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Abstract. — The Neukirch-Uchida theorem asserts that every outer isomorphism between
the absolute Galois groups of number fields arises from a uniquely determined isomorphism
between the given number fields. We thus conclude that the isomorphism class of a number
field is completely determined by the isomorphism class of the absolute Galois group of the
number field. On the other hand, the Neukirch-Uchida theorem, as well as the proof of the
theorem, does not give any “explicit reconstruction of the given number field”. In other words,
the Neukirch-Uchida theorem yields only a bi-anabelian reconstruction of number fields. In the
present paper, we discuss a mono-anabelian reconstruction of number fields. In particular, we
give a functorial “group-theoretic” algorithm for reconstructing, from [a suitable quotient of]
the absolute Galois group of a number field, [the subfield of] the algebraic closure of the given
number field — which determines the [quotient of the] absolute Galois group — equipped
with the natural action of the [quotient of the] absolute Galois group. In our discussion, we
construct a global cyclotome [i.e., a cyclotome constructed from a global Galois group] and
the local-global cyclotomic synchronization isomorphism [i.e., a suitable isomorphism between
a global cyclotome and a local cyclotome]. Moreover, we also prove a compatibility of our
reconstruction algorithm with the reconstruction algorithm given by S. Mochizuki concerning
the étale fundamental groups of hyperbolic orbicurves of strictly Belyi type over number fields.
Finally, we discuss the global mono-anabelian log-Frobenius compatibility of the reconstruction
algorithm obtained in the present paper.
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Introduction

The theme of the present paper is the following naive question:

Can one reconstruct a number field [i.e., a finite extension of the field
of rational numbers] from the absolute Galois group of the given number
field?

Now let us recall the following result, i.e., the Neukirch-Uchida theorem [cf., e.g., [11],
Theorem 12.2.1]:

For � ∈ {◦, •}, let F� be a number field and F� an algebraic closure of

F�. Write G�
def
= Gal(F�/F�);

Isom(F •/F•, F ◦/F◦)

for the set of isomorphisms F •
∼→ F ◦ of fields which map F• bijectively

onto F◦;

Isom(G◦, G•)

for the set of isomorphisms G◦
∼→ G• of profinite groups. Then the natural

map

Isom(F •/F•, F ◦/F◦) −→ Isom(G◦, G•)

is bijective.

That is to say, every outer isomorphism between the absolute Galois groups of number
fields arises from a uniquely determined isomorphism between the given number fields. In
other words, the functor of “taking the absolute Galois group” from the full subcategory
consisting of number fields of the category of fields and field isomorphisms to the category
of profinite groups and outer isomorphisms is fully faithful. It follows from the [surjectivity
portion of the] Neukirch-Uchida theorem that the isomorphism class of a number field
is completely determined by the isomorphism class of the absolute Galois group of the
number field. From this point of view, one may consider that the Neukirch-Uchida
theorem gives an affirmative answer to the above naive question.

On the other hand, let us observe that the Neukirch-Uchida theorem [as well as the
proof of the theorem] does not give any “explicit reconstruction of the given number field”.
That is to say, although one may conclude from the Neukirch-Uchida theorem that the
isomorphism class of a number field is completely determined by the isomorphism class of
the associated absolute Galois group, the Neukirch-Uchida theorem does not tell us how
to reconstruct explicitly the given number field from the associated absolute Galois group.
In other words, the Neukirch-Uchida theorem yields only a bi-anabelian reconstruction
— in the sense of [9], Introduction [cf. also [9], Remark 1.9.8] — of number fields.

In the present paper, we discuss a mono-anabelian reconstruction — in the sense of
[9], Introduction [cf. also [9], Remark 1.9.8] — of number fields. In particular, we cen-
ter around the task of establishing a “group-theoretic software” [i.e., “group-theoretic
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algorithm”] whose input data consists of a single abstract profinite group — which is iso-
morphic to [a suitable quotient of] the absolute Galois group of a number field — and
whose output data consists of a field — which is isomorphic to [a suitable subfield of] an
algebraic closure of a number field — equipped with an action of the profinite group.

We shall say that an algebraic extension of the field of rational numbers is absolutely
Galois (respectively, solvably closed) if the extension field is Galois over the field of ra-
tional numbers (respectively, does not admit a nontrivial finite abelian extension) [cf.
Definition 3.1]. We shall say that a profinite group G is of AGSC-type if there exist a

number field F , a Galois extension F̃ of F which is absolutely Galois and solvably closed,

and an isomorphism of G with Gal(F̃ /F ) of profinite groups [cf. Definition 3.2]. [In par-
ticular, if a profinite group is isomorphic to the absolute Galois group of a number field,
then the profinite group is of AGSC-type.] Then the main result of the present paper may
be summarized as follows:

THEOREM A. — There exists a functorial “group-theoretic” algorithm [cf. [9],
Remark 1.9.8, for more on the meaning the terminology “group-theoretic”]

G 7→ (G y F̃ (G))

for constructing, from a profinite group G of AGSC-type [cf. Definition 3.2], a field

F̃ (G) which is absolutely Galois and solvably closed equipped with an action of G

such that the subfield F̃ (G)G of F̃ (G) consisting of G-invariants is a number field, and,

moreover, the action of G on F̃ (G) determines an isomorphism of profinite groups

G
∼−→ Gal(F̃ (G)/F̃ (G)G).

We thus conclude from Theorem A that every profinite group which is isomorphic to
the absolute Galois group of a number field admits a ring-theoretic basepoint [i.e., a “ring-
theoretic interpretation” or a “ring-theoretic label”] group-theoretically constructed from
the given profinite group. Note that, in the proof of Theorem A, the Neukirch-Uchida
theorem plays a crucial role; in particular, [the proof of] Theorem A does not give an
alternative proof of the Neukirch-Uchida theorem.

In the present paper, we also verify a compatibility of the reconstruction algorithm
of Theorem A with the reconstruction algorithm obtained in [9], Theorem 1.9, in the
case where the “k” of [9], Theorem 1.9, is a number field. More precisely, we verify the
following assertion [cf. Theorem 5.13]: Let Π be a profinite group which is isomorphic
to the étale fundamental group of a hyperbolic orbicurve of strictly Belyi type over a
number field [cf. [8], Definition 3.5]. Write

Π y F (Π)

for the algebraically closed field equipped with an action of Π obtained by applying
the functorial “group-theoretic” algorithm given in [9], Theorem 1.9, to Π [i.e., the field

“k
×
NF ∪ {0}” of [9], Theorem 1.9, (e)] and

Π � Q
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for the arithmetic quotient of Π, i.e., the quotient of Π by the [uniquely determined — cf.
[7], Theorem 2.6, (vi)] maximal topologically finitely generated normal closed subgroup
of Π. [Thus, Q is a profinite group of AGSC-type — cf. [7], Theorem 2.6, (vi) — which

thus implies that one may apply Theorem A to Q to construct a field F̃ (Q) equipped
with an action of Q.] Then the natural surjection Π � Q group-theoretically determines
an isomorphism of fields

F̃ (Q)
∼−→ F (Π)

which is compatible with the natural actions of Q and Π relative to the surjection Π � Q.

Finally, we verify that the reconstruction algorithm of Theorem A also satisfies the
global mono-anabelian log-Frobenius compatibility [cf. Theorem 6.10], i.e., a compatibility
with the NF-log-Frobenius functor log [cf. Definition 6.8].

The present paper is organized as follows: In §1, we review mono-anabelian recon-
structions of various objects which arise from a mixed characteristic local field [cf. The-
orem 1.4]. In §2, we discuss an NF-monoid [cf. Definition 2.3]. In particular, we obtain
a mono-anabelian reconstruction of the “additive structure” on an NF-monoid [cf. Theo-
rem 2.9]. Note that the main result of §2 was already essentially proved in [3]; however,
the author discussed, in [3], the issue of reconstruction of additive structure in not a
“mono-anabelian” fashion but a “bi-anabelian” fashion. In §3, we define a cyclotome
[cf. Proposition 3.7, (4)] associated to a profinite group of GSC-type [cf. Definition 3.2].
Moreover, we discuss the local-global cyclotomic synchronization isomorphism [cf. Theo-
rem 3.8, (ii)], i.e., a suitable isomorphism of a global cyclotome with a local cyclotome.
By means of the local-global cyclotomic synchronization isomorphism, we construct the
Kummer containers associated to a profinite group of GSC-type [cf. Proposition 3.11].
In §4, we discuss a GSC-Galois pair [cf. Definition 4.1]. In particular, by means of the
main result of §2, we obtain a mono-anabelian reconstruction of the “additive struc-
ture” on a GSC-Galois pair [cf. Theorem 4.4]. In §5, we finish establishing the functorial
“group-theoretic” algorithm of Theorem A and prove a compatibility of our reconstruc-
tion algorithm with the reconstruction algorithm obtained in [9], Theorem 1.9. In §6, we
give an interpretation of the global reconstruction result obtained in the present paper
in terms of a certain compatibility with the NF-log-Frobenius functor [cf. Theorem 6.10].
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0. Notations and Conventions

Numbers. — The notation N will be used to denote the monoid of nonnegative rational
integers [with respect to the addition]. The notation Z will be used to denote the ring of
rational integers. The notation Q will be used to denote the field of rational numbers. If
n ∈ Z, then we shall write Z≥n ⊆ Z for the subset of Z consisting of m ∈ Z such that
m ≥ n. If p is a prime number, then we shall write Qp for the field obtained by forming

the p-adic completion of Q and Fp
def
= Z/pZ for the finite field of cardinality p.

Sets. — Let S be a finite set. Then we shall write ]S for the cardinality of S.
Let G be a group and S a G-set. Then we shall write SG ⊆ S for the subset of S

consisting of G-invariants.

Monoids. — In the present paper, a “monoid” always means a “commutative monoid”.
Let M be a monoid. [The monoid operation of M will be written multiplicatively.] Then
we shall write M× ⊆M for the abelian group of invertible elements of M . We shall write
Mgp for the groupification of M , i.e., the monoid [which is, in fact, an abelian group] given
by the set of equivalence classes with respect to the relation “∼” on M ×M defined as
follows: For (a1, b1), (a2, b2) ∈M ×M , it holds that (a1, b1) ∼ (a2, b2) if and only if there
exists an element c ∈ M such that ca1b2 = ca2b1. We shall write Mpf for the perfection
of M , i.e., the monoid given by the induction limit of the inductive system I∗ of monoids

· · · −→ M −→M −→ · · ·

given by assigning to each element of n ∈ Z≥1 a copy of M , which we denote by In, and to
every two elements n, m ∈ Z≥1 such that n divides m the morphism In = M → Im = M

given by multiplication by m/n. We shall write M~ def
= M ∪ {∗M}; we regard M~ as a

monoid by a · ∗M
def
= ∗M , ∗M · a

def
= ∗M , ∗M · ∗M

def
= ∗M for every a ∈M .

Modules. — Let M be a module. If n ∈ Z, then we shall write M [n] ⊆ M for
the submodule obtained by forming the kernel of the endomorphism of M given by

multiplication by n. We shall write Mtor
def
=

⋃
n∈Z≥1

M [n] ⊆ M for the submodule of

torsion elements of M ,

M∧ def
= lim←−

n

M/nM

— where the projective limit is taken over the positive integers n — and Ẑ def
= Z∧. Thus,

if M is finitely generated, then M∧ is naturally isomorphic to the profinite completion of
M .

Groups. — Let G be a group and H ⊆ G a subgroup of G. Then we shall write
ZG(H) ⊆ G for the centralizer of H in G, i.e., the subgroup consisting of g ∈ G such that
gh = hg for every h ∈ H. We shall write NG(H) ⊆ G for the normalizer of H in G, i.e., the
subgroup consisting of g ∈ G such that H = gHg−1. We shall write CG(H) ⊆ G for the
commensurator of H in G, i.e., the subgroup consisting of g ∈ G such that H∩gHg−1 is of
finite index in both H and gHg−1. We shall say that H is normally terminal (respectively,
commensurably terminal) in G if NG(H) = H (respectively, CG(H) = H).



6 Yuichiro Hoshi

Topological Groups. — Let G be a topological group. Then we shall write Gab for
the abelianization of G [i.e., the quotient of G by the closure of the commutator subgroup
of G], Gab/tor for the quotient of Gab by the closure of (Gab)tor ⊆ Gab, and Aut(G) for
the group of [continuous] automorphisms of G.

Let G be a profinite group and p a prime number. Then we shall write G(p) for the
maximal pro-p quotient of G and G(p′) for the maximal pro-prime-to-p quotient of G.

Rings. — In the present paper, a “ring” always means a “unital associative commutative
ring”. Let R be a ring. Then we shall write R× ⊆ R for the abelian group of invertible

elements of R and RB def
= R \ {0} ⊆ R for the monoid of nonzero elements of R [with

respect to the multiplication]. Thus, we have a natural inclusion R× ⊆ RB of monoids.

Fields. — Let K be a field [i.e., a ring such that K× = KB]. Then we shall write

µ(K)
def
= (K×)tor for the group of roots of unity of K and K× for the monoid obtained by

forgetting the additive structure of K. Thus, we have a natural isomorphism (K×)~ ∼→
K× of monoids. If, moreover, K is algebraically closed and of characteristic zero, then we
shall write

Λ(K)
def
= lim←−

n

µ(K)[n] = lim←−
n

K×[n]

— where the projective limits are taken over the positive integers n — and refer to Λ(K)
as the cyclotome associated to K. Thus, the cyclotome is [noncanonically] isomorphic to

Ẑ; moreover, we have a natural identification µ(K)[n] = Λ(K)/nΛ(K).
We shall refer to a field which is isomorphic to a finite extension of Q as an NF [i.e., a

number field]. We shall refer to a field which is isomorphic to a finite extension of Qp for
some prime number p as an MLF [i.e., a mixed characteristic local field].
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1. Review of the Local Theory

In the present §1, let us review mono-anabelian reconstructions of various objects which
arise from an MLF [cf. Theorem 1.4 below].

In the present §1, let

k

be an MLF. We shall write

• Ok ⊆ k for the ring of integers of k,

• mk ⊆ Ok for the maximal ideal of Ok,

• k
def
= Ok/mk for the residue field of Ok,

• pk
def
= char(k) for the characteristic of k,

• dk for the extension degree of k over the subfield of k obtained by forming the closure
of the prime field contained in k [i.e., “[k : Qpk

]”],

• ordk : k× � Z for the [uniquely determined] surjective valuation on k,

• ek
def
= ordk(pk) for the absolute ramification index of k, and

• fk for the extension degree of k over the prime field contained in k [i.e., “[k : Fpk
]”].

Let

k

be an algebraic closure of k. We shall write

• Gk
def
= Gal(k/k) for the absolute Galois group of k with respect to k/k,

• Ik ⊆ Gk for the inertia subgroup of Gk,

• Pk ⊆ Ik for the wild inertia subgroup of Gk, and

• Frobk ∈ Gk/Ik for the []k-th power] Frobenius element of Gk/Ik.

DEFINITION 1.1. — Let G be a group. Then we shall refer to a collection of data

(K, K, α : Gal(K/K)
∼→ G)

consisting of an MLF K, an algebraic closure K of K, and an isomorphism α : Gal(K/K)
∼→

G of groups as an MLF-envelope for G. We shall say that the group G is of MLF-type if
there exists an MLF-envelope for G.

PROPOSITION 1.2. — Let G be a group of MLF-type. Then the following hold:

(i) The natural homomorphism

G −→ lim←−
N

G/N

— where the projective limit is taken over the normal subgroups N ⊆ G of G of finite
index — is an isomorphism of groups. By means of this isomorphism, we always regard
a group of MLF-type as a profinite group.
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(ii) Let

(k, k, α : Gk
∼→ G)

be an MLF-envelope for G. Then the isomorphism α is an isomorphism of profinite
groups.

Proof. — Assertion (i) follows from [12], Theorem 1.1, together with the fact that
the absolute Galois group of an MLF is topologically finitely generated [cf., e.g., [11],
Theorem 7.4.1]. Assertion (ii) follows from assertion (i). This completes the proof of
Proposition 1.2. �

REMARK 1.2.1. — One verifies immediately that every open subgroup of a profinite group
of MLF-type is of MLF-type.

LEMMA 1.3. — The following hold:

(i) The reciprocity homomorphism k× → Gab
k in local class field theory determines a

commutative diagram

1 −−−→ O×k −−−→ k×
ordk−−−→ Z −−−→ 1

o
y o

y o
y

1 −−−→ Im(Ik ↪→ Gk � Gab
k ) −−−→ Gab

k ×Gk/Ik
FrobZ

k −−−→ FrobZ
k −−−→ 1∥∥∥ y y

1 −−−→ Im(Ik ↪→ Gk � Gab
k ) −−−→ Gab

k −−−→ Gk/Ik −−−→ 1

— where the horizontal sequences are exact, the upper vertical arrows are isomor-
phisms, the lower vertical arrows are the natural inclusions, the upper right-hand vertical
arrow maps 1 ∈ Z to Frobk ∈ FrobZ

k , and we write FrobZ
k ⊆ Gk/Ik for the [discrete] sub-

group of Gk/Ik generated by Frobk.

(ii) The prime number pk may be characterized as a unique prime number l such

that logl(](G
ab/tor
k /l ·Gab/tor

k )) ≥ 2.

(iii) It holds that dk = logpk
(](G

ab/tor
k /pk ·Gab/tor

k ))− 1.

(iv) It holds that fk = logpk
(1 + ]((Gab

k )tor)
(p′k)).

(v) It holds that ek = dk/fk.

(vi) The closed subgroup Ik ⊆ Gk may be characterized as the intersection of the
normal open subgroups N ⊆ Gk of Gk such that ek = ekN

, where we write kN for the
intermediate extension of k/k corresponding to N .

