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Abstract. As a variant of Shokurov’s criterion of toric surface, we give a

criterion of two new classes of normal projective surfaces, called pseudo-toric

surfaces of defect one and half-toric surfaces. A typical example of pseudo-toric

surface of defect one is the blown up of a projective toric surface at a non-

singular point of the boundary divisor. A half-toric surface is the quotient of a

projective toric surface by an almost free involution preserving the boundary

divisor. The structure of pseudo-toric surface of defect one and that of half-

toric surface are also studied in detail.
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1. Introduction

We work over the complex number field C. As a surface, we mean a two-

dimensional separated integral scheme (or algebraic space) of finite type over SpecC.

A normal Moishezon surface is defined as a two-dimensional normal integral sepa-

rated algebraic space proper over SpecC (cf. Notation and conventions, 1 below).

The main purpose of this article is to give a generalization of Shokurov’s criterion

[48, Th. 6.4] of toric surface in the case of integral divisor, by introducing new sur-

faces, called pseudo-toric surfaces and half-toric surfaces. We shall also describe

in detail the structures of pseudo-toric surfaces of defect one and of half-toric sur-

faces, respectively. In the Shokurov criterion, the projective toric surfaces X with

boundary divisor D are characterized by a condition on the singularity of (X,D),

a numerical property of the divisor KX +D, and by an information on the number
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of irreducible components of D. More precisely, the following is considered as the

Shokurov criterion in the case of integral divisor (for a proof, see also [42, §8.5]).
Theorem 1.1 (cf. [48, Th. 6.4]). Let X be a normal projective surface and D

a reduced divisor. Then, the pair (X,D) is toric, i.e., X is a toric variety with

boundary divisor D, if and only if

(i) (X,D) is log-canonical,

(ii) −(KX +D) is nef, and

(iii) n(D) ≥ ρ̂(X) + 2,

where n(D) stands for the number of irreducible components of D and ρ̂(X) denotes

the Weil–Picard number of X, i.e., the dimension of the vector space N(X) of R-

divisors modulo the numerical equivalence relation (cf. Definitions 2.7 and 2.23

below).

Remark 1.2. (1) The Weil–Picard number ρ̂(X) coincides with the number ρ

defined in [48, Th. 6.4].

(2) For a projective toric surface X with boundary divisor D, it is known that

the pair (X,D) is log-canonical, KX +D ∼ 0, n(D) = ρ(X) + 2, and the

Picard number ρ(X) is equal to ρ̂(X) (cf. Lemma 3.10 below).

(3) The original criterion [48, Th. 6.4] by Shokurov treats the case where D

is only a Q-divisor and n(D) in (iii) is replaced with the sum
∑
di for

the prime decomposition D =
∑
diDi. Moreover, the original criterion is

stated in a relative situation.

(4) In [32], McKernan shows that Theorem 1.1 holds true even if we replace

the inequality of (iii) by

n(D) ≥ r(D) + 2,

where r(D) is the dimension of the vector subspace N(X)D of N(X) gen-

erated by the numerical equivalence classes of the irreducible components

of D (cf. Definition 2.23).

(5) Higher-dimensional generalizations of Shokurov’s criterion are studied in

[43], [32], [19], etc.

We shall give a generalization of Theorem 1.1 essentially by weakening the con-

dition (iii). Especially, we have a classification of (X,D) satisfying (i), (ii), and

n(D) = ρ̂(X) + 1. The following is our main theorem.

Theorem 1.3. Let X be a normal Moishezon surface, i.e., a two-dimensional nor-

mal integral separated algebraic space proper over C (cf. Notation and conventions,

1 below) and let D be a reduced divisor on X. Here, we define the defect δ(X,D)

and the complexity c(X,D) by

δ(X,D) := ρ̂(X) + 2− n(D) and c(X,D) := r(D) + 2− n(D)

(cf. Definition 2.23). Suppose that

(i) (X,D) is log-canonical along D (cf. Remark 3.17(4)), and

(ii) −(KX +D) is nef.

Then, δ(X,D) ≥ c(X,D) ≥ 0. Here, c(X,D) = 0 if and only if (X,D) is a

projective toric surface, and in this case, δ(X,D) = 0. Furthermore, δ(X,D) = 1

if and only if one of the following holds :
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(1) (X,B +D) is a projective toric surface for a prime divisor B 6⊂ D;

(2) (X,D) is a pseudo-toric surface of defect one (cf. Definition 6.1);

(3) (X,D) is a half-toric surface (cf. Definition 7.1).

The pseudo-toric surfaces and half-toric surfaces are defined and studied in Sec-

tions 6 and 7 below, respectively. A pair (X,D) is called a pseudo-toric surface

if X is a projective rational surface with only rational singularities, (X,D) is log-

canonical, KX + D ∼ 0, and if D is a big cyclic chain of rational curves (cf.

Definitions 6.1 and 4.3, and Lemma 6.2). A pair (X,D) is called a half-toric sur-

face if KX+D 6∼ 0, and if it is obtained as the quotient of a projective toric surface

(V,DV ) by an involution which preserves the boundary divisor DV and which has

at most finitely many fixed points (cf. Definition 7.1). Theorem 1.6 (resp. 1.7) below

is our structure theorem of pseudo-toric surfaces of defect one (resp. of half-toric

surfaces).

Convention 1.4. By abuse of notation, we call (X,D) a toric surface when X

is a normal algebraic surface and D is a reduced divisor such that X is a two-

dimensional toric variety with X \D as an open torus. The divisor D is called the

boundary divisor. Similarly, the pair (X,D) of a surface X and a divisor D on X

is called a surface for simplicity.

Remark. (1) Theorem 1.1 and McKernan’s generalization in Remark 1.2(4),

respectively, are derived from Theorem 1.3 in the case where δ(X,D) = 0

and c(X,D) = 0.

(2) The defect δ(X,D) and the complexity c(X,D) are introduced in [32],

where the defect is called the absolute complexity.

The following is a result only on the complexity but where the condition (ii) of

Theorem 1.3 is replaced. This is also a generalization of McKernan’s version (cf.

Remark 1.2(4)) of the Shokurov criterion in the case of integral divisor.

Theorem 1.5. Let X be a normal Moishezon surface and D a reduced divisor on

X. Suppose that

(i) (X,D) is log-canonical along D,

(ii) D is connected, and

(iii) −(KX +D) is nef on D (cf. Definition 2.14(2)).

Then, c(X,D) ≥ 0. If c(X,D) ≤ 1, then X is a projective rational surface with

only rational singularities. Moreover, the equality c(X,D) = 0 holds if and only if

there is a birational morphism g : X → X such that

(1) (X,D) is a projective toric surface for D := g∗(D), and

(2) the g-exceptional locus is contained in X \D.

We shall prove Theorems 1.3 and 1.5 in Section 8.

Pseudo-toric surfaces. We shall explain some facts and results on pseudo-toric

surfaces. As a consequence of Shokurov’s criterion (Theorem 1.1), we see that

the defect δ(X,D) of a pseudo-toric surface (X,D) is always non-negative, and

δ(X,D) = 0 if and only if (X,D) is a projective toric surface. A typical construction

of pseudo-toric surface from a projective toric surface is given by the blowing up
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at a non-singular point of the boundary divisor: Let (X,D) be a projective toric

surface and P a non-singular point of D. Then, X is also non-singular at P . Let

f : Y → X be the blowing up at P and let D′ be the proper transform of D in Y .

Then, (Y,D′) is a pseudo-toric surface. In fact, we haveKY +D
′ = f∗(KX+D) ∼ 0.

