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Abstract. The purpose of the present paper is to expose, in substantial detail,

certain remarkable similarities between inter-universal Teichmüller theory
and the theory surrounding Bogomolov’s proof of the geometric version of the
Szpiro Conjecture. These similarities are, in some sense, consequences the fact
that both theories are closely related to the hyperbolic geometry of the classical

upper half-plane. We also discuss various differences between the theories, which
are closely related to the conspicuous absence in Bogomolov’s proof of Gaussian
distributions and theta functions, i.e., which play a central role in inter-universal
Teichmüller theory.
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Introduction

Certain aspects of the inter-universal Teichmüller theory developed in [IUTchI],
[IUTchII], [IUTchIII], [IUTchIV] — namely,

(IU1) the geometry of Θ±ellNF-Hodge theaters [cf. [IUTchI], Definition
6.13; [IUTchI], Remark 6.12.3],

(IU2) the precise relationship between arithmetic degrees — i.e., of q-pilot

and Θ-pilot objects — given by the Θ×μ
LGP-link [cf. [IUTchIII], Definition

3.8, (i), (ii); [IUTchIII], Remark 3.10.1, (ii)], and
(IU3) the estimates of log-volumes of certain subsets of log-shells that give

rise to diophantine inequalities [cf. [IUTchIV], §1, §2; [IUTchIII], Re-
mark 3.10.1, (iii)] such as the Szpiro Conjecture

— are substantially reminiscent of the theory surrounding Bogomolov’s proof
of the geometric version of the Szpiro Conjecture, as discussed in [ABKP],
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[Zh]. Put another way, these aspects of inter-universal Teichmüller theory may
be thought of as arithmetic analogues of the geometric theory surrounding Bo-
gomolov’s proof. Alternatively, Bogomolov’s proof may be thought of as a sort of
useful elementary guide, or blueprint [perhaps even a sort of Rosetta stone!],
for understanding substantial portions of inter-universal Teichmüller theory. The
author would like to express his gratitude to Ivan Fesenko for bringing to his atten-
tion, via numerous discussions in person, e-mails, and skype conversations between
December 2014 and January 2015, the possibility of the existence of such fascinating
connections between Bogomolov’s proof and inter-universal Teichmüller theory.

After reviewing, in §1, §2, §3, the theory surrounding Bogomolov’s proof from
a point of view that is somewhat closer to inter-universal Teichmüller theory than
the point of view of [ABKP], [Zh], we then proceed, in §4, §5, to compare, by high-
lighting various similarities and differences, Bogomolov’s proof with inter-universal
Teichmüller theory. In a word, the similarities between the two theories revolve
around the relationship of both theories to the classical elementary geometry of
the upper half-plane, while the differences between the two theories are closely
related to the conspicuous absence in Bogomolov’s proof of Gaussian distri-
butions and theta functions, i.e., which play a central role in inter-universal
Teichmüller theory.

Section 1: The Geometry Surrounding Bogomolov’s Proof

First, we begin by reviewing the geometry surrounding Bogomolov’s proof,
albeit from a point of view that is somewhat more abstract and conceptual than
that of [ABKP], [Zh].

We denote by M the complex analytic moduli stack of elliptic curves [i.e.,
one-dimensional complex tori]. Let

M̃ → M
be a universal covering of M. Thus, M̃ is noncanonically isomorphic to the upper

half-plane H. In the following, we shall denote by a subscript M̃ the result of

restricting to M̃ objects over M that are denoted by a subscript M.

Write
ωM → M

for the [geometric!] line bundle determined by the cotangent space at the origin of
the tautological family of elliptic curves over M; ω×

M ⊆ ωM for the complement
of the zero section in ωM; EM for the local system over M determined by the
first singular cohomology modules with coefficients in R of the fibers over M of the
tautological family of elliptic curves over M; E×

M ⊆ EM for the complement of the
zero section in EM. Thus, if we think of bundles as geometric spaces/stacks, then
there is a natural embedding

ωM ↪→ EM ⊗R C

[cf. the inclusion “ω ↪→ E” of [IUTchI], Remark 4.3.3, (ii)]. Moreover, this natural
embedding, together with the natural symplectic form

〈 - , - 〉E
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on EM [i.e., determined by the cup product on the singular cohomology of fibers
over M, together with the orientation that arises from the complex holomorphic
structure on these fibers], gives rise to a natural metric [cf. the discussion of
[IUTchI], Remark 4.3.3, (ii)] on ωM. Write

(ωM ⊇ ω×
M ⊇) ω�

M → M

for the S1-bundle over M determined by the points of ωM of modulus one with
respect to this natural metric.

Next, observe that the natural section 1
2 ·tr(−) : C → R [i.e., one-half the trace

map of the Galois extension C/R] of the natural inclusion R ↪→ C determines a
section EM ⊗R C → EM of the natural inclusion EM ↪→ EM ⊗R C whose restriction
to ωM determines bijections

ωM
∼→ EM, ω×

M
∼→ E×

M

[i.e., of geometric bundles over M]. Thus, at the level of fibers, the bijection

ωM
∼→ EM may be thought of as a [noncanonical] copy of the natural bijection

C
∼→ R2.

Next, let us write E for the fiber [which is noncanonically isomorphic to R2] of
the local system EM relative to some basepoint corresponding to a cusp

“∞”

of M̃, EC

def
= E ⊗R C, SL(E) for the group of R-linear automorphisms of E that

preserve the natural symplectic form 〈 - , - 〉E def
= 〈 - , - 〉E |E on E [so SL(E)

is noncanonically isomorphic to SL2(R)]. Now since M̃ is contractible, the local

systems EM̃, E×
M̃ over M̃ are trivial. In particular, we obtain natural projection

maps
EM̃ � E, E×

M̃ � E× � E∠ � E|∠|

— where we write

E∠ def
= E×/R>0

[so E∠ is noncanonically isomorphic to R2∠ def
= R2×/R>0

∼= S1] and

E∠ � E|∠| def
= E∠/{±1}

for the finite étale covering of degree 2 determined by forming the quotient by the
action of ±1 ∈ SL(E).

Next, let us observe that over each point M̃, the composite

ω�
M̃ ⊆ ω×

M̃
∼→ E×

M̃ � E× � E∠

induces a homeomorphism between the fiber of ω�
M̃ [over the given point of M̃] and

E∠. In particular, for each point of M̃, the metric on this fiber of ω�
M̃ determines

a metric on E∠ [i.e., which depends on the point of M̃ under consideration!]. On
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the other hand, one verifies immediately that such metrics on E∠ always satisfy
the following property: Let

D
∠ ⊆ E∠

be a fundamental domain for the action of ±1 on E∠, i.e., the closure of some

open subset D∠ ⊆ E∠ such that D∠ maps injectively to E|∠|, while D
∠

maps

surjectively to E|∠|. Thus, ±D
∠
[i.e., the {±1}-orbit of D∠

] is equal to E∠. Then

the volume of D
∠

relative to metrics on E∠ of the sort just discussed is always

equal to π, while the volume of ±D
∠
[i.e., E∠] relative to such a metric is always

equal to 2π.