(vii) The closed subgroup Pk ⊆ Gk may be characterized as the intersection of the
normal open subgroups N ⊆ Gk of Gk such that the integer ekN

/ek is prime to pk, where
we write kN for the intermediate extension of k/k corresponding to N .
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(viii) The element Frobk ∈ Gk/Ik may be characterized as a unique element of Gk/Ik

such that the action on [the abelian group] Ik/Pk by conjugation is given by multiplication

by pfk

k .

(ix) The upper left-hand vertical arrow of the diagram of (i) determines an isomor-

phism k×
∼→ Im(Ik ↪→ Gk � Gab

k )(p′k) of modules.

(x) The exact sequences of Gk-modules

1 −→ µ(k)[n] −→ k
× n−→ k

× −→ 1

— where n ranges over the positive integers — determine an injection

Kmmk : k× ↪→ H1(Gk, Λ(k)).

Proof. — Assertion (i) follows from local class field theory [cf., e.g., [10], Chapter V,
§1]. Assertions (ii), (iii), (iv), (ix) follow immediately from assertion (i), together with the
well-known explicit description of the topological module k× [cf., e.g., [10], Chapter II,
Proposition 5.3; also [10], Chapter II, Proposition 5.7, (i)]. Assertion (v) follows from [10],
Chapter II, Proposition 6.8. Assertions (vi), (vii) follow immediately from the definitions
of Ik, Pk, respectively. Assertion (viii) follows immediately from [11], Proposition 7.5.2,

together with the easily verified faithfulness of the action of “Γ” [in loc. cit.] on “Ẑ(p′)(1)”
[in loc. cit.]. Assertion (x) follows immediately from the fact that there is no nontrivial
divisible element in k× [cf., e.g., [10], Chapter II, Proposition 5.7, (i)]. This completes
the proof of Lemma 1.3. �

THEOREM 1.4. — In the notation introduced at the beginning of §1, let G be a profinite
group of MLF-type [cf. Definition 1.1; Proposition 1.2, (i)]. We shall define various
objects which arise from G as follows:

(1) It follows from Lemma 1.3, (ii), that there exists a unique prime number l such
that logl(](G

ab/tor/l ·Gab/tor)) ≥ 2. We shall write

p(G)

for this prime number.

(2) We shall write

d(G)
def
= logp(G)(](G

ab/tor/p(G) ·Gab/tor))− 1,

f(G)
def
= logp(G)(1 + ]((Gab)tor)

(p(G)′)),

e(G)
def
= d(G)/f(G).

Note that it follows from Lemma 1.3, (ii), (iii), (iv), that d(G), f(G), e(G) are positive
integers.

(3) We shall write
I(G) ⊆ G

for the normal closed subgroup obtained by forming the intersection of the normal open
subgroups N ⊆ G of G such that e(N) = e(G) and

P (G) ⊆ G
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for the normal closed subgroup obtained by forming the intersection of the normal open
subgroups N ⊆ G of G such that the positive integer e(N)/e(G) is prime to p(G).

(4) It follows from Lemma 1.3, (viii), that there exists a unique element of G/I(G)
whose action on [the abelian group] I(G)/P (G) by conjugation is given by multiplication
by p(G)f(G). We shall write

Frob(G) ∈ G/I(G)

for this element.

(5) We shall write

O×(G)
def
= Im(I(G) ↪→ G � Gab)

for the image of I(G) in Gab. By considering the topology induced by the topology of
I(G), we regard O×(G) as a profinite, hence also topological, module. We shall write

k×(G)
def
= O×(G)(p(G)′)

for the module obtained by forming the maximal pro-prime-to-p(G) quotient of O×(G).

(6) We shall write

k×(G)
def
= Gab ×G/I(G) Frob(G)Z

— where we write Frob(G)Z for the [discrete] subgroup of G/I(G) generated by Frob(G)
— and

OB(G)
def
= Gab ×G/I(G) Frob(G)N

— where we write Frob(G)N for the [discrete] submonoid of G/I(G) generated by Frob(G).
Note that the topology of O×(G) discussed in (5) naturally determines respective structures
of topological module, monoid on k×(G), OB(G).

(7) We shall write
ord(G) : k×(G) � Frob(G)Z

for the natural surjection. Thus, we have an exact sequence of topological modules

1 −→ O×(G) −→ k×(G)
ord(G)−→ Frob(G)Z −→ 1.

(8) We shall write

k×(G)
def
= k×(G)~, k×(G)

def
= k×(G)~.

(9) We shall write

k
×
(G)

def
= lim−→

H

k×(H), k×(G)
def
= lim−→

H

k×(H) = k
×
(G)~,

µ(G)
def
= lim−→

H

(Hab)tor = k
×
(G)tor

— where the injective limits are taken over the open subgroups H ⊆ G of G, and the
transition morphisms in the limits are given by the homomorphisms determined by the
transfer maps — and

Λ(G)
def
= lim←−

n

µ(G)[n]

— where the projective limit is taken over the positive integers n. Note that G acts on

k
×
(G), k×(G), µ(G), and Λ(G) by conjugation. We shall refer to the G-module Λ(G) as
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the cyclotome associated to G. Note that one verifies immediately from our construction
that the cyclotome has a natural structure of profinite [cf. also the above definition
of Λ(G)], hence also topological, G-module; moreover, we have a natural identification
µ(G)[n] = Λ(G)/nΛ(G).

(10) It follows from Lemma 1.3, (x), that the exact sequences of G-modules

1 −→ Λ(G)/nΛ(G) −→ k
×
(G)

n−→ k
×
(G) −→ 1

— where n ranges over the positive integers — determine an injection

k×(G) ↪→ H1(G, Λ(G)).

We shall write

Kmm(G)

for this injection.

Let

(k, k, α : Gk
∼→ G)

be an MLF-envelope for G [cf. Definition 1.1]. Then the following hold:

(i) It holds that

pk = p(G), dk = d(G), ek = e(G), fk = f(G).

(ii) The isomorphism α determines isomorphisms

Ik
∼−→ I(G), Pk

∼−→ P (G).

Moreover, the resulting isomorphism Gk/Ik
∼→ G/I(G) maps Frobk to Frob(G).

(iii) The isomorphism α, together with the field structure of k, determines a commu-
tative diagram of topological modules

k× ←−−− O×k −−−→ OB
k −−−→ k×

o
y o

y o
y o

y
k×(G) ←−−− O×(G) −−−→ OB(G) −−−→ k×(G)

— where the horizontal arrows are natural homomorphisms, and the vertical arrows are
isomorphisms. Thus, the left-hand, right-hand vertical arrows of this diagram determine
isomorphisms of monoids

k×
∼−→ k×(G), k×

∼−→ k×(G),

respectively.

(iv) The isomorphism α, together with the field structures of the various fields involved,
determines isomorphisms of modules

k
× ∼−→ k

×
(G), µ(k)

∼−→ µ(G), Λ(k)
∼−→ Λ(G)

and an isomorphism of monoids

k×
∼−→ k×(G)

which are compatible with the natural actions of Gk and G relative to α.
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(v) The isomorphisms k×
∼→ k×(G) of (iii) and Λ(k)

∼→ Λ(G) of (iv) fit into a
commutative diagram

k×
Kmmk−−−−→ H1(Gk, Λ(k))

o
y o

y
k×(G)

Kmm(G)−−−−−→ H1(G, Λ(G)).

Proof. — These assertions follow immediately from Lemma 1.3, together with the
various definitions involved. �

REMARK 1.4.1.

(i) It is well-known [cf., e.g., [4], §2] that there exists an MLF k�, where � ∈ {◦, •},
such that k◦ is not isomorphic to k• but the absolute Galois group of k◦ [for some choice of
an algebraic closure of k◦] is isomorphic to the absolute Galois group of k• [for some choice
of an algebraic closure of k•]. Moreover, it is known [cf., e.g., the final portion of [11],
Chapter VII] that, for each MLF k such that pk is odd, there exists an outer automorphism
of the absolute Galois group of k which does not arise from an automorphism of k.

(ii) It follows immediately from the discussion of (i) that

there is no functorial “group-theoretic” algorithm [as discussed in Theo-
rem 1.4] for reconstructing, from the absolute Galois group of an MLF,
[the field structure of] the MLF.

(iii) On the other hand, there are some results concerning the geometricity of an
outer homomorphism between the absolute Galois groups of MLF. For instance, in [5], S.
Mochizuki proved that, for an outer isomorphism between the absolute Galois groups of
MLF, it holds that the outer isomorphism is geometric [i.e., arises from a — necessarily
unique — isomorphism of the MLF] if and only if the outer isomorphism preserves the
[positively indexed] higher ramification filtrations in the upper numbering. Mochizuki
also gave, in [7], §3 [cf. [7], Theorem 3.5; [7], Corollary 3.7], other necessary and sufficient
conditions for an outer open homomorphism between the absolute Galois groups of MLF
to be geometric [i.e., arise from a — necessarily unique — embedding of the MLF].
Moreover, in [2], the author proved that, for an outer open homomorphism between the
absolute Galois groups of MLF, it holds that the outer open homomorphism is geometric
if and only if the outer open homomorphism is Hodge-Tate-preserving [i.e., the pull-back,
via the outer open homomorphism under consideration, of a Hodge-Tate representation
is still Hodge-Tate].

REMARK 1.4.2.

(i) In the proof of the main result of [5] [cf. Remark 1.4.1, (iii)], Mochizuki essentially
proved the following assertion:

For � ∈ {◦, •}, let k� be an MLF. Write G� for the absolute Galois

group of k� [which is well-defined up to conjugation]. Let α : G◦
∼→ G•

be an outer isomorphism of profinite groups. Then it holds that α is
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geometric if and only if, in the notation of Theorem 1.4, the following
condition is satisfied: For every open subgroup G†

◦ ⊆ G◦ of G◦, if we write
G†
• ⊆ G• for the open subgroup of G• corresponding to G†

◦ ⊆ G◦ via α,
then the isomorphism k×(G†

◦)
∼→ k×(G†

•) induced by α maps, for each
positive integer n, the submodule of k×(G†

◦) corresponding to “1 + mn
k”

bijectively onto the submodule of k×(G†
•) corresponding to “1 + mn

k”.

Now let us observe that, in the above notation, it follows from the functorial “group-
theoretic” algorithm discussed in Theorem 1.4 that the induced isomorphism k×(G†

◦)
∼→

k×(G†
•) maps the submodule of k×(G†

◦) corresponding to “1 + mk” [i.e., the kernel of
the natural surjection O×(G†

◦) � k×(G†
◦)] bijectively onto the submodule of k×(G†

•)
corresponding to “1 + mk” [i.e., the kernel of the natural surjection O×(G†

•) � k×(G†
•)].

(ii) By the discussion of (i) and Remark 1.4.1, (ii), we obtain the following observation:

There is no functorial “group-theoretic” algorithm [as discussed in Theo-
rem 1.4] for reconstructing, from a group G of MLF-type, the family of
submodules of the module k×(G) of Theorem 1.4, (6), corresponding to
the family of submodules “{1 + mn

k}n≥1” of “k×”.

REMARK 1.4.3.

(i) Write k+, (Ok)+ for the modules obtained by forming the underlying additive
modules of the rings k, Ok, respectively. Then, by considering the pk-adic logarithm
on k, we obtain an isomorphism (O×k )pf ∼→ k+ of modules. Thus, by assigning G 7→
O×(G)pf , we obtain a functorial “group-theoretic” algorithm [as discussed in Theorem 1.4]
for reconstructing, from a group G of MLF-type, the module corresponding to “k+”. Then
another interpretation of the assertion of Remark 1.4.2, (i), is as follows:

For � ∈ {◦, •}, let k� be an MLF. Write G� for the absolute Galois group

of k� [which is well-defined up to conjugation]. Let α : G◦
∼→ G• be an

outer isomorphism of profinite groups. Then it holds that α is geometric
if and only if, in the notation of Theorem 1.4, the following condition is
satisfied: For every open subgroup G†

◦ ⊆ G◦ of G◦, if we write G†
• ⊆ G•

for the open subgroup of G• corresponding to G†
◦ ⊆ G◦ via α, then the

isomorphism O×(G†
◦)

pf ∼→ O×(G†
•)

pf induced by α maps the submodule of
O×(G†

◦)
pf corresponding to “(Ok)+ ⊆ k+” bijectively onto the submodule

of O×(G†
•)

pf corresponding to “(Ok)+ ⊆ k+”.

(ii) By the discussion of (i) and Remark 1.4.1, (ii), we obtain the following observation:

There is no functorial “group-theoretic” algorithm [as discussed in Theo-
rem 1.4] for reconstructing, from a group G of MLF-type, the submodule
of the module O×(G)pf corresponding to the submodule “(Ok)+” of “k+”.

LEMMA 1.5. — The following hold:

(i) It holds that

O×k = Ker
(
k×

Kmmk
↪→ H1(Gk, Λ(k)) → H1(Ik, Λ(k)(p′k))

)
.
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(ii) The homomorphism

O×k −→ H1(Gk/Ik, Λ(k)(p′k))

determined by Kmmk [cf. (i)] induces an isomorphism

k×
∼−→ H1(Gk/Ik, Λ(k)(p′k)).

Proof. — These assertions follow immediately from the well-known explicit description
of the topological module k× [cf., e.g., [10], Chapter II, Proposition 5.3; also [10], Chapter
II, Proposition 5.7, (i)], together with the Kummer theory for k, k. �
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2. Reconstruction of the Additive Structure on an NF-monoid

In the present §2, we discuss an NF-monoid [cf. Definition 2.3 below]. In particular, we
obtain a mono-anabelian reconstruction of the “additive structure” on an NF-monoid [cf.
Theorem 2.9 below]. Note that the main result of the present §2 was already essentially
proved in [3]; however, the author discussed, in [3], the issue of reconstruction of additive
structure in not a “mono-anabelian” fashion but a “bi-anabelian” fashion.

In the present §2, let
F

be an NF. We shall write

• OF ⊆ F for the ring of integers of F ,

• VF for the set of nonarchimedean primes of F , and

• Fprm ⊆ F for the prime field contained in F [i.e., “Q”].

If v ∈ VF , then we shall write

• ordv : F× � Z for the [uniquely determined] surjective valuation associated to v,

• O(v) ⊆ F for the subring of F obtained by forming the localization of OF at the
maximal ideal corresponding to v,

• m(v) ⊆ O(v) for the maximal ideal of O(v),

• κv
def
= O(v)/m(v) for the residue field of O(v),

• char(v)
def
= char(κv) for the characteristic of κv, and

• O≡1
(v)

def
= 1 + m(v) ⊆ O×(v) for the kernel of the natural homomorphism O×(v) � κ×v .

Finally, for a ∈ F×, we shall write

• Supp(a)
def
= { v ∈ VF | ordv(a) 6= 0 } ⊆ VF .

DEFINITION 2.1. — We shall say that the NF F is prime if F = Fprm.

DEFINITION 2.2. — We shall refer to the collection of data

(F×, OB
F ⊆ F×, VF , {O≡1

(v) ⊆ F×}v∈VF
)

[consisting of the monoid F×, the submonoid OB
F ⊆ F× of F×, the set VF , and the

submonoid O≡1
(v) ⊆ F× of F× labeled by each v ∈ VF ] as the NF-monoid associated to F .

DEFINITION 2.3. — Let

M = (M, OB ⊆M, S, {O≡1
s ⊆M}s∈S)

be a collection of data consisting of a monoid M [the monoid operation of M will be
written multiplicatively], a submonoid OB ⊆M of M , a set S, and a submonoid O≡1

s ⊆M
of M labeled by each s ∈ S. Then we shall refer to an isomorphism of the NF-monoid [cf.
Definition 2.2] associated to an NF (respectively, a prime NF — cf. Definition 2.1) with
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M [in the evident sense, i.e., a suitable pair consisting of an isomorphism of “F×” with
M and a bijection of “VF ” with S] as an NF-envelope (respectively, a prime NF-envelope)
forM. We shall say thatM is an NF-monoid (respectively, a prime NF-monoid) if there
exists an NF-envelope (respectively, a prime NF-envelope) forM.

LEMMA 2.4. — The following hold:

(i) It holds that the NF F is prime if and only if, for all but finitely many v ∈ VF , it
holds that ]κv is a prime number.

(ii) The element 0 ∈ F× of F× may be characterized as a unique element of F×\F×.

(iii) The element 1 ∈ F× of F× may be characterized as a unique element a ∈ F×
such that ax = x for any x ∈ F×.

(iv) The element −1 ∈ F× of F× may be characterized as a unique element a ∈ F×
such that a 6= 1 but a2 = 1.

(v) Let v ∈ VF . Then the natural injection O×(v) ↪→ F× determines an isomorphism

κ×v
∼→ (F×/O≡1

(v))tor.

(vi) Let v ∈ VF . Then the prime number char(v) may be characterized as a unique
prime number which divides ]κv.

(vii) Let v ∈ VF . Then the {±1}-orbit of the valuation ordv : F× → Z may be
characterized as the {±1}-orbit of the homomorphism F× → Z obtained by forming
the composite

F× � F×/O≡1
(v) � (F×/O≡1

(v))
ab/tor ∼→ Z

— where we regard F×/O≡1
(v) as a topological group by the discrete topology, and the “

∼→” is

an isomorphism of group. Moreover, the valuation ordv : F× → Z may be characterized
as a unique element of this orbit which maps OB

F ⊆ F× to Z≥0 ⊆ Z.

(viii) Let v ∈ VF . Then it holds that O×(v) = Ker(ordv).