The operation getting Y \D′ fromX\D is called a half-point attachment in the study

of open surfaces (cf. [17, §2], [11, (6.21)]). In this case, we have δ(Y,D′) = 1. We

can observe that any pseudo-toric surface is essentially obtained from a projective

toric surface by successive operations of half-point attachment and followed by

contractions of some divisors. But, we can not take the half-point attachment freely,

since we have required that the boundary divisor D is big (cf. Definition 6.1(iv)).

Example. Let X be a non-singular projective rational surface admitting an elliptic

fibration π : X → T such that π has a singular fiber D of type Ia for some a > 0 (in

Kodaira’s notation). Then, D is not big but (X,D) satisfies the other conditions

in Definition 6.1 of pseudo-toric surfaces.

Remark. In [31], Looijenga has studied the pairs (X,D) of a normal projective

rational surface X and an anti-canonical reduced divisor D satisfying the following

conditions:

• X is non-singular along D,

• D is a normal crossing divisor consisting of rational curves,

• D contains no (−1)-curves, and

• the intersection matrix of D is negative semi-definite.

In particular, (X,D) satisfies the conditions in Definition 6.1 except the bigness

condition of D. For such (X,D) above, assuming the number n(D) of irreducible

components of D to be at most 5, Looijenga has found a natural infinite root system

in the Picard group Pic(X) which describes the classes of (−1)-curves on X. He

uses the root systems in order to construct fine moduli spaces of (X,D) above with

n(D) ≤ 5.

We introduce the notion of toroidal blowing up in Definition 4.19 below. This

is étale locally a birational morphism of toric varieties. For a pseudo-toric surface

(X,D), if Y → X is a toroidal blowing up with respect to (X,D), then (Y,DY )

is also pseudo-toric for DY = f−1(D), and Y \ DY ≃ X \ D. We introduce the

notion of tangential blowing up of order m as an m-times operation of half-point

attachment at the “same point” followed by the contraction morphism of all the

exceptional curves not meeting the proper transform of the boundary divisor (cf.

Definition 4.24, Lemma 4.25). In Theorem 6.4 below, we prove that every pseudo-

toric surface of defect one is obtained from some projective toric surface by a

tangential blowing up and by a toroidal blow-down. By this result, we can prove

the following fundamental result:

Theorem 1.6. For any pseudo-toric surface (X,D) of defect one, the following

hold :

(1) The group Aut(X;D) of automorphisms of X preserving each irreducible

component of D is isomorphic to the multiplicative group C⋆ := C \ {0}.
(2) The open subset X \D is affine and its coordinate ring is isomorphic to

C[x, y, t, t−1]/(xy− (t− 1)k+1)
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for an integer k ≥ 0. Here, the action of θ ∈ C⋆ = Aut(X;D) on X \D is

given by (x, y, t) 7→ (θx, θ−1y, t). In particular, X \D is non-singular when

k = 0, and has a rational double point of type Ak as a unique singular point

when k ≥ 1. As a consequence, X has only cyclic quotient singularities.

(3) Let ν : N → X \ D be the minimal resolution of singularities. Then, the

logarithmic irregularity (cf. [16], [18]) of N is one. Moreover, the quasi-

Albanese map (cf. [15], [18]) of N is isomorphic to h ◦ ν for the morphism

h : X \D → Gm to the one-dimensional algebraic torus Gm corresponding to

the natural ring homomorphism

C[t, t−1] → C[x, y, t, t−1]/(xy− (t− 1)k+1)

with respect to the coordinate ring in (2).

The proof of Theorem 1.6 is given at the end of Section 6.2. In the proof of

Theorem 1.6, a special linear chain L1 + L2 of rational curves in Definition 6.6

plays an important role.

Half-toric surfaces. Next, we shall explain some facts and results on half-toric

surfaces. By Definition 7.1, giving a half-toric surface (X,D) is equivalent to giving

an involution ι of a projective toric surface (V,DV ) such that ι has at most finitely

many fixed points, ι(DV ) = DV , and ι does not preserve a nowhere vanishing

global logarithmic two-form η ∈ H0(V,Ω2
V (logDV )). Here, (X,D) is the quotient of

(V,DV ) by ι, and moreover, the induced involution on the two-dimensional algebraic

torus V \ DV ≃ G2
m is expressed uniquely up to the choice of coordinates (cf.

Lemma 7.17). By the information, we have:

Theorem 1.7. The following hold for any half-toric surface (X,D):

(1) The X is a projective rational surface with only rational singularities, the

pair (X,D) is log-canonical, D is a big linear chain of rational curves, and

δ(X,D) = 1.

(2) The open subset X \D is non-singular and affine, and its coordinate ring

is isomorphic to

C[x, x−1, y, z]/(x(y2 − 1)− z2).

In particular, the isomorphism class of X \D is independent of the choice

of (X,D).

(3) The fundamental group of the complex manifold (X \D)an associated with

X \D is generated by two elements a and b with one relation: aba−1 = b−1.

In other words, the fundamental group is isomorphic to the semi-direct

product Z ⋊ Z, where the action of the quotient group Z on the normal

subgroup Z is given by m · x = (−1)mx.

(4) The group Aut(X;D) of automorphisms of X preserving each irreducible

component of D is isomorphic to C⋆× (Z/2Z). Here, the action of (θ, k) ∈
C⋆ × (Z/2Z) on X \D is given by

(x, y, z) 7→ (θ2x, (−1)ky, (−1)kθz)

with respect to the coordinate ring in (2).
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(5) For the open subset X \ D, the logarithmic irregularity q̄(X \ D) is one,

and the quasi-Albanese map is isomorphic to the morphism X \ D → Gm

corresponding to a natural ring homomorphism

C[x, x−1] → C[x, x−1, y, z]/(x(y2 − 1)− z2)

with respect to the coordinate ring in (2).

(6) For the minimal resolution µ : M → X of singularities, DM = µ−1(D) is

a simple normal crossing divisor consisting of rational curves whose dual

graph is the extended Dynkin diagram D
∗
k with k+1 = n(DM ) = ρ(M)+1 ≥

6, in other words, the same dual graph as the singular fiber of type I∗k−4 of

an elliptic surface.

The proof of Theorem 1.7 is given at the end of Section 7.4. We can also show

that the open surface X \D is just the surface having an NC-minimal completion of

type H[−1, 0,−1] in Fujita’s classification [11] of open surfaces (cf. Remark 7.21).

Kojima [27] considers a similar variant of Shokurov’s criterion for open surfaces

and announces a certain characterization of the surface of type H[−1, 0,−1].

Remark. The results in this article hold not only over C but also over an alge-

braically closed field of characteristic zero by the Lefschetz principle. Even for an

algebraically closed field of characteristic p > 0, the same results seem to hold ex-

cept the results related to double-covers, where we need to assume: p 6= 2. Indeed,

the vanishing theorem (Theorem 2.17), the cone and contraction theorems (Theo-

rems 2.19 and 2.21), and the projectivity criterion (Lemma 2.31(1)) are all valid in

any characteristic. However, we do not take care the positive characteristic case so

much.

The organization of this article. In Section 2, we recall basic facts on nor-

mal surfaces, especially on Moishezon surfaces, including the intersection theory

of divisors, numerical properties of divisors, the cone and contraction theorems,

and projectivity criteria. These are studied and explained briefly in Sakai’s articles

[44], [45], [46], etc., but here, we shall give a unified explanation for the readers’

convenience.