Over each point of M̃, the composite ω×
M̃

∼→ E×
M̃ � E× corresponds [noncanon-

ically] to a copy of the natural bijection C× ∼→ R2× that arises from the complex

structure on E determined by the point of M̃. Moreover, this assignment of com-
plex structures, or, alternatively, points of the one-dimensional complex projective

space P(EC), to points of M̃ determines a natural embedding

M̃ ↪→ P(EC)

[i.e., a copy of the usual embedding of the upper half-plane into the complex pro-

jective line], hence also natural actions of SL(E) on M̃ and EM̃ that are uniquely
determined by the property that they be compatible, relative to this natural embed-
ding and the projection EM̃ � E, with the natural actions of SL(E) on P(EC) and
E. One verifies immediately that these natural actions also determine compatible
natural actions of SL(E) on ω�

M̃ ⊆ ω×
M̃

∼→ E×
M̃, and that the natural action of

SL(E) on ω�
M̃ determines a structure of SL(E)-torsor on ω�

M̃.

Let S̃L(E), (ω�
M)∼, (ω×

M)∼, (E×
M)∼, (E×)∼, (E∠)∼ be compatible universal

coverings of SL(E), ω�
M̃, ω×

M̃, E×
M̃, E×, E∠, respectively. Thus, S̃L(E) admits

a natural Lie group structure, together with a natural surjection of Lie groups

S̃L(E) � SL(E), whose kernel admits a natural generator

τ̃� ∈ Ker(S̃L(E) � SL(E))

determined by the “clockwise orientation” that arises from the complex structure on
the fibers of ω×

M overM]. This natural generator determines a natural isomorphism

Z
∼→ Ker(S̃L(E) � SL(E)).

Next, observe that the natural actions of SL(E) on ω�
M̃, ω×

M̃, E×
M̃, E×, E∠ lift

uniquely to compatible natural actions of S̃L(E) on the respective universal cover-
ings (ω�

M)∼, (ω×
M)∼, (E×

M)∼, (E×)∼, (E∠)∼. In particular, the natural generator

τ̃� of Z = Ker(S̃L(E) � SL(E)) determines a natural generator τ̃∠ of the group
Aut((E∠)∼/E∠) of covering transformations of (E∠)∼ � E∠ and hence, taking
into account the composite covering (E∠)∼ � E∠ � E|∠|, a natural Autπ(R)-
orbit of homeomorphisms [i.e., a “homeomorphism that is well-defined up to
composition with an element of Autπ(R)”]

(E∠)∼ ∼→ R (� Autπ(R))
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— where we write Autπ(R) for the group of self-homeomorphisms R
∼→ R that

commute with translation by π. Here, the group of covering transformations of the
covering (E∠)∼ � E∠ is generated by the transformation τ̃∠, which corresponds to
translation by 2π; the group of covering transformations of the composite covering
(E∠)∼ � E∠ � E|∠| admits a generator τ̃ |∠| that satisfies the relation

(τ̃ |∠|)2 = τ̃∠ ∈ Aut((E∠)∼/E∠)

and corresponds to translation by π [cf. the transformation “z(−)” of [Zh], Lemma

3.5]. Moreover, τ̃ |∠| arises from an element τ̃ |�| ∈ S̃L(E) that lifts −1 ∈ SL(E) and
satisfies the relation (τ̃ |�|)2 = τ̃�. The geometry discussed so far is summarized in
the commutative diagram of Fig. 1 below.

S̃L(E) �

(
∼→ R){

(ω�
M)∼ ⊆ (ω×

M)∼ ∼→ (E×
M)∼ � (E×)∼ � (E∠)∼

}
SL(E) �

⏐⏐� ⏐⏐� ⏐⏐� ⏐⏐� ⏐⏐�{
M̃ ←− ω�

M̃ ⊆ ω×
M̃

∼→ E×
M̃ � E× � E∠

}
⏐⏐� ⏐⏐� ⏐⏐� ⏐⏐� (∼= R2×) (∼= R2∠

M ←− ω�
M ⊆ ω×

M
∼→ E×

M ∼= S1)

Fig. 1: The geometry surrounding Bogomolov’s proof

Section 2: Fundamental Groups in Bogomolov’s Proof

Next, we discuss the various fundamental groups that appear in Bogo-
molov’s proof.

Recall that the 12-th tensor power ω⊗12
M of the line bundle ωM admits a natural

section, namely, the so-called discriminant modular form, which is nonzero over
M, hence determines a section of ω×⊗12

M [i.e., the complement of the zero section

of ω⊗12
M ]. Thus, by raising sections of ω×

M to the 12-th power and then applying
the trivialization determined by the discriminant modular form, we obtain natural
holomorphic surjections

ω×
M � ω×⊗12

M � C×

— where we note that the first surjection ω×
M � ω×⊗12

M , as well as the pull-back

ω×
M̃ � ω×⊗12

M̃ of this surjection to M̃, is in fact a finite étale covering of complex

analytic stacks. Thus, the universal covering (ω×
M)∼ over ω×

M may be regarded as a

universal covering (ω×⊗12
M )∼ def

= (ω×
M)∼ of ω×⊗12

M . In particular, if we regard C as a
universal covering of C× via the exponential map exp : C � C×, then the surjection
ω×⊗12
M � C× determined by the discriminant modular form lifts to a surjection

(ω×
M)∼ = (ω×⊗12

M )∼ � C



6 SHINICHI MOCHIZUKI

of universal coverings that is well-defined up to composition with a covering trans-
formation of the universal covering exp : C � C×.

Next, let us recall that the R-vector space E is equipped with a natural Z-lattice

EZ ⊆ E

[i.e., determined by the singular cohomology with coefficients in Z]. The set of ele-
ments of SL(E) that stabilize EZ ⊆ E determines a subgroup SL(EZ) ⊆ SL(E) [so

SL(EZ) is noncanonically isomorphic to SL2(Z)], hence also a subgroup S̃L(EZ)
def
=

S̃L(E) ×SL(E) SL(EZ). Thus, SL(E) ⊇ SL(EZ) admits a natural action on ω×
M̃;

S̃L(E) ⊇ S̃L(EZ) admits a natural action on (ω×
M)∼. Moreover, one verifies imme-

diately that the latter natural action determines a natural isomorphism

S̃L(EZ)
∼→ π1(ω

×
M)

with the group of covering transformations of (ω×
M)∼ over ω×

M, i.e., with the fun-
damental group [relative to the basepoint corresponding to the universal covering
(ω×

M)∼] π1(ω
×
M).