Proof. — Assertion (i) follows immediately from Čebotarev’s density theorem [cf. also
[10], Chapter VII, Corollary 13.7]. Assertions (ii), (iii), (iv), (vi), (viii) follow from the
various definitions involved. Assertion (v) and the first assertion of assertion (vii) follow
immediately from the fact that F×/O×(v) is [noncanonically] isomorphic to Z, hence also

torsion-free [cf. also the proof of [3], Lemma 1.5, (i)]. The final assertion of assertion (vii)
follows from the various definitions involved. This completes the proof of Lemma 2.4. �

PROPOSITION 2.5. — Let

M = (M, OB ⊆M, S, {O≡1
s ⊆M}s∈S)

be an NF-monoid. We shall define various objects which arise from M as follows:

(1) It follows from Lemma 2.4, (ii), that there exists a unique element of M \M×.
We shall write

0M ∈ M

for this element.
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(2) It follows from Lemma 2.4, (iii), that there exists a unique element a ∈M of M
such that ax = x for any x ∈M . We shall write

1M ∈ M

for this element.

(3) It follows from Lemma 2.4, (iv), that there exists a unique element a ∈M of M
such that a 6= 1M but a2 = 1M. We shall write

−1M ∈ M

for this element.

(4) Let s ∈ S. Then we shall write

O×
s

def
= (M×/O≡1

s )tor, (Os)×
def
= (O×

s )~.

(5) Let s ∈ S. Then it follows from Lemma 2.4, (v), (vi), that there exists a unique
prime number which divides ](Os)×. We shall write

char(s)

for this prime number.

(6) Let s ∈ S. Then we shall write

Zs
def
= (M×/O≡1

s )ab/tor

— where we regard M×/O≡1
s as a topological group by the discrete topology — and

pre-ords : M× � Zs

for the natural surjection.

(7) Let s ∈ S and a ∈M×. Then we shall define an integer

ords(a) ∈ Z

as follows: Write pre-ords(a)N ⊆ pre-ords(a)Z ⊆ Zs for the submonoid, subgroup of Zs

generated by pre-ords(a) ∈ Zs and is,a
def
= [Zs : pre-ords(a)Z]. Then

ords(a)
def
=


0 if is,a =∞,

is,a if is,a <∞ and ]
(
pre-ords(a)N ∩ pre-ords(O

B)
)
6= 1,

−is,a if is,a <∞ and ]
(
pre-ords(a)N ∩ pre-ords(O

B)
)

= 1.

(8) Let a ∈M×. Then we shall write

Supp(a)
def
= { s ∈ S | ords(a) 6= 0 } ⊆ S.

(9) Let s ∈ S. Then we shall write

O×
s

def
= Ker(ords) ⊆ M×.

Let

(φ : F×
∼→M, τ : VF

∼→ S)

be an NF-envelope for M. Then the following hold:
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(i) It holds that M is prime if and only if, for all but finitely many s ∈ S, it holds
that ](Os)× is a prime number.

(ii) The isomorphism φ : F×
∼→ M of monoids maps 0, 1, −1 to 0M, 1M, −1M,

respectively.

(iii) Let v ∈ VF . Write s
def
= τ(v). Then it holds that

char(v) = char(s), ordv = ords ◦ φ.

Moreover, the isomorphism φ : F×
∼→M of monoids determines isomorphisms of monoids

κ×v
∼−→ O×

s , (κv)×
∼−→ (Os)×, O×(v)

∼−→ O×
s .

(iv) Let a ∈ F×. Then the bijection τ : VF
∼→ S determines a bijection

Supp(a)
∼−→ Supp(φ(a)).

(v) Let s ∈ S. Then the composite O×
s ↪→M× � M×/O≡1

s determines a surjection

O×
s � O×

s

which fits into a commutative diagram

O×(v) −−−→ κ×v

o
y o

y
O×

s −−−→ O×
s

— where the upper horizontal arrow is the natural surjection, and the vertical arrows are
the isomorphisms of (iii).

Proof. — These assertions follow immediately from Lemma 2.4, together with the
various definitions involved. �

LEMMA 2.6. — Suppose that F is prime. Write (OF )+ ⊆ OF for the subset of positive
rational integers, i.e., the subset Z≥1 ⊆ Z. For a prime number p, write vp ∈ VF for the
nonarchimedean prime of F corresponding to the maximal ideal pOF ⊆ OF of OF . Then
the following hold:

(i) The nonarchimedean prime v2 (respectively, v3; v5) of F may be characterized
as a unique nonarchimedean prime v of F such that char(v) = 2 (respectively, 3; 5).

(ii) The element 2 ∈ OB
F of OB

F may be characterized as a unique element a ∈ OB
F

such that Supp(a) = {v2}, ordv2(a) = 1, and a 6∈ O≡1
(v3).

(iii) The element 3 ∈ OB
F of OB

F may be characterized as a unique element a ∈ OB
F

such that Supp(a) = {v3}, ordv3(a) = 1, and 2a ∈ O≡1
(v5).

(iv) Let a ∈ OB
F be such that a 6∈ {−2,−1, 1, 2}. Then it holds that

{a− 1, a + 1} = { b ∈ OB
F | Supp(a) ∩ Supp(b) = ∅, a · b−1 6∈ O≡1

(v) for all v ∈ VF }.
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(v) Let a ∈ OB
F be such that a 6∈ {−2,−1, 1, 2}, and, moreover, Supp(a) 6⊆ {v2}. Then

it holds that

{a + 1} = {a− 1, a + 1} ∩
⋂

v∈Supp(a)

O≡1
(v).

(vi) Let a ∈ OB
F be such that a 6∈ {−2,−1, 1, 2}, and, moreover, Supp(a) ⊆ {v2}.

Then, for every b ∈ {a− 1, a + 1}, it holds that b 6∈ {−2,−1, 1, 2} and Supp(b) 6⊆ {v2}.
(vii) The map OF → OF given by mapping a to a + 1 is bijective.

(viii) The subset (OF )+ ⊆ OF is the uniquely determined minimal subset of OF which
contains 1 ∈ OF and, moreover, is [nonbijectively] preserved by the bijection discussed in
(vii).

(ix) Let v ∈ VF . Then the composite (OF )+ ∩ O×(v) ↪→ O×(v) � κ×v is surjective.

Proof. — These assertions follow from the various definitions involved. �

PROPOSITION 2.7. — Let

M = (M, OB ⊆M, S, {O≡1
s ⊆M}s∈S)

be a prime NF-monoid. We shall define various objects which arise fromM as follows:

(1) It follows from Lemma 2.6, (i), that there exists a unique element s ∈ S such
that char(s) = 2 (respectively, 3; 5). We shall write

(2)M (respectively, (3)M; (5)M) ∈ S

for this element.

(2) It follows from Lemma 2.6, (ii), that there exists a unique element a ∈ OB of OB

such that Supp(a) = {(2)M}, ord(2)M(a) = 1, and a 6∈ O≡1
(3)M

. We shall write

2M ∈ OB

for this element and

−2M
def
= −1M · 2M ∈ OB.

(3) It follows from Lemma 2.6, (iii), that there exists a unique element a ∈ OB of
OB such that Supp(a) = {(3)M}, ord(3)M(a) = 1, and 2M · a ∈ O≡1

(5)M
. We shall write

3M ∈ OB

for this element.

(4) Let a ∈ OB \ {−2M,−1M, 1M, 2M}. Then we shall write

N(a)
def
= { b ∈ OB | Supp(a) ∩ Supp(b) = ∅, a · b−1 6∈ O≡1

s for all s ∈ S } ⊆ OB.

(5) Let a ∈ OB \ {−2M,−1M, 1M, 2M}. Suppose that Supp(a) 6⊆ {(2)M}. Then it
follows from Lemma 2.6, (iv), (v), that the intersection

N(a) ∩
⋂

s∈Supp(a)

O≡1
s
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is of cardinality one. We shall write

nextM(a) ∈ OB

for the unique element of this intersection.

(6) Let a ∈ OB \ {−2M,−1M, 1M, 2M}. Suppose that Supp(a) ⊆ {(2)M}. Then it
follows from Lemma 2.6, (iv), (v), (vi), that there exists a unique element b ∈ N(a)
of N(a) such that b ∈ OB \ {−2M,−1M, 1M, 2M}, Supp(b) 6⊆ {(2)M}, and, moreover,
a 6= nextM(b) [cf. (5)]. We shall write

nextM(a) ∈ OB

for this element.

(7) We shall write

nextM(−2M)
def
= −1M, nextM(−1M)

def
= 0M, nextM(0M)

def
= 1M,

nextM(1M)
def
= 2M, nextM(2M)

def
= 3M.

Then, by Lemma 2.6, (vii), together with our construction, we have a bijection

nextM : OB ∪ {0M}
∼−→ OB ∪ {0M}.

(8) It follows from Lemma 2.6, (viii), that there exists a unique minimal subset of
OB∪{0M} which contains 1M and, moreover, is [nonbijectively] preserved by nextM. We
shall write

O+ ⊆ OB ∪ {0M}
for this subset.

(9) Let s ∈ S; a, b ∈ (Os)×. Then we shall define an element of (Os)×

a �s b ∈ (Os)×

as follows: Write 0s ∈ (Os)× for the unique element of (Os)× \ O×
s . If a = 0s, then

a �s b
def
= b. If b = 0s, then a �s b

def
= a. In the following, suppose that a, b ∈ O×

s . Then

it follows from Lemma 2.6, (ix), that there exist respective liftings ã, b̃ ∈ O+ ∩ O×
s of a,

b ∈ O×
s [relative to the surjection O×

s � O×
s of Proposition 2.5, (v)]. Write neb ∈ Z for

the positive integer defined by
∏

s∈S char(s)ords(eb) and

c
def
=

neb︷ ︸︸ ︷
nextM ◦ · · · ◦ nextM(ã) ∈ O+.

Then

a �s b
def
=

{
0s if c 6∈ O×

s ,
the image of c in (Os)× if c ∈ O×

s .

Note that one verifies immediately from our construction that “a�s b” does not depend

on the choice of the respective liftings ã, b̃ ∈ O+ ∩O×
s of a, b ∈ O×

s .

(10) Let s ∈ S. Then it follows immediately from our construction that the “�s” of
(9), together with the monoid structure of (Os)×, determines a structure of field on
(Os)×. We shall write

Os

for the resulting field.
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Let
(φ : F×

∼→M, τ : VF
∼→ S)

be a(n) [necessarily prime — cf. Lemma 2.4, (i); Proposition 2.5, (i), (iii)] NF-envelope

for M and v ∈ VF . Write s
def
= τ(v). Then the isomorphism of monoids

(κv)×
∼−→ (Os)×

of Proposition 2.5, (iii), determines an isomorphism of fields

κv
∼−→ Os.

Proof. — This follows immediately from Lemma 2.6, together with the various defini-
tions involved. �

LEMMA 2.8. — The following hold:

(i) For a ∈ F×, it holds that a ∈ F×
prm if and only if, for all but finitely many v ∈ VF ,

it holds that achar(v)−1 ∈ O≡1
(v).

(ii) Let v ∈ VF . Then the intersection F×
prm∩OB

F (respectively, F×
prm∩O≡1

(v)) coincides

with “OB
F ” (respectively, “O≡1

(v)”) in the case where we take “(F, v)” to be (Fprm, vchar(v))

[cf. the notation introduced in Lemma 2.6].

(iii) Write Vf=1
F ⊆ VF for the subset of VF consisting of v ∈ VF such that ]κv =

char(v). Then Vf=1
F is infinite.

(iv) Let a, b ∈ F× be such that 0 6∈ {a, b, a + b}. Then the element a + b ∈ F× may
be characterized as a unique element c ∈ F× which satisfies the following condition:
For infinitely many v ∈ VF such that {a, b, c} ⊆ O×(v), if we write a, b, c ∈ κ×v for the

respective images of a, b, c ∈ O×(v), then it holds that a + b = c.

Proof. — Assertion (i) follows from [3], Lemma 2.3. Assertions (ii) and (iv) follow from
the various definitions involved. Assertion (iii) follows from Čebotarev’s density theorem
[cf., e.g., [10], Chapter VII, Theorem 13.4]. This completes the proof of Lemma 2.8. �

THEOREM 2.9. — In the notation introduced at the beginning of §2, let

M = (M, OB ⊆M, S, {O≡1
s ⊆M}s∈S)

be an NF-monoid [cf. Definition 2.3]. We shall define various objects which arise from
M as follows:

(1) We shall write
M×

prm ⊆ M×

for the submodule consisting of a ∈M× such that, for all but finitely many s ∈ S, it holds
that achar(s)−1 ∈ O≡1

s ;

Mprm
def
= M×

prm ∪ {0M} ⊆ M ; OB
prm

def
= Mprm ∩OB.

(2) We shall write

Sprm
def
= S/ ∼prm
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for the set of equivalence classes with respect to the relation “∼prm” on S defined as
follows: For s1, s2 ∈ S, it holds that s1 ∼prm s2 if and only if char(s1) = char(s2).

(3) Let s ∈ Sprm. Then it follows from Lemma 2.8, (i), (ii), that the intersection
Mprm ∩O≡1

s does not depend on the choice of a lifting s ∈ S of s. We shall write

O≡1
s ⊆ Mprm

for this intersection.

(4) It follows from Lemma 2.8, (i), (ii), that the collection of data

Mprm
def
= (Mprm, OB

prm ⊆Mprm, Sprm, {O≡1
s ⊆Mprm}s∈Sprm)

forms a prime NF-monoid [cf. Definition 2.3].

(5) We shall write

Sf=1 def
= { s ∈ S | ](Os)× = char(s) }.

Then it follows from Lemma 2.8, (iii), that Sf=1 is infinite.

(6) Let s ∈ Sf=1. Write s ∈ Sprm for the element of Sprm determined by s ∈ Sf=1.
Then one verifies immediately that the homomorphism (Os)× → (Os)× of monoids in-
duced by the natural inclusion Mprm ↪→ M is an isomorphism. Thus, it follows from
Proposition 2.7, (10), that the “�s” of Proposition 2.7, (9), in the case where we take the
“(M, s)” of Proposition 2.7, (9), to be (Mprm, s), together with the monoid structure of
(Os)×, determines a structure of field on (Os)×. We shall write

Os

for the resulting field.

(7) Let a, b ∈M . Then we shall define an element of M

a �M b ∈ M

as follows: If a = 0M, then a�M b
def
= b. If b = 0M, then a�M b

def
= a. If a = −1M ·b, then

a�M b
def
= 0M. Suppose that a, b ∈M×, and that a 6= −1M · b. Then a�M b is defined to

be a uniquely determined [cf. Lemma 2.8, (iv)] element c ∈M× of M× which satisfies
the following condition: For infinitely many s ∈ Sf=1 such that {a, b, c} ⊆ O×

s , if we
write a, b, c ∈ O×

s for the respective images of a, b, c ∈ O×
s , then it holds that a �s b = c,

where we write �s for the addition of the field Os defined in (6).

(8) It follows immediately from our construction that the “�M” of (7), together with
the monoid structure of M , determines a structure of field on M . We shall write

Mfld

for the resulting field.

Let

(φ : F×
∼→M, τ : VF

∼→ S)

be an NF-envelope for M [cf. Definition 2.3]. Then the isomorphism of monoids

φ : F×
∼−→ M
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determines an isomorphism of fields

F
∼−→ Mfld.

In particular, the field Mfld of (8) is an NF.

Proof. — This follows immediately from Lemma 2.8, together with the various defini-
tions involved. �
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3. Local-global Cyclotomic Synchronization

In the present §3, we define a cyclotome [cf. Proposition 3.7, (4), below] associated
to a profinite group of GSC-type [cf. Definition 3.2 below]. Moreover, we discuss the
local-global cyclotomic synchronization isomorphism [cf. Theorem 3.8, (ii), below], i.e.,
a suitable isomorphism of a global cyclotome with a local cyclotome. Finally, by means
of the local-global cyclotomic synchronization isomorphism, we construct the Kummer
containers associated to a profinite group of GSC-type [cf. Proposition 3.11 below].

In the present §3, we maintain the notation introduced at the beginning of §2. In
particular, we have an NF F . Let

F

be an algebraic closure of F . We shall write

• dF
def
= [F : Fprm] for the extension degree of F over Fprm,

• Ifin
F for the group of finite idèles of F , and

• IF for the group of idèles of F .

If v ∈ VF , then we shall write

• Fv for the MLF obtained by forming the completion of F at v.

We shall write

• Vd=1
F ⊆ VF for the subset consisting of v ∈ VF such that dFv = 1 [cf. the notation

introduced at the beginning of §1].

DEFINITION 3.1. — Let E be a field of characteristic zero which is algebraic over the
prime field contained in E [i.e., “Q”]. Then we shall say that E is absolutely Galois if E
is Galois over the prime field contained in E [i.e., “Q”]. We shall say that E is solvably
closed if there is no nontrivial finite abelian extension of E.

DEFINITION 3.2. — Let G be a profinite group. Then we shall refer to a collection of
data

(K, K̃, α : Gal(K̃/K)
∼→ G)

consisting of an NF K, a Galois extension K̃ of K which is solvably closed (respectively,
absolutely Galois and solvably closed; algebraically closed), and an isomorphism of profi-

nite groups α : Gal(K̃/K)
∼→ G as a GSC-envelope (respectively, an AGSC-envelope; an

NF-envelope) [where “GSC” (respectively, “AGSC”; “NF”) is to be understood as an ab-
breviation for “Global Solvably Closed” (respectively, “Absolutely Galois and Solvably
Closed”; “Number Field”] for G. We shall say that the profinite group G is of GSC-type
(respectively, of AGSC-type; of NF-type) if there exists a GSC-envelope (respectively, an
AGSC-envelope; an NF-envelope) for G.
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REMARK 3.2.1.

(i) One verifies immediately that every open subgroup of a profinite group of GSC-type
(respectively, of AGSC-type; of NF-type) is of GSC-type (respectively, of AGSC-type; of
NF-type).

