, ..., Dy is canonically isomorphic to the
coinvariant algebra Ay  of the Coxeter group (W, S).

Recall that for a finite crystallographic Coxeter group (W, S) the coinvariant algebra Ay is
isomorphic to the cohomology ring H*(G/B, Q) of the flag variety G /B, where G stands for the
Lie group corresponding to the crystallographic Coxeter group (W, S) we started with.

Example 1.1. In the case when W =§,, is the symmetric group, Theorem 1.2 states that the

algebra over Q generated by the truncated Dunkl operators D; = ZJ 4i xl%; =1,...,n, is
J

canonically isomorphic to the cohomology ring of the full flag variety Fl, of type An_l

Q[D1,...,Dn] 2 Qlz1,. .., zn] /I, (1.2)

where J,, denotes the ideal generated by the elementary symmetric polynomials  {ex(X,),
1<k <n}.
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Recall that the elementary symmetric polynomials e;(X,,), i =1,...,n, are defined through

the generating function
n

n
14> e(Xp) t' =[] 1+t ),
i=1 i=1
where we set X, := (21,...,2,). It is well-known that in the case W =S,,, the isomorphism
(1.2) can be defined over the ring of integers Z. [

Theorem 1.2 by C.Dunkl has raised a number of natural questions:

(A) What is the algebra generated by the truncated

e trigonometric,

o clliptic,

e super, matrix, ...,

(a) additive Dunkl operators ?

(b) Ruijsenaars—Schneider-Macdonald operators ?

(¢) Gaudin operators ?

(B) Describe commutative subalgebra generated by the Jucys—Murphy elements in

e the group ring of the symmetric group;

e the Hecke algebra ;

e the Brauer algebra, BMV algebra, .. ..

(C) Does there exist an analogue of Theorem 1.2 for

e (lassical and quantum equivariant cohomology and equivariant K-theory rings of the
partial flag varieties 7

e Cohomology and K-theory rings of affine flag varieties ?

e Diagonal coinvariant algebras of finite Coxeter groups ?

e Complex reflection groups ?

The present paper is an extended Introduction to a few items from Section 5 of [47].

The main purpose of my paper “On some quadratic algebras, II” is to give some partial answers
on the above questions basically in the case of the symmetric group S,.

The purpose of the present paper is to draw attention to an interesting class of nonhomo-
geneous quadratic algebras closely connected (still mysteriously !) with different branches of
Mathematics such as

Classical and Quantum Schubert and Grothendieck Calculi,

Low dimensional Topology,

Classical, Basic and Elliptic Hypergeometric functions,

Algebraic Combinatorics and Graph Theory,

Integrable Systems,

What we try to explain in [47] is that upon passing to a suitable representation of the
quadratic algebra in question, the subjects mentioned above, are a manifestation of certain
general properties of that quadratic algebra.

From this point of view, we treat the commutative subalgebra generated by the additive (resp.
multiplicative) truncated Dunkl elements in the algebra 37,,(53), see Definition 3.1, as universal
cohomology (resp. universal K-theory) ring of the complete flag variety Fl,,. The classical or
quantum cohomology (resp. the classical or quantum K-theory) rings of the flag variety Fl,, are
certain quotients of that universal ring.

For example, in [50| we have computed relations among the (truncated) Dunkl elements
{0;, i =1,...,n} in the elliptic representation of the algebra 37T, (8 = 0). We expect that the
commutative subalgebra obtained is isomorphic to elliptic cohomology ring ( not defined yet, but
see [33] , [32]) of the flag variety Fl,.
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Another example from [47]. Consider the algebra 3T, (5 = 0).
One can prove [47] the following identities in the algebra 3T,,(5 = 0)
(A) Summation formula

n—1 j—1 n—1
( H Ub,b+1> Ut,n (H ub,b+1) = H Ua,a+1-
b=1 a=1

j=1 b=j+1

n—1

(B) Duality transformation formula Let m < n, then

n—1 n—1 m—1 7j—1
5 ( H ub,b+1> [H Ua,a+n—1 ua,a—i—n} Um,m+n—1 (H ub,b+1> +
j=m b=j+1 a=1 b=m
m m—1 n—1
E [H Uq,a+n—1 ua,a-{—n} Um,n+m—1 (H ub,b+1) Uln =
Jj=2 a=j b=m
m m—j n—1 Jj—1
§ |:H Ug,a+n ua+1,a+n:| (H ub,b—i—l) |:H Ug,a+n—1 ua,a+n:| .
j=1 a=1 b=m a=1

One can check that upon passing to the elliptic representation of the algebra 3T,,(8 = 0), see

Comments 3.2, or [47|, Section 5.1.7, or  [50| for the definition of elliptic representation, the
above identities (A) and (B) finally end up correspondingly, to be the Summation formula and
the N =1 case of the Duality transformation formula for multiple elliptic hypergeometric series
(of type A,—1), see e.g. [41] , or Appendix V, for the explicit forms of the latter. After passing
to the so-called Fay representation [47], the identities (A) and (B) become correspondingly to
be the Summation formula and Duality transformation formula for the Riemann theta functions
of genus g > 0, [47]. These formulas in the case g > 2 seems to be new.
Worthy to mention that the relation (A) above can be treated as a "non-commutative analogue”
of the well-known recurrence relation among the Catalan numbers. The study of “descendent
relations” in the quadratic algebras in question was originally motivated by the author attempts
to construct a monomial basis in the algebra 37, 7&0)' This problem is still widely open, but gives
rise the author to discovery of

several interesting connections with

classical and quantum Schubert and Grothendieck Calculi,

combinatorics of reduced decomposition of some special elements in the symmetric group,

combinatorics of generalized Chan—Robbins—Yuen polytopes,

relations among the Dunkl and Gaudin elements,

computation of Tutte and chromatic polynomials of the weighted complete multipartite graphs,
it etc.

|

A few words about the content of the present paper.

In Section 2, see Definition 2.2, we introduce the so-called dynamical classical Yang—Bazter
algebra as “a natural quadratic algebra” in which the Dunkl elements form a pair-wise commuting
family. It is the study of the algebra generated by the (truncated) Dunkl elements that is the
main objective of our investigation in [47] and the present paper. In subsection 2.1 we describe
few representations of the dynamical classical Yang—Baxter algebra DCY B,

e related with quantum cohomology Q H*(Fl,,) of the complete flag variety Fl,,, cf [25]; quan-
tum equivariant cohomology QHpn, - (T*Fly) of the cotangent bundle 7% Fl,, to the complete
flag variety, cf [35];

e Dunkl-Gaudin and Dunkl-Uglov representations, cf [71], [92].
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In Section 3, see Definition 3.1, we introduce the algebra 3HT, (), which seems to be the
most general (noncommutative) deformation of the (even) Orlik—Solomon algebra of type A, _1,
such that it’s still possible to describe relations among the Dunkl elements, see Theorem 3.1.
As an application we describe explicitly a set of relations among the (additive) Gaudin / Dunkl
elements, cf [71].

»» It should be stressed at this place that we treat the Gaudin elements/operators (either
additive or multiplicative) as images of the universal Dunkl elements/operators (additive or multi-
plicative) in the Gaudin representation of the algebra 3HT,,(0). There are several other important
representations of that algebra, for example, the Calogero-Moser, Bruhat, Buchstaber—Felder—
Veselov (elliptic), Fay trisecant (7-functions), adjoint, and so on, considered (among others) in
[47]. Specific properties of a representation chosen 3 (e.g. Gaudin representation) imply some
additional relations among the images of the universal Dunkl elements (e.g. Gaudin elements)
should to be unveiled. <«

We start Section 3 with definition of algebra 37, (8) and its “Hecke” 3HT,, (/) and “elliptic”
3MT,(5) quotients. In particular we define an elliptic representation of the algebra 3T,,(0)
and show how the well-known elliptic solutions of the quantum Yang-Baxter equation due to
A. Belavin and V. Drinfeld, see e.g. [5], S. Shibukawa and K. Ueno [84], and G. Felder and
V.Pasquier [24], can be plug in to our construction, see Comments 3.2.

In Subsection 3.1 we introduce a multiplicative analogue of the the Dunkl elements {©; €
3T,(B), 1 < j < n} and describe the commutative subalgebra in the algebra 37,,(5) generated
by multiplicative Dunkl elements [51]. The latter commutative subalgebra turns out to be
isomorphic to the quantum equivariant K-theory of the complete flag variety Fl,, [51].

In Subsection 3.2 we describe relations among the truncated Dunkl-Gaudin elements. In this
case the quantum parameters g;; = p?j, where parameters {p;; = (2; — 2z;)7%, 1 <i < j < n}
satisfy the both Arnold and Pliicker relations. This observation has made it possible to describe
a set of additional rational relations among the Dunkl-Gaudin elements, cf [71].

In Subsection 3.3 we introduce an equivariant version of multiplicative Dunkl elements, called
shifted Dunkl elements in our paper, and describe (some) relations among the latter. This result
is a generalization of that obtained in Section 3.1 and [51]. However we don’t know any geometric
interpretation of the commutative subalgebra generated by shifted Dunkl elements.

In Section 4.1 for any subgraph I' C K, of the complete graph K,, we introduce * [47], [44],
algebras 37, (I") and 3T7(ZO) which can be seen as analogue of algebras 37}, and 3T,§0) correspond-
ingly. In the present paper we basically study the abelian quotient of the algebra 3T, ,50) (T") since we
expect some applications of our approach to the theory of chromatic polynomials of graphs. Our
main results hold for the complete multipartite, cyclic and line graphs. In particular we compute
their chromatic and Tutte polynomials, see Proposition 4.2 and Theorem 4.3. As a byproduct
we compute the Tutte polynomial of the /-weighted complete multipartite graph Kffg,,an where
¢ = {l;j}1<i<j<r, is a collection of weights, i.e. a set of non-negative integers.

More generally, for a set of variables {{qi; }1<i<j<n, %, y} we define universal Tutte polynomial
Tn({aij}, 2, y) € Zlgij]lx, y] such that for any collection on non-negative integers {m;;}i<i<j<n

3For example, in the cases of either Calogero—Moser or Bruhat representations one has an additional constraint,
namely, ufj = 0 for all 4 # j. In the case of Gaudin representation one has an additional constraint ufj =
p?j, where the (quantum) parameters {p;; = ﬁ, i # j}, satisfy simultaneously the Arnold and Plicker
relations, see Section 2, (II). Therefore, the (small) quantum cohomology ring of the type A,_1 full flag variety
Fln and the Bethe subalgebra(s) (i.e. the subalgebra generated by Gaudin elements in the algebra 3HT,(0))
correspond to different specializations of 7 quantum parameters” {qi; = ufj} of the universal cohomology ring
(i.e. the subalgebra/ring in 3HT;,(0) generated by (universal) Dunkl elements). For more details and examples,
see Section 2.1 and [47].

* Independently the algebra 3T}" (T") has been studied in [8], where the reader can find some examples and
conjectures.
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and a subgraph I' C Kﬁf") of the complete graph K, with each edge (7, ) comes with multiplicity
m;j;, the specialization

y™i -1

— if edge (i,j) €l

gij — 0, if edge (i,j) €T, qij — [mijly ==
of the universal Tutte polynomial T}, ({g;;},z,y) is equal to the Tutte polynomial of graph I'
multiplied by the factor (¢t — 1)) :

— )T Toytte(T = To({qi:
($ ) U 6( "Tvy) n({qu}amvy) ‘111:07 if (5,)¢T

qij:[mij]y, if (i,5)€T

Here and after k(I') demotes the number of connected components of a graph I'. In other
words, one can treat the universal Tutte polynomial T;,({g;;},z,y) as a “reproducing kernel” for
the Tutte polynomials of all graphs with the number of vertices not exceeded n.

At the end we emphasize that the case of the complete graph I' = K,, reproduces the results
of the present paper and those of [47], i.e. the case of the full flag variety Fl,. The case of the
complete multipartite graph I' = Ky, . ,, reproduces the analogue of results stated in the present
paper for the case of full flag variety Fl,, to the case of the partial flag variety Fy,, . n,, see [47]
for details.

In Section 4.1.3 we sketch how to generalize our constructions and some of our results to the
case of the Lie algebras of classical types °.

In Section 4. 2 we briefly overview our results concerning yet another interesting family of
quadratic algebras, namely the siz-term relations algebras 61, 61, ,§0>
algebras also contain a distinguished set of mutually commuting elements called Dunkl elements
{0;,i=1,...,n} given by 0; = Z#i 1ij, see Definition 4.8.

and related ones. These

In Subsection 4.2.2 we introduce and study the algebra 6T in greater detail. In particular
we introduce a “quantum deformation’ of the algebra generated by the curvature of 2-forms of
of the Hermitian linear bundles over the flag variety Fl,, cf [76].

In Subsection 4.2.3 we state our results concerning the classical Yang—Bazxter algebra CY B,
and the 6-term relation algebra 67),. In particular we give formulas for the Hilbert series of these
algebras. These formulas have been obtained independently in [3] The paper just mentioned,
contains a description of a basis in the algebra 67;,, and much more.

In Subsection 4.2.4 we introduce a super analog of the algebra 67}, denoted by 675, ,,,, and
compute its Hilbert series.

Finally, in Subsection 4.3 we introduce extended nil-three term relations algebra 3%, and
describe a subalgebra inside of it which is isomorphic to the double affine Hecke algebra of type
Anfl, cf [14]

In Section 5 we describe several combinatorial properties ﬁfﬂ)me special elements in the

associative quasi-classical Yang Baxter algebra 6, denoted by ACY B,,. The main results in that
direction were motivated and obtained as a by-product, in the process of the study of the the
structure of the algebra 3HT,, (). More specifically, the main results of Section 5 were obtained in
the course of “hunting for descendant relations” in the algebra mentioned, which is an important
problem to be solved to construct a basis in the nil-quotient algebra 37, ,(LO). This problem is still
widely-open.

®One can define an analogue of the algebra 37 for the root system of BC,-type as well, but we are omitted
this case in the present paper

5 The algebra AWBTL can be treated as “one-half” of the algebra 3T,,(8). It appears, see Lemma 5.1, that the
basic relations among the Dunkl elements, which do not mutually commute anymore, are still valid, see Lemma
5.1.



10 A N. Kirillov

The results of Section 5.1, see Proposition 5.1, items (1)-(5), are more or less well-known
among the specialists in the subject, while those of the item (6) seem to be new. Namely, we
show that the polynomial @, (z;; = t;) from [88], (6.C8),(c), essentially coincides with
the [-deformation [27] of the Lascoux-Schiitzenberger Grothendieck polynomial [57] for some
particular permutation.  The results of Proposition 5.1, (6), point out on a deep connection
between reduced forms of monomials in the algebra Amn and the Schubert and Grothendieck
Calculi. This observation was the starting point for the study of some combinatorial properties of
certain specializations of the Schubert, the -Grothendieck [28] and the double - Grothendieck
polynomials in Section 5.2 .  One of the main results of Section 5.2 can be stated as follows.

Theorem 1.3.
(1) Let w €S, be a permutation, consider the specialization x1 = q,x; = 1, Vi > 2, of the
B-Grothendieck polynomial &) (Xn). Then

Ruw(q,f+1) = Qigvﬁ)(azl =q,x; =1, Vi >2) e Nlg, 1+ 5]

In other words, the polynomial R.,(q, 3) has non-negative integer coefficients 7.
For late use we define polynomials

R (g, B) == ¢" W Ry(q, B).

(2) Let w €S, be a permutation, consider the specialization x; := q,y; = t, Vi > 1, of the
double B-Grothendieck polynomial QSSE) (Xn,Yn). Then

05(571)(@ =q,y; *=t,Vi > 1) € N[q, t, 5]

w

(3) Let w be a permutation, then

Ru (1, B) = Rixw(0, B).
Note that Ry (1, 8) = Ry-1(1,8), but Ry(t,8) # Ryp-1(t, 5), in general.

For the reader convenience we collect some basic definitions and results concerning the -
Grothendieck polynomials in Appendix I.
Let us observe that 2,,(1,1) = &,(1), where S,,(1) denotes the specialization z; :=
1, Vi > 1, of the Schubert polynomial &,,(X,) corresponding to permutation w. Therefore,
Rw(1,1) is equal to the number of compatible sequences |7| (or pipe dreams, see e.g. [83] )
corresponding to permutation w.

Problem 1.1.
Let w € S,, be a permutation and | := {(w) be its length. Denote by CS(w) = {a = (a1 <
ag < --- < a;) € N' } the set of compatible sequences [7] corresponding to permutation w.

e Define statistics r(a) on the set of all compatible sequences CS,:= [] CS(w)
wWES,

mn a such way that
> ¢ ™ =Ru(g, B).
acCS(w)

e Find a geometric interpretation, and investigate combinatorial and algebra-geometric proper-

ties of polynomials 61(”5) (Xn),

where for a permutation w € S, we denoted by 65{3) (Xn) the p-Schubert polynomial defined
as follows

l:i=f(w

)
S = X 5 ] w.
i=1

acCS(w)

" For a more general result see Appendix I, Corollary 6.2.
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We expect that polynomial (‘5%3 ) (1) coincides with the Hilbert polynomial of a certain graded

commutative ring naturally associated to permutation w.
Remark 1.1. It should be mentioned that, in general, the principal specialization
SBD(g; = ¢, Vi > 1)
of the (B — 1)-Grothendieck polynomial may have negative coefficients. |

Our main objective in Section 5.2 is to study the polynomials 2R, (g, 5) for a special class of
permutations in the symmetric group So.. Namely, in Section 5.2 we study some combinatorial
properties of polynomials Ry, ,(g,8) for the five parameters family of verillary permutations
{wx ¢} which have the shape

ANi=Xppp=(@n—i+1)+b i=1,...,n+1) andflag

pi=¢pr=(k+r(i—1),i=1,...,n+1).

This class of permutations is notable for many reasons, including that the specialized value of
the Schubert polynomial &, ,(1) admits a nice product formula 8 | see Theorem 5.6. Moreover,
we describe also some interesting connections of polynomials R, ¢(q, B3) with plane partitions,
the Fuss-Catalan numbers  and Fuss-Narayana polynomials, k-triangulations and k-dissections
of a convex polygon, as well as a connection with two families of ASM.  For example, let
A= (b") and ¢ = (k") be rectangular shape partitions, then the polynomial Ry, , (g, 3) defines
a (g, 3)-deformation of the number of (ordinary) plane partitions 1© sitting in the box b x k x n.
It seems an interesting problem to find an algebra-geometric interpretation of polynomials
Rw(q, B) in the general case.

Question Let a and b be mutually prime positive integers. Does there exist a family of
permutations w,p € Soo such that the specialization x; = 1 Vi of the Schubert polynomial &, ,
is equal o the rational Catalan number C,/, 7 That is

So.(1) = L <a+b>_

a+b a

Many of the computations in Section 5.2 are based on the following determinantal formula
for 5-Grothendieck polynomials corresponding to grassmannian permutations, cf [59].

Theorem 1.4. (see Comments 5.5)

If w = oy is the grassmannian permutation with shape X = (X ..., \,) and a unique descent

8 One can prove a product formula for the principal specialization GWA@(:ri = ¢, Vi > 1) of the corre-
sponding Schubert polynomial. We don’t need a such formula in the present paper.

9 We define the (generalized) Fuss-Catalan numbers to be Fc )(b) = %(W:b). Connection of
the Fuss-Catalan numbers with the p-ballot numbers Baly(m,n) := % ("*7*1) and the Rothe numbers
Rn(a,b) == (“tlb") can be described as follows

FCP (b) = Ru(b+1,p) = Baly-1(n, (n — 1)p + b).

10 Let A be a partition. An ordinary plane partition (plane partition for short)bounded by d and shape X is
a filling of the shape A by the numbers from the set {0, 1,...,d} in such a way that the numbers along columns
and rows are weakly decreasing.

A reverse plane partition bounded by d and shape M is a filling of the shape A by the numbers from the set
{0,1,...,d} in such a way that the numbers along columns and rows are weakly increasing.
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at position n, then

DET |z (148 2} 1<ij<n

(A) Qﬁ('B)(Xn) — DET|h(’8) (Xn)|1<i, i<n =
SIS [hi<icjon (@i — ;)

oA Xj+i,g

I

where X, = (zi,x1,...,Ty), and for any set of variables X,
k—1 E—1
P (X) =37 ( . ) hn—t+a(X) B,
a=0

and hi(X) denotes the complete symmetric polynomial of degree k in the variables from the set
X.

Aj4n—j i
DET| T 7 (@i 4+ ya + 8 i ya) (14 BV i<ij<n

H1§i<j§n(xi - xj)

(B) &, (X,Y)=

In Section 5.3 we give a partial answer on the question 6.C8(d) by R.Stanley [88]. In
particular, we relate the reduced polynomial corresponding to monomial

n—2 n
a .
(xli-'-xn—l,na") IT II =% @ €Zs0.V
J=2  k=j+2

with the Ehrhart polynomial of the generalized Chan—-Robbins—Yuen polytope, if ag = ... =
an, = m+1, cf [66], with a ¢-deformation of the Kostant partition function of type A,,_; and the
Ehrhart polynomials of some flow polytopes, cf [67].

In Section 5.4 we investigate certain specializations of the reduced polynomials corresponding

to monomials of the form
m

ml “ e n
L19 Lp—1,n

m; € ZZO-Vj-

First of all we observe that the corresponding specialized reduced polynomial appears to be
a piece-wise polynomial function of parameters m = (mq,...,my,) € (R>g)", denoted by Pp,.
It is an interesting problem to compute the Laplas transform of that piece-wise polynomial
function. In the present paper we compute the value of the function Py, in the dominant chamber
Cn = (m1>mg>...>m, >0), and give a combinatorial interpretation of the values of that
function in points (n,m) and (n,m, k), n > m > k.

For the reader convenience, in Appendix I-V we collect some useful auxiliary information
about the subjects we are treated in the present paper.

Almost all results in Section 5 state that some two specific sets have the same number of
elements. Our proofs of these results are pure algebraic. It is an interesting problem to find
bijective proofs of results from Section 5 which generalize and extend remarkable bijective proofs
presented in [96], [83], [89], [67] to the cases of

e the 5-Grothendieck polynomials,

e the (small) Schréoder numbers,

e k-dissections of a convex (n + k + 1)-gon,

e special values of reduced polynomials.

We are planning to treat and present these bijections in (a) separate publication(s). |
11 the equality ‘
_ DET [z (14 B 2:) i<ij<n

)

o)
2 H1§i<j§n(a:i - ;)

has been proved independently in [70].
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We expect that the reduced polynomials corresponding to the higher-order powers of the
Coxeter elements also admit an interesting combinatorial interpretation(s). Some preliminary
results in this direction are discussed in Comments 5.8.

At the end of Introduction I want to add two remarks.

(a) After a suitable modification of the algebra 3HT,, see [52|, and the case f # 0 in
[47], one can compute the set of relations among the (additive) Dunkl elements (defined in
Section 2, (2.1)). In the case S =0 and ¢; = ¢; dj—i1, 1 < i < j < n, where d,p is
the Kronecker delta symbol, the commutative algebra generated by additive Dunkl elements
(2.3) appears to be “almost” isomorphic to the equivariant quantum cohomology ring of the flag
variety Fl,, see [52| for details. Using the multiplicative version of Dunkl elements (3.14), one
can extend the results from [52] to the case of equivariant quantum K-theory of the flag variety
Fly, see [47].

(b) In fact, one can define an analogue of the algebra 37" for any (oriented) matroid M,

and state a conjecture which connects the Hilbert polynomial of the algebra 3T£0) (M), t) and
the chromatic polynomial of matroid M. It is an interesting problem to find a combinatorial
meaning of the algebra 37 (M,,).
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2  Dunkl elements

Let §, be the free associative algebra over Z with the set of generators {u;;, 1 <i,j5 < n}. In
the subsequent text we will distinguish the set of generators {u;; }1<i<n from that {u;j}1<izj<n,
and set

Tj = U, 1= 1,...,n.

Definition 2.1.  (Additive Dunkl elements)
The (additive) Dunkl elements 0;,i = 1,...,n, in the algebra F,, are defined to be

n
0; = x; + Z Uij - (2.1)
o

We are interested in to find “natural relations” among the generators {u;;}1<; j<n such that
the Dunkl elements (2.1) are pair-wise commute. One of the natural conditions which is the
commonly accepted in the theory of integrable systems, is

e (Locality conditions)

(a) [xivxj] =0, if ¢ # 7,

(0)  wij up = wij, if i#£j, k#1 and {i,j}N{k, 1} =0. (2.2)

Lemma 2.1.
Assume that elements {u;;} satisfy the locality condition (2.1). Ifi # j, then

n
[0:,06;] = [ﬂ?z + > Wik i +ujz':| + [ui]s wk] + > wik,
kg k=1 [y
where
Wik = [Wij, Wik + W] + [Wik, wjn] + [T, wjn] + [wik, 5] + [Tr, wij). (2.3)

Therefore in order to ensure that the Dunkl elements form a pair-wise commuting family, it’s
natural to assume that the following conditions hold
e (Unitarity)

[uij + Ujs, ukl] =0= [’U,ij + Ujis xk] for all distinct 1,7, k,1, (2.4)

i.e. the elements u;; + uj; are central.
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e (“Conservation laws”)

[Z x , uy) =0 for all i,j, (2.5)
k=1

i.e. the element E := )"}, x} is central,
° (Unitary dynamical classical Yang—Baxter relations )

[wij, Wik + wjk] + [wik, wjn] + [T, wje] + [wik, 5] + [2r, ui;] = 0, (2.6)
if 4, §, k are pair-wise distinct.

Definition 2.2. (Dynamical six term relations algebra 6D7T,,)
We denote by 6 DT, the quotient of the algebra F,, by the two-sided ideal generated by relations
(2.2) — (2.6).

Clearly, the Dunkl elements (2.1) generate a commutative subalgebra inside of the algebra
6DT),, and the sum > ;' 6; => ", x; belongs to the center of the algebra 6DT,.

Remark Occasionally we will call the Dunkl elements of the form (2.1) by dynamical Dunkl
elements to distinguish the latter from truncated Dunkl elements, corresponding to the case
Ty = O, Vi.

2.1 Some representations of the algebra 6D7T,
2.1.1 Dynamical Dunkl elements and equivariant quantum cohomology

(I) (cf [25]) Given a set qi, ..., ¢np—1 of mutually commuting parameters, define

j—1
gij = [ aar if i<,
a=1
and set g;; = qj; in the case 7 > j. Clearly, that if ¢ < j < k, then ¢;;q;1 = qix-

Let z1,..., 2, be a set of (mutually commuting) variables. Denote by P, := Z[z1, ..., z,] the
corresponding ring of polynomials. We consider the variable z;, i = 1,...,n, also as the operator
acting on the ring of polynomials P,, by multiplication on the variable z;.

Let s;; € S, be the transposition that swaps the letters ¢ and j and fixes the all other letters
k # i,j. We consider the transposition s;; also as the operator which acts on the ring P, by
interchanging z; and z;, and fixes all other variables. We denote by
1— s

Oij = ﬁ, 0i := 01,
the divided difference operators corresponding to the transposition s;; and the simple transposi-
tion s; := s;,4+1 correspondingly.  Finally we define operator (cf [25] )

Oijy = 0 -+ 0105051+ 0y, if i<

The operators J(;;), 1 <i < j < n, satisfy (among other things) the following set of relations (cf
[25]) ‘

* [Zjaa(lk)] =0, if J ¢ [Z7k]7 [8(1])7231:1 Z?] :.07

o [0 O] = 0k [2, O] + 0u [0y, 2], i i <yj, k<l

Therefore, if we set u;; = g5 0giy), if @ <j, andug; = —ugy), @f ©> j, then for a triple
1< j<k wewil have

[wij, Wik + wik] + [wi, wi] + [2i; wjr] + [wik, 23] + 26, wik] = 4ij45k[065), Oim] + Gik[Oiry» 25] = 0.
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Thus the elements {z;,7 = 1,...,n} and {u;;,1 < i < j < n} define a representation of the
algebra DCY B,,, and therefore the Dunkl elements
0=z + Y wij=z—Y GOy + Y 60
j#i j<i j>i
form a pairwise commuting family of operators acting on the ring of polynomials

Zlqi,- .- qn-1]]z1, .-, 2n], cf [25]. This representation has been used in [25] to construct the
small quantum cohomology ring of the complete flag variety of type A,_1.

|
(IT) Consider degenerate affine Hecke algebra $),, generated by the central element h, the
elements of the symmetric group S,,, and the mutually commuting elements y1, ..., y,, subject

to relations
5 —Yir1si=h, 1<i<n, sy =y;si, JjFAii+1,

where s; stand for the simple transposition that swaps only indices ¢ and i + 1. For i < j, let
8jj = 8j+-+5j_15j5;_1 - 5; denotes the permutation that swaps only indices 7 and j. It is an easy
exercise to show that

° [yj, Sik] = h[sijv'sjk], ifi < j < k,

® YiSik — Sikyk = h+ h s Ei<j<k Sjks if i < k.
Finally, consider a set of mutually commuting parameters {p;j, 1 <1 # j < n, p;; + pji = 0},
subject to the constraints

DijPjk = PikDij + PjkDik + Pik, 1 < J < k.
Comments 2.1.  If parameters {p;;} are invertible, and satisfy relations
PijPjk = PikPij + PjkPik + B pik, 1< j <k,

then one can rewrite the above displayed relations in the following form:

1+£:<1+£)(1+£>, 1<i<j<k<n
Dik Dij Djk

Therefore there exist parameters {qi,...,qn} such that 1+ 8/p;; =¢i/q¢;, 1 <i<j<n. In

other words, p;; = qf :];j, 1 <i < j <n. However in general, there are many other types

of solutions, for example, solutions related to the Heaviside function 12 H(z), namely, p;; =
H(z; — x;), z; € R, Vi, and its discrete analogue, see Example (III) below. In the both cases

B8 = —1; see also Comments 2.3 for other examples.
|
To continue presentation of Example (II), define elements w;; = p;jsi;, 1 <i# j < n.
Lemma 2.2.  (Dynamical classical Yang-Baxter relations)
[wij, wig + wjk] + (Wi, wjk] + [wi, y;] =0, 1<i<j<k<n. (2.7)
Indeed,
UijUjk = UikUsj + UjkUik + D DikSijSjk, UjkUij = UijUik + UikWjk + N DikSjkSik,
and moreover, [y;, uik] = h pik[Sij, Sjk]- [ ]

Therefore, the elements
Qizyi—h Zuij—i—h Zu,;j, 1=1,...,n,
J<i i<j

form a mutually commuting set of elements in the algebra Z[{p;;}] ®z 9n.

2 http://en.wikipedia.org/wiki/Heaviside step function
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Theorem 2.1.  Define matriz M, = (m; j)i<ij<n as follows:

U — 2 if i =7,
Mij (Ui 21, 2n) = § ~h—py i<,
Pij if i > 7.

Then
n
DET| My (u; 01,....0,)| = [ (w—y).
j=1

Moreover, let us set g;j == h?(pi; +p12j) = h2qiq;(¢i — q;) 7%, i <j, then

ep(01,...,0,) = eéq)(yl,...,yn), 1<k <n,

where e (x1,...,2,) and e,(cq) (z1,...,2y) denote correspondingly the classical and multiparameter

quantum [26] elementary polynomials 3.

Let’s stress that the elements y; and ; do not commute in the algebra §),,, but the symmetric
functions of y1,...,yn, i.e. the center of the algebra $,, do.

A few remarks in order. First of all, ugj = p?j are central elements. Secondly, in the case
h =0 and y; = 0, Vi, the equality

:un

DET|M,(u;z1,...,zy)

describes the set of polynomial relations among the Dunkl-Gaudin elements (with the following
choice of parameters p;; = (¢; —q;) " are taken). And our final remark is that according to [35],
Section 8, the quotient ring

M= Qo Q- 0] S QAL (M0, = T )
j=1

is isomorphic to the quantum equivariant cohomology ring of the cotangent bundle 7™ F1,, of the
complete flag variety of type A,_1, namely,

HY = QHpny o (T Fly)

with the following choice of quantum parameters: Q; :=h gi+1/q, i=1,...,n— 1.
On the other hand, in [52] we computed the so-called multiparameter deformation of the
equivariant cohomology ring of the complete flag variety of type A,_1.

A deformation defined in [52] depends on parameters {¢;;, 1 < i < j < n} without any

constraints are imposed. For the special choice of parameters
2 i gqj

gij = h"————

v (¢ — )

the multiparameter deformation of the equivariant cohomology ring of the type A,_1 com-
plete flag variety Fl,, constructed in [52], is isomorphic to the ring H.

13 For the reader convenience we remind [26] a definition of the quantum elementary polynomial

ep(z1,...,2n). Let q:={gij}1<i<j<n be a collection of “quantum parameters”, then
¢
q _ .
6k(£C1,...,l'n) = E E ek—QZ(XIuJ) H Qiq,ja>
£ 1<ij<...<ip<n a=1

J1>i1.-dp>ig

where I = (i1,....%¢), J = (j1,...,7¢) should be distinct elements of the set {1,...,n}, and X777 denotes set of
variables x, for which the subscript a is neither one of i,, nor one of the j,.
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Comments 2.2. Let us fix a set of independent parameters {qi,...,¢,} and define new
parameters

4 4; o
m}’ 1SZ<] Sn, where p”:

We set deg(qij) = 2,deg(pi;) =1, deg(h) = 1.
The new parameters {¢;; }1<i<j<n, do not free anymore, but satisfy rather complicated alge-
braic relations. We display some of these relations soon, having in mind a question:
is there some intrinsic meaning of the algebraic variety defined by the set of defining relations

4
Qi_Qj7

{qij =h pij(pij + h) = h? 1 < 7.

among the “quantum parameters” {g;;} ?

Let us denote by A, ;, the quotient ring of the ring of polynomials Q[h][x;;, 1 < i < j < n]
modulo the ideal generating by polynomials f(z;;) such that the specialization z;; = ¢;; of a
polynomial f(x;;), namely f(gi;), is equal to zero. The algebra A, j, has a natural filtration,
and we denote by A, = grA, the corresponding associated graded algebra.

To describe (a part of) relations among the parameters {¢;;} let us observe that parameters
{pi;} and {g¢;;} are related by the following identity

Giiqik — @ik (gij + k) + Pk = 2 pipapir(pir +h), if i <j<k.
Using this identity we can find the following relations among parameters in question

GCr + G0 + P G — 2 Gtk (G5 + Gk + @ik) — 2 P2 ain(GiGr + GGk + Grdin) (2.8)
=8 h qij ¢k 4k Pik,

ifl1<i<j<k<n.
Finally, we come to a relation of degree 8 among the “quantum parameters” {g;;}

2 2 2 3 2
<LHS(2.8)> — 64 % ¢% gh qB 1<i<j<k<n.

There are also higher degree relations among the parameters {¢;;} some of whose in degree 16
follow from the deformed Pliicker relation between parameters {p;;}:

1 1 1
= + +
DikDji DijPkl  PilPjk  PijPjkPkl

, 1<j<k<l

However, we don’t know how to describe the algebra A, ; generated by quantum parameters
{qij}lgian even for n—4.

The algebra A, = gr(Ay4) is isomorphic to the quotient algebra of Q[z;;, 1 < i < j < n]
modulo the ideal generated by the set of relations between “quantum parameters”

{a;; = (

which correspond to the Dunkl-Gaudin elements {6;}1<i<n, see Section 3.2 below for details. In
this case the parameters {@-j} satisfy the following relations

1

2
) H<i<j<n,
Zi — j

9. 2 2.9 | 22 o
(@0 + @G + TrGir = 2 TG0 (Tij + i + Tj)

which correspond to the relations (2.8) in the special case h = 0. One can find a set of relations
in degrees 6, 7 and 8, namely for a given pair-wise distinct integers 1 < i, 5, k,I < n, one has
e one relation in degree 6

—2-2_-2 | —2-2_2 | _2_2 _9 —2_2 9
759Gk + 95k 95 + Gk + i —
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A9 T ik 1 T 9k o o _
2 qijqikqilqjkqjlqkl(—ﬂ i e e %) + 8 4490919519k = 0;
A 4 495 ik Yk q;l

e three relations in degree 7
B - N2
dik (CIiqu‘ZQk;l — 4ij %9k T 959k — q@‘lekal) =

99 _ (. 9.9 (2 | 2
8 030k 10 (ij +q; + ka) — 49593745 (ij + le),

e one relation in degree 8
2.2 9 .92 | 29929 | 9929 9 A
059Gk + G 8k9519%% + Grlalkd5 = 2 G9k909x 95190 <Qiijl + ik + QiZij>7

However we don’t know does the list of relations displayed above, contains the all independent
relations among the elements {qij}1§i<j§n in degrees 6, 7 and 8, even for n = 4. In degrees
> 9 and n > 5 some independent relations should appear.

Notice that the parameters {p;; = q}?iq;., i < j} satisfy the so-called Gelfand—Varchenko
i —dj

relations, see e.g. [45]
DijPjk = PikDij + DjkPik + h pik, @ <j <k,

whereas parameters {@j = i < j} satisfy the so-called Arnold relations

1

%—q;’
PijPjk = DikPij + PjkPir, @ <J <k.

Project 2.1. *  Find Hilbert series Hilb(A,,t) for n > 4.

For example, Hilb(As,t) = %

h? qiq;
(ai—q;)’

Finally, if we set ¢; := exp(h z;) and take the limit limp_, as a result we obtain the
1

(zi—z;)

Dunkl-Gaudin parameter g;; = 5.

(III) Consider the following representation of the degenerate affine Hecke algebra $),, on the
ring of polynomials P, = Q[xz1, ..., z,]:
e the symmetric group S,, acts on P, by means of operators

gi:1+($i+1—£€i—h)3i,i:1,...,’1’L—1,
e y; acts on the ring P,, by multiplication on the variable x;: y;(f(x)) = z;f(x), f € P,. Clearly,
Yi Si— Yi+1 5 = h, and yi(5; — 1) = (5; — D)yit1 + Tip1 — 2 — h.

In the subsequent discussion we will identify the operator of multiplication by the variable x;,
namely the operator y;, with x;.

This time define u;; = p;;(5; — 1), if @ < j and set u;; = —uy; if @ > j, where parameters
{pij} satisfy the same conditions as in the previous example.

4 This is a particular case of more general problem we are interested in. Namely, let {fo € R[z1,..., Zn|ti<a<n
be a collection of linear forms, and k > 2 be an integer. Denote by I({fa}) the ideal in the ring of polynomials
R[z1, ..., 2n] generated by polynomials ®(z1,..., zx) such that

o(frk, . N =0

Compute the Hilbert polynomial of the quotient algebra R[z1,...,2n]/I({fa})-
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Lemma 2.3. The elements {u;j, 1 <1 < j <n}, satisfy the dynamical classical Yang-Bazter
relations displayed in Lemma 2.2, (2.7).

Therefore, the Dunkl elements

9i = E Uigg, izl,...,n,
J
J#i
form a commutative set of elements.

Theorem 2.2. (/35])  Define matriz M, = (Mi;)1<ij<n as follows

w=zit Y hpy ifi=,
mij(u; 2150 20) = { —h = pyj ifi < j,
Dij ifi> 7.
Then

=1 (w—=y.

J=1

DET|M ,(u;01,...,0,)

Comments 2.3. Let us list a few more representations of the dynamical classical Yang—Baxter
relations.
e (Trigonometric Calogero-Moser representation) Let i < j, define

uij = ﬁ(si]‘ — 6), € = O or 1; Sij(:L’Z‘) = a;j, sij(xj) = T, sij(a:k) = Tk, Vk 75 1,7

e (Mixed representation)

Aj Z;
)\i — /\j T; — a:j
We set u;; = —uj;, if ¢ > j. In all cases we define Dunkl elements to be 0; = Z#i U

Note that operators

uz-j = ( )(Sij — 6), e=0or 1; Sz‘j()\k) = )\k VEk.