In particular, if we use the generator −2πi ∈ C to identify π1(C×) with Z, then
one verifies easily [by considering the complex elliptic curves that admit automor-
phisms of order > 2] that we obtain a natural surjective homomorphism

χ : S̃L(EZ) = π1(ω
×
M) � π1(C

×) ∼→ Z

whose restriction to Z
∼→ Ker(S̃L(EZ) � SL(EZ)) is the homomorphism Z → Z

given by multiplication by 12, i.e.,

χ(τ̃�) = 12, χ(τ̃ |�|) = 6

[cf. the final portion of §1].
Finally, we recall that in Bogomolov’s proof, one considers a family of elliptic

curves [i.e., one-dimensional complex tori]

X → S (⊆ S)

over a hyperbolic Riemann surface S of finite type (g, r) [so 2g−2+ r > 0] that has
stable bad reduction at every point at infinity [i.e., point ∈ S \ S] of some compact
Riemann surface S that compactifies S. Such a family determines a classifying mor-
phism S → M. The above discussion is summarized in the commutative diagrams
and exact sequences of Figs. 2 and 3 below.

1 −→ Z −→ S̃L(E) −→ SL(E) −→ 1⋃ ⋃ ⋃
1 −→ Z −→ S̃L(EZ) −→ SL(EZ) −→ 1⏐⏐� ⏐⏐�χ

⏐⏐�
1 −→ 12 · Z −→ Z −→ Z/12 · Z −→ 1

Fig. 2: Exact sequences related to Bogomolov’s proof



BOGOMOLOV’S PROOF AND INTER-UNIVERSAL TEICHMÜLLER THEORY 7

Z = Z
∼→ 12 · Z⋂ ⋂ ⋂

S̃L(E) ⊇ S̃L(EZ) �

χ
� Z �⏐⏐� ⏐⏐� (ω×

M)∼ = (ω×⊗12
M )∼ � C

SL(E) ⊇ SL(EZ) �

⏐⏐� ⏐⏐� ⏐⏐�exp

ω×
M̃ � ω×⊗12

M̃ � C×⏐⏐� ⏐⏐� ‖
X −→ S −→ M ←− ω×

M � ω×⊗12
M � C×

Fig. 3: Fundamental groups related to Bogomolov’s proof

Section 3: Estimates of Displacements Subject to Indeterminacies

We conclude our review of Bogomolov’s proof by briefly recalling the key points
of the argument applied in this proof. These key points revolve around estimates
of displacements that are subject to certain indeterminacies.

Write
Autπ(R≥0)

for the group of self-homeomorphisms R≥0
∼→ R≥0 that stabilize and restrict to the

identity on the subset π ·N ⊆ R≥0 and R|π| for the set of Autπ(R≥0)-orbits of R≥0

[relative to the natural action of Autπ(R≥0) on R≥0]. Thus, one verifies easily that

R|π| =
( ⋃

n∈N

{ [n · π] }
)

∪
( ⋃

m∈N

{ [(m · π, (m+ 1) · π)] }
)

— where we use the notation “[−]” to denote the element in R|π| determined by
an element or nonempty subset of R≥0 that lies in a single Autπ(R≥0)-orbit. In
particular, we observe that the natural order relation on R≥0 induces a natural
order relation on R|π|.

For ζ̃ ∈ S̃L(E), write

δ(ζ̃)
def
= { [ |ζ̃(e)− e| ] | e ∈ (E∠)∼ } ⊆ R|π|

— where the “absolute value of differences of elements of (E∠)∼” is computed with

respect to some fixed choice of a homeomorphism (E∠)∼ ∼→ R that belongs to the
natural Autπ(R)-orbit of homeomorphisms discussed in §1, and we observe that it

follows immediately from the definition of R|π| that the subset δ(ζ̃) ⊆ R|π| is in
fact independent of this fixed choice of homeomorphism.

Since [one verifies easily, from the connectedness of the Lie group S̃L(E), that]

τ̃ |�| belongs to the center of the group S̃L(E), it follows immediately [from the
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definition of R|π|, by considering translates of e ∈ (E∠)∼ by iterates of τ̃ |�|] that
the set δ(ζ̃) is finite, hence admits a maximal element

δsup(ζ̃)
def
= sup(δ(ζ̃))

[cf. the “length” 	(−) of the discussion preceding [Zh], Lemma 3.7]. Thus,

δ((τ̃ |�|)n) = { [ |n| · π ] }, δsup((τ̃ |�|)n) = [ |n| · π ]

for n ∈ Z [cf. the discussion preceding [Zh], Lemma 3.7]. We shall say that

ζ̃ ∈ S̃L(E) is minimal if δsup(ζ̃) determines a minimal element of the set {δsup(ζ̃ ·
(τ̃�)n)}n∈Z.

Next, observe that the cusp “∞” discussed in §1 may be thought of as a choice
of some rank one submodule E∞ ⊆ EZ for which there exists a rank one submodule
E0 ⊆ EZ — which may be thought of as a cusp “0” — such that the resulting
natural inclusions determine an isomorphism

E∞ ⊕ E0
∼→ EZ

of Z-modules. Note that since E∞ and E0 are free Z-modules of rank one, it follows
[from the fact that the automorphism group of the group Z is of order two!] that

there exist natural isomorphisms E⊗2
∞

∼→ E⊗2
0

∼→ Z. On the other hand, the natural

symplectic form 〈 - , - 〉EZ

def
= 〈 - , - 〉E |EZ

on EZ determines an isomorphism of

E∞ with the dual of E0, hence [by applying the natural isomorphism E⊗2
0

∼→ Z] a

natural isomorphism E∞
∼→ E0.

This natural isomorphism E∞
∼→ E0 determines a nontrivial unipotent auto-

morphism τ∞ ∈ SL(EZ) of EZ = E∞ ⊕ E0 that fixes E∞ ⊆ EZ — i.e., which may

be thought of, relative to natural isomorphism E∞
∼→ E0, as the matrix

(
1 1
0 1

)
— as

well as an SL(EZ)-conjugate unipotent automorphism τ0 ∈ SL(EZ) — i.e., which

may be thought of, relative to natural isomorphism E∞
∼→ E0, as the matrix

(
1 0

−1 1

)
.

Thus, the product

τ∞ · τ0 =

(
1 1

0 1

)
·
(

1 0

−1 1

)
=

(
0 1

−1 1

)
∈ SL(EZ)

lifts, relative to a suitable homeomorphism (E∠)∼ ∼→ R that belongs to the natural

Autπ(R)-orbit of homeomorphisms discussed in §1, to an element τ̃θ ∈ S̃L(EZ) that
induces the automorphism of R given by translation by θ for some θ ∈ R such
that |θ| = 1

3π.

The key observations that underlie Bogomolov’s proof may be summarized
as follows [cf. [Zh], Lemmas 3.6 and 3.7]:

(B1) Every unipotent element τ ∈ SL(E) lifts uniquely to an element

τ̃ ∈ S̃L(E)

that stabilizes and restricts to the identity on some (τ̃ |∠|)Z-orbit of (E∠)∼.
Such a τ̃ is minimal and satisfies

δsup(τ̃) < [π].
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(B2) Every commutator [α̃, β̃] ∈ S̃L(E) of elements α̃, β̃ ∈ S̃L(E) satisfies

δsup([α̃, β̃]) < [2π].

