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Abstract. We construct double Grothendieck polynomials of classical types which are equiva-

lent to the polynomials defined in [15] and compare with [14].

1. Introduction

Let G be a semisimple Lie group, B ⊂ G be a Borel subgroup of G, T ⊂ B be a

maximal torus in B, F := G/B and W := NG(T )/T be the corresponding flag variety

and the Weyl group. Let ℓ be the rank of G.

According to the famous Borel theorem, the cohomology ring H∗(G/B,Q) is isomor-

phic to the quotient Q[x1, . . . , xℓ]/Jℓ, where xi := c1(Li) ∈ H2(G/B,Q), i = 1, . . . , ℓ,

and c1(Li) denotes the first Chern class of the standard line bundle Li over the flag

variety in question, Jℓ stands for the ideal generated by the fundamental invariants of

positive degree associated with the Weyl group W .

To our best knowledge the first systematic and complete treatment of the Schubert

Calculus has been done by I.N. Bernstein, I.M. Gelfand and S.I. Gelfand [2] and

independently, by M. Demazure [5] in the beginning of 70’s of the last century. A

Schubert polynomial Sw(Xℓ), ℓ = rk(G), corresponding to an element w of the Weyl

group W, by definition is a polynomial which expresses the Poincaré dual class of the

homology class of the Schubert variety Xw := BwB/B ⊂ G/B in terms of the Borel

generators xi, 1 ≤ i ≤ ℓ, in the cohomology ring of the flag variety F . Therefore by

the very definition, a Schubert polynomial Sw(X) is defined only modulo the ideal

Jℓ.
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Hence it is an interesting problem: does there exist “natural representative” of

a Shubert polynomial Sw(Xℓ) in the ring Q[x1, . . . , xℓ] with “nice” combinatorial,

algebraic and geometric properties ?

For the type An−1 flag varieties A. Lascoux and M.-P. Schütsenberger constructed

a family of double Schubert polynomials Sw(Xn−1, Yn−1) , w ∈ Sn with several “nice”

properties, when we set Sw(Xn−1) := Sw(Xn−1, 0) , such as

1. Sw(Xn−1) is a representative of the Schubert class Xw corresponding to w ∈
Sn, that is Sw(Xn−1) ≡ Sw(Xn−1)( mod Jn−1),

2. (Compatibility conditions)

∂
(x)
i Sw(Xn−1, Yn−1) =

{

Swsi(Xn−1, Yn−1) if l(wsi) = ℓ(w)− 1,

0 otherwise

∂
(y)
i Sw(Xn−1, Yn−1) =

{

Ssiw(Xn−1, Yn−1) if l(siw) = ℓ(w)− 1,

0 otherwise

3. Sw(Xn−1, Yn−1) has nonnegative integer coefficients,

4. Sw(Xn−1, Yn−1) is stable,

5. Sw(Xn−1, Yn−1) satisfies the vanishing conditions, that is

Sw(−v(Yn−1), Yn−1) = 0, unless w ≤ v

with respect to the Bruhat order ≤ on the symmetric group Sn,

6. the structural constants for the multiplication of Schubert polynomials

Sw(Xn−1), w ∈ Sn, coincide with the triple intersections numbers of Schubert va-

rieties.

A new approach to the theory of type A Schubert polynomials which is based

on the study of the type A nil–Coxeter algebras, has been initiated by S. Fomin and

R. Stanley. The basic idea of that approach is to consider and study the generating

function of all Schubert polynomials simultaneously, namely, to treat the following

generating function

S(Xn−1) =
∑

w∈Sn

Sw(Xn−1)uw,

where uw denotes the standard linear basis in the nil–Coxeter algebra NCn.

An unexpected and deep result discovered in [9] is that in the algebra

NCn[x1, . . . , xn−1] the polynomial Sn(Xn−1) is completely factorizable in the product

of linear factors. The basic tool to prove the factorizability property is the usage of the

Yang–Baxter relation among the elements hi(x) = 1 + xui in the algebra NCn[x, y],
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namely

(1 + xui)(1 + (x+ y)ui+1)(1 + yui) = (1 + yui+1)(1 + (x+ y)ui)(1 + xui+1). (1)

The main consequence of the Yang–Baxter relation (1) is that the polynomials Ak(x) =

hn−1(x)hn−2(x) . . . hk(x), commute, namely

[Ak(x), Ak(y)] = 0.

Now one can prove, [9], [8] that

S(Xn−1) =
∑

w∈Sn

Sw(Xn−1)uw = A1(x1)A2(x2) . . . An−1(xn−1).

This approach can be applied to a construction of type A double Schubert poly-

nomials, Grothendieck and double Grothendieck polynomials, which originally had

been introduced by A. Lascoux and M.-P. Schützenberger.

Construction of “good” representatives for the Schubert polynomials correspond-

ing to the flag varieties of classical types B,C,D was initiated by S. Billey and

M.Haiman [3] and independently by S. Fomin and A. N. Kirillov, [7]. In [7] the authors

extended an algebro-combinatorial approach to a definition and study of the type A

Schubert and Grothendieck polynomials to the case of those of types B and C. But

it also works for type D as well. The key tool in a construction of the aforementioned

polynomials is a unitary exponential solution to the quantum Yang–Baxter equations

([22]) with values in the NiCoxeter algebras of types B,C,D correspondingly. The

exponential solution to the quantum Yang–Baxter equation associated with nilCox-

eter algebra NC(R), R := An−1, Bn, Cn, Dn, allows to construct a family of elements

Ri(x) ∈ NC(R)[x], i = 1, . . . , rk(R) such that

Ri(x)Ri(y) = Ri(y)Ri(x), i = 1, . . . , rk(R).

The elements Ri(x1), . . . , Ri(xℓ), i = 1, . . . , ℓ := rk(R), are building blocks in the

construction of the generating function for all Schubert polynomials corresponding to

the flag variety associated with the root system R.

Now in order to ensure the coherency conditions one needs to specify the action

of simple transpositions of the corresponding Weyl group on the ring of polynomials

Q[x1, . . . , xℓ]. In [7] and [15] the authors have chosen the standard action of the Weyl

group on the cohomology ring of the corresponding flag variety G/B. Namely,

s0(x1) = −x1, s0(xi) = xi, if i ≥ 1, (types B,C),

s1̂ = −s1, s1̂(xi) = xi if i ≥ 2, (type D).

Based on these (= standard !) choice of the action of the simple transpositions, the

divided difference operators (resp. isobaric ones) are defined uniquely. It is easy to see

[7] that for root systems of types B,C,D it is impossible to find “good” representatives

for the Schubert classes which satisfy the properties 2, 3, 6 listed above. Nevertheless
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in [7] the authors introduce the so called Schubert polynomials of the second kind

with nice combinatorial properties including those 3, 4, 5, 6, and therefore suitable for

computation of the triple intersection numbers for Schubert polynomials of classical

type, the main Problem of the Schubert Calculus, see [7] for details.