VD VI
rij = (5 — ——2)sij
)\i - )‘j Ty — xj
satisfy the three term relations: r;;7x = riprij + rjrrik, and rpry; = 7475k + 3,7k, and thus
satisfy the classical Yang—Baxter relations.

2.1.2 Dunkl-Uglov representation of degenerate affine Hecke algebra [92]

(Step functions and the Dunkl-Uglov representations of the degenerate affine Hecke algebras)

Consider step functions n* : R — {0, 1}

1, ifz>0 1, ifz>0
Heaviside function T(z) = ’ = “(z) = ’ ’
( / ) (@) {O, if z < 0; n () {O, if z <0.

For any two real numbers z; and z; set ni = nt(z; — ;).
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Lemma 2.4. The functions n;; satisfy the following relations
+ + + + + + +

® MMk = Mg T Wik — Miks

where 9,4 denotes the Kronecker delta function.

To introduce the Dunkl-Uglov operators [92] we need a few more definitions and notation. To
start with, denote by A;t the finite difference operators: Af(f)(:rl, ceyZp) = floo L ).
Let as before, {s;;, 1 <i# j <n, s;; = s;i}, denotes the set of transpositions in the symmetric
group S,,. Recall that s;j(x;) = x; sij(xx) = o1 Yk # 4, j. Finally define Dunkl-Uglov operators
dF : R" — R" to be

d;t:A;t‘f'Z 5ri,mj _Z 773:5 Sij—i_znz;lj; sij'

j<u j<t J>t

To simplify notation, set u;'; = U;‘;Sz‘j, if i < j, and Afﬁ = Afﬁ + Zj<i O

Lemma 2.5. The operators {ui, 1 <i < j<n} satisfy the following relations
[ugs, uig + uip) + [ugg, wig) + Ui, > 0u,0,) =0, if i<j <k (2.9)
j<i

From now on we assume that x; € Z, Vi, that is, we will work with the restriction of the all
operators defined at beginning of Example (2.1 (c)), to the subset Z™ C R™. It is easy to see
that under the assumptions x; € Z, Vi, we will have

Aj[n% = (77?][ + 6I¢,$j)Azi' (2.10)
Moreover, using relations (2.13), (2.14) one can prove that

Lemma 2.6. B

e [uf,AF4+A% =0,

+ At + . .

° [uik’ Aj | = [uik7 Zj<i 5%,%]7 i1 <j<k.
Corollary 2.1. N

e The operators {uf;, 1<i<j<k<n,} and A;t,i =1,...,n satisfy the dynamical
classical Yang—Baxter relations

[z, uig + ui ] + [ug, ug] + [uig, Ajll =0, if i<j<k.

o ([92])  The operators {s; := siit1, 1 < i < n, and KJ“.—L,I < j < n} give rise to

two representations of the degenerate affine Hecke algebra $,. In particular, the Dunkl-Uglov

operators are mutually commute: [di, df] =0.

2.1.3 Extended Kohno—Drinfeld algebra and Yangian Dunkl-Gaudin elements

Definition 2.3. Eztended Kohno—Drinfeld algebra is an associative algebra over Q[3] generated
by the elements {z1,...,2,} and {yij}1<izj<n subject to the set of relations

(i)  The elements {y;j{1<izj<n satisfy the Kohno-Drinfeld relations

® Vi =Yji, Wij»yk] =0, if4,7,k,1 are distinct.

o [Yij, Yir + yik) = 0 = [yij + Yk, yji)s if i < J < k.
(ii) The elements z1,...,z, generate the free associative algebra F.
(7i1) ( Crossing relations)

L4 [Ziayjk] = 0’ Zf Z#]ak) [Zi)zj] = ﬁ [yij7zi]y ZfZ 7&]
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To define the (yangian) Dunkl-Gaudin elements, cf [35], let us consider a set of elements
{pij}1<i#j<n subject to relations

® pij+pji =B, [pijsyrl = 0= [pij, 2k for all 4,7, k.

o pij Pjk = Pik(Pjk — pji), if i < j < k.

Let us set u;; = pij ¥ij, ¢ # j, and define the (yangian) Dunkl-Gaudin elements as follows

01':21'4—2 Uij, 1=1,...,n.
J#i

Proposition 2.1. ( Cf [35], Lemma 3.5)
The elements 01, ... ,0, form a mutually commuting family.

Indeed, let i < j, then [6;,6;] =
(2, 23] + Blzi, yis] + pislyiz, zi + 2] + Z <pikpjk |:yij + Yik yjk] + DikDji [yija Yik + yjk}) =0.
k#i,j

A representation of the extended Kohno—Drinfeld algebra has been constructed in [35], namely
one can take

1) (1 1 2) B 1 Ba ., .
J :Tz‘(j) Tj(i)_Tj(j) =yji, =BT - 5 TV (T - 1), piy = i,
i 4j
where ¢i,...,q, stands for a set of mutually commuting quantum parameters, and {Tl(js)} 1<i,j<n
SEZZO

denotes the set of generators of the Yangian Y (gl,,), see e.g. [69].
A proof that the elements {z;}1<i<n and {y;j}1<ixj<n satisfy the extended Kohno-Drinfeld
algebra relations is based on the following relations, see e.g. [35], Section 3

(1), 1) = 6aT) — 0Ty, i gkl =1,....n, s € ZLso.

2.2 “Compatible” Dunkl elements and Manin matrices

(“Compatible” Dunkl elements, Manin matrices and algebras related with weighted
complete graphs rK,, )

Let us consider a collection of generators {uw ), 1<i,j<n, a=1,...,r}, subject to the
following relations

e cither the unitarity (the case of sign “+”), or the symmetry relations (the case of sign “ -
77) 15

cug) £ = 0,¥, 0,4, (2.11)
e (local 3-term relations)

uz(»j) gk) + ng)u,ﬂ) + u(a) (a) =0. i,7,k are distinct, 1 <a <. (2.12)

15 More generally one can impose the g-symmetry conditions
ui; +quj; =0, 1<i<gi<n

and ask about relations among the local Dunkl elements to ensure the commutativity of the global ones. As
one might expect, the matrix Q := (95”) 1<a<r composed from the local Dunkl elements should be a ¢-Manin

matrix. See e.g. [15], or en.wikipedia. org/wzkl/Mamn matriz for a definition and basic properties of the latter.
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We define global 3-term relations algebra 3T,$7j7:=) as “ compatible product” of the local 3-term

relations algebras. Namely, we require that the elements

U = Z Ao ul, 1<ij<n,

satisfy the 3-term relations (1.4) for all values of parameters {\; € R, 1 <a <r}.
It is easy to check that our request is equivalent to a validity of the following sets of relations
among the generators {ugja)}

(a) (local 3-term relations) ul(]a) u;l,z + ugz) u,(g) + u,ﬂ) Z(ja) =0,

(b) ( 6-term crossing relations)
5D D) 5 o) D ol oD D i) =0
i, 7,k are distinct, « # (.
Now let us consider local Dunkl elements

:Z ug?), j=1....n, a=1,...,7

JF

It follows from the local 3-term relations (x) that for a fixed o € [1, 7] the local Dunkl elements

13

{gga)}lgign either mutually commute (the sign “+”), or pairwise anticommute (the sign “ -
1<a<lr

). Similarly, the global 3-term relations imply that the global Dunkl elements

o =00 000 =3 U i=1,.n
J#i

also either mutually commute (the case “ + ) or pairwise anticommute (the case “ - ©).

Now we are looking for a set of relations among the local Dunkl elements which is a con-
sequence of the commutativity (anticommutativity) of the global Dunkl elements. It is quite
clear that if ¢ < j, then

a b - a a a b b a
617,601 =57 A2 61,61, + }:,xx<¢héﬁi+ML@ﬁg,
a=1 1<a<b<lr
and the commutativity (or anticommutativity) of the global Dunkl elements for all (A1,...,\;) €

R" is equivalent to the following set of relations
o 16,0 =0,
o 10,6V +10",6")L =0, a<b and i<},
where by definition we set [a, b]+ := ab F ba.

In other words , the matrix 6,, := (Gga)) 1<a<r should be either a Manin matriz (the case “ +
1<i<n

“), or its super analogue (the case “ - ). Clearly enough that a similar construction can be applied
to the algebras studied in Section 2, I-III.,and thus it produces some interesting examples of
the Manin matrices. It is an interesting problem to describe the algebra generated by the

local Dunkl elements {91@ }1<a<r and a commutative subalgebra generated by the global Dunkl
1<i<n

elements inside the former. It is also an interesting question whether or not the coefficients
Ci,...,Cp of the column characteristic polynomial Det® | ©, —t I,, |= YopoCr t" koof
the Manin matrix ©,, generate a commutative subalgebra ? For a definition of the column
determinant of a matrix, see e.g. [15].
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However a close look at this problem and the question posed needs an additional treatment
and has been omitted from the content of the present paper.

Here we are looking for a “natural conditions” to be imposed on the set of generators {u%} 1<a<r
1<i,5<n

in order to ensure that the local Dunkl elements satisfy the commutativity (or anticommutativity)
relations:

[HZ(Q),Q](-ﬁ)]i:O, for all 1<i<j<n and 1<a,B8<r

The “natural conditions” we have in mind are:
e (locality relations)

[t u))]x =0, (2.13)
o (twisted classical Yang—Baater relations)

B
g i L+ ) [ )] =0, (2.14)
if 4,4, k, 1 are distinct and 1 < o, 5 < r.

Finally we define a multiple analogue of the three term relations algebra, denoted by 3T+ (rK,,),
to be the quotient of the global 3-term relations algebra 3T$T modulo the two-sided ideal gener-
ated by the left hand sides of relations (1.5), (1.6) and that of the following relations

@) w1y =0, for all i # j, a % B.

()2
(0%
=0, ij 0 g

° u,;

i [u

The outputs of this construction are

e noncommutative quadratic algebra 37()(rin)

,,,,,

e a family of nr either mutually commuting (the case “+”), or pairwise anticommuting (the
case “ - ) local Dunkl elements {Hl(a)} =1, .

a=1,...,r
We expect that the subalgebra generated by local Dunkl elements in the algebra 3T (rK,)
is closely related (isomorphic for » = 2) with the coinvariant algebra of the diagonal action of

the symmetric group S,, on the ring of polynomials Q[XT(ID, .. ,X,(f)], where XT(lj ) stands for the
set of variables {ajgj), e :z:g)} The algebra (37 (2K,))(7))%" has been studied in [47], and
[6]. In the present paper we state only our old conjecture.

Conjecture 2.1. (A.N. Kirillov, 2000)
Hilb((3T~ (3K,))*™ t) = (1 +t)"(1 + nt)" 2,

where for any algebra A we denote by A" the quotient of algebra A by the two-sided ideal
generated by the set of anticommutators {ab+ ba | (a,b) € A x A}.

According to observation of M. Haiman [37], the number 2" (n + 1)"~2 is thought of as being
equal to to the dimension of the space of triple coinvariants of the symmetric group S,,.

2.3 Miscellany
2.3.1 Non-unitary dynamical classical Yang—Baxter algebra DCY B,

Let ;élvn be the quotient of the algebra §, by the two-sided ideal generated by the relations
(2.2), (2.5) and (2.6). Consider elements

Gi::ci—i—Zuw, and G_j:—xj—{—Zubj, 1<i<j<n.
aFi b#j
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Clearly, if i < j, then
[6i7éj] xua:] Zxk 7uz] Z Wikj,
Py
where the elements wjjx, @ < j, have been defined in Lemma 2.1, (2.3).

Therefore the elements 6; and 6; commute in the algebra A,
In the case when x; =0 for all i = 1,...,n, the relations

Wijk = [Wij, Wik + Ujk] + [wig, wjr] =0, if 4,7,k are all distinct)

are well-known as the non-unitary classical Yang-Baxter relations. Note that for a given
triple of pair-wise distinct (4,7, k) we have in fact 6 relations. These six relations imply that
[0i,6;] = 0. However, in general,

‘9179 |:Z Uik 5 Ugj +uj’l:| # 0.

k#i,j

e (Dynamical classical Yang—Baxter algebra DCY B,,)
In order to ensure the commutativity relations among the Dunkl elements (2.1), i.e. [6;,6;] =
0 for all 4, 7, let us remark that if ¢ # j, then [0 0;] = [z; + wij, x; + uz]+

n n

[Ti + x5, wif] + [uig, Z zp] + Z [wij + Wik, wjk] + [Wik, Wgi] + [, wjk] + [wik, 5] + [Tk, wij].
k=1 k=1
k#i,j

Definition 2.4.

Define dynamical non-unitary classical Yang—Baxter algebra DNUCY B,, to be the
quotient of the free associative algebra Q({x1<i<n}, {uij}i<iz;) by the two-sided ideal generated
by the following set of relations

e (Zero curvature conditions)

[xi—i-uij,xj%—uji] =0, 1<i#j<n, (2.15)

e ( Conservation lows conditions)

n

[wij, > @] =0, for all i#j, and k.
k=1

e (Crossing relations)
[xi + xj,ui5] =0, i#j.
o  (Twisted dynamical classical Yang—Bazter relations)
[wij + Wik, wjk] + [wik, Wil + (@i, wjn] + [win, 23] + [wp, wij]) =0, 4,5,k are distinct, (2.16)
It is easy to see that the twisted classical Yang—Baxter relations
[Wij + Wik, wjk] + Wik, uz3] =0, 4,4,k are distinct, (2.17)

for a fixed triple of distinct indices ¢, j, k contain in fact 3 different relations whereas the non-
unitary classical Yang—Baxter relations

[wij + Wik, W] + [Wir, wjs), 4,7,k are distinct,

contain 6 different relations for a fixed triple of distinct indices ¢, j, k.
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Definition 2.5.
e Define dynamical classical Yang—Baxter algebra DCY B,, to be the quotient of the
algebra DNUCY By, by the two-sided ideal generated by the elements

Z [wik, uij + uji), for all i j.

k#i,j

. Define classical Yang—Baxter algebra CY B, to be the quotient of the dynamical
classical Yang—Bazxter algebra DCY B,, by the set of relations

z;=0 for i=1,--- ,n.

Examples 2.1.
(a) Define

s if1<i<j<n,
pij(zla"'7zn) - 27,—232. . . .
. ifn>i>j>1.

Zj—Z4 ?

Clearly, p;; +pj; = 1. Now define operators u;; = p;;s;;, and the truncated Dunkl operators to be
0; = Z#i uij, = 1,...,n. All these operators act on the field of rational functions Q(z1, ..., 2n);
the operator s;; = sj; acts as the exchange operator, namely, s;;(2;) = z;, sij(2k) = 2 Vk # 1, j,
sij(2j) = -

Note that this time one has

P12P23 = P13P12 + P23P13—P13-

It is easy to see that the operators {u;;, 1 <1 # j < n} satisfy relations (3.1), Section 3, and
therefore, satisfy the twisted classical Yang—Baxter relations (2.11). As a corollary we obtain that
the truncated Dunkl operators {6;, i = 1,...,n} are pair-wise commute. Now consider the Dunkl
operator D; = 0., +h 0;, i=1,...,n, where h is a parameter. Clearly that [0, + 0., u;] = 0,
and therefore [D;, D;] =0 Vi,j. It easy to see that

Siig1Di — Div1Siiv1 = h, [Di,sj+1] =0, if j#i,i+1.

In such a manner we come to the well-known representation of the degenerate affine Hecke algebra

.

2.3.2 Equivariant multiparameter 3-term relations algebras

Let 8,h = (ho,...,hy), and q = {qj}1<izj<n, @j = ¢ji be a collection of mutually commuting
parameters.

Definition 2.6.  Denote by 3QT,(8,h) an associative algebra generated over the ring
Z[5, h) [{Qij}1§i<j§n} by the set of generators {x1,...,x,} and that {u;}1<izj<n} subject to the
set of relations

(1) (Locality conditions)

[, 2] =0,  [uyj, ur) =0, [Tk, ui;] =0, if 0,7, k,1 are pairwise distinct,

(2) (Unitarity conditions)

U5 + Uj; = B,

(3) (Hecke type conditions)

Uij Uji = —Gij, if i # J,

(4)  (Twisted 3-term relations)

Uij Ujk = Ujk Uik — Wik Uji, 4f 4, ],k are distinct,

(5)  (Crossing relations)

Ti Uji = —Uij Tj — Pnae(ig), o ©F J-
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As before we define the (additive) Dunkl elements to be

ei:xi‘i‘z Ui 1=1,...,n.
J#i
It is clearly seen from the defining relations listed in Definition 2.3 that for any triple of distinct
indices (7, j, k) the elements {x;, x;, X, wji, wik, uji } satisfy the twisted dynamical Yang-Baxter
relations, and thus the Dunkl elements {6;}1<i<, generate a commutative subalgebra in the
algebra 3QT,(5,h).

Theorem 2.3. ( Cf Theorem 3.3, Section 3)
Let k> 1 be an integer. There exist polynomials

Rk(qa h7217 ey Zn) S Z[ﬁvqﬂ {h] - hl}léz<]§n”Zn] and Tk(ﬁa h7 Zlyew- 7'271) S Z[ﬁ) h] [Zn]Sn

such that
(1)  Ri(q,h,zy,...,2,) =
elgq+h)<217 ...y Zn) + monomials of total degree < k—2 w.r.t. variables {z;}1<i<n,

(2) Te(B,h,z1,...,2,) =er(21,.--52n) + Zj<k cik €j(Xn), c¢jr € Z[5,h],
(3) Rk(el,...,en) :Tk(l'l,...,.%'n),
where e,(ﬁquh)(zl, ..., 2n) denotes the multiparameter quantum elementary polynomial corre-

sponding to the set of parameters {(q+h)} = {qij + hjhi<i<j<n-

It is not difficult to see that the unitarity and crossing conditions imply the following relations
[:L’Z‘ + :cj,ukl] =0= [a:, :cj,ukl], and [m?,ukl] =0

are valid for all indices i # j, k # [. As a consequence of these relations one can deduce that the
all symmetric polynomials eg(X,,) := ex(z1,...,2,), k = 1,...,n belong to the center of the alge-
bra 3QT,,(q, h), and therefore one has [0;, e (X,,)] = 0 for all i and k. Let us denote by QH (3, h)
a commutative subalgebra in the algebra 3QT, (3, h) generated by the elementary symmetric
polynomials {ex(Xy)}1<k<n and the Dunkl elements {6;}1<i<p. It is an interesting problem to
give a geometric/cohomological interpretation of the commutative algebra QH (8,h). We don’t
know any geometric interpretation of that commutative algebra, except the special case [52]

B=0, hj=1, V], qj:=q dit1,- (2.18)

Proposition 2.2. ([52])
Under assumptions (2.12), the algebra QH (0, 0) isomorphic to the equivariant quantum coho-
mology QH.(Fl,) of the complete flag variety Fl,.

Examples 2.2.  Let us list the relations among the Dunkl elements in the algebra 3QT, (8, h).

(1) er(f1,...,0n) = e1(Xn) + (3) B,

2) STy, 0,) = ea(Xn) + (n—1) B er(X,) + Mo 0B n-l) g2, > 3

(3) eé‘”h) (01,02,03) = e3(X3) + h3 S,

ST (6,,6,,05,0,) =

63(X4) +p €2(X4) + 2 52 €1(X4) +6 53 + 3 (hg +3 h4),

(4) e§q+h) ((91, 05,05, 94) + B (h4 — hg) 04 = 64(X4) + B hy 61(X4) +5 52 hy.

Note that n(nfl)(n2742)(3 n-l) _ s(n—2,2) =e2(1,2,...,n— 1) is equal to the Stirling number
of the first kind.

Conjecture 2.2.  The polynomial Ry (q, h, Z,), see Theorem 2.3, can be written as a polynomial
in the variables {hij == hj —h;, 1 < i < j <mn, z1,...,%2n, B, ¢j, 1 < i < j < n} with
nonnegative coefficients.
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Exercises 2.1.

(1) (Pieri formula in the algebra 37,(0,h) , [52])

Assume that 8 = 0 and ho = ... = h, = h, and denote by 01(-"), 1 =1,...,n the Dunkl
elements (2.1) in the algebra 31,(0,h)  Show that

ek(0§”),...,eg§)) = g (=h)" N(m —k,2 r) { g Xg “i1,j1"'“i|z|,jJ}’
r=0 r=tinhs 7ia)
=1tas, J=Ua

where 5
N(a,2b) = (2 b— 1)1 (“;b )

Xs = [lseq ®s, and the second summation runs over triples of sets {S,1,J} such that S C
[L,m], TC[I,m]\S, [I|+|S|+2r=k, |[I|=]J], 1<ia<m<j,<nand j<...<jj.

2.3.3 Algebra 3QL,(3,h)

Let 8= (B1,...,0n-1), h = (ha,..., hy) and {gi; }1<i<j<n be collections of mutually commuting
parameters.

Definition 2.7.

Define the algebra 3Q L, (8,h) as an associative algebra over the ring of polynomials Z|3, h, {q;; }]
generated by the set of generators {x;}1<i<n and {u;;}1<zj<n subject to the relations (1), (3), (5)
displayed in Definition 2.3, and

(2a)  (“generalized unitarity conditions”)

Wij + Uji = Bmaz(i,j)—1
(4a) (associative twisted 3-term relations)
U5 Uik = Ujk Uik — Uik Uji, if 1<i<j<k<n.

We define the Dunkl elements 6;, i = 1,...,n, by the formula (2.1). It is necessary to stress
that the Dunkl elements {6}1<;<, _do not commute in the algebra 3QL,(3,h) but satisfy a non-
commutative analogue of the relations displayed in Theorem 2.3. Namely, one needs to replace
the both elementary polynomials ex(Z,) and the quantum multiparameter elementary polyno-

mials e,(f)(Zn) by its noncommutative versions. Recall that the noncommutative elementary
polynomial e (Z,) is equal to

E : Zj1 Zja " Ry

1<j1<ge<...<jx<n

and the noncommutative quantum multiparameters elementary polynomial géq)(Zn) is equal to

4

Z Z ex—20(Z757) H Wig,jas
¢

1<iy<...<jp<n a=1
i1 <J15erig<dp

where I = (iy,....i), J = (j1,...,Jj¢) should be distinct elements of the set {1,...,n}, and Z757
denotes set of variables z, for which the subscript a is neither one of i,, nor one of the j,.

Example 2.1.
* ngJrh)(ela b)) = e2(Xn) + (Z?gll Bj) er(Xn) + Zl§a<b§n—1 ab Ba B
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. Qéquh) (01,02,03,04) + (B3 — 51)(03 O0s+qaa+ha+ [2(01+02))+ (83— B2) (61 +02)04 + qra +
g24 +2 ha+ B1 03) = e3(X4) + Bsea(Xa) + (8183 + B2Bs + B3 — B1B2)er(Xa) + (385 — B1B2)(B1 +
2032) + Bi(h3 + ha) + 282h4.

. Q(;quh) (01, 02,03,04) +(Boha— B1h3)0s+ ha(B2 — £1)03 = es(Xy) + Bahaer (Xy) + Boha (252 +
303).

Project 2.2. (Noncommutative universal Schubert polynomials)

Let w € S, be a permutation and S,,(Zy,) be the corresponding Schubert polynomial.

(1)  There exists a (noncommutative) polynomial &h,,({uijh1<i<j<n) with non-negative in-
teger coefficients such that the following identity

Suw(01,---,0n) = Ghy, ({uij hr<i<j<n)

holds in the algebra 3T,§0), where {0;}1<j<n are the Dunkl elements in the algebra 37
(2) There exist polynomials R, (5,q,h, Z,) € N[5,q,h; — h 1Zn] and T (8,h, Z,) €
Z|B,h][Z,] such that the following identity

Rw(ﬁ) q, ha 917 cee >€n) = Tw(ﬁa h7 Xn) + th({ulj}1§2<]§n)

holds in the algebra 3QT, (5, h).
3) Letr € Z>y and N = ny + ---ny,, nj € Z>1,Yj, be a composition of N, and set

11<i<j<n

Nj=mni+---+n;, j>1, Ng=0, Eliminate the Dunkl elements 9](\],\:)_1+1, e QJ(VN) from the
set of relations among the Dunkl elements QgN), .. .,GEVN) in the algebra 3QT, (5, h), by the use
of the degree 1,... n, relations among the former. As a result one obtains a set consisting of
N,_1 relations among the N,._1 elements
(N) ._ (@) pV) (N) ;
Qj_k]_ = ek? (9Nj71+1,...,9Nj ), 1<kj<n; 1<j<r—1L1

Give a geometric interpretation of the commutative subalgebra QHy, . . (8,h) C 3QT,(8,h)

generated by the set of elements HJ(]ZJ), 1<k;j<nj,j=1,...,r—1.

2.3.4 Dunkl and Knizhnik—Zamolodchikov elements

e Assume that Vi, 2; = 0, and generators {u;;, 1 < i < j < n} satisfy the locality conditions
(2.2) and the classical Yang—Baxter relations

[wij, Wik + wjk] + [win, uje] =0, if 1<i<j<k<n.

Let y, z,t1,...,t, be parameters, consider the rational function

(ti —tj)uij
F t) .= F, i, .., th) = (ot N> — +.)°
cyB(z;t) cyp(zity, .. tn) Z (z —t:)(z — tj)
1<i<j<n
Then
[Feys(zt), Foyp(y;t)] =0, and  Res.—, Foyp(2;t) = 0;.

e Now assume that a set of generators {¢;;, 1 <i # j < n} satisfy the locality and symmetry
(i.e. ¢;j = c¢j;) conditions, and the Kohno-Drinfeld relations:

[cijoc) =0, of {4,7}N{k, 1} =0, [cij,cjr +cin) =0=[cij + i, e, 1 <j<k.

Let y, z,t1,...,t, be parameters, consider the rational function
Cij Cij
Frp(zit) := Fxp(zity, ... ,ty) = Y e E—
1<i#j<n (z —t3)(ti — tj) 1<i<j<n (z —t;)(z — tj)
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Then
[FKD(Z; t), FKD(y; t)] = O, and ReszztiFKD(z; t) = KZi
where
n
KZ; = Gij
ity
J#i

denotes the truncated Knizhnik-Zamolodchikov element.

2.3.5 Dunkl and Gaudin operators

(a) ( Rational Dunkl operators) Consider the quotient of the algebra DCY B,,, see Definition
2.2, by the two-sided ideal generated by elements

{[i + 25, ui5]} and {[zg, ui], k#14, 5}

Clearly the Dunkl elements (2.1) mutually commute. Now let us consider the so-called Calogero—
Moserrepresentation of the algebra DCY B, on the ring of polynomials R,, := R][z1,..., 2,] given
by
0 p(z 1
rip(2)) = > ZPEL ) =
2

P (1= si5) p(2), p(2) € Ry

The symmetric group S,, acts on the ring R, by means of transpositions s;; € S, : s4(2;) =
zj, 8ij(25) = ziy sij(2k) = 2k, if k#1,7,
In the Calogero-Moser representation the Dunkl elements 6; becomes the rational Dunkl
operators 20|, see Definition 1.1. Moreover, one has [z, u;;] =0, if k # 4, j, and
1 1

(s —xj —uij), T ujj = Ujj T; —
— j i) Xj Uij J —

T Uiy = wij Tj + (i — x5 — uij).
(b) (Gaudin operators)

The Dunkl-Gaudin representation of the algebra DCY B, is defined on the field of rational
functions K, := R(q1,...,q,) and given by

9 fla) _ Sij
) U5 = )
9g; G — G
but this time we assume that w(g;) = ¢;,Vi € [1,n] and for all w € S,,. In the Dunkl-

Gaudin representation the Dunkl elements becomes the rational Gaudin operators, see e.g. [71].
Moreover, one has [z, u;;] =0, if k # 4, j, and

zi(f(q)) == A f(q) € K,

uij uij
Ti Ujj = Ujj Tj — y X Uiy = Ujj Ty + .
qi — 4qj qi — 45

Comments 2.4.
It is easy to check that if f € R[z1,..., 2y, then the following commutation relations are
true

0
x f=fax+ ;(f), wij [ = sij(f) wij + 0z 2 (f)-

Using these relations it easy to check that in the both cases (a) and (b) the elementary symmetric
polynomials eg(x1, ..., z,) commute with the all generators {u;;}1<; j<n, and therefore commute
with the all Dunkl elements {6;}1<i<p. Let us stress that [0;,z;] # 0 for all 1 <i,k <n.

Project 2.3.

Describe a commutative algebra generated by the Dunkl elements {6;}1<i<, and the ele-
mentary symmetric polynomials {eg(z1,...,2Zn) }1<k<n-
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2.3.6 Representation of the algebra 37,, on the free algebra Z(ti,...,t,)

Let F,, = Z(t1,...,t,) be free associative algebra over the ring of integers Z, equipped with
the action of the symmetric group S,:  si;(t;) = t;, sij(tk) = ti, Vk # 1, 5.
Define the action of w;; € 3T, on the set of generators of the algebra F,, as follows

uij(te) = ik ti tj — Ok t; ti- (2.19)

The action of generator u;; on the whole algebra F;, is defined by linearity and the twisted
Leibniz rule:

uij(1) =0, wugj(a+0b) = ug(a) +ui(b),  ui(a b) =uij(a) b+ sij(a) ui;(b).
It is easy to see from (2.15) that
Sij Wik = Wik Sijs  Sij Wkl = Ukt Sij, of {6, 7}N{k, 1} =0, wi+uj =0. (2.20)
Now let us consider operator
Uik = Uij Ujk — Ujk Uik — Uik Ui, 1 <0< <k<n.

Lemma 2.7.
uijk(a b) = uijp(a) b+ sy sjk(a) uijn(b), a,be Fy

Lemma 2.8.
uijk(a) =0 Va e F,.

Indeed,

gk (ti) = =gk (uij (i) — wir(uij(t) = —ti uje(te) — win(ts) t; = ti(te t) — (b te) t; = 0
wiji(tr) = wij(wjn(tr)) — win(win(tr)) = —uig(te t5) + st t:) = (Uza( )+ wjk(te) ti =0,
uijk(tj) = uij(ujk(tj)) uzk(um (t])) = —’U,ZJ (t]) tk — t] ulk( ) ( ) tk — tj (tZ tk) =0.
Therefore Lemma 2.8 follows from Lemma 2.7.

Let F; be the quotient of the free algebra F,, by the two-sided ideal generated by elements
t2 tj —t; t2, 1 < i # j < n. Since ufj(t) =1 t; — tjz t;, one can define a representation of
the algebra 3T7(l ) on that Fr. One can also define a representation of the algebra 37; 7(10) on that
.7-7&0), where .7-}80) denotes the quotient of the algebra F,, by the two-sided ideal generated by
elements {t?, 1 < i < n}. Note that (u; ujx wi;)(tx) = [ti tj ti,tg] # 0 in the algebra FO
but the elements w; ; u;x ujr uij, 1 <1 <j <k <n, from the kernel of the Calogero-Moser
representation, act trivially both on the algebras .FT(LO) and that F.

Note finally that the algebra .7-"7&0 is Koszul and has Hilbert series z'lb(]-",go),t) = %,
whereas the algebra F is not Koszul for n > 3, and

1
1-t)(1—(n—1)t)(1 —¢)n1

Hilb(Fy,t) =
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2.3.7 Fulton universal ring, multiparameter quantum cohomology and FKTL

(The Fulton universal ring [31], multiparameter quantum cohomology of flag varieties [26] and
the full Kostant-Toda lattice [30])

Let X,, = (z1,...,2,) be be a set of variables, and
g:=g" ={gft] |a>1,0>1, a+b<n}

be a set of parameters; we put deg(z;) = 1 and deg(gq[b]) = b+ 1 and gx[0] := =k, k =
1,...,n. For a subset S C [1,n] we denote by Xg the set of variables {z; | i € S}.

Let t be an auxiliary variable, denote by M = (m;;)i<i j<n the matrix of size n by n with the
following elements:

T; +t, ifi =73,

gilj —1i], ifj>1,

1, ifi—j=1,

0, ifi—j>1.

mivj =

Let P,(X,,t) = det|M]|.

Definition 2.8. The Fulton universal ring R,_1 is defined to be the quotient 16

Rt = Z[g™M][z1, . .. ,a:n]/<Pn(Xn,t) - t">.

Lemma 2.9. Let P, (X,,t) =Y 7y cr(n)t"*, co(n) = 1. Then

S
cx(n) = cp(n; X, ™) = > 1T 9i.Ual €bmm (X[ \ Us_, Gasiatia))s (2:21)
1<i) <ig<...<ig<n a=1
J121,...5s21
m:=3(ja+1)<n
where in the summation we assume additionally that the sets [ig,iq + Ja| = {lasia +1,. .. i+
Jat, a=1,...,8, are pairwise disjoint.

It is clear that R,_1 = Z[g™][z1, ... ,afn]/<cn(1), .oy cn(n)

One can easily see that the coefficients ci(n) and g, [k] satisfy the following recurrence relations

[31]:

k—1
ck(n) =cp(n—1)+ Zgn_a[a]ck_a_l(n —a—1), co(n) =1, (2.22)
a=0
k-1
gmlk] = crar(m + k) = cera(m+k = 1) = gmik—alalck—a(m+k —a), gm[0] = zp.
a=0

On the other hand, let {¢;j}1<i<j<n be a set of (quantum) parameters, and e,(gq) (X,) be the
multiparameter quantum elementary polynomial introduced in [26]. We are interested in to

1 1f P(t,X,) = > kst fr(Xn) t*, fr(X,) € Q[X,] is a polynomial, we denote by

(r.x)

the ideal in the polynomial ring Q[X,] generated by the coefficients { f1, f2,...}.
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describe a set of relations between the parameters {g;[j]}i>1,;>1 and the quantum parameters
i+j<n
{q¢j}1§i<j§n which implies that

ck(n) = e,(gq)(Xn), for k=1,...,n.

To start with, let us recall the recurrence relations among the quantum elementary polynomials,
cf [75]. To do so, consider the generating function

En(Xn; {a@ij h1<icj<n) = Ze;(cq) (X,) "7,
k=0

Lemma 2.10. (/25],[75])  One has

E,(Xni{aij h<icj<n) = (t+2n) Eno1(Xn—1;{¢ij hi<icj<n—1)+

n—1
Z Qjn En—2(X[1,n—1] \{j}> {Qa,b}lﬁa@én,—l-
= aF#j,b#j

Proposition 2.3.
Parameters {gq[b]} can be expressed polynomially in terms of quantum parameters {q;;} and
variables T1,...,T,, in a such way that

ck(n) = e](gq)(Xn), Vk,n.

Moreover,
a a+b—1
o gu[b] :Z Qk,a+b H (xj —xi) + lower degree polynomials in x1,...,%y.
k=1 j=at1

e The quantum parameters {q;;} can be presented as rational functions in terms of variables

Z1,..., Ty and polynomially in terms of parameters {g,[b]} such that the equality cx(n) = e,gq) (Xn)

holds  for all k,n.

In other words, the transformation

{gij}1<icj<n <= {9albl} a+v<n
a>1, b>1

defines a “birational transformation” between the algebra Z[g(™][X,]/ <Pn(Xn,t) — t”> and
multiparameter quantum deformation of the algebra H*(Fl,,Z).

Example 2.2.  Clearly,
Gn1[] = 520 gy > 2 and gno[2) = Y127 gjn (w1 — ), n > 3. Moreover

g1 [3] = Q14<($2 —x1)(z3 — 21) + @23 — Q12> + q24 <Q13 - Q12> ,
92[3] = q15 ((503 —x1) (g —x1) + q2a + @34 — 12 — Q13 | +

925 ((333 —29)(x4 — x2) + qua + @34 — Q12 — QQ3> + 35 <Q14 + g4 — q13 — QQ3> -



34 A N. Kirillov

Comments 2.5. The full Kostant—-Toda lattice (FKTL for short) has been introduced in the end
of 70’s of the last century by B. Kostant and since that time has been extensively studied both
in Mathematical and Physical literature. We refer the reader to the original paper by B.Kostant
[30] (a), and [30] (b), for the definition of the FKTL and its basic properties. In the present
paper we just want to point out on a connection of the Fulton universal ring and hence the
multiparameter deformation of the cohomology ring of complete flag varieties, and polynomial
integral of motion of the FKTL. Namely,

Polynomials ¢ (n; X,,,g™) defined by (2.17) coincide with
the polynomial integrals of motion of the FKTL.

It seems an interesting task to clarify a meaning of the FKTL rational integrals of motion
in the context of the universal Schubert Calculus [31] and the algebra 3HT,(0), as well as any
meaning of universal Schubert or Grothendieck polynomials in the context of the Toda or full
Kostant-Toda lattices.

3 Algebra 3HT,
Consider the twisted classical Yang—Baxter relation
[Wij + Uia, Wja| + [Wia, uji] =0, where 14,j,k are distinct.

Having in mind applications of the Dunkl elements to Combinatorics and Algebraic Geometry,
we split the above relation into two relations

uij u]'k = u]'k Uik — Uik Uji and ’U,jk uij = Uik ’Lij — Uji Uik (3.1)

and impose the following unitarity constraints
uij + uji = S,
where 3 is a central element. Summarizing, we come to the following definition.

Definition 3.1.
Define algebra 3T, (B) to be the quotient of the free associative algebra

ZIB| ( wij, 1<i<j<n)

by the set of relations
e (Locality) wu;j ug = wi wij, of {i,5} N {k, 1} =10,
e ( 3-term relations)

Ui Uik = Uik Wij + Ujk Uik — B Wik, and Uik Uij = Uij Uik + Uik Uik — B Uik,
ifl<i<j<k<n.

It is clear that the elements {uij,ujk,uik, 1 <i < j <k < n} satisfy the classical Yang—
Baxter relations, and therefore, the elements {0; := Zj# uij, 1 =1,...,n} form a mutually
commuting set of elements in the algebra 37, (5).

Definition 3.2. We will call 61,...,0, by the (universal) additive Dunkl elements.

For each pair of indices ¢ < j, we define element g;; := ugj — B ui; € 3T,(B).
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Lemma 3.1.
(1)  The elements {qij, 1 <i<j<n} satisfy the Kohno— Drinfeld relations
( known also as the horizontal four term relations)

QG Q= am Qg if {65y 0{k 1} =0,
@i, @ik + 1) = 0, [qij + qir, qjx] =0, if i<j<k.
(2) For a triple (i < j < k) define uiji, := ujj — Uik + uj. Then

U?jk = B uijk + qij + Qi + Q-

(3) (Deviation from the Yang-Bazter and Cozxeter relations)
Ui Uik Wik — Ujk Wik Wij = Uik, Qi) = [Qjk Wik],
Uij Ujk Uig — WUjk Uij Uik = Gij Uik — Wik Gjk-
Comments 3.1. It is easy to see that the horizontal 4-term relations listed in Lemma 3.1,

(1), are consequences of the locality conditions among the generators {g;;}, together with the
commutativity conditions among the Jucys—Murphy elements

n
diiz E qij, i:2,...,n,
Jj=i+1

namely, [d;,d;] = 0. In [47] we describe some properties of a commutative subalgebra generated
by the Jucys-Murphy elements in the (nil) Kohno-Drinfeld algebra. It is well-known that the
Jucys—Murphy elements generate a maximal commutative subalgebra in the group ring of the
symmetric group S,. It is an open problem

describe defining relations among the Jucys—Murphy elements
in the group ring Z[S,,].

Finally we introduce the “Hecke quotient” of the algebra 37, (3), denoted by 3HT,, ().

Definition 3.3. Define algebra 3HT, () to be the quotient of the algebra 3T, (B) by the set of
relations

Qij Qe = Qrl Qij, for all 4,35,k

In other words we assume that the all elements {¢;j, 1 < i < j < n} are central in the
algebra 37, (/). From Lemma 3.1 follows immediately that in the algebra 3HT,,(3) the elements
{u;;} satisfy the multiplicative (or quantum) Yang-Baxter relations

Uij Wik Ujk = Ujk Wik Uij, Zf 1<j < k. (3.2)

3.1 Modified three term relations algebra 3MT, (5, )
Let 8,{qij = ¢ji, Vi = Vi, 1 < 14,5 < n}, be a set of mutually commuting elements.