In Section 3, we recall some basics on toric varieties and log-canonical pairs of

dimension two. The singularities on toric surfaces and the description of projective

toric surfaces are explained in Section 3.1. The toroidal singularities are mentioned

in Section 3.2, and some general properties on log-canonical pairs are explained in

the surface case in Section 3.3. The classification of singularities of a log-canonical

pair (X,D) for a surface X and a reduced divisor D is explained briefly in Sec-

tion 3.4, and as an application, a classification result of singularities of (X,D) lying

on a compact irreducible component C of D with (KX +D)C ≤ 0 is obtained in

Section 3.5.

Some key concepts are introduced and discussed in Section 4. These are: the

linear and cyclic chains of rational curves (cf. Section 4.1), the double-covers étale

in codimension one (cf. Section 4.2), the toroidal blowing up (cf. Section 4.3), and

the tangential blowing up (cf. Section 4.4).

In Section 5, we determine the structure of the pair (X,D) of a normal Moishezon

surfaceX and a reduced connected divisorD such that (X,D) is log-canonical along
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D, −(KX +D) is nef on D, there is a P1-fibration π : X → T , and that D contains

at least two fibers of π. In Section 5.1, we see that there are two possible cases (A)

and (B), and the structure is determined in Section 5.2 (resp. 5.3) for the case (A)

(resp. (B)).

The pseudo-toric surface and the half-toric surface are introduced and studied in

Sections 6 and 7, respectively. The definition and basic properties of pseudo-toric

surfaces are given in Section 6.1 as well as the characterization of toric surface as

a pseudo-toric surface of defect zero. For pseudo-toric surfaces of defect one, more

detailed information is obtained in Section 6.2. The half-toric surface is defined in

Section 7.1 with some basic properties, and there is explained a relation with an

H-surface in Section 7.2. The H-surface is considered as an NC-minimal completion

of an open surface of type H[−1, 0,−1] in the sense of Fujita (cf. [11, (8.19)]). After

giving a description of certain involutions of toric surfaces in Section 7.3, we shall

prove Theorem 1.7 in Section 7.4.

Finally in Section 8, we shall prove Theorems 1.3 and 1.5.

Motivation. A motivation of studying pseudo-toric surfaces of defect one comes

from the study on the classification of normal projective surfaces admitting non-

isomorphic surjective endomorphisms [39]. The classification in [39] has completed

for irrational surfaces, and the pseudo-toric surfaces of defect one appear in the

possible remaining cases of rational surfaces. Some contents in Sections 2, 3, and

4 of this article are borrowed from [39]. The study of half-toric surface is inspired

by the article [27] of Kojima mentioning H[−1, 0,−1] in some classification results

of open surfaces.
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Related Topics 2012” held at Kochi University. The author is grateful to Professors

Yoshiaki Fukuma, Hideo Kojima and Osamu Matsuda for the organization and to

younger participants, especially to Professor Yukinori Kitadai, for giving an advice

on the name of pseudo-toric surface. The author also expresses appreciation to

Professors Kayo Masuda and Masayoshi Miyanishi for giving him a chance to talk

at a conference at RIMS in July, 2014. He could generalize and correct the results

reported in [40] during the preparation of the conference. The author also expresses

his thanks to Professor Yoshio Fujimoto for his continuous encouragement and

useful suggestions.

Notation and conventions. Unless otherwise mentioned, we shall use standard

notation and conventions of the classification theory and the minimal model theory

of projective varieties. Here, we shall explain some additional things in 1–6 below,

but further special notation and conventions on normal surfaces are prepared in

Section 2.

1. A variety means an integral separated scheme (or algebraic space) of finite type

over SpecC: A curve (resp. surface) means a variety of dimension one (resp. two).

But, as a variety, we sometimes consider the associated analytic space Xan instead

of the scheme X. For example, a subscheme of X is said to be compact if it is

proper over SpecC. By the functor X 7→ Xan, the category of integral algebraic
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spaces proper over C is equivalent to the category of Moishezon varieties (cf. [5,

Th. (7.3)]). So, for simplicity, by a normal Moishezon surface, we mean a normal

integral separated algebraic space of dimension two proper over C.

2. For a compact variety X, a curve on X means a compact (irreducible) subvariety

of dimension one, by abuse of notation, unless otherwise stated. In particular, when

dimX = 2, a curve means a prime divisor. The curves are all projective. For a

connected and reduced projective scheme B of dimension one, the arithmetic genus

pa(B) is defined as dimH1(B,OB).

3. Let X be a normal variety. A divisor on X means simply a Weil divisor on

X, i.e., a finite linear combination D =
∑
diDi of prime divisors Di on X with

coefficients di ∈ Z. If we allow di ∈ Q (resp. di ∈ R), the sum D =
∑
diDi is

called a Q-divisor (resp. R-divisor). The set
⋃
di 6=0Di is called the support of D

and is denoted by SuppD. The expression D =
∑
diDi is called the irreducible

decomposition (or the prime decomposition) of D. If SuppD is compact, then D is

said to be compact. A Q-divisor D on X is said to be Q-Cartier if mD is a Cartier

divisor for some positive integer m. If every prime divisor on X is Q-Cartier, then

X is said to be Q-factorial. The canonical divisor of X is denoted by KX . Note

that the KX is not unique as a divisor but unique up to the linear equivalence

relation.

4. A reflexive sheaf F on a normal variety X is by definition a coherent OX -

module such that F is isomorphic to the double-dual F∨∨, where F∨ stands for

HomOX
(F ,OX). It is known that a torsion-free coherent OX -module F is reflexive

if and only if F satisfies Serre’s condition S2 (cf. [14, Prop. 1.6]). For a divisor D

on X, we denote by OX(D) the associated reflexive sheaf of rank one: In case D

is Cartier, OX(D) is the usual associated invertible sheaf, and in general, OX(D)

is defined by the property that OX(D) ≃ j∗OU (D|U ) for any open subset U ⊂ X

with codim(X \U) ≥ 2, where D|U is Cartier and j is the open immersion U →֒ X.

Here, D is Cartier if and only if OX(D) is invertible. The reflexive sheaf OX(KX)

is written as ωX , and is called the canonical sheaf or the dualizing sheaf. In fact,

ωX ≃ j∗(Ω
n
U ) for the open immersion j : U →֒ X from the non-singular locus U ,

where n = dimX. When X is Cohen–Macaulay (e.g., n = 2) and compact, we have

the Serre duality

Hi(X,F)∨ ≃ Extn−iOX
(F , ωX)

for any coherent OX -module F .

5. A fibration is a proper surjective morphism f : X → Y of normal varieties such

that all the fibers are connected (equivalently, OY ≃ f∗OX). A fiber of f means

a closed fiber with reduced structure, unless otherwise stated. A P1-fibration is a

fibration whose general fiber is isomorphic to P1. For a proper birational morphism

f : X → Y of normal varieties, the f -exceptional locus (or the exceptional locus for

f) is the set of points on X at which f is not an isomorphism. A prime divisor

on X is said to be f -exceptional (or exceptional for f) if it is contained in the

f -exceptional locus. Note that, when dimX = 2, the f -exceptional locus is the

union of f -exceptional curves.
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6. For a ring R, the group of invertible elements of R is denoted by R⋆. For

example, C⋆ = C \ {0}.

2. On normal Moishezon surfaces

In this section, we explain some basics on normal Moishezon surfaces, such as

intersection theory of divisors (Section 2.1), numerical properties of divisors (Sec-

tion 2.2), the cone and contraction theorems (Section 2.3), and projectivity criteria

(Section 2.5). These topics have been studied in Sakai’s article [44], [45], [46], etc.