As for a construction of certain representatives the double Schubert and β-

Grothendieck polynomials of classical types B,C,D, the author of [15] has used the

following observation: if the a family of polynomials Sw(X), w ∈ W has “wanted

properties” with respect to variables X, the the polynomials

Sw(X,Y ) :=
∑

u,v∈W,uv=w
ℓ(uv)=ℓ(u)+ℓ(v)

Su−1(Y )Sv(X)

also will have “wanted properties” with respect to the set of variables X and Y . Based

on this observation and using the Schubert and Grothendieck polynomials introduced

in [6], the author of [15] has introduced a family of polynomials depending on two sets

of variable X and Y having nice combinatorial properties including among others, that

3, 4, 5, 6 listed above. One example of such polynomials is the triple β-Grothendieck

polynomial GW
w (X,Y, Z), w ∈W , whereW stands for the Weyl group of classical type

B,C, or D. Indeed, let W be of type B,C,D, one can start with the W -type Schu-

bert/Grothendieck expression of the second kind SW (Z,X) :=
√

HW (Z)GA(X), have

been introduced for the Schubert polynomials in [3] for Schubert polynomials of types

W , [7] for W = B,C types Schubert polynomials, [16] for Schubert/Grothendieck

case. According to an observationmentioned above, a “good” candidate for the double

Schubert/Grothendieck expression of type W is

SW (Y, T, Z,X) := SW (−Y,−T )−1SW (Z,X) = G
A(−Y )−1

√

HW (T )HW (Z)GA(X).

To deduce this equality we have used the following facts:
[

HW (T ), HW (Z)

]

= 0, HW (−T )−1 = HW (T ).

Finally, one can restrict the generating function SW (Y, T, Z,X) on the diagonal T = Z

and come to the following expression for the generating function of a double Schu-

bert/Grothendieck polynomials of type W

SW (Y, Z,X) = G
A(−Y )−1HW (Z)GA(X).

Another algero-geometric interpretation of the generating function SW (Y, Z,X) has

been obtained in [12].

Advantage of the algebro-combinatorial approach is, for example, a possibility

to define, among others, a plactic versions of polynomials GW
w (X,Y ), SW

w (X,Y ) and

their generalizations, see [16] for the case of root systems of type A



DOUBLE GROTHENDIECK POLYNOMIALS OF CLASSICAL TYPES 5

In [3] the authors used non-standard action of Weyl group on the ring of super-

symmetric functions of infinite number of variables Γ = (Z[x1, x2, . . .])
SS and define

another family of Schubert polynomials.

In [12] the second author et al. studied the double Schubert polynomials of type

B,C,D using localization map of equivariant cohomology. For K-theory there is anal-

ogous map and the image has the so called Goresky-Kottwitz-MacPherson property

[10]. As mentioned for the case of Grassmannians in [14], the Schubert classes can be

characterized by recurrence relations.(c.f. §6.)

2. Definitions and Notations

In this paper W = W (X) is a Weyl group of type X = A,B,C,D. IX is the set

of simple reflections in W (X). We index the simple reflections by the same notation

as in [12] §3.2. In particular , for type B and C, s0 corresponds to the left most node

of the Dynkin diagram with the relation (s0s1)
4 = 1 and (s0si)

2 = 1 for i ≥ 2. For

type D, s1̂ := s0s1s0 and we consider W (D) as the subgroup of W (B) generated by

s1̂, s1, . . ..

Following [7], we prepare some notations. Let β be an indeterminate. We define

operations ⊕ and ⊖ as follows.

x⊕ y := x+ y + βxy, x⊖ y := (x− y)/(1 + βy).

We also use the convention that

x̄ := ⊖x = − x

1 + βx
.

Then we have x⊕ x̄ = 0. For a Weyl group W with the set S of Coxeter generators,

we define Id-Coxeter algebra as follows.

Definition 1. (Id-Coxeter algebra)

Id-Coxeter algebra Idβ(W ) for W is a Z[β] algebra with generators ui for each

si ∈ S and relations as follows.

u2i = βui,

uiujui · · ·
︸ ︷︷ ︸

mi,jtermes

= ujuiuj · · ·
︸ ︷︷ ︸

mi,jtermes

if mi,j is the order of sisj .

For each si ∈ IX ,we define divided-difference operator π
(a)
i and ψ

(a)
i with respect

to the variables a = (a1, a2, ...) as follows. Assume that R ⊃ Z[β] is a ring with a group

action of W (X). We define the action of W (X) on R[a, ā] := R[a1, a2, ..., ā1, ā2, ...] as

follows.

Definition 2. The action of si ∈ IX on the variables a1, a2, . . . , ā1, ā2, . . .
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• If i ≥ 1, si(ai) = ai+1, si(ai+1) = ai, si(āi) = āi+1, si(āi+1) = āi, and

si(ak) = ak, si(āk) = āk for k 6= i, i+ 1.

• s0(a1) = ā1, s0(ā1) = a1, and s0(ak) = ak, s0(āk) = āk for k > 1.

• s1̂(a1) = ā2, s1̂(a2) = ā1, s1̂(ā1) = a2, s1̂(ā2) = a1, and s1̂(ak) = ak, s1̂(āk) = āk
for k > 2.

We write the induced action on R[a, ā] by s
(a)
i . Divided difference operators π

(a)
i

and ψ
(a)
i are defined as follows. For f ∈ R[a, ā] = R[a1, a2, ..., ā1, ā2, ...],

π
(a)
i (f) :=

f − (1 + βαi(a))s
(a)
i (f)

αi(a)
and ψ

(a)
i := π

(a)
i + β,

where αi(a) is the element in Z[β][a, ā] corresponding to the root αi, i.e. αi(a) =

ai ⊕ āi+1 for i = 1, 2, ..., αB
0 (a) = ā1, α

C
0 (a) = ā1 ⊕ ā1 and α1̂(a) = ā1 ⊕ ā2.

( Formally we can think as αi(a) =
eβαi − 1

β
. c.f. [6])

Proposition 1. We have the following relations of operators.

π2
i = −βπi, ψ2

i = βψi for all si ∈ IX .

πiπjπi · · ·
︸ ︷︷ ︸

mi,jtermes

= πjπiπj · · ·
︸ ︷︷ ︸

mi,jtermes

, ψiψjψi · · ·
︸ ︷︷ ︸

mi,jtermes

= ψjψiψj · · ·
︸ ︷︷ ︸

mi,jtermes

if mi,j is the order of sisj.