(B3) Let τ̃∞, τ̃0 ∈ S̃L(EZ) be liftings of τ∞, τ0 ∈ SL(EZ) as in (B1). Then

τ̃∞ · τ̃0 = τ̃θ, and θ = 1
3π > 0.

In particular,

(τ̃∞ · τ̃0)3 = τ̃ |�|, χ(τ̃∞) = χ(τ̃0) = 1, χ(τ̃�) = 2 · χ(τ̃ |�|) = 12.

Observation (B1) follows immediately, in light of the various definitions in-

volved, together with the fact that τ̃ |�| belongs to the center of the group S̃L(E),
from the fact τ fixes the [distinct!] images in E∠ of ±v ∈ E for some nonzero v ∈ E.

Next, let us write |SL(E)| def
= SL(E)/{±1}. Then observe that since the gen-

erator τ̃ |�| of Ker(S̃L(E) � SL(E) � |SL(E)|) belongs to the center of S̃L(E),

it follows that every commutator [α̃, β̃] as in observation (B2) is completely deter-

mined by the respective images |α|, |β| ∈ |SL(E)| of α̃, β̃ ∈ S̃L(E). Now recall [cf.
the proof of [Zh], Lemma 3.5] that it follows immediately from an elementary linear
algebra argument — i.e., consideration of a solution “x” to the equation

det
((

a b
c d

)− (
1 x
0 1

))
= 0

associated to an element
(
a b
c d

) ∈ SL2(R) such that c �= 0 — that every element
of SL(E) other than −1 ∈ SL(E) may be written as a product of two unipotent

elements of SL(E). In particular, we conclude that every commutator [α̃, β̃] =

(α̃ · β̃ · α̃−1) · β̃−1 as in observation (B2) may be written as a product

τ̃1 · τ̃2 · τ̃∗2 · τ̃∗1
of four minimal liftings “τ̃” as in (B1) such that τ̃∗1 , τ̃

∗
2 are S̃L(E)-conjugate to

τ̃−1
1 , τ̃−1

2 , respectively. On the other hand, it follows immediately from the fact
that the action on E∠ of any nontrivial [i.e., �= 1] unipotent element of SL(E)
has precisely two fixed points [i.e., precisely one {±1}-orbit of fixed points] that,
for i = 1, 2, there exists an element εi ∈ {±1} such that, relative to the action of

S̃L(E) on (E∠)∼ ∼→ R, τ̃ εii maps every element x ∈ R to an element R � τ̃ εii (x) ≥ x.
[Indeed, consider the continuity properties of the map R � x �→ τ̃i(x)−x ∈ R, which
is invariant with respect to translation by π in its domain!] Moreover, since any

element of S̃L(E) induces a self-homeomorphism of (E∠)∼ ∼→ R that commutes with
the action of τ̃ |�|, hence is necessarily strictly monotone increasing, we conclude
that, for i = 1, 2, (τ̃∗i )

εi maps every element x ∈ R to an element R � (τ̃∗i )
εi(x) ≤ x.

In particular, any computation of the displacements ∈ R that occur as the result of
applying the above product τ̃1 · τ̃2 · τ̃∗2 · τ̃∗1 to some element of (E∠)∼ ∼→ R yields,
in light of the estimates δsup(τ1) < [π], δsup(τ2) < [π] of (B1), a sum

(((a∗1 + a∗2) + a2) + a1) = (a1 + a∗1) + (a2 + a∗2) ∈ R

for suitable elements

a1 ∈ ε1 · [0, π) ⊆ R; a∗1 ∈ −ε1 · [0, π) ⊆ R;
a2 ∈ ε2 · [0, π) ⊆ R; a∗2 ∈ −ε2 · [0, π) ⊆ R.



10 SHINICHI MOCHIZUKI

Thus, the estimate δsup([α̃, β̃]) < [2π] of observation (B2) follows immediately from
the estimates |a1 + a∗1| < π, |a2 + a∗2| < π.

Next, observe that since π < 2π− 1
3π, it follows immediately that {[0], [(0, π)]} ∩

δ(τ̃θ · (τ̃�)n) = ∅ for n �= 0. On the other hand, (B1) implies that [0] ∈ δ(τ̃0) and
δsup(τ̃∞) < π, and hence that {[0], [(0, π)]} ∩ δ(τ̃∞ · τ̃0) �= ∅. Thus, the relation
τ̃∞ · τ̃0 = τ̃θ of observation (B3) follows immediately; the positivity of θ follows
immediately from the clockwise nature [cf. the definition “τ̃�” in the final portion
of §1] of the assignments

(
1
0

) �→ (
0

−1

)
,
(
0
1

) �→ (
1
1

)
determined by τ∞ · τ0.

Next, recall the well-known presentation via generators αS
1 , . . . , α

S
g , β

S
1 , . . . , β

S
g ,

γS
1 , . . . , γ

S
r [where γS

1 , . . . , γ
S
r generate the respective inertia groups at the points

at infinity S \ S of S] subject to the relation

[αS
1 , β

S
1 ] · . . . · [αS

g , β
S
g ] · γS

1 · . . . · γS
r = 1

of the fundamental group ΠS of the Riemann surface S. These generators map, via
the outer homomorphism ΠS → ΠM induced by the classifying morphism of the
family of elliptic curves under consideration, to elements α1, . . . , αg, β1, . . . , βg,
γ1, . . . , γr subject to the relation

[α1, β1] · . . . · [αg, βg] · γ1 · . . . · γr = 1

of the fundamental group ΠM = SL(EZ) [for a suitable choice of basepoint] of M.

Next, let us choose liftings α̃1, . . . , α̃g, β̃1, . . . , β̃g, γ̃1, . . . , γ̃r of α1, . . . , αg,

β1, . . . , βg, γ1, . . . , γr to elements of S̃L(EZ) such that γ̃1, . . . , γ̃r are minimal
liftings as in (B1). Thus, we obtain a relation

[α̃1, β̃1] · . . . · [α̃g, β̃g] · γ̃1 · . . . · γ̃r = (τ̃�)n
�

= (τ̃ |�|)2n
�

in S̃L(EZ) for some n� ∈ Z. The situation under consideration is summarized in
Fig. 4 below.

ΠS −→ ΠM

‖
S̃L(E) ⊇ S̃L(EZ) � SL(EZ) ⊆ SL(E)

� �

(E∠)∼ � E∠

Fig. 4: The set-up of Bogomolov’s proof

Now it follows from the various definitions involved, together with the well-
known theory of Tate curves, that, for i = 1, . . . , r,

the element γi is an SL(EZ)-conjugate of τvi∞
for some vi ∈ N. Put another way, vi is the order of the “q-parameter” of the Tate
curve determined by the given family X → S at the point at infinity corresponding
to γS

i .