In Section 2.4, we define the defect δ(X,D) and the complexity c(X,D) for a nor-

mal Moishezon surface X with a reduced divisor D and we study their properties

in connection with the class map.

2.1. Intersection number of two (Weil) divisors. We recall the notion of in-

tersection numbers of two divisors on a normal surface, and recall related properties

(cf. [44, Sect. 1]).

Definition 2.1. Let X be a normal surface and let µ : M → X be a proper

birational morphism from a non-singular surface M . For a divisor D on X, the

numerical pullback of D (due to Mumford [36]) is defined as a Q-divisor

µ∗(D) := D′ +
∑l

i=1
aiEi

such that µ∗(D)Ei = 0 for any 1 ≤ i ≤ l, where D′ is the proper transform of D

in M , and E1, . . . , El are the µ-exceptional curves (cf. Notation and conventions,

2 and 5). The rational numbers a1, . . . , al are uniquely determined, since the

intersection matrix (EiEj)1≤i,j≤l is negative definite (cf. Theorem 2.6 below). For

two divisors D1 and D2 on X, if D1 or D2 is compact (cf. Notation and conventions,

1), then the intersection number D1D2 is defined by

D1D2 := µ∗(D1)µ
∗(D2) ∈ Q.

When D = D1 = D2, we write D2 for D1D2. The intersections numbers for

Q-divisors and R-divisors are defined by linearity.

Remark. (1) For a Cartier divisor D, the numerical pullback µ∗(D) coincides

with the usual pullback as a Cartier divisor.

(2) Let r be the determinant of the intersection matrix (EiEj) above. Then,

rµ∗(D) is Cartier. In particular, rD1D2 ∈ Z for any such divisors D1 and

D2 as above.

(3) The intersection number D1D2 does not depend on the choice of µ : M →
X. If D1 is Cartier, and D2 is compact, then D1D2 = deg(OX(D1)|D2

).

(4) If D1 and D2 are effective divisors without common irreducible components

and if D1 or D2 is compact, then D1D2 ≥ 0, where D1D2 = 0 if and only

if SuppD1 ∩ SuppD2 = ∅.

The following is well known (cf. [54, Lem. 7.1]).

Lemma 2.2. On a normal surface, let D =
∑
aiDi be a finite linear combination

of compact R-divisors Di with real coefficients ai. Assume that the matrix (DiDj)

is negative-definite and that DDi ≤ 0 for any i. Then ai ≥ 0 for any i.
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Definition 2.3. Let D =
∑k
i=1 diDi be the irreducible decomposition of a com-

pact R-divisor D on a normal surface. If the intersection matrix (DiDj)1≤i,j≤k is

negative definite, we say that D is negative definite.

Definition 2.4. Let f : Y → X be a morphism of normal surfaces.

(1) For an R-divisor G on Y , when the restriction SuppG→ X of f is proper,

the push-forward f∗(G) is defined to be the R-divisor
∑
dibif(Gi), where

the summation is taken over all the irreducible components Gi of G with

dim f(Gi) = 1, bi = multGi
(G), and di is the degree of the finite morphism

Gi → f(Gi).

(2) When f is a proper birational morphism, an R-divisor G is said to be f -

exceptional if SuppG is contained in the f -exceptional locus, i.e., if f∗(G) =

0.

(3) Assume that f is a dominant morphism. For a divisor D on X, the numer-

ical pullback f∗(D) is defined as follows. Let µ : M → X and ν : N → Y

be proper birational morphisms from non-singular surfaces M and N such

that the induced rational map g = µ−1 ◦ f ◦ ν : N → M is a morphism.

Then, we set

(II-1) f∗(D) := ν∗(g
∗(µ∗(D))),

where g∗ denotes the pullback of Q-Cartier divisor. Here, f∗(D) is a Q-

divisor, and it is independent of the choices of µ and ν. The numerical

pullback f∗(∆) of an R-divisor ∆ is defined by linearity.

(4) In the situation of (3), when D is a reduced divisor, the support of f∗(D)

is denoted by f−1(D), and is called the total transform of D.

Remark. (1) The projection formula

(II-2) f∗(D)G = Df∗(G)

holds for any R-divisor D on X and for any R-divisor G on Y such that

SuppG→ Y is proper.

(2) If f is proper and surjective, then another projection formula

(II-3) f∗f
∗(D) = (deg f)D

holds for any R-divisor D on X, where deg f denotes the degree of the

generically finite morphism f , i.e., the cardinality of a general fiber.

(3) Assume that f is a finite surjective morphism. Then, for a divisor D on

X, we can find an open subset U of X such that D|U is Cartier and that

codim(X \ U,X) ≥ 2. Then, codim(Y \ f−1(U), Y ) ≥ 2, since f is finite.

Thus, the Cartier divisor f∗(D|U ) is extended uniquely to a divisor on Y ,

which is called the closure of f∗(D|U ). The numerical pullback f∗(D) is

equal to the closure of f∗(D|U ).
(4) Assume that f is a proper birational morphism. IfD is an effective R-divisor

on X, then f∗D−D′ is effective for the proper transform D′ of D in Y , and

Supp f∗(D) = f−1(SuppD). In particular, f−1(D) = f−1(SuppD) when

D is reduced.

Remark 2.5. Let f : Y → X be a proper birational morphism of normal surfaces.

If an R-divisor G on Y is f -nef, i.e., GC ≥ 0 for any f -exceptional curve C (cf.
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Definition 2.14 below), then the difference ∆ = f∗(f∗(G)) − G is an effective R-

divisor by Theorem 2.6 and Lemma 2.2. In particular, if G is f -numerically trivial

(cf. Definition 2.14 below), i.e., GC = 0 for any f -exceptional curve C, then G =

f∗(f∗(G)).

The following theorem on contraction criterion is well known:

Theorem 2.6 (Contraction Criterion). Let G be a compact reduced divisor on a

normal surface Y . Then, the following two conditions are mutually equivalent :

(i) The divisor G is negative definite (cf. Definition 2.3).

(ii) There is a proper birational morphism f : Y → X to a normal surface X

such that dim f(G) = 0, f−1(f(G)) = G, and f induces an isomorphism

Y \G→ X \ f(G).
We explain a history on the proof of Theorem 2.6 briefly. The implication (ii)

⇒ (i) is shown by Mumford in [36, p. 6]. The other implication (i) ⇒ (ii) is proved

by Grauert in [13, (e), pp. 366–367] (cf. [36]) in the case where Y is a non-singular

complex analytic surface. The same implication is proved for a two-dimensional

non-singular algebraic space Y of finite type over C by Artin in [5, Cor. 6.12(b)].

The general case of normal surface is reduced to the non-singular case by taking

resolution of singularities of Y (cf. [44, Th. (1.2)]).

Remark. The morphism f in Theorem 2.6 is called the contraction morphism (or

the blowdown) of G, which is uniquely defined up to isomorphism. Note that if Y

is an algebraic space, then so is X, but even if Y is a scheme, X is not necessarily

a scheme (cf. [13, (e), p. 366]).

Definition. A prime divisor C on a normal surface X is called a negative curve

if C is compact and C2 < 0. If C is a non-singular rational curve lying on the

non-singular locus of X with C2 = −k < 0, then C is called a (−k)-curve.
Remark. The contraction morphism f in Theorem 2.6 is written as a succession of

contractions of negative curves. The (−1)-curve is just the exceptional curve of the

first kind. A negative curve C on a non-singular locus of X is a (−1)-curve (resp.