We can check the relations by direct calculations.

The explicit form of ψ
(a)
i is as follows,

ψ
(a)
i (F ) =

s
(a)
i F−F

ai+1⊖ai
for i ≥ 1 ,

ψ
(a)
0,B(F ) =

s
(a)
0 F−F

a1
, ψ

(a)
0,C(F ) =

s
(a)
0 F−F

a1⊕a1
and ψ

(a)

1̂
(F ) =

s
(a)

1̂
F−F

a1⊕a2
.

Similarly we can define divided difference operators π
(b)
i and ψ

(b)
i corresponding

to the variables b1, b2, ....

3. Basic Properties

Let hi(x) := 1 + xui. Then it follows that hi(x)hi(y) = hi(x⊕ y).

Lemma 1. (Yang-Baxter relation)

hi(x)hj(y) = hj(y)hi(x) mi,j = 2

hi(x)hj(x⊕ y)hi(y) = hj(y)hi(x⊕ y)hj(x) mi,j = 3

hi(x)hj(x⊕ y)hi(x⊕ y ⊕ y)hj(y) = hj(y)hi(x⊕ y ⊕ y)hj(x⊕ y)hi(x) mi,j = 4

These can be proved by direct calculations.
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Definition 3.

A
(n)
i (x) := hn−1(x)hn−2(x) · · ·hi(x) (i = 1, 2, ..., n− 1)

FB
n (x) := A

(n)
1 (x) h0(x) A

(n)
1 (x̄)−1

= hn−1(x)hn−2(x) · · ·h1(x)h0(x)h1(x) · · ·hn−2(x)hn−1(x)

FC
n (x) := A

(n)
1 (x) h0(x)

2 A
(n)
1 (x̄)−1

= hn−1(x)hn−2(x) · · ·h1(x)h0(x)2h1(x) · · ·hn−2(x)hn−1(x)

FD
n (x) := A

(n)
2 (x) h1̂(x)h1(x) A

(n)
2 (x̄)−1

= hn−1(x) · · ·h2(x)h1(x)h1̂(x)h2(x) · · ·hn−1(x)

Lemma 2.

(1) A
(n)
i (x)A

(n)
i (y) = A

(n)
i (y)A

(n)
i (x)

(2) FX
n (x)FX

n (y) = FX
n (y)FX

n (x) for X = B,C,D

(3) FX
n (x)FX

n (x̄) = 1

Note that from (1) we have A
(n)
i (x)A

(n)
i (y)−1 = A

(n)
i (y)−1A

(n)
i (x) and

A
(n)
i (x)−1A

(n)
i (y)−1 = A

(n)
i (y)−1A

(n)
i (x)−1.

Proof.

(1) For the case i = n − 1 is trivial. By reverse induction on i, we can assume

i < n− 1 and A
(n)
i+1(x)A

(n)
i+1(y) = A

(n)
i+1(y)A

(n)
i+1(x). Then

A
(n)
i (x)A

(n)
i (y) = A

(n)
i+1(x)hi(x)A

(n)
i+1(y)hi(y)

= A
(n)
i+1(x)A

(n)
i+1(y)hi+1(ȳ)hi(x)hi+1(y)hi(y ⊖ x)hi(x)

= A
(n)
i+1(y)A

(n)
i+1(x)hi+1(ȳ)hi+1(y ⊖ x)hi(y)hi+1(x)hi(x)

= A
(n)
i+1(y)A

(n)
i+1(x)hi+1(x̄)hi(y)hi+1(x)hi(x)

= A
(n)
i+1(y)A

(n)
i+2(x)hi(y)hi+1(x)hi(x)

= A
(n)
i+1(y)hi(y)A

(n)
i+2(x)hi+1(x)hi(x)

= A
(n)
i (y)A

(n)
i (x)

(2) Using Lemma 3.1 and (1) we can show the equalities as follows. For X = B,

FB
n (x)FB

n (y)

= A
(n)
1 (x)h0(x)A

(n)
1 (x̄)−1A

(n)
1 (y)h0(y)A

(n)
1 (ȳ)−1

= A
(n)
1 (x)h0(x)A

(n)
1 (y)A

(n)
1 (x̄)−1h0(y)A

(n)
1 (ȳ)−1

= A
(n)
1 (x)A

(n)
1 (y)h1(ȳ)h0(x)h1(y)h1(x)h0(y)h1(x̄)A

(n)
1 (x̄)−1A

(n)
1 (ȳ)−1

= A
(n)
1 (y)A

(n)
1 (x)h1(ȳ)h0(x)h1(y)h1(x)h0(y)h1(x̄)A

(n)
1 (ȳ)−1A

(n)
1 (x̄)−1

= A
(n)
1 (y)A

(n)
2 (x)h1(x⊕ ȳ)h0(x)h1(x⊕ y)h0(y)h1(x̄⊕ y)A

(n)
2 (ȳ)−1A

(n)
1 (x̄)−1

= A
(n)
1 (y)A

(n)
2 (x)h0(y)h1(x⊕ y)h0(x)A

(n)
2 (ȳ)−1A

(n)
1 (x̄)−1

= A
(n)
1 (y)h0(y)A

(n)
1 (x)A

(n)
1 (ȳ)−1h0(x)A

(n)
1 (x̄)−1

= A
(n)
1 (y)h0(y)A

(n)
1 (ȳ)−1A

(n)
1 (x)h0(x)A

(n)
1 (x̄)−1

= FB
n (y)FB

n (x)
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Similar arguments with appropriate modifications will give X = C,D cases.

The essential equalities to be used are

h1(x⊕ ȳ)h0(x⊕x)h1(x⊕ y)h0(y⊕ y)h1(x̄⊕ y) = h0(y⊕ y)h1(x⊕ y)h0(x⊕x) and

h2(x⊕ȳ)h1(x)h1̂(x)h2(x⊕y)h1(y)h1̂(y)h2(x̄⊕y) = h1(y)h1̂(y)h2(x⊕y)h1(x)h1̂(x).
(3) This esentially follows by the relation hi(x)hi(x̄) = 1.

4. β-super symmetric functions

Definition 4. β-super symmetric function is a symmetric function which sat-

isfies the following property.

f(t, t̄, x3, ..., xn) = f(0, 0, x3, ..., xn) for every t.

Remark

The β-supersymmetric property is translated to usual supersymmetricity by the

change of variables xi to
eβxi − 1

β
.

Let SSβ(x1, . . . , xn) := {f ∈ Z[β][x1, ..., xn] | f : β-supersymmetric} and set

SSβ(x) := lim
←n

SSβ(x1, . . . , xn).