Definition 3.4.  Modified 3-term relation algebra 3MT, (B3,1) is an associative algebra over
the ring of polynomials Z[B, qij,ij] with the set of generators {u;j, 1 <1i,j < n} subject to the
set of relations

o ui; +uj; =0, wyj Uk = ugg ugg, if {Z,j} N {k,l} =0;

e (three term relations )

Uij Ujk + Uki Ui + Uk up; = 0, if 4,7,k are distinct;
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u?j = /B Uqyj +Qij +'¢ija Zfl 7é]7
wij Y = Y wig, if {3,530 {k, 1} = 0;

(exchange relations)  w;; Vi = Vi, wij, if i, j, k are distinct;
elements B, {qij, 1 <1i,j <n} are central.

It is easy to see that in the algebra 3MT,(53,v) the generators {u;;} satisfy the modified
Cozeter and modified quantum Yang—-Bazter relations, namely

e (modified Coxeter relations) wu;; uji wij — Wik wij Uik = (¢ij — Qjk) Wik,

¢ ( modified quantum Yang—Baxter relations)

Wij Wik Wik — Wik Uik Wij = (Y — Yij) Wik,

if 1,7,k are distinct

Clearly the additive Dunkl elements {6; := > i Wigs 0=1,0., n} generate a commutative
subalgebra in 3MT,,(3,v).

It is still possible to describe relations among the additive Dunkl elements [47], cf [50]. However
we don’t know any geometric interpretation of the commutative algebra obtained. It is not
unlikely that this commutative subalgebra is a common generalization of the small quantum
cohomology and elliptic cohomology (remains to be defined !) of complete flag varieties.

The algebra 3MT,, (5 = 0,) has an elliptic representation [47], [50]. Namely,

wij = on o (20 = 25) sijs Gig = p(Ni — ), Vi = —p(zi — zj),

where {\;,i =1,...,n} is a set of parameters (e.g. complex numbers), and {z1,...,2,} is a set
of variables; s;;, i < j, denotes the transposition that swaps i on j and fixes all other variables;

o3 (2) = 0(29— A) 6(0)
(2)0(A)
denotes the Kronecker sigma function; p(z) denotes the Weierstrass P-function.

The 3-term relations among the elements {u;;} are consequence (in fact equivalent) to the
famous Jacobi-Riemann 3-term relation of degree 4 among the theta function 6(z), see e.g. [95],
p.451, Example 5. In several cases, see Introduction, relations (A) and (B), identities among
the Riemann theta functions can be rewritten in terms of the elliptic Kronecker sigma functions
and turn out to be a consequence of certain relations in the algebra 3MT,,(0,) for some integer
n, and vice versa 17.

The algebra 3HT,,(8) is the quotient of algebra 3MT,,(3,1) by the two-sided ideal generated
by the elements {t;;}. Therefore the elements {u;;} of the algebra 3HT,, () satisfy the quantum
Yang— Baxter relations wu;; uy, wjr = wjr up i, ¢ < j < k, and as a consequence, the
multiplicative Dunkl elements

1 n
67/: H (1+h‘u(l,l)_1 H (1+hul7a), 2: 1,...,77,, U,O’Z :uz,n+1 :0
a=1—1 a=1+1

generate a commutative subalgebra in the algebra 3HT,(8), see Section 3.1. We emphasize
that the Dunkl elements ©;,j = 1,...,n, do not pairwise commute in the algebra 3MT, (5, v),
if 1;; # 0 for some 7« # j. One way to construct a multiplicative analog of additive Dunkl

17 Tt is commonly believed that any identity between the Riemann theta functions is a consequence of the
Jacobi—Riemann three term relations among the former. However we do not expect that the all hypergeomet-
ric type identities among the Riemann theta functions can be obtained from certain relations in the algebra
3MT,(0,%) after applying the elliptic representation of the latter.
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elements 6; := Zj £ Uij 1s to add a new set of mutually commuting generators denoted by
{pij, pij + pji =0, 1 <i# j<n} subject to crossing relations

e p;j commutes with 3, gy and vy for all 4,7, k, [,

® i Ukl = Ukl Pij, if {Z,]} N {]{7, l} = @,

Pij Wik = Wjk Pik, if 1, j, k are distinct,

° pfj — B pij + Vij :pjzk—ﬁpjk—l—d}jk for all triples 1 <1i < j < k <n.

Under these assumptions one can check that elements

Rij:=pij tuwj, 1<i<j<n
satisfy the quantum Yang—Baxter relations
Rij Ry, Rj, = Rji, Ry, Rij, 1<j<k.
In the case of elliptic representation defined above, one can take

pij = oulzi — 25),

where 4 € C* is a parameter. This solution to the quantum Yang— Baxter equation has been
discovered in [84]. It can be seen as an operator form of the famous (finite dimensional) solution
to QY BE due to A. Belavin and V. Drinfeld [5]. One can go one step more and add to the
algebra in question new set of generators corresponding to the shift operators T;, : 2z — q 2,
cf [24]. In this case one can define multiplicative Dunkl elements which are closely related with
the elliptic Ruijsenaars—Schneider—-Macdonald operators.

3.2  Multiplicative Dunkl elements

Since the elements w;;, u;, and wji, i < j < k, satisfy the classical and quantum Yang-Baxter
relations (3.1) and(3.2), one can define a multiplicative analogue denoted by ©;, 1 < i <
n, of the Dunkl elements 6;. Namely, to start with, we define elements

hij = hij(t) =1+t Ujj, 275 7-

We consider h;j(t) as an element of the algebra 3/H\7{n =3HT,(8)® Z[[qggl, t,x,y,...]], where

we assume that the all parameters {¢;;,t,z,y,...} are central in the algebra 3HT,,.

Lemma 3.2.

(la)  hij(@) hij(y) = hij(z +y + B zy) + ¢ 2y,

(16)  hij(x) hji(y) = hij(x —y) + By —qij © y, if i <.

It follows from (1b) that hy;(t) hji(t) =1+ Bt —t2 ¢;j, if i < j, and therefore the elements
{hsj} are invertible in the algebra 3HT,.

(2)  hij(@) hjr(y) = hjr(y) hir(x) + hir(y) hij(z) — hix(z +y + B zy).

(3) (Multiplicative Yang—Bagter relations)

hl'j hik hjk = hjk hik hij, Zf 1< <k.
(4) Define multiplicative Dunkl elements (in the algebra 3/]:{\1{,1) as follows
1 j+1
0;:=0,0)=( II #a}) (II ) 1<i<n. (3.3)
a=j—1 a=n

Then the multiplicative Dunkl elements pair-wise commute.
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Clearly

n
[[ei=1 ©;=1+t6;+(..), and ©; [[ (1 +t8—+q;) € 3HT,.
j= igl,jel
1<j
Here for a subset I C [1,n] we use notation O = [],; Oa,
Our main result of this Section is a description of relations among the multiplicative Dunkl
elements.

Theorem 3.1. ( A.N. Kirillov and T.Maeno, [51])
In the algebra 3HT, () the following relations hold true

door [ +tB—1 gy = [Z

IC[1,n] i¢l,jed
|[I|=k 1<j

] 1+tﬂ.

Here [Z]q denotes the ¢g-Gaussian polynomial.

Corollary 3.1.
Assume that q;; # 0 for all 1 < i < j < n. Then the all elements {u;;} are invertible and

1 =q; (uij — B) Now define elements ®; € ?E{\I{n as follows

1 i+1

‘I%‘:{ H u;il} {H um}, i=1,...,n.

a=1—1 a=n

Then we have
(1) (Relationship among ©; and ®; )

A0t [i=o = (=1)7 @;.

(2) The elements {®;, 1 <i<n,} generate a commutative subalgebra in the algebra ?TIEI\J{H
(3) For each k =1,...,n, the following relation in the algebra 3HT, among the elements

{®;} holds
oI (ay) @ =P,
IC[1,n] i¢l, jeI
| I|=k i<J

where @1 := [[,c; Pa-

In fact the element ®; admits the following “reduced expression” (i.e. one with the minimal
number of terms involved) which is useful for proofs and applications

{H{H Uiy }} {ﬁ{ﬁ ua}} (3.4)

it jeis !
Let us explain notations. For any (totally) ordered set I = (il <y < ...< i) we denote by
I the set I with the opposite order, i.e. Iy = (ig > ip—1 > ... > i1);
if I C [1,n], then we set I¢ := [1,n]| \ I. For any (totally) ordered set I we denote by H o the
ordered product according to the order of the set I.
Note that the total number of terms in the RHS of (3.4) is equal to i(n — ).
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Finally, from the “reduced expression” (3.4) for the element ®; one can see that

- — — = .
H (—ai5) (I)I:{H{H (5—%]‘)}} {H{H Uzg}} = Q7 € 3HT,.
igljel jEI el§ jere el
1<J i<j 1<J
Therefore the identity
Z B, = p—h)
]

IC[1,n
[T|=k

is true in the algebra 3HT,, for any set of parameters {g;;}.

Comments 3.2.
In fact from our proof of Theorem 3.1 we can deduce more general statement, namely,
consider integers m and k such that 1 <k <m <n. Then

Y e I (1+tﬁ_t2qij):[7: + Y uas, (3.5)

IC[1,m] i€[1,m]\I,j€J :| 1+¢8  Ac[1,n],BC[1,n]
|I|=k i<j |A|=|B|=r

where , by definition, for two sets A = (i1,...,4,) and B = (j1,...,Jr) the symbol uy p is
equal to the (ordered) product [[,_; wi,j,. Moreover, the elements of the sets A and B have
to satisfy the following conditions:

e foreacha=1,...,ronehas1<i, <m<j,<n, and k<r <k(n—k).
Even more, if r = k, then sets A and B have to satisfy the following additional conditions:

e B=1(j1 <j2<...<jr), and the elements of the set A are pair-wise distinct.

In the case § = 0 and r = k, i.e. in the case of additive (truncated) Dunkl elements, the
above statement, also known as the quantum Pieri formula, has been stated as Conjecture in
[26], and has been proved later in [75].

Corollary 3.2. (/51])

In the case when = 0 and gi; = q; dj—i1, the algebra over Zlqi,...,qn—1] generated by
the multiplicative Dunkl elements {©; and 9;1, 1 <i < n} is canonically isomorphic to the
quantum K-theory of the complete flag variety Fl, of type Ap_1.

It is still an open problem to describe explicitly the set of monomials {ua g} which appear
in the RHS of (3.5) when r > k.

3.3 Truncated Gaudin operators

Let {p;j 1 < i # j < n} be a set of mutually commuting parameters. We assume that
parameters {p;j}1<i<j<n are invertible and satisfy the Arnold relations
1 1 1
=t i<jk
Pik  Pij  Pjk
For example one can take p;; = (2; — z;) !, where z = (21,...,2,) € (C\0)™
Definition 3.5. Truncated (rational) Gaudin operator corresponding to the set of parameters
{pi;}, is defined to be
Gi=Y p;' sy, 1<i<n,
J#i
where s;; denotes the exchange operator which switches variables x; and x;, and fires parameters
{pij}-

We consider the Gaudin operator G; as an element of the group ring Z[{pil}][gn], call this
element G; € Z[{plijl}] [Sn], i =1,...,n, by Gaudin element and denoted it by GZ(n).
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It is easy to see that the elements wu;; := p;jl sij, 1 <1 # j < n, define a representation of
the algebra 3HT,(3) with parameters 8 = 0 and ¢;; = u?] = pw

Therefore one can consider the (truncated) Gaudin elements as a special case of the (trun-
cated) Dunkl elements. Now one can rewrite the relations among the Dunkl elements, as well as
the quantum Pieri formula [26] , [75], in terms of the Gaudin elements.

The key observation which allows to rewrite the quantum Pieri formula as a certain relation
among the Gaudin elements, is the following one:

parameters {pi_jl} satisfy the Pliicker relations

1 1 1
= +
Dik Pjt Dij Pkl Dil Pjk

, if i< <k<l.

To describe relations among the Gaudin elements 91@), i =1,...,n, we need a bit of nota-
tion. Let {p;;} be a set of invertible parameters as before. i, < jo, a =1,...,r. Define
polynomials in the variables h = (hq, ..., hy)

mkr( Api}) = Z ; Z (n— |IUi]I’|> hJ, (3.6)

IC[1,n—1] HiEI Pin JC[1,n]
[I|=r [I|+m=|J|+k

where

hy = Z H h; H piu,la’

KCJ, LCJ, iceJ\(KJL ko€K, l4€L
KI=iL, KAz=p  ISNEUD rEl e

and summation runs over subsets K = {k; < ko <...<k,} and L={l<lh<...<[.}C
J}, such that k, <l a=1,...,r

Theorem 3.2.  (Relations among the Gaudin elements, [47], cf [71])
Under the assumption that elements {p;;, 1 <1i < j < n} are invertible, mutually commute and
satisfy the Arnold relations, one has

o Ggg,)k,r(egn)7 ) agzn)) {pl]}) = 07 Zf m > k;) (37)
o G0, 00 {pis}) = e(da,...,dy),

where da, ..., d, denote the Jucys—Murphy elements in the group ring 7Z[S,] of the symmetric
group Sy, see Comments 3.1 for a definition of the Jucys—Murphy elements.

o LetJ={ji<j2...<jr} C[1,n], define matrix My := (mgp)1<ap<r, where

h’ja’ Zfa = b7
Mayp = Map(hs {pij}) = { Pjugss  fa<b,
—Djpja z'fa > b.
Then 3
hy = DET |Mjy|.
(n) (h

m,k,r

o G = Y Tl (X ).

IC[1,n—1] €l JC1,n]
|I| T |Jl=m+r,ICJ

Examples 3.1. (1) Let us display the polynomials G," ,{pij}) a few cases.



On some quadratic algebras 41

* mko( Apij}) = ( f )eglk(hl,...,hn).

° G (h{pl]} Z Hpm < Z (n—m—r+1) hj+

ICln 1] el JC[1,n]
\I\ ICJ, |J|=m+r

3 h J) .
JC[Ln]
|Jl=mtr—1, |1UJ|=m+r

(2) Let us list the relations (3.19) among the Gaudin elements in the case n = 3. First of all,
the Gaudin elements satisfy the “standard” relations among the Dunkl elements 6y + 602+ 03 =
0, 0162 + 0105 + 0205 + q12 + q13 + q23 = 0,

010203 + q12 03+ q13 02+ qo3 61 = 0. Moreover, we have additional relations which are specific
for the Gaudin elements

Gy = (9192 + 0105 + q12 + qu3) + 7(9192 + 0203 + qi2 + q23) =0,
w P13 P23

the elements po3 61 + p13 62 and 6y Oy are central. |

It is well-known that the elementary symmetric polynomials e,(ds,...,d,) = Cp, r =
1,...,n — 1, generate the center of the group ring Z[piijl][Sn], whereas the Gaudin elements

{91(”), i=1,...,n}, generate a maximal commutative subalgebra B(p;;), the so-called Bethe subalgebra,
in Z[piijl][Sn]. It is well-known, see e.g. |71|, that B(p;;) = @,.,, Br(pi;), where By(p;;) is the
A—isotypic component of B(p;j). On each A—isotypic component the value of the central element

CY, is the explicitly known constant cg(\).

It follows from [71| that the relations (3.6) together with relations

GO,O,T(egn)v s 797(171)7 {pl]}) = CT()‘)v

are the defining relations for the algebra By (pi;).

Let us remark that in the definition of the Gaudin elements we can use any set of mutually
commuting, invertible elements {p;;} which satisfies the Arnold conditions. For example, we can
take

Dij ::q]l_?_(lqj_iq), 1<i<y <n.
It is not difficult to see that in this case
lima‘(]n)——d'——jz1 Saj
90 p1j - ot o

where as before, d; denotes the Jucys—Murphy element in the group ring Z[S,| of the symmetric
group S,,. Basically from relations (2.15) one can deduce the relations among the Jucys-Murphy
elements da, ..., d, after plugging in (3.6) the values p;; := % and passing to the limit
g — 0. However the real computations are rather involved.

Finally we note that the multiplicative Dunkl / Gaudin elements {©;, 1,...,n} also generate
a maximal commutative subalgebra in the group ring Z Zijl][Sn] Some relations among the
elements {©;} follow from Theorem 3.2, but we don’t know an analogue of relations (3.6) for the

multiplicative Gaudin elements, but see |71].
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Exercises 3.1.
Let A = (a; ;) be a 2m x 2m skew-symmetric matriz. The Pfaffian and Hafnian of A are
defined correspondingly by the equations

1 O 1 i
Pf(A) = omml ZS: Sgn(g)l_ll%(%—l),a(m‘)a Hf(A) = omml ZS: 1_[1(10(2z'—1),a(2z‘) (3.8)
0ES2m 1= oES2y, =

where Sopy, is the symmetric group and sgn(o) is the signature of a permutation o € Sy, see e.g.
http://en.wikipedia.org/wiki/Pfaffian.

Now let n be a positive integer, and {p;j, 1 < i # j < n, pij +pji = 0} be a set of
skew-symmetric, invertible and mutually commuting elements. We set p;; = 0 for all i, and
a = {p; hi<i<j<n-

Now let us _assume that the elements {pij}1§i<j§n satisfy the Pliiker relations for the elements
{p;;' h<i<j<n, namely,

1 1

= + forall1<i<j<k<l<n,
Dik Pji Dij Pkl Pil Djk

(a)  Letn be an even positive integer. Let us define Ay (pij) == (pij)i<ij<n to be the n xn
skew-symmetric matriz corresponding to the family {pi; }1<i<j<n-
Show that
DET | An(pij) |= BE(An(p)).
(b)  Let n be a positive integer, and zi,...,z, be a set of mutually commuting variables,
define polynomials H;i(z1,...,2n | {pij}), i=1,...,n from the equation

n
DET | diag(t+ z1,...,t + 20) + An(pig) |= "+ Hi(z1,.. 20 | {pig}) "7
i=1
where diag(t + z1,...,t+ z,) means the diagonal matriz.
Show that

Fork =1,...,n the polynomial Hy(z1,...,2n | {pij}) is equal to the multiparameter quantum
(a)

elementary polynomial e;.” (21, ..., 2y), see e.g. [26], or Theorem 2.1.
For example, take n = 4, then DET | A(pi;) |= (p12 psa — 13 poa + p1a p23)® = piy P34 +
p%?, p§4 + p%4 p%:% — 2 P12P13 P23 P14 P24 P34 <p121p34 o p131P24 + o ) -

P14 p23
Pls D3+ Pis Py + Pis Doy = Hf(As({pis})-
On the other hand, if one assumes that a set of skew symmetric parameters {ri;}1<i<j<n,
rij + 1 = 0, satisfies the “standard” Pliiker relations, namely

Tik Tjl = Tij Thi + Tt Tjg, 1 <J <k <lI,

3.4 Shifted Dunkl elements 9, and %,

As it was stated in Corollary 3.2, the truncated additive and multiplicative Dunkl elements
in the algebra 3HT,,(0) generate over the ring of polynomials Z[q, ..., qn—1] correspondingly
the quantum cohomology and quantum K — theory rings of the full flag variety Fl,. In order
to describe the corresponding equivariant theories, we will introduce the shifted additive and
multiplicative Dunkl elements. To start with we need at first to introduce an extension of the
algebra 3HT,,(5).

Let {z1,..., 25} be a set of mutually commuting elements and {8, h = (h1,...,hpn—1),t,q;; =
¢ji, 1 <1i,j < n} be a set of parameters. We set h,, := 0.
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Definition 3.6.  Cf Definition 2.4)
Define algebra 3T H,,(8,h) to be the semi-direct product of the algebra 3T H,(3) and the ring
of polynomials Z[h,t|[z1, ..., z,| with respect to the crossing relations

(1) Z; Ukl — Uk 24 if Z¢ {k,l},
(2) Zi Ujj = Uiy zj+ﬁzi+hj, Zj Ujj = Uy Zi—BZi—hjfl, if 1<i<j<k<n.

Now we set as before h;j 1= hj;(t) =1+t ;.

Definition 3.7.
o Define shifted additive Dunkl elements to be

Di:Zi_Z uij—{—z U«

1<J 1<j

o Define shifted multiplicative Dunkl elements to be

@iz(af[i_l hat) (4 ) (ﬁ ia)-

Lemma 3.3.
0:,0;]=0, [9:,9;]=0 for all i,j.

Now we stated an analogue of Theorem 3.1. for shifted multiplicative Dunkl elements.
As a preliminary step, for any subset I C [1,7n] let us set D7 = [[,c;Dq. It is clear that

9; ] (+tp—1qy) €3HT,(3,h).

igl, jeI
i<j

Theorem 3.3.
In the algebra 3HT,(3,h) the following relations hold true

Z@] H 1+t,3—t2qij):

IC[1,n] igl,jed
|I|=k i<j

k
> H1+tﬁ“’“m(zia<1+tﬁ>ia—a+1+ma

IC[1,n] a=1
I={1<i1 <...<ip<n}

(L+tB)— 1)
5 .

In particular, if 8 = 0, we will have

Corollary 3.3. In the algebra 3HT,(0,h) the following relations hold

k
o I a-2ap= > 11 (zia S 14t hi, (g — a)). (3.9)
IC[1,n] i¢l,jed IC[1,n] a=1
\I\ k i<j I={1<iy,...,ip <n}
Conjecture 3.1. If hy =---=h,_1 =1,t =1 andq;; = 6; j+1, then the subalgebra generated

by multiplicative Dunkl elements ©;, i =1,...,n, in the algebra 3HT,,(0,h =1) (and t=1),
is isomorphic to the equivariant quantum K-theory of the complete flag variety Fl,.
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Our proof is based on induction on k and the following relations in the algebra 3HT,,(/3, h)
hji . (1 + .CCj) = hj_1 + B T; — T+ (1 + x,) . hji, hjihjk = hjkhki + hikhﬂ —1-2,

if i < j <k, and we set h;; := h;;(1). These relations allow to reduce the left hand side of the
relations listed in Theorem 3.3 to the case when z; = 0, h; = 0, Vi. Under these assumptions
one needs to proof the following relations in the algebra 3HT,,(/3), see Theorem 3.1,

Z@[ H 1+tﬁ_t2%’j>:|:z

IC[1,n] igl,jed
m k i<j

} o (3.10)

In the case § = 0 the identity (3.9) has been proved in [51]
One of the main steps in our proof of Theorem 3.1. is the following explicit formula for the
elements Dj.

Lemma 3.4. One has

N / \
D=9 H (1+t 5—t2 sz H <H hba) H ((1+Za> H hab)'
e ZRETEEE 4

Note that if a < b, then hy, = 1 + 5t — uqp. Here we have used the symbol

/N
H (H hba)
bel  a¢l
a<b
to denote the following product. At first, for a given element b € I let us define the set I(b) :=
{a € [1,n]\I, a < b} := (agb) <...< aﬁ,)) for some p (depending on b). If I = (b < by... <
br) ie. b; = a(b), then we set

/! N\
H (H hb@) = ﬁ(ubj,as Ubj,as—1"" 'ubj,m)'
j=1

bel  ag¢l
a<b

For example, let us take n = 6 and I = (1,3,5), then

D = hsahsahsa(1 + 21)hiehiahia(1 + 23)haehsa(1 + 25)hse.

Let us stress that the element ©; € 3HT,, () is a linear combination of square free monomials
and therefore, a computation of the left hand side of the equality stated in Theorem 3.3 can be
performed in the “classical case” that is in the case ¢;; = 0,Vi < j. This case corresponds to the
computation of the classical equivariant cohomology of the type A,_1 complete flag variety Fi,,,
if h = 1.

A proof of the 8 = 0 case given in [51], Theorem 1, can be immediately extended to the case

B#0.

Exercises 3.2.
(1)  Show that

n —ig4a _ |1

1<i1<..<ig<na=1 :|1+t,3

(2) ((B,h)-Stirling polynomials of the second type)
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Define polynomials S, (8, h) as follows

k ) n—k—ig+a __
SxBhy=" > ]I (ﬁ""f‘“” T - 1>.
IC[1,n] a=1

,
I={1<iq,...,ip<n}

Show that
n—+1

Sni(11) = {k+1}’ (8,0 = [ZL

4 Algebra STT(LO)(F) and Tutte polynomial of graphs

4.1 Graph and nil-graph subalgebras, and partial flag varieties

Let’s consider the set R,, :=={(i,j) € ZxZ |1 <1i < j<n} as the set of edges of the complete
graph K, on n labeled vertices wvy,...,v,. Any subset S C R, is the set of edges of a unique
subgraph I' := I'g of the complete graph K,,.

Definition 4.1. (Graph and nil-graph subalgebras)

The graph subalgebra 3T, (I')  (resp. nil-graph subalgebra 3TT(LO)(F)) corresponding to a
subgraph ' C K, of the complete graph K,, is defined to be the subalgebra in the algebra 3T,
(resp.3T,(lo)) generated by the elements {u;; | (i,7) € I'}.

In subsequent Subsections 4.1.1 and 4.1.2  we will study some examples of graph subalgebras
corresponding to the complete multipartite graphs, cycle graphs and linear graphs.

4.1.1 NilCoxeter and affine nilCoxeter subalgebras in 37, ,§0)

Our first example is concerned with the case when the graph I' corresponds to either the set
S:={(i,i+1)|i=1,...,n—1} of simple roots of type A,_1, or theset S/ :=SJ{(1,n)}
(1)

n—1°

of affine simple roots of type A

Definition 4.2. (a) Denote by N\én subalgebra in the algebra 3T7(L0) generated by the elements
U1, 1 <i<n—1

(b) Denote by ANC,, subalgebra in the algebra 3T7§0) generated by the elements u;;41, 1 <
t<n—1 and —ujgy,.

Theorem 4.1. -
(A) (cf [4]) The subalgebra NC,, is canonically isomorphic to the NilCoxeter algebra NC,,.
In particular, Hilb(NC,,,t) = [n]:!.

P

(B) The subalgebra ANC,, has finite dimension and its Hilbert polynomial is equal to
Hilb(ANC,,, t) = [n] ngjgn—l[j(” — D= [n¢! ngjgn—l[j]t"*j'
In particular, dim ANC,, = (n—1)!' n!, deg, Hilb(ANC,, t)= (ngl)

(C) The kernel of the map m: ANC,, — ]Vén, T(u1,n) =0, m(Uiir1) = Uiit1, 1 <i<n—1,
1s generated by the following elements:

1 n—ktj—1
fr(zk):]__[ H Ugat1, 1<k<n—1
Jj=k a=j
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Note that deg fT(Lk) =k(n—k).

The statement (C') of Theorem 4.1 means that the element fék) which does not contain the
generator uj,, can be written as a linear combination of degree k(n — k) monomials in the
algebra ANC),, each contains the generator u;, at least once. By this means we obtain a

set of all extra relations (i.e. additional to those in the algebra NC,,) in the algebra ANC,,.
Moreover, each monomial M in all linear combinations mentioned above, appears with coeflicient
(—1)#ln€MIFL For example,
N ._ _ .of@ _
fi) = U12U23U34 = U23U34UT 4 + U AU 4UL2 + UL AU QU235 [y 1= U23U34UI2U23 =
U1,2U3,4U2 3U1 4 + U1 2U23UL 4U1 2 + U2 3UL 4U1,2U3 4 + U3 4U2,3UT 4U3 4 — UL 4UL,2U3 4U1 4.

Remark 4.1. More generally, let (W, S) be a finite crystallographic Coxeter group of rank I
with the set of exponents 1 =mq < mgo < --- < my.

Let By be the corresponding Nichols-Woronowicz algebra, see e.g. [4]. Follow [4], denote
by N CW the subalgebra in BW generated by the elements o] € By correspondlng to simple
roots s € S. Denote by ANW W Cw the subalgebra in By generated by N CW and the element
[ag], where [ag] stands for the element in By corresponding to the highest root § for W. In other
words, A]/V\V?CW is the image of the algebra %W under the natural map BE(W) — By,
see e.g. [4], [49]. Tt follows from [4], Section 6, that Hilb(NCy,t) = T, [mi + 1):.

Conjecture 4.1. (Y. Bazlov and A.N. Kirillov, 2002)

—~ 1 — ¢matl ! 1_taz l
Hilb(ANWCw,t) = [ | = 11 — = wrf (W) T =1,
=1 i=1

=1 =

where

_li[(1+t+---+tmi)
B 1 —tmi

Pap(Wit) = )~

’wEWaff =1

denotes the Poincaré polynomial corresponding to the affine Weyl group Wy, see [11], p.245;
a; == (2p,a)), 1 < <1, denote the coefficients of the decomposition of the sum of positive
roots 2p in terms of the simple roots «;.

—~— l X — ~—
In particular, dim ANWCy = ]W\% and deg Hilb(ANW Cy,t) = 211:1 a;.

i=1 """

It is well-known that the product Hézl 11_7;551 is a symmetric (and unimodal 7) polynomial
with non—negative integer coefficients.

Example 4.1. (a)
Hilb(ANCs, 1) = [22[3]s, Hilb(ANC4, t) = [3]2[4)2, Hilb(ANC's, t) = [4]]5]:[6]2.
(b)  Hilb(BEyt) = (1 + )41 +2)2,
Hilb(ANC'p,,t) = (1 +£)3(1 + 12)2 = Py (Ba, t)(1 — £3)(1 — t4).
(¢) Hilb(ANC'p,,t) =
T+ A+ 22+ )L+ tY(L+t+ ) (A + 3 +15) = Poyp(Bs, t)(1 — 19)(1 — £3)(1 — 7).

Indeed, mp, = (1,3,5), ap, =(5,8,9).
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Definition 4.3. Let <mn> denote the two-sided ideal in 3T,§0) generated by the elements
{uiit1}, 1<i<n-—1, and uy,. Denote by U, the quotient U, = 3T°/(ANC},).

Proposition 4.1.

Us = (u1,3,u24) = Zo X Lo; Us = (u14,u24,u25,u35,u1,3) = ANCs.
—_ —— 2
In particular, Hilb(3T(",t) = [Hilb(ANog),t)} .

4.1.2 Parabolic 3-term relations algebras and partial flag varieties

In fact one can construct an analogue of the algebra 3HT;, and a commutative subalgebra inside
it, for any graph I' = (V, E) on n vertices, possibly with loops and multiple edges, [47]. We denote

this algebra by 37,,(I"), and denote by 3T7§0)(F) its nil-quotient, which may be considered as a
“classical limit of the algebra 37, (I")”.

The case of the complete graph I' = K, reproduces the results of the present paper and those
of [47], i.e. the case of the full flag variety Fl,. The case of the complete multipartite graph
I' = K,,,...n, reproduces the analogue of results stated in the present paper for the full flag
variety Fl,,, to the case of the partial flag variety F,, _ n,, see [47] for details.

We expect that in the case of the complete graph with all edges having the same multiplicity
m, denoted by I' = KT(Lm), or mK,, in the present paper, the commutative subalgebra generated
by the Dunkl elements in the algebra 37, 7SO)(F) is related to the algebra of coinvariants of the
diagonal action of the symmetric group S,, on the ring of polynomials Q[XT(LI), e ,ngm)], where
we set X4 = {azgi), . ,ng)}.

Example 4.2. Take I' = Ko 5. The algebra 3T7ONT) is generated by four elements {a = uy3,b =
u14, ¢ = uz3, d = ugg} subject to the following set of (defining) relations
o ’=0=c2=d>=0, cb=bec, ad=da,
e aba+bab=0=aca+cac, bdb+dbd=0=cdc+dcd,
abd—bdc—cab+dca=0=acd—-bac—cdb+dba,
e abcat+adbc+badb+bcad+cadc+dbcecd=0.
It is not difficult to see that '8

Hilb(3TO) (Ky),t) = [3]? [4)?, Hilb(3TV)(K22)®,t) = (1,4,6,3).

Here for any algebra A we denote by A% its abelianization 7.
The commutative subalgebra in 37() (K2,2), which corresponds to the intersection
370 (K22)(Z[61,02,03,04], is generated by the elements ¢; := 601 + 62 = (a+b+c+d) and
¢y := 01 02 = (ac + ca + bd 4+ db + ad + bc). The elements ¢; and ca commute and satisfy the
following relations
c‘I’—ch c2 =0, c%—c% cg = 0.

The ring of polynomials Z[cy, ¢a] is isomorphic to the cohomology ring H*(Gr(2,4),Z) of the
Grassmannian variety Gr(2,4).
|

18Hereinafter we shell use notation
(ag,a1,...,aK)t :==ao +art +--- + apt®.
19 See groupprops.subwiki.org/wiki/Abelianization
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To continue exposition, let us take m < n, and consider the complete multipartite graph
K, which corresponds to the grassman variety Gr(n,m + n.) One can show

i
L

Hilb(3T,,, (Fopn) 1) = > (1% (1+ (n— k) £)™! ﬁ (1+71) {nﬁk}
0 =

B
Il

= """ Tutte(Kym, 1 +t71,0),

where {}} := S(n, k) denotes the Stirling numbers of the second kind, that is the number of
ways to partition a set of n labeled objects into k nonempty unlabeled subsets, and for any
graph ', Tutte(T, z,y) denotes the Tutte polynomial 2° corresponding to graph I'.

It is well-known that the Stirling numbers S(n, k) satisfy the following identities

R

n>k

i
L

n—k
(1) Stn—k) [[ A+ =1+8",
j=1

B
Il

0

Let us observe that dim(3T(0)(Kn7n)ab =

|
—

n
n

(D n+1-k)" 1 (n+1-k) {n k} = A048163, [85].

5 EM

Moreover, if m > 0, then

ERtm=l (k — 1)! ¢F
> dimBTO (K im)™) " = Y ( .) )
n>1 = = d+kg)

S Hilb(BTO (K, ) 1) 2 =Y (14 k £ H 21+t

n>1 k>0 1 +‘7 o

Comments 4.1. Poly-Bernoulli numbers
Based on listed above identities involving the Stirling numbers S(n, k), one can prove the
following combinatorial formula

min(n,m)
1 m+1
di 3T(0) nm aby _ z : 12 {n+ } { } _ B(—m) _ B(—n)’ 4.1

where B denotes the poly-Bernoulli number introduced by M. Kaneko [42].
For the reader’s convenient, we recall below a definition of poly-Bernoulli numbers. To start
with, let k& be an integer, consider the formal power series

o
Liy(z Z

20See e.g. http://en.wikipedia.org/wiki/Tutte.polynomial. Tt is well-known that

‘l\z
?rB

Tutte(T',1+t,0) = (=)' =@ Chrom(T, —t),

where for any graph I', |I'| is equal to the number of vertices and x(I') is equal to the number of connected
components of I'. Finally Chrom(T', t) denotes the chromatic polynomial corresponding to graph I, see e.g., [94],
or http://en.wikipedia/wiki/Chromatic.polynomial.
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If k> 1, Lig(2) is the k-th polylogarithm, and if k < 0, then Lig(z) is a rational function. Clearly
Lii(z) = —In(1 — z). Now define poly-Bernoulli numbers through the generating function

szl—ez "
B(k)

Note that a combinatorial formula for the numbers B,(Z_k)

following identity [42]

stated in (4.1) is a consequence of the

> & n k Ttz
P e e T
== n! k! —(1—e*)(1—e?)
|
Now let 9£"+m) = Z#i u;j, 1 < ¢ < n+ m, be the Dunkl elements in the algebra

37 (Kp+m), define the following elements the in the algebra 3T (0) (Kn,m)

cr = ep (0T 00T 1<k <, g = e (0000 1 < <,
Clearly,
n m n+m
C+Y athHa+Y a)y=[[a+6"™)=1.
k=1 r=1 j=1

Moreover, there exist the natural isomorphisms of algebras

H*(Gr(n,n+m),Z) = Z[cl,...,cn]/<(1 +Z cr tF) (1 + Z c th) — 1>7
k=1 r=1

QH*(Gr(n,n+m)) = Z[q]lc1, ..., cn < 1—1—2 e tF)( 1—1—2 ¢ t") t"+m>

Let us recall, see Section 2, footnote 16, that for a commutative ring R and a polynomial
p(t) = ijl g; t € R[t], we denote by <p(t)> the ideal in the ring R generated by the coeffi-
cients g¢i,...,0s.

These examples are illustrative of the similar results valid for the general complete multi-
partite graphs K,,, _,.,ie. for the partial flag varieties [47].

To state our results for partial flag varieties we need a bit of notation. Let N :=mnq + ...+
ny, nj >0, Vj, be a composition of size N. We set N; :=ni+---+n;, j=1,...,r, and Ny =0,
Now, consider the commutative subalgebra in the algebra 3T](\? )(K ~) generated by the set of

Dunkl elements {GgN), . ,05\],\[)}, and define elements {c,&i’N) € 3T](\?)<Kn1,...,nr)} to be the degree
(V)

k; elementary symmetric polynomials of the Dunkl elements 6 Ny i4lr e QJ(V]\J_[), namely

0 = ) = 0 0, A<k <y, =1 &) =1, Vi

Clearly

r n;

N
IT O ey =T +6M4) =1.
7=1

j=1 a=0
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Theorem 4.2. ‘
The commutative subalgebra generated by the elements {ng), 1<kj<n; 1<j<r—1},in the

algebra 3T](\/9)(Kn1,...,nr) is isomorphic to the cohomology ring H*(Fly, . n,.,Z) of the partial
flag variety Fly, ... n,-

» In other words, we treat the Dunkl elements {9%31%’ 1<a<n;},j=1,...,r as the
Chern roots of the vector bundles {{; := F;/F;_1}, j = 1,...,r, over the partial flag variety
flnl,...,nr-

Recall that a point F of the partial flag variety Fl,, . n,, n1 +---+mn, = N, is a sequence
of embedded subspaces

F={0=FRCFCFC..CF=CNY such that dim(F;/F;_1)=mn;, i=1,...,m

By definition, the fiber of the vector bundle &; over a point F € Fl,, .,
vector space F;/F;_q.

<

A meaning of the algebra 3T, ,§°) (I") and the corresponding commutative subalgebra inside it
for a general graph I'; is still unclear.

is the n;-dimensional

r

Conjecture 4.2.
Let ' = (V, E) be a connected subgraph of the complete graph K,, on n vertices. Then

Hilb(3TO(T)® ¢) = V=1 Tutte(I;1+71,0).

Examples 4.1.

(1)  Let G = Ky be complete bipartite graph of type (2,2). Then,

Hilb(3T9(2,2)%,t) = (1,4,6,3) =2 (1 +t) +t (1+1)2 + (1 +1)3,
and the Tutte polynomial for the graph Ko is equal to x + 22+ 23 + .

(2) Let G = Kz be complete bipartite graph of type (3,2). Then,
Hilb(3T9(3,2)%,¢) = (1,6,15,17,7) =3 (1 +¢) +3 2 (1 + )2+ 2t (1 +1)3 + (1 + )%,
and the Tutte polynomial for the graph K32 is equal to x + 3 2 +223 4+t y+3xy+12

(3)  Let G = K33 be complete bipartite graph of type (3,3). Then

Hilb(3TY(3,3)%,t) = (1,9,36,75,78,31) =
(L+8)5 +4t(1+ )"+ 1062(1 + )3 + 113 (1 + )2 + 5t (1 +- 1),
and the Tutte polynomial of the bipartite graph K33 is equal to
5z + 1122 + 1022 + 4o + 25 + 152y + 922y + 62y + 5y + 9% + 53 + o+

(4)  Consider complete multipartite graph Ka 2. One can show that

Hilb(3T" (Ka,2.2)™, 1) = (1,12, 58,137,154, 64) =

1A+ +25 31 +8)2+20 2A+ ) + 7 t(L+ ) + (1 +1)°,

and  Tutte(Ka29,2,y) = x(11,25,20,7,1), +y (11,46, 39, 8), + 3?(32,52,12), + y>(40,24),+
y*(29,6), + 15¢° + 5y% + 7.

|

The above examples show that the Hilbert polynomial Hilb(3T2(G)%,t) appears to be a

certain specialization of the Tutte polynomial of the corresponding graph G. Instead of using

the Hilbert polynomial of the algebra 3T9(G)% one can consider the graded Betti numbers
polynomial Betti(3T?(G)%, z,y). For example,

Betti(3TY(K3)®, z,y) =1+4 2z y+ 2% 2y +3y°) +2 2% 42
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Betti(3T) (Ka2)®,z,y) =1+2 (dy+y*) +22 99> +4%) +2° B4y2 +64°) +3 2 ¢,
Betti(3TY(K4)®, z,y) =

1410 z y422 (10 y+24 v*) +2° (46 2 +15 v*) +2? (25 > +36 v°) +2° (6 y* +25 y*) +6 2° ¢/>.