(−2)-curve) if and only if KXC < 0 (resp. KXC = 0).

Remark. A proper birational morphism µ : M → X from a non-singular surface M

is called the minimal resolution of singularities of X if there is no (−1)-curves in the

µ-exceptional locus. This is equivalent to that KM is µ-nef (cf. Definition 2.14(1)

below), i.e., KMC ≥ 0 for any µ-exceptional curve C. The minimal resolution is

unique up to isomorphism over X.

2.2. Numerical properties of divisors. The intersection numbers defined in

Section 2.1 give the numerical equivalence relation ∼∼∼ for R-divisors on a normal

Moishezon surface (cf. Notation and conventions, 1). We recall basic properties on

the real vector space N(X) of R-divisors modulo ∼∼∼ for a normal Moishezon surface

X, and some results on numerical properties of R-divisors, such as nef, big, and

numerically ample, etc. (cf. Definition 2.11 below).

Definition 2.7 (N(X), ρ̂(X)). Let X be a normal Moishezon surface. We denote

by Div(X) the divisor group of X, i.e., the free abelian group generated by prime
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divisors on X. Note that a Q-divisor (resp. an R-divisor) is an element of Div(X)⊗
Q (resp. Div(X)⊗R). The divisor class group CL(X) is the quotient abelian group

Div(X)/∼ by the linear equivalence relation ∼. Two R-divisors D1 and D2 are

said to be numerically equivalent to each other if D1C = D2C for any (compact)

curve C on X. We write the numerical equivalence relation by ∼∼∼. The numerical

equivalence class of an R-divisor D is denoted by cl(D) or clX(D); it is also called

the numerical class for simplicity. We define N(X) to be the group Div(X)⊗R/∼∼∼
of the numerical classes of R-divisors, which is a real vector space. The intersection

numbers for R-divisors induce a non-degenerate bilinear form N(X) × N(X) → R;

(x, y) 7→ x · y, such that cl(D) · cl(E) = DE for two R-divisors D and E. The

Weil–Picard number ρ̂(X) of X is defined as dimR N(X).

Remark 2.8. For the Néron–Severi group NS(X), which is the group of Cartier

divisors modulo the algebraic equivalence relation, we have NS(X) ⊗ R ⊂ N(X).

In particular, ρ̂(X) ≥ ρ(X) for the Picard number ρ(X) = rankNS(X). If X is

non-singular, or more generally, if X is Q-factorial (cf. Notation and conventions,

3), then ρ̂(X) = ρ(X).

Remark 2.9. Let f : Y → X be a surjective morphism of normal Moishezon surfaces.

Then, the push-forward f∗ and the numerical pullback f∗ of divisors induce the

linear maps

f⋆ : N(Y ) → N(X) and f⋆ : N(X) → N(Y ),

respectively, which satisfy f⋆(clY (G)) = clX(f∗(G)) and f
⋆(clX(D)) = clY (f

∗(D))

for any R-divisors G on Y and D on X. By the projection formulas (II-2) and

(II-3), we have

f⋆(x) · y = x · f⋆(y) and f⋆(f
⋆(x)) = (deg f)x

for any x ∈ N(X) and y ∈ N(Y ). In particular, the linear map f⋆ is surjective and

the other map f⋆ is injective.

Lemma 2.10. Let f : Y → X be a birational morphism of normal Moishezon sur-

faces. Then, ρ̂(X) = ρ̂(Y )+k for the number k of f -exceptional prime divisors. In

particular, ρ̂(X) ≤ ρ(M) holds for the minimal resolution M → X of singularities.

Proof. Let C1, . . . , Ck be the f -exceptional curves, and let v : N(Y ) → R⊕k be

the homomorphism defined by v(D) = (DC1, . . . , DCk) for an R-divisor D on Y .

Then, v is surjective, since det(CiCj) 6= 0 (cf. Theorem 2.6). The kernel of v is just

the image of f⋆ : N(X) → N(Y ) by Remark 2.5. Therefore, N(Y ) ≃ N(X) ⊕ R⊕k,

and we have ρ̂(X) = ρ̂(Y ) + k. �

The following result is called the Hodge index theorem as in the non-singular

case.

Lemma. If C and D be R-divisors on a normal Moishezon surface X such that

cl(D) 6= 0 and D2 ≥ 0. If CD = 0, then C2 ≤ 0, where the equality C2 = 0 holds

if and only if cl(C) ∈ R cl(D). In particular, if D2 > 0 and CD = C2 = 0, then

cl(C) = 0.

Proof. It is derived from the Hodge index theorem for non-singular projective sur-

faces, as follows. Let µ : M → X be a resolution of singularities. Then, M is
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projective by Fact 2.30 below. Since cl(D) 6= 0, we can take an ample divisor H

on M with µ∗(D)H 6= 0. We define a real number r by (µ∗(C)− rµ∗(D))H = 0.

Since H2 > 0, by the Hodge index theorem for M , we have

0 ≥ (µ∗(C − rD))2 = C2 − 2rCD +D2 = D2 + C2 ≥ C2,

where C2 = 0 holds if and only if C − rD ∼∼∼ 0. �

Definition 2.11. Let D be an R-divisor on a normal Moishezon surface X.

(i) D is said to be numerically trivial if D ∼∼∼ 0;

(ii) D is said to be nef if DC ≥ 0 for any curve C ⊂ X;

(iii) D is said to be pseudo-effective if DB ≥ 0 for any nef divisor B on X;

(iv) D is said to be numerically ample if D2 > 0 and DC > 0 for any curve

C ⊂ X (cf. [45, p. 629]);

(v) D is said to be big if D − A is pseudo-effective for a numerically ample

R-divisor A.

Remark 2.12. A numerically ample Cartier divisor is ample by the Nakai–Moishezon

criterion of ampleness ([37], [33]) when X is projective. This holds true even if X

is only a normal Moishezon surface (cf. [34, I, Th. 6]).

Remark 2.13. By the projection formula (II-2), we infer that, for a birational mor-

phism f : Y → X of normal Moishezon surfaces, if an R-divisor B on Y is nef,

pseudo-effective, numerically ample, and big, respectively, then so is f∗(B). Simi-

larly, if an R-divisor D on X is nef, pseudo-effective, and big, respectively, then so

is f∗(D).

Remark. Every normal Moishezon surface X admits a numerically ample divisor.

In fact, by Remark 2.13, µ∗(H) is numerically ample for the minimal resolution

µ : M → X of singularities and for an ample divisor H on M . In particular, the

Hodge index theorem is equivalent to that the signature of the intersection pairing

on N(X) is (1, ρ̂(X)− 1).

On the properties “nef” and “numerically trivial,” we introduce some variants:

Definition 2.14. Let X be a normal surface and D an R-divisor.

(1) For a proper morphism f : X → S to another variety S, the D is said to be

f -nef (resp. f -numerically trivial) if DC ≥ 0 (resp. DC = 0) for any curve

C ⊂ X mapped to a point of S.

(2) For a compact reduced divisor B on X, the D is said to be nef on B (resp.

numerically trivial on B) if DBi ≥ 0 (resp. DBi = 0) for any irreducible

component Bi of B.

Remark 2.15. Let f : X → Y be a birational morphism of normal Moishezon sur-

faces.

• If an R-divisor D on X is f -nef and f∗D = 0, then −D is effective by

Lemma 2.2, since D is negative definite (cf. Theorem 2.6).