SSβ(x) is the ring of β-supersymmetric functions and we denote it as Γ ′β(x). If

β = 0 this becomes the the ring of supersymmetric functions Γ ′.

4.1. K-theoretic Schur functions GPλ(x), GQλ(x) In [14] β-

supersymmetric functions GPλ(x), GQλ(x) are defined. Let b1, b2, ... be indetermi-

nates, and set [x|b]k = (x⊕ b1) · · · (x⊕ bk) and [[x|b]]k = (x⊕x)(x⊕ b1) · · · (x⊕ bk−1).

Let SPn be the set of strict partitions of length at most n. i.e. λ = (λ1 > λ2 >

· · · > λr > 0) such that r ≤ n.

Definition 5. (Ikeda-Naruse [14]) For a strict partition λ ∈ SPn,

GPλ(x1, . . . , xn|b) :=
1

(n− r)!

∑

w∈Sn

w




∏

1≤i≤r



[xi|b]λi

∏

i<j≤n

xi ⊕ xj
xi ⊖ xj









GQλ(x1, . . . , xn|b) :=
1

(n− r)!

∑

w∈Sn

w




∏

1≤i≤r



[[xi|b]]λi

∏

i<j≤n

xi ⊕ xj
xi ⊖ xj









where w ∈ Sn acts x1, . . . , xn as permutation of indices.

We also define

GPλ(x1, . . . , xn) := GPλ(x1, . . . , xn|0), GQλ(x1, . . . , xn) := GQλ(x1, . . . , xn|0),

GPλ(x) := lim
←n

GPλ(x1, ..., xn) and GQλ(x) := lim
←n

GQλ(x1, ..., xn|b).
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GPλ(x|b) := lim
←n

GPλ(x1, ..., x2n|b) and GQλ(x|b) := lim
←n

GQλ(x1, ..., xn|b).

Examples.

GP1(x1, . . . , xn) = x1 ⊕ x2 ⊕ · · · ⊕ xn.

GQ1(x1, . . . , xn) = (x1 ⊕ x1)⊕ (x2 ⊕ x2)⊕ · · · ⊕ (xn ⊕ xn).

Lemma 3.

(1) GPλ(x1, . . . , xn) and GQλ(x1, . . . , xn) are β-supersymmetric functions.

(2) {GPλ(x1, . . . , xn)}λ∈SPn
forms a basis of SSβ(x1, . . . , xn) over Z[β].

(3) Let SSC
β (x1, . . . , xn) be the Z[β]-subspace of SSβ(x1, . . . , xn) spanned

by GQλ(x1, . . . , xn)(λ ∈ SPn). Then {GQλ(x1, . . . , xn)}λ∈SPn
forms a basis of

SSC
β (x1, . . . , xn) over Z[β].

Proof.

(1) follows from the definition.

(2) and (3) follows from the fact for corresponding properties for usual Schur

P,Q-functions.

Remark 1. We remark that the definition of β-supersymmetry and the polyno-

mialsGPλ, GQλ can be generalized in more general setting such as algebraic cobordism

[20]. We are planning to study the details elsewhere. (cf.[21])

Lemma 4. ([14])

GPλ(x|b) and GQλ(x|b) are characterized by (left) divided difference relations and

initial conditions. i.e.

π
(b)
i GXλ(x|b) =

{

GXλ(i)(x|b) if siλ < λ

−β GXλ(x|b) if siλ ≥ λ

and

GX∅(x|b) = 1

where GBλ(x|b) = GPλ(x|0, b), GCλ(x|b) = GQλ(x|b), GDλ(x|b) = GPλ(x|b).

See [14] Theorem 6.1 and Theorem 7.1.

4.2. Stable symmetric functions FX
w (x1, ..., xn)

Definition 6. For X = B,C,D, we define

FX
n (x1, x2, . . . , xn) :=

n∏

i=1

FX
n (xi) and FX

∞(x) := lim
←n

FX
n (x1, x2, . . . , xn).
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We also define FX
w (x1, ..., xn) and FX

w (x) by the following expression.

FX
n (x1, x2, . . . , xn) =

∑

w∈WX
n

FX
w (x1, ..., xn)uw , FX

∞(x) =
∑

w∈WX

FX
w (x)uw

Lemma 5. For each w ∈ WX
n , FX

w (x1, x2, . . . , xn) is a β-supersymmetric func-

tion.

Proof.

This follows from Lemma 3.3 (2) and (3).

Lemma 6. (0) For X = B,C,D, FX
w−1(x1, x2, . . . , xn) = FX

w (x1, x2, . . . , xn).

(1) For X = B or D, FX
w (x1, x2, . . . , xn) can be expanded in GPλ(x1, x2, . . . , xn)

with coefficients in Z[β].

(2) For a (maximal) Grassmannian element w ∈WX
n ,

FB
w (x1, x2, . . . , xn) = GPλB(w)(x1, x2, . . . , xn)

FC
w (x1, x2, . . . , xn) = GQλC(w)(x1, x2, . . . , xn)

FD
w (x1, x2, . . . , xn) = GPλD(w)(x1, x2, . . . , xn)

where λB(w), λC(w), λD(w) are strict partitions corresponding to w. cf.[14]

Proof.

(0) This follows from the symmetry of FX
n .

(1) This follows from Lemma 4.3 (2).

(2) This follows from Proposition 6.

Remark 2. We state conjecture that the coefficients in the expansion of (1) is

positive. This will be a consequence of K-theory analogue of “transition equation”

for type B,C,D.(cf. [12])

Example

FB
s0
(x1, . . . , xn) = GP1(x1, . . . , xn)

FC
s0
(x1, . . . , xn) = GQ1(x1, . . . , xn)

FD
s1̂
(x1, . . . , xn) = GP1(x1, . . . , xn)

Proposition 2. (Compatible sequence formula) cf. ([3],[7])
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For w ∈WX
n , we have

FB
w (x1, ..., xn) =

∑

ã∈R̃(w)

∑

b̃∈CB(ã)

βℓ(ã)−ℓ(w)2|b̃|−γ(ã,b̃)−oB(ã)xb̃

FC
w (x1, ..., xn) =

∑

ã∈R̃(w)

∑

b̃∈CC(ã)

βℓ(ã)−ℓ(w)2|b̃|−γ(ã,b̃)xb̃

FD
w (x1, ..., xn) =

∑

ã∈R̃(w)

∑

b̃∈CD(ã)

βℓ(ã)−ℓ(w)2|b̃|−γ(ã,b̃)−oD(ã)xb̃,

where we used the following notations.

R̃(w) is the set of sequence of indices ã = (ã1, ã2, . . . , ãℓ) such that usã1
· · ·usãℓ

=

uw.

ℓ(ã) is the length ℓ of the sequence ã.