Thus, by applying χ(−) to the above relation, we conclude [cf. the discussion
preceding [Zh], Lemma 3.7] from the equalities in the final portion of (B3) [together
with the evident fact that commutators necessarily lie in the kernel of χ(−)] that
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(B4) The “orders of q-parameters” v1, . . . , vr satisfy the equality

r∑
i=1

vi = 12n�

— where n� ∈ Z is the quantity defined in the above discussion.

On the other hand, by applying δsup(−) to the above relation, we conclude [cf.
the discussion following the proof of [Zh], Lemma 3.7] from the estimates of (B1)
and (B2), the equality of (B4), and the equality δsup((τ̃ |�|)n) = [ |n| ·π ], for n ∈ Z,
that ( r∑

i=1

π
)

+
( g∑

j=1

2π
)

> 2π · n� = 1
6 · π ·

r∑
i=1

vi

— i.e., that

(B5) The “orders of q-parameters” v1, . . . , vr satisfy the estimate

1
6 ·

r∑
i=1

vi < 2g + r

— where (g, r) is the type of the hyperbolic Riemann surface S.

Finally, we conclude [cf. the discussion following the proof of [Zh], Lemma 3.7] the
geometric version of the Szpiro inequality

1
6 ·

r∑
i=1

vi ≤ 2g − 2 + r

by applying (B5) [multiplied by a normalization factor 1
d ] to the families obtained

from the given family X → S by base-changing to finite étale Galois coverings of
S of degree d and passing to the limit d → ∞.

Section 4: Similarities Between the Two Theories

We are now in a position to reap the benefits of the formulation of Bogomolov’s
proof given above, which is much closer “culturally” to inter-universal Teichmüller
theory than the formulation of [ABKP], [Zh].

We begin by considering the relationship between Bogomolov’s proof and
(IU1), i.e., the theory of Θ±ellNF-Hodge theaters, as developed in [IUTchI].
First of all, Bogomolov’s proof clearly centers around the hyperbolic geometry
of the upper half-plane. This aspect of Bogomolov’s proof is directly reminiscent
of the detailed analogy discussed in [IUTchI], Remark 6.12.3; [IUTchI], Fig. 6.4,
between the structure of Θ±ellNF-Hodge theaters and the classical geometry of the
upper half-plane. In particular, one may think of

the additive F�±
l -symmetry portion of a Θ±ellNF-Hodge theater as

corresponding to the unipotent transformations τ∞, τ0, γi

that appear in Bogomolov’s proof and of

the multiplicative F�

l -symmetry portion of a Θ±ellNF-Hodge theater
as corresponding to the toral/“typically non-unipotent” transforma-
tions τ∞ · τ0, αi, βi
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that appear in Bogomolov’s proof, i.e., typically as products of two non-commuting
unipotent transformations [cf. the proof of (B2)!].

One central aspect of the theory of Θ±ellNF-Hodge theaters developed in
[IUTchI] lies in the goal of somehow “simulating” a situation in which the module
of l-torsion points of the given elliptic curve over a number field admits a “global
multiplicative subspace” [cf. the discussion of [IUTchI], §I1; [IUTchI], Remark
4.3.1]. One way to understand this sort of “simulated” situation is in terms of
the one-dimensional additive geometry associated to a nontrivial unipotent
transformation. That is to say, whereas, from an a priori point of view, the one-
dimensional additive geometries associated to conjugate, non-commuting unipotent
transformations are distinct and incompatible, the “simulation” under consider-
ation may be understood as consisting of the establishment of some sort of geom-
etry in which these distinct, incompatible one-dimensional additive geometries are
somehow “identified” with one another as a single, unified one-dimensional
additive geometry. This fundamental aspect of the theory of Θ±ellNF-Hodge
theaters in [IUTchI] is thus reminiscent of the

single, unified one-dimensional objects E∠ (
∼→ S1), (E∠)∼( ∼→ R)

in Bogomolov’s proof which admit natural actions by conjugate, non-commuting
unipotent transformations ∈ SL(E) [i.e., such as τ∞, τ0] and their minimal liftings

to S̃L(E) [i.e., such as τ̃∞, τ̃0 — cf. (B1)].

The issue of simulation of a “global multiplicative subspace” as discussed in
[IUTchI], Remark 4.3.1, is closely related to the application of absolute anabelian
geometry as developed in [AbsTopIII], i.e., to the issue of establishing global arith-
metic analogues for number fields of the classical theories of analytic continua-
tion and Kähler metrics, constructed via the use of logarithms, on hyperbolic
Riemann surfaces [cf. [IUTchI], Remarks 4.3.2, 4.3.3, 5.1.4]. These aspects of
inter-universal Teichmüller theory are, in turn, closely related [cf. the discussion
of [IUTchI], Remark 4.3.3] to the application in [IUTchIII] of the theory of log-
shells [cf. (IU3)] as developed in [AbsTopIII] to the task of constructing multira-
dial mono-analytic containers, as discussed in the Introductions to [IUTchIII],
[IUTchIV]. These multradial mono-analytic containers play the crucial role of fur-
nishing containers for the various objects of interest — i.e., the theta value and
global number field portions of Θ-pilot objects — that, although subject to var-
ious indeterminacies [cf. the discussion of the indeterminacies (Ind1), (Ind2),
(Ind3) in the Introduction to [IUTchIII]], allow one to obtain the estimates [cf.
[IUTchIII], Remark 3.10.1, (iii)] of these objects of interest as discussed in detail
in [IUTchIV], §1, §2 [cf., especially, the proof of [IUTchIV], Theorem 1.10]. These
aspects of inter-universal Teichmüller theory may be thought of as corresponding to
the essential use of (E∠)∼ (

∼→ R) in Bogomolov’s proof, i.e., which is reminiscent of
the log-shells that appear in inter-universal Teichmüller theory in many respects:

(L1) The object (ω�
M)∼ that appears in Bogomolov’s proof may be thought

of as corresponding to the holomorphic log-shells of inter-universal
Teichmüller theory, i.e., in the sense that it may be thought of as a sort of
“logarithm” of the “holomorphic family of copies of the group of
units S1” consituted by ω�

M̃ — cf. the discussion of variation of complex

structure in §1.
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(L2) Each fiber over M̃ of the “holomorphic log-shell” (ω�
M)∼ maps isomor-

phically [cf. Fig. 1] to (E∠)∼, an essentially real analytic object that is
independent of the varying complex structures discussed in (L1), hence
may be thought of as corresponding to the mono-analytic log-shells of
inter-universal Teichmüller theory.

(L3) Just as in the case of the mono-analytic log-shells of inter-universal Te-
ichmüller theory [cf., especially, the proof of [IUTchIV], Theorem 1.10],
(E∠)∼ serves as a container for estimating the various objects of in-
terest in Bogomolov’s proof, as discussed in (B1), (B2), objects which are
subject to the indeterminacies constituted by the action of Autπ(R),
Autπ(R≥0) [cf. the indeterminacies (Ind1), (Ind2), (Ind3) in inter-universal
Teichmüller theory].