(ii) It follows from the definitions that

of NF-type =⇒ of AGSC-type =⇒ of GSC-type.

(iii) A typical example of a field which is absolutely Galois and solvably closed is the
solvable closure of an absolutely Galois NF.

Now let us recall the famous Neukirch-Uchida theorem:

THEOREM 3.3 (Neukirch-Uchida). — For � ∈ {◦, •}, let F� be an NF and F̃� a Galois

extension of F� which is solvably closed. Write Q�
def
= Gal(F̃�/F�);

Isom(F̃•/F•, F̃◦/F◦)

for the set of isomorphisms F̃•
∼→ F̃◦ of fields which map F• bijectively onto F◦;

Isom(Q◦, Q•)

for the set of isomorphisms Q◦
∼→ Q• of profinite groups. Then the natural map

Isom(F̃•/F•, F̃◦/F◦) −→ Isom(Q◦, Q•)

is bijective.

Proof. — This follows from [13], Theorem. �

In the remainder of the present §3, let

F̃

be a Galois extension of F which is solvably closed and contained in F . We shall write

• V eF for the set of nonarchimedean primes of F̃ and

• QF
def
= Gal(F̃ /F ) for the Galois group of F̃ /F .

Note that, for ṽ ∈ V eF , if we write v ∈ VF for the nonarchimedean prime of F determined

by ṽ, then since F̃ is solvably closed, it follows immediately from [6], Proposition 2.3, (iii)

[i.e., the Grunwald-Wang Theorem — cf., e.g., [11], Theorem 9.2.8], that the pair (F̃ , ṽ)

determines an algebraic closure F ev of Fv equipped with an inclusion F̃ ↪→ F ev of fields.

LEMMA 3.4. — The following hold:

(i) The map given by mapping ṽ ∈ V eF to the decomposition subgroup of QF associated
to ṽ determines a bijection of V eF with the set of maximal closed subgroups of QF of
MLF-type. Moreover, the natural map V eF → VF and the natural action of QF on V eF
determines a bijection

V eF /QF
∼−→ VF .
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(ii) Let p be a prime number. Then it holds that

dF =
∑

v∈VF ; char(v)=p

dFv .

Proof. — Assertion (i) follows immediately, in light of [6], Proposition 2.3, (iii), (iv),
from a similar argument to the argument applied in the proof of [11], Corollary 12.1.11.
Assertion (ii) follows from [10], Chapter II, Corollary 8.4. This completes the proof of
Lemma 3.4. �

PROPOSITION 3.5. — Let G be a profinite group of GSC-type. We shall define various
objects which arise from G as follows:

(1) We shall write

Ṽ(G)

for the set of maximal closed subgroups of G of MLF-type and

V(G)
def
= Ṽ(G)/G

for the quotient of Ṽ(G) by the action of G by conjugation.

(2) Let v ∈ V(G). Then we shall write

p(v)
def
= p(D), d(v)

def
= d(D), f(v)

def
= f(D), e(v)

def
= e(D)

for some D ∈ v. We shall write

Vd=1(G) ⊆ V(G)

for the subset of V(G) consisting of v ∈ V(G) such that d(v) = 1.

(3) It follows from Lemma 3.4, (i), (ii), that, for v0 ∈ V(G), the sum∑
v∈V(G); p(v)=p(v0)

d(v)

does not depend on the choice of v0 ∈ V(G). We shall write

d(G)

for this sum.

Let
(F, F̃ , α : QF

∼→ G)

be a GSC-envelope for G. Then the following hold:

(i) The isomorphism α determines — relative to the first bijection of Lemma 3.4, (i)
— a bijection

V eF ∼−→ Ṽ(G).

This bijection is compatible with the natural actions of QF and G relative to α, which
thus induces a bijection [cf. the second bijection of Lemma 3.4, (i)]

VF
∼−→ V(G).

By means of these bijections, let us identify V eF , VF with Ṽ(G), V(G), respectively.
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(ii) Let v ∈ V(G). Then it holds that

pFv = p(v), dFv = d(v), fFv = f(v), eFv = e(v).

(iii) It holds that dF = d(G).

(iv) Let H ⊆ G be an open subgroup of G. Then we have a bijection

Ṽ(G)
∼−→ Ṽ(H)

D 7→ D ∩H

whose inverse is given by

Ṽ(H)
∼−→ Ṽ(G)

D 7→ CG(D).

Moreover, this inverse determines a surjection

V(H) � V(G).

Proof. — Assertions (i), (ii), (iii) follow from Lemma 3.4, together with the various
definitions involved. Assertion (iv) follows immediately from assertion (i), together with
the commensurable terminality [cf. [6], Proposition 2.3, (v)] in G of a closed subgroup of

G which is contained in Ṽ(G). This completes the proof of Proposition 3.5. �

LEMMA 3.6. — The following hold:

(i) By considering the “diagonal”, we have an injection of groups

F× ↪→ Ifin
F .

By means of this injection, we regard F× as a subgroup of Ifin
F .

(ii) By considering the reciprocity homomorphism IF � (Gal(F/F )ab ∼→) Qab
F in global

class field theory, together with the natural inclusion Ifin
F ↪→ IF , we obtain [cf. also (i)]

homomorphisms of groups
F× ↪→ Ifin

F → Qab
F .

[Note that, in general, this composite is nontrivial. For instance, one verifies easily that
if F is prime, then the image of −1 ∈ F× via this composite is nontrivial.]

(iii) It holds that, relative to the display of (ii),

Ker(Ifin
F → Qab

F )tor ⊆ µ(F ).

If, moreover, F is totally imaginary, then it holds that, relative to the display of (ii),

Ker(Ifin
F → Qab

F )tor = µ(F ).

(iv) Let n be a positive integer and ζn ∈ F a primitive n-th root of unity. Then it

holds that ζn ∈ F̃ . Moreover, the subfield of F̃ corresponding to the kernel of the natural
action of QF on (

lim−→
E

Ker(Ifin
E → Qab

E )tor

)
[n]

— where the injective limit is taken over the finite extensions E of F contained in F̃ ,

and we write QE
def
= Gal(F̃ /E) — coincides with F (ζn).
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Proof. — Assertions (i), (ii) follow from the various definitions involved. Next, we
verify assertion (iii). Write F×

idl ⊆ IF for the image of the injection F× ↪→ IF obtained by
considering the “diagonal” and C0 ⊆ IF /F×

idl for the kernel of the reciprocity homomor-
phism IF /F×

idl � Qab
F in global class field theory, i.e., the connected component of IF /F×

idl

containing the identity element [cf. [11], Corollary 8.2.2]. [Let us recall that the subgroup
F×

idl ⊆ IF does not coincide with the image of the composite F× ↪→ Ifin
F ↪→ IF .] First, in

order to verify the inclusion

Ker(Ifin
F → Qab

F )tor ⊆ F×,

take a torsion finite idèle α ∈ Ifin
F ⊆ IF whose image in Qab

F is trivial. Then one verifies
immediately that the image of α via the composite

Ifin
F ↪→ IF � IF /F×

idl

is contained in C0 and torsion. In particular, it follows immediately from [11], Theorem
8.2.5, together with the fact that “Z/Z” and “R” in loc. cit. are torsion-free, that there
exists an infinite idèle β ∈ IF such that the image of α in IF /F×

idl coincides with the image
of β in IF /F×

idl, i.e., that α · β−1 ∈ F×
idl in IF . On the other hand, it follows immediately

from the various definitions involved that this implies that α ∈ F× [not in IF but] in Ifin
F .

This completes the proof of the desired inclusion.
Next, in order to verify the inclusion

µ(F ) ⊆ Ker(Ifin
F → Qab

F )

under the assumption that F is totally imaginary, take a torsion element α ∈ F×. Then it
follows immediately from the various definitions involved that, to complete the verification
of the desired inclusion, it suffices to verify that the image of the infinite idèle determined
by α ∈ F× in IF /F×

idl is contained in C0. On the other hand, since F is totally imaginary,
this follows immediately from [11], Theorem 8.2.5. This completes the proof of the desired
inclusion, hence also of assertion (iii). Assertion (iv) follows immediately from assertion

(iii), together with our assumption that F̃ is solvably closed. This completes the proof of
Lemma 3.6. �

PROPOSITION 3.7. — Let G be a profinite group of GSC-type. We shall define various
objects which arise from G as follows:

(1) Let v ∈ V(G). Then one verifies immediately from the commensurable termi-
nality [cf. [6], Proposition 2.3, (v)] in G of a closed subgroup of G which is contained in

Ṽ(G) that there exists a uniquely determined submodule (respectively, submonoid)

k×(v) ⊆
∏
D∈v

k×(D) (⊆
∏
D∈v

Dab)

(respectively, OB(v) ⊆
∏
D∈v

OB(D) (⊆
∏
D∈v

Dab))

which satisfies the following two conditions:

(a) The action of G on
∏

D∈v k×(D) (respectively,
∏

D∈v OB(D)) by conjugation
[preserves and] induces the identity automorphism on the submodule k×(v) (respectively,
OB(v)).
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(b) For every D0 ∈ v, the composite

k×(v) ↪→
∏
D∈v

k×(D) � k×(D0)

(respectively, OB(v) ↪→
∏
D∈v

OB(D) � OB(D0))

is an isomorphism of modules (respectively, monoids).

For each D ∈ v, let us identify k×(D), OB(D) with k×(v), OB(v) by means of the
isomorphisms of (b), respectively. Moreover, by means of this identification, together with
the topology on k×(D) (respectively, OB(D)), we regard k×(v) (respectively, OB(v)) as a
topological module (respectively, monoid). [Note that one verifies immediately that this
topology on k×(v) (respectively, OB(v)) does not depend on the choice of D ∈ v.]

(2) We shall write

k×(v)
def
= k×(v)~ ⊆

∏
D∈v

k×(D).

Let us identify k×(D) with k×(v) by means of the identification of k×(D) with k×(v) of
(1).

(3) Let Σ ⊆ V(G) be a finite subset of V(G). Then we shall write

Ifin
Σ (G)

def
=

(∏
v∈Σ

k×(v)
)
×

(∏
v 6∈Σ

OB(v)×
)

(⊆
∏

D∈eV(G)

Dab);

Ifin(G)
def
= lim−→

Σ

Ifin
Σ (G) (⊆

∏
D∈eV(G)

Dab)

— where the injective limit is taken over the finite subsets Σ ⊆ V(G) of V(G).

(4) It follows from our construction that the inclusions D ↪→ G, where D ranges over

the elements of Ṽ(G), determine a homomorphism of groups

Ifin(G) −→ Gab.

We shall write

µ(G)
def
= lim−→

H

Ker(Ifin(H)→ Hab)tor

— where the injective limit is taken over the open subgroups H ⊆ G of G, and the
transition morphisms in the limit are given by the homomorphisms determined by the
transfer maps;

Λ(G)
def
= lim←−

n

µ(G)[n]

— where the projective limit is taken over the positive integers n. Note that G acts on
µ(G), Λ(G) by conjugation. We shall refer to the G-module Λ(G) as the cyclotome asso-
ciated to G. Note that one verifies immediately from our construction that the cyclotome
has a natural structure of profinite [cf. also the above definition of Λ(G)], hence also
topological, G-module; moreover, we have a natural identification µ(G)[n] = Λ(G)/nΛ(G)
[cf. Lemma 3.6, (iii)].
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(5) Let n be a positive integer. Then we shall write

G(µn) ⊆ G

for the open subgroup of G obtained by forming the kernel of the action

G −→ Aut(Λ(G)/nΛ(G)).

Let

(F, F̃ , α : QF
∼→ G)

be a GSC-envelope for G. Then the following hold:

(i) Let v ∈ V(G). Then the isomorphism α, together with the field structure of F ,
determines a commutative diagram of topological monoids

OB
Fv
−−−→ F×

v

o
y o

y
OB(v) −−−→ k×(v)

— where the horizontal arrows are the natural inclusions, and the vertical arrows are
isomorphisms. Thus, the right-hand vertical arrow of this diagram determines an iso-
morphism of monoids

(Fv)×
∼−→ k×(v).

(ii) The diagram of groups

Ifin
F −−−→ Qab

F

o
y o

y
Ifin(G) −−−→ Gab

— where the upper horizontal arrow is the homomorphism of Lemma 3.6, (ii); the lower
horizontal arrow is the homomorphism of (4); the left-hand vertical arrow is the isomor-

phism induced by the various isomorphisms “F×
v

∼→ k×(v)” of (i); the right-hand vertical
arrow is the isomorphism induced by α — commutes.

(iii) The commutative diagram of (ii) determines isomorphisms

µ(F )
∼−→ µ(G), Λ(F )

∼−→ Λ(G)

which are compatible with the natural actions of QF and G relative to α.

(iv) Let n be a positive integer and ζn ∈ F a primitive n-th root of unity. Then the
isomorphism α determines an isomorphism of profinite groups

Gal(F̃ /F (ζn))
∼−→ G(µn)

[cf. the first assertion of Lemma 3.6, (iv)].

Proof. — These assertions follow immediately from Lemma 3.6, together with the
various definitions involved. �
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THEOREM 3.8. — In the notation introduced at the beginning of §3 and the discussion
following Theorem 3.3, let G be a profinite group of GSC-type [cf. Definition 3.2] and

D ∈ Ṽ(G). Then the following hold:

(i) Let H ⊆ G be an open subgroup of G. Then we have a natural identification

Λ(G)
∼−→ Λ(H)

[arising from the definition of “Λ(−)”] which is H-equivariant.

(ii) The natural homomorphism Ifin(G)→ k×(D) [arising from the definition of Ifin(G)]
determines D-equivariant isomorphisms

µ(G)
∼−→ µ(D), Λ(G)

∼−→ Λ(D).

We shall refer to the isomorphism Λ(G)
∼→ Λ(D) between the cyclotomes as the local-

global cyclotomic synchronization isomorphism with respect to D ∈ Ṽ(G).

(iii) Let

(F, F̃ , α : QF
∼→ G)

be a GSC-envelope for G [cf. Definition 3.2]. Write ṽ ∈ V eF for the nonarchimedean

prime of F̃ which corresponds to D ∈ Ṽ(G) [cf. Proposition 3.5, (i)] and v ∈ VF for
the nonarchimedean prime of F determined by ṽ. Thus, by the discussion following

Theorem 3.3, we have an algebraic closure F ev of Fv equipped with an inclusion F̃ ↪→ F ev
of fields. Then the diagram

Λ(F )
∼−−−→ Λ(F ev)

o
y o

y
Λ(G)

∼−−−→ Λ(D)

— where the upper horizontal arrow is the isomorphism induced by the inclusion F̃ ↪→ F ev
of fields [cf. the first assertion of Lemma 3.6, (iv)]; the lower horizontal arrow is the
local-global cyclotomic synchronization isomorphism; the left-hand vertical arrow is the
isomorphism of Proposition 3.7, (iii); the right-hand vertical arrow is the isomorphism of
Theorem 1.4, (iv) — commutes.

Proof. — These assertions follow immediately from the various definitions involved. �

DEFINITION 3.9. — We shall write

H×(F )

for the module obtained by forming the fiber product of the diagram of natural injections∏
v∈VF

F×
vy

(F×)∧ −−−→
∏

v∈VF
(F×

v )∧

and

H×(F )
def
= H×(F )~.



32 Yuichiro Hoshi

Thus, we have natural injections of monoids

F× ↪→ H×(F ) ↪→
∏

v∈VF

(Fv)×.

We shall refer to H×(F ), H×(F ) as the Kummer containers associated to F .

LEMMA 3.10. — The following hold:

(i) We have a natural commutative diagram of modules

1 −−−→ O×F −−−→ F× −−−→ F×/O×F −−−→ 1y y ∥∥∥
1 −−−→ (O×F )∧ −−−→ H×(F ) −−−→ F×/O×F −−−→ 1

— where the horizontal sequences are exact, and the vertical arrows are injective.

(ii) If, moreover, O×F is finite [or, equivalently, F is contained in an imaginary
quadratic field — cf., e.g., [10], Chapter I, Theorem 7.4], then the natural homomor-
phism F× → H×(F ), hence also F× → H×(F ), is an isomorphism of monoids.

(iii) The natural inclusion F× ↪→ H×(F ) determines an isomorphism of finite
groups

µ(F )
∼−→ H×(F )tor.

(iv) The module H×(F ) is generated by (O×F )∧ and F×.

(v) The composite of natural homomorphisms

H×(F ) →
∏

v∈VF

(Fv)× �
∏

v∈Vd=1
F

(Fv)×

is injective.

(vi) Let n be a positive integer. Then the sequence of QF -modules

1 −→ µ(F )[n] −→ F̃× n−→ F̃× −→ 1

[cf. the first assertion of Lemma 3.6, (iv)] is exact. Moreover, these sequences — where
n ranges over the positive integers — determine an injection and an isomorphism

Kmm eF/F : F× ↪→ (F×)∧
∼→ H1(QF , Λ(F )).