Claim Let G = (V,E) be a connected graph without loops. Then (n = |V(G)| =
number of vertices, e = |E(G)| = number of edges)

Betti(3T°(G)™, —z,z) = (1 — z)° Hilb(3T°(G)™, z),

Question Let G be a connected subgraph of the complete graph K,,. Does the graded Betti
polynomial Betti(3T2(G)%, z,y) is a certain specialization of the Tutte polynomial T(G,z,y) ?

Conjecture 4.3.  Let n= (n1,...,n,) be a composition of n € Z>1, then
L [k|—1
HIbGETO (1, 0)0 = 50 (oL {1} TL o,
k=(ky,....kr) j=1 J j=1
0<kj<n]-
where we set |k| := ki + ...+ k.
Corollary 4.1. If Conjecture (4.3) is true, then
T+t(t—1 Hilb(3T©) (K b gy T
(@) 1+t -1) Z ilb( (Kny,.inr) >)n71!"'n774,—

(nl,...,n,«)EZTZO \O"

X

) ab L nr d s
(b) 3 dim(3TO (K, )™ = —zog(1 e Y e ).
(nl,ng,...,nr)EZZO\O’“ 7=1
(¢) HilbBTO (K, .n) t) = (=) Chrom(K,,. n.,—t7Y),
where for any graph T’ we denote by Chrom(L, x) the chromatic polynomial of that graph.

Indeed, one can show 2!
Proposition 4.2.  Ifr € Z>1, then

Chrom(Kp, _not) = > H {Zj} (B

K= (ko) J=1

where by definition (t); :=T[75" (t—7), (Ho=1, ()m =0, if m <O.

2L If r = 1, the complete unipartite graph Ky, consists of n distinct points, and

Chrom(K,,x) = a" = i: {Z} (%) k-

k=0

Let us stress that to abuse of notation the complete unipartite graph K(,) consists of n disjoint points with the
Tutte polynomial equals to 1 for all n > 1, whereas the complete graph K, is equal to the complete multipartite
graph K(in).
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Finally we describe explicitly the exponential generating function for the Tutte polynomials
of the weighted complete multipartite graphs. We refer the reader to [68] for a definition and a
list of basic properties of the Tutte polynomial of a graph.

Definition 4.4. Let r > 2 be a positive integer and {Si,...,Sy} be a collection of sets of
cardinalities  #|Sj| = nj, j = 1,...,r. Let £ := {{;j}1<icj<n be a collection of non- negative
integers.

The L-weighted complete multipartite graph KTS?,W,M is a graph with the set of vertices equals
to the disjoint union ]_[;:1 Si of the sets Si,...,Sy, and the set of edges {(cu, B;), s € Si, Bj €
Siti<icj<r of multiplicity ¢;; each edge 9a f3;).

Theorem 4.3. Let us fix an integer r > 2 and a collection of non-negative integers £ :=
{lijhi<icj<r.  Then

tnl i
1 + Z ('1: - 1)’{(&11) TUtte(K7(l€1),..-,nr’ CE, y) 17' N ' —
n=(ny,...,n;r)€LY ni! Nyl
n#0 -
( Z yzléiq&-&j T (y — 1)*\m| ﬁnl t;"m>(m—1)(y—1)
mi! my! ’

m=(my,...,mr)€ZL,,

where k(£,n) denotes the number of connected components of the graph Kr(fl),,,,,nr.

¢ (Comments and Examples)

(a) Clearly the condition ¢;; = 0 means that there are no edges between vertices from the
sets S; and S;. Therefore Theorem 4.3 allows to compute the Tutte polynomial of any (finite)
graph. For example, o
Tutte(KY ) o, ,y) = {(0,362,927,911,451, 121,17, 1),., (362, 2154, 2028, 1584, 374, 32),,
(1589,4731,3744,1072,96),, (3376, 6096, 2928, 448, 16) .., (4828, 5736, 1764, 152),,

(5404, 4464, 900, 32),, (5140, 3040, 380),, (4340, 1840, 124) .., (3325, 984, 24) .., (2331, 448) ,,,
(1492,168),, (868,48),, (454, 8),,210,84,28,7,1},,.

(b) One can show that a formula for the chromatic polynomials from Proposition 4.2 corre-
sponds to the specialization y = 0 (but not direct substitution !) of the formula for generating
function for the Tutte polynomials stated in Theorem 4.3.

(¢) The Tutte polynomial Tutte(KfZ?,“_, x,y) does not symmetric with respect to parameters

{Eij}1§i<j§n~ For example, let us write £ = (512, log, 13, 014, Uoy, 534), then Tutte(Kég’?égS’ZA), 1, 1) =

28.3.5-113.241 = 1231760640. On the other hand, Tutte(K 55 ", 1,1) = 218.3.7.112.61 =
1269768192.

= (d) (Universal Tutte polynomials)

Let m = (m;5, 1 <4 < j < n) be a collection of non-negative integers. Define generalized

Tutte polynomial T,,(m, z,y) as follows : T,(m,z,y) =

s Dok ~ ot g @-)-1)
Coeff[tl...tn] ( Z yZlSi<j§n i ezej (y _ 1) ZJ KJ fl‘ L. g '> )
014enrs n ! n!

1
£;€{0,1},V4

Clearly that if I' C Kg) is a subgraph of the weighted complete graph KT(LZ) :d;f K 59, then the
Tutte polynomial of graph I" multiplied by (z — 1)“(F ) is equal to the following specialization

mi; =0, if edge (i,5) ¢ I, my; =45, if edge (i,j) €T
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of the generalized Tutte polynomial

k(D T

(z —1)*®) Tutte(T, 2, y) = Tp(m, z, ) nmo, i G
mij=C;; if (i.j)€T
For example,

(a) Take n =6 and T = Kg \ {15,16,24, 25,34, 36} , then Tutte(T,z,y) = {(0,4,9,8,4,1),,
(4,13,9)4,(8,7)2,5,1}y.

(b) Take n=6 and I' = Kg \ {15,26, 34}, then Tutte(T, z,y) =

{(0,11,25,20,7,1),, (11,46, 39, 8),, (32,52,12),, (40,24),, (29,6), 15,5, 1 },.

(¢c) Taken =16 and I' = K¢ \ {12.34.56} = K222. As a result one obtains an expression for
the Tutte polynomial of the graph K> s o displayed in Example 4.1.

Now set us set

y™ -1
q” = ﬁ
Lemma 4.1. The generalized Tutte polynomial Tn(m,x,y) s a polynomial in the variables

{@ij}1<icj<n, x and y.

Definition 4.5.  The universal Tutte polynomial T, ({qi;},x,y) is defined to be the polynomial
in the variables {qi;}, x, and y defined in Lemma 4.1.

Explicitly, Tn({qij} x,y) =

21 £ D) (y—
yy _ ot tn (z—1)(y—1)
Coeffprn (D0 TI oy =D+ D" =172 6 Lo o) '
01,0l 1<i<j<n L n
2;€{0,1},vi
Corollary 4.2. Let {m;;}1<i<j<n be a collection of positive integers. Then the specialization
y™i -1

4ij [mijly y— 1

of the universal Tutte polynomial T,,({qs;},x,y) is equal to the Tutte polynomial of the complete
graph K, with each edge (i,7) of the multiplicity m;;.

Further specialization ¢;; — 0, if edge(i,j) ¢ I' allows to compute the Tutte polynomial
for any graph. |

Exercises 4.1.

(1) Assume that £;; = £ for all 1 < ¢ < j < r. DBased on the above formula for the
exponential generating function for the Tutte polynomials of the complete multipartite graphs
Ky, ....n,, deduce the following well-known formula

1,

-
Tutte(K\) . 1,1) =" N2 T (N —ny)™,
j=1

where N :=mnj + - +n,. It is well-known that the number Tutte(T',1,1) is equal to the number
of spanning trees of a connected graph I.

(2) Take r =3 and let ni,n2,n3 and 12,013, 23 be positive integers. Set N := l12l13n1 +
l19log3no + £13€o3n3  Show that

Tutte(Kel’ZQ’Zs 1 1) =N (flznz + flgng)m_l(flgnl + flgng)nz_l)(flgnl + ngﬂg)nS_l.

ni,n2,n3’ =’
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(3) Letr > 2, consider weighted complete multipartite graph K%’) .., n» where £ = ({;;) such
Y
that l1; =4, j=1,...,7 and {;; =k, 2<i<j<r. Show that

nr—1

)(T—l)(n—l) "

(£) n n—1 r—2
Tutte(KY) . po1,1) = K" (r—1) ((r—1)€+k> ((r—2)€+k:
———

T

Let I'y, (%) be a spanning star subgraph of the complete graph K,,. For example, one can take
for a graph I';,(x) the subgraph K ,_; with the set of vertices V' := {1,2,...,n} and that of
edges E := {(i,n), i = 1,...,n — 1}. The algebra 3T7(10)(K17n_1) can be treated as a
“noncommutative analog” of the projective space P~ 1.

We have 01 = w12 +u13 + ... +uyp. It is not difficult to see that

Hib(3T" (K1 _1)®,t) = (1+¢)"1, and 67 =

Let us observe that Chrom(Ly,(x),t) = t(t — 1)"~L.

Problem 4.1. Compute the Hilbert series of the algebra STéO)(Knl,m,m).

The first non-trivial case is that of projective space, i.e. the case r =2,n1 =1, ny = 5.

On the other hand, if I';, = {(1,2) — (2,3) — ... = (n — 1,n)} is the Dynkin graph of type
Aj,—1, then the algebra 37, éo) (I',,) is isomorphic to the nil-Coxeter algebra of type A,_1, and if
F,(fff) ={(1,2) = (2,3) - ... > (n—1,n) - —(1,n)} is the Dynkin graph of type AS_)I, ie. a
cycle, then the algebra 37, 7(10) (F%af ! )) is isomorphic to a certain quotient of the affine nil-Coxeter
algebra of type A1(11—)1 by the two-sided ideal which can be described explicitly [47]. Moreover,
ibid,

Hilb(3T9 (1l ) H (n —J)]
see Theorem 4.1. Therefore, the dimension dim(BT(O)(Faff)) is equal to n! (n —1)! and is equal

also to the number of (directed) Hamiltonian cycles in the complete bipartite graph K, ., see

[85], A010790.
It is not difficult to see that

Hilb(3TO(T,), 1) = (¢ 4+ 1), HilbBTO(TY )% t) =71 (t+1)" -t —1),
whereas
Chrom(Tp,t) = t(t — )", Chrom(T%/ t) = (t — 1)" + (=)™ (t — 1).

Exercises 4.2.  Let K, . n, be complete multipartite graph, N :=nq +---+n,.
Show that 22

I ILS (-at)
TS -5t

22 Tt should be remembered that to abuse of notation, the complete graph K,, by definition, is equal to the
complete multipartite graph K((1,...,1)), whereas the graph K(,) is a collection of n distinct points.
——

Hilb(3Tw (K,
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4.1.3 Quasi-classical and associative classical Yang—Baxter algebras of type B,.
In this Section we introduce an analogue of the algebra 37,(5) for the classical root systems.

Definition 4.6. .

(A) The quasi-classical Yang—Baxter algebra ACY B(B,,) of type B, is an associative
algebra with the set of generators {xij,vij,zi, 1 < i # j < n} subject to the set of defining
relations

(1) @ij +xi5 =0, yij =yji, if i#]

(2) Zi Z5 = Zj Zi,

(3) ®ij Tl = Try Tijy Tij Yw = Ykl Tijs Yij Ykl = Y Yij, of 4,5, k, 1 are distinct,

(4) 2z 2y =Ty 2y 2 Y = Yw 2 1 F KL

(5)  (Three term relations)

Tij Tjk = Tik Tij + Tjk Tik — B ik, Tij Yik = Yik Tij + Yjk Yik — B ik,

Tik Yik = Yjk Yij T Yij Tik + B Yij,  Yik Tik = Tjk Yij + Yij Yik + B Yij,

ifl<i<j<k<n,

(6) (Four term relations)

Tij 25 = Zi Tij + Yij 2+ 25 Yij — B i,

ifi < j.

(B) The associative classical Yang—Baxter algebra ACY B(B,,) of type B, is the

special case B =0 of the algebra ACﬁBn).
Comments 4.2.
e In the case f = 0 the algebra ACY B(B,,) has a rational representation

zij — (@i — )7,y — (@i+a)”!, 5 —ay

e In the case § =1 the algebra AC?B\(B,L) has a “trigonometric” representation
zi; — (L—q" ") gy — (1= g™ )7 2z — (14 ¢") (1 —¢") L.

Definition 4.7. The bracket algebra £(B,) of type B, is an associative algebra with the
set of generators {x;j,vyij, 2, 1 < i # j < n} subject to the set of relations (1) — (6) listed in
Definition 4.6, and the additional relations

(ba) Tk Tij = xij Tik + Tik Tik — B Tins  Yjk Tij = Tij Yik + Yik Yik — B Yiks

Yik Tik = Yij Yjk + Tik Yij + B Yij,  Tjk Yik = Yij Tjk + Yik Yij + B Yij,

ifl<i<j<k<n,

(6@) Zj Xij = Tij %4 + z; Yij + Yij 25 — 6 Zis

if 1 < J.
Definition 4.8. The quasi-classical Yang—Baaxter algebra AC?B\(Dn) of type D, as well as the
algebras ACY B(D,,) and E(D,,), are defined by putting z; =0, i = 1,...,n, in the corresponding
By, -versions of algebras in question.

Conjecture 4.4. The both algebras E(B,,) and E(Dy,) are Koszul, and

I
—~
—~
—_
|
[\
<.
~
~
~—
L

Hilb(E(By),t) = (f[(l — (25 — 1)t))‘1; if n>4, Hilb(£(Dy),t)
j=1

Example 4.3. Hilb(ACY B(Bs),t) = (1 — 4t + 2t)~1,

Hilb(ACY B(Bs3),t) = (1 — 9t + 16t% — 4¢3)~!

Hilb(ACY B(By),t) = (1 — 16t + 641> — 60t> 4 9t*) ™1,

Hilb(ACY B(Dy),t) = (1 — 12t 4 1812 — 4t3)~ 1,

However, Hilb(ACY B(Bs),t) = (1 — 25t + 180t? — 400t3 + 221¢* — 31£5) 7L,
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Let us introduce the following Coxeter type elements:

n—1 n—1
hp, = H ZTaa+1 2n € E(Bp), and hp, = H Zaa+1 Yn—1n € E(Dp). (4.2)
a=1 a=1

Let us bring the element hp, (resp. hp, ) to the reduced form in the algebra &(B,) that is, let
us consecutively apply the defining relations (1) —(6), (5a,6a) to the element hp (resp. apply to
hp,, the defining relations for algebra £(D,,) ) in any order until unable to do so. Denote the the
resulting (noncommutative) polynomial by Ppg, (zij, vij, 2) (resp. Pp, (2, vij)). In principal,
this polynomial itself can depend on the order in which the relations (1) — (6), (5a,6a) are
applied.

Conjecture 4.5. (Cf [88], 6.C5, (¢))

(1) Apart from applying the commutativity relations (1)—(4) , the polynomial Pp,(x:j,Yij, 2) (resp.
Pp, (xij,yij)) does not depend on the order in which the defining relations have been applied.

(2) Define polynomial Pp, (s,r,t) (resp. Pp, (s,r)) to be the the image of that Pp, (xij, yij, 2)
(resp. Pp, (xij,yi;)) under the specialization

Tij —> 8, Yy — T, 2z —— 1

Then
Pp,(1,1,1) =3 (*") = 1 Catp,.

n

Note that Pp, (1,0,1) = Caty, ,.

Problem 4.2. Investigate the By, and D, types reduced polynomials corresponding to the Cozeter
elements (4.2), and the reduced polynomials corresponding to the longest elements

n
wp, = H Zj < H Lij yz‘j)7 wp,, = H Lij Yig-
J=1

1<i<j<n 1<i<j<n

4.2 Super analogue of 6-term relations and classical Yang—Baxter algebras
4.2.1 Six term relations algebra 67,,, its quadratic dual (6Tn)!, and algebra 6HT,

Definition 4.9. The 6 term relations algebra 67, is an associative algebra (say over Q)
with the set of generators {r; j,1 <i# j < n}, subject to the following relations:

1) rij and iy commute, if {i,j}N{k, 1} =0,

2) (unitarity condition) r;; +rj; =0,

3) (Classical Yang—Baxter relations)
[1ij, Tik + 78] + [rik, i) = 0, if 4, j, k are distinct.

We denote by C'Y B,,, named by classical Yang—Bazter algebra, an associative algebra over Q
generated by elements {r;;, 1 <1i # j < n} subject to relations 1) and 3).
Note that the algebra 67T}, is given by (3) generators and (%) + 3 (}) quadratic relations.

Definition 4.10.  Define Dunkl elements in the algebra 6T, to be
GZ:Z ’I“ij, izl,...,n.
J#i

It easy to see that the Dunkl elements {6;}1<i<y generate a commutative subalgebra in the
algebra 67,.
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Example 4.4. (Some “rational and trigonometric” representations of the algebra
67,)
Let A = U(sl(2)) be the universal enveloping algebra of the Lie algebra si(2). Recall that the
algebra sl(2) is spanned by the elements e, f,h, such that [h,e] = 2e, [h, f] = —2f, [e, f] = h.
Let’s search for solutions to the C'Y BE in the form

Tij = a(ui,uj) h®h+ b(ui,uj) e® f + C(ui,uj) f R e,
where a(u,v),b(u,v) # 0,c(u,v) # 0 are meromorphic functions of the variables (u,v) € C2,
defined in a neighborhood of (0,0), taking values in A ® A. Let a;; := a(u;, u;) (resp. b;; =
b(ui, Uj), Cz‘j = c(ui, u]))
Lemma 4.2. The elements r; j := a;; h@ h+b;j; e ® f 4+ ¢ij [ ® e satisfy CYBE iff
bij bjk Cik = Cij Cjk bix and 4 a;p = bij by /b, — bk, ¢ji/bij — bir cij /b,
for1<i<j<k<n.

It is not hard to see that
e there are three rational solutions:

1/2h®h
r1(u,v) = /2h& +e®f—i—f®e7 rg(u,v):7u+v h & h+ e®f+7v f®e,
u—v 4(u —v) u—v u—v
and r3(u,v) := —ra(v, u).

e there is a trigonometric solution

1 q2u+q2v unrv
Tirig(u, v) = 15 h®h+7q2u_q2v exf+f®el.

Notice that the Dunkl element 0; := 3" . ririg(ua, u;) corresponds to the truncated (or
level 0) trigonometric Knizhnik—Zamolodchikov operator.
In fact, the “sl,-Casimir element” € = %(Z?l By ® Ezz) + Zl§i<j§n E;; ® Ej; satisfies
the 4-term relations
[Q12, Q13 + Q3] = 0 = [Q12 + 3, Q3]
and the elements r;; := uZQ_”u - 1 <1 < j < n, satisfy the classical Yang—Baxter relations.

Recall that the set {E;j := (dir 0j1)1<ki<n, 1 <i,j < n}, stands for the standard basis of
the algebra Mat(n,R). [

Definition 4.11. Denote by 6T7(LO) the quotient of the algebra 6T, by the (two-sided) ideal gen-

erated by the set of elements {rzj, 1<i<j<n}

More generally, let {3, gi;, 1 <i < j < n} be a set of parameters. Let R := Q[f] [qil]
Definition 4.12. Denote by 6 HT,, the quotient of the algebra 6T,, @ R by the (two-sided) ideal
generated by the set of elements {Ti2,j —Brij—qj, 1<i<j<n}

All these algebras are naturally graded, with deg(r;;) = 1, deg(B) = 1, deg(qi;) = 2.

It is clear that the algebra 6TT(LO) can be considered as the infinitesimal deformation R;; :=
1+er;j, €—0,of the Yang-Baxter group 2B YB,.

23 For the reader convenience we recall the definition of the Yang-Baxter group

Definition 4.13.  The Yang—Baxter group Y B,, is a group generated by elements {Rfjl, 1<i<j<n}
subject to the set of defining relations

[ Rinkl = RklRij, ’Lf i,j,k,l, are distinct,

e (Quantum Yang-Baxter relations)

RijRikRjr = RjrRixRij, if 1<i<j<k<n.
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Corollary 4.3. Define hj; = 1+ r;; € 6HT,. Then the following relations in the algebra 6 HT,
are satisfied:

(1) 7ij ik Tk =Tk Tik Tij for all pairwise distinct i,j and k;

(2) (Yang-Baater relations) hij hik hji = hjg hag hij, if 1<i<j<k<n.

Note, the item (1) includes three relations in fact.

Proposition 4.3.

(1) The quadratic dual (6T},)" of the algebra 6T}, is a quadratic algebra generated by the
elements {t; ;, 1 <1i < j <n} subject to the set of relations

(7) t?yj =0 for all i # j;

(17) (Anticommutativity) tij tig+tg; tij =0 for alli # j and k # ;

(#i7) tij tik =tik tjix = tij tik, if i, 4,k are distinct.

(2) The quadratic dual (67, ,(LO))! of the algebra 67, 7&0) is a quadratic algebra with generators
{tij, 1 <i<j<n} subject to the relations (ii)-(iii) above only.

4.2.2 Algebras 6T,(LO) and 67, ,f

We are reminded that the algebra 6T7(,,0) is the quotient of the six term relation algebra 67,
by the two-sided ideal generated by the elements {r;;}1<i<j<n. Important consequence of the
classical Yang-Baxter relations and relations rizj = 0,Vi # j, is that the both additive Dunkl

elements {6;}1<i<, and multiplicative ones {©; = Hl h;il 7" hia}1<i<n generate
- = a=i+1 -

a=i—1
commutative subalgebras in the algebra 67, T(LO) (and in the algebra 67, as well), see Corollary 4.3.
The problem we are interested in, is to describe commutative subalgebras generated by additive
(resp. multiplicative) Dunkl elements in the algebra 6TT(L0). Notice that the subalgebra generated
by additive Dunkl elements in the abelianization 24 of the algebra 67},(0) has been studied in
[83],[76]. In order to state the result from [76] we need, let us introduce a bit of notation. As
before, let Fl,, denotes the complete flag variety, and denote by A,, the algebra generated by the
curvature of 2-forms of the standard Hermitian linear bundles over the flag variety Fl,, see e.g
[76]. Finally, denote by I,, the ideal in the ring of polynomials Zlt1, ..., t,] generated by the set
of elements
(til 4t tik)k(n_k)—H,

for all sequences of indices 1<i1 <io<...<ip<n, k=1,...,n.

Theorem 4.4. ([83],[76])
(A)  There exists a natural isomorphism

.An —> Z[tl,. . 7t’rL]/I’rL7

(B)  Hilb(Ay,,t) = t(3) Tutte(K,,1+1t,t71).

Therefore the dimension of A,, (as a Z-vector space) is equal to the number F(n) of forests
on n labeled vertices. It is well-known that

x" o1 X"
Z .F(n)m = emp(Z n 1F> -1
n>1 n>1
For example, Hilb(As,t) = (1,2,3,1), Hilb(Ay,t) = (1,3,6,10,11,6,1),
Hilb(As, t) = (1,4, 10, 20,35, 51, 64, 60, 35,10, 1),
Hilb(Ag,t) = (1,5,15,35,70,126, 204, 300, 405, 490, 511, 424, 245, 85, 15, 1).

#4See e.g. http://mathworld.wolfram.com/Abelianization.html
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Problem 4.3.  Describe subalgebra in (6TT(L0))ab generated by the multiplicative Dunkl elements
{Bi}i<i<n.

On the other hand, the commutative subalgebra B,, generated by the additive Dunkl elements
in the algebra 6T7(LO)7 n > 3, has infinite dimension. For example,

Bs = Zz,yl/( zy(z +y) ),

and the Dunkl elements 9](3), 7 =1,2,3, have infinite order.

Definition 4.14. Define algebra 6TX to be the quotient of that 6T7go) by the two-sided ideal
generated by the set of “cyclic
relations”

J
T'Lly | | Zlﬂa -

=2
for all sequences {1 <iy,i9,...,0m < n} ofpaz'rwise distinct integers, and all integers 2 < m <n

For example,

o Hilb(6TF,t) = (1,3,5,4,1) = (1 +1)(1,2,3,1).

e Subalgebra (over Z) in the algebra 67: 3* generated by Dunkl elements #; and 62 has the
Hilbert polynomial equal to (1,2,3,1), and the following presentation: 7Z [z,y|/I3, where I3
denotes the ideal in Z[z, y] generated by 3,43, and (z + y)3.

o Hilb(6TX,t) = (1,6,23,65,134,164,111,43,11,1),.

As a consequence of the cyclic relations, one can check that for any integer n > 2 the n-th power
of the additive Dunkl element 6; is equal to zero in the algebra 6T forall i = 1,...,n. Therefore,
the Dunkl elements generate a finite dimensional commutative subalgebra in the algebra 67, ol
There exist natural homomorphisms

6T — 31, B, —" A, — H*(Fl,,Z) (4.3)

The first and third arrows in (4.19) are epimorphism. We expect that the map 7 is also epimor-
phism 25, and looking for a description of the kernel ker(7).

Comments 4.3.

e Let us denote by Bruit

and A the subalgebras generated by multiplicative Dunkl
elements in the algebras 6T7(LO) and (67, ,§°>)ab correspondingly. One can define a sequence of maps

mul mul 5
Byt — A0 e (1), (4.4)

which is a K-theoretic analog of that (4.3). It is an interesting problem to find a geometric
interpretation of the algebra A7 and the map ¢.
e (“Quantization”) Let 8 and {¢;; = ¢ji,1 < i,j < n} be parameters.

Definition 4.15. Define algebra 6HT,, to be the quotient of the algebra 6T, by the two sided
ideal generated by the elements {’I”ZQJ — B 1ij — Gij}1<ij<n-

Lemma 4.3. The both additive {0; }1<i<n and multiplicative {©; }1<i<n Dunkl elements generate
commutative subalgebras in the algebra 6HT,.

25 Contrary to the case of the map pry : Z[01, . . .,0,] — (3Tx(0))**, where the image I'm(pr,) has dimension
equals to the number of permutations in S, with (n-1) inversions see [85],4001892.
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Therefore one can define algebras 6HB,, and 6H.A,, which are a “quantum deformation” of
algebras B, and A, respectively. We expect that in the case § = 0 and a special choice of
“arithmetic parameters” {g;;}, the algebra H.A,, is connected with the Arithmetic Schubert and
Grothendieck Calculi, cf [91], [83]. Moreover, for a “general’set of parameters {g;;}i<ij<n and
6 =0, we expect an existence of a natural homomorphism

HA — QK*(Fly),

where QK*(Fl,,) denotes a multiparameter quantum deformation of the K-theory ring K*(Fl,),
[47], [51]; see also Section 3.1. Thus, we treat the algebra HA™ as the K-theory version of a
multiparameter quantum deformation of the algebra A™®* which is generated by the curvature
of 2-forms of the Hermitian linear bundles over the flag variety Fl,,.

e One can define an analogue of the algebras 6T,(LO), 6HT, -etc, denoted by 67'(T"), etc, for
any subgraph I' C K,, of the complete graph K,, and in fact for any oriented matroid. It is
known that Hilb((6T,, (), t) = t*M) Tutte(T,1+4t,t7 1), see e.g. [?] and the literature quoted
therein.

4.2.3 Hilbert series of algebras CY B,, and 67T, %6

Examples 4.2. Hilb(613,t) = (1 —3t+t3)t
Hilb(6Ty,t) = (1 — 6t + 7t2 — t3)~1, Hilb(6T5,t) = (1 — 10t 4 25¢% — 153 + t4)~1
Hzlb(6T6, t) = (1 — 15t + 65t2 — 903 + 314 — 7)1,
Hilb(6T" ) = [2][3](1 — &)=Y, Hilb(6T ", ¢) = [4](1 — £)"2(1 — 3t + )~}

In fact, the following statements are true.

Proposition 4.4. (Cf [3]) Letn > 2, then
e The algebras 6T, and CY B, are Koszul;

o We have
Hilb(6T,, t) = (ni(—l)’f {nfk} t’“) -

k=0

where {Z} stands for the Stirling numbers of the second kind, i.e. the number of ways to partition
a set of n things into k nonempty subsets.

°
n—1

Hilb(CY B, t) = (Z(—n’f (k+1)! N(k,n) tk> *1,

k=0

where N (k,n) = %(2) (k+1) denotes the Narayana number, i.e the number of Dyck n-paths with
exactly k peaks.

Corollary 4.4.
(A)  The Hilbert polynomial of the quadratic dual of the algebra 6T, is equal to

HzleTt:Z{ }tk
n_

k=0

It is well-known that

S(E )i

n>0 k=0

26Results of this Subsection have been obtained independently in [3]. This paper contains, among other things,
a description of a basis in the algebra 67, and much more.
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Therefore,
dim(673,)" = Bell,,

where Bell,, denotes the n-th Bell number, i.e. the number of ways to partition n things into
subsets, see [85]

Recall, that >, -, Bell, Z—T,L = exp(exp(z) — 1)).

(B) The Hilbert polynomial of the quadratic dual of the algebra C'Y By, is equal to

n—1
Hilb((CYB,)',t) = Y (k+ 1)l N(k,n) t* = (n — 1)l L3V (—t71) 2L,
k=0

where L (x) = m_:!‘gw d‘% (e~*x" ) denotes the generalized Laguerre polynomial.

It is well-known that

Z (nz:l(kz + 1IN (k,n) tk) %7: = exp(z(l — zt)*1>.

n>0 “k>0

Comments 4.4. Let & (u), u # 0,1, be the Yokonuma-Hecke algebra, sec e.g. [81]
and the literature quoted therein. It is known that the dimension of the Yokonuma—Hecke
algebra &, (u) is equal to n! B, where B,, denotes as before the n-th Bell number. Therefore,
dim/(E,(u)) = dim((6T,)"' xS,), where (6T},)' xS,, denotes the semi-direct product of the algebra
(6Tn)! and the symmetric group S,. It seems an interesting task to check whether or not the
algebras (67},)' x S,, and &, (u) are isomorphic. [

Remark 4.2. Denote by MY B,, the group algebra over Q of the monoid corresponding to
the Yang-Baxter group Y B, see e.g. Definition 4.10. Let P(MY B, s,t) denotes the Poincare
polynomial of the algebra MY B,,. One can show that

Hilb(6Ty,s) = P(MY B, —s,1)7".

For example,

P(MYBs,s,t) = 1+3st+ s>, P(MYBy,s,t) = 1+6st+ s> (32 + 4t3) + s3 1,
P(MY Bs,s,t) =1+ 10s t + 52 (152 + 10t3) + s> (10t* + 5t5) 4+ s ¢10,

Note that Hilb(MY B,,,t) = P(MY B,,,—1,t)~! and P(MY B,,,1,1) = Bell,,, the n-th Bell

number.

Conjecture 4.6.
P(MY By, s,t) = Z g7 (™) tn(w)7

™

where the sum runs over all partitions m = (I, ..., 1) of the set [n] :=[1,...,n] into nonempty

subsets I, ..., I, and we set by definition, #(w) :=n —k, n(m) := 2221 (‘IQ‘“).

Remark 4.3. For any finite Coxeter group (W, S) one can define the algebra CY B(W) :=
CY B(W,S) which is an analog of the algebra CY B,, = CY B(A,,—1) for other root systems.

Conjecture 4.7. (A.N. Kirillov, Y. Bazlov) Let (W, S) be a finite Coxeter group with the root
system ®. Then

e the algebra CY B(W) is Koszul;
-1

. Hilb(C’YB(W),t):{ Bl re(@) (—t)’“} :

where rj,(®) is equal to the number of subsets in ® which constitute the positive part of a root
subsystem of rank k. For example, r1(®) = |®T|, and ro(®) is equal to the number of defining
relations in a representation of the algebra CY B(W).
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Example 4.5. Hilb(CY B(Bs)',t) = (1,4,3), Hilb(CY B(Bs3)',t) = (1,9,13,2),
Hilb(CY B(By)',t) = (1,16,46,28,5), Hilb(CY B(Bs)',t) = (1,25,130,200, 101, 12);
Hilb(CY B(Dy)',t) = (1,12,34,24,4), Hilb(CY B(Ds)',t) = (1,20,110, 190,96, 11),

Exercises 4.3.
(1) Show that

k-1

exp(z (1 — zt)~ —1—1—2(14-2 ( > H(a—i—(n—kz)q)tk) %7:

n>1 a=0
(2) The even generic Orlik—Solomon algebra

Definition 4.16.  The even generic Orlik—Solomon algebra OS™(T,,) is defined to be an asso-
ciative algebra (say over Z) generated by the set of mutually commuting elements y;j, 1<
1 # j <n, subject to the set of cyclic relations

yi,j = yj,i7 yih’iz yi277ﬁ3 e yik_l,ik yil,ik = 07 fOT' k= 27 ey
and all sequences of pairwise distinct integers 1 <1i1,...,1 < n.

e Show that the number of degree k, k > 3, relations in the definition of the Orlik—Solomon
algebra OS™ (') is equal to 3 (k—1)! (}) and also is equal to the maximal number of
k-cycles in the complete graph K,.

Note that if one replaces the commutativity condition in the above Definition on the condition
that ym-/s pairwise anticommute, then the resulting algebra appears to be isomorphic to the
Orlik—Solomon algebra OS(T'),) corresponding to the generic hyperplane arrangement I',,, see
[77]. It is known, ibid, Corollary 5.3, that

Hilb(OS(T,), 1) = 3 tF,

F

where the sum runs over all forests F' on the vertices 1,...,n, and |F| denotes the number of
edges in a forest F.
It follows from Corollary 4.4, that

S Hilb(0S(Tn), t) i: = exp(Z pn2 gnl Z).

n>1 n>1

It is not difficult to see that Hilb(OS™(Ty,),t) = Hilb(OS(Ty),t). In particular, dim OS™(T,,) =
F(n). Note also that a sequence {Hilb(OS(T',), —1)}n>2 appears in [85], A057817. The poly-
nomials Hilb(A,,t), F,(z,t) and Hilb(OST(T,,),t) can be expressed, see e.g. [76], as certain
specializations of the Tutte polynomial T'(G; x,y) corresponding to the complete graph G := K.
Namely,

Hilb(Ap,t) = tC)T(K,; 1+ ¢,67Y), Hilb(OS™ (L), t) = t" T (K 1+t 1).

4.2.4 Super analogue of 6-term relations algebra

Let n, m be non-negative integers.

Definition 4.17. The super 6-term relations algebra 67}, ,, is an associative algebra over
Q generated by the elements {z;;, 1 <i # j < n} and { Yo p, 1 < a # f < m} subject to the
set of relations




On some quadratic algebras 63

(0) wij+2i =0, Yap=Ypa;

(1) @ij Tht = Thi Tij, Tij Yo = Y8 Tigs Yo8 Yy.6 T Y76 Yap =0,

if tuples (3,7, k,1), (i,4,c,B), as well as («, 5,7,0) consist of pair-wise distinct integers;
(2) ( Classical Yang—Baaxter relations and theirs super analogue)

[Ti ks Tji + i k] + [Tig, 28] = 0,

if 1 <1i,j,k <n are distinct,

[T Yji + Ykl + [ig, yjk] = 0,

if 1 <4,j,k <min(n,m) are distinct,

l:y()(,’}ﬂ yﬁya + y577]+ + [yazﬁ’ yﬁ7’y]+ = 07

if 1 < a,B,vy <m are distinct.

Recall that [a,b];+ := a b+ b a denotes the anticommutator of elements a and b.

Conjecture 4.8.
o  The algebra 6T;, ;,, is Koszul.

Theorem 4.5. Let n,m € Z>1, one has
o Hilb((6T},)',t) Hilb((6T},)' t) =

min(n,m)—1 mzn(n m) '
> { ’ }Hilb((GTn_k,m_k),t) 2,

— min(n,m) — k

where as before { k} denotes the Stirling numbers of the second kind, see for e.g. [85], A008278.

Corollary 4.5. Letn,m € Z>1.  One has
(a) (Symmetry) Hilb(6T) m,t) = Hilb(61y, p,1).
(b)  Letn <m, then Hilb((6T,m)",t) =

n—1
> s(n—1,n—k) Hilb((6T,—)',t) Hilb((6Tpm—)',t) 1,
k=0

where s(n — 1,n — k) denotes the Stirling numbers of the first kind, i.e.

n—1

n—1
an—ln—)tk: (1—3jt).
k=0 1

<.
Il

(¢) dim(6Tyn)" is equal to the number of pairs of partitions of the set {1,2,...,n} whose
meet is the partition {{1},{2},...,{n}}, see e.g. [85], A059849.

Example 4.6.  Hilb((6T32)",t) = Hilb((6T23)",t) = (1,4,3),

Hilb((6Ty4)',t) = Hilb((6Ty2)',t) = (1,7,12,5),  Hilb((6T33)",t) = (1,6,8),
Hilb((6Tx, 5)',t) Hilb((6T52)',t) = (1,11,34,34,9),

Hilb((6T34)',t) Hilb((6Ty3)',t) = (1,9,23,16),  Hilb((6Ty4)',t) = (1,12,44,50,6),
Hilb((6Ts5)',t) = Hilb((6T53)',t) = (1,13,53,79,34),

Hilb((6Ty, 5)', t) = Hilb((6T54)",t) = (1,16, 86,182,131, 12),

Hilb((6T55)', ) = (1,20, 140,410,462, 120).

Now let us define in the algebra 67}, ,, the Dunkl elements 0; := Zj# z;j, 1 <i<mn,and
o= g vop 1< <m.
Lemma 4.4. One has

o [0;,0;] =

L4 [9176 ] [xz aayz a]

i [90479,8]-% =2 yaﬁv if o # f.
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Remark 4.4. (“Odd” six-term relations algebra) In particular, one can define an “odd”
analog 67, ,(L_) = 6Tp,y, of the six term relations algebra 67},. Namely, the algebra 6T,§_)
by the set of generators {y;;, 1 <1i < j <n}, and that of relations:

1) y;,; and y,; anticommute if ¢, j, k, [ are pairwise distinct;

2) Wij, Vi + Yikl+ + Wik Yjkl+ = 0,if 1 <i < j <k <n, where [z,y]+ = zy + yz denotes
the anticommutator of x and y.

The “odd” three term relations algebra 37, can be obtained as the quotient of the algebra
67, by the two-sided ideal generated by the three term relations

Yij Yik + Yjk Yki T Yki Yij = 0, if 7, j, k are pairwise distinct.

One can show that the Dunkl elements 6; and 60, i # j, given by formula

Gi:z yij, i:1,...,n,

J#i

is given

form an anticommutative family of elements in the algebra 6T7g_).

In a similar fashion one can define an “odd” analogue of the dynamical six term relations
algebra 6D7T,,, see Definition 2.2 and Section 2.2, as well as define an “odd’ analogues of the
algebra 3HQ,, (S, 0), see Definition 2.6, the Kohno—Drinfeld algebra, the Hecke algebra and few

others considered in the present paper. Details are omitted in the present paper.

More generally, one can ask what are natural g-analogues of the six term and three term
relations algebras 7 In other words to describe relations which ensure the g-commutativity of
Dunkl elements defined above. First of all it would appear natural that the “g-locality and
g-symmetry conditions” hold among the set of generators {y;;, 1 < i # j < n}, that is

Yij +q Y5 =0, Yij Yy = q yr yij if 1 <j, k<l and {i,j} N {k, 1} = 0.