• Let B be a reduced divisor on Y . If an R-divisor L on X is nef on f−1B,

then f∗L is nef on B, by the projection formula (II-2).
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The following result on the properties “big,” “pseudo-effective,” and “numeri-

cally ample” is shown easily by the same argument in the usual case of Cartier

divisors. The proof of left to the reader.

Lemma 2.16. Let X be a normal Moishezon surface with an R-divisor D.

(1) When D is nef, D is big if and only if D2 > 0.

(2) If D2 > 0 (resp. D2 ≥ 0), then D or −D is big (resp. pseudo-effective).

(3) The D is numerically ample if and only if DE > 0 for any pseudo-effective

R-divisor E which is not numerically trivial.

The following theorem is a relative version of Kawamata–Viehweg vanishing

theorem (cf. [23, Th. 1-2-3]) in the two-dimensional case.

Theorem 2.17. Let f : X → Y be a proper surjective morphism between normal

surfaces and let D be an f -nef Q-divisor on X. Then,

(II-4) R1f∗OX(KX + pDq) = 0,

where the round-up pDq is defined as
∑

paiqDi for the irreducible decomposition

D =
∑
aiDi, and the round-up prq of a rational number r is defined as the smallest

integer not less than r.

Remark. Theorem 2.17 is well known in the case where X is non-singular and

SuppD is a normal crossing divisor. We can reduce to this case by an argument

in [44, Th. (5.1)]. Theorem 2.17 is valid even in the positive characteristic case. In

fact, the local vanishing theorem [44, Th. (2.2)] holds in the positive characteristic

case by [44, Rem. (2.4)], and we can reduce to the case where X and Y are non-

singular and X → Y is a succession of blowings up at points.

As a corollary of Theorem 2.17, we have the following useful lemma, which is

used in proving Propositions 2.29 and 4.8 below.

Lemma 2.18. For a normal surface X and a reduced divisor D on X, let C be a

compact curve on X such that

C 6⊂ D, C2 < 0, and (KX +D)C ≤ 0.

Then, ♯C ∩D ≤ 1.

Proof. Let f : X → X be the contraction morphism of C and setD := f∗(D). Then,

the structure sheaf OD of the divisor D is just the image of OX ≃ f∗OX → f∗OD.

On the other hand, R1f∗OX(−D) = 0 by Theorem 2.17, since −(D+KX) is f -nef.

Hence, OD ≃ f∗OD, and consequently, every fiber of f |D : D → D is connected. In

particular, C ∩D is connected or empty, and thus, ♯C ∩D ≤ 1. �

2.3. Cone and contraction theorems. The cone and contraction theorems are

important in the study of minimal models and these are stated for log-canonical

pairs, usually. Here, we explain a version of the cone theorem valid for any normal

Moishezon surface and a version of the contraction theorem valid for any normal

projective surface.

Definition. For a normal Moishezon surface X, let NE(X) denote the closure in

N(X) of the cone NE(X) consisting of the numerical classes cl(D) of all the effective
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R-divisors D on X. Then, NE(X) is identical to the set of the numerical classes of

all the pseudo-effective R-divisors on X. The dual cone of NE(X) with respect to

the intersection pairing N(X) × N(X) → R is just the nef cone Nef(X), which is

the set of the numerical classes of all the nef R-divisors on X. For an R-divisor B,

we set

NE(X)
≥0

B := {z ∈ NE(X) | cl(B) · z ≥ 0} and

NE(X)⊥B := {z ∈ NE(X) | cl(B) · z = 0}.
An extremal ray R of NE(X) is a one-dimensional face of the cone NE(X), i.e.,

R = R≥0v = NE(X)⊥L for a non-zero vector v of NE(X) and a nef R-divisor L.

Remark. (1) An R-divisor D of X is numerically ample (resp. big) if and only

if cl(D) lies in the interior of Nef(X) (resp. NE(X)) (cf. Lemma 2.16).

(2) The cones Nef(X) and NE(X) are strictly convex closed cones of N(X),

and Nef(X) ⊂ NE(X).

(3) The R = R≥0 cl(Γ) is an extremal ray of NE(X) for any negative curve Γ.

The cone theorem by Mori [35] for non-singular projective surfaces is general-

ized to the case of normal Moishezon surfaces by Sakai in [45, Prop. 4.8] (cf. [46,

Appendix]). As a consequence, we have:

Theorem 2.19. For a normal Moishezon surface X and for any numerically ample

R-divisor A of X, there exist finitely many rational curves Ci with −3 ≤ KXCi < 0

such that Ri = R≥0 cl(Ci) is an extremal ray and

NE(X) = NE(X)
≥0

KX+A +
∑

Ri.

Corollary 2.20. Let X be a normal Moishezon surface.

(1) If R is an extremal ray of NE(X) with KXR < 0, then R = R≥0 cl(C) for a

rational curve C with 0 > KXC ≥ −3.

(2) For a nef R-divisor L, if KX + L is not nef, then there is an extremal ray

R such that (KX + L)R < 0.

Proof. (1): There is a numerically ample R-divisor A such that (KX + A)R < 0.

Since R is extremal, R is one of the extremal rays Ri in Theorem 2.19.

(2): There is a numerically ample R-divisor A such that KX + L + A is not

nef. Then, KX + A is not nef. Let Ri be the extremal rays in Theorem 2.19. If

(KX +L)Ri ≥ 0 for any i, then KX +L+A is nef, since cl(KX +L+A) · z ≥ 0 for

any z ∈ NE(X) by Theorem 2.19: This is a contradiction. Thus, (KX + L)Ri < 0

for some Ri. �

The contraction theorem [35, Th. (2.1)] on the extremal rays has been generalized

to many situations by [52], [46], etc. The following version is a special case of [45,

Th. 4.9], which deals with normal Moishezon surfaces. This seems to hold also in

the positive characteristic case (cf. [2, Th. 10.3]).

Theorem 2.21. Let X be a normal projective surface with an extremal ray R such

that KXR < 0. Then, there exists a fibration π : X → S to a normal projective

variety S, called the contraction morphism of R, such that, for any curve C ⊂ X,

its numerical class cl(C) belongs to R if and only if π(C) is a point. Here, ρ̂(X) =

ρ̂(S) + 1. Moreover, the following hold : Let v be a non-zero vector in R.
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(1) If v2 > 0, then ρ̂(X) = 1, NE(X) = R, X has a rational curve, and π is

the constant morphism X → SpecC.

(2) If v2 = 0, then ρ̂(X) = 2 and π : X → S is a fibration to a non-singular

projective curve S such that every fiber of π is a non-singular rational curve

and its numerical class belongs to R.

(3) If v2 < 0, then R = R≥0 cl(Γ) for a negative rational curve Γ, and π is the

contraction morphism of Γ.

Remark 2.22. In the case (3) above, the projectivity of S is shown as follows (cf.

the proof of [3, Th. 2.3]). We can find a very ample divisor H on X and a positive

integer r such that (H + rΓ)Γ = 0 and H1(X,OX(H)) = 0. Then, L = H + rΓ is

a nef and big Cartier on X and NE(X)⊥L = R≥0 cl(Γ) = R. It is enough to prove

that the linear system |L| is base point free. In fact, in this case, the morphism

Φ|L| : X → |L|∨ associated with |L| factors through a finite morphism S → |L|∨,
where |L|∨ is the dual projective space of |L|.