(L4) In the context of the estimates of (L3), the estimates of unipotent trans-
formations given in (B1) may be thought of as corresponding to the esti-
mates involving theta values in inter-universal Teichmüller theory, while
the estimates of “typically non-unipotent” transformations given in
(B2) may be thought of as corresponding to the estimates involving global
number field portions of Θ-pilot objects in inter-universal Teichmüller
theory.

(L5) As discussed in the [IUTchI], §I1, the Kummer theory surrounding the
theta values is closely related to the additive symmetry portion of
a Θ±ellNF-Hodge theater, i.e., in which global synchronization of ±-
indeterminacies [cf. [IUTchI], Remark 6.12.4, (iii)] plays a fundamental
role. Moreover, as discussed in [IUTchIII], Remark 2.3.3, (vi), (vii), (viii),
the essentially local nature of the cyclotomic rigidity isomorphisms
that appear in the Kummer theory surrounding the theta values renders
them free of any ±-indeterminacies. These phenomena of rigidity
with respect to ±-indeterminacies in inter-universal Teichmüller theory
are highly reminiscent of the crucial estimate of (B1) involving

the volume π of a fundamental domain D
∠

for the action of {±1} on E∠ [i.e., as opposed to the volume 2π of the {±1-

orbit ±D
∠
of D

∠
!], as well as of the uniqueness of the minimal liftings

of (B1). In this context, we also recall that the additive symmetry portion
of a Θ±ellNF-Hodge theater, which depends, in an essential way, on the
global synchronization of ±-indeterminacies [cf. [IUTchI], Remark 6.12.4,
(iii)], is used in inter-universal Teichmüller theory to establish conjugate
synchronization, which plays an indispensable role in the construction
of bi-coric mono-analytic log-shells [cf. [IUTchIII], Remark 1.5.1].
This state of affairs is highly reminiscent of the important role played by
E∠, as opposed to E|∠| = E∠/{±1}, in Bogomolov’s proof.

(L6) As discussed in the [IUTchI], §I1, the Kummer theory surrounding the
number fields under consideration is closely related to the multiplica-
tive symmetry portion of a Θ±ellNF-Hodge theater, i.e., in which one
always works with quotients via the action of ±1. Moreover, as dis-
cussed in [IUTchIII], Remark 2.3.3, (vi), (vii), (viii) [cf. also [IUTchII],
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Remark 4.7.3, (i)], the essentially global nature — which necessarily in-
volves at least two localizations, corresponding to a valuation [say, “0”]
and the corresponding inverse valuation [i.e., “∞”] of a function field
— of the cyclotomic rigidity isomorphisms that appear in the Kum-
mer theory surrounding number fields causes them to be subject to ±-
indeterminacies. These ±-indeterminacy phenomena in inter-universal
Teichmüller theory are highly reminiscent of the crucial estimate of (B2) —
which arises from considering products of two non-commuting unipo-
tent transformations, i.e., corresponding to “two distinct localizations”
— involving

the volume 2π of the {±1}-orbit ±D
∠
of a fundamental domain D

∠

for the action of {±1} on E∠ [i.e., as opposed to the volume π of D
∠
!].

(L7) The analytic continuation aspect [say, from “∞” to “0”] of inter-
universal Teichmüller theory — i.e., via the technique of Belyi cuspidal-
ization as discussed in [IUTchI], Remarks 4.3.2, 5.1.4 — may be thought
of as corresponding to the “analytic continuation” inherent in the holo-
morphic structure of the “holomorphic log-shell (ω�

M)∼”, which relates,
in particular, the localizations at the cusps “∞” and “0”.

Here, we note in passing that one way to understand certain aspects of the
phenomena discussed in (L4), (L5), and (L6) is in terms of the following “general
principle”: Let k be an algebraically closed field. Write k× for the multiplicative

group of nonzero elements of k, PGL2(k)
def
= GL2(k)/k

×. Thus, by thinking in
terms of fractional linear transformations, one may regard PGL2(k) as the group

of k-automorphisms of the projective line P
def
= P1

k over k. We shall say that an
element of PGL2(k) is unipotent if it arises from a unipotent element of GL2(k).
Let ξ ∈ PGL2(k) be a nontrivial element. Write P ξ for the set of k-rational points
of P that are fixed by ξ. Then observe that

ξ is unipotent ⇐⇒ P ξ is of cardinality one;

ξ is non-unipotent ⇐⇒ P ξ is of cardinality two.

That is to say,

General Principle:

· A nontrivial unipotent element ξ ∈ PGL2(k) may be regarded
as expressing a local geometry, i.e., the geometry in the neigh-
borhood of a single point [namely, the unique fixed point of ξ].
Such a “local geometry” — that is to say, more precisely, the
set P ξ of cardinality one — does not admit a “reflection, or ±-,
symmetry”.

· By contrast, a nontrivial non-unipotent element ξ ∈ PGL2(k)
may be regarded as expressing a global geometry, i.e., the
“toral” geometry corresponding to a pair of points “0” and
“∞” [namely, the two fixed points of ξ]. Such a “global toral ge-
ometry” — that is to say, more precisely, the set P ξ of cardinality
two — typically does admit a “reflection, or ±-, symmetry” [i.e.,
which permutes the two points of P ξ].
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Inter-universal Teichmüller Theory Bogomolov’s Proof

F�±
l -, F�

l -symmetries of unipotent, toral/non-unipotent
Θ±ellNF-Hodge theaters symmetries of upper half-plane

simulation of global S̃L(E) � SL(E) �
multiplicative subspace (R

∼→ ) (E∠)∼ � E∠ (
∼→ S1)

holomorphic log-shells, “holomorphic family” of fibers

analytic continuation “∞ � 0” of (ω�
M)∼ → M̃, e.g., at “∞”, “0”

multiradial mono-analytic real analytic

containers via log-shells S̃L(E) � (E∠)∼ (
∼→ R)

subject to subject to
indeterminacies indeterminacies via

(Ind1), (Ind2), (Ind3) actions of Autπ(R), Autπ(R≥0)

±-rigidity of “local” Kummer estimate (B1) via π of
theory, cyclotomic rigidity unique minimal liftings of
surrounding theta values, unipotent transformations,

conjugate synchronization E∠ (as opposed to E|∠|!)