Another natural condition is the fulfillment of g-analogue of the classical Yang-Baxter rela-
tions, namely

Wik Yjklq + Wik, Yjilq + Yij, yjklg = 0, if @ < j < k, where [z,y]q := 2 y — ¢ y x denotes
the g-commutator. However we are not able to find the g-analogue of the classical Yang— Baxter
relation listed above in the Mathematical and Physical literature yet. Only cases ¢ = 1 and
q = —1 have been extensively studied.

4.2.5 Compatible Dunkl elements and Manin matrices

(Compatible Dunkl elements, Manin matrices and algebras related with weighted
complete graphs rK,, )

Let us consider a collection of generators {ugjo-‘), 1<i,j<n, a=1,...,r}, subject to the
following relations

e cither the unitarity (the case of sign “+7), or the symmetry relations (the case of sign “ -
n) 27

ul £ul = 0., 0,1, 5, (4.5)

2T More generally one can impose the g-symmetry conditions
Uiy +quj; =0, 1<i<j<n

and ask about relations among the local Dunkl elements to ensure the commutativity of the global ones. As
one might expect, the matrix Q := (95”) 1<a<r composed from the local Dunkl elements should be a g-Manin
1<j<n

matrix. See e.g. [15], or en.wikipedia.org/wiki/Manin.matriz for a definition and basic properties of the latter.
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e (local 3-term relations)

uz(»j) (@) | ugk)u,ﬂ) + u(a) (a) =0. 4,5,k are distinct, 1 <a<r. (4.6)

We define global 3-term relations algebra 3T7(17j;) as “ compatible product” of the local 3-term

relations algebras. Namely, we require that the elements
U = Z Ao uld), 1< j<n,

satisfy the 3-term relations (1.4) for all values of parameters {\; € R, 1 <a <r}.

It is easy to check that our request is equivalent to a validity of the following sets of relations
among the generators {ugl)}
(a) ) (@) (@) | uz) (a) _ 0,

(a) (local 3-term relations) Wy Wyt uy P Wi

(b) ( 6-term crossing relations)

uf) ) i) o) ol ) )l gl <o,
i,j, k are distinct, « # .

Now let us consider local Dunkl elements

:Z ugjo.‘), ij=1....n, a=1,...,7

JFi

It follows from the local 3-term relations (x) that for a fixed o € [1, 7] the local Dunkl elements

(t 13

{9 }1<z<n either mutually commute (the sign “+”), or pairwise anticommute (the sign “ -

1<a<lr

7). Similarly, the global 3-term relations imply that the global Dunkl elements

o =0+ a0 =N U i=1,n
J#i

also either mutually commute (the case “ + ) or pairwise anticommute (the case “ - ©).

Now we are looking for a set of relations among the local Dunkl elements which is a con-
sequence of the commutativity (anticommutativity) of the global Dunkl elements. It is quite
clear that if ¢ < j, then

a b - a a a b b a
B0 =" A2 00+ S AN (0( L0V + 1610 >]i>,
a=1 1<a<b<r
and the commutativity (or anticommutativity) of the global Dunkl elements for all (A\q,..., ;) €

R" is equivalent to the following set of relations
i [ei’(a) 79]('a)]:t =0,
o 107,61 +10",6")L =0, a<b and i<},
where by definition we set [a, b+ := ab F ba.

In other words , the matrix ©,, := (91@) 1<a<r should be either a Manin matriz (the case  +
1<i<n

“), or its super analogue (the case “ - ). Clearly enough that a similar construction can be applied
to the algebras studied in Section 2, I-III.,and thus it produces some interesting examples of
the Manin matrices. It is an interesting problem to describe the algebra generated by the

local Dunkl elements {91@}1@9 and a commutative subalgebra generated by the global Dunkl
1<i<n

elements inside the former. It is also an interesting question whether or not the coefficients
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Ci,...,Cp of the column characteristic polynomial Det® | ©, —t I,, |= > reo Ch tnk of
the Manin matrix 6, generate a commutative subalgebra ? For a definition of the column
determinant of a matrix, see e.g. [15].

However a close look at this problem and the question posed needs an additional treatment
and has been omitted from the content of the present paper.

Here we are looking for a “natural conditions” to be imposed on the set of generators {u$} 1<a<r

ij 1<i,j<n
in order to ensure that the local Dunkl elements satisfy the commutativity (or anticommutativity)

relations:
6,671 =0, for all 1<i<j<n and 1<a,f<r

The “natural conditions” we have in mind are:
e (locality relations)

[t u)]+ =0, (4.7)

o (twisted classical Yang—Baxter relations)

B
g iV ) [ ) =0, (4.8)
if 4,4, k, 1 are distinct and 1 < o, 5 < r.
Finally we define a multiple analogue of the three term relations algebra, denoted by 3T+ (rK,),
to be the quotient of the global 3-term relations algebra 37, ,%r modulo the two-sided ideal gener-

ated by the left hand sides of relations (4.7), (4.8) and that of the following relations
2

z(;'x) =0, [ng)a if)]ifo for all i # j, o # 5.

The outputs of this construction are

° U

e noncommutative quadratic algebra 37 (Kn) generated by the elements {u }1<z<]<n,
—1,.,

e a family of nr either mutually commuting (the case “+”), or pairwise antlcommutlng (the

case “ - ”) local Dunkl elements {9 }1:1 ,,,,, n.

a=1,...,r

We expect that the subalgebra generated by local Dunkl elements in the algebra 37 (rK,)
is closely related (isomorphic for » = 2) with the coinvariant algebra of the diagonal action of

the symmetric group S,, on the ring of polynomials Q[XT(LU, .. ,X,(f)], where XT(lj ) stands for the
set of variables {xgj), . .,ng)}. The algebra (37 (2K,))(7))%" has been studied in [47], and
[6]. In the present paper we state only our old conjecture.

Conjecture 4.9. (A.N. Kirillov, 2000)
Hilb((3T~ (3K,))¥™ t) = (1 +t)"(1 + nt)" 2,

where for any algebra A we denote by A% the quotient of algebra A by the two-sided ideal
generated by the set of anticommutators {ab+ ba | (a,b) € A x A}.

According to observation of M. Haiman [37], the number 2" (n + 1)"~2 is thought of as being
equal to to the dimension of the space of triple coinvariants of the symmetric group S,,.

4.3 Four term relations algebras / Kohno—Drinfeld algebras
4.3.1 Kohno—Drinfeld algebra 47,, and that CY B,

Definition 4.18. The 4 term relations algebra (or the Kohno-Drinfeld algebra, or infinites-
imal pure braids algebra) AT, is an associative algebra (say over Q) with the set of generators
Yij, 1 <1 < j < n, subject to the following relations

1) yi; and yi; are commute, if i,7,k,1 are all distinct;

2) [Yigsyik + Uikl =0, [Wig +¥ik Ykl =0, if 1 <i<j<k<n
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Note that the algebra 475, is given by (3) generators and 2 (3) + 3 ();) quadratic relations,
and the element
c= Y Wi

1<i<j<n

belongs to the center of the Kohno—Drinfeld algebra.

Definition 4.19.

Denote by ATV the quotient of the algebra 4T, by the (two-sided) ideal generated by by the set
of elements {yzj, 1<i<j<n}

More generally, let 5, {qij, 1 < i < j < n} be the set of parameters, denote by 4HT, the
quotient of the algebra 4T, by the two-sided ideal generated by the set of elements {yfj — Byij —
qij, 1§l<]§n}

These algebras are naturally graded, with deg(y; ;) = 1,deg(8) = 1,deg(qi;) = 2, as well as
each of that algebras has a natural filtration by setting deg(y; ;) = 1, deg(B) = 0, deg(qi;) =
0, Vi # j.

It is clear that the algebra 47;, can be considered as the infinitesimal deformation g;; :=
1+ €y , e — 0, of the pure braid group P,.

There is a natural action of the symmetric group S, on the algebra 4T}, ( and also on 479
) which preserves the grading: it is defined by w - y; j = Yu()w() for w € S,. The semi-direct
product QS,, x 4T}, (and also that QS,, x 47) is a Hopf algebra denoted by B, (respectively BY).

Remark 4.5. There exists the natural map
CY B, — 4T, given by y;; = u;; + uj;.
Indeed, one can easily check that
[Wij Vi + Yjk] = Wijk + Wjik — Wkij — Wjis

see Section 2.3.1, Definition 2.5 for a definition of the classical Yang—Baxter algebra C'Y B,,, and
Section 2, (2.3), for a definition of the element wjy.

Remark 4.6. It follows from the classical 3-term identity (“Jacobi identity”)

1 1 1

@a—Da-0 @-bb-9 a-ab-q " (4.9)

that if elements {y; ; | 1 <i < j < n} satisfy the 4-term algebra relations, see Definition 4.18,
and t1,--- ,tp, a set of (pairwise) commuting parameters, then the elements

yZJ
ti—t;

Tig =

satisfy the 6-term relations algebra 67,,, see Section 4.2.1,, Definition 4.9. In particular, the
Knizhnik-Zamolodchikov elements

form a pairwise commuting family (by definition, we put y; ; = y;, if i > j).
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Example 4.7. (1) (Cf Subsection 4.2.1, Example 4.4)

(Yang representation of the 47, ).

Let S,, be the symmetric group acting identically on the set of variables {z1,...,z,}. Clearly
that the elements {y; j := sij}i<icj<n, Yij = Yji, i.f © > j, satisfy the Kohno-Drinfeld relations
listed in Definition 4.18. Therefore the operators u;; defined by

uij = (25— 2;) 7" sy

give rise to a representation of the algebra 37, on the field of rational functions Q(zy,...,x,).
The Dunkl-Gaudin elements
Hi: Z Yij, izl,...,n

JiF
correspond to the truncated Gaudin operators acting in the tensor space (C™)®",

(2) Let A= U(sl(2)) be the universal enveloping algebra of the Lie algebra si(2). Recall that
the algebra sl(2) is spanned by the elements e, f, h, sothat [h,e] = 2e, [h, f] = =2f, [e, f] = h.
Consider the element ) = % h@h+e® f+ f®e. Then the map y;; — Q;; € A®™ defines a
representation of the Kohno—Drinfeld algebra 47, on that A®™. The element K Z; defined above,
corresponds to the truncated (or at critical level ) rational Knizhnik-Zamolodchikov operator.

Proposition 4.5. (T. Kohno, V. Drinfeld)

n—1
Hilb(4T,,t) = [[ - j) = {” k= 1} i,

j=1 k>0

where {Z} stands for the Stirling numbers of the second kind, i.e. the number of ways to partition
a set of n things into k nonempty subsets.

Remark 4.7. It follows from (2| that Hilb(4T),,t) is equal to the generating function
1+> il
a>1

for the number vén) of Vassiliev invariants of order d for n-strand braids. Therefore, one

has the following equality:
U(n) _n+ d—1
¢ = n—1 |’
i.e. the number of Vassiliev invariants of order d for m-strand braids is equal to the Stirling

number of the second kind {":i;l .
We expect that the generating function

14+ 507 ¢
d>1
for the number @(l”) of Vassiliev invariants of order d for n-strand virtual braids is
equal to the Hilbert series Hilb(4NT,,t) of the nonsymmetric Kohno-Drinfeld algebra 4NT,,,
see Section 4.3.2.

Proposition 4.6. (Cf [3]) The algebra 4NT,,t) is Koszul, and

n—1 —
Hilb(4NT),, t) = (Z (k+1)! N(k,n) (—t)k) 1, Hilb(ANT,)' 1) = (n—1)1 LTY (=471 ¢!,
k=0
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where N(k,n) := % (Z) (kil) denotes the Narayana number, i.e. the number of Dyck n-paths

with exactly k peaks;
(67 x d’n
L(a) _ T e . n+a
n (@) nl den \ T

denotes the generalized Laguerre polynomial.
See also Theorem 4.6 below.

It is well-known that the quadratic dual 4T} of the Kohno-Drinfeld algebra 4T}, is isomorphic
to the Orlik-Solomon algebra of type A, _1, as well as the algebra 379", However the algebra
479 is failed to be Koszul.

Examples 4.3.
Hilb(4T9,t) = [2]?[3], Hilb(4T},t) = (1,6,19,42,70,90,87,57,23,6,1).
Hilb((AT9), t)(1 —t) = (1,2,2,1), Hilb((4T9)', t)(1 —t)? = (1,4,6,2, —4, —3),
Hilb((4T9)', t)(1 — )% = (1,8,26,40,24, —3, —6).

We expect that Hilb((4T°)',t) is a rational function with the only pole at t = 1 of order
[n/2], cf. Examples 4.1.

Remark 4.8. One can show that if n > 4, then Hilb(4T?,t) < Hilb(3T2,t) contrary to the
statement of Conjecture 9.6 from [45].

4.3.2 Nonsymmetric Kohno—Drinfeld algebra 4NT,,, and McCool algebra P,
(Nonsymmetric Kohno-Drinfeld algebra 4NT;,, and McCool algebras PY,, and PX; )

Definition 4.20. The nonsymmetric 4 term relations algebra (or the nonsymmetric
Kohno—-Drinfeld algebra) ANT,, is an associative algebra (say over Q) with the set of genera-
tors y; j, 1 < i # j < n, subject to the following relations

1) yij and yi; are commute, if i,7,k,1 are all distinct;

2) Wij,vik +yjk) =0, ifi, 4,k are all distinct.

We denote by 4NTF the quotient of the algebra 4NT,, by the two- sided ideal generated by
the elements {y;; +y;; = 0,1 <i # j <n}.

Theorem 4.6. One has
Hilb(ANT,,t) = Hilb(CY B,,t),  Hilb(ANT,F,t) = Hilb(6T},,1)
for alln > 2.
We expect that the both algebras 4NT,, and 4NT," are Koszul.

Definition 4.21.
(1) Define the McCool algebra PY,, to be the quotient of the nonsymmetric Kohno—
Drinfeld algebra ANT,, by the two-sided ideal generated by the elements

{yik Yik — Yjk yik}

for all pairwise distinct i,j and k.
(2) Define the upper triangular McCool algebra PX to be the quotient of the McCool
algebra PX,, by the two-sided ideal generated by the elements

{yij + yji}s

1<i#j<n
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Theorem 4.7. The quadratic duals of the algebras PX, and PX have the following Hilbert
polynomials

Hilb(PS:,t) = 1 +nt)"™Y,  Hilb(PX)), H (14 jt).

Proposition 4.7.
(1) The quadratic dual PX., of the algebra PX, admits the following description. It is
generated over Z by the set of pairwise anticommuting elements

{vij, 1<i#j<n},
subject to the set of relations

(@) y3=0,9i5 yji =0, 1<i#j<n,

(0) wir yjx =0, for all distinct i, j, k,

(©) Yij ik + Yik Yij + Yk vk = 0, for all distinct i, j, k.

(2) The quadratic dual (PX;)" of the algebra PX} admits the following description. It is
generated over 7 by the set of pairwise anticommuting elements {z;;, 1 <i < j <n}, subject
to the set of relations

(a) Z?j =0 for all i < j,

(0) zij zjk = 2ij zig for all 1 <i < j <k <n.

Comments 4.5. The McCool groups and algebras

The McCool group P2, is by definition, the group of pure symmetric automorphisms of
the free group F,, consisting of all automorphisms that, for a fixed basis {x1,...,z,}, send each
x; to a conjugate of itself. This group is generated by automorphisms o, 1 <4 # j < n, defined

by
-1 .
xjx o, k=i
aij(k) :{ T .
Tk, k # .

McCool have proved that the relations

[, ag) =1, 1,7, k, 1 are distinct,

[aij, ai] = 1, i # ],

[, ik i) = 1, 4,7, k are distinct.
form the set of defining relations for the group P, The subgroup of P, generated by the a;;
for 1 <i < j < n is denoted by PY; and is called by upper triangular McCool group. It

is easy to see that the McCool algebras P, and PX; are the “ infinitesimal deformations ” of
the McCool groups PY,, and PX respectively.

Theorem 4.8.
(1) (/39]) There exists a natural isomorphism

H*(P%,,Z) ~ P}

of the quadratic dual PE!” of the McCool algebra P%,, and the cohomology ring H*(PX,,Z) of
the McCool group PY,.
(2) ([16]) There exists a natural isomorphism

H*(PT},Z) ~ (PE;)

of the quadratic dual (PZ:)! of the upper triangular McCool algebra PX} and the cohomology
ring H*(PXF Z) of the upper triangular McCool group P\,
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4.3.3 Algebras 477, and 457,

Definition 4.22.

(I) Algebra 47T, is generated over Z by the set of elements {x;j,1 <1 # j < n}, subject to
the set of relations

(1) @iy @i = xp x4, of all 0,4, k, 1 are distinct,

(2) [xij + a:jk,xik] =0, [.%'ji + $kj,1'ki] =0, if 1< g < k.

(IT) Algebra 45T, is generated over Z by the set of elements {xi;, 1 <i# j < n}, subject
to the set of relations

(1) [mij,zi] =0, [zij, 5] =0, if 4,4,k,1 are distinct;

(2) [wij, wix] = (@i, Tj] = [k, vig), (@50, Tri] = [Thas Tag] = (205, Tia),
3) [mij, 2ri] = [Thj, 2i5] = [2ji, Tir] = [Tins Trg) = [2ris Tk = [0, 54
ifit <j<k.

Proposition 4.8. One has
| n
t > Hilb((41T,)',t) =
n>2
Therefore, dim(4TT,)" is equal to the number of permutations of the set [1,...,n + 1] having no
substring [k, k+1]; also, for n > 1 equals to the mazimal permanent of a nonsingular nxn (0,1)-
matriz, see [85], A000255 2. Moreover, one has
Hilb((4ST,) 1) = (1 + )" (1 +nt)" 2,
cf. Conjecture 4.9.
We expect that The both algebras 47T, and 457, are Koszul.
Problem. Give a combinatorial interpretation of polynomials Hilb((4TT;)',t) and construct
a monomial basis in the algebras (47T},)" and 4ST,.
4.4 Subalgebra generated by Jucys—Murphy elements in 477

Definition 4.23. The Jucys—Murphy elements d;, 2 < j < n, in the quadratic algebra 4T,
are defined as follows

di= > yij j=2,..n (4.10)
1<i<y
It is clear that Jucys-Murphy’s elements d; are the infinitesimal deformation of the elements

Dl’j e P,.

Theorem 4.9.
19 The Jucys—Murphy elements dj, 2 <j<mn, commute pairwise in the algebra 4T,.
20 In the algebra AT the Jucys—Murphy elements d;, 2 < j < n, satisfy the following relations

(dy+--+dj) d? =0, 2<j<n

30 Subalgebra (over 7.) in AT? generated by the Jucys—Murphy elements do,--- ,d, has the

following Hilbert polynomial H;:ll [27].

28 See also a paper by F. Hivert, J-C. Novelli and J-Y. Thibon Commutative combinatorial Hopf algebras, J.
Algebraic Combin. 28 (2008), no. 1, 65-95, Section 3.8.4, for yet another combinatorial interpretation of the
dimension of the algebra (47T},)".
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4% There exists an (birational) isomorphism Z [z1, ..., 2n-1]/Jn-1 — Z [da, ..., dy] defined
by dj = [[={ i, 2 <j <mn, where J,_1 is a (two-sided) ideal generated by e;(z3,...,22_,),
1<i<n-—1, andei(x1,...,xn_1) stands for the i —th elementary symmetric polynomial in the
variables T1,...,Tn_1.

Remark 4.9.

(1) It is clearly seen that the commutativity of the Jucys—Murphy elements is equivalent
to the validity of the Kohno-Drinfeld relations and the locality relations among the generators
{vijh<i<j<n A

(2) Let’s stress that d?]_g # 0 in the algebra 479, for j = 3,...,n. For example, d3 =
Y13 Y23 Y13 Y23 + Y3 Y13 Y23 Y13 # 0 since dim(473), = 1 and it is generated by the element d3.

(3) The map ¢ : ¥ j — Ynt1—jn+1—i Preserves the relations 1) and 2) in the definition of
the algebra 47,,, and therefore defines an involution of the Kohno—Drinfeld algebra. Hence the
elements

n
dji= Y yir=tldnt1-j), 1<j<n—1
k=j+1

also form a pairwise commuting family.
[

Problems 4.1. (a) Compute Hilbert series of the algebra 4T° and its quadratic dual algebra
(4T2).

(b) Describe subalgebra in the algebra 4HT,, generated by the Jucys—Murphy elements dj, 2 <
Jj<n.

It is well-known that the Kohno-Drinfeld algebra 47T}, is Koszul, and its quadratic dual 4T}
is isomorphic to the anticommutative quotient 3T of the algebra 3T7(L_)’0.

On the other hand, if n > 3 the algebra 4T is not Koszul, and its quadratic dual is isomorphic
to the quotient of the ring of polynomials in the set of anticommutative variables {t; ; | 1 <i <
j < n}, where we do not impose conditions t?j = 0, modulo the ideal generated by Arnold’s

relations {t; j tjr +tix (tij —tjx) = 0} for all pairwise distinct 4,5 and k.

4.5 Nonlocal Kohno—Drinfeld algebra N L4T,

Definition 4.24. Nonlocal Kohno—Drinfeld algebra N L4T, is an associative algebra over
Z with the set of generators {y;j, 1 <i < j < n} subject to the set of relations

(1) ij yw =yw yi5 if @—k)(@i—0(G k)G —1)>0,

(2) [yl‘j7z‘ZL:i yak] =0, if 1<j< k,

(3) [Wjks ey Yial =0, if i <j <k

It’s not difficult to see that relations (1) — (3) imply the following relations

(4) [:U’L'ja Z{l;%-i-l (yia + yaj)] = 07 ifi < .7

Let’s introduce in the nonlocal Kohno-Drinfeld algebra NL4T,, the Jucys-Murphy elements
(JM-elements for short) d; and the dual JM-elements d; as follows

n

7j—1
dj = Z Yaj, dj = Z s Yn—jtla J =25 m (4.11)
a=1 a:n—j+2

It follows from relations (1) and (2) (resp. (1) and (3)) that the Jucys-Murphy elements d, ..., d,,
(resp. dg,...,d,) form a commutative subalgebra in the algebra N LA4T,.. Moreover, it follows
from relations (1) — (3) that the element ¢ := >, d; = 3°7 , d; belongs to the center of
the algebra N L4T,,.
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Theorem 4.10.
(1) The algebra N LAT,, is Koszul, and

i n+k—1
Hilb((NLAT,)' ) = Y Cy ( o ) tk,
k=0

where C, = k%rl (zkk) stands for the k-th Catalan number.

(2) The quadratic dual (NLAT},)" of the nonlocal Kohno - Drinfeld algebra NLAT, is an
associative algebra generated by the set of mutually anticommuting elements {t;; 1 <i < j < n}
subject to the set of relations

. tszo, if1<i<j<nmn,

o (Arnold’s relations) tij tjn + tip tij + i tix =0, if i < j <k,

o (Disentanglement relations) t, tj +ty ta +tju ta =0, if i <j <k <l

Therefore the algebra (N LAT,)' is the quotient of the the Orlik-Solomon algebra OS,, by the
ideal generated by Disentanglement relations, and dim((NL4T,1)") is equal to the number of
Schroeder paths , i.e. paths from (0, 0) to (2n,0) consisting of steps U = (1,1), D = (1,-1), H =
(2,0) and never going below the x — axis. The Hilbert polynomial Hilb((NLAT,)'t) is the
generating function of such paths with respect to the number of U’s, see [85], A088617.

Remark 4.10.

Denote by H,(q) “the normalized” Hecke algebra of type A,, i.e. an associative algebra
generated over Z[q,q~ '] by elements Ti,...,T,_1 subject to the set of relations

(@) T =TT ifli—j|>1, LT T=1TT,ifi—j| =1,

(b) T?=(q—q¢ Y Ti+1fori=1,....n—1.

If1<i<j<n-—1,let’s consider elements Tijy=TiTix1- - Tj1 T; Tj—1 - - Tipa T

Lemma 4.5. The elements {T(;;, 1 < i < j < n— 1} satisfy the defining relations of the
non-local Kohno-Drinfeld algebra N L4AT,,_1, see Definition 4.23.
Therefore the map yi; — H ;) defines a epimorphism v, : NLAT, — Hpy1(q).

Definition 4.25. Denote by N LAT,, the quotient of the non-local Kohno-Drinfeld algebra N LAT,,
by the two-sided ideal T,, generated by the following set of degree three elements:

(1) 2ij = Yij+1 Yij Yjj+1 — Ysg+1 Yij Yij+1. if 1 <i<j<m,

-1 i1 -1 -1
(2) wi=yiin (Z > Yai yb,i+1> - <Z > Ubitt Yai > Yii+1, 1f 1<i<n—1,

a=1 b=1, b#a a=1 b=1, b#a

n n n n
(3) vi =Yt < > > Yitia yz‘,b) - ( > > yi+1,ayi,b> Yiji+1,

a=i+1 b=i+1 b#a a=i+1 b=i+1 b#a

if 1<i<n-—1.

Proposition 4.9.

(1)  The ideal Ty, belongs to the kernel of the epimorphism v,: I, C Ker (),

(2) Letds,...,d, (resp. da, ... ,afn) be the Jucys-Murphy elements (resp. dual JM-elements)
in the algebra N LAT, given by the formula (4.11).

Then the all elementary symmetric polynomials eg(da,. .., d,) (resp. ek(dg, .. ,(in)) of de-
gree k, 1 < k < n, in the Jucys—Murphy elements da, ..., dy, (resp. in the dual JM-elements
Cig, R cin,) commute in the algebra N LAT, with the all elements y; 41, ©=1,...,n—1.
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Therefore, there exists an epimorphism of algebras N'£4T,, — H,(q), and images of the
elements ey (da, ..., dy), (resp. ex (Cig, ... ,cin) 1 < k < n, belongs to the center of the “normalized”
Hecke algebra H,(q), and in fact generate the center of algebra H,(q).

Few comments in order:

(A) Let N0AT;, be an associative algebra over Z with the set of generators {y;;, 1 <i < j < n}
subject to the set of relations

(1) Yij Yot = yrt yij, if (i = k)i =) —k)(G—1) >0,

(2) [yijs 2ams Yar] =0,1f i <j <k

Proposition 4.10.
(1)  The algebra N4T,, is Koszul and has the Hilbert series equals to

n—1
Hilb(NAT,, t) = () _(—=1)" N(k,n) t5)7,
k=0
where N(k,n) = %(2) (kil) denotes the Narayana number, i.e. the number of Dyck n-paths
with exactly k peaks, see e.g. [85], A0012685.
Therefore, dim(N{AT,)" = n-1|-1 (2n"), the n-th Catalan number.
(2)  Elementary symmetric polynomials ex(ds, ..., d,) of degree k, 1 < k < n, in the Jucys—
Murphy elements da, ..., d,, commute in the algebra NI4T, with the all elements y; 11,
i=1,....n—1.

(B) The kernel of the epimorphism N £4T,, — H,(q) contains the elements
{Wiit1 Vit 142 Yijit1 — Vit 1i+2 Yiit1 Yitlit2, 1+ = 1,...,n— 2}, {Ti2,i+1 —(q—q ) Tpi1 — 1},
as well as the following set of commutators
[Wij,ex(di,...,dj)], 1<k<j—i+]1.

It is an interesting task to find defining relations among the Jucys— Murphy elements {d;, j =
2,...,n} in the algebra N LA4T, or that N¢4T,,. We expect that the Jucys—-Murphy element dj,
satisfies the following relation (= minimal polynomial) in the Hecke algebra Hy(q), n > k,

k—1 2a+1 -1 —2a—1
q—dq q " —4q
[l ~ 25 (et =) (4.12)

4.5.1 On relations among JM-elements in Hecke algebras

Let H,(q) be the “normalized” Hecke algebra of type A,,, see Remark 4.10. Let A\ - n be a
partition of n. For a box x = (i,) € X define

4.1

ex(z;q) :==q
It is clear that if g =1, c¢q=1(z) 1is equal to the content c(x) of a box x € X. Denote by
Ag") =Z[q, ¢ Y [21,- -, 2]

the space of symmetric polynomials over the ring Z[g, ¢~!] in variables {z1,...,2,}.
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Definition 4.26.  Denote by Jq(n) the set of symmetric polynomials f € A((In)

partition A+ n one has

such that for any

flea(w;q) [z e X) =0.
For example, one can check that symmetric polynomial

(P +14+qgea—2(q—qg e —3

belongs to the set J(gg).

Finally, denote by Jg") the ideal in the ring Z[q, ¢~ ] [21, ..., zn] generated by the set J,gn).

Conjecture 4.10. The algebra over Z|q, ¢~ '] generated by the Jucys—Murphy elements da, . . . , dp,
corresponding to the the Hecke algebra H,(q) of type An,_1, is isomorphic to the quotient of the

algebra Z[q, q~ ] [z1,. .., 2] by the ideal JL(Zn).
(n)

It seems an interesting problem to find a minimal set of generators for the ideal J; .
Comments 4.6. Denote by JM (n) the algebra over Z generated by the JM-elements da, . .., d,
deg(d; = 1,Vi, corresponding to the symmetric group S,,. In this case one can check Conjecture 8
for n < 8, and compute the Hilbert polynomial(s) of the associated graded algebra(s) gr(JM(n)).
For example 29
Hilb(gr(JM(2),t) = (1,1), Hilb(gr(JM(3),t) = (1,2,1),, Hilb(gr(JM(4),t) = (1,3,4,2),
Hilb(gr(JM(5),t) = (1,4,8,9,4), Hilb(gr(JM(6),t) = (1,5,13,21,21,12,3),
Hilb(gr(JM(7),t) = (1,6,19, 40,59, 60,37, 10).
It seems an interesting task to find a combinatorial interpretation of the polynomials Hilb(gr(JM (n)),t)
in terms of standard Young tableaux of size n.

|

Let {x*, A F n} be the characters of the irreducible representations of the symmetric group
Sy, which form a basis of the center Z, of the group ring Z[S,]. The famous result by A.
Jycis [40] states that for any symmetric polynomial f(z1,...,2,) the character expansion of

Fda, ... dn,0) € 2, is

flda, ... dn,0) =" ff:) Y, (4.14)
An

where H) = [],c\ he denotes the product of all hook-lengths of A, and C) := {c(x)},c) denotes
the set of contents of all boxes of A.
Recall that the Jucys-Murphy elements {dj] }o<j<n in the (normalized) Hecke algebra H,,(q)

are defined as follows: dfl = ZKj Tijy, where Ti;5) == T; - Tj1 Tj Tj—1 - - T;. Finally de-

note by Hy(g) and C/(\q) the hook polynomial and the set {¢xz;¢)}» € A. Then for any symmetric
polynomial f(z1,...,z,) one has

b o ~FC)
f(d2,...,dn,0)_§ RO Xos (4.15)

where chig‘ denotes the g-character of the algebra H, ).
Therefore, if f € Jén), then f(dl,...,d 0) = 0. It is an open problem to prove/disprove

' )

that if f(d4,...,d 0) =0, then f(C'§\Q)) = 0 for all partitions of size n (even in the case ¢ = 1).

2% T would like to thank DR. S. Tsuchioka for computation the Hilbert polynomials Hilb(JM (n),t), as well
as the sets of defining relations among the Jucys—Murphy elements in the symmetric group S,, for n < 7.
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4.6 Extended nil-three term relations algebra and DAHA, cf [14]
Let A:={q,t,a,b,c,h,e, f,...} be a set of parameters.

Definition 4.27. FEaxtended nil-three term relations algebra 3%, is an associative algebra over
Z[gt,t a,b,c, h,e,...] with the set of generators {u;j, 1 <i#j<mn, x;, 1<i<n, 7}
subject to the set of relations
(0) wij+uj;=0, u;=0,
(1) x5 =5 @4, Wiy Uk = Uy Uiy, if 1,5, k, 1 are distinct,
(2) @i wg = upy @, if i F# Kk
( ) Ti Ujj = Ujj Tj+ 1, Tj Ujj = Ujj Tj — 1,
(4)  wij ujp + Uk wig +ujp ukg =0, if 4,4,k are distinct,
(B) Twi=aiam ifl<i<n, Tr,=t'z T,
(6) 7wy =uip141, f1<i<j<n, ™ upjyip=tu;w,2<j<n

Note that the algebra 3%, contains also the set of elements {7 u;,, 1<a <n—j}.
Definition 4.28. (Cf. [58]) Let1<i<j<n, define
Tij=a+bzi+cxj+h+ex;xj) u .
Lemma 4.6.
(1) T =Qa+b—c)Tij—ala+b—c), if a=0, then T, = (b—c) Ty
(2)  (Cozxeter relations)  Relations
Tij Tk Tiy =Tk Tij T,
are valid, if and only if the following relation holds
(a+b)(a—c)+he=0. (4.16)
(3) (Yang-Bagter relations) Relations
Tij Tip Tjp = Tip Tig Ty

are valid if and only if b=c=e=0, i.e. Tj; = a +d u;;.
(4) Tfj =1ifand only ifa=+1,c=b=+2, he= (b+£1)%
(5) Assume that parameters a,b, c, h,e satisfy the conditions (4.16) and thatb c+1=h e.
Then
Tij xT; Tij =T + (h-l- (a+ b)(mz +:L‘j) +e Ty :L‘j) TZ]

(6) ( Quantum Yang-Bazterization) Assume that parameters a,b,c, h,e satisfy the condi-
tions (4.5) and that 5 :=2a+b—c# 0. Then (cf [60], [38] and the literature quoted therein)

the elements Rj(u,v) :==1+ /\57“ T;; satisfy the twisted quantum Yang-Baaxter relations

Rij( N, 1) Rji(Niy vie) Rij (1, vie) = R (g, vi) Rij (Nis vi) Rj (i, pg), 1 < j <k,

where {\;, li, Vi }1<i<n are parameters. .

Corollary 4.6. If (a +b)(a —c¢)+ he =0, then for any permutation w € S,, the element
Ty =T, - T, € 3Ty,

where w = s;, - -+ 8;, 15 any reduced decomposition of w, is well-defined.

l
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Example 4.8.
Each of the set of elements

Sgh) =1+ ($i+1 —x; + h) Ui, i4+1 and

tl(h) =14+ (xi—zip1 +h(1+ )1+ zip1)uyy, 1=1,...,n—1,

by itself generate the symmetric group S,.

Comments 4.7. Let A = (a,b,c, h,e) be a sequence of integers satisfying the conditions (4.5).
Denote by 8{4 the divided difference operator

82{4 =(a+Obri+cripi+h+tex; xi41) 0, i=1,...,n—1
It follows from Lemma 4.5 that the operators {8{4}195” satisfy the Coxeter relations
azA 3f+1 8{4:8ka 3{4 aﬂp i=1,...,n—1.

Definition 4.29.
(1) Letw €S, be a permutation. Define the generalized Schubert polynomial corresponding
to permutation w as follows

A A On On -1 -2
G(Xn) = 01 4, 27", where 2" := 7" 2577wy,

and wg denotes the longest element in the symmetric group S,.
(2) Let a be a composition with at most n parts, denote by wy, € S, the permutation such
that wa (o) = @, where @ denotes a unique partition corresponding to composition c.

Proposition 4.11.  ([46]) Letw € S, be a permutation.

e IfA=1(0,0,0,1,0), then &:(X,) is equal to the Schubert polynomial G, (Xy).

o IfA=(-p,53,0,1,0), then &2(X,) is equal to the B-Grothendieck polynomial @1(1?) (Xn)
introduced in [27].

o IfA=1(0,1,0,1,0) then G:(X,) is equal to the dual Grothendieck polynomial, [59], [46].

o IfA=(-1,2,0,1,1), then &/ (X)) is equal to the Di-Francesco—Zinn-Justin polynomials
introduced in [17] and [46].

In all cases listed above the polynomials 6;3(Xn) have non-negative integer coefficients.

o IfA=(1,-1,1,—h,0), then 6A(X,) is equal to the h-Schubert polynomials introduced in
[46].

Define the generalized key or Demazure polynomial corresponding to a composition « as follows

KA(X,) = Oy, =%

o IfA=(1,0,1,0,0), then K2(X,) is equal to key (or Demazure) polynomial corresponding to
a.

e IfA=1(0,0,1,0,0), then KA(X,) is equal to the reduced key polynomial introduced in
[46].

o IfA=(1,0,1,0,0), then K2 (X,) is equal to the key Grothendieck polynomial KGa(X})
introduced in [46].

e IfA=(0,0,1,0,3), then K2A(X,) is equal to the reduced key Grothendieck polynomial,
[46].

In all cases listed above the polynomials G4(X,,) have non-negative integer coefficients.
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Exercises 4.4.

(1) Letb,c,h,e be a collection of integers, define elements Pj; = fiju;; € 3%, where fij :=
bx; + cxj + h + ex; z;.

Show that

° Pi2j = (b— )by,

o PyPppPij = fijficfie wijujkus; + (be — eh) oF

PP Pj = fij firfir wijujpui; — (be — eh) Py

(2) Assume thata =¢q, b= —q, c= g ' h=e=0, and introduce elements

€ij ::(qxi—q_lxj) uij, 1<i<j<k<n
(a)  Show that if i, 7,k are distinct, then
eijejrei; = eij + (qui — q ') (q i — ¢ wr)(q @5 — ¢ ) wiguge wij, e = (q+q7") eij.
(b) Assume additionally that
uijujrug; =0, if 4,5,k are distinct.

Show that the elements {e; :==e€;it1, i =1,...,n—1}, generate a subalgebra in 3L, which is
isomorphic to the Temperly-Lieb algebra TLy,(q+q~1).
(3) LetussetT;:=Ti;41,i=1,...,n—1, and define

TO = 7rTn,17r_1
Show that if (a+b)(a—c)+eh =0, then
NTyTy = ThloTy, Tn—1T0Th—1 = ToTn-17o0,

Recall that T? = (2a +b—¢)T; —ala+b—c), 0<i<n—1.

|
In what follows we take a = ¢,b = —¢,c = ¢~ ', h = e = 0. Therefore, =(q¢—q 1) i+ 1.
We denote by H,,(¢) a subalgebra in 3%,, generated by the elements T; := TZ Z+1 t1=1,...,n—1.
Remark 4.11.  Let us stress on a difference between elements T;; as a part of generators of

the algebra 3%,, and the elements

Ta5)

=Ty Tj A TiTj1 - Ty € Hn(q).

Whereas one has [Ti;, Ti;] = 0, if 4,4, k,1 are distinct, the relation [T, T(;] = 0 in the
algebra H,(q) holds (for general ¢ and i < k) if and only if either one has i < j < k < [, or
1< k<l<j. |

Lemma 4.7.
(1) Ty Ty =Tw Tij, if 1,5,k,1 are distinct,
(2) TijxTij=ux5 if 1<i<j<mn,
(3) wTij=Tiy1+1, if 1<i<j<n, @™ T jpn="T1;7

Definition 4.30. Let 1<1<j<n, set

_ = -1 -1 j—1 o L - ; ;
Yij =1 ,g Lo 0T j i ! n—jtin - Livrj+1T55, 1<1<j<n,

and Y, = 7!

—1
n—1n"" T1,27T-
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For example, Yi;=m" T, ji1n---T1j j>2,

_ -1 2
Yo j =T ;47 " Th—jion-- -T2, andsoon,

_ 1 —1 S
Yij =T, 1 Tiom Thoan---Tj1.

Proposition 4.12.

(1) wjz; Tij = Tij wixj,

(2) Yij=T; Yiqijn Tij, if 1<i<j<n,

() Yij Yitkjrr = Yirnjrn Vi, f1<i<j<n-—k,

(4)  One has

v Y =Y e TRy, 2<i<j<n,

(5) Yijwiae wp =t mxyxn Vi,
(6) z; Y1 }/2-"Yn:t_l Y1 V- Y, a;,
where we set Y; ==Y ,41, 1<i<j<n.

