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We present an example of three-level non-adiabatic transition probability problem in
which virtual turning points (or, active new Stokes curves) are inevitable for calculation
of the transition probabilities.

The equation we consider is

i
d

dt
Ψ = ηH(t, η)Ψ, (1)

where Ψ = Ψ(t, η) is a 3-vector, η > 0 is a large parameter and H(t, η) is a 3 × 3 matrix
given below:

H(t, η) = H0(t) + η−1/2H1/2

=

 ρ1(t) 0 0
0 ρ2(t) 0
0 0 ρ3(t)

 + η−1/2

 0 c12 c13

c12 0 c23

c13 c23 0

 (2)

with real polynomials ρ1(t), ρ2(t), ρ3(t) and complex constants c12, c13, c23. Calculating
transition probabilities is reduced to calculating continuation of solutions of (1) from
t = −∞ to t = +∞. See [AKT2] and references cited there for detail.

In [AKT2], examples which have turning points only on the real axis are studied from
the viewpoint of the exact WKB analysis, and in such cases new Stokes curves (, which
were first discovered in [BNR]) are always inert near the real axis ([AKT2, §4]). Therefore
virtual turning points (, which were introduced in [AKT1]) and new Stokes curves are
irrelevant to the transition probabilities, that is, we obtain correct connection matrix
by calculating analytic continuation along the real axis even if we ignore virtual turning
points and new Stokes curves. Then in [S], a family of examples which have turning points
off the real axis is considered, and there are active Stokes curves crossing the real axis.
Thus, if we consider continuation along the real axis, we cannot disregard new Stokes
curves. As a matter of fact, in those examples we can find paths from t = −∞ to t = +∞
which avoid all active parts of new Stokes curves. At the same time, the paths are very
complicated and, in order to find out such paths, we need precise information about the
location of new Stokes curves, as is mentioned in [S].
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Figure 1: Turning points and ordinary Stokes curves for c = 0.4.

In this article, we present an example in which there is no path from t = −∞ to
t = +∞ avoiding all active new Stokes curves, so that we have another evidence which
manifests the importance of virtual turning points and new Stokes curves in this problem.

Let ρ1(t) = t3, ρ2(t) = −t and ρ3(t) = −t + c + c3 with c = 0.4. Then turning
points of type (1, 2) are at 0, ±i and those of type (1, 3) are at 0.4, −0.2 ± i

√
1.12. The

configuration of its turninig points and Stokes curves is shown in Figure 1. Inequalities
express types of Stokes curves. For example, 1 < 2 means that (η/i)

∫ t

t0
(ρ1 − ρ2) dt < 0

holds on the curve, where t0 is the turning point from which the curve emanates.
Now in order to obtain complete Stokes geometry we add virtual turning points and

new Stokes curves accoding to the procedure explained in [AKT2]. Here a complete
Stokes geometry means a collection of (ordinary and virtual) turning points and Stokes
curves emanating from them in which all the ordered crossing points of Stokes curves are
resolved. (Cf. [AKT2].) Actually we encounter some degeneracy of Stokes geometry in
the process, and so we give small perturbation c = 0.4 7→ 0.4+0.01i. Then the procedure
gives the Stokes geometry shown in Figure 2. Blue dots represent virtual turning points,
blue lines are new Stokes curves, whose dashed (resp. solid) parts are inert (resp. active).
Neighborhoods of t = −0.05 + i, −0.1 and −0.175 − 1.05i are enlarged. We find that
there is a ‘barrier’ of active new Stokes curves and that we cannot go from t = −∞
to t = +∞ without crossing an active new Stokes curve. In order to make it easy to
grasp the situation, we present Figure 3, where ordinary Stokes curves, i.e., red curves are
presented by dashed lines. We emphasize that a barrier is also formed solely by Stokes
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Figure 2: Complete Stokes geometry for c = 0.4 + 0.01i. Some parts near the imaginary
axis are enlarged.
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Figure 3: ‘Barrier’ of active Stokes curves for c = 0.4 + 0.01i.
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Figure 4: Stokes curves near the real axis for c = 0.4 + 0.01i. Inert new Stokes curves are
omitted.
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curves on which WKB solutions of type 2 is dominant (i.e., the label “1 < 2” or “3 < 2”
is attached to them). Therefore as we calculate the analytic continuation of solutions of
(1), it is inevitable to go across an active new Stokes curve.

Now apart from the problem whether we can avoid active new Stokes curves or not,
we carry out the calculation of analytic continuation from t = −∞ to t = +∞ along the
real axis. First, let us check the configuration of active (ordinary and new) Stokes curves
near the real axis. There are eight ordinary Stokes curves and two new Stokes curves
(Figure 4). To describe the continuation concretely, let Ψ(j) be a WKB solution of type j
(namely a WKB solution whose exponential factor is exp[(η/i)

∫ t

t0
ρj(t) dt]) (j = 1, 2, 3).