±-indeterminacy of estimate (B2) via 2π of
“global” Kummer theory, commutators of products

cyclotomic rigidity of two non-commuting
surrounding number fields unipotent transformations

arithmetic degree computations degree computations via

via precise Θ×μ
LGP-link precise homomorphism χ (B4)

vs. log-shell estimates vs. δsup estimates (B1), (B2)

Frobenius-like complex holomorphic
vs. objects such as line bundles

étale-like vs. local systems,
objects fundamental groups

Fig. 5: Similarities between the two theories
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Next, we recall that the suitability of the multiradial mono-analytic containers
furnished by log-shells for explicit estimates [cf. [IUTchIII], Remark 3.10.1,
(iii)] lies in sharp contrast to the precise, albeit somewhat tautological, nature
of the correspondence [cf. (IU2)] concerning arithmetic degrees of objects of

interest [i.e., q-pilot and Θ-pilot objects] given by the Θ×μ
LGP-link [cf. [IUTchIII],

Definition 3.8, (i), (ii); [IUTchIII], Remark 3.10.1, (ii)]. This precise correspondence
is reminiscent of the precise, but relatively “superficial” [i.e., by comparison to
the estimates (B1), (B2)], relationships concerning degrees [cf. (B4)] that arise from
the homomorphism χ [i.e., which is denoted “deg” in [Zh]!]. On the other hand, the
final estimate (B5) requires one to apply both the precise computation of (B4) and
the nontrivial estimates of (B1), (B2). This state of affairs is highly reminiscent
of the discussion surrounding [IUTchIII], Fig. I.8, of two equivalent ways to

compute log-volumes, i.e., the precise correspondence furnished by the Θ×μ
LGP-link

and the nontrivial estimates via the multiradial mono-analytic containers furnished
by the log-shells.

Finally, we observe that the complicated interplay between “Frobenius-like”
and “étale-like” objects in inter-universal Teichmüller theory may be thought of
as corresponding to the complicated interplay in Bogomolov’s proof between

complex holomorphic objects such as the holomorphic line bundle
ωM and the natural surjections ω×

M � ω×⊗12
M � C× arising from the

discriminant modular form

— i.e., which correspond to Frobenius-like objects in inter-universal Teichmüller
theory — and

the local system EM and the various fundamental groups [and mor-
phisms between such fundamental groups such as χ] that appear in Fig.
3

— i.e., which correspond to étale-like objects in inter-universal Teichmüller theory.

The analogies discussed above are summarized in Fig. 5 above.

Section 5: Differences Between the Two Theories

In a word, the most essential difference between inter-universal Teichmüller
theory and Bogomolov’s proof appears to lie in the

absence in Bogomolov’s proof of
Gaussian distributions and theta functions,

i.e., which play a central role in inter-universal Teichmüller theory.

In some sense, Bogomolov’s proof may be regarded as arising from the geom-
etry surrounding the natural symplectic form

〈 - , - 〉E def
= 〈 - , - 〉E |E

on the two-dimensional R-vector space E. The natural arithmetic analogue of
this symplectic form is the Weil pairing on the torsion points — i.e., such as the
l-torsion points that appear in inter-universal Teichmüller theory — of an elliptic
curve over a number field.



BOGOMOLOV’S PROOF AND INTER-UNIVERSAL TEICHMÜLLER THEORY 17

On the other hand, one fundamental difference between this Weil pairing on
torsion points and the symplectic form 〈 - , - 〉E is the following:

Whereas the field R over which the symplectic form 〈 - , - 〉E is defined
may be regarded as a subfield — i.e.,

∃ R ↪→ C

— of the field of definition C of the algebraic schemes [or stacks] under
consideration, the field Fl over which the Weil pairing on l-torsion points
is defined cannot be regarded as a subfield — i.e.,

� Fl ↪→ Q

— of the number field over which the [algebraic] elliptic curve under con-
sideration is defined.

This phenomenon of compatibility/incompatibility of fields of definition is reminis-
cent of the “mysterious tensor products” that occur in p-adic Hodge theory,
i.e., in which the “Zp” that acts on a p-adic Tate module is identified [despite its
somewhat alien nature!] with the “Zp” that includes as a subring of the structure
sheaf of the p-adic scheme under consideration [cf. the discussion of [HASurII],
Remark 3.7; the final portion of [EtTh], Remark 2.16.2; [IUTchI], Remarks 4.3.1,
4.3.2; [IUTchI], Remark 6.12.3, (i), (ii); [IUTchIV], Remark 3.3.2]. Here, we observe
further that the former “Zp”, as well as the fields of definition of the symplectic
form 〈 - , - 〉E and the Weil pairing on torsion points, are, from the point of view
of inter-universal Teichmüller theory, étale-like objects, whereas the latter “Zp”,
as well as other instances of subrings of the structure sheaf of the scheme under
consideration, are Frobenius-like objects. That is to say, the point of view of
inter-universal Teichmüller theory may be summarized as follows:

Certain geometric aspects — i.e., aspects that, in effect, correspond to
the geometry of the classical upper half-plane [cf. [IUTchI], Remark
6.12.3] — of the a priori incompatibility of fields of definition in the
case of elliptic curves over number fields are, in some sense, over-
come in inter-universal Teichmüller theory by applying various absolute
anabelian algorithms to pass from étale-like to Frobenius-like objects,
as well as various cyclotomic rigidity algorithms to pass, via Kum-
mer theory, from Frobenius-like to étale-like objects.

Indeed, as discussed in [IUTchI], Remarks 4.3.1, 4.3.2, it is precisely this circle of
ideas that forms the starting point for the construction of Θ±ellNF-Hodge theaters
given in [IUTchI], by applying the absolute anabelian geometry of [AbsTopIII].

One way to understand the gap between fields of definition of first cohomology
modules or modules of torsion points, on the one hand, and the field of definition
of the given base scheme, on the other, is to think of elements of fields/rings of
the former sort as objects that occur as exponents of regular functions on the
base scheme, i.e., elements of rings that naturally contain fields/rings of the latter
sort. For instance, this sort of situation may be seen at a very explicit level by
consider the powers of the q-parameter that occur in the theory of Tate curves
over p-adic fields [cf. the discussion of the final portion of [EtTh], Remark 2.16.2].
From this point of view, the approach of inter-universal Teichmüller theory may be
summarized as follows:
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Certain function-theoretic aspects of the a priori incompatibility of fields
of definition in the case of elliptic curves over number fields are, in
some sense, overcome in inter-universal Teichmüller theory by working
with Gaussian distributions and theta functions, i.e., which may be
regarded, in effect, as exponentiations of the symplectic form 〈 - , - 〉E
that appears in Bogomolov’s proof.

Indeed, it is precisely as a result of such exponentation operations that one is obliged
to work, in inter-universal Teichmüller theory, with arbitrary iterates of the
log-link [cf. the theory of [AbsTopIII], [IUTchIII]; the discussion of [IUTchIII],
Remark 1.2.2] in order to relate and indeed identify, in effect, the function theory
of exponentiated objects with the function theory of non-exponentiated objects. This
situation differs somewhat from the single application of the logarithm constituted
by the covering (E∠)∼ � E∠ in Bogomolov’s proof.

So far in the present §5, our discussion has centered around

· the geometry of Θ±ellNF-Hodge theaters [as discussed in [IUTchI],
§4, §5, §6] and
· the multiradial representation via mono-analytic log-shells [cf.
[IUTchIII], Theorem 3.11, (i), (ii)]

of inter-universal Teichmüller theory, which correspond, respectively, to the sym-
plectic geometry of the upper half-plane [cf. §1] and the δsup estimates [cf.
(B1), (B2)] of Bogomolov’s proof.