Conjecture 4.11.
Subalgebra of 3%, generated by the elements {T; :=Tj;11, 1<i<mn, Yi,...,Y,,
and x1,...,zn}, is isomorphic to the double affine Hecke algebra DAHAg+(n).

Note that the algebra 3%, contains also two additional commutative subalgebras generated
by additive {6; = Z#i uijti<i<n and multiplicative

i—1 n
{0 =] —ua) J] 1+ tia)}br<icn
a=1 a=i+1

Dunkl elements correspondingly.
Finally we introduce (cf [14]) a (projective) representation of the modular group SL(2,Z) on
the extended affine Hecke algebra H,, over the ring Z[qT!, '] generated by elements

{Th,...,Th-1}, m and {x1,...,2,}.

It is well-known that the group SL(2,Z) can be generated by two matrices

(11 (10
*=\o 1 ==\11 )
which satisfy the following relations
rerstre =rtnrll (i) = D

Let us introduce operators 7 and 7_ acting on the extended affine algebra ?/-Zn Namely,

To(m)=xm, 1+(T) =T;, 74(x) =24, V 14,

—(m)y=m, 7-(T})=T;, 71_(x;)= ( f[ Ta> T <ﬁTa) z;.

a=1—1
Lemma 4.8.
e (Y=

(Hi:zel T, ") (HZ_:ll T,') ; Y
o 7 (z;)=(II

)

)

i Ta) (T2 Tw) Yi s,
mi) =Y, = () (@), ,
Yi) =1tz (Hi:ifl Ta) (Tl o 'Tn—l) (sznﬂ Ta),

° (7’+7':17'+

[ ]
S
\]
R

In the last formula we set T}, = 1 for convenience.
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5 Combinatorics of associative Yang—Baxter algebras

Let a and 8 be parameters.

Definition 5.1 (|47]).
(1) The associative quasi-classical Yang—Bazter algebra of weight (o, ), denoted by

mn(a,ﬁ), is an associative algebra, over the ring of polynomials Za, B],  generated by
the set of elements {x;j, 1 <i < j < n}, subject to the set of relations

(a) Tij Tkl = Tkl Tij, if {Z,j} N {k, l} = (),

(b) Tij Tjk = Tik Tij + Tk T + B i+, if 1 <1 <i<j<n.

(2) Define associative quasi-classical Yang—Baxter algebra of weight [ denoted
by ACY B,(B), tobe ACYB,(0,B).

Comments 5.1. -
The algebra 3T,,(53), see Definition 3.1, is the quotient of the algebra ACY B, (—f), by the
“dual relations”
TikTij — Tij Tik — Tik Tjkp + 0 xip =0, 1 <j <k
The (truncated) Dunkl elements 6; = E#i xij, 4 =1,...,n, do not commute in the algebra

mn(ﬁ) However a certain version of noncommutative elementary polynomial of degree
k > 1, still is equal to zero after the substitution of Dunkl elements instead of variables, [47]. We
state here the corresponding result only “in classical case”, i.e. if 8 =0 and ¢;; =0 for all i, j.

Lemma 5.1. ([47]) Define noncommutative elementary polynomial Li(x1,...,x,) as follows

Lk(xl,...,xn): Z Ljy Tig * Ty, -

I=(i1<i2<...<i})C[1,n]

Then Lk(gl, 92, e ,Hn) =0.
Moreover, if 1 < k < m < n, then one can show that the value of the moncommutative
polynomial Lk(0§n)7 e 7(:;)) in the algebra ACY B, (f) is given by the Pieri formula, see [26],

[75].

5.1 Combinatorics of Coxeter element

Consider the “Coxeter element” w € mn(a, B) which is equal to the ordered product of
“simple generators”:

n—1
W= Wy = H Ta,atl-
a=1

Let us bring the element w to the reduced form in the algebra mn (a, B), that is, let us
consecutively apply the defining relations (a) and (b) to the element w in any order until unable
to do so. Denote the resulting (noncommutative) polynomial by P, (z;;; o, ). In principal, the
polynomial itself can depend on the order in which the relations (a) and (b) are applied. We set

Pr(@ijs B) := Pu(2i;30, 8).
Proposition 5.1. (Cf [88/, 8.C5, (¢);[65])
(1) Apart from applying the relation (a) (commutativity), the polynomial Py (z45; )
does not depend on the order in which relations (a) and (b) have been applied, and can be written
n a unique way as a linear combination:

n—1

Po(zisi B)=>_ 8" Y 1 ®iwies

s=1 {ia} a=1
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where the second summation runs over all sequences of integers {ig}s_; such thatn—1> i3 >
o> ...>20s=1, andia <nmn—a for a=1,...,s—1; moreover, the corresponding sequence
{Ja 2;11 can be defined uniquely by that {Za}z;ll

e It is clear that the polynomial P(x;;; /) also can be written in a unique way as a linear
combination of monomials [[>_; w;, j, such that j; > ja... > js.

(2) Let us set deg(z;;) = 1, deg(f) = 0. Denote by Ty, (k,r) the number of degree k
monomials in the polynomial P(x;j; B) which contain exactly r factors of the form xy . (Note
that 1 <r<k<mn-—1). Then

r (n+k—r—2\ (n-2
T”““”‘k( n—2 ><k—1>'

Put,8)= > Tulk,r)t" g7k,

1<r<k<n

In other words,

where P,(t,3) denotes the following specialization
iy — 1, if j<n, xpm—t, Vi=1....n-1

of the polynomial P, (x;j; 3).
In particular, T, (k, k) = (Z:f), and T, (k,1) =T(n — 2,k — 1), where

o=k (1) )

is equal to the number of Schroder paths (i.e. consisting of steps U = (1,1), D = (1,—-1),H =
(2,0) and never going below the x-axis) from (0,0) to (2n,0), having k U'’s, see [85], A088617.
Moreover, T,,(n — 1,r) = Tab(n — 2,7 — 1), where

2n —k
n

Tab(n, k) = Rl <

_ (2
n+1 ) a F”_k(k)

is equal to the number of standard Young tableaux of the shape (n,n—k), see [85], A009766. Recall

that FT(Lp)(b) = IT'H’ (T;lpjlb) stands for the generalized Fuss—Catalan number.

(3) After the specialization x;; — 1 the polynomial P(x;;) is transformed to the polynomial

n—1

Po(B) =Y N(n,k) (1+p)*,
k=0

where N (n, k) = % (Z) (k:il)? k=0,...,n—1, stand for the Narayana numbers.

Furthermore, P,(8) = ZZ;S sn(d) B2, where

w0 =1 () ()

is the number of ways to draw n — 1 — d diagonals in a convezx (n + 2)-gon, such that no two
diagonals intersect their interior.

Therefore, the number of (nonzero) terms in the polynomial P(x;j; ) ts equal to the n-th
little Schroder number s, := s;é sn(d), also known as the n-th super-Catalan number, see e.g.

[85], A001003.
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(4) Upon the specialization x1; —t, 1 < j < n, and that x;; — 1, if 2 <i < j < n, the
polynomial P(x;j; B) is transformed to the polynomial

Pty =t > (1+p)"F > ),
k=1 ™

where the second summation runs over the set of Dick paths w of length 2n with exactly k picks
(UD-steps), and p(m) denotes the number of valleys (DU-steps) that touch upon the line x = 0.

(5) The polynomial P(x;j;5) is invariant under the action of anti-involution ¢ o T, see
Section 5.1.1 [47] for definitions of ¢ and T.

(6) Follow [88], 6.C8, (c), consider the specialization
Tij —> ty, 1<i<y<n,

and define Py(t1, ..., th—1;0) = Pp(xij = ti; ).
One can show, ibid , that

Po(ty,. . tn138) =Y B"F tiy -ty (5.1)
where the sum runs over all pairs {(a1,...,ar), (i1,...,ik) € Z>1 X Z>1} such that 1 < a1 <
ag < ...<ap, 1<i3<i9...<ip<n and i; < aj for all j.

Now we are ready to state our main result about polynomials P, (t1,...,tn; ).

1 2 .
Let w:=m, €S, be the permutation 7r( 3 K

1 n n—1 ... 2>' Then

n—1
Pu(t1, ... ta_1;0) = (H t;”) B ),
=1

where 0551,6) (x1,...,2n—1) denotes the 3-Grothendieck polynomial corresponding to a permutation
w € Sy, [27], or Appendiz I.
In particular,

n—1
6P (@1 =1,...,0p1=1) = Z N(n, k) (1+p)F,
k=0

where N(n, k) denotes the Narayana numbers, see item (3) of Proposition 5.1.
More generally, write P,(t,8) = >, Pék)(ﬁ) t*. Then

n—1
&P () =t =1,Vi > 2) = Z Pv(zli)1(ﬁ_1)ﬁk =1k
k=0

Comments 5.2.
e Note that if 5 =0, then one has @gfzo) (1, 2p-1) = Syu(r1,...,2Tyn—1), that is the
B-Grothendieck polynomial at 5 = 0, is equal to the Schubert polynomial corresponding to the

1 2 e
same permutation w. Therefore, if 7= 3 n , then
1 n n—-1 ... 2

Gﬂ(fbl = 1, e >tn—1 == 1) == Cn—la (52)
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where C),, denotes the m-th Catalan number. Using the formula (5.20) it is not difficult to check
that the following formula for the principal specialization of the Schubert polynomial &, (X},) is
true

n—1

S(lg,...." ) =q\"s") Cusila), (5.3)

where Cy,(q) denotes the Carlitz - Riordan g-analogue of the Catalan numbers, see e.g. [86]. The
formula (5.20) has been proved in [29] using the observation that = is a vezillary permutation,
see [61] for the a definition of the latter. A combinatorial/bijective proof of the formula (5.20)
is is due to A.Woo [96].

e The Grothendieck polynomials defined by A. Lascoux and M.-P. Schiitzenberger, see e.g.
[57], correspond to the case § = —1. In this case P,(—1) = 1, if n > 0, and therefore the

specialization (’51(1,_1)(:131 =1,...,zp1=1)=1forall w € S,. [ |

Exercises 5.1.

(1)  Let as before, 7r<1 2 3 on

L none1l . 2). Show that

n—2
L n—a—1 (n+a—-2\ ,
GW(xIZQ7xj:17VJ#Z):Z 1 < > q -

-1
= n a

n—k+1 (n+k
n+1 k
is equal to the dimension of irreducible representation of the symmetric group S,y that corre-
sponds to partition (n + k, k).
—~~—— ab P
(2)  Consider the commutative quotient ACYBZ (a, B) of the algebra ACY By («, ),

i.e. assume that the all generators {x;;| 1 < i < j < n are mutually commute. Denote by

_ —_— —~—— ab
Py (zij; o, B) the image of polynomial the P, (x;j; o, ) € ACY By, (v, B) in the algebra ACY B,, («, B). Fi-
nally, define polynomials P,(t,«, 3) to be the specialization

Note that the number

xzij — 1, if j<n, xm—t if 1<i<n.

Show that
(a)  Polynomial P,(t,a, ) does not depend on on order in which relations (a) and (b), see
Definition 5.1, have been applied.
(b)
(2n — 2k)!

Py(la=1,8=0)= ,
;0 K (nt1—k) ! (n—2k)

see [85], A052709(n), for combinatorial interpretations of these numbers.
For example,

Po(t,a, B) = 7+ 6(1 + B) 6 + [(20, 35,15) + 6 a} £+ [(48, 112,84,20)5 +
(34, 29)5} 4 [(90, 252,252,105, 15) 5 + (104, 155,55) 5 + 14042} £ 4

[(132, 420, 504, 280, 70, 6) 5 + (216, 428, 265, 50) 5 + a2(70, 49)5} 12+

[(132, 462,630,420, 140, 21, 1) 5 + (300, 708, 580, 190, 20) 5 + o®(168, 203, 56) 5 +
14a3] t + « (132,330,300, 120,20, 1)5 + o?(168,252, 112, 14) 5 + a3(42, 21)5.
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(¢)  Show that in fact

1 2n —2k\ (n+1\ 4 Toyo(n —k,kE+1)
Pn 17 70 - - )
(1,,0) kgo n+1< n )( k )a ’;0 om—1-2k O

see Proposition 5.1,(2), for definition of numbers T, (k,r). As for a combinatorial interpretation
of the polynomials P, (1, ,0), see [85], A117434, A085880.

(3) Consider polynomials Py(t, ) as it has been defined in Proposition 5. 1, (2).

Show that

ram=1=3 0 (2 2(0) () aear)

k=0

cf, e.g., [85], AO33877.
A few comments in order. Several combinatorial interpretations of the integer numbers

T n+1 n—r
Uy(r,k) .= ——
(r. k) n+1<k+7‘> ( k >

are well-known. For example,
if 7 = 1, the numbers Uy (1, k) = 2 (kil) (1) are equal to the Narayana numbers, see e.g. [85],
A001263;
if » = 2, the number U, (2, k) counts the number of Dyck (n 4 1)-paths whose last descent
has length 2 and which contain n — k peaks, see [85] , A108838 for details.
Finally, it’s easily seen, that P, (1, 3) = A127529(n), and P,(t,1) = A033184(n), see [85].

5.1.1 Multiparameter deformation of Catalan, Narayana and Schréder numbers

Let b = (B1,...,0n—1) be a set of mutually commuting parameters. We define a multiparameter
analogue of the associative quasi-classical Yang—Baxter algebra M ACY B, (b) as follows.

Definition 5.2. (Cf Definition 2.4) The multiparameter associative quasi- classical Yang—
Baaxter algebra of weight b, denoted by M@Bn(b), is an associative algebra, over the ring
of polynomials Z[Bh, . . ., Bn—1], generated by the set of elements {z;j, 1 < i < j < n}, subject to
the set of relations

(a) wij wp = xpg x5, if {6,530 {k, 1} =0,

(b) Tij Tjk = Tik xij—i-xjk ik + Bi Tik, if1§1<i<j§n.

Consider the “Coxeter element” w,, € MXC\YBn(b) which is equal to the ordered product of

“simple generators”:
n—1
Wy, = H La,a+1-
a=1

Now we can use the same method as in [88], 8.C5, (¢) , see Section 5.1, to define the reduced
form of the Coxeter element wy,. Namely, let us bring the element w;, to the reduced form in
the algebra MACY B, (b), that is, let us consecutively apply the defining relations (a) and (b)
to the element w,, in any order until unable to do so. Denote the resulting (noncommutative)
polynomial by P(x;;;b). In principal, the polynomial itself can depend on the order in which the
relations (a) and (b) are applied.

Proposition 5.2 (Cf [88], 8.C5, (c); |65]). Apart from applying the relation (a) (commutativity),
the polynomial P(z;;;b) does not depend on the order in which relations (a) and (b) have been
applied.
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To state our main result of this Subsection, let us define polynomials

Q(/Blu .. '7BTL—1) = P(ij = 1,v2,j 7/81 - 17/82 - 17 v 7/871—1 - 1)

Example 5.1.

Q(B1,B2) =142 1+ B2+ 7,

Q(B1, B2, B3) = 14 3B1 + 282 + B3 + 387 + B1B2 + B1Bs + B3 + 53,

Q(B1, B2, B3, B1) = 1+4B143B2+2B3+ Pa+P1(651 +3B2+3B3+2B4) + B2(3B2+ B3+ Ba) + B3+
B2 (4B1 + B2 + B3 + Ba) + B1(B3 + B2) + B3 + Bi.
Theorem 5.1.

Polynomial Q(B1, ..., Pn—1) has non-negative integer coefficients.

It follows from [88] and Proposition 5.1, that
ooy P = Caty,.
Q(Blv 7/871 1) Bi=l.. B 1=1 aly,

Polynomials Q(f1, ..., 8nh—1) and Q(S1+1,...,Br—1+1) can be considered as a multiparameter
deformation of the Catalan and (small) Schroder numbers correspondingly, and the homogeneous
degree k part of Q(f1,...,n—1) as a multiparameter analogue of Narayana numbers.

5.2 Grothendieck and ¢-Schréder polynomials
5.2.1 Schroéder paths and polynomials

Definition 5.3. A Schrider path of the length n is an over diagonal path from (0,0) to (n,n)
with steps (1,0), (0,1) and steps D = (1, 1) without steps of type D on the diagonal x = y.

If p is a Schroder path, we denote by d(p) the number of the diagonal steps resting on the
path p, and by a(p) the number of unit squares located between the path p and the diagonal
x = y. For each (unit) diagonal step D of a path p we denote by (D) the z-coordinate of the
column which contains the diagonal step D. Finally, define the index i(p) of a path p as the some
of the numbers i(D) for all diagonal steps of the path p.

Definition 5.4. Define q-Schrider polynomial Sy, (q; B) as follows
Sug: ) = 3 @) gio) (5.4)
P

where the sum runs over the set of all Schrdder paths of length n.

Example 5.2.
Si(@:B) =1, S2(q;8) =1+q+Baq S3(g:8)=1+2q+¢+¢°+ P (¢+2¢° +2¢°) + 5 ¢°,
Sa(q; B) =14 3q+3¢* + 3¢® + 2¢* + ¢° + ¢° + Blq + 3¢* + 5¢* + 6¢* + 3¢° + 3¢°) + B%(¢® +
2¢* + 3¢° + 3¢%) + 83 .
Comments 5.3.
The ¢-Schroder polynomials defined by the formula (5.22) are different from the g-analogue

of Schroder polynomials which has been considered in [10]. It seems that there are no simple
connections between the both.

Proposition 5.3.  ( Recurrence relations for q-Schroder polynomials )
The g-Schroder polynomials satisfy the following relations

k=n—1
Sn1(@:8) = (144" + B ¢") Su(@: B)+ D, (@ +B8 ") Sk(@:d" ™" B) Sui(g;B), (5.5)
k=1

and the initial condition Si(g; ) = 1.
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Note that P,(8) = Sn(1;5) and in particular, the polynomials P, (/) satisfy the following
recurrence relations

n—1

Po1(B) = (2+8) Pa(B) + (14 8) Y Pu(B) Pui(B)- (5.6)

k=1

Theorem 5.2.  ( Evaluation of the Schroder — Hankel Determinant )
Consider permutation

m (1 2 ... k k+1 k+2 ... n
T\l 2 .k om on—1 ... k+1)°
Let as before
n—1 .
Pu(B)=>_ N(n,j) 1+, n=>1, (5.7)

<

be Schrider polynomials.  Then

k
2

(1+5)0) (’5(% (1 =1,...,2p-r = 1) = Det |Pyip—i—j(B) |1<ij<k- (5.8)
Tk

Proof is based on an observation that the permutation W,(cn) is a vexillary one and the recurrence

relations (5.5).

Comments 5.4.

(1) In the case =0, i.e. in the case of Schubert polynomials, Theorem 5.1 has been proved
in [29].

(2) In the cases when =1 and 0 < n —k < 2, the value of the determinant in the
RHS(5.8) is known, see e.g. [10], or M. Ichikawa talk Hankel determinants of Catalan, Motzkin
and Schrder numbers and its g-analogue, http:/denjoy.ms.u-tokyo.ac.jp. One can check that in
the all cases mentioned above, the formula (5.8) gives the same results.

(3) Grothendieck and Narayana polynomials

It follows from the expression (5.7) for the Narayana-Schroder polynomials that P,(8 — 1) =

M, (), where -
mo=3 5 (5) (1) ?

J=0

denotes the n-th Narayana polynomial. Therefore, P, (5 —1) = M,,(/3) is a symmetric polynomial
in # with non-negative integer coefficients. Moreover, the value of the polynomial P, (8 — 1) at
£ =1 is equal to the n-th Catalan number C), := n-1|-1 (2:)

It is well-known, see e.g. [90], that the Narayana polynomial 9, () is equal to the generating
function of the statistics 7(p) = (number of peaks of a Dick path p) — 1 on the set Dick,, of

Dick paths of the length 2n

N,(8) =Y A,
b

Moreover, using the Lindstrom—Gessel-Viennot lemma, see e.g.,
http://en.wikipedia.org/wiki/Lindstrom—Gessel-Viennot lemma,
one can see that

DET My 5(B)hsiger = B D prlooe-smton), (5.9)
(plz"'zpk)
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where the sum runs over k-tuple of non-crossing Dick paths (p1,...,px) such that the path p;
starts from the point (¢ — 1,0) and has length 2(n —i+1),i=1,... k.

We denote the sum in the RHS(5.9) by 04 (8). Note that B (8) =1 for all k > 2.

Thus, ‘ﬂgﬂ) (B) is a symmetric polynomial in 5 with non-negative integer coefficients, and

. B B ~ 2k+l+] B (2n7€2a)
nwE=n=c=]] i 11 m
1<i<j<n—k 2a <n—k—1 2%

As a corollary we obtain the following statement

Proposition 5.4. Let n > k, then

@Ef;)l)(xl =1,...,zp,=1) = m(k)(/@)-

k

(-1

) )(acl =1,...,x, = 1) is a symmetric polynomial in (3

Summarizing, the specialization &
k
with non-negative integer coefficients, and coincides with the generating function of the statistics

Zle m(p;) on the set k-Dick, of k-tuple of non-crossing Dick paths (p1,...,px). |
Example 5.3. Taken =5, k=1.Then 7r§5) = (15432) and one has

6% (1,¢,¢%¢%) = ¢*(1,3,3,3,2,1,1) + ¢° (1,3,5,6,3,3) B+ q"(1,2,3,3)8% + ¢'°3°.

e

It is easy to compute the Carlitz-Riordan q-analogue of the Catalan number Cs, namely,
05((]) = (17 3,3,3,2,1, 1)

Remark 5.1. The value 91,(4) of the Narayana polynomial at 5 = 4 has the following
combinatorial interpretation :

M, (4) is equal to the number of different lattice paths from the point (0,0) to that (n,0)
using steps from the set ¥ = {(k, k) or (k,—k), k € Z~o}, that never go below the z-axis, see
[85], A059231.

Exercises 5.2. (a) Show that

oY en—2k) 2k +1) !
T =T T k) (k1)

(b)  Show that
Ve <1, 0f k<n<3k+1, and vy > on=3k=1 ifn > 3k + 1.

(4) Polynomials §u(5), Hu(8), Hu(gt;8) and R, (g; )

Let w € S, be a permutation and 6506)(Xn) and @guﬂ)(Xn,Yn) be the corresponding (-
Grothendieck and double 3-Grothendieck polynomials. We denote by 651(1? )(1) and by Q51(U6 )(1; 1)
the specializations X, := (z1 =1,...,2, = 1), Y, := (y1 = 1,...,yn = 1) of the S-Grothendieck
polynomials introduced above.

Theorem 5.3. Let w € S,, be a permutation.  Then
(i)  The polynomials F.,(B) = ®§§‘1)(1) and  $4(B) = QSq(,]ﬂ_l)(l; 1)
have both non-negative integer coefficients.
(ii)  One has
Hu(B) = (1+ )" Fu(8%).
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(iii) Let w € Sy, be a permutation, define polynomials
ﬁw(Q7t7ﬁ) = 6&5)(11 =4¢,22=4¢,...,Tpn =4q,Y1 :t7y2 :t7"‘7yn :t)

to be the specialization {x; = q,y; =t, Yi}, of the double B-Grothendieck polynomial (’55{,8) (X0, Yn).
Then
D@ t:8) = (@+t+8 )" Fu(1+ 8 g)(1+5 1))

In particular, $,(1,1;5) = (2 + B)g(w) Tw((1+ B)2).

(iv) Letw € S,, be a permutation, define polynomial

Ru(g;8) =6 V(w1 =qaa =123 =1,..)
to be the specialization {x1 = q,x; = 1, Vi > 2}, of the (B — 1)-Grothendieck polynomial
&P V(X,). Then
Ru(g; 8) = ¢"W 7" Ru(g: B),

where Ry, (q; B) is a polynomial in q and B with non-negative integer coefficients, and Ry, (0; 5 =
0) =1.

(v)  Consider permutation w,(ll) =[l,nn—-1n—2,--- 32 €8S,.

n—1
2

Then § o(1,1;1)=3("2) 0, (4).
In particular, if w,(@k) =(1,2,...,k,n,n—1,...,k+1) €S,, then
-1 n—k -1
6;@) )(13 )= (1+ 5)( 2") Giik) )(ﬁ2)'
See Remark 5.1 for a combinatorial interpretation of the number 91,,(4).

Example 5.4.

Consider permutation v = [2,3,5,6,8,9,1,4,7] € Sy of the length 12, and set
xz:= (14 Bq)(1+ pt). One can check that

9o(q, t;8) = 212 (1 + 2 2)(1 + 62 + 1922 + 2423 + 132%),

and F,(B) = (1 +28)(1 + 68 + 1982 + 2433 + 135).
Note that §,(8 =1) =27 x 7, and 7= AMS(3), 26 = CSTCTPP(3), cf Conjecture 5.4,
Section 5.2.4. |

Remark 5.2.

One can show, cf [61], p. 89, that if w € S,,, then R, (1,8) = R,-1(1,8). However, the
equality Ry (q,5) = R,-1(g, ) can be violated, and it seems that in general, there are no
simple connections between polynomials Ry, (g, 3) and R,,-1(q, B), if so.

From this point we shell use the notation (ag, a1,...,a,)g := Z;:o aj B, ete.

Example 5.5. Let us take w =[1,3,4,6,7,9,10,2,5,8]. Then R, (q,3) =
(1,6,21,36,51,48,26)5 + ¢ (6, 36,126,216, 306, 288, 156) 3+
q*B (20, 125,242,403, 460,289)5 + ¢>3° (6,46, 114,204,170)5. Moreover,
Ru(g,1) = (189,1134,1539,540),.  On the other hand,
wl=[1,8,2,3,9,4,5,10,6,7), and R,-1(q, 8) = (1,6,21,36,51,48,26) 5+
g8 (1,6,31,56,96,110,78) 5 + ¢28 (1,6,27,58,92,122,120, 78) 5+
B (1,6,24,58,92, 126,132,102, 26)5 + ¢*B (1,6,22,57,92, 127, 134,105, 44) 5+
¢°B (1,6,21,56,91,126, 133,104, 50)5 + ¢°B (1,6,21,56,91, 126,133,104, 50)3.
Moreover, R,—1(g, 1) = (189, 378, 504, 567, 588, 5388, 588),.
Notice that w =1 X u, where u = [2,3,5,6,8,9,1,4,7]. One can show that
Rulg, B) = (1,6,11,16,11)5 + ¢B? (10,20,35,34)5 + ¢*4* (5,14,26)5. On the other hand,
ul =1[7,1,2,8,3,4,9,5,6] and R,-1(1, B) = (1,6,21,36,51,48,26) 5 = Ry (L, B).

| Recall that by our definition (ag, a1, ar)p =>4 aj B3]
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5.2.2 Grothendieck polynomials and k-dissections

Let k € N and n > k — 1, be a integer, define a k-dissection of a convex (n + k + 1)-gon to be
a collection & of diagonals in (n + k + 1)-gon not containing (k 4 1)-subset of pairwise crossing
diagonals and such that at least 2(k—1) diagonals are coming from each vertex of the (n+k+1)-
gon in question. One can show that the number of diagonals in any k-dissection & of a convex
(n+ k + 1)-gon contains at least (n 4+ k + 1)(k — 1) and at most n(2k — 1) — 1 diagonals. We
define the indez of a k-dissection & to be i(€) =n(2k — 1) — 1 — #|€|. Dnote by

T(8) =3 5
£

the generating function for the number of k-dissections with a fixed index, where the above sum
runs over the set of all k-dissections of a convex (n + k + 1)-gon.

Theorem 5.4.
05(/2)( =1,...,2,=1) = TH(B).

Mopre generally, let n > k > 0 be integers, consider a convex (n+k+1)-gon P, 1,41 and a ver-
tex vg € Pyygy1. Let us label clockwise the vertices of P,1 ;11 by the numbers 1,2,...,.n+k+1
starting from the vertex vy. Let Dis(P,4x+1) denotes the set of all k-dissections of the (n+k+1)-
gon P, r+1. We denote by Dy := Disg(Pp4x+1 the “minimal” k-dissection of the (n + k + 1)-
gon P, 11 in question cosisting of the set of diagonals connecting vertices v, and vir7, where
2<r<k, 1<a<n+k+1, and for any positive integer a we denote by @ a unique integer such
that 1 <@ <n+k+1and a=a (mod (n+k+1)). For examle, if k = 1, then Diso(Pn42) = 0;
if Kk =3 and n = 4, in other words, Py is a octagon, the minimal 3-dissection consists of 16
diagonals connecting vertices with the folloing labels
1253252 7—-9=1 2—24—-6—-8—10=2;
1-4—-57—-510=2—-5—-8—-11=3—-6—9=1.

Now let D € Dis(P,1,+1) be a dissection. Consider a diagonal d;; € (D \ Dy), i < j which
connects vertex v; with that v;. We attach variable z; to the diagonal d;; in question and consider
the folloeing expression

Tp +k+1( Xntk+1) = Z B#‘D\Dol Z Hl'z

DeDiss(Ppyk+1) d;j€(D\Dg)
1<J
Theorem 5.5. One has
n 1
k(n—k) +1n—k B~ -1 -1
Thrinss Xnangr) = FO7F I apintnmatin=h) G (T, 7).
a=1

Exercises 5.3. It is not difficult to check‘ that
B 100 (X5) = 33 ml T3 23 v —1—52 (x3 352 & +2 a3 35% T3 T4+ 3 23 x% 3 T4 +3 2?2 a:§ z3 z4)+
+8 (23 23 w3 +a ¥ za+2 23 23 w5+2 2% 23 23+3 23 23 w5 wa+3 2F w0 23 24 +3 2% 23 w3 1a+
3 m% x% :E% T4+3 T :E% 1‘§ x4)+ ;E‘;’ x% :U3~|—:B:{’ ZE% x4+m£{’ T3 :E%—i—:l?:f T2 X3 :134—1—3:‘% m% :B4+a:% :c% r3+
w% xg’ m—kx% w% x%—l—m% x% T3 x4—|—a?% T2 m% r4+1T x% m§+a:1 a?g T3 T4+ x% :c% m—l—a:% x% 4.
Describe
bijection between dissections of hexagon Py (the case k=1, n=4) and the above listed monomials

involved in the B-Grothendieck polynomial 6’?5432(331, X9, X3,T4).
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[

A k-dissection of a convex (n + k + 1)-gon with the maximal number of diagonals (which

is equal to n(2k — 1) — 1), is called k-triangulation. It is well-known that the number of k-
triangulations of a convex (n+ k+ 1)-gon is equal to the Catalan-Hankel number 01(111)1' Explicit
bijection between the set of k-triangulations of a convex (n + k 4+ 1)-gon and the set of k-tuple

of non-crossing Dick paths (71, ...,7x) such that the Dick path ~; connects points (i — 1,0) and
(2n — i —1,0), has been constructed in [83], [89].

5.2.3 Grothendieck polynomials and ¢-Schréder polynomials

Let ngn) = 1% x w(()n_k) € S,, be the vexillary permutation as before, see Theorem 5.1. Recall
that

71_(n):<1 2 ...k k+1 k+2 ... n >

k 1 2 ... k n n—1 ... k+1/)°

(A) Principal specialization of the Schubert polynomial &
Tk

Note that 71',(6") is a vexillary permutation of the staircase shape A = (n—k—1,...,2,1) and has
the staircase flag ¢ = (k+1,k+2,...,n—1). It is known, see e.g. [93], [61], that for a vexillary
permutation w € S, of the shape A and flag ¢ = (¢1,...,0,), ¥ = €(\), the corresponding
Schubert polynomial &,,(X5;,) is equal to the multi-Schur polynomial s)(Xy), where X, denotes
the flagged set of variables , namely, Xy = (Xg4,,...,Xs,.) and X,,, = (x1,...,%m,). Therefore
we can write the following determinantal formula for the principal specialization of the Schubert
polynomial corresponding to the vexillary permutation 77,(6”)

n—t+j—1

S wm(l,q,,¢. .. :DET< ) ,
w,g>( Gsodse-) [ k+i—1 L 1<ij<n—k

where [Z]q denotes the g-binomial coefficient.

Let us observe that the Carlitz—Riordan g-analogue C,,(q) of the Catalan number C,, is equal
to the value of the g-Schréder polynomial at 8 = 0, namely, C,,(q) = Sn(q,0).

Lemma 5.2. Let k,n be integers and n > k, then

n—i+j—1 ") o
1) DET( ) =4 ),
@ [ k+i—1 L igenk =4 G0
o _ k(k—1)(6n—2k—5)/6 (k)
(2) DET(C’n+k—z—g(Q)>1 cigen 4 Cn(a).
(B) Principal specialization of the Grothendieck polynomial jSfl)
k
Theorem 5.6. e e
g )= ED) DEDIS, i (07 B) 1<k =
k—1
g"mDERD/E TT (14 271p) Gsﬁ(kn)(l,q,qgw--)-
a=1

Corollary 5.1. (1) Ifk=n—1, then

n—2

DET|Sgn-1-i—j(:4" " B)l1<ijan—1 = g D=2Un=8/6 TT(1 4 go=1gyn—a=t,

a=1
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(2) Ifk=n—2, then

q""? DET|Son—2-i—j(¢;4" " B)li<ijen—2 =

n—3
—2)(n—3)(dn— A (A1
g D=3 n=/6 T (1 4 g1 gyr=o=? {( ﬁ)ﬁ }

a=1
e Generalization
Let n = (n1,...,n,) € NP be a composition of n so that n = ny + --- + n,. We set nl) =
ny+---+n; j=1,...,p, n© = .
Now consider the permutation w® = w(()m) X w(()m) X o X w[()np) €S,,

where w(()m) € S, denotes the longest permutation in the symmetric group S;,. In other words,

(n) 1 2 .o n® ni+1 ... n(®-1) )
w'™ = - )
n onm—-1 ... 1 ni+1 ... n® . n ..op-D+1

For the permutation w®™ defined above, one has the following factorization formula for the
Grothendieck polynomial corresponding to w™, [61],

@1(1/}3()11) — 6(5) ) X @ii) X @(5) X oee X Qﬁ(ﬁ)

w[()nl 1 Xw(()"Q) 1n1+n2 Xwén?’) 1”1+"‘"p71 Xwénp) '
In particular, if
w® = fw(()nl) X w[()nQ) X oee X w(()np) € Sp, (5.10)

then the principal specialization Qifl’i)n) of the Grothendieck polynomial corresponding to the
permutation w, is the product of g-Schréoder—Hankel polynomials. Finally, we observe that from
discussions in Section 5.2,1, Grothendieck & Narayana polynomials, one can deduce that

p—1

B—1 )
6 Var=1,...,z, =1) = [[ 2% 8.
j=1
In particular, the polynomial (’555(;)1)@1, ...,Tp) is a symmetric polynomial in S with non-
negative integer coefficients.
Example 5.6.
(1) Let us take (non vexillary) permutation w = 2143 = s; s3. One can check that

6, (11,1,1) =343 452 = 1+ (5+1) + (5+1)° and M(B) = (1,6.6,1), Ms(8) =
(1,3,1), Ma(B) = (1,1). It is easy to see that

(8) _ Ny(B) N3(B)
86y’ (1,1,1,1) = DET Na(3) Ma(B) ’ . On the other hand,

DET‘ i;gg; izggg ‘ =(3,6,4,1) = (3+ 38+ ?) (1+B). It is more involved to check that

5 8) 2 3y _ Si(q; 8)  Ss(q;B)
14+8) &0 (1,q,q%, = DET :
c+h) &y (Le.q.q) ‘ S3(g;a8)  S2(g;49)

(2) Let us illustrate Theorem 5.5 by a few examples. For the sake of simplicity, we consider
the case 5 =0, i.e. the case of Schubert polynomials. In this case P,(q; 8 = 0) = Cy(q) is equal
to the Carlitz— Riordan g-analogue of Catalan numbers. We are reminded that the ¢-Catalan—
Hankel polynomials are defined as follows

) (q) = ¢F-PE=D/E DET|C, 4 1—ii(9)|1<ij<n-
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In the case f = 0 the Theorem 5.5 states that if n = (n1,...,n,) € N” and the permutation
W(n) € Sy, is defined by the use of (5.10), then

Gw(n)(la% q2, N ) _ qZ( ) C(m) ( ) X C(n1+n2) (q) % Cén—np)(q)'

ni+ne ni+n2+ns

Now let us consider a few examples for n = 6.
e n=(L5), = S,m(La...) =" @) = Cs(a).
e n=(24), = G, m(lq..)=d 0(2)(q)DET‘
Note that & 2.4 (1,q,...) =6,a1.0(1,q,...).
e n=(222) — S,m(lq...)=C" ) ).
. n:(LL4)::>6mequ~)—q4CSN)(ﬁm@):q40f%®,
the last equality follows from that C,glj_)l (q) =1forall k > 1.
e n=(1,2,3) = 6, m(l,qg,...)=¢ C’él)(q) C’ég)(q). On the other hand,

e n=(3,21) — & m(l,q...) =q¢Cq) () = ¢ ¥ (q) = q(1,1,1,1).
Note that C,g??( )= [kirl]q.

Exercises 5.4.
Let 1 <k <m <n be integers, n > 2k + 1.  Consider permutation

w— 1 2 k k+1 ... n cs
“\m m—-1 ... m—k+1 n A | "'

Show that

Su(l,q,...) = ¢"PE) ™ (q),

where for any permutation w, n(D(w)) = Y. (d"(Qw)) and d;(w) denotes the number of bozes in
the i-th column of the (Rothe ) diagram D(w) of the permutation w, see [61]. p.8.

3@

(C) A determinantal formula for the Grothendieck polynomials )

Define polynomials
n

oI (Xn) = D ea(Xp) B,

a=m

1 9 \J ntl—i . .
Aij(Xn4h-1) = - (*) O ) (Xppni), if 1<i<j<n,

((—\op ) Tk
and
o i—j—1
A,]Xk—I—nl Z enza Xpgh— )( >7 if 1<j<i<n.
a=0 a
Theorem 5.7.

DET|Ajjh<igen = 80 (Xkin-1).
k:+n
Comments 5.5.
(a) One can compute the Grothendieck polynomials for yet another interesting family of
permutations. namely, grassmannian permutations

a(n)— 1 2 ... k-1 k k+1 k+2 n+k _
k7 \1 2 ... k=1 n+k k k+1... n+k—1/)
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SkSk+1---Snt+k—1 € Sn+k-

Then

k—1

Q5giin)(x1,...,xn+k anlj

=0
where s(mlj)(Xk) denotes the Schur polynomial corresponding to the hook shape partition
n,17) and the set of variables X}, := (z1,. .., zx). n particular,

J d th f bles X I 1
k—1 k—1 .
(8) i) — n+k—1 < ko (k-1 j): n+j—1 1 j

(b) Grothendieck polynomials for grassmannian permutations

In the case of a grassmannian permutation w := o) € Sy of the shape A = (A} > Ay >

. > Ap) where n is a unique descent of w, one can prove the following formulas for the
B-Grothendieck polynomial

DET |z (1 D 1<ii<n
68@()(71) | ( +5f ) |1§ J<n (5‘11)
H1§i<j§n(xl ;)

DETI|A’ +”(X[z n))1<ij<n = DET‘h)\ )i (X hi<ij<n, (5.12)

where X[ ) = (%4, Tit1, .., Tn), and for any set of variables X,

k—1 E—1
= Z < a > hn—k—l—a(X) ﬁaa
a=0

and hy(X) denotes the complete symmetric polynomial of degree k in the variables from the set
X.

A proof is a straightforward adaptation of the proof of special case 8 = 0 (the case of Schur
polynomials) given by I. Macdonald [61], Section 2, (2.10) and Section 4, (4.8).