Proof. — First, we verify assertion (i). The [existence and] exactness of the lower
horizontal sequence of the diagram of (i) follows immediately from [1], Lemma 3.3, (i),
together with the various definitions involved. The injectivity of the left-hand, hence also
middle, vertical arrow follows immediately from the fact that O×F is a finitely generated
module [cf., e.g., [10], Chapter I, Theorem 7.4]. This completes the proof of assertion
(i). Assertions (ii), (iv) follow immediately from assertion (i). Assertion (iii) follows
immediately from assertion (i), together with the [easily verified] fact that F×/O×F is
torsion-free. Next, we verify assertion (v). Let us first observe that the subset Vd=1

F ⊆ VF
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of VF is of density one [cf., e.g., the discussion preceding [10], Chapter VII, Theorem
13.2]. Thus, it follows immediately from [11], Theorem 9.1.11, that the composite

(F×)∧ −→
∏

v∈VF

(F×
v )∧ −→

∏
v∈Vd=1

F

(F×
v )∧,

hence [cf. the easily verified injectivity of the natural homomorphism F×
v → (F×

v )∧] also
the composite discussed in assertion (v), is injective. This completes the proof of assertion
(v). Finally, we verify assertion (vi). The first assertion of assertion (vi) follows from our

assumption that F̃ is solvably closed. The final assertion of assertion (vi) follows from
the Kummer theory, together with the fact that there is no nontrivial divisible element
in F× [cf., e.g., [10], Chapter I, Theorem 7.4, together with assertion (i)]. This completes
the proof of assertion (vi), hence also of Lemma 3.10. �

PROPOSITION 3.11. — Let G be a profinite group of GSC-type. Then the inclusions
D ↪→ G and the local-global cyclotomic synchronization isomorphisms Λ(G)

∼→ Λ(D),

where D ranges over the elements of Ṽ(G), determine an homomorphism

H1(G, Λ(G)) −→
∏

D∈eV(G)

H1(D, Λ(D)).

We shall write
H×(G) ⊆

∏
v∈V(G)

k×(v)

for the inverse image via the above homomorphism of the image of the composite of
injections ∏

v∈V(G)

k×(v) ↪→
∏

D∈eV(G)

k×(D)

Q
D∈eV(G)

Kmm(D)

↪→
∏

D∈eV(G)

H1(D, Λ(D));

H×(G)
def
= H×(G)~ ⊆

∏
v∈V(G)

k×(v).

We shall refer to H×(G), H×(G) as the Kummer containers associated to G.

Let
(F, F̃ , α : QF

∼→ G)

be a GSC-envelope for G. Then the following hold:

(i) The isomorphism α, together with the field structure of F , determines a commu-
tative diagram of monoids

H×(F ) −−−→
∏

v∈VF
(Fv)×

o
y o

y
H×(G) −−−→

∏
v∈V(G) k×(v)

— where the horizontal arrows are the natural inclusions, and the right-hand vertical
arrow is the isomorphism determined by the various isomorphisms of monoids of Propo-
sition 3.7, (i).
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(ii) The composite

H×(G) ↪→
∏

v∈V(G)

k×(v) �
∏

v∈Vd=1(G)

k×(v)

is injective.

(iii) Let H ⊆ G be an open subgroup of G. Then the various restriction maps of
cohomology groups involved determine a commutative diagram

H×(G) −−−→
∏

v∈V(G) k×(v)y y
H×(H) −−−→

∏
w∈V(H) k×(w)

— where the arrows are injective.

Proof. — These assertions follow immediately from Lemma 3.10, (v), (vi), together
with the various definitions involved. �
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4. Reconstruction of the Additive Structure on a GSC-Galois Pair

In the present §4, we discuss a GSC-Galois pair [cf. Definition 4.1 below]. In particular,
by means of the main result of §2, we obtain a mono-anabelian reconstruction of the
“additive structure” on a GSC-Galois pair [cf. Theorem 4.4 below].

In the present §4, we maintain the notation introduced at the beginning of §3. Let

F̃

be a Galois extension of F which is solvably closed and contained in F . We shall write

• V eF for the set of nonarchimedean primes of F̃ ,

• O eF ⊆ F̃ for the ring of integers of F̃ , and

• QF
def
= Gal(F̃ /F ) for the Galois group of F̃ /F .

DEFINITION 4.1. — Let

(G y M)

be a collection of data consisting of a group G and a G-monoid M . Then we shall refer
to a collection of data

(K, K̃, α : Gal(K̃/K)
∼→ G, β : OBeK ∼→M)

consisting of an NF K, a Galois extension K̃ of K which is solvably closed (respectively,
absolutely Galois and solvably closed; algebraically closed), an isomorphism of groups

α : Gal(K̃/K)
∼→ G, and an isomorphism of monoids β : OBeK ∼→ M which is compatible

with the actions of Gal(K̃/K) and G relative to α as a GSC-envelope (respectively, an
AGSC-envelope; an NF-envelope) for (G y M). We shall say that the collection of data
(G y M) is a GSC-Galois pair (respectively, an AGSC-Galois pair; an NF-Galois pair)
if there exists a GSC-envelope (respectively, an AGSC-envelope; an NF-envelope) for
(G y M).

LEMMA 4.2. — Let H ⊆ QF be a subgroup of QF . Then H is an open subgroup of

QF if and only if H coincides with the stabilizer of an element of F̃× [with respect to

the natural action of QF on F̃×].

Proof. — This follows from elementary field theory. �

PROPOSITION 4.3. — Let (G y M) be a GSC-Galois pair. Then the following hold:

(i) The natural homomorphism

G −→ lim←−
N

G/N

— where the projective limit is taken over the normal subgroups N ⊆ G of G [necessarily
of finite index — cf. Lemma 4.2] such that N coincides with the stabilizer of an element
of Mgp [with respect to the natural action of G on Mgp] — is an isomorphism of groups.
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By means of this isomorphism, we always regard the group “G” of a GSC-Galois pair
“(G y M)” as a profinite group.

(ii) Let

(F, F̃ , α : QF
∼→ G, β : OBeF ∼→M)

be a GSC-envelope for (G y M). Then the isomorphism α is an isomorphism of
profinite groups [cf. (i)]. In particular, the collection of data

(F, F̃ , α : QF
∼→ G)

forms a GSC-envelope for the profinite group G.

(iii) The profinite group G is of GSC-type. If, moreover, the GSC-Galois pair
(G y M) is an AGSC-Galois pair (respectively, NF-Galois pair), then the profinite
group G is of AGSC-type (respectively, of NF-type).

Proof. — These assertions follow immediately from Lemma 4.2, together with the
various definitions involved. �

THEOREM 4.4. — In the notation introduced at the beginning of §4, let (G y M) be a
GSC-Galois pair [cf. Definition 4.1]. We shall define various objects which arise from
(G y M) as follows:

(1) We shall write

µ(M)
def
= (M×)tor

and

Λ(M)
def
= lim←−

n

µ(M)[n]

— where the projective limit is taken over the positive integers n. Note that G acts
on µ(M) and Λ(M). We shall refer to the G-module Λ(M) as the cyclotome associ-
ated to (G y M). Note that one verifies immediately from our construction that the
cyclotome has a natural structure of profinite [cf. also the above definition of Λ(M)],
hence also topological, G-module; moreover, we have a natural identification µ(M)[n] =
Λ(M)/nΛ(M).

(2) By Lemma 3.10, (vi), we have exact sequences of G-modules

1 −→ Λ(M)/nΛ(M) −→ Mgp n−→ Mgp −→ 1

— where n ranges over the positive integers — which determine an injection

(Mgp)G ↪→ H1(G, Λ(M)).

(3) Let D ∈ v ∈ V(G) [cf. Proposition 4.3, (iii)]. Then it follows immediately from
Lemma 1.5, (i), that the kernel of the composite

(Mgp)G ↪→ H1(G, Λ(M)) → H1(I(D), Λ(M)(p(D)′))

depends only on v [i.e., does not depend on the choice of D ∈ v]. We shall write

(Mgp)G|×v ⊆ (Mgp)G
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for this kernel. Now observe that it follows from the definition of (Mgp)G|×v ⊆ (Mgp)G

that the composite

(Mgp)G ↪→ H1(G, Λ(M)) → H1(D, Λ(M)(p(D)′))

determines a homomorphism

(Mgp)G|×v −→ H1(D/I(D), Λ(M)(p(D)′));

moreover, it follows immediately from Lemma 1.5, (ii), that the kernel of this homomor-
phism depends only on v [i.e., does not depend on the choice of D ∈ v]. We shall
write

(Mgp)G|≡1
v ⊆ (Mgp)G|×v

for this kernel.

(4) It follows from our construction, together with Lemma 1.5, that the collection of
data

M(G y M)
def
= (((Mgp)G)~, MG ⊆ ((Mgp)G)~, V(G), {(Mgp)G|≡1

v ⊆ ((Mgp)G)~}v∈V(G))

forms an NF-monoid [cf. Definition 2.3]. Thus, by Theorem 2.9, (7), (8), we have a
map

�F (GyM)
def
= �M(GyM) : ((Mgp)G)~ × ((Mgp)G)~ −→ ((Mgp)G)~

such that the map �F (GyM), together with the monoid structure of ((Mgp)G)~, determines
a structure of field on ((Mgp)G)~. We shall write

F (G y M)

for the resulting field.

(5) For an open subgroup H ⊆ G of G, we shall write (H y M) for the GSC-Galois
pair obtained by forming the collection of data consisting of H, M , and the action of H
on M induced by the action of G on M . Then we shall write

F̃ (G y M)
def
= lim−→

H

F (H y M)

— where the injective limit is taken over the open subgroups H ⊆ G of G. Thus, G acts

on F̃ (G y M).

Let
(F, F̃ , α : QF

∼→ G, β : OBeF ∼→M)

be a GSC-envelope for (G y M) [cf. Definition 4.1]. Then the isomorphism β deter-
mines a commutative diagram of fields

F −−−→ F̃

o
y o

y
F (G y M) −−−→ F̃ (G y M)

— where the horizontal arrows are the natural inclusions, the vertical arrows are iso-
morphisms, and the right-hand vertical arrow is compatible with the natural actions
of QF and G relative to α.

Proof. — This follows immediately from the various definitions involved. �
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REMARK 4.4.1. — One verifies immediately from the various definitions involved that
we have a natural identification

F̃ (G y M)× = (Mgp)~.

COROLLARY 4.5. — Let (G y M) be a GSC-Galois pair [cf. Definition 4.1]. Write

Aut(M)

for the group of automorphisms of the monoid M and

Autfld(M) ⊆ Aut(M)

for the subgroup of Aut(M) consisting of automorphisms α of M such that the automor-

phism of (Mgp)~ induced by α is compatible with the field structure of F̃ (G y M) [cf.
Remark 4.4.1]. [Thus, the image of the faithful action

G ↪→ Aut(M)

is contained in Autfld(M) ⊆ Aut(M).] Then it holds that

NAut(M)(G) ⊆ Autfld(M).

Proof. — This follows immediately from Theorem 4.4. �

COROLLARY 4.6. — Let Q be an algebraic closure of Q. Write OQ ⊆ Q for the ring of

integers of Q and Aut(OB
Q) for the group of automorphisms of the monoid OB

Q . Thus, we

have a natural injection
Gal(Q/Q) ↪→ Aut(OB

Q).

By means of this injection, we regard Gal(Q/Q) as a subgroup of Aut(OB
Q). Then the

following hold:

(i) The subgroup Gal(Q/Q) is normally terminal in Aut(OB
Q), i.e., it holds that

NAut(OB
Q

)(Gal(Q/Q)) = Gal(Q/Q).

(ii) The centralizer of Gal(Q/Q) in Aut(OB
Q) is trivial, i.e., it holds that

ZAut(OB
Q

)(Gal(Q/Q)) = {1}.

(iii) The group Aut(OB
Q) is center-free.

Proof. — Assertion (i) follows from Corollary 4.5. Assertion (ii) follows from assertion
(i), together with the well-known fact that ZGal(Q/Q)(Gal(Q/Q)) = {1} [cf., e.g., [11],

Corollary 12.1.6]. Assertion (iii) follows from assertion (ii). This completes the proof of
Corollary 4.6. �
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5. Mono-anabelian Reconstruction of Number Fields

In the present §5, we finish establishing a functorial “group-theoretic” algorithm for
reconstructing, from [a suitable quotient of] the absolute Galois group of an NF, the
given NF [cf. Theorem 5.11 below].

In the present §5, we maintain the notation introduced at the beginning §4. Suppose

that F̃ is absolutely Galois. We shall write

• QFprm

def
= Gal(F̃ /Fprm) for the Galois group of F̃ /Fprm.

LEMMA 5.1. — The following hold:

(i) It holds that F is absolutely Galois if and only if the following condition is
satisfied: For every v, w ∈ VF , if pFv = pFw , and fFv = 1, then fFw = 1.

(ii) There exists a uniquely determined minimal intermediate extension of F̃ /F which
is absolutely Galois and finite over F .

(iii) Suppose that F is absolutely Galois. Then the action

QFprm −→ Aut(QF )

by conjugation is an isomorphism of groups.

Proof. — Assertion (i) follows from [10], Chapter VII, Corollary 13.8. Assertion (ii)

follows immediately from our assumption that F̃ is absolutely Galois, together with ele-
mentary field theory. Assertion (iii) follows from Theorem 3.3. This completes the proof
of Lemma 5.1. �

PROPOSITION 5.2. — Let G be a profinite group of AGSC-type [cf. Definition 3.2].
We shall define various objects which arise from G as follows:

(1) We shall say that G is absolutely Galois if the following condition is satisfied:
For every v, w ∈ V(G), if p(v) = p(w), and f(v) = 1, then f(w) = 1.

(2) It follows from Lemma 5.1, (i), (ii), that there exists a uniquely determined maximal
open subgroup of G which is absolutely Galois. We shall refer to this open subgroup as
the Galois closure-subgroup of G.

(3) We shall write

GC
def
= Aut(H)

for the group obtained by forming the group of automorphisms of the Galois closure-
subgroup H ⊆ G of G. Thus, since H is normal in G [cf. Lemma 5.1, (i)], by considering
the action of G on H by conjugation, we obtain a homomorphism of groups

G −→ GC.

(4) It follows from Lemma 5.1, (iii), that the homomorphism G → GC of (3) is
injective whose image is of finite index. Thus, the structure of profinite group of G
determines a structure of profinite group of GC. By means of this, we always regard GC

as a profinite group.
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Let

(F, F̃ , α : QF
∼→ G)

be an AGSC-envelope for G [cf. Definition 3.2]. Then the following hold:

(i) It holds that F is absolutely Galois if and only if G is absolutely Galois.

(ii) The isomorphism α determines a commutative diagram of profinite groups

QF −−−→ QFprm

o
yα o

y
G −−−→ GC

— where the horizontal arrows are the natural open injections, and the vertical arrows
are isomorphisms.

Proof. — These assertions follow immediately from Lemma 5.1, together with the
various definitions involved. �

PROPOSITION 5.3. — Let G be a profinite group of AGSC-type. We shall define various
objects which arise from G as follows:

(1) We shall write

†F×(GC)
def
= H×(GC) ⊆ †F×(GC)

def
= H×(GC) ⊆

∏
v∈V(GC)

k×(v).

(2) We shall write
†OB(GC) ⊆ †F×(GC)

for the submonoid of †F×(GC) consisting of a ∈ †F×(GC) such that, for every v ∈ V(GC),
the image in k×(v) is contained in OB(v) ⊆ k×(v).

(3) For v ∈ V(GC), we shall write

†F×(GC)|×v
def
= Ker

(†F×(GC)→ k×(v) � k×(v)/O×(v)
)
,

†F×(GC)|≡1
v

def
= Ker

(†F×(GC)|×v → O×(v) � k×(v)
)
.

(4) It follows from Lemma 3.10, (ii), together with our construction, that the collection
of data

M(GC)
def
= (†F×(GC), †OB(GC) ⊆ †F×(GC), V(GC), {†F×(GC)|≡1

v ⊆ †F×(GC)}v∈V(GC))

forms a prime NF-monoid [cf. Definition 2.3]. Thus, by Theorem 2.9, (7), (8), we have
a map

�†F (GC)
def
= �M(GC) :

†F×(GC)× †F×(GC) −→ †F×(GC)

such that the map �†F (GC), together with the monoid structure of †F×(GC), determines a

structure of field on †F×(GC). We shall write

†F (GC)

for the resulting field.
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Let
(F, F̃ , α : QF

∼→ G)

be an AGSC-envelope for G. Then the isomorphism α, together with the field structure
of F , determines an isomorphism of fields

Fprm
∼−→ †F (GC).

Proof. — This follows immediately from the various definitions involved. �

LEMMA 5.4. — Let v ∈ VF . Write

(F×
v × F×

v )6=0 ⊆ F×
v × F×

v

for the subset of F×
v × F×

v consisting of (a, b) ∈ F×
v × F×

v such that a + b 6= 0. Then the
subset

(F× × F×) ∩ (F×
v × F×

v )6=0 ⊆ (F×
v × F×

v )6=0

is dense in (F×
v × F×

v )6=0.

Proof. — This follows immediately from the various definitions involved. �

PROPOSITION 5.5. — Let G be a profinite group of AGSC-type. We shall define various
objects which arise from G as follows:

(1) Let v ∈ V(G). Then we shall write

(k×(v)× k×(v))=0 ⊆ k×(v)× k×(v)

for the subset of the topological space k×(v)× k×(v) consisting of (a, b) ∈ k×(v)× k×(v)
such that ab−1 6= 1 but (ab−1)2 = 1;

(k×(v)× k×(v))6=0 def
=

(
k×(v)× k×(v)

)
\

(
(k×(v)× k×(v))=0

)
.

(2) Let v ∈ V(GC). Since [it follows from our construction that] the natural homomor-
phism †F×(GC) → k×(v) is injective, let us regard †F×(GC) as a submodule of k×(v).
Write ∗ ∈ k×(v) for the unique element of the set k×(v) \ k×(v). Then we shall define a
map

�k(v) : k×(v)× k×(v) −→ k×(v)

as follows:

(a) It holds that �k(v)(∗, a) = �k(v)(a, ∗) = a for every a ∈ k×(v).