We have R1π∗OX = 0 by Theorem 2.17 applied to the π-nef divisor −KX ;

hence, Γ ≃ P1 and OX(L)|Γ ≃ OΓ. Since the base locus of |L| is contained in Γ, it

is enough to prove that the restriction homomorphism

φ : H0(X,OX(L)) → H0(Γ,OX(L)|Γ) ≃ H0(Γ,OΓ)

is non-zero. The homomorphism φ factors as

H0(X,OX(L))
ϕ−→ H0(X,OrΓ(L))

ψ−→ H0(X,OΓ(L)),

where ϕ is surjective by H1(X,OX(H)) = 0. The ψ is a composition of the restric-

tion homomorphisms

ψk : H0(X,OkΓ(L)) → H0(X,O(k−1)Γ(L))

for 0 < k ≤ r, and each ψk is surjective by H1(Γ,OΓ(L − (k − 1)Γ)) = 0. Thus, φ

is surjective, |L| is base point free, and consequently, S is projective.

2.4. The defect and complexity. We shall study basic properties on the defect

and the complexity defined as follows:

Definition 2.23. Let X be a normal Moishezon surface and D a reduced divisor on

X. We define n(D) to be the number of irreducible components of D. The vector

subspace of N(X) generated by the numerical classes of irreducible components of

D is denote by N(X)D. The dimension of N(X)D is denoted by r(X,D) or r(D)

for short. We set

δ(X,D) := ρ̂(X) + 2− n(D) and c(X,D) := r(D) + 2− n(D).

The δ(X,D) is called the defect, and c(X,D) is called the complexity.

Remark. By definition, r(D) ≤ ρ̂(X) = dimN(X). If r(D) = ρ̂(X), then D is

big. We always have δ(X,D) ≥ c(X,D). The defect δ(X,D) is called the absolute

complexity in [32].

Definition 2.24. For (X,D) in Definition 2.23, let F(D) denote the free abelian

group generated by the irreducible components of D. The class map is a homo-

morphism

clD : F(D)⊗Z R → N(X)
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of vector spaces which associates with each irreducible component Di of D the

numerical class cl(Di). For the (Weil) divisor class group CL(X) of X, we have

another class map

clZD : F(D) → CL(X)

which associates with each irreducible component of D the linear equivalence class.

Remark. The complexity c(X,D) is related to the class map. In fact, N(X)D is

the image of clD, and we have

n(D)− r(D) = dimKer(clD) ≥ 0 and

c(X,D) = 2− dimKer(clD) ≤ 2.

If the numerical equivalence relation ∼∼∼ coincides with the Q-linear equivalence

relation ∼Q (e.g., the case of Lemma 2.31(4) below), then

rankCL(X) = ρ̂(X) and rank clZD = r(D).

Lemma 2.25 (cf. [11, Prop. (1.17)]). The kernel of clZD is isomorphic to O(X \
D)⋆/C⋆.

Proof. By definition, Ker(clZD) consists of principal divisors div(f) associated with

non-zero rational functions f on X such that Supp div(f) ⊂ D; The last condition

means that f is invertible on X \D. Therefore, we have a surjection OX(X \D)⋆ →
Ker(clZD) by f 7→ div(f), and the kernel of this surjection is just O(X)⋆ = C⋆. �

Fact. Let X be a non-singular projective variety of arbitrary dimension and let D

be a simple normal crossing divisor on X. In this case, we can also consider the

class map clD : F(D) ⊗ R → N(X) to the real vector space N(X) of the numerical

equivalence classes of R-divisors on X. Then, the kernel Ker(clD) is isomorphic to

the kernel of H2
Dan(Xan,R) → H2(Xan,R), and the equality

dimKer(clD) = q̄(X \D)− q(X)

holds by [15, Prop. 1] (cf. [11, Prop. (1.15)]), where q̄ stands for the logarithmic

irregularity and q for the irregularity. Moreover, the following holds true, which

seems to be well known.

Proposition 2.26. Let X be a non-singular projective variety and D a simple

normal crossing divisor on X such that q(X) = 0. Then, the quasi-Albanese variety

(cf. [15, §3]) of X \D is an algebraic torus T of dimension q̄ := q̄(X \D) and the

quasi-Albanese map (cf. [15, §4]) is characterized as a morphism α : X \ D → T

which induces an isomorphism
(
C⋆ × Z⊕q̄ ≃

)
O(T)⋆

≃−→ O(X \D)⋆.

Proof. By the definition of the quasi-Albanese variety in [15, §3], the vanishing

q(X) = 0 implies that the quasi-Albanese variety is an algebraic torus T of di-

mension q̄(X \ D). Let α : X \ D → T be the quasi-Albanese map. Then, by

the universality of the quasi-Albanese map (cf. [15, Prop. 4]), for any morphism

f : X \D → T to another algebraic torus T , there is a unique morphism u : T → T

such that f = u ◦α and u is a group homomorphism of group schemes up to trans-

lation. In particular, the group homomorphism O(T )⋆ → O(X \ D)⋆ induced by

f∗ always factors through the group homomorphism O(T)⋆ → O(X \D)⋆ induced
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by α∗. On the other hand, for the d-dimensional algebraic torus Gdm , giving a mor-

phism X \ D → Gdm over SpecC is equivalent to giving a group homomorphism

Z⊕d → O(X \ D)⋆. Therefore, α∗ induces an isomorphism O(T)⋆ ≃ O(X \ D)⋆,

and this property characterizes the quasi-Albanese map α. �

Lemma 2.27. Let f : X → X be a birational morphism of normal Moishezon

surfaces. Let D be a reduced divisor on X and set D = f∗(D). Then,

n(D)− n(D) ≤ r(D)− r(D) ≤ ρ̂(X)− ρ̂(X),

or equivalently, 0 ≤ c(X,D)− c(X,D) ≤ δ(X,D)− δ(X,D).

Here, the equality n(D) − n(D) = ρ̂(X) − ρ̂(X) holds (equivalently, δ(X,D) =

δ(X,D) holds) if and only if the f -exceptional locus is contained in D.

Proof. The push-forward of divisors by f defines a homomorphism f∗ : F(D) →
F(D) for the free abelian groups F(D) and F(D) defined in Definition 2.24, and it

also defines the homomorphism f⋆ : N(X) → N(X) of Remark 2.9. Let E(f) (resp.

E(f)D) be the free abelian group generated by the f -exceptional prime divisors on

X (resp. f -exceptional irreducible components of D). Then, there is a commutative

diagram

0 −−−−→ E(f)D ⊗ R −−−−→ F(D)⊗ R
f∗⊗R−−−−→ F(D)⊗ R −−−−→ 0

y clD

y clD

y

0 −−−−→ E(f)⊗ R −−−−→ N(X)
f⋆−−−−→ N(X) −−−−→ 0

of exact sequences, where the left vertical homomorphism is induced from the in-

clusion E(f)D ⊂ E(f). Hence, for the kernel W of the surjection N(X)D → N(X)D
induced by f⋆, we have inclusions

E(f)D ⊗ R ⊂W ⊂ E(f)⊗ R.

Comparing the dimensions of these three vector spaces, we have the required

inequality, since rankE(f)D = n(D) − n(D), rankE(f) = ρ̂(X) − ρ̂(X), and

dimW = r(D) − r(D). Here, the equality holds if and only if E(f)D = E(f),

and this proves the last assertion. �

Lemma 2.28. In the situation of Lemma 2.27 above, the following also hold :

(1) If the f -exceptional locus is contained in X\D, then n(D) = n(D), r(D) =

r(D), and c(X,D) = c(X,D).

(2) If f is the contraction morphism of a negative curve Γ with Γ 6⊂ D, then

n(D) = n(D), ρ̂(X) = ρ̂(X) + 1, and δ(X,D) = δ(X,D) + 1.