Indeed, consider p-divided difference operators 7r](-6
introduced in [27]. For example,

T = 5 (4 Brjsa) F(X) = (14 By) f(s5(X) ).
(n)

Now let wg := wg "~ be the longest element in the symmetric group S,,. The same proves of
the statements (2.10), (2.16) from [61] show that

w9 = aztue (Y (-1)) ﬁ (1462 o),

oES),

, 7=1,...,n—1, and m(uﬁ), w E Sy,

where as = H1§i<j§n (i — ).
On the other hand, the same arguments as in the proof of statement (4.8) from [61] show that
6P (X,) =78 (&),

X

(8)

Application of the formula for operator m ol displayed above to the monomial A% finishes the

proof of the first equality in (5.11). The statement that the right hand side of the equality (5.12)
coincides with determinants displayed in the identity (5.12) can be checked by means of simple
transformations..
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Problems 5.1.

(1) Give a bijective prove of Theorem 3.3, i.e. construct a bijection between

o the set of k-tuple of mutually non-crossing Schréder paths (p1,...,px) of lengths (n,n —
1,...,n—k+1) correspondingly, _and

o the set of pairs (m,T), where T is a k-dissection of a convex (n+ k + 1)-gon, and m is a
upper triangle (0,1)-matriz of size (k — 1) x (k — 1),

which is compatible with natural statistics on the both sets.

(2) Letw €S, be a permutation, and C'S(w) be the set of compatible sequences corresponding
to w, see e.qg. [7].

Define statistics c(e) on the set C'S(w) such that

@1(1’)871)(.%1 = 1,1‘2 = 1, . ) = Z 56((1).
aeCS(w)

(3) Let w be a vexillary permutation.
Find a determinantal formula for the B-Grothendieck polynomial @gvﬂ) (X).

(4) Let w be a permutation
Find a geometric interpretation of coefficients of the polynomials 6%3)(:& =1) and 651,5) (x; =
g5 = 1Y) #1).
For example, let w € S,, be an involution, i.e. w? =1, and w' € Sp+1 be the image of w under
the natural embedding S,, < S, 4+1 given by w € S,, — (w,n + 1) € S;41.
It is well-known, see e.g. [53|, [96], that the multiplicity me,, of the 0-dimensional Schubert
cell {pt} = ng"“) in the Schubert variety Y,/ is equal to the specialization &, (x; = 1) of

(8)

the Schubert polynomial &,,(X,,). Therefore one can consider the polynomial G, (z; = 1) as a
B-deformation of the multiplicity me 4.

Question  What is a geometrical meaning of the coefficients of the polynomial 61(53 ) (x; =

1) e N[g] ?
Conjecture 5.1. The polynomaial Gq(f) (x; = 1) is a unimodal polynomial for any permutation
w.

5.2.4 Specialization of Schubert polynomials

Let n, k, » be positive integers and p, b be non-negative integers such that » < p+ 1. It is
well-known [61] that in this case there exists a unique vexillary permutation w := w4 € Soo

which has the shape A = (A1,..., Apy1) and the flag ¢ = (¢1,..., dny1), where
Ai=n—i+1)p+b, pi=k+1+r(i—1), 1§i§n+1—5b,0.
According to a theorem by M.Wachs [93], the Schubert polynomial &, (X) admits the following

determinantal representation

&(X) = DET (hxi_iﬂ- <X¢i>>
1<i,j<n+1

Therefore we have G4(1) :=6g(z1=1,220=1,...) =

DET (n—z—i—l)p—i—b—‘z—i-]—i-k—k(z—l)r .
kE+(Gi—1)r -
1<4,5<n+1

We denote the above determinant by D(n, k,r, b, p).
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Theorem 5.8. D(n,k,r,b,p) =
H R H (k—i+Dp+1)+(G@+j—1r+rb+mnp)
(1.5)EAn k. r ' (i) By so.r kE—i+1+(G+j—1)r ’
where

Angr ={@5) €72 | G0, j<i<k+(r-Dn-7)},

By ={(i4) €22, | i+j<n+1, iZk+l+rs, s€ls}.

It is convenient to re-wright the above formula for D(n, k,r, b, p) in the following form

D(”a ]{3,7', b7p) =

nﬁl ((n—j+1)p+b+k+(j—1)(r—1))! (n—j+1)
j=1

(k:—i—(j—l)r)! ((n—j+1)(p+1)+b)!

I1 ((k:—i+1)(P+1)+jr+(np+b)r>.

1<i<j<n

Corollary 5.2. (Some special cases)

(A) The case r =1

We consider below some special cases of Theorem 5.7 in the case v = 1. To simplify no-
tation, we set D(n,k,b,p) := D(n,k,r = 1,b,p). Then we can rewrite the above formula for
D(n,k,r,b,p) as follows  D(n,k,b,p) =

n+1
j=1

(1) Ifk<n+1, then D(n,k,b,p)=

((n+k—j+1)(p+l)+b)! ((n—j+1)p+b+k>! (j —1)!

(n—G+ D+ 1) +b) ((ktn—j+p+btk) (k+j—1)
( ) ( )

(m+k+1-7)(p+1)+b\ ((k=dp+b+k\ jl (k=) (n—37+1)
]1;[1 < n—j+1 >< j ) n+k—j+1)0

In particular,
o Ifk=1, then

140 p+1)(n+1)+0b (p+1)
D(n,1 = = F
(na abap) 1+b+(n+1)p ( n+1 n+1 (b)v
where Fy(b) := % (p";b) denotes the generalized Fuss-Catalan number.

o ifk =2, then

(2+5)2+b+) D)

(p+1)
14+b0)2+b+(n+1)p)(2+b+ (n+2)p) "t () Fn++2 (b).

D(n,2,b,p) =

In particular,
6

(n+3)(n+4)

See [85], A005700 for several combinatorial interpretations of these numbers.

D(TL, 2, 0, 1) = Catn+1 Catm_g.



96 A.N. Kirillov

(2) (R.A. Proctor [80]) Consider the Young diagram
)\2:)\”71,71):{(1',‘7') GZzl XZzl | 1<i:i<n+1,1 S] < (n+1—z)p+b}
For each box (i,j) € A define the numbers ¢(i,j) :=n+1—1i+ j, and
BRI if <t 1-i)(p—1)+b,
i) () =\ ot Dhteti) Cp—1) < i .y
o i m+1-i)(p—1)<j—-b<(n+1—1ip.
Then
D(n,k,b,p) = [[ lay). (5.13)
(3,5)EX
Therefore, D(n,k,b,p) is a polynomial in k with rational coefficients.
(3) Ifp=0, then
n+k

D(n, k?, b, 0) = dim Vg[(bJr]]:) — (ﬂ)Tm'n(j,n+]g+1,j)7
(n+1) L5

+

<.
I

where for any partition p, £(p) < m, Vlf‘[(m) denotes the irreducible gl(m)-module with the
highest weight w. In particular,

1 n+2+b\/n+2+5b
D(n,2 =
* D(n.2,5,0) n+2+b< b )( b+1 >

is equal to the Narayana number N(n + b+ 2,b);

b+k) (b+k+1)!
EN(E+ )b+ 1)!
and therefore the number D(1,k,b,0) counts the number of pairs of non-crossing lattice paths
inside a rectangular of size (b+1) x (k+1), which go from the point (1,0) (resp. from that (0,1))
to the point (b+ 1, k) (resp. to that (b, k + 1)), consisting of steps U = (1,0) and R = (0,1), see
[85], A001263, for some list of combinatorial interpretations of the Narayana numbers.

(4) Ifp=b=1, then

_o® 2k+it]
D(n, k,l,l) = Cn+k+1 = H ﬁ

1<i<j<n+1
(5) ( R.A. Proctor [78],]79] ) Ifp=1 and b isodd integer, then D(n,k,b,1) is equal to
the dimension of the irreducible representation of the symplectic Lie algebra Sp(b+ 2n + 1) with
the highest wright kwy1.
(6) Ifp=1andb=0, then

. D(1,k,b,0) = = Nb+k+1,k),

2k+i—|—j:0(k)

D(n,k,1,0) = D(n —1,k,1,1) = H T ko>
i+J

1<i<j<n

see subsection Grothendieck and Narayana polynomials.
(7) ( Cf [29] ) Let wy be a unique dominant permutation of shape X\ := X\ppp and £ :=
Uppp = 5(n+1)(np + 2b) be its length. Then

L
Z H(m+ai) = /(! B(n,z,p,b).

acR(wy) i=1

Here for any permutation w of length |, we denote by R(w) the set {a = (a1,...,a;)} of all
reduced decompositions of w.
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Exercises 5.5.

Show that
@) (*3H)!
DET|F b 2 .
° n+i+j— 2( ) L<ij<h ]:I n+k 1 ngz’gk—l (TL+Z+])

1<G<k

k o
e D(n,k,b,1) H @ Ihag<bt+iti—1)
— 'fL—‘r] H1<z<k 1(n+b+l_{_]+1)

- 1<;<k

Clearly that if b =0, then FT(LQ) (0) = Cy, and D(n,k,0,1) is equal to the Catalan—Hankel deter-
mainant Cf(bk),
Comments 5.6.

It is well-known, see e.g. [80], or [86], vol.2, Exercise 7.101.b, that the number D(n,k, b, p)
is equal to the total number pp)‘”vpvb(k) of plane partitions 3° bounded by k and contained in
the shape A, .

More generally, see e.g. [29], for any partition A denote by w) € G4 a unique dominant
permutation of shape A, that is a unique permutation with the code ¢(w) = A. Now for any
non-negative integer k consider the so-called shifted dominant permutation wg\k) which has the
shape X and the flag ¢ = (¢ =k +i—1,i=1,...,4()\)). Then

S, m(1) = pp (< k),
where pp*(< k) denotes the number of all plane partitions bounded by k and contained in \.

Moreover,
Y. dM=a"6 wma e,
TEPPN(<E)

where PP*(< k) denotes the set f all plane partitions bounded by %k and contained in .

Exercises 5.6.
(1) Show that
lim & (1 "
Jim 6, NN --)—m7
where Hy(q) = [[,en (1— ") denotes the hook polynomial corresponding to a given partition
A
(2)  Let A= ((n+£0)*,¢") be a fat hook.
Show that

- Ki(q)
lim ¢"N A (1,67 ¢72,..) = ¢V :
Jim g WP (La a7 ) =4 My(2n + 20— 1;q)’

where a(€,n) is a certain integer we don’t need to specify in what follows;

N 1 min(j,N+1—j,0)
=i

30 Let X be a partition. A plane (ordinary) partition bounded by d and shape A is a filling of the shape A by the
numbers from the set {0, 1,...,d} in such a way that the numbers along columns and rows are weakly decreasing.

A reverse plane partition bounded by d and shape M is a filling of the shape A by the numbers from the set
{0,1,...,d} in such a way that the numbers along columns and rows are weakly increasing.
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denotes the MacMahon generating function for the number of plane partitions fit inside the
bor N x N x/{; Kx(q) is a polynomial in q such that K»(0) = 1.
(a) Show that

DY }{A(Q) — AAAAALEAAAA,
(1= My(2n+20-1;9) | =y Tleen h(2)

(b) Show that
. Kx(q) €eN[g] and K\(1) = M(n,n,{),

where M (a, b, ¢) denotes the number of plane partitions fit inside the box axbxc. It is well-known,
see e.q.[62], p. 81, that

C

itj+k—1 (a+b+i—1)! (i—1)! aly
M(a,b,c) = =dim Vo,
(a,b,¢) = 1<111 itjitk—2 ga—i—z—l br1-11 ~ Viae)

1<5<b,
1<k<c

o Ko=), ¢,

7T€Bn7n,4

where the sum runs over the set of plane partitions m™ = (mj)1<ij<n [fit inside the box By, 5 ¢ :=
nxnx4¥{, and
wty(m Z ij + ZZ i

(c) Assume as before that X := ((n + £), 7).

Show that
L . ¥ ) ?
1m = )
Jim  Ky\(q) = M(q) Z; q [Toe,(1— g"@)
L(p)<e
where the sum runs over the set of partitions p with the number of parts at most £, and

n(p) =3 (i—1) w; o
Mi(q) =[] (- ¢)mnio.

Jj=1

Therefore the generating function PP¢0)(q) := Y rePP0) g™ is equal to

2
Z v g 7
leeu(l __qh(m))

I3
L(p)<e

where PPU, k) := {m = (m3j)ijz1 | mij 20, mopren <k}, |wl =32, .
(d)  Show that

1 ’ . 2
PP (g) = TAC: Z (—g)lHl grw)Fnl) (dunq le(@) 7 (5.14)

Hy
L(u)<t

where ji denotes the conjugate partition of pi, therefore n(u') = Dot (‘3)
The formula (5.14) is the special case n = m of Theorem 1.2, [72].  In particular, if { =1

then one come to following identity

e Zq( o)




On some quadratic algebras 99

(e) Let k> 0,¢ > 1 be integers.
Show that the (fermionic) generating function for the number of plane partitions m = (m;;) €

PPUR) s equal to
2
n(p)
Im| — |l q
q = q .
Z Z (Hzeu(l - qh(:zz)))

£,k K
rEPPEF) pesr <k

|
Finally we recall that the generalized Fuss-Catalan number Fgﬁll)(b) counts the number of

lattice paths from (0,0) to (b+ np,n) that do not go above the line x = py, see e.g. |55].

(B) The case k=0

(1) D(n,0,1,p,b) =1 for all nononegative n,p, b.

(2) D(n,0,2,2,2) = VSASM(n), i.e.  the number of alternating sign 2n + 1 x 2n + 1
matrices symmetric about the vertical axis, see e.g. [85], A005156.

(3) D(n,0,2,1,2) = CSTCPP(n), i.e. the number of cyclically symmetric transpose com-
plement plane partitions, see e.g. [85], A051255.

Theorem 5.9. Let wp i be a unique vexillary permutation of the shape Ap, = (n,n —
1,...,2,)p and flag p = (k+1,k+2,....,k+n—1,k+n). Then

n+1
_ 1 n+1 (n+1)p\ ,._
(8-1) - j—1
° Gy (1) Zn—i—l < j > < j—1 >ﬁ :

=1

o Ifk>2, then Gpyp(B) = 61(5;1)1)(1) is a polynomial of degree nk in B, and

Coeff[ﬂnk](Gn,k,p(B» = D(na k‘, 1,]3 - 17 O)'
The polynomial

"1 /n n 1
25 <J> <j - 1) = 30
j=1
is known as the Fuss-Narayana polynomial and can be considered as a t-deformation of the
Fuss-Catalan number FC(0).
Recall that the number % (’;) (jp_"l) counts paths from (0,0) to (np,0) in the first quadrant,
consisting of steps U = (1,1) and D = (1, —p) and have j peaks (i.e. UD’s), cf. [85], A108767.
For example, take n =3,k =2,p=3,7r = 1,0 = 0. Then
wW3,2,3 = [1, 2,12,9,6,3,4,5,7,8,10, 11] € Si19, and G37273(B) =
(1,18, 171,747, 1767, 1995, 1001). Therefore, G2.3(1) = 5700 = D(3,2,3,0) and
CO@ff[ﬁG](Gg}Q’g(ﬁ)) = 1001 = D(3, 2, 2, O).

Proposition 5.5. ([73]) The value of the Fuss—Catalan polynomial at t = 2, that is the number

n

> () ()2

st n \J j—1

is equal to the number of hyperplactic classes of p-parking functions of length n, see [13] for
definition of p-parking functions, its properties and connections with some combinatorial Hopf

algebras.

Therefore, the value of the Grothendieck polynomial Qig: 11 l(l) at =1 and x; = 1, Vi,

is equal to the number of p-parking functions of length n 4+ 1. It is an open problem to find
combinatorial interpretations of the polynomials @ng,k’p(l) in the case k > 2. Note finally, that
in the case p = 2, k£ = 1 the values of the Fuss—Catalan polynomials at t = 2 one can find in

[85], 4034015. n
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Comments 5.7. (=) The case r=0
It follows from Theorem 5.7 that in the case r = 0 and k > n, one has

n—j+1)p+b+k—j+1
D(n, k,0,p,b) = dim V& = (14 p)("s") f[ ()
p,9) = An p (n— j+l)(p-1l-l)+b)

j=1 n—j-+

Now consider the conjugate v = v, = ((n + 1)°,nP,(n — 1)P,...,1P) of the partition
Anpp, and a rectangular shape partition ¢ = (k,... k). If & > np + b, then there exists a
———
np+b
unique grassmannian permutation o := o, pp of the shape v and the flag 1, [61]. It is easy to
see from the above formula for D(n, k,0,p,b), that

ng,k,p,b(l) = dzm V’/gn[,(;]f,bil) =

n ) E+j—2

(14 p)(3) <k T 1> H p+1n—j+1) (g Zryps)
j:

b L =g+ Dp+1)+0 e ((n—j+131(§;¢1)+b—1)'

After the substitution k := np + b + 1 in the above formula we will have

n (TEerbJrj;l)

n n—j+1

Sorpprvirps (1) = (1 +p)(2) H (j(pjl)f)'
7j=1 j—1

In the case b = 0 some simplifications are happened, namely

n (k—‘r] 2 )
n +1
Gon,k,PYO(l) 1 + p H (n— ]+i )p+n—j
j=1 —7 )
Finally we observe that if K = np + 1, then
n np-i-] 1 n np+] 1 n—1
H (n— J+1)P H p‘H j— 1)) H Jlin(p 1) —j —1) = AW
o (n— J+1 ;]H—n J e J(p+_11 ) e (n=HNE+1)) ((n—75E+1)—1)! "

where the numbers A%p ) are integers that generalize the numbers of alternating sign matrices

(ASM) of size n x n, recovered in the case p = 2, see [74], [18| for details.

Examples 5.1.
(1) Let us consider polynomials &,(8) := 62&;2270(1).
e Ifn=2 then 09420 = 235614 € Sg, and &2(3) = (1,2,3) :=1+ 23+ 352
Moreover, R, 4 ,,0(q; 8) = (1,2)5 + 3 ¢5°.
e Ifn =3, then 03690 = 235689147 € Sg, and  &3(8) = (1,6,21, 36,51, 48, 26).
Moreover, Ro, 5.5,0(q; 8) = (1,6,11,16,11)5 + g 5%(10,20,35,34)5 + ¢*B*(5,14,26);
Rog6,20(05 1) = (45,99,45).
e Ifn=4, then o4820=1[2,3,5,6,8,9,11,12,1,4,7,10] € S12, and &4(B) =
(1,12, 78,308,903, 2016, 3528, 4944, 5886, 5696, 4320, 2280, 646).
Moreover, Ro, 4,0 (q; 8) = (1,12,57,182, 392,602, 763, 730,493,170) 3 +
qB%(21, 126,476, 1190, 1925, 2626, 2713, 2026, 804) 5 +
q*4(35, 224,833, 1534, 2446, 2974, 2607, 1254) 5 + ¢>B5(7, 54, 234,526, 909, 1026, 646) 3;
Ross00(q; 1) = (3402,11907,11907,3402), = 1701 (2,7,7,2),.
e Ifn=>5, then o100 = [2,3,5,6,8,9,11,12,14,15,1,4,7,10,13] € Si5, and  &5(8) =
(1,20, 210, 1420, 7085, 27636, 87430, 230240, 516375, 997790, 1676587, 2466840,
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3204065, 3695650, 3778095, 3371612, 2569795, 1610910, 782175, 262200, 45885).
Moreover, Ro; 14,,(q; 8) = (1,20, 174,988,4025, 12516, 31402, 64760, 111510, 162170,
202957, 220200, 202493, 153106, 89355, 35972, 7429) 5+

q/3? (36,432,2934, 13608, 45990, 123516, 269703, 487908, 738927, 956430, 1076265,
1028808, 813177, 409374, 213597, 47538) 5 +

234(126, 1512, 9954, 40860, 127359, 314172, 627831, 1029726, 1421253, 1711728,
1753893, 1492974, 991809, 461322, 112860) 5 +

q>B5(84,1104, 7794, 33408, 105840, 255492, 486324, 753984, 1019538, 1169520, 1112340,
825930, 428895,117990)5 +

q4ﬁ8(9, 132,1032,4992, 17730, 48024, 102132, 173772, 244620, 276120, 240420, 144210,
45885)3.

Roo 1000 (q: 1) = (1209078, 6318243, 10097379, 6318243, 1299078), =

59049(22, 107, 171,107, 22),.

[ We are reminded that over the paper we have used the notation (ag,a1,...,a,)g :=
Z;':o aj 7, etc

One can show that degg®,(8) = n(n — 1), degyRo, 1,20(¢,1) =n —1, and looking on
the numbers 3, 26, 646, 45885 we made

Conjecture 5.2.  Let a(n) := Coef f["1)] (@n(ﬁ)) Then

n—1

H (37 +2)(65+3)! (25 +1)!

a(n) = VSASM(n) = OSASM(n) = @ 1 2)! (4 + 3)! )

J=1

where
VSASM (n) is the number of alternating sign 2n + 1 x 2n + 1 matrices symmetric about
the vertical axis;
OSASM (n) is the number of 2n x 2n off-diagonal symmetric alternating sign matrices.
See [85], A005156, [74] and references therein, for details.

Conjecture 5.3.
Polynomial Ro, 5, ,,(q; 1) is symmetric and Ry, ,, ,,(0;1) = A20342(2n — 1), see [85].

(2) Let us consider polynomials §,(8) := Q5<(7n 2}L)+1 20(1).

e Ifn=1,thenoy320=1342€ S, and F2(8) =(1,2) :=1+20.
o Ifn =2, then 09520 = 1346725 € S7, and 33(8) = (1,6,11,16,11).
Moreover, Ro, ;5 5 (:8) =(1,2,3)5 +qB(4,8,12)5 + >p° (4,11).

e Ifn=3,then 03720=11,3,4,6,7,9,10,2,5,8] € S1p, and §4(f) =
(1,12,57,182, 392,602, 763, 730,493, 170).

Moreover,

Ros 7000 8) = (1,6,21,36,51,48,26)5 + q (5 (6,36,126,216, 306,288, 156)3
+ ¢?6%(20,125,242, 403, 460, 289) 5 + ¢ 3°(6, 46, 114,204, 170)5;

Rosr00(q;1) = (189,1134, 1539, 540), = 27 (7,42, 57,20),,.

o Ifn=4, then o4920=11,3,4,6,7,9,10,12,13,2,5,8,11] € Sy3, and F5(B)
(1,20,174,988,4025, 12516, 31402, 64760, 111510, 162170, 202957, 220200, 202493,
153106, 89355, 35972, 7429).

Moreover,

Royo.0(a; 8) = (1,12,78,308,903,2016, 3528, 4944, 5886, 5696, 4320, 2280, 646 ) 5+

qf (8,96, 624,2464, 7224, 16128, 28224, 39552, 47088, 45568, 34560, 18240, 5168) g+
q>B3(56, 658, 3220, 11018, 27848, 53135, 78902, 100109, 103436, 84201, 47830, 14467) g+
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¢ B°(56, 728, 3736, 12820, 29788, 50236, 72652, 85444, 78868, 50876, 17204) 5+
q*B7(8,117,696,2724, 7272, 13962, 21240, 24012, 18768, 7429) 5;

Ros000(q;1) = (30618, 244944, 524880, 402408, 96228), = 4374 (7,56, 120, 92, 22),.
One can show that §,(3) is a polynomial in 3 of degree n?, and looking on the numbers

2,11,170, 7429 we made

Conjecture 5.4. Let b(n) := Coef fiyi, 12 <3n(ﬂ)). Then

b(n) = CSTCPP(n). In other words, b(n) is equal to the number of cyclically symmetric
transpose complement plane partitions in an 2n x 2n X 2n box. This number is known to be

n—1

(35 + 1)( 27)!
H (37 ! (29)

9

(45 + 1 (45)!
see [85], A051255, (9], p.199.

It ease to see that polynomial R, ,, ., ,0(¢;1) has degree n.

Conjecture 5.5.

. Coef fign (9%%72”“,270(% 1)) = A20342(2n),
see [85];

. R anira0(0:1) = AL (4n;3) = 377" D/2 ASM (),
see [56], Theorem 5, or [85], A059491.
Proposition 5.6. One has

%04,2n+1,2,0 (0§ 6) = 6”(6) = 6267_2}1),270(1)7 %U'n 2n,2, 0( 6) gn(/@> 657& 21)4.1 2 0(1)

Finally we define (3, ¢)-deformations of the numbers V.SASM (n) and CSCTPP(n). To ac-
complish these ends, let us consider permutations

wp = (2,4,...,2k,2k—1,2k—3,...,3,1) and w} = (2,4,...,2k,2k+1,2k—1,...,3,1).
Proposition 5.7. One has
6,-(1) =VSAM(k), Gw:(l) = CSTCPP(k).

k
Therefore the polynomials (’5( )(;U ¢, x; = 1,Vj > 2) and (’5( )(;U:q,:vj = 1,Vj > 2)
define (3, ¢)-deformations of the numbers VSAM (k) and CSTCPP(k) respectively. Note that

the inverse permutations (w, )~ = (2k,1,...,2k+1—1d,4,...,k+ 1,k) and (w))™ ! =

~—~— —_———— ——
(2k+1,1,...,2k+2—4,4,...,k+2,k,k + 1) also define a (3, ¢)-deformation of the numbers
——— ———— ——

considered above.

Problem 5.1.

It is well-known, see e.g. [22], p.43, that the set VSASM(n) of alternating sign (2n +
1) x (2n + 1) matrices symmetric about the vertical axis has the same cardinality as the set
SYT5(A(n),< n) of semistandard Young tableaux of the shape A(n) :== (2n —1,2n —3,...,3,1)
filled by the numbers from the set {1,2,...,n}, and such that the entries are weakly increasing
down the anti-diagonals.

On the other hand, consider the set CS(w; ) of compatible sequences, see e.g. [7], [27],
corresponding to the permutation w, € Sgg.

Challenge Construct bijections between the sets CS(wy, ), SYTo(A(k), < k) and VSASM(k).

[ |
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Remarks 5.1. One can compute the principal specialization of the Schubert polynomial
corresponding to the transposition t, = (k,n — k) € S,, that interchanges k and n — k, and
fixes all other elements of [1,n].

Proposition 5.8. g Dk-1) 6tk7n_k(1,q*1, ¢ %q3..)=

ot [ ] S e ()"

Exercises 5.7. (1) Show that if £ > 1, then

k
Jj=

1

2n —1 2n
Coeff[qkﬁzk] (9{0”7%72‘0 (g; t)) = ( ok ), Coeff[qkﬁzk—1] <9‘{0n’2n+172’0 (¢; t>> = (Qk B 1).

(2) Let n>1 be a positive integer, consider “zig-zag” permutation

_ (1234 2k4l 2%k+2 201 2 ) o
“=la 14 3 % +2 2%+1 ... 2m 2m—1 2n

Show that

n—1 1— ﬁ2k
Ru(g,8) = [ [ ( =3 +qﬁ2k>.
k=0

(3) Let ofpnm be grassmannian permutation with shape A = (n™) and flag ¢ = (k+1)™, i.e.

o (1 2 .k k+1 k+n E+n+1 ... k+n+m
km,m 12 ... k k+m=+1 ... k+m+n k+1 ... k+m )

Clearly Ok+1nm = 1 x Oknm-
Show that

the coefficient ~ Coef fgm (%gkm’m (1, B)) is equal to the Narayana number N (k+n+m, k).
= (

(4) Consider permutation w := w™ Wi, ..., Wap+1), Where wor_1 = 2k + 1 for k =
1,...,n, wopt1 = 2n, wo =1and wy =2k —2 for k = 2,...,n. For example, w® =
(3152746). We set w©® = 1.

Show that

the polynomial S (x; = 1,Vi) has degree n(n —1) and the coefficient
Coef fanmn-1) (61(1,5) (x; = 1,W)> is equal to the n-th Catalan number C,,.

Note that the specialization G\ )(xi = 1)|g=1 is equal to the 2n-th Euler (or up/down) number,
see [85], A000111.

More generally, consider permutation w,gn) = 1F x w™ ¢ Sk12n+1, and polynomials

Pe(z) =) (-1 & ¢ (wi=1)z"% k>0

>0 Y2
Show that
tk
> Pu(2) 11 = exp(tz) sech(t).
k>0 ’

The polynomials Py (z) are well-known as Swiss-Knife polynomials, see [85], A153641, where one
can find an overview of some properties of the Swiss-Knife polynomials.
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(5) Assume that n = 2k+3. k > 1, and consider permutation v, = (v1,...,v) € Sy, where

Vogr1 = 2a+3, a=0,....n—1, wy =1 and wyy, = 2a —2, a = 2,...,k+ 1. For example,
vy = [31527496, 11, 8,10] and &,,(1) = 50521 = Ey.
Show that

Gu, (g wi=1,Yi22) = (n=2) By 3 "+ 44" (k=11 ¢"?, &, (z; =1,Vi>1)=E, 1.

(6) Consider permutation u := u, = (ug,...,u2,) € Sopn, n > 2, where
Uy =2, opr1 =2k—1, k=1,....n, uop =2k+2, k=1,...,n—1, ug, = 2n—1. For example,
ug = (24163857).

Now consider polynomial

Rﬁf)(q) = Gliyy, (1 =q,x; = 1,¥i > 2).

Show that

° R&k)(l) = (2"+kk_1) Esp—1, where Eoi 1,k > 1, denotes the Euler number, see [85], A00111.
In particular, Rg)(l) = 22n=1 @, where G,, denotes the unsigned Genocchi number, see [85],
A110501.

. dequgﬂ)(q) =n and Coef fyn <R%O)(q)) = (2n — 3)IL

(7) Consider permutation wy := (2k + 1,2k — 1,...,3,1,2k,2k — 2,...,4,2) € Sog+1, Show
that

6(571)(331 =q,x;=1,Vj>2)= k(1 —f—ﬂ)(g)

Wi

(7) Consider permutations o;f = (1,3,5,...,2k+1,2k+2,2k,...,4,2) and o, = (1,3,5,...,2k+
1,2k,2k —2,...,4,2), and define polynomials

Sif(q) = Spt(r1 =g 25 =1,V > 2).

Show that S (0) = VSASM(k), S; (1) =VSASM(k+1),
25 (@)lg—0 = 2k S;(0) Coef f (S;j(q)) — CSTCPP(k +1).
Sy (0) = CSTCPP(k), S; (1) =CSTCPP(k +1),
285 (@la=o = (2 = 1) 57 (0), Coef fu (S (a)) = VSASM(k).
Let’s observe that alf =1x T,;t_l, where T,:_ =(2,4,...,2k,2k+ 1,2k —1,...,3,1) and
1. =(2,4,...,2k,2k — 1,2k — 3,...,3,1). Therefore,

GT;&(HM =qa;=1,Vj >2)=q 5;(q).

Recall that CSTCPP(n) denotes the number of cyclically symmetric transpose compliment

plane partitions in a 2 n x 2 n box, see e.g. [85], A051255, and V.SASM (n) denotes the number

of alternating sign 2 n+1 x 2 n+ 1 matrices symmetric t6he vertical axis, see e.g. [85], A005156.
(8) Consider permutation

- 1 2 ... n n+1 n4+2 n+3 ...2n
"\2 4 ... 2n 1 3 5 2n—1)"’
and set uld) = 12541 x Up-
Show that
-1 . ntl 21 .
@fﬁm Nzi=1,Vi>1) = (1+p)(3) @ifx)wénln(xi =1,¥i > 1),
(n+)

where wy '’ denotes the permutation (n+ 1,n,n—1,...,2,1).
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(9) Conceder permutation u, = 321 x --- x 321 € S3,,.  Show That
—_——

n

1 -4 -2

(10) Show that

O [azb}q[ajc]q[bzc]q:@x

(a,b,0)€(Z>0)3

Z(—l)k<§>q(§)1>.

k>2

It is not difficult to see that the left hand side sum of the above identity counts the weighted
number of plane partitions 7 = (m;;) such that

mi; >0, i > max(Tig1j, Tije1), T <1, if i>2 ana j> 2,

and the weight wt(m) := 32, ; mj;.
(11) Let A= (A1 > A2 > ... > X, > 0) be a partition of size n. For an integer k such that
1 < k < n — p define a grassmannian permutation

Wl =1 kA R+ LA k2 A R D ane i,

where we denote by (a1 < az < ... < ap_g—p) the complement [1,n]\(1,...,k, \p+k+1, A1+
k+2,..., M +k+p)
e Show that the Grothendieck polynomial

GA(B) ==& (1)

is a polynomial of # with nonnegative coefficients.

Clearly, Gx(1) = dz’me[(kH()‘)).
e Find a combinatorial interpretations of polynomial G (). -

(8)

Final remark, it follows from the seventh exercise listed above, that the polynomials GUi (1 =

k
q,z; = 1,Vj > 2) define a (g, 3)-deformation of the number VSASM (k) (the case o;") and the
number CSTCPP(k) (the case o, ), respectively.

5.2.5 Specialization of Grothendieck polynomials

Let p,b,n and i, 2¢ < n be positive integers. Denote by 7;(?n the trapezoid, i.e. a convex
quadrangle having vertices at the points

(ip,i), (ip,n—1i), (b+ip,i) and (b+ (n—1i)p,n —1i).

Definition 5.5. Denote by FCIS?W the set of lattice path from the point (ip,i) to that (b+ (n —
i)p,n — i) with east steps E = (0,1) and north steps N = (1,0), which are located inside of the

trapezoid 7;(? n
Ifp € FC’lgfl))’n is a path, we denote by p(p) the number of peaks, i.e.

p(p) = NE(]J) + Ezn(p) + Nend(p)a

where N E(p) is equal to the number of steps NE resting on path p; E;,(p) is equal to 1, if the
path p  starts with step E and 0 otherwise; Nenq(p) is equal to 1, if the path p ends by the
step N and 0 otherwise.
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Note that the equality Ne,q(p) = 1 may happened only in the case b = 0.

Definition 5.6. Denote by FC’ISI;)H the set of k-tuples P = (p1,...,Px) of non-crossing lattice

paths, where for eachi=1,... k, p; € FCIEZ;”.

Let i
FCIS,p),n (B) = Z BP(‘I‘)

perc®)

b,p,n

denotes the generating function of the statistics p(3) := Zle p(pi) — k.
Theorem 5.10. The following equality holds

k
(’5((7&),]6@71;(%‘1 = 171'2 = 1, .. ) = FCPE,b),TH»k(B + ].),
where oy, k. ppy 1S @ unique grassmannian permutation with shape ((n + 1)°,nP, (n — 1)P,... 1P)
and flag (k,..., k).
——
np+b

5.3 The “longest element” and Chan—Robbins—Yuen polytope
5.3.1 The Chan—Robbins—Yuen polytope CRY,

Assume additionally, cf [88], 6.C8, (d), that the condition (@) in Definition 5.1 is replaced by
that

(a'): x5 and zg; commute for all 4,7,k and [.

Consider the element wén) = ngi <j<n Tij- Let us bring the element wén) to the reduced

form, that is, let us consecutively apply the defining relations (a’) and (b) to the element w(()n)

in any order until unable to do so. Denote the resulting polynomial by Q,(z;;;c, 3). Note that
the polynomial itself depends on the order in which the relations (a’) and (b) are applied.

We denote by @, () the specialization x;; = 1 for all  and j, of the polynomial @, (zi;;a =
0.5).

Example 5.7.

Q3(8)=(2,1)=1+(B+1), Qa(B)=1(10,13,4) =1+5(8+1)+4(8+1)2,
Qs5(8) = (140, 336,280,92,9) = 1+ 16(8+ 1) + 58(8 + 1) + 56(8 + 1)3 + 9(B + 1)*,
Qe(B) =1+42(B+1) +448(8+1)? + 1674(8+ 1) +2364(8 + 1)* + 1182(3 + 1)° +169(3 + 1)S.
Q7(8) = (1,99, 2569, 25587, 114005, 242415, 248817, 118587, 22924, 1156) 511
Qs(8) = (1,219, 12444, 279616, 2990335, 16804401, 52421688, 93221276, 94803125,
53910939, 16163947, 2255749, 108900)4.1.

What one can say about the polynomial Q,(8) := Qn(ij; 8)|z,;=1,vi; ?
It is known, [88], 6.C8, (d), that the constant term of the polynomial Q,(5) is equal to
the product of Catalan numbers H;‘;ll C;. It is not difficult to see that if n > 3, then

Coef figy(@n(B)) = 2" —1— ("),
Theorem 5.11. One has

Qn(B—1) = (Z UCRY i1, m) Bm) (1—p)"E)+,

m>0

where CRY), denotes the Chan—Robbins-Yuen polytope [12], [13], i.e. the convex polytope given
by the following conditions :
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CRYm = {(ai;) € Matyxm(Z>o)} such that

(1) Xsay =1 >ja;=1

(2) CLZ'jZO, if j>i+1.

Here for any integral convex polytope P C Z¢, 1(P,n) denotes the number of integer points
in the set nP N Z¢4.

In particular, the polynomial @,(3) does not depend on the order in which the relations (a’)
and (b) have been applied.
Now let us denote by @, (¢; «, 8) the specialization

vy =1, i<j<mn, and zj, =t, if i=1,...,n—1,

of the (reduced) polynomial Qn(x;;; . 3) obtained by applying the relations (a’) and (b) in a
certain order. The polynomial itself depends on the order selected.

Conjecture 5.6. (A) Let n >4 and write

Qu(t =1;0,8) :=> (1+B)" cxnla), then cpn(e) € Zolal.

k>0
(8) 2
e The polynomial Q,(t,3) has degree  d,, := [(";1) .
o  Write
dn
Qn(t,8) =t""2 > cff
k=0
Then

c,(ld")(l)—a for some non — negative integer an.

Moreover, there exists a polynomial ay(t) € N[t] such that
ngdn)(t) =an(1) an(t),  an(0) = an_1.
(C) The all roots of the polynomial — Qn(5) belong to the set Ro_;.

For example,
(a) Q4(t: 170‘76) = (1,5,4)5+1+OL (577)6+1+3 0427 Q5(t: 1aa7ﬁ) =
(1,16,58,56,9) 5.1 + « (16,109, 146,29) 541 + o (51,125,34) 511 + o3 (35,17)541.

®) ¥ =13(2,3,3.3,2), &) =34(3,5,6,6,6,5,3),
1) (t) = 330 (13,27, 37,43, 45,45, 43, 37,27, 13).

Comments 5.8.
(1) We expect that for each integer n > 2 the set

\I/n+1 = {w € Sopn_1 | Guw HCatj

is non empty, whereas the set {w € Sg—2 | Gy (1) = [}, Cat;} is empty. For example,
= {115,342 }, 5= {[1,5,7,3,2,6,4 [1,5,4,7,2,6,3) },
={w:=1[1,3,28,6,9,4,57, w,... }, U7 = {777}, but one can check that for
w= [2358, 10,549,12,11] € Sy, S, (1) = 776160 — [15_, Cat;.
More generally, for any positive integer N define

k(N)=min{n | 3w € S,, such that &,(1)= N}.
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It is clear that k(N) < N + 1.
Problem Compute the following numbers

k), w(]]Caty), K(ASM(n)), w((n+1)"")
j=1

For example, 10 < k(ASM(6) = 7436) < 12. Indeed, take w = [716983254,10,12,11] €
Si2. One can show that

Gulry =t,x; =1, Vi > 2) = 13t%(t + 10) (15t + 37),

so that &,,(1) = ASM(6); ~(6*) =9, namely, one can take w = [157364298].

Question Let N be a positive integer. Does there exist a vexillary (grassmannian 7)
permutation w € S,, such that n <2x(N) and &,(1)=N 7

For example, w = [1,4,5,6,8,3,5,7] € Sg is a grassmannian permutation such that &,,(1) =
140, and R, (1, B) = (1,9,27,43, 38,18, 4).

Remark 5.3. We expect that for n > 5 there are no permutations w € So such that Qn(5) =
&P ).

(3) The numbers €, := H?Zl Cat; appear also as the values of the Kostant partition function
of the type A,_1 on some special vectors. Namely,

¢y = Ko@n)(1n), where vp, = (1,2,3,...,n— 1, —<;L>),

see e.g. [88], 6.C10, and [43], 173-178. More generally [43], (7,18), (7.25),one has

1 n+d+j
2j+1 2% )

where 7,4 = (d+1,d+2,...,d+n—1,-n(2d+n—1)/2), pp®(d) denotes the set of reversed
(weak) plane partitions bounded by d and contained in the shape 6, = (n —1,n —2,...,1).
Clearly, ppo(1) = ] T%} = C,,, where C,, is the n-th Catalan number 3!.