(b) The image of (k×(v)× k×(v))=0 via �k(v) is {∗}.
(c) Let (a, b) ∈ (k×(v)×k×(v))6=0. Now it follows from Lemma 5.4 that there exists

a sequence (ai, bi)i≥1 consisting of elements of (†F×(GC)× †F×(GC))∩ (k×(v)× k×(v))6=0

such that limi→∞ (ai, bi) = (a, b) [with respect to the topology of the topological module

k×(v)×k×(v)]. Then write �k(v)(a.b)
def
= limi→∞ �†F (GC)(ai, bi). Note that it follows from

our construction that this “�k(v)(a.b)” does not depend on the choice of the sequence
(ai, bi)i≥1.

If D ∈ v, then we shall write

�k(D) : k×(D)× k×(D) −→ k×(D)
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for the map determined by �k(v) and the identification of k×(v) with k×(D) of Propo-
sition 3.7, (2). Then it follows from our construction that the map �k(v) (respectively,
�k(D)), together with the monoid structure of k×(v) (respectively, k×(D)), determines a
structure of field on k×(v) (respectively, k×(D)). We shall write

k(v) (respectively, k(D))

for the resulting field.

(3) Let v ∈ Vd=1(G) and D ∈ v. Write vC ∈ V(GC) for the element determined by
v, i.e., the GC-conjugacy class of CGC

(D) ⊆ GC [cf. Proposition 3.5, (iv)]. Then since
d(D) = 1, it follows immediately from the various definitions involved that the natural
inclusion D ↪→ CGC

(D) determines an isomorphism of monoids

(k×(vC)
∼−→) k×(CGC

(D))
∼−→ k×(D) (

∼←− k×(v)).

We shall write

�k(v) : k×(v)× k×(v) −→ k×(v), �k(D) : k×(D)× k×(D) −→ k×(D)

for the maps determined by �k(vC). Then it follows from our construction that the map
�k(v) (respectively, �k(D)), together with the monoid structure of k×(v) (respectively,
k×(D)), determines a structure of field on k×(v) (respectively, k×(D)). We shall write

k(v) (respectively, k(D))

for the resulting field.

(4) It follows from Proposition 3.11, (ii), that the composite of homomorphisms of
monoids

H×(G) ↪→
∏

v∈V(G)

k×(v) �
∏

v∈Vd=1(G)

k×(v)

is injective. Observe that the structures of fields on the k×(v)’s of (3), where v ranges
over the elements of Vd=1(G), determine a structure of ring on∏

v∈Vd=1(G)

k×(v).

Let
(F, F̃ , α : QF

∼→ G)

be an AGSC-envelope for G and v ∈ Vd=1(G). Then the isomorphism of monoids

(Fv)×
∼→ k×(v) of Proposition 3.7, (i), determines an isomorphism of fields

Fv
∼−→ k(v).

Proof. — This follows immediately from the various definitions involved. �

LEMMA 5.6. — Let E be a finite Galois extension of F contained in F̃ and d a positive
integer. Thus, we have a commutative diagram of monoids

F× −−−→ H×(F )y y
E× −−−→ H×(E) −−−→

∏
w∈Vd=1(E) (Ew)×
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— where the arrows are injective [cf. Lemma 3.10, (i), (v)]. For a positive integer r, we
use the notation ζr ∈ F to denote a primitive r-th root of unity in F . Then the following
hold:

(i) Suppose that E = F (ζd). Let ζ ∈ H×(E) be a torsion element of H×(E) of order
d. Then the submonoid E× ⊆ H×(E) coincides with the underlying [multiplicative]
submonoid of the subring of

∏
w∈Vd=1(E) Ew generated by F and ζ.

(ii) Suppose that d is a prime number, that ζd ∈ F , and that Gal(E/F ) is of order
d. Then there exists an element x ∈ H×(E) such that x 6∈ F but xd ∈ F . Moreover, the
submonoid E× ⊆ H×(E) coincides with the underlying [multiplicative] submonoid of the
subring of

∏
w∈Vd=1(E) Ew generated by F and x.

(iii) Suppose that E is contained in a finite solvable extension of Fprm. Then, after
possibly replacing E by a finite extension of E which is contained in a finite solvable
extension of Fprm, there exists a finite sequence of finite extensions of Fprm contained in
E

Fprm = F0 ⊆ F1 ⊆ · · · ⊆ Fn−1 ⊆ Fn
def
= E

such that, for each i ∈ {1, . . . , n}, the extension Fi/Fi−1 is Galois, and, moreover, one
of the following two conditions is satisfied:

(a) It holds that Fi = Fi−1(ζr) for some positive integer r.

(b) It holds that di
def
= ]Gal(Fi/Fi−1) is a prime number, and, moreover, ζdi

∈ Fi−1.

Proof. — Assertion (i) follows immediately from Lemma 3.10, (iii), together with the
various definitions involved. Next, we verify assertion (ii). The existence of such an x
follows immediately from the Kummer theory, together with our assumption that ζd ∈ F
and Gal(E/F ) is necessarily cyclic of order d. In order to verify the final assertion of
assertion (ii), let u ∈ (O×E)∧, a ∈ E× be such that x = u · a [cf. Lemma 3.10, (iv)].
Since xd ∈ F×, it follows from Lemma 3.10, (i), that ud ∈ O×E . Thus, since [one verifies
immediately that] the cokernel of the natural homomorphism O×E ↪→ (O×E)∧ is torsion-free
[cf. also [1], Lemma 3.3, (ii)], it holds that u ∈ O×E , hence that x ∈ E×. In particular, the
subring of

∏
w∈Vd=1(E) Ew generated by F and x determines an intermediate extension

of the finite extension E/F . On the other hand,, since [we have assumed that] d is a
prime number, and that Gal(E/F ) is of order d, the assumption that x 6∈ F implies
that this intermediate extension coincides with E. This completes the proof of assertion
(ii). Assertion (iii) follows immediately from elementary field theory. This completes the
proof of Lemma 5.6. �

PROPOSITION 5.7. — Let G be a profinite group of AGSC-type. We shall define various
objects which arise from G as follows:

(1) Let H ⊆ GC be an open subgroup of GC. Suppose that we are given a finite sequence
of open subgroups of GC

H
def
= Gn ⊆ Gn−1 ⊆ · · · ⊆ G1 ⊆ G0

def
= GC

such that, for each i ∈ {1, . . . , n}, Gi is normal in Gi−1, and, moreover, one of the
following two conditions is satisfied:
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(a) It holds that Gi = G
(µr)
i−1 for some positive integer r.

(b) It holds that di
def
= ](Gi−1/Gi) is a prime number, and, moreover, (GC)(µdi

) ⊆
Gi−1.

Then we shall inductively define submonoids †F×(Gi)’s of the H×(Gi)’s

†F×(G0) = †F×(GC) ⊆ †F×(G1) ⊆ · · · ⊆ †F×(Gn−1) ⊆ †F×(Gn) = †F×(H)

∩ ∩ ∩ ∩

H×(G0) = H×(GC) ⊆ H×(G1) ⊆ · · · ⊆ H×(Gn−1) ⊆ H×(Gn) = H×(H)

as follows: Let i ∈ {1, . . . , n}. Suppose that we are given a submonoid †F×(Gi−1) ⊆
H×(Gi−1). [Note that the submonoid †F×(G0) = †F×(GC) of H×(G0) = H×(GC) was
already defined in Proposition 5.3, (1).]

• Suppose that Gi = G
(µr)
i−1 for some positive integer r [cf. condition (a)]. Let ζ ∈

H×(Gi) be a torsion element of order r. Then we shall write

†F×(Gi) ⊆
∏

v∈Vd=1(Gi)

k×(v)

for the underlying [multiplicative] monoid of the subring of the ring
∏

v∈Vd=1(Gi)
k×(v)

[cf. Proposition 5.5, (4)] generated by the images of †F×(Gi−1) and ζ. Then it follows
from our construction [cf. also Lemma 5.6, (i)] that †F×(Gi) is contained in H×(Gi)
[relative to the injection discussed in Proposition 5.5, (4)] and, moreover, independent
of the choice of ζ.

• Suppose that di
def
= ](Gi−1/Gi) is a prime number, and, moreover, (GC)(µdi

) ⊆
Gi−1 [cf. condition (b)]. Then it follows from Lemma 5.6, (ii), that there exists an element
x ∈ H×(Gi) such that x 6∈ †F×(Gi−1) but xdi ∈ †F×(Gi−1). We shall write

†F×(Gi) ⊆
∏

v∈Vd=1(Gi)

k×(v)

for the underlying [multiplicative] monoid of the subring of the ring
∏

v∈Vd=1(Gi)
k×(v)

[cf. Proposition 5.5, (4)] generated by the images of †F×(Gi−1) and x. Then it follows
from our construction [cf. also Lemma 5.6, (ii)] that †F×(Gi) is contained in H×(Gi)
[relative to the injection discussed in Proposition 5.5, (4)] and, moreover, independent
of the choice of x.

Next, let us observe that it follows immediately from our construction that the maps
�k(v), where v ranges over the elements of Vd=1(H), determine [cf. the injection discussed
in Proposition 5.5, (4)] a map

�†F (H) :
†F×(H)× †F×(H) −→ †F×(H).

Moreover, it follows from our construction that the map �†F (H), together with the monoid

structure of †F×(H), determines a structure of field on †F×(H). We shall write

†F (H)
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for the resulting field. Note that it follows from our construction that the submonoid
†F×(H) ⊆ H×(H) and the map �†F (H), hence also the field structure of †F (H), do not
depend on the choice of the sequence

H
def
= Gn ⊆ Gn−1 ⊆ · · · ⊆ G1 ⊆ G0

def
= GC.

(2) Write GC � Gslv
C for the maximal prosolvable quotient of GC. Then it follows from

Lemma 5.6, (iii), that every open subgroup of GC which arises from an open subgroup of
Gslv

C contains an open subgroup of GC which satisfies the condition imposed on “H” of
(1), i.e., the existence of a suitable sequence of an open subgroups of GC. Thus, we have
a submonoid

†F slv
× (GC)

def
= lim−→

H

†F×(H) ⊆ lim−→
H

H×(H)

— where the injective limits are taken over the open subgroups H ⊆ GC of GC which
satisfy the condition imposed on “H” of (1) — equipped with the map [determined by
the various �†F (H)’s — where H ranges over the open subgroups of GC which satisfy the
condition imposed on “H” of (1)]

�†F slv(GC) :
†F slv
× (GC)× †F slv

× (GC) −→ †F slv
× (GC).

Moreover, it follows from our construction that the map �†F slv(GC), together with the

monoid structure of †F slv
× (GC), determines a structure of field on †F slv

× (GC). We shall
write

†F slv(GC)

for the resulting field.

Let

(F, F̃ , α : QF
∼→ G)

be an AGSC-envelope for G. Write F slv
prm for the solvable closure of Fprm in F̃ . Then the

isomorphism α, together with the field structures of the various fields involved, determines
an isomorphism of fields

F slv
prm

∼−→ †F slv(GC).

Proof. — This follows from Lemma 5.6, together with the various definitions involved.
�

PROPOSITION 5.8. — Let G be a profinite group of AGSC-type. We shall define various
objects which arise from G as follows:

(1) Let D ∈ Ṽ(GC). Write GC � Gslv
C for the maximal prosolvable quotient of GC.

Then since the composite D ↪→ GC � Gslv
C is injective [cf. [6], Proposition 2.3, (iii)],

there exists a sequence of normal open subgroups of GC which arise from open subgroups
of Gslv

C

· · · ⊆ Gn+1 ⊆ Gn ⊆ · · · ⊆ G1 ⊆ G0 = GC

such that if, for each n, we write Dn
def
= Gn ∩D, then⋂

n≥0

Dn = {1}.
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Write †F×(Gn)
def
= †F slv(GC)Gn. Then since [one verifies immediately that] the natural

homomorphism †F×(Gn)→ k×(Dn) is injective, let us regard †F×(Gn) as a submodule
of k×(Dn). Write ∗ ∈ k×(Dn) for the unique element of the set k×(Dn) \ k×(Dn). Then
we shall define a map

�k(Dn) : k×(Dn)× k×(Dn) −→ k×(Dn)

as follows:

(a) It holds that �k(Dn)(∗, a) = �k(Dn)(a, ∗) = a for every a ∈ k×(Dn).

(b) The image of (k×(Dn)× k×(Dn))=0 [cf. Proposition 5.5, (1)] via �k(Dn) is {∗}.
(c) Let (a, b) ∈ (k×(Dn) × k×(Dn))6=0 [cf. Proposition 5.5, (1)]. Now it fol-

lows from Lemma 5.4 that there exists a sequence (ai, bi)i≥1 consisting of elements of
(†F×(Gn)×†F×(Gn))∩(k×(Dn)×k×(Dn))6=0 such that limi→∞ (ai, bi) = (a, b) [with respect

to the topology of the topological module k×(Dn) × k×(Dn)]. Then write �k(Dn)(a.b)
def
=

limi→∞ �†F slv(GC)(ai, bi). Note that it follows from our construction that this “�k(Dn)(a.b)”
does not depend on the choice of the sequence (ai, bi)i≥1.

It follows from our construction that the map �k(Dn), together with the monoid structure
of k×(Dn), determines a structure of field on k×(Dn). We shall write

k(Dn)

for the resulting field.

(2) In the notation of (1), since it holds that

k×(D) = lim−→
n

k×(Dn)

[cf. Theorem 1.4, (9)], it follows immediately from our construction that the various maps
�k(Dn), where n ranges over the nonnegative integers, determine a map

�k(D) : k×(D)× k×(D) −→ k×(D)

such that the map �k(D), together with the monoid structure of k×(D), determines a

structure of field on k×(D). We shall write

k(D)

for the resulting field. Note that it follows from our construction that the map �k(D),

hence also the field structure of k(D), does not depend on the choice of the sequence

· · · ⊆ Gn+1 ⊆ Gn ⊆ · · · ⊆ G1 ⊆ G0
def
= GC.

(3) Let D ∈ Ṽ(G). Thus, it holds that CGC
(D) ∈ Ṽ(GC) [cf. Proposition 3.5, (iv)].

Moreover, it follows immediately from the various definitions involved that k×(D) =
k×(CGC

(D)). We shall write

�k(D) : k×(D)× k×(D) −→ k×(D)

for the map corresponding to �k(CGC
(D)), which thus determines a structure of field on

k×(D). We shall write

k(D)
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for the resulting field.

(4) Let D ∈ v ∈ V(G). Then it follows immediately from the various definitions
involved that k×(D) = k×(D)D. We shall write

�k(D) : k×(D)× k×(D) −→ k×(D)

for the map determined by �k(D) and

�k(v) : k×(v)× k×(v) −→ k×(v)

for the map determined by �k(D) and the natural identification of k×(v) with k×(D) of
Proposition 3.7, (2). Then it follows from our construction that the map �k(D) (respectively,
�k(v)), together with the monoid structure of k×(D) (respectively, k×(v)), determines a
structure of field on k×(D) (respectively, k×(v)). We shall write

k(D) (respectively, k(v))

for the resulting field.

(5) Observe that the structures of fields on the k×(v)’s of (4), where v ranges over the
elements of V(G), determine a structure of ring on∏

v∈V(G)

k×(v).

Let

(F, F̃ , α : QF
∼→ G)

be an AGSC-envelope for G and D ∈ v ∈ V(G). Write ṽ ∈ V eF for the element of V eF
corresponding, via α, to D ∈ Ṽ(G). Then the commutative diagram of monoids

(Fv)× −−−→ (F ev)×
o
y o

y
k×(v) −−−→ k×(D)

— where the horizontal arrows are natural inclusion, the left-hand vertical arrow is the
isomorphism of monoids of Theorem 1.4, (iii), and the right-hand vertical arrow is the
isomorphism of monoids of Theorem 1.4, (iv) — determines a commutative diagram
of fields

Fv −−−→ F ev
o
y o

y
k(v) −−−→ k(D).

Proof. — This follows from the various definitions involved. �

LEMMA 5.9. — Suppose that F is absolutely Galois. Then the following hold:

(i) There exists a subfield

E ⊆
∏

v∈VF

Fv
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such that if we write Eprm ⊆ E for the prime subfield of E, then

]Autfld(E) = [E : Eprm] = [F : Fprm]

— where we write Autfld(E) for the group of field automorphisms of E.

(ii) In the situation of (i), the field E is, as an abstract field, isomorphic to the field
F .

(iii) In the situation of (i), let v0 ∈ VF and F v0 an algebraic closure of Fv0. Then the
image of the composite

E ↪→
∏

v∈VF

Fv � Fv0 ↪→ F v0

coincides with the natural image of F in F v0. In particular, this image does not depend
on the choice of “E” as in (i).

(iv) Let M be an intermediate extension of F/F . Suppose that M is Galois over
F and solvably closed, and that Gal(M/F ) is isomorphic to QF . Then it holds that

M = F̃ in F .

Proof. — Assertion (i) follows from the fact that the various inclusions F ↪→ Fv, where
v ranges over the elements of VF , determine a subfield of the desired type. Next, we
verify assertion (ii). Let us first observe that it follows from the condition given in the
statement of assertion (i) that E is an absolutely Galois NF. Thus, since E is contained in∏

v∈VF
Fv, one verifies immediately that, for a prime number p, if p splits completely in F ,

then p also splits completely in E. In particular, assertion (ii) follows immediately from
[10], Chapter VII, Proposition 13.9, together with the equality [E : Eprm] = [F : Fprm]
in the statement of assertion (i). This completes the proof of assertion (ii). Assertion
(iii) follows immediately from assertion (ii), together with our assumption that F is an
absolutely Galois NF. Finally, we verify assertion (iv). Since M is solvably closed, and

Gal(M/F ) is isomorphic to QF , it follows from Theorem 3.3 that M is isomorphic to F̃ .