CB(ã) = CC(ã) is the set of compatible sequences b̃ with respect to ã , i.e.

b̃ = (1 ≤ b̃1 ≤ b̃1 ≤ · · · ≤ b̃ℓ(ã) ≤ n) such that ãi−1 ≤ ãi ≥ ãi+1 =⇒ b̃i−1 < b̃i+1.

CD(ã) is the set of compatible sequence for the flattened word ˜̃a of ã with further

properties that if ãi = ãi+1 = 1 or ãi = ãi+1 = 1̂ then b̃i < b̃i+1. Note that the

flattened word ˜̃a is obtained from ã by replacing 1̂ with 1. cf.[3].

oB(ã) is the number of appearance of 0’s in ã.

oD(ã) is the total number of appearance of 1 and 1̂ in ã.

|b̃| is the number of distinct b̃i’s.

γ(ã, b̃) := #|{i|ãi = ãi+1 and b̃i = b̃i+1}|.
xb̃ := xb̃1xb̃2 · · ·xb̃ℓ for b̃ = (b̃1 . . . , b̃ℓ).

Proof.

This follows essentially from the expansion of the defining generating function.

Example.

type D, n = 2 case w = [1̄, 2̄, 3] = s1s1̂
b̃ = (1, 1) is a compatible sequence for ã = (1, 1̂), (1̂, 1).

b̃ = (1, 2) is a compatible sequence for ã = (1, 1̂), (1̂, 1).

b̃ = (2, 2) is a compatible sequence for ã = (1, 1̂), (1̂, 1).

b̃ = (1, 1, 2) is a compatible sequence for ã = (1, 1̂, 1), (1̂, 1, 1̂), (1, 1̂, 1̂), (1̂, 1, 1).

b̃ = (1, 2, 2) is a compatible sequence for ã = (1, 1̂, 1), (1̂, 1, 1̂), (1, 1, 1̂), (1̂, 1̂, 1).

b̃ = (1, 1, 2, 2) is a compatible sequence for

ã = (1, 1̂, 1, 1̂), (1̂, 1, 1̂, 1), (1̂, 1, 1, 1̂), (1, 1̂, 1̂, 1).

There are no other compatible sequences and the sum of the terms becomes

FD
s1s1̂

(x1, x2) = x21 + 2x1x2 + x22 + 2βx21x2 + 2βx1x
2
2 + β2x21x

2
2 = (x1 ⊕ x2)

2.
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5. Main results

First we recall the type A Grothendieck polynomials [7].

We set GAn−1(a1, ..., an−1) := A
(n)
1 (a1)A

(n)
2 (a2) · · ·A(n)

n−1(an−1).

Then for w ∈ Sn, we define GAn−1
w (a) as the coefficient of uw.

GAn−1(a1, ..., an−1) =
∑

w∈Sn

GAn−1
w (a)uw.

Furthermore, we can consider GA(a) := lim
←n

GAn−1(a1, ..., an−1) and get strongly stable

polynomials GA
w (a) by

GA(a) =
∑

w∈S∞

GA
w (a)uw.

Strongly stable means that if w ∈ Sn then GA
w (a) = GAn−1

w (a) (which does not depend

on n).

5.1. The first definition

Definition 7. We define for X = B,C or D,

GX
n (a, b;x) := GAn−1(b̄1, ..., b̄n−1)

−1FX
n (x)GAn−1(a1, ..., an−1)

and define GX
n,w(a, b;x) as the coefficient of uw.

GX
n (a, b;x) =

∑

w∈WX
n

GX
n,w(a, b;x)uw.

In this case GX
n,w(a, b;x) ∈ SSβ(x1, . . . , xn)[a1, . . . , an−1, b1, . . . , bn−1].

Furthermore, we can define GX
w (a, b;x) by

GA(b̄)
−1F∞(x)GA(a) =

∑

w∈WX

GX
w (a, b;x)uw.

Then GX
w (a, b;x) has strong stability (cf. Proposition 5), and when we set β = 0 this

is the double Schubert polynomial defined in [12]. It is clear that if w ∈ WX
n then

GX
n,w(a, b;x) = GX

w (a, b;x1, . . . , xn, 0, 0, . . .).

We will write w · v = z (called Demazure product) if uwuv = βℓ(w)+ℓ(v)−ℓ(z)uz.

Proposition 3. For X = B,C,D and w ∈WX , we have

GX
w (a, b;x) =

∑

(v1,u,v2)∈R(w)

GA

v−1
1

(b)FX
u (x)GA

v2
(a)
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where R(w) = {(v1, u, v2) ∈ S∞ ×WX × S∞ | v1 · u · v2 = w}.

Definition 8. The action of Weyl groupWX
n on SS

(n)
β (x)⊗Z[β][a, ā]⊗Z[β][b, b̄]

is derived from the action as follows. For f(x) ∈ SSβ(x),

s
(a)
0 f(x) = f(a1, x), s

(b)
0 f(x) = f(b1, x),

s
(a)

1̂
f(x) = f(a1, a2, x), s

(b)

1̂
f(x) = f(b1, b2, x).

These actions can be clarified by the change of variables explained in the second

definition below (cf.§5.2 Remark 3).

Proposition 4. We have

π
(a)
i GX

n (a, b;x) = GX
n (a, b;x)(ui − β) and π

(b)
i GX

n (a, b;x) = (ui − β)GX
n (a, b;x).

N.B. These mean that

π
(a)
i GX

w (a, b;x) =

{

GX
wsi

(a, b;x) if l(wsi) = ℓ(w)− 1,

−βGX
w (a, b;x) otherwise

and

π
(b)
i GX

w (a, b;x) =

{

GX
siw

(a, b;x) if l(siw) = ℓ(w)− 1,

−βGX
w (a, b;x) otherwise

.

Proof.

We will prove ψ
(a)
i GX

n (a, b;x) = GX
n (a, b;x)ui. Recall the explicit formula of ψi

after the Prop. 2.2.

GAn−1(b̄)
−1 is invariant for the action of s

(a)
i , i ∈ IX . For i > 0, ψ

(a)
i FX

n (x) =

FX
n (x) and ψ

(a)
i GAn−1(a) = GAn−1(a)ui(cf. [6]), therefore ψ

(a)
i FX

n (x)GAn−1(a) =

FX
n (x)GAn−1

(a)ui .