1<i<j<n '’

n+d—2

Koany(Yn,d) = pp(d) €y = H
j=d

Conjecture 5.7.

For any permutation w € S,, there exists a graph I'y, = (V, E), possibly with multiple edges,
such that the reduced volume @(pr) of the flow polytope Fr,, see e.g. 87| for a definition of
the former, is equal to &, (1). [

For a family of vexillary permutations wy, ;, of the shape A = pd,+1 and flag ¢ = (1,2,...,n—

1,n) the corresponding graphs I';, , have been constructed in [66], Section 6. In this case the re-

n+1)(p+1)) _

duced volume of the flow polytope Fr,, , is equal to the Fuss-Catalan number m (( A

Su,, (1), cf Corollary 5.2

Exercises 5.8.
(a)  Show that
the polynomial R, (t) := t'=" Q,(¢;0,0) is symmetric (unimodal ?), and R, (0) = HZ;% Caty,.

31 For example, if n = 3, there exist 5 reverse (weak) plane partitions of shape d3 = (2,1) bounded by 1,

namely reverse plane partitions 00 00 0 1 0 1 b
y p p 0 b 1 b 0 bl 1 ) 1 -
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For example, Ry(t) = (1+t)(2+t+2t%), Rs(t)=2 (5,10,13,14,13,10,5);.
Rg(t) =10 (2,3,2); (7,7,10,13,10,13,10,7,7);.
Note that R,(1) = [[}Z] Claty.

(b)  More generally, write Ry(t,8) := Qn(0,8) = > 150 R,&’“) (t) B*.

Show that the polynomials RrP (t) are symmetric for all .

(¢) Consider a reduced polynomial Ry, ({x;;}) of the element
H Tij Em(a:BIO)ab,

1<i<j<n
(1,3)#(n—1,n)
see Definition 5.1. Here we assume additionally, that all elements {x;;} are mutually commute.
Define polynomial Ry, (q,t) to be the following specialization

zij — 1, if 1<j<n-—1 ®ip_1—¢q Tin—1t Vi

of the polynomial R,,({x;;}) in question.

Show that polynomials Ry (q,t) are well-defined, and

Rn(‘]a t) = Rn(ta Q)'
Examples 5.2.

R4(t7 /B) = (27 3,3, 2)15 + (47 5, 4)t B+ (27 2)15 627 R5(t) 5) =
(10,20, 26, 28, 26, 20, 10), + (33,61, 74,74,61,33), B + (39,65, 72,65,39); 5%+
(19,27,27,19); 5%+ (3,3,3); B4, Rg(t, B) =

(140, 350, 550, 700, 790, 820, 790, 700, 550, 350, 140),+

(686, 1640, 2478, 3044, 3322, 3322, 3044, 2478, 1640, 686); [+

(1370, 3106, 4480, 5280, 5537, 5280, 4480, 3106, 1370), 3>+

(1420,3017, 4113, 4615, 4615, 4113, 3017, 1420); 53+ ,

(800, 1565, 1987, 2105, 1987, 1565, 800); 54+

(230, 403, 465, 465, 403, 230); 3°+

(26,39, 39, 39, 26); 5°.

Re(1, B) = (5880, 22340, 34009, 26330, 10809, 2196, 169) 5.

Rz (t, B) = (5880, 17640, 32340, 47040, 59790, 69630, 76230, 79530, 79530, 76230,
69630, 59790, 47040, 32340, 17640, 5880); +
(39980, 116510, 208196, 295954, 368410, 420850, 452226, 462648, 452226, 420850, 368410,
295954, 208196, 116510, 39980); 8 +
(118179, 333345, 578812, 802004, 975555, 1090913, 1147982, 1147982, 1090913, 975555,
802004, 578812, 333345, 118179); 32 +
(198519, 539551, 906940, 1221060, 1447565, 1580835, 1624550, 1580835, 1447565, 1221060,
906940, 539551, 198519); 53 +
(207712, 540840, 875969, 1141589, 1314942, 1398556, 1398556, 1314942, 1141589, 875969,
540840, 207712); B* +
(139320, 344910, 535107, 671897, 749338, 773900, 749338, 671897, 535107, 344910,
139320); 8°
+(59235, 137985, 203527, 244815, 263389, 263389, 244815, 203527, 137985, 59235); £° +
(15119, 32635, 45333, 51865, 53691, 51865, 45333, 32635, 15119); 87 +
(2034, 3966, 5132, 5532, 5532, 5132, 3966, 2034) 3% 4 (102, 170, 204, 204, 204, 170, 102); £°.

R7(17 5) =
(776160, 4266900, 10093580, 13413490, 10959216, 5655044, 1817902, 343595, 33328, 1156) 5.
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5.3.2 The Chan—Robbins—Mészaros polytope P, ;,

Let m > 0 and n > 2 be integers, consider the reduced polynomial @y, n(t, 5) corresponding to

the element
n mt1 n—2 n
My = (H xlj) H H Tjk-
j=2

J=2  k=j+2

For example Q2.4(t, 8) = (4,7,9,10,10,9,7,4); + (10,17, 21, 22,21,17,10),

+(8,13,15,15,13,8):82 + (2,3,3,3,2); 83, Qa4(1,8) = (60,118,72,13)5.
Qa5(t, B) = (60,144, 228, 298, 348, 378, 388, 378, 348, 298, 228, 144, 60),

(262, 614, 948, 1208, 1378, 1462, 1462, 1378, 1208, 948, 614, 262), 3

+(458,1042, 1560, 1930, 2142, 2211, 2142, 1930, 1560, 1042, 458); 32

+(405, 887, 1278, 1526, 1640, 1640, 1526, 1278, 887, 405), B*

+(187, 389, 534, 610, 632, 610, 534, 389, 187), 3*

+ (41,79,102,110, 110,102, 79, 41), #° + (3,5,6,6,6,5,3); /35,

Qa5(1, 8) = (3300, 11744, 16475, 11472, 4072, 664, 34) 5,

Qa2.6(1, B) = (660660, 3626584, 8574762, 11407812, 9355194, 4866708, 1589799,

310172, 32182,1320)5,  Qa27(8) = (1,213,12145, 279189, 3102220, 18400252,

61726264, 120846096, 139463706, 93866194, 5567810, 7053370, 626730, 16290)41.

Theorem 5.12. One has

n—2
mn(l,1) = Cat ——
@ Quat:t) = T Cot e

1<i<j<n—1
_ Qm,n(laﬁ - 1)

. k
(b) Z L(Pn,ma k)ﬁ (1 B B)(n;rl)_i_l )

k>0
where Pp, denotes the generalized Chan-Robbins—Yuen polytope defined in [66], and for any
integral convex polytope P, 1(P,k) denotes the Ehrhart polynomial of polytope P.

Conjecture 5.8. Letn > 3, m > 0 be integers, , write

Qmn(t,8) =Y B (t) B*, and set b(m,n) :=max(k | c{f),(t) #0).
k>0

Denote by ¢y n(t) the polynomial obtained from that cﬁ,ﬁﬁll“”)(t) by dividing the all coefficients of

the latter on their GCD.  Then
En,m(t) = an-i—m(t)v
where the polynomials ay(t) := con(t) have been defined in Conjecture 16, (B.
For example, c25(t) =4 az(t), ca6(t) =10 ag(t), c35(t) = as(t),
ca7(t) = 10 (34,78,118, 148, 168, 178, 181,178, 168, 148, 118, 78,34) = 10 ag(t).

[ |
It is known [43], [65] that
n—2 . . m-+n—2 .
2 1 -1 1
oS50t ()-
k=1 1<i<j<n—1 LTI i1 20T J

Ky,_,(m+1,m+2,...,n+m,—mn — <Z))
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Conjecture 5.9.

Let a = (ag,as,...,ay) be a sequence of non-negative integers, consider the following element
n n—2 n
s
Ma) = (H 2y > [1 ( 11 @“ﬂf)-
j=2 =2 k=j+2
Then

(1) Let Ra(t1,...,th—1, a,p) be the following specialization
Ty —tj—1 for all 1<i<j<n

of the reduced polynomial Ra(x;j) of monomial My € Amn(a, B).
Then the polynomial Ra(t1,...,tn—1, o, () is well-defined, i.e. does not depend on an
order in which relations (a’) and (b) , Definition 5.1, have been applied.

n
@ Qu1)= KAHl(az+1,a3+2,...,an+n—1,—(2) -3 a).

(3) Write
Qu(t.8) =Y () p*.
k>0
(k)

The polynomials ca ' (t) are symmetric (unimodal ?) for all k.
Example 5.8. Let’s take n = 5,a = (2,1,1,0). One can show that the value of the Kostant
partition function K a,(3,3,4,4,—14) is equal to 1967. On the other hand, one has
Q2,1,1,0)(t, B) t=3 = (50,118,183, 233,263,273, 263, 233, 183, 118, 50);+
(214,491,738, 908, 992, 992, 908, 738, 491, 214), B + (365,808, 1167, 1379, 1448, 1379,
1167, 808, 365); 8% + (313,661,906, 1020, 1020, 906,661, 313); 33+
(139,275, 351, 373, 351, 275, 139), B* + (29,52, 60, 60, 52, 29); 8° + (2,3,3,3,2), /5.
Qe1.1.0)(1, B) = (1967, 6686, 8386, 5800, 1903, 282, 13) = (1,34, 279, 748, 688, 204, 13) 5. 1.

Exercises 5.9.
(1)  Show that
Ru(t,—1) = t?"=2 R, (—t71,1).

(2)  Show that the ratio
R, (0, 8)
(1+pB)n2
is a polynomial in (B + 1) with non-negative coefficients.
(3)  Show that polynomial R, (t,1) has degree e, := (n+ 1)(n —2)/2, and

n—1
Coefflt"] Rn(t,1) =[] Caty.
k=1
Problems 5.2.
(1)  Assume additionally to the conditions (a') and (b) above that
ay;=Bxy+1, if 1<i<j<n.

What one can say about a reduced form of the element wq in this case ¢
(2) According to a result by S. Matsumoto and J. Novak [64], if m € S,, is a permutation of
the cyclic type X\ = n, then the total number of primitive factorizations (see definition in [64])
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of ™ into product of n — £(\) transpositions, denoted by Prim,,_yx)(A), is equal to the product of
Catalan numbers:

P?"Z'mn_g()\)(A) = H Cat)\i_l.

Recall that the Catalan number Cat,, := C), = %(n) Now take A = (2,3,...,n+1). Then

Qn(l) = H Cat, = Pm’m(g)()\).
a=1

Does there exist “a natural” bijection between the primitive factorizations and monomials which
appear in the polynomial Qn(x;j; B) ¢
(3)  Compute in the algebra ACY By, (o, ) the specialization

zi; — 1, if j<n, x5 —1t, 1<i<n,

denoted by Py, (t,a, ), of the reduced polynomial Py, ({xi;}, o, B) corresponding to the trans-
position Sij =<Hg€;3 xk,k+1> Tj—1,5 (H?c:jfZ xk’k+1> S ACYBn<O¢,B)

For example, Ps,(t,a,B) =15+ 3(1 + B)t* + ((3,5,2)5 + 3a)t® + (2(1 + B)? + a(5 + 48))t?
(1 + B((1 + 3a) + 202t + a + a2,

5.4 Reduced polynomials of certain monomials

In this subsection we compute the reduced polynomials corresponding to dominant monomials
of the form

Tm 1= 2y ayy w0 € (ACY Ba(8))
where m = (m1 > mg > ... > my_1 > 0) is a partition, and we apply the relations (a’) and (b)
in the algebra (Amn(ﬁ))“b, see Definition 5.1, and Section 5.3.1, successively, starting from
Cﬂgl ZT923.
Proposition 5.9.  The function

ZEN — 7%, m — Pu(t=18=1)

can be extended to a piece-wise polynomial function on the space Rggl.

We start with the study of powers of Coxeter elements. Namely, for powers of Coxeter elements,
one has 32

Plary 2952(8) = (6,6,1), Playy aay 2502 (8) = (71,142,91,20,1) = (1,16,37,16, 1) 541,
Plrsaaszss)? (B)=(1301, 3903, 4407, 2309, 555,51, 1) = (1,45, 315,579, 315,45, 1) 311,

P(xlz #23 ¥34 M, ( ) = (1266,3798,4289,2248,541, 50,1) = (1,44, 306, 564, 306,44, 1) 341,
P($12w23$34 = 1) = 12527, P(x121231'34)4 (8 =0) = 26599,

Plor2w3w34) (5 = 1) = 539601, Plary wo3 w34 245)? (B=1)=12193,

!

(12 23 234 245)3 (8 = 0) = 50000, P(xu T23 T34 T45)3 (86 =1)=1090199.

Lemma 5.3. One has

min(n,m) ntm—k m i min(n,m) n m i
raast= X (") ()= X () (7)) aver
=0 =0
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Moreover,
o polynomial Py, ,qos.p_1 )m (8 —1) is a symmetric polynomial in 3 with non-negative coeffi-
cients.
e polynomial Pyn, wm (3) counts the number of (n,m)-Delannoy paths according to the number
of NE steps 33.

Proposition 5.10. Let n and k, 0 < k < n, be integers. The number

P($12$23)" (9334)k(ﬁ = O)

is equal to the number of n up, n down permutations in the symmetric group Sonip+1, see [85],
A229892 and Ezercises 5.3, (2).

Conjecture 5.10.  Let n,m,k be nonnegative integers. Then the number

34
15 equal to the number of n up, m down and k up permutations in the symmetric group Sy 4+m+k+1-

For example,

e Take n = 2,k = 0, the six permutations in S5 with 2 up, 2 down are 12543, 13542,
14532, 23541, 24531, 34521.

e Taken = 3,k = 1, the twenty permutations in Sy with 3 up, 3 down are 1237654,
1247653, 1257643, 1267543, 1347652, 1357642, 1367542, 1457632, 1467532, 1567432,
2347651, 2357641, 2367541, 2457631, 2467531, 2567431, 3457621, 3467521, 3567421,
4567321, see [85], A229892,

e Taken =3,m = 2,k = 1, the number of 3 up, 2 down and 1 up permutations in S7 is
equal to 50 = Pi(0) : 1237645, 1237546, ..., 4567312.

e Take n = 1,m = 3,k = 2, the number of 1 up, 3 down and 2 up permutations in S7 is
equal to 55 = Pi32(0), as it can be easily checked.

On the other hand, szﬁ a3, z§4a}45(6 = 0) = 7203 < 7910, where 7910 is the number of 4 up,
3 down, 2 up and 1 down permutations in the symmetric group Sii.

Conjecture 5.11. Let ki,...,k,—1 be a sequence of mon-negative integer numbers, consider

monomial M = x'féx% e :UZ"_‘ﬁW Then
e reduced polynomial Ppr(S—1) is a unimodal polynomial in [ with non-negative coefficients.

Example 5.9.

P321(8) = (1,14,27,8) 41 = P123(8), P231(8) = (1,15,30,9)541 = P132(B),
Ps19(8) = (1,11,18,4) 511 = P2 13(8), Paz21(8) = (1,74,837,2630,2708, 885,68) 51,
Py321(0) =7203 =3 x e Ps4321(8) = (1,394,19177,270210, 1485163, 3638790,
4198361, 2282042, 553828, 51945, 1300) 5,1,  Ps.432.1(0) = 12502111 = 1019 x 12269.

Exercises 5.10.
(1) Show that if n >m, then

™M _ - <m+a_1> nz_:a(m>5p $m+a
tj ik wij=l=a;p ~ a —~ P ik -

p

33 Recall that a (n, m)-Delannoy path is a lattice paths from (0,0) to (n,m) with steps E = (1,0),
N =(0,1) and NE = (1, 1) only.

For the definition and examples of the Delannoy paths and numbers, see [85],4001850, A008288, and
http://mathworld.wolfram.com/DelannoyNumber.html.
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ID:L"{L2 x4 x§4(/8) = Px?z x%(ﬁ)+

(2) Show that if n>m >k, then

= ()0 () () (7 e

a>1 p
b,p>0

In particular, if n > m >k, then

w0~ (7)o (O (25 ) 2

Note that the set of relations from the item (1) allows to give an explicit formula for the
polynomial Py;(B) for any dominant sequence M = (mq > mao > ... > my,) € (Zso)*. Namely,

Py(B+1) =
b fmy a1 " min b
j T aj— J j)
SIS () )
a j=2 J b =1 J
where the first sum runs over the following set A(M) of integer sequences a = (ay, ..., ak_1)
A(M) := {OSaj <mj+aj_1, jzl,...,k—l}, ag = 0,
ooy br—1)

and the second sum runs over the set B(M) of all integer sequences b = (by,

B(M) = U {0 < bj < min(mj+1,mj—aj—|—aj,1)}, j=1,...,k—1.

(3) Show that
+1/2k+n
1k=1y = " _ plntkk)
#1A(n, 157 k;<k_1) JoR,

where f("t5k) denotes the number of standard Young tableaux of shape (n+k, k). In particular,

#|A1*)| = Cry1.
(4) Letn>m>1 be integers and set M = (n,m,1¥).  Show that
" m+p+1 fm+p—1\/m+2k+p
_— = Pr(n,m).
=0

PM(ﬂfijzl;ﬁ:O):pZ: 2 » k1
n—i—m—&—l)7

In particular, Pi(n,m) = (”Zm) +m (M
(2k +2)!

n+1 (2k+24+n 9
Pr(n,1) = Py(2,2) = (7T9k* + 341k + 360) ————.
)= (T R = o a0
(5) Let T € STY((n+ k,k)) be a standard Young tableau of shape (n + k, k).
Denote by r(T') the number of integers j € [1, n+ k| such that the integer j belongs to the second
row of tableau T', whereas the number 7 + 1 belongs to the first row of 1. Show that

Px?2x23“'$k+1,k+2 (5 - 1) = Z ,BT(T).

TESTY ((n+k,k))

(6) Let M = (my,ma,...,mi_1) € Zial be a composition. Denote by ﬂ the composition
(mg_1,mg_2,...,ma,mp), and set for short Py () := T x;n;ﬂ(ﬂ:g =1;0).
Py (B) = Py ().

Show that
by gms (2033 6) # Py jmesi (2343 8)-

Note that in general, PH
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(7) Define polynomial Py (¢, 5) to be the following specialization
ri;— 1, if i<j<n, and zym—t, if i=1,...,n—1

of a polynomial P, Eolpmi (zi5; B).

Show that if n > m, then
m m n+m—j—1 L
= k—m+1 j
Py, oy (6,8) = (j)( <m_1) t ) Bl
§=0 k=m—1

See Lemma 5.2 for the case ¢ = 1.
(8) Define polynomials R, (t) as follows

R,(t) := P(zl2x23x34)n(—fl,ﬁ =-1) (_t)gn-

Show that polynomials R, (t) have non-negative coefficients, and

(9) Consider reduced polynomial Pp22(B) corresponding to monomial 7, (123734)2
and set P, 292(8) := Pp22(8—1). Show that

Po22(8) €N[B] and P,22(1) =T(n+5,3),
where the numbers T'(n, k) are defined in [85],4110952, A001701.

Conjecture 5.12. Let X\ be a partition. The element s,\(eﬁn), ce 97(,?)) of the algebra 3T7(10)
can be written in this algebra as a sum of

(H h(g;)) x dim Vi @0=m) 5 gign v, (aim)
TEN

monomials with all coefficients are equal to 1.

Here sy(x1,...,2m) denotes the Schur function corresponding to the partition A and the set
of variables {z1,...,xn}; for z € A\, h(x) denotes the hook length corresponding to a box ;
Vfg[(n)) denotes the highest weight A irreducible representation of the Lie algebra gl(n).

Problems 5.3.

(1) Define a bijection between monomials of the form [[._, i, j. involved in the polynomial
P(xij;8), and dissections of a convex (n + 2)-gon by s diagonals, such that no two diagonals
intersect their interior.

(2)  Describe permutations w € S,, such that the Grothendieck polynomial By (t1,. .., t,) is
equal to the “reduced/iolynomial” for a some monomial in the associative quasi-classical Yang—
Baater algebra ACY By (53). ¢

(3) Study “reduced polynomials” corresponding to the monomials

e (transposition) si, = (T12723 Tp-2.,0-1)° Tn—1n,

e (powers of the Coxeter element) (x12723 - Tp—1.5)".

in the algebra mn(a,ﬁ)“b.

(4) Construct a bijection between the set of k-dissections of a conver (n + k + 1)-gon and

)

pipe dreams” corresponding to the Grothendieck polynomial Qi(BW (X1,...,xy). As for a definition
™

k
of “pipe dreams” for Grothendieck polynomials, see [54]; see also [27].
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Comments 5.9. We don’t know any “good” combinatorial interpretation of polynomials

which appear in Problem 5.3, (3) for general n and k. For example,

Pyy (i =1;8) = (3, 2)57 Py, (255 = 15 8) = (26,42, 19, 2)g,

Py (x5 = 1; B) = (381,988,917,362,55,2)3 and Ps,(z;; = 1;1) = 2705. On the other hand,

Plaiyzas)? wa4 (245)2 (Tij = 15 8) = (252,633, 565,212, 30, 1), that is in deciding on different reduced

decompositions of the transposition si,. one obtains in general different reduced polynomials.
One can compare these formulas for polynomials Ps ,(z;; = 1;5) with those for the /-

Grothendieck polynomials corresponding to transpositions (a, b), see Comments 5.5.

6 Appendixes

6.1 Appendix I Grothendieck polynomials

Definition 6.1. Let B be a parameter. The Id-Coxeter algebra IdC,(B) is an associative
algebra over the ring of polynomials Z[B] generated by elements <€1, . ,en_1> subject to the set
of relations

* cie; =eje;, if ‘z —j‘ > 2,

* cieje; = ejeej, if ’z - j‘ =1,

° e?zﬁei, 1<i<n-1.

It is well-known that the elements {e,, w € S,} form a Z[S]-linear basis of the algebra
IdCy(B). Here for a permutation w € S,, we denoted by e,, the product e;, e;, - - - €;, € I1dCy(B),

where (i1, 12, ...,1i) is any reduced word for a permutation w, i.e. w = s;, i, - -+ 8, and £ = {(w)
is the length of w.
Let z1,x9,...,Zp—1,n = Y,Tpt1 = 2,... be a set of mutually commuting variables. We

assume that z; and e; commute for all values of ¢ and j. Let us define

hi(z) =14 ze;, and A H ha( i=1,...,n—1.

a=n—1

Lemma 6.1.  One has
(1) (Addition formula)

where we set (r ®y) = x + y + Lry;
(2)  (Yang-Bazter relation)

hi(@)hiv1(z ® y)hi(y) = hiv1(y)hi(@z ® y)hit(2).

Corollary 6.1.

(1) [hiv1(@)hi(2), hiv1(y)hi(y)] =
(2) [Ai(2), Ai(y)] =0, i=1,2,....,n—1.

The second equality follows from the first one by induction using the Addition formula,
whereas the fist equality follows directly from the Yang—Baxter relation.

Definition 6.2.  (Grothendieck expression)

@n(iﬂl, ey xn_l) = Al(xl)AQ(xg) s An_l(a:n_l).
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Theorem 6.1. (/27]) The following identity

®n(x17"-7xn—1) = Z @Suﬁ)(Xn—l) Ew

wWES,,
holds in the algebra 1dC,, & Z[z1,. .., Tn_1].

Definition 6.3. We will call polynomial 051(53) (Xn—1) as the B-Grothendieck polynomial corre-

sponding to a permutation w.

Corollary 6.2.

(1) If B = —1, the polynomials Qiq(u_l)(Xn_l) coincide with the Grothendieck polynomials
introduced by Lascour and M.-P. Schiitzenberger [57].

(2) The -Grothendieck polynomial &) (Xn—1) is divisible by 1:110(1)

(3) For any integer k € [1,n — 1] the polynomial Qiguﬁ_l)(mk = q,xq = 1,Va # k) is a
polynomial in the variables q and B with non-negative integer coefficients.

-1

Proof (Sketch) It is enough to show that the specialized Grothendieck expression &,,(x; =
4,2z, = 1,Va # k) can be written in the algebra IdC, (8 — 1) ® Z[q, 8] as a linear combination
of elements {ey }wes, with coefficients which are polynomials in the variables ¢ and § with
non-negative coefficients. Observe that one can rewrite the relation e = (8 — 1)ey in the
following form ex(ey + 1) = [ eg. Now, all possible negative contributions to the expression
& (2 = ¢, x4 = 1,Ya # k) can appear only from products of a form c,(q) := (1 + geg)(1 + ex)?.
But using the Addition formula one can see that (1+geg)(1+ex) = 1+ (1 + ¢S)ex. It follows by
induction on a that c,(q) is a polynomial in the variables ¢ and 8 with non-negative coefficients.

[

Definition 6.4.
e The double B-Grothendieck expression &, (X,,Y,) is defined as follows

B (X, Yy) = 6,(X,) 6,(=Y,) ! € IdC,(B) ® Z[X,,, Yy).

e The double 3-Grothendieck polynomials {®,(Xn, Yn) bwes, are defined from the decomposition

an(XnuYn) = Z Q5w(Xn’Yn) Cw

wES,
of the double B-Grothendieck expression in the algebra IdCy ().

More details about S-Grothendieck and related polynomials can be found in [59], [48]. |

6.2 Appendix 11 Cohomology of partial flag varieties

Let n =ny + -+ ng, n; € Z>1 Vi, be a composition of n, k> 2. For each j =1,...,k define
the numbers N; = nq +---4+n;,No =0, and M; = nj + --- + ny. Denote by X :=X,,, =

k
{x,(f) |i=1,...,k 1 <a<mn;} (resp. Y, ..) aset of variables of the cardinality n. We set
(1)

deg(xg’) =a, i =1,...,k. For each i = 1,... k define quasihomogeneous polynomial of degree
n; in variables X = {:rt(f) | 1<a<mn;}

pu (X0, 8) = 47 4 3wl g,

a=1
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and put pp, ., (X,t) = Hlepni (X@ ¢). We summarize in the theorem below some well-
known results about the classical and quantum cohomology and K-theory rings of type A,_1
partial flag varieties Flp, . n.. Let q1,...,qk—1, deg(q;) =ni+mni41, i =1,...,k—1, be a set
of “quantum parameters.”

Theorem 6.2. There are canonical isomorphisms

H*(]:lnl,---ynkvz) = Z[an ..... nk]/<pn1,...,nk (Xa t) o t">;

K*(Flay.... nk,Z>%Z[YilJ/<pm, (Yot = (L4 1) >
k n; A
H(Fly.o ) Z[X,Y]/< (@ +) — purom <Y,t>>;
i=1 a=1

(Cf [1] ) QH*(flnl,,nk) = Z[an,...,nka q1,- - - 7q1~c—1]/<An1,...,nk (X, t) - tn>7

(Cf [1] ) QH;’(Flnl ----- nk) = Z[X7Y7 qi,. .- 7q’€1]/<ATl1,---,nk (X t) Pni,...n (Y7 t)>7

where 34 Ay, (X t) =

P (X 1) @ 0 0

-1 DPny (X(2) ’ t) QQ( ) 0 0

0 1 s (X3 1 0 0
o P (. ) g

0 . . 0 —1 pp,_, (XED ) qk—1

0 0 ~1 Py, (X))

Here for any polynomial P(x,t) = >%_b; (x)t"~7 in variables x = (x1,m2,...), we denote

by <P(x, t)> the ideal in the ring Z[x] generated by the coefficients by(x), ..., b,(x). A similar

meaning have the symbols <HZ s 1(J:a t) = Pna,oong (y,t)>, <An1,n_7nk(x,t) — t"> and
SO on.

Note that dim(Fn,,.. n,) = >_;<; i n; and the Hilbert polynomial Hilb(Fy, ... n.q) of the
partial flag variety F,, ., is equal to the g-multinomial coefficient [m,.'n.,nk]q’ and also is equal

to the g-dimension of the weight (n1,...,nx) subspace of the n-th tensor power (C™)®" of the
fundamental representation of the Lie algebra gl(n).

Comments 6.1. The cohomology and (small) quantum cohomology rings H*(Fy, ... n,,Z) and
QH*(Fp, ... ny» L), of the partial flag variety F,, ... 5, admit yet another representations we are
going to present. To start with, let as before n =mn; +... +ng, n; € Z>1 Vi, be a composition.
Consider the set of variables X = X rompyq = {ng) | 1<i<nga=1,...,k—1}, and set as
before deg xgi) — a. Note that the number of variables X is equal to n — ng. To continue, let’s
define elementary quasithomogeneous polynomials of degree r

er(X) = Z xgill) . ~~x£f;), eg(f() =1, e_r()z) =0, if r>0,
I,A

34We prefer to use quantum parameters {g; | 1 <4 < k—1} instead of the parameters {(—1)"q; | 1 <i < k—1}
have been used in [1].
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where the sum runs over sequences of integers I = (i1,...,4s) and A = (ay,...,as) such that
° 1§i1<...i5§]€—1,
e 1<a;j<n;, j=1,...,s, and r=a1+---,as,

and complete homogeneous polynomials of degree p
hp(X) = det|ej—ir1(X)]1<ij<p-

Finally, let’s define the ideal J,, ., in the ring of polynomials Z[X,, ., ,] generated by
polynomials R R
h+1(X), ..o, hn(X).

Note that the ideal J,,, . n, is generated by n —ny = #(Xp, .. n,_,) elements.

Proposition 6.1. There exists an isomorphism of rings
H* (Fry o ingor ) = L Xy o1 T

In a similar way one can describe relations in the (small) quantum cohomology ring of the

partial flag variety JF,, ... n,. To accomplish this let’s introduce quantum quasihomogeneous ele-

(a)

mentary polynomials of degree j, e:" (X, . n,) through the decomposition

J
Ny '
AnpoonyXngn) = > V(X ) 177, eV (x) =1, eD(x) =0, if p>0.
j=0

To exclude redundant variables {:Uék), 1 <a<mng}, letusdefine quantum quasihomogeneous

Schur polynomials s&q) (Xn1,...n,) corresponding to a composition a = (a1 < ag < ... < @) as
follows
580 (Xy,oomy) = detleg Siran (X, ) 1<ij<p-

Proposition 6.2. The (small) quantum cohomology ring QH*(Fy, ... ny,Z) is isomorphic to the
quotient of the ring of polynomials Z[qy, - .., qk—1] [Xni,...ne_,] by the ideal I, . ., , generated
by the elements

gr(Xn1,---7nk—1) = Sg(fi};';’zl)cfl)(th...,nk_l) k-1 egql;zkﬂlk 2)(Xn1,...,nk_2),

where np+1<r <n.

It is easy to see that the Jacobi matrix

0
( ( ) gT(Xn1,~--7nk—1) {a=1,...,k—1, 1<i<ng

a:Ea np+1<r<n}

corresponding to the set of polynomials ¢,(Xp, . n. ,) 7k <7 <n, has nonzero determinant,
and the component of maximal degree nqe = ij n; nj in the ring QH*(Fy, ... ny,Z) is a
Zlq1, ..., qr—1]—module of rank one with generator

I 1T ()"

Therefore, one can define a scalar product (the Grothendieck residue)

||
||:]|

(0,0) 1 HQ"(Fny oy, L) X HQ*(Fray o mys ) — Zlan, - - -, q—1]
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setting for elements f and g of degrees a and b, (f,h) = 0, if a + b # npas, and (f, h) =
Aq), if @+ b= npmaer and f h = A(q) A. It is well known that the Grothendieck pairing (e, e) is
nondegenerate (for any choice of parameters qi,...,qx_1).

Finally we state “a mirror presentation” of the small quantum cohomology ring of partial flag
varieties. To start with, let n =nq+...+ng, k € Zgez be a composition of size n, and consider
the set

Sm)={(,j) EZXZ1<i< Ny Mo1+1<j< M, a=1,....k—1},

where Ny =n1+ ...+ 1, No=0,Ny =n M, =n411+...+ng, Mg=n,M;,=0.
With these data given, let us introduce the set of variables

Zn = Az | (i,j) € X(n)},

and define “boundary conditions” as follows
® ZiMi+1 :0, if Na—1+2§i§Na, a = 1,...,]{3—1,
® ZN,+1,5 = OQ, if Ma+1+2§j SMa, a = 1,...,]{3—1,
® 2N, 14+1,Mo+1 = qa, a=1,...,k, where q1,...,q; are “quantum parameters.
Now we are ready, follow [34], to define superpotential

Zij+1 Zi,j
Won= > (FF+ )
(pj)es@m) LI

Conjecture 6.1. (Cf. [34]) There exists an isomorphism of rings
QH[*Q] (Flnh...,nk)Z) = Z[Qlilu e 7QIi;leZ1’:i:1]/J(Wq,n)7

where QH[*Q](}'ZMW,M,Z) denotes the subring of the ring QH*(Fly, .. n.,Z) generated by the

elements from H?*(Fly, . ny,Z);
J(Wyn) stands for the ideal generated by the partial derivatives of the superpotential W, ,, :

oW, .
TWam) = (905), () € S(n).
i
Note that variables {z;; € ¥(n), i # N, +1, a =0,...,k — 2} are redundant, whereas
the variables {zq; := Z&iﬂj’ j=1,...,n4, a=0,...,k — 2} satisfy the system of algebraic
equations.

In the case of complete flag variety Fl,, corresponds to partition n = (1") and the superpo-
tential Wy 1» is equal to

Zij+1 Zi,j
Wy in = Z (J i j )7

1<i<jen—1 i FimLjtl
where we set 2, == ¢;, i = 1,...,n. The ideal J(W, 1) is generated by elements
Wgin 1 N 1 _ Zig+l Tt Zic1j-1
= 5 .
Zi,j Zig—1  Zi=1,j+1 Zij

One can check that the ideal J(W, 1») can be also generated by elements of the form

i
(4) j—i—1
E A]. (q1s s Qi 1y Znots ooy Znmifl) 25y =
J=0

= ]-7 A(()l) =q1° " 4n—i+1,
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1

where z; :=2;;, i=1,...n— 1. For example,

Aqn=1, @ g —q =1,

q1 92 q3 22_2 —2q1 92 G3 Zn—1 Zn—2 Zn—3 +q2 q3 Zi_g +q3 2pn—4 = 1.

Therefore the number of critical points of the superpotential W, is equal to n! = dimH*(Fl,,Z), as
it should be. Note also that QH*(Fl,,Z) = QHy (Fln,Z).

6.3 Appendix III Koszul dual of quadratic algebras and Betti numbers

Let k be a field of zero characteristic, F™ = k < z1,...,2, >= @jzo Fj(n) be the free
associative algebra generated by {z;, 1 < i < n}. Let A = F" /I be a quadratic alge-
bra, i.e. the ideal of relations I is generated by the elements of degree 2, I C FQ(”). Let
F)* = Hom(F,, k) = D,>o FJ(Wk with a multiplication induced by the rule fg(ab) = f(a)g(b),
FerE™ ge M aeFM be F\". Let Iy = {f € Fy")", f(I2) = 0}, and denote by I*
the two-sided ideal in F(™* generated by the set Ij.

Definition 6.5. The Koszul (or quadratic) dual A' of a quadratic algebra A is defined to
be A':=FMr/rtL

The Koszul dual of a quadratic algebra A is a quadratic algebra and (A')' = A.

Examples 6.1. (1) Let A = F") be the free associative algebra, then the quadratic duel A' =

(2) If A=k[x1,...,zy,] is the ring of polynomials, then

A! = k[yla s ayn]/([yhy]]_? 1< Za] < n)7
2

where we put by definition [y;,y;] = yiyj + iy, if i # j, and [y, y:] = y;.

(3) (cf [63], (b), Chapter 5) Let A= F™/(f1,..., f), where f; = d1<jk<n GijkTj Tk,
i=1,...,r are linear independent elements of degree 2 in F"). Then the quadratic dual of A
is equal to the quotient algebra A' = k < y1,--+ ,yn > /J, where the ideal J =< g1,...,g9s >
, s =n?—r, is generated by elements gy, = Zlgj,kgn bimjk Yj Yk The coefficients by, i, m =
I,...,8,1 < 4,k <mn, can be defined from the system of linear equations Zlgj,kgn aijk bmjk =
0,:=1,....r, m=1,...,s.

[ |
Let A= ;>0 4 be a graded finitely generated algebra over field k.

Definition 6.6. The Hilbert series of a graded algebra A is defined to be the generating
function of dimensions of its homogeneous components: Hilb(A,t) =", -, dimAy th.
The Betti numbers Ba(n, m) of a graded algebra A are defined to be Ba(i, j) := dimTorf (k, k)j.
The Poincaré series of algebra A is defined to be the generating function for the Betti
numbers: Pa(s,t) 1= ;50550 Ba(i, j)s't).
Definition 6.7. A quadratic algebra A is called Koszul iff the Betti numbers B(i,j) are equal
to zero unless © = j.

(&) It is well-known that Hilb(A,t)Pa(—1,t) = 1, and a quadratic algebra A is Koszul, if
and only if Ba(i,j) = 0 for all i # j. In this case Hilb(A,t) Hilb(A', —t) = 1.

Example 6.1. Let F,(LO) be a quotient of the free associative algebra F,, over field k with the set
of generators {x1,...,x,} by the two-sided ideal generated by the set of elements {z?%,... z2}.

Then the algebra F}O)n 1s Koszul, and Hz’lb(Fqs,O),t) = %
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6.4 Appendix IV Hilbert series Hilb(3T?,t) and Hilb((3TP)',t): Examples *°

Examples 6.2. Hilb(313,t) = [2]?[3], Hilb(3TY,t) = [2]?[3]?[4],
Hilb(3T2,t) = [4]4[5]%[6]4, Hilb(3TY,t)
= (1,15, 125, 765, 3831, 16605, 64432, 228855, 755777, 2347365, 6916867, 19468980,
52632322, 137268120, 346652740, 850296030, - - - ).
= Hilb(3T2,t)(1, 5,20, 70,220, 640, 1751, 4560, 11386, 27425, 64015, 145330, 321843,
696960, 1478887, 3080190, - - - ).
Hilb(3T9,t) = Hilb(3TY,t)(1,6,30,135,560,2190, 8181, 29472, 103032, 351192,
1170377, ---).
Hilb(3TY,t) = Hilb(3T2,)(1,7,42,231,1190, 5845, 27671, 127239, 571299, 2514463,

Hilb((3T9)', t)(1 —t) = (1,2,2,1), Hilb((3TY)',t)(1 —t)? = (1,4,6,2, —5, —4, —1),
Hilb((3T9)',t)(1 — )% = (1,8,26,40,19, —18, —22, -8, —1),
Hilb((3T9), t)(1 — )3 = (1,12, 58,134,109, —112, —245, —73, 68, 50, 12, 1),
Hilb((3T2)',¢)(1 — t)® = (1,18, 136, 545, 1169, 1022, —624, —1838, —837, 312,374,123, 18, 1).
We expect that Hilb((3T0)',t) is a rational function with the only pole at t = 1 of order
[n/2], and the polynomial Hilb((3T0)"',t)(1 — )"/ has degree equals to [5n/2] — 4, if n > 2.

6.5 Appendix V Summation and Duality transformation formulas [41]

Summation Formula Leta; +---+a, =0>0. Then

" ' [x; —xj +ag]\ [z +y—0] [y + x; — a4
>l (G20 g =0 I PG5

i=1 i 1<i<m

Duality transformation, case N =1 Letai+---+ay, =01+---+b,. Then

[ai]H[wz‘—xﬂLag‘] 11 [zi + yp — b))

— by [z — 5] 1 Shsn [z; + Y]

3

[b4] H [yx — yi + by H [yk“‘xi—ai].

k=1 Ik [y = wi] 1<i<m [k + i)
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