Thus, since F̃ is absolutely Galois, we conclude that M = F̃ in F . This completes the
proof of assertion (iv), hence also of Lemma 5.9. �

PROPOSITION 5.10. — Let G be a profinite group of AGSC-type. Suppose that G is
absolutely Galois. We shall define various objects which arise from G as follows:

(1) Let D ∈ Ṽ(G). Now it follows from Lemma 5.9, (i), that there exists a [not
necessarily unique] subring

Rncn ⊆
∏

v∈V(G)

k×(v)

[cf. Proposition 5.8, (5)] which satisfies the following two conditions [where “ncn” is to
be understood as an abbreviation for “noncanonical”]:

• The ring Rncn is a field.

• If we write Rprm
ncn ⊆ Rncn for the prime subfield of Rncn, then it holds that

]Autfld(Rncn) = [Rncn : Rprm
ncn ] = d(G)

— where we write Autfld(Rncn) for the group of field automorphisms of Rncn.
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Then it follows from Lemma 5.9, (iii), that the image of the composite

Rncn ↪→
∏

v∈V(G)

k×(v) � k×(D) ↪→ k×(D)

does not depend on the choice of Rncn. We shall write

F (D) ⊆ k(D)

for the subfield obtained by forming this image and

F (D) ⊆ k(D)

for the algebraic closure of F (D) in k(D).

(2) Let D ∈ Ṽ(G). Then it follows from Lemma 5.9, (iv), that there exists a uniquely
determined intermediate extension of F (D)/F (D)

F̃ (D)

such that F̃ (D) is Galois over F (D) and solvably closed, and, moreover, the profinite

group Gal(F̃ (D)/F (D)) is isomorphic to G. Let

αncn : G
∼−→ Gal(F̃ (D)/F (D))

be an isomorphism of profinite groups [where “ncn” is to be understood as an abbreviation
for “noncanonical”]. In particular, the collection of data

(F (D), F̃ (D), α−1
ncn)

forms an AGSC-envelope for G [cf. also Proposition 5.2, (i)]. Thus, it follows from
Theorem 3.8, (iii), that αncn determines an isomorphism

Λ(F (D))
∼−→ Λ(G)

which are compatible with the natural actions of Gal(F̃ (D)/F (D)) and G relative to
αncn. In particular, the isomorphism αncn determines an isomorphism

H1(Gal(F̃ (D)/F (D)), Λ(F (D)))
∼−→ H1(G, Λ(G)).

(3) Let D ∈ Ṽ(G). Then the exact sequences of Gal(F̃ (D)/F (D))-modules

1 −→ Λ(F (D))/nΛ(F (D)) −→ F̃ (D)×
n−→ F̃ (D)× −→ 1

— where n ranges over the positive integers — determine an injection

F (D)× ↪→ H1(Gal(F̃ (D)/F (D)), Λ(F (D)))

[cf. Lemma 3.10, (vi)]. Moreover, it follows immediately from Theorem 3.3 that the image
of the composite

F (D)× ↪→ H1(Gal(F̃ (D)/F (D)), Λ(F (D)))
∼→ H1(G, Λ(G))

— where the “
∼→” is the isomorphism discussed in (2) — does not depend on the choices

of D and αncn and, moreover, is contained in H×(G) ⊆ H1(G, Λ(G)). We shall write

F×(G) ⊆ H×(G)

for the submodule obtained by forming the image of the above composite and

F×(G)
def
= F×(G)~ ⊆ H×(G).
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(4) We shall write

OB(G) ⊆ F×(G)

for the submonoid of F×(G) consisting of a ∈ F×(G) such that, for every v ∈ V(G), the
image in k×(v) is contained in OB(v) ⊆ k×(v).

Let

(F, F̃ , α : QF
∼→ G)

be an AGSC-envelope for G. Then the isomorphism α, together with the field structure
of F , determines an isomorphism of monoids

OB
F

∼−→ OB(G).

Proof. — This follows from Lemma 5.9 together with the various definitions involved.
�

THEOREM 5.11. — In the notation introduced at the beginning of §5, let G be a profinite
group of AGSC-type [cf. Definition 3.2]. We shall write

ÕB(G)
def
= lim−→

H

OB(H)

— where the injective limit is taken over the open subgroups H ⊆ G of G which are
absolutely Galois — for the monoid obtained by forming the injective limit of the var-

ious monoids OB(H)’s of Proposition 5.10, (4). Then G acts on ÕB(G) by conjugation;
moreover, it follows from Proposition 5.10 that the collection of data

(G y ÕB(G))

consisting of the profinite group G and a G-monoid ÕB(G) forms an AGSC-Galois pair
[cf. Definition 4.1]. We shall write

F̃ (G)
def
= F̃ (G y ÕB(G)), F (G)

def
= F (G y ÕB(G))

for the fields obtained by applying Theorem 4.4 to the AGSC-Galois pair (G y ÕB(G)).
Then the following hold:

(i) Let D ∈ Ṽ(G). Then the natural inclusion D ↪→ G determines a commutative
diagram of fields

F (G) −−−→ F̃ (G)y y
k(D) −−−→ k(D)

— where the right-hand vertical arrow is D-equivariant.

(ii) Let

(F, F̃ , α : QF
∼→ G)

be an AGSC-envelope for G [cf. Definition 3.2]. Then the isomorphism α, together with
the field structures of the various fields involved, determines a commutative diagram
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of fields
F −−−→ F̃

o
y o

y
F (G) −−−→ F̃ (G)

— where the horizontal arrows are the natural inclusions, the vertical arrows are iso-
morphisms, and the right-hand vertical arrow is compatible with the natural actions
of QF and G relative to α.

Proof. — These assertions follow from the various definitions involved. �

REMARK 5.11.1. — One verifies immediately from Remark 4.4.1, together with our con-
struction, that we have a natural identification

F̃ (G)× = (ÕB(G)gp)~.

In particular, we have natural inclusions

F̃ (G)× ⊆ lim−→
H

H×(H) ⊆ lim−→
H

H1(H, Λ(H))

— where the injective limits are taken over the open subgroups H ⊆ G of G [cf. Propo-
sition 5.2, (2)].

REMARK 5.11.2. — Recall that, in Proposition 5.10, (1), we have reconstructed an alge-
braically closed field F (D) corresponding to “F”. On the other hand, this algebraically
closed field F (D) essentially depends on the choice of D. As a consequence of this depen-
dence, one cannot define directly [i.e., without the discussions given in Proposition 5.10,
(2), (3)] an action, of the desired type, of G on a suitable subfield of this field F (D), i.e.,

the subfield of F (D) corresponding to “F̃”.

REMARK 5.11.3. — Note that, in the establishment of our global reconstruction result,
the Neukirch-Uchida theorem [i.e., Theorem 3.3] plays a crucial role; in particular, the
[proof/establishment of the] global reconstruction result does not give an alternative proof
of the Neukirch-Uchida theorem.

REMARK 5.11.4. — We thus conclude from the global reconstruction result obtained
in the present paper that every profinite group of NF-type admits a ring-theoretic base-
point [i.e., a “ring-theoretic interpretation” or a “ring-theoretic label”] group-theoretically
constructed from the given profinite group.

THEOREM 5.12. — Let (G y M) be an AGSC-Galois pair [cf. Definition 4.1]. Recall
that we have an injections

MG ↪→ Mgp ↪→ lim−→
H

H1(H, Λ(M))
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— where the injective limit is taken over the open subgroups H ⊆ G of G [cf. Theorem 4.4,
(2)]. Moreover, let us also recall that it follows from our construction that

OB(G) ⊆ F̃ (G)× ⊆ lim−→
H

H1(H, Λ(H))

— where the injective limit is taken over the open subgroups H ⊆ G of G [cf. Re-
mark 5.11.1]. Then there exists a uniquely determined G-equivariant isomorphism

Λ(M)
∼−→ Λ(G)

such that the induced isomorphism [cf. also Theorem 3.8, (i)]

lim−→
H

H1(H, Λ(M))
∼−→ lim−→

H

H1(H, Λ(H))

— where the injective limits are taken over the open subgroups H ⊆ G of G — maps MG

bijectively onto OB(G). Moreover, this induced isomorphism

lim−→
H

H1(H, Λ(M))
∼−→ lim−→

H

H1(H, Λ(H))

also maps Mgp bijectively onto F̃ (G)×. We shall refer to this uniquely determined isomor-

phism Λ(M)
∼→ Λ(G) as the cyclotomic synchronization isomorphism for (G y M).

Proof. — The existence of such an isomorphism is immediate. The uniqueness of
such an isomorphism follows immediately from the following elementary observation: Let

a ∈ Ẑ×. Then it holds that the automorphism of Ẑ obtained by multiplication by a

bijectively preserves the submonoid N ⊆ (Z ⊆) Ẑ if and only if a = 1. The final assertion
follows immediately from the [existence and the] uniqueness of such an isomorphism.
This completes the proof of Theorem 5.12. �

Finally, we prove a compatibility between the functorial “group-theoretic” algorithm
obtained in the present paper and the functorial “group-theoretic” algorithm obtained in
[9], Theorem 1.9:

THEOREM 5.13. — Let Π be a profinite group which is isomorphic to the étale fundamen-
tal group of a hyperbolic orbicurve of strictly Belyi type over an NF [cf. [8], Definition
3.5]. Write Π � Q for the arithmetic quotient of Π, i.e., the quotient of Π by the
[uniquely determined — cf. [7], Theorem 2.6, (vi)] maximal topologically finitely generated
normal closed subgroup of Π. Thus, Q is a profinite group of NF-type [cf. [7], Theorem
2.6, (vi)]. Write

Π y F (Π)

for the algebraically closed field equipped with an action of Π obtained by applying the
functorial “group-theoretic” algorithm given in [9], Theorem 1.9 to Π [i.e., the field

“k
×
NF ∪ {0}” of [9], Theorem 1.9, (e)]. Thus, by the construction of F (Π), we have an

inclusion

F (Π)× ↪→ lim−→
V

H1(ΠV , µbZ(ΠV ))
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— where we refer to the notation in the statement of [9], Theorem 1.9, concerning the
notation “lim−→V

H1(ΠV , µbZ(ΠV ))”. Then the natural homomorphism

lim−→
H

H1(H, Λ(H)) −→ lim−→
V

H1(ΠV , µbZ(ΠV ))

— where the first injective limit is taken over the open subgroups H ⊆ Q of Q — induced
by the various natural surjections from the “ΠV ” to the “H” [obtained by the fact that an
“H” arises as the arithmetic quotient of a “ΠV ”], together with the isomorphisms of the
Λ(H)’s with the µbZ(ΠV )’s discussed in Lemma 5.14 below, determines [cf. Remark 5.11.1]
a Π-equivariant isomorphism of fields

F̃ (Q)
∼−→ F (Π).

Proof. — This follows immediately from the fact that, in the situation where the
profinite groups involved are not just “some abstract profinite groups”, but rather arises
from familiar objects of scheme theory, the homomorphism

lim−→
H

H1(H, Λ(H)) −→ lim−→
V

H1(ΠV , µbZ(ΠV ))

under consideration coincides with the conventional homomorphism between the injective
limits of cohomology groups involved that arise from conventional scheme theory. This
completes the proof of Theorem 5.13. �

LEMMA 5.14. — Let Π be a profinite group which is isomorphic to the étale fundamental
group of a hyperbolic orbicurve over an NF. Write Π � Q for the arithmetic quotient
of Π, i.e., the quotient of Π by the [uniquely determined — cf. [7], Theorem 2.6, (vi)] max-
imal topologically finitely generated normal closed subgroup of Π. Thus, Q is a profinite

group of NF-type [cf. [7], Theorem 2.6, (vi)]. Let D ∈ Ṽ(Q). Then the composite

Λ(Q)
∼−→ Λ(D)

∼−→ µbZ(Π×Q D) = µbZ(Π)

— where we refer to the notation of [9], Theorem 1.9, (b), concerning the notation
“µbZ(−)”; the first arrow is the local-global cyclotomic synchronization isomor-
phism [cf. Theorem 3.8, (ii)]; the second arrow is the natural isomorphism obtained in
[9], Corollary 1.10, (ii), (c) [note that one verifies easily that the D-module Λ(D) co-
incides with “µbZ(G)” defined in [9], Corollary 1.10, (i), (a), in the case where we take
the “G” of loc. cit. to be D]; the “=” is the natural identification which arises from the
definitions of µbZ(Π ×Q D) and µbZ(Π) — is Π-equivariant and does not depend on

the choice of D ∈ Ṽ(Q).

Proof. — This follows immediately from the fact that, in the situation where the profi-
nite groups involved are not just “some abstract profinite groups”, but rather arises from
familiar objects of scheme theory, the composite under consideration coincides with the
conventional identification between the cyclotomes involved that arise from conventional
scheme theory. This completes the proof of Lemma 5.14. �
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6. Global Mono-anabelian Log-Frobenius Compatibility

In the present §6, we give an interpretation of the global reconstruction result obtained
in the present paper in terms of a certain compatibility with the NF-log-Frobenius functor
[cf. Theorem 6.10 below].

DEFINITION 6.1. — Let D be a profinite group of MLF-type [cf. Definition 1.1, Proposi-
tion 1.2, (i)]. Then we shall refer to a collection of data

(G, D ↪→ G)

consisting of a profinite group G of NF-type [cf. Definition 3.2] and an injection D ↪→ G
of profinite groups as an NF-holomorphic structure on D.

DEFINITION 6.2. — Let D be a profinite group of MLF-type and hol
def
= (G, D ↪→ G) an

NF-holomorphic structure on D. Then it follows immediately from [11], Theorem 12.1.9;
[11], Lemma 12.1.10, that the injection D ↪→ G in hol determines an open injection
D ↪→ CG(Im(D)) — where we write Im(D) for the image of the injection D ↪→ G;

moreover, it holds that CG(Im(D)) ∈ Ṽ(G). Thus, we have an isomorphism of monoids

k×(CG(Im(D)))
∼−→ k×(D)

which is compatible with the natural actions of CG(Im(D)) and D relative to the open in-
jection D ↪→ CG(Im(D)). In particular, by means of the structure of field on k×(CG(Im(D)))
constructed in Proposition 5.8, (3), we obtain a structure of field on k×(D). We shall
write

k(D, hol)

for the resulting field.

REMARK 6.2.1. — One verifies immediately from our construction that we have a natural
identification

k(D, hol)× = k×(D).

DEFINITION 6.3. — Let (D y M) be an MLF-Galois TM-pair of mono-analytic type [cf.
[9], Definition 3.1, (ii)]. Thus, D is a profinite group of MLF-type. We shall refer to an
NF-holomorphic structure on D as an NF-holomorphic structure on (D y M).

DEFINITION 6.4. — Let (D y M) be an MLF-Galois TM-pair of mono-analytic type.

(i) We shall write

µ(M)
def
= (M×)tor

and

Λ(M)
def
= lim←−

n

µ(M)[n]
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— where the projective limit is taken over the positive integers n. Note that D acts
on µ(M) and Λ(M). We shall refer to the D-module Λ(M) as the cyclotome asso-
ciated to (D y M). Note that one verifies immediately from our construction that
the cyclotome Λ(M) has a natural structure of profinite [cf. also the above definition
of Λ(M)], hence also topological, G-module; moreover, we have a natural identification
µ(M)[n] = Λ(M)/nΛ(M). [Let us observe that one verifies easily that the D-modules
µ(M), Λ(M) coincide with “µQ/Z(M)”, “µbZ(M)” defined in [9], Definition 3.1, (v),
respectively.]

(ii) It follows from Lemma 1.3, (x), that the exact sequences of D-modules

1 −→ Λ(M)/nΛ(M) −→ Mgp n−→ Mgp −→ 1

— where n ranges over the positive integers — determine an injection

(Mgp)D ↪→ H1(D, Λ(M)).

(iii) By [9], Remark 3.2.1, we have a functorial “group-theoretic” algorithm for con-
structing, from (D y M), a D-equivariant isomorphism

Λ(M)
∼−→ Λ(D)

[note that one verifies easily that the D-module Λ(D) coincides with “µbZ(G)” defined in
[9], Corollary 1.10, (i), (a), in the case where we take the “G” of loc. cit. to be D] such
that the induced isomorphism

H1(D, Λ(M))
∼−→ H1(D, Λ(D))

determines, relative to the injection Kmm(D) and the injection of (ii), an isomorphism
of modules

(Mgp)D ∼−→ k×(D).

(iv) By applying the discussion of (iii) to the various open subgroups of D, we obtain
an isomorphism of modules

Mgp ∼−→ k
×
(D),

hence also an isomorphism of monoids

(Mgp)~ ∼−→ k×(D).

Let us observe that it follows immediately from our construction that these isomorphisms
of monoids are D-equivariant.

(v) Let hol be an NF-holomorphic structure on (D y M). Then the D-equivariant
isomorphism of monoids of (iv), together with the field structure of k(D, hol) obtained
in Definition 6.2 [cf. also Remark 6.2.1], determines a structure of field on (Mgp)~. We
shall write

k(D y M, hol)

for the resulting field.

REMARK 6.4.1. — One verifies immediately from our construction that we have a natural
identification

k(D y M, hol)× = (Mgp)~.
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DEFINITION 6.5. — Let (D y M) be an MLF-Galois TM-pair of mono-analytic type
and hol an NF-holomorphic structure on (D y M).

(i) Write

(Mgp)~
+

for the module [whose underlying set is (Mgp)~] obtained by forming the underlying
additive module of the field k(D y M, hol) [cf. Remark 6.4.1]. Then the p(D)-adic
logarithm on k(D y M, hol) determines a D-equivariant isomorphism of modules

(M×)pf ∼−→ (Mgp)~
+.

Thus, the field structure on (Mgp)~
+ [i.e., the field structure of k(D y M, hol)] determines

a structure of field on (M×)pf . We shall write

log(k)(D y M, hol)

for the resulting field.