See [AKT2] for details about WKB solutions of (1). We avoid the two turning points
upward, and encounter two new Stokes curves and four ordinary ones (Figure 4). Then
we let α1, α2, α3, α4, β1 and β2 denote the Stokes coefficients for those Stokes curves
as specified in Figure 4. For example, when we pass over the Stokes curve to which
β1 is attached, WKB solutions change as (Ψ(1), Ψ(2), Ψ(3)) 7→ (Ψ(1), Ψ(2) + β1Ψ

(3), Ψ(3)).
Combining six relations of this kind together, we then obtain

(Ψ(1), Ψ(2), Ψ(3)) 7→ (Ψ(1), Ψ(2), Ψ(3))M+ (3)

with the connection matrix

M+ =

 1 α1(1 + β1β2) + α3β1 α3 + α1β2

α2 (1 + α1α2)(1 + β1β2) (1 + α1α2)β2

α4 α1α4(1 + β1β2) + (1 + α3α4)β1 1 + α3α4 + α1α4β2

 . (4)

Noting that (j, k)-element is related to the probability of transition from k to j (if we
take suitably normalized WKB solutions as Ψ(j)’s), we look at (2, 3)-element (1+α1α2)β2,
which is proportional to β2. Recalling that β2 is a Stokes coefficient attached to a new
Stokes curve, we conclude that the effect of virtual turning points and new Stokes curves
is inevitable for calculationg transition probabilities of this example.

-1.05

-1

-0.95

-0.9

-0.85

-0.25 -0.2 -0.15 -0.1 -0.05  0

2<1 2<3 1<3

¡¡µ
-

@@R

t1

t2

β2

α5
α6

C

v

Figure 5: Configuration of some
Stokes curves near a virtual turning
point in the lower half-plane.

Now we give a few remarks on this transi-
tion. The new Stokes curve to which β2 is at-
tached originates from a virtual turning point in
the lower half-plane (' −0.105724− 1.024767i),
and it passes through ordered crossing points of
Stokes curves emanating from the couple of turn-
ing points thereabout. In Figure 5 we focus our
attention on the configuration of the new Stokes
curve mentioned above together with ordinary
Stokes curves relevant to it; some other Stokes
curves are omitted for the simplicity of illustra-
tion. In Figure 5 the crossing point C of the or-
dinary Stokes curves emanating from tj (j = 1,
2) to which Stokes coefficient α5 and α6 are at-
tached, is an ordered one, and it is resolved by
the new Stokes curve emanationg from the vir-
tual turning point v; it is inert near v, and after
passing over the crossing point, it becomes active
with the Stokes coefficient β2, which is actually

5



given by α5α6. (See, e.g., [BNR], [AKT1].) At the same time, any Stokes curve from tj
(j = 1, 2) does not cross the real axis. Therefore we have found that the new Stokes curve
in question visualizes the indirect effect of t1 and t2 to the transition probabilities.

As for quantitative features of Stokes coefficients, some exponential factors are con-
tained in them. More specifically, for a Stokes curve of type j < k emanating from a
turning point tjk, exp[(η/i)

∫ tjk

t0
(ρk − ρj) dt] is included in the Stokes coefficient, where

t0 is a point on the real axis (cf. [AKT2, §4]). Therefore Stokes coefficients related to
turning points on the real axis such as α1, α2, α3 and α4 are not exponentially large nor
small. On the other hand, β2 is exponentially small. In fact, since β2 = α5α6 holds, its
exponential factor can be written as

exp

[
η

i

∫ C

t0

(ρ3 − ρ2) dt +
η

i

∫ t1

C

(ρ1 − ρ2) dt +
η

i

∫ t2

C

(ρ3 − ρ1) dt

]
, (5)

each term of whose exponent is negative. Similarly β1 is also exponentially small. Thus
most of terms in M+ having β1 or β2 could be negligible in that they are exponentially
small compared to the other terms. Still, as to (2, 3)-element, such terms give the only
contribution, and we cannot disregard at all.

As ending this article, we give some materials for the opposite perturbation c = 0.4 7→
0.4−0.01i. Figure 6 is the complete Stokes geometry. Neighborhoods of t = −0.175+1.05i,
−0.1 and −0.05 − i are enlarged. Red lines are dashed in Figure 7. Figure 8 shows the
configuration near the real axis. We remark that the location of the two new Stokes curves
is reversed. The connection matrix is

M− =

 1 α1 + α3β1 α3(1 + β1β2) + α1β2

α2 1 + α1α2 (1 + α1α2)β2

α4 α1α4 + (1 + α3α4)β1 (1 + α3α4)(1 + β1β2) + α1α4β2

 . (6)

Concerning this perturbation, we reach the same conclusion.

The author would like to thank Professor Takahiro Kawai, who kindly led his attention
to this problem, for his cheerful encouragement and invaluable advice. He is also grateful
to Professor Yoshitsugu Takei for useful comments.
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Figure 6: Complete Stokes geometry for c = 0.4 − 0.01i. Some parts near the imaginary
axis are enlarged.
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Figure 7: ‘Barrier’ of active Stokes curves for c = 0.4 − 0.01i.
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Figure 8: Stokes curves near the real axis for c = 0.4− 0.01i. Inert new Stokes curves are
omitted.
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