ψ
(a)
0,B(F

B
n (x)GAn−1(a)) =

FB
n (x)FB(a1)GAn−1

(ā1,a2,...,an−1)−FB
n (x)GAn−1

(a)

a1
=

FB
n (x)GAn−1(a)u0

ψ
(a)
0,C(F

C
n (x)GAn−1(a)) =

FC
n (x)HC(a1)GAn−1

(ā1,a2,...,an−1)−FC
n (x)GAn−1

(a)

a1⊕a1
=

FC
n (x)GAn−1(a)u0

ψ
(a)

1̂
(FD

n (x)GAn−1(a)) =
FD

n (x)FD(a1,a2)GAn−1
(ā2,ā1,...,an−1)−FD

n (x)GAn−1
(a)

a1⊕a2
=

FD
n (x)GAn−1(a)u1̂

Similar arguments hold for the action of ψ
(b)
i .
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Proposition 5. (strong stability)

GX
w (a, b;x) has strong stability i.e. if in : WX

n → WX
n+1 is the natural inclusion,

then

GX
in(w)(a, b;x) = GX

w (a, b;x).

Proposition 6. (Grassmannian elements) For a Grassmannian element w ∈
WX , we have the following equality.

GB
w (a, b;x) = GPλB(w)(x|0, b)

GC
w (a, b;x) = GQλC(w)(x|b)

GD
w (a, b;x) = GPλD(w)(x|b)

where λX(w) is the strict partition corresponding to w ∈WX (cf. [14]).

5.2. The second definition As [7], we can use “change of variables” for xi,

i = 1, 2. . . ..

F (xi) =
√

F (āi)F (b̄i)

to define the double Grothendieck polynomial GXn
w (a, b) with two sets of variables a, b.

Remark 3. As s
(a)
0 (

√

F (ā1, ā2, . . .)) =
√

F (a1, ā2, . . .) and by the supersym-

metric property of F , this is =
√

F (a1, a1, ā1, ā2, . . .) = F (a1)
√

F (ā1, ā2, . . .). This

explains the action s
(a)
0 (F (x)) = F (a1, x) and s

(b)
0 (F (x)) = F (b1, x). The action of

s
(a)

1̂
and s

(b)

1̂
as well.

Definition 9. Let X = B,C,D. For w ∈ WX
n , we define GX

n (a) and GX
n (a, b)

as follows.

GX
n (a) :=

√

FX
n (ā1, ..., ān)GAn−1

(a) and GX
n (a, b) := GX

n (b̄)−1GX
n (a).

By expanding these in terms of uw, we can define GX
n,w(a) and GX

n,w(a, b) by

GX
n (a) =

∑

w∈WX
n

GX
n,w(a)uw and GX

n (a, b) =
∑

w∈WX
n

GX
n,w(a, b)uw.

Remark 4. This double Grothendieck polynomial GX
n,w(a, b) is essentially the

same as defined in [15]. This has weak stability. i.e. GX
n,w = GX

n+1,w|an+1=bn+1=0 for

w ∈WX
n . But it doesn’t have strong stability.

Note that for w ∈WX
n , then

GX
n,w(a) ∈ Q[β][[a1, ..., an, ā1, ..., ān]] and
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GX
n,w(a, b) ∈ Q[β][[a1, ..., an, ā1, ..., ān, b1, ..., bn, b̄1, ..., b̄n]].

Examples

GB
2,s0(a, b) =

√
1+(ā1⊕ā2⊕b̄1⊕b̄2)β−1

β
= ā1⊕ā2⊕b̄1⊕b̄2

2 − β (ā1⊕ā2⊕b̄1⊕b̄2)
2

8 + · · ·
GC
2,s0(a, b) = ā1 ⊕ ā2 ⊕ b̄1 ⊕ b̄2, GC

3,s0(a, b) = ā1 ⊕ ā2 ⊕ ā3 ⊕ b̄1 ⊕ b̄2 ⊕ b̄3.

GD
3,s1̂

(a, b) =

√
1+(ā1⊕ā2⊕ā3⊕b̄1⊕b̄2⊕b̄3)β−1

β

Proposition 7. The following holds for X = B,C,D and i ∈ IXn
.

π
(a)
i GX

n (a, b) = GX
n (a, b)(ui − β)

π
(b)
i GX

n (a, b) = (ui − β)GX
n (a, b)

Proof.

These are Prop. 5.3 with change of variables.

6. Identification with Schubert class

Let R(b)
β := Z[β][b1, b̄1, b2, b̄2, . . .]. K-theory Schubert classes are determined by

the localization (Prop. 2.10 in [17]). And they are determined uniquely by either

“right hand” recurrence ((2.12) in [17]) or “left hand” recurrence (Remark 2.3 in [17]

).

(right recurrence) Ge = 1, and π
(a)
i Gw = Gwsi if wsi < w and π

(a)
i Gw = −βGw if

wsi > w.

(left recurrence) Ge = 1, and π
(b)
i Gw = Gsiw if siw < w and π

(b)
i Gw = −βGw if

siw > w.

Therefore we can identify the polynomials GX
w (a, b;x) defined above as Schubert

classes. In particular we have

Theorem 1. Assume GX
u (a, b;x)GX

v (a, b;x) =
∑

w∈WX

cw,X
u,v (β)GX

w (a, b;x),

cw,X
u,v (β) ∈ R(b)

β . Then cw,X
u,v (β)|β=−1 is the generalized Littlewood-Richardson coef-

ficient for equivariant K-theory of type X. (bi is considered as 1− eti .)

Remark 5. cwu,v(0) is the generalized Littlewood-Richardson coefficient for

equivariant cohomology if we replace bi to −ti. (cf. [12].)

Example

GC
s0
(a, b;x)GC

s0
(a, b;x) = GC

s1s0
(a, b;x) + βGC

s0s1s0
(a, b;x)
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7. Adjoint polynomials

The Grothendieck polynomial represents the K-theory Schubert class of the

structure sheaf OXw
of the Schubert variety Xw = B−wB/B ⊂ X = G/B. We

can also define the adjoint polynomials HX
n,w, for each w ∈ WX

n , corresponding to

the ideal sheaf OXw(−∂Xw) of boundary ∂Xw in Xw. cf. [11, 18]. The pairing

〈· , ·〉 : KT (X)⊗R(T ) KT (X) → R(T ) is given by

〈v1, v2〉 = χ(X, v1 ⊗ v2) where χ(X,F) =
∑

p≥0

(−1)pch Hp(X,F).

We define the relative adjoint polynomial HX
w,v for w ≤ v by HX

w,v := ψ
(a)
w−1v

(GX
v ).

The adjoint polynomial for w ∈ WX
n is HX

n,w := HX

w,w
(n)
0

, where w
(n)
0 is the longest

element in WX
n (cf. [18]). These polynomials are no more stable but have similar

properties as Grothendieck polynomials.