On the other hand, the degree computations via the homomorphism χ, which
arises, in essence, by considering the discriminant modular form, also play a
key role [cf. (B4)] in Bogomolov’s proof. One may think of this aspect of Bogo-
molov’s proof as consisting of the application of the discriminant modular form
to relate the symplectic geometry discussed in §1 — cf., especially, the natural
SL(E)-torsor structure on ω�

M̃ — to the conventional algebraic theory of line

bundles and divisors on the algebraic stack M. In particular, this aspect of Bo-
gomolov’s proof is reminiscent of the Θ×μ

LGP-link, i.e., which serves to relate the
“Gaussian distributions” [that is to say, “exponentiated symplectic forms”] that
appear in the multiradial representation via mono-analytic log-shells to the conven-
tional theory of arithmetic line bundles on the number field under consideration.
We remark in passing that this state of affairs is reminiscent of the point of view
discussed in [HASurI], §1.2, §1.3.2, to the effect that the constructions of scheme-
theoretic Hodge-Arakelov theory [i.e., which may be regarded as a sort of scheme-
theoretic precursor of inter-universal Teichmüller theory] may be thought of as a
sort of function-theoretic vector bundle version of the discrimant modular form. The
Θ×μ

LGP-link is not compatible with the various ring/scheme structures — i.e.,
the “arithmetic holomorphic structures” — in its domain and codomain. In
order to surmount this incompatibility, one must avail oneself of the theory of mul-
tiradiality developed in [IUTchII], [IUTchIII]. The non-ring-theoretic nature of the
resulting multiradial representation via mono-analytic log-shells — cf. [IUTchIII],
Theorem 3.11, (i), (ii); the discussion of inter-universality in [IUTchIV], Remark
3.6.3, (i) — of inter-universal Teichmüller theory may then be thought of as cor-
responding to the real analytic [i.e., non-holomorphic nature] of the symplectic
geometry that appears in Bogomolov’s proof.
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Inter-universal Teichmüller Theory Bogomolov’s Proof

Gaussians/theta functions Gaussians/theta functions
play a central, entirely
motivating role absent

Weil pairing on l-torsion natural symplectic form
points defined over Fl, 〈 - , - 〉E defined over R,

� Fl ↪→ Q ∃ R ↪→ C

subtle passage between confusion between
étale-like, Frobenius-like étale-like, Frobenius-like

objects via absolute anabelian objects via
algorithms, Kummer theory/ R ↪→ C
cyclotomic rigidity algorithms

geometry of symplectic geometry of
Θ±ellNF-Hodge theaters classical upper half-plane

Gaussians/theta functions, i.e., natural symplectic form
exponentiations of 〈 - , - 〉E 〈 - , - 〉E

arbitrary iterates of single application of
log-link logarithm, i.e., (E∠)∼ � E∠

Θ×μ
LGP-link relates discriminant modular form

multiradial representation via “χ” relates symplectic geometry
mono-analytic log-shells to “SL(E) � ω�

M̃” to

conventional theory of conventional algebraic theory
arithmetic line bundles of line bundles/divisors

on number fields on M

multiradial non-holomorphic,
representation, real analytic nature of

inter-universality symplectic geometry

Fig. 6: Contrasts between corresponding aspects of the two theories
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Thus, in summary, if, relative to the point of view of Bogomolov’s proof, one

· substitutes Gaussian distributions/theta functions, i.e., in essence,
exponentiations of the natural symplectic form 〈 - , - 〉E , for 〈 - , - 〉E ,
and, moreover,
· allows for arbitrary iterates of the log-link, which, in effect, allow one
to “disguise” the effects of such exponentiation operations,

then inter-universal Teichmüller theory bears numerous striking resemblances
to Bogomolov’s proof.

We conclude by observing that these striking resemblances are perhaps all the
more striking in light of the complete independence of the development of inter-
universal Teichmüller theory from developments surrounding Bogomolov’s proof:
That is to say, the author was completely ignorant of Bogomolov’s proof during
the development of inter-universal Teichmüller theory. Moreover, inter-universal
Teichmüller theory arose not as a result of efforts to “generalize Bogomolov’s proof
by substituting exponentiations of 〈 - , - 〉E for 〈 - , - 〉E”, but rather as a re-
sult of efforts [cf. the discussion of [HASurI], §1.5.1, §2.1; [EtTh], Remarks 1.6.2,
1.6.3] to overcome obstacles to applying scheme-theoretic Hodge-Arakelov theory
to diophantine geometry by developing some sort of arithmetic analogue of the
classical functional equation of the theta function. That is to say, despite
the fact that the starting point of such efforts, namely, the classical functional
equation of the theta function, was entirely absent from the theory surrounding
Bogomolov’s proof, the theory, namely, inter-universal Teichmüller theory, that ul-
timately arose from such efforts turned out, in hindsight, as discussed above, to be
remarkably similar in numerous aspects to the theory surrounding Bogomolov’s
proof.

The content of the above discussion is summarized in Fig. 6 above.
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Bibliography

[ABKP] J. Amorós, F. Bogomolov, L. Katzarkov, T. Pantev, Symplectic Lefshetz fibra-
tion with arbitrary fundamental groups, J. Differential Geom. 54 (2000), pp.
489-545.

[HASurI] S. Mochizuki, A Survey of the Hodge-Arakelov Theory of Elliptic Curves I,
Arithmetic Fundamental Groups and Noncommutative Algebra, Proceedings of
Symposia in Pure Mathematics 70, American Mathematical Society (2002),
pp. 533-569.

[HASurII] S. Mochizuki, A Survey of the Hodge-Arakelov Theory of Elliptic Curves II,
Algebraic Geometry 2000, Azumino, Adv. Stud. Pure Math. 36, Math. Soc.
Japan (2002), pp. 81-114.

[EtTh] S. Mochizuki, The Étale Theta Function and its Frobenioid-theoretic Manifes-
tations, Publ. Res. Inst. Math. Sci. 45 (2009), pp. 227-349.

[AbsTopIII] S. Mochizuki, Topics in Absolute Anabelian Geometry III: Global Reconstruc-
tion Algorithms, RIMS Preprint 1626 (March 2008).

[IUTchI] S. Mochizuki, Inter-universal Teichmüller Theory I: Construction of Hodge
Theaters, preprint.

[IUTchII] S. Mochizuki, Inter-universal Teichmüller Theory II: Hodge-Arakelov-theoretic
Evaluation, preprint.

[IUTchIII] S. Mochizuki, Inter-universal Teichmüller Theory III: Canonical Splittings of
the Log-theta-lattice, preprint.

[IUTchIV] S. Mochizuki, Inter-universal Teichmüller Theory IV: Log-volume Computa-
tions and Set-theoretic Foundations, preprint.

[Zh] S. Zhang, Geometry of algebraic points, First International Congress of Chi-
nese Mathematicians (Beijing, 1998), AMS/IP Stud. Adv. Math. 20 (2001),
pp. 185-198.


	web-title
	RIMS1821