(ii) We shall write

Olog(k)(DyM,hol) ⊆ log(k)(D y M, hol)

for the ring of integers of log(k)(D y M, hol) and

log(D y M, hol)
def
= (Olog(k)(DyM,hol))

B.

(iii) One verifies immediately from our construction that the action of D on M deter-
mines an action of D on log(D y M, hol); moreover, the collection of data

(D y log(D y M, hol))

consisting of the profinite group D and the topological [cf. Remark 6.5.2 below] D-monoid
log(D y M, hol) forms an MLF-Galois TM-pair of mono-analytic type.

REMARK 6.5.1. — One verifies immediately from our construction that if we write

log(k)(D y M, hol)+

for the underlying additive module of the field log(k)(D y M, hol), then we have a
natural identification

log(k)(D y M, hol)+ = (M×)pf .

REMARK 6.5.2. — One verifies immediately that the field structure of log(k)(D y
M, hol) naturally determines a topology on log(k)(D y M, hol), i.e., the “p-adic topology”
of log(k)(D y M, hol). By means of this topology, one may regard log(D y M, hol) as
a topological monoid.
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DEFINITION 6.6.

(i) We shall say that a collection of data

((G y M), {(D y MD)}D∈eV(G), {ρD : M ↪→MD}D∈eV(G))

consisting of an NF-Galois pair (G y M) [cf. Definition 4.1], an MLF-Galois TM-pair

(D y MD) of mono-analytic type for each D ∈ Ṽ(G), and a D-equivariant injection

ρD : M ↪→ MD of monoids for each D ∈ Ṽ(G) is an NF-Galois theater if, for each

D ∈ Ṽ(G), the diagram

Mgp ∼−−−→ F̃ (G)×y y
Mgp

D

∼−−−→ k
×
(D)

— where the upper horizontal arrow is the isomorphism of the final assertion of The-
orem 5.12; the lower horizontal arrow is the isomorphism of Definition 6.4, (iv); the
left-hand vertical arrow is the homomorphism determined by ρD; the right-hand vertical
arrow is the homomorphism induced by the right-hand vertical arrow of the diagram of
Theorem 5.11, (i) — commutes.

(ii) Let

T1
def
= ((G1 y M1), {(D1 y MD1)}D1∈eV(G1), {ρD1 : M1 ↪→MD1}D1∈eV(G1)),

T2
def
= ((G2 y M2), {(D2 y MD2)}D2∈eV(G2), {ρD2 : M2 ↪→MD2}D2∈eV(G2))

be NF-Galois theaters. Then we shall say that a collection of data

(α : G1 ↪→ G2, τ : Ṽ(G1)
∼→ Ṽ(G2), β : M1

∼→M2, {βD1 : MD1

∼→Mτ(D1)}D1∈eV(G1))

consisting of an open injection α : G1 ↪→ G2 of profinite groups, a bijection τ : Ṽ(G1)
∼→

Ṽ(G2), an isomorphism β : M1
∼→ M2 of monoids, and, for each D1 ∈ Ṽ(G1), an isomor-

phism βD1 : MD1

∼→Mτ(D1) of topological monoids is a morphism of NF-Galois theaters

T1 −→ T2
if the following three conditions are satisfied:

(a) The isomorphism β : M1
∼→M2 of monoids is compatible with the actions of G1,

G2 relative to the open injection α.

(b) For each D1 ∈ Ṽ(G1), it holds that τ(D1) = CG2(α(D1)), which thus [cf.
[11], Theorem 12.1.9; [11], Lemma 12.1.10] implies that α determines an open injection
D1 ↪→ τ(D1).

(c) For each D1 ∈ Ṽ(G1), the isomorphism βD1 : MD1

∼→ Mτ(D1) of topological
monoids is compatible with the actions of D1, τ(D1) relative to the open injection D1 ↪→
τ(D1) of (b).

(iii) We shall write
ThNF

for the category of NF-Galois theaters and morphisms of NF-Galois theaters defined in
(i) and (ii).



58 Yuichiro Hoshi

(iv) We shall write
NF

for the category whose objects are profinite groups of NF-type and morphisms are open
injections of profinite groups. Thus, the assignment

((G y M), {(D y MD)}D∈eV(G), {ρD : M ↪→MD}D∈eV(G)) 7→ G

determines a functor
ThNF −→ NF.

REMARK 6.6.1. — In the notation of Definition 6.6, (i), if we write holD for the NF-
holomorphic structure on D obtained by forming the natural inclusion D ↪→ G, then

it follows immediately from the definitions of F̃ (G y M), k(D y MD, holD) [cf. also
Theorem 5.11, (i)] that the morphism of modules induced by ρD

Mgp −→ Mgp
D

determines an inclusion of fields

F̃ (G y M) ↪→ k(D y MD, holD)

[cf. Remark 4.4.1, Remark 6.4.1].

REMARK 6.6.2. — In the notation of Definition 6.6, (ii), it follows immediately from [11],
Lemma 12.1.10, that the bijection τ is completely determined by the open injection α as

follows: τ(D1) is a unique element of Ṽ(G2) which contains α(D1).

PROPOSITION 6.7. — We shall write

An[NF]

for the category defined as follows: An object of An[NF] is a collection of data of the form

An(G)
def
= ((G y ÕB(G)), {(D y OB

k(D)
)}D∈eV(G), {Õ

B(G) ↪→ OB
k(D)
}D∈eV(G))

— where we write OB
k(D)

for the monoid of nonzero integers of k(D), and ÕB(G) ↪→ OB
k(D)

is the natural inclusion — for some object G of NF. A morphism of An[NF] is the
morphism induced by a morphism of NF. Then the natural functors

NF −→ An[NF] −→ ThNF −→ NF
— where the first arrow is the functor obtained by assigning G 7→ An(G), the second arrow
is the functor obtained by forgetting the way in which the object An(G) arose from G, and
the third arrow is the functor of Definition 6.6, (iv) — all of which are equivalences of
categories. Moreover, the composite NF → NF of these arrows is naturally isomorphic
to the identity functor.

Proof. — This follows immediately from Theorem 5.12; Remark 6.6.2; [9], Proposition
3.2, (iv), together with the various definitions involved. �
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DEFINITION 6.8. — Let

T def
= ((G y M), {(D y MD)}D∈eV(G), {ρD : M ↪→MD}D∈eV(G))

be an NF-Galois theater and D ∈ Ṽ(G). Write holD for the NF-holomorphic structure on
(D y MD) obtained by forming the natural inclusion D ↪→ G. Thus, by Definition 6.5,
(iii), we have an MLF-Galois TM-pair of mono-analytic type

(D y log(D y MD, holD)).

Moreover, by the definition of the MLF-Galois TM-pair (D y log(D y MD, holD)) [i.e.,
the construction of log(k)(D y M, hol) via the p(D)-adic logarithm], we have a natural
D-equivariant isomorphism

ιD : MD
∼−→ log(D y MD, holD).

Now one verifies immediately from the various definitions involved that the collection of
data

log(T )
def
= ((G y M), {(D y log(D y MD, holD))}D∈eV(G), {ιD ◦ ρD}D∈eV(G))

forms an NF-Galois theater. Thus, we obtain a functor

log : ThNF −→ ThNF.

We shall refer to this functor log as the NF-log-Frobenius functor.

REMARK 6.8.1. — One verifies immediately that the NF-log-Frobenius functor of Defini-
tion 6.8 is naturally isomorphic to the identity functor, hence, in particular, an equivalence
of category.

DEFINITION 6.9. — Let G be a profinite group of NF-type, i.e., an object of the category
NF, and p a prime number.

(i) We shall write
NF[G] ⊆ NF

for the full subcategory of NF consisting of profinite groups which are isomorphic to
G. [Thus, it follows from Theorem 3.3 that every morphism in this full subcategory is
an isomorphism.] This full subcategory determines, in an evident fashion [cf. also the
equivalences of categories of Proposition 6.7], full subcategories

ThNF[G] ⊆ ThNF, An[NF[G]] ⊆ An[NF].

Then one verifies immediately that the NF-log-Frobenius functor log : ThNF → ThNF

determines a functor
log : ThNF[G] −→ ThNF[G].

(ii) We shall write
Np (respectively, N�

p )

for the category defined as follows: An object of the category Np (respectively, N�
p ) is a

collection of data

((H y M), {(D y MD)}D∈eV(H), {ρD : M ↪→MD}D∈eV(H), {(D y ND)}D∈eV(H), p(D)=p)
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— where

((H y M), {(D y MD)}D∈eV(H), {ρD : M ↪→MD}D∈eV(H))

is an object of ThNF[G] [i.e., a certain NF-Galois theater], and, for each D ∈ Ṽ(H) such
that p(D) = p,

(D y ND)

is an MLF-Galois TS-pair (respectively, TS�-pair) [necessarily of mono-analytic type] [cf.
[9], Definition 3.1, (ii)]. A morphism in the category Np (respectively, N�

p ) is a morphism
determined, in an evident fashion, by the notion of a morphism of NF-Galois theaters
and the notion of a morphism of MLF-Galois TS-pairs (respectively, TS�-pairs) [cf. [9],
Definition 3.1, (ii)]. Thus, we have natural functors

N�
p −→ Np −→ NF[G].

(iii) Let ν be a vertex of the oriented graph “~Γlog
non” of [9], Definition 5.4, (iii). Then, by

a similar procedure to the procedure of [9], Definition 5.4, (iv), one may define a functor

λ�
p,ν : ThNF[G] −→ N�

p .

(iv) Let ε be an edge of the oriented graph “~Γn
non” of [9], Definition 5.4, (iii), running

from a vertex ν1 to a vertex ν2. Then, by a similar procedure to the procedure of [9],
Definition 5.4, (vii), one may define a natural transformation

ι�p, ε : λ�
p, ν1
◦ Λν1 −→ λ�

p, ν2

— where, for each pre-log (respectively, post-log) vertex ν [cf. [9], Definition 5.4, (iii)] of

the oriented graph “~Γlog
non” of [9], Definition 5.4, (iii), we take Λν to be the identity functor

on ThNF[G] (respectively, NF-log-Frobenius functor log : ThNF[G]→ ThNF[G] — cf. (i)).

Finally, we prove the following global mono-anabelian log-Frobenius compatibility:
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THEOREM 6.10. — Let G be a profinite group of NF-type [cf. Definition 3.2]. Consider
the diagram of categories D [cf. [9], Definition 3.5, (i)]

· · · log−→ X log−→ X log−→ X log−→ · · ·

· · · idi−1 ↘ ↓ idi ↙ idi+1 · · ·

X

· · · λ�
p†
↙ · · · ↙ ↓ · · · ↓ λ�

p ↘ · · · ↘ λ�
p‡

· · ·

· · · N�
p† N�

p N�
p‡ · · ·

· · · ↓ ↓ ↓ · · ·

· · · Np† Np Np‡ · · ·

· · · ↘ ↓ ↙ · · ·

E

↓ κ

An

↓

E
— where we write

X def
= ThNF[G], E def

= NF[G], An
def
= An[NF[G]]

[cf. Definition 6.9, (i)]; we write “N�
p ”, “Np” for the categories defined in Definition 6.9,

(ii); the elements of Z correspond to vertices of the first row of D; we write Z(∞) def
=

Z ∪ {∞} for the ordered set obtained by appending to Z a formal symbol “∞” — which
we think of as corresponding to the unique vertex of the second row of D — such that
i < ∞ for all i ∈ Z; we write idi for the identity functor at the vertex i ∈ Z; for an
element n ∈ {1, . . . , 7}, we write D≤n for the subdiagram of categories [cf. [9], Definition
3.5, (i)] of D determined by the first n [of the seven] rows of D; the vertices of the
third and fourth rows of D are indexed by the prime numbers p, p†, p‡ . . .; the arrows
from the second row to the category N�

p in the third row are given by the collection of

functors λ�
p

def
= {λ�

p, ν}ν of Definition 6.9, (iii), where ν ranges over the pre-log vertices

of the oriented graph “~Γlog
non” of [9], Definition 5.4, (iii) [or, alternatively, over all the

vertices of the oriented graph “~Γlog
non” of [9], Definition 5.4, (iii), subject to the proviso

that we identify the functors associated to the space-link and post-log vertices]; the
arrows from the third to fourth and from the fourth to fifth rows are the natural functors
N�

p → Np → E of Definition 6.9, (ii); the arrows from the fifth to sixth and from the
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sixth to seventh rows are the natural equivalences of categories E → An → E —
the first of which we shall denote by κ — of Proposition 6.7 restricted to “[G]”; we shall
apply “[−]” to the names of arrows appearing in D to denote the path [cf. the discussion
entitled “Combinatorics” in [9], §0] of length 1 associated to the arrow. Also, let us write

φ : An −→ X

for the equivalence of categories given by the “forgetful functor” of Proposition 6.7
restricted to “[G]”;

π : X −→ E κ−→ An

for the quasi-inverse for φ given by the composite of the natural projection functor X → E
with κ;

η : φ ◦ π
∼−→ idX

for the isomorphism that exhibits φ, π as quasi-inverses to one another. Then the follow-
ing hold:

(i) For n ∈ {5, 6, 7}, D≤n admits a natural structure of core [cf. [9], Definition 3.5,
(iii)] on D≤n−1. That is to say, loosely speaking, E, An “form cores” of the functors in
D.

(ii) The “forgetful functor” φ gives rise to a telecore structure T [cf. [9], Defi-
nition 3.5, (iv)] on D≤5 — whose underlying diagram of categories we denote by DT —
by appending to D≤6 telecore edges [cf. [9], Definition 3.5, (iv), (a)]

An

· · · φi−1 ↙ ↓ φi ↘ φi+1 · · ·

· · · log−→ X log−→ X log−→ X log−→ · · ·

An
φ∞−→ X

from the core An to the various copies of X in D≤2 given by copies of φ — which we
denote by φi — for i ∈ Z(∞). That is to say, loosely speaking, φ determines a telecore
structure on D≤5. Finally, for each i ∈ Z(∞), let us write [β0

i ] for the path on ~ΓDT
of

length 0 at i and [β1
i ] for some [cf. the coricity of (i)] path on ~ΓDT

of length ∈ {5, 6}
[i.e., depending on whether or not i = ∞] that starts from i, descends via some path of
length ∈ {4, 5} to the core vertex “An”, and returns to i via the telecore edge φi.

Then the collection of natural transformations

{η∞, i, ηj, η−1
j }i∈Z, j∈Z(∞)

— where we write

η∞, i : φ∞
∼−→ idi ◦ φi

for the identity natural transformation and

ηj : (DT)[β1
j ]

∼−→ (DT)[β0
j ]

[cf. [9], Definition 3.5, (i)] for the isomorphism arising from η — generate a contact
structure H [cf. [9], Definition 3.5, (iv)] on the telecore T.
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(iii) The natural transformations

ι�p, ε : λ�
p, ν1
◦ Λν1 −→ λ�

p, ν2

[cf. Definition 6.9, (iv)] — where p is a prime number; ε is an edge of the oriented graph

“~Γn
non” of [9], Definition 5.4, (iii), running from a vertex ν1 to a vertex ν2; if ν1 is a pre-

log vertex, then we interpret the domain and codomain of ι�p, ε as the arrows associated
to the paths of length 1 from the second to third rows of D determined by p and ν1, ν2;
if ν1 is a post-log vertex, then we interpret the domain of ι�p, ε as the arrow associated
to the path of length 3 from the first to the third rows of D determined by p, ν1, and the
condition that the initial length 2 portion of the path is a path of the form [idi] ◦ [log] [for
i ∈ Z], and we interpret the codomain of ι�p, ε as the arrow associated to the path of length
2 from the first to the third rows of D determined by p, ν2, and the condition that the
initial length 1 portion of the path is a path of the form [idi+1] [for the same i ∈ Z] —
belong to a family of homotopies [cf. [9], Definition 3.5, (ii)] on D≤3 that determines
on the portion of D≤3 indexed by p a structure of observable Slog [cf. [9], Definition 3.5,
(iii)] on D≤2. Moreover, the family of homotopies that constitute Slog is compatible [cf.
[9], Definition 3.5, (ii)] with one another as well as with the families of homotopies that
constitute the core and telecore structures of (i), (ii).

(iv) The diagram of categories D≤2 does not admit a structure of core on D≤1

which [i.e., whose constituent family of homotopies] is compatible with [the constituent
family of homotopies of] the observable Slog of (iii). Moreover, the telecore structure
T of (ii), the contact structure H of (ii), and the observable Slog of (iii) are not
simultaneously compatible.

(v) The unique vertex ∞ of the second row of D is a nexus [cf. the discussion entitled

“Combinatorics” in [9], §0] of ~ΓD. Moreover, D is totally ∞-rigid [cf. [9], Definition

3.5, (vi)], and the natural action of Z on the infinite linear oriented graph ~ΓD≤1
extends

to an action of Z on D by nexus-classes of self-equivalences of D [cf. [9], Definition
3.5, (vi)]. Finally, the self-equivalences in these nexus-classes are compatible with the
families of homotopies that constitute the cores and observable of (i), (iii); these self-
equivalences also extend naturally [cf. the technique of extension applied in [9], Definition
3.5, (vi)] to the diagram of categories [cf. [9], Definition 3.5, (iv), (a)] that constitutes the
telecore of (ii), in a fashion that is compatible with both the family of homotopies
that constitutes this telecore structure [cf. [9], Definition 3.5, (iv), (b)] and the contact
structure H of (ii).

Proof. — This follows immediately from a similar argument to the argument applied
in the proof of [9], Corollary 5.5. �

REMARK 6.10.1. — The “general formal content” of the remarks following [9], Corollaries
3.6, 3.7, applies to the situation discussed in Theorem 6.10, as well. We leave the routine
details of translating these remarks into the language of the situation of Theorem 6.10 to
the interested reader.
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