Proposition 8. For w ∈WX
n

HB
n,e =

∏

1≤i≤n−1(1 + βai)
n−i

∏

1≤i≤n−1(1 + βbi)
n−i

∏

1≤i≤n(1 + βxi)
2n−1

HC
n,e =

∏

1≤i≤n−1(1 + βai)
n−i

∏

1≤i≤n−1(1 + βbi)
n−i

∏

1≤i≤n(1 + βxi)
2n

HD
n,e =

∏

1≤i≤n−1(1 + βai)
n−i

∏

1≤i≤n−1(1 + βbi)
n−i

∏

1≤i≤n(1 + βxi)
2n−2

and

HX
n,w = (−1)ℓ(w)HXn

e GX
n,w

where GX
n,w = GX

n,w(a, b;x).

We can derive these formula using generating functions. Let us define HX
n (a, b;x)

as

HX
n (a, b;x) :=

∑

w∈WX
n

(−1)ℓ(w)HX
n,w(a, b;x)uw.

Then we get the following formula.

Proposition 9.

HX
n (a, b;x) = HX

n,eG
X
n (ā, b̄; x̄).

Actually we can show the following property.

Proposition 10. For si ∈ IXn we have

π
(a)
i HX

n (a, b;x) = HX
n (a, b;x)(−ui)



DOUBLE GROTHENDIECK POLYNOMIALS OF CLASSICAL TYPES 17

π
(b)
i HX

n (a, b;x) = (−ui)HX
n (a, b;x).

Proposition 11. (Interpolation formula) For F ∈ SSβ ⊗Z[β] R(a)
β ⊗Z[β] R(b)

β ,

F =
∑

w∈WX

(ψ(a)
w (F )|e) GX

w (a, b;x)

where the summation is infinite in general and |e means the localization at e, i.e.

take substitutions ai = b̄i and xi = 0 for all i.

Corollary 1. The equivariant Littlewood-Richardson coefficient can be writ-

ten as

cw,X
u,v (β) = ψ(a)

w (GX
u (a, b;x)GX

v (a, b;x))|e.

Theorem 2.

GX
w (a, b;x) =

∑

uv=w,u≤w

HX
u,w(c̄, b; 0)GX

v (a, c;x)

There is also similar formula using second version of type B,C,D double

Grothendieck polynomials.

8. Pipe dream formula

For type A Schubert/Grothendieck polynomials, it is well known that there is an

explicit formula using pipe dream ([1, 6]). We can extend this to type B,C,D cases as

follows. For this we recall the type A case formula. We give two descriptions, one in

terms of excited Young diagrams [14] , another one in terms of compatible sequences

[16].

The type An−1 double Grothendieck polynomials GAn−1
w (a, b) are defined as fol-

lows.

GAn−1(b̄1, ..., b̄n−1)
−1GAn−1(a1, ..., an−1) =

∑

w∈Sn

GAn−1
w (a, b)uw.

By using Yang-Baxter relations, the left hand side can be expressed as below

1∏

j=n−1

n−j
∏

i=1

hi+j−1(ai ⊕ bj). (2)

Therefore the expansion in terms of uw produces the pipe dream formula.
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1. Excited Young diagrams (EYD for short).

Let N := n(n− 1)/2 and

∆n := (sn−1)(sn−2, sn−1) · · · (s1, s2, · · · , sn−1) = (d1, d2, . . . , dN ).

Each term in the expansion of (2) corresponds to a subsequence of ∆n. Give w ∈ Sn

with ℓ(w) = ℓ, let Rsub(∆n, w) be the set of subsequences of ∆n each element of

which gives a reduced expression of w. i.e.

Rsub(∆n, w) := {(dj1 , dj2 , . . . , djℓ) | 1 ≤ j1 < j2 < · · · < jℓ ≤ N, dj1dj2 · · · djℓ = w}.

We will call D ∈ Rsub(∆n, w) an extended EYD. For an extended EYD

D = (dj1 , dj2 , . . . , djℓ) ∈ Rsub(∆n, w), we define the set B(D) of backward movable

positions by, considering jℓ+1 := N + 1,

B(D) := {dj | j ≤ N, ∃p such that jp < j < jp+1, dj1dj2 · · · djp = (dj1dj2 · · · djp) · dj}.

We also define weight wt(dk) = ai ⊕ bj if k = (n− j)(n− j − 1)/2 + i. Then we have

the following extended EYD formula.

GAn−1
w (a, b) =

∑

D∈RSub(∆n,w)

Wt(D),

where

Wt(D) =
∏

�∈D

wt(�)×
∏

©∈B(D)

(1 + βwt(©)).

In the pipe dream diagram two patterns appear. One is which corresponds

to the selected box � in EYD configuration. The other case we put
❅❅

❅❅ in the

box. Each selected box� in D corresponds to a word of the reduced expression of

w inside ∆n. B(D) is the set of backward movable positions (cf. [14]).

Example: type A3, w = [3, 1, 4, 2] = s2s3s1.

∆4 =

3

3

3

2

2

1

EYD

D =

3

3

3

2

2

1

��

� ©

pipe dream

✛

✛

❅
❅❅

❅
❅

❅❅

❅❅

❅❅■ ❅
❅

❅❅■

• • • •
1 2 3 4

1

2

3

4
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wt =
[1; 2] [2; 2]

[1; 1] [3; 1]

[1; 3]

[2; 1]

[i; j] = ai ⊕ bj

Wt(D) = (a1 ⊕ b2)(a2 ⊕ b2)(a1 ⊕ b1)(1 + β a3 ⊕ b1)

Example 2 w = s2s3s2 = s3s2s3

One can show that GAn−1
w (a, b)|a=1,b=0 = 5 + 5β + β2.

EYD1

D1 =

3

3

3

2

2

1

�

� �

EYD2

D2 =

3

3

3

2

2

1

�

��

©

EYD3

D3 =

3

3

3

2

2

1

�

�

�©

EYD4

D4 =

3

3

3

2

2

1

�

�

�
© ©

EYD5

D5 =

3

3

3

2

2

1

��

� ©

Wt(D1) = (a2 ⊕ b2)(a2 ⊕ b1)(a3 ⊕ b1)

Wt(D2) = (a1 ⊕ b3)(a2 ⊕ b1)(a3 ⊕ b1)(1 + β(a2 ⊕ b2))

Wt(D3) = (a1 ⊕ b3)(a1 ⊕ b2)(a3 ⊕ b1)(1 + β(a2 ⊕ b1))

Wt(D4) = (a1 ⊕ b3)(a1 ⊕ b2)(a2 ⊕ b2)(1 + β(a2 ⊕ b1))(1 + β(a3 ⊕ b1))

Wt(D5) = (a1 ⊕ b2)(a2 ⊕ b2)(a2 ⊕ b1)(1 + β(a3 ⊕ b1))

From these data we get

GA3
s2s3s2

(a, b) =Wt(D1) +Wt(D2) +Wt(D3) +Wt(D4) +Wt(D5).

Actually there is an algorithm to create all the extended EYD diagrams for a

given w ∈ Sn. The algorithm is essentially written in [1]. Combinatorics related to

extended EYD diagrams (including type B,C,D case) will be discussed elsewhere.
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2. Compatible sequence.

Let T be a semistandard tableau and w(T ) be the column reading word corre-

sponding to the tableau T . Denote by R(T ) (resp. IR(T ))the set of words which

are plactic (resp. idplactic) equivalent to w(T ). Let a = (a1, · · · , an) ∈ R(T ), where

n := |T | (resp. a = (a1, · · · , am) ∈ IR(T ), where m ≥ |T |).

Definition 10. ([8],[16]) (Compatible sequences

{
a

b

}

)

Given a word a ∈ R(T ) (esp. a ∈ IR(T )), denote by C(a) (resp. IC(a)) the set of

sequences of positive integers, called compatible sequences, b := (b1 ≤ b2 ≤ · · · ≤ bm)

such that

bi ≤ ai, and if ai ≤ ai+1, then bi < bi+1. (3)

Finally, define the set C(T ) (resp. IC(T )) to be the union
⋃
C(a) (resp. the union

⋃
IC(a)), where a runs over all words which are plactic (resp. idplactic) equivalent

to the word w(T ).

Example Take T =
2 3

3
. The corresponding tableau word is w(T ) = 323.We have

R(T ) = {232, 323} and IR(T ) = R(T )
⋃{2323, 3223, 3232, 3233, 3323, 32323, · · · }.

Moreover,

C(T ) =

{
a : 232 323 323 323 323

b : 122 112 113 123 223

}

,

IC(T ) = C(T )
⋃

{
a : 2323 3223 3232 3233 3323 32323

b : 1223 1123 1122 1123 1223 11223

}

.

From these data we get single Grothendieck polynomial

GAn−1
w (a) = a1a

2
2+a

2
1a2+a

2
1a3+a1a2a3+a

2
2a3+β(2a1a

2
2a3+2a21a2a3+a

2
1a

2
2)+β

2a21a
2
2a3.

For type Bn or Cn case, we can rewrite the generating function of Definition 5.1

as follows.





1∏

j=n−1

n−j
∏

i=1

hi+j−1(xn−i+1 ⊕ bj)









1∏

i=n

i∏

j=n

hj−i(x
X
i,j)









1∏

i=n−1

n−i∏

j=1

hi+j−1(xi ⊕ aj)



 (4)

where xXi,j = xi ⊕ xj if i 6= j , xBi,i = xi and x
C
i,i = xi ⊕ xi .

Comparing this to the type A case, we get the following formula.

Proposition 12. For w ∈W (An−1) ⊂ W (Bn) =W (Cn), we have

GB
n,w(a, b;x) = GC

n,w(a, b;x) = GA2n−1

1n×w (x1, . . . , xn, a1, . . . , an−1 , x1, . . . , xn, b1, . . . , bn−1).
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For type Dn case, we assume n = 2m an even integer, for odd n = 2m − 1 case

we can get the formula by just erasing the last variable x2m = 0 for n = 2m case.





2∏

i=n

1∏

j=i−1

hi+j−1(xi ⊕ bj)









1∏

i=n−1

i+1∏

j=n

hi,j(xi ⊕ xj)









1∏

i=n−1

n−i∏

j=1

hi+j−1(xi ⊕ aj)



 (5)

where hi,j(xi⊕xj) := hj−i(xi⊕xj) if j− i ≥ 2, hi,i+1(xi⊕xi+1) := h1̂(xi⊕xi+1)

if i =odd , and hi,i+1(xi ⊕ xi+1) := h1(xi ⊕ xi+1) if i =even.

If w is a maximal Grassmannian element of type Bn, Cn or Dn, then the above

gives the Excited Young diagram formula of [14] Th 9.2. Therefore the above give a

generalization of the EYD formula.

Example

Type C3, w = [2, 3̄, 1] = s2s1s2s0s1.

D =

2

2

2

2

2

1

1

1

1

0

0

0

�

�

�

� �
©

©
©

✛

✛

❅
❅

❅
❅

❅
❅

❅❅

❅❅

❅
❅

❅
❅❅

❅
❅❅

❅
❅❅

❅❅

❅❅■

❅❅

1 2 3

1

2

3

• • •

wt =
{3; 3} {2; 3}

{1; 1}

{1; 2}

{1; 3}

{3; 2]

{3; 1] {2; 1]

[1; 1}

[1; 2}

[2; 1}

{2; 2}

{i; j] = xi ⊕ bj

{i; j} = xi ⊕ xj

[i; j} = ai ⊕ xj

Wt(D) = (x3 ⊕ b2)(x3 ⊕ b1)(x2 ⊕ b1)(x2 ⊕ x2)(x1 ⊕ a1)

× (1 + β(x1 ⊕ x3))(1 + β(a1 ⊕ x2))(1 + β(x1 ⊕ x1))

Example

type D4 , w = [2̄, 4, 1̄, 3] = s3s1̂s2
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1̂

1̂

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

3

�

�

�

©
©

©
©

©

D = wt =

[1; 1} [2; 1} [3; 1}

{1; 2}

{1; 3}

{1; 4}

{2; 3}

{2; 4}{3; 4}

[1; 2}

[1; 3}

[2; 2}

{4; 1] {3; 1] {2; 1]

{4; 2] {3; 2]

{4; 3]

Wt(D) = (x3 ⊕ b2)(x3 ⊕ x4)(a1 ⊕ x2)

× (1 + β(x2 ⊕ b1))(1 + β(x1 ⊕ x4))(1 + β(a1 ⊕ x3))(1 + β(x1 ⊕ x2))(1 + β(a2 ⊕ x1))

Conclusion

In the present paper we compare an algebro-combinatorial [15] and algebro- geo-

metric [14] constructions of the double Schubert/Grothendieck polynomials of types

B,C,D, and show that these two approaches give rise to essentially the same poly-

nomial representatives for the Schubert/Grothendieck classes in the cohomology/K-

theory rings of the types B,C and D full flag varieties correspondingly. The formulas

obtained (4) and (5) lead to combinatorial descriptions of polynomials in questions in

terms of either EYD, or compatible sequences, or set-valued tableaux [4].

We expect that after a certain change of Id-Coxeter algebra and replacing A⊕B

in our formulas (4) and (5) by F (A,B), where F (x, y) stands for the universal formal

group law, we come to formal power series which have a suitable interpretations in

the theory of algebraic cobordism [20] of flag varieties.
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