(3) In the situation of (2), assume that Γ ∩ (D − C) = ∅ and Γ ∩ C 6= ∅ for

an irreducible component C of D. Then, r(D) = r(D)+1 (or equivalently,

c(X,D) = c(X,D) + 1) if and only if

cl(C) ∈ N(X)D−C ,

for the curve C = f∗(C).

Proof. The assertion (2) is a consequence of Lemma 2.10. For the proof of (1), it

is enough to show: r(D) = r(D). Let ∆ be an R-divisor supported on D such that
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∆ ∼∼∼ G for an R-divisor G contained in the exceptional locus. Then, f∗∆ ∼∼∼ f∗G = 0

and 0 ∼∼∼ f∗f∗∆ = ∆. Hence, the kernel W in the proof of Lemma 2.27 is zero,

and we have r(D) = r(D). This proves (1). In the situation of (3), the equality

r(D) = r(D) + 1 is equivalent to that cl(Γ) ∈ N(X)D. Let ∆ be an R-divisor on

X supported on D. We write ∆ = dC + ∆1 for some d ∈ R and for an R-divisor

∆1 supported on D − C. If ∆ ∼∼∼ rΓ for some real number r 6= 0, then d 6= 0 by

dCΓ = ∆Γ = rΓ2 6= 0, and moreover, 0 ∼∼∼ f∗∆ = dC + f∗∆1. Hence, in this case,

cl(C) ∈ N(X)D−C . Conversely, if d 6= 0 and if 0 ∼∼∼ f∗∆ = dC + f∗∆1, then ∆ ∼∼∼ rΓ

with r 6= 0 by ∆Γ = dCΓ 6= 0. This proves (3), and we are done. �

The result below is obtained by Proposition 2.18 and by the so-called minimal

model program: More precisely, by the cone and contraction theorems (cf. Theo-

rems 2.19 and 2.21) with Corollary 2.20.

Proposition 2.29. Let X be a normal projective surface and D a reduced divisor

on X. Suppose that

(i) −(KX +D) is nef, and

(ii) either δ(X,D) ≤ 1 or c(X,D) ≤ 0.

Then, D is connected and reducible.

Proof. If D = 0, then c(X,D) = 2. Thus, D 6= 0 and r(D) > 0. Then, D is

reducible by

n(D) = r(D) + 2− c(X,D) ≥ r(D) + 1 ≥ 2.

It remains to prove the connectedness of D. Since (−D) − KX is nef and −D is

not nef, there is an extremal ray R on X such that (−D)R < 0 and KXR < 0 by

Corollary 2.20(2). Let us consider the contraction morphism contR associated with

R (cf. Theorem 2.21).

We first consider the case where contR is a birational morphism f : X → X ′.

Then, R is generated by cl(Γ) of a negative curve Γ, and f is just the contrac-

tion morphism of Γ. Note that X ′ is also a normal projective surface (cf. Re-

mark 2.22). We set D′ = f∗(D). Then, −(KX′ +D′) = f∗(−(KX +D)) is nef (cf.

Remark 2.15), and the inequalities δ(X ′, D′) ≤ δ(X,D) and c(X ′, D′) ≤ c(X,D)

hold by Lemma 2.27. Hence, (X ′, D′) satisfies the same conditions (i) and (ii). If

Γ ⊂ D, then D = f−1(D′), and even if Γ 6⊂ D, we have ♯Γ∩D ≤ 1 by Lemma 2.18.

As a consequence, if D′ is connected, then so is D. Thus, we may replace (X,D)

with (X ′, D′).

By the observation above and by Theorem 2.21, taking a succession of birational

contractions of extremal rays, we can reduce to the following two cases:

• contR is the structure morphism to a point;

• contR is a fibration π : X → T to a non-singular curve T .

In the first case, ρ̂(X) = 1, and every non-zero effective divisor is ample and

connected. Therefore, D is also connected in this case. In the second case, ρ̂(X) =

2, and we haveDF > 0 and (KX+D)F ≤ 0 for a general fiber F of π. Thus, F ≃ P1

and 1 ≤ DF ≤ 2. In particular, D contains at least one irreducible component C0
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which dominates T . Now, we have

n(D) = −δ(X,D) + ρ̂(X) + 2 ≥ 3, or

n(D) = −c(X,D) + r(D) + 2 ≥ r(D) + 2 ≥ 3.

In particular, D contains at least one fiber F0 of π, since DF ≤ 2. Then, the

numerical classes of C0 and F0 span the two-dimensional vector space N(X). Thus,

D is connected, and we are done. �

2.5. Rationality and projectivity. We shall give some criteria for a normal

Moishezon surface to be projective or to be rational. We first note the following

well-known:

Fact 2.30. A non-singular Moishezon surface is projective (cf. [9], [26, Th. 3.1], [25,

Ch. 4, Th. 3.1; Ch. 5, 4.10]).

Lemma 2.31. Let X be a normal Moishezon surface.

(1) If H2(X,OX) = 0, then X is projective.

(2) If X has only rational singularities, then X is Q-factorial and projective.

(3) If H2(X,OX) = H1(M,OM ) = 0 for a non-singular projective surface M

birational to X, then X has only rational singularities.

(4) If X has only rational singularities and if H1(X,OX) = 0, then the numer-

ical equivalence relation coincides with the Q-linear equivalence relation for

Q-divisors on X.

Sketch of the proof. The assertion (1) is well known as Brenton’s criterion of pro-

jectivity (cf. [7, Prop. 7]). Note that this holds also in positive characteristic case

by [6]. For the assertion (2), the Q-factoriality of X has been proved in [49, §6,
Satz 1], [8, Satz 1.5], and [30, Th. (17.4)], etc. The projectivity of X in this case can

be proved by the same argument as in the proof of [3, Th. (2.3)] applied to the min-

imal resolution µ : M → X of singularities. We have another proof of projectivity

of X which uses the Q-factoriality of X and a strong version of Nakai–Moishezon

criterion of ampleness asserting that every numerically ample Cartier divisor is al-

ways ample (cf. Remark 2.12). The assertion (3) is shown by considering the Leray

spectral sequence

Ep,q2 = Hp(X,Rqµ∗OM ) ⇒ Ep+q = Hp+q(M,OM )

for a resolution of µ : M → X singularities, and the assertion (4) is reduced to the

non-singular case by this spectral sequence. �

Lemma 2.32. For a normal Moishezon surface X and a reduced divisor D on X,

assume that

(i) every irreducible component of D is a rational curve,

(ii) D is big, and

(iii) X has only rational singularities along D.

Then, H1(M,OM ) = 0 for the minimal resolution M of singularities of X. If

H0(X,OX(2KX)) = 0 in addition, then X is a projective rational surface with only

rational singularities.
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Proof. Let µ : M → X be the minimal resolution. Then, every irreducible com-

ponent of µ∗(D) is rational. In fact, the µ-exceptional components are ratio-

nal by (iii) and the non-exceptional components are rational by (i). Thus, ev-

ery irreducible component of µ∗(D) is mapped to a point by the Albanese map

α : M → Alb(M). In particular, µ∗(D)α∗(H) = 0 for any ample divisor H of

Alb(M). Then, α∗(H) ∼∼∼ 0 by the Hodge index theorem, since µ∗(D) is big (cf.

Remark 2.13). Therefore, α(M) = Alb(M) is a point, and hence H1(M,OM ) = 0.

Assume in addition that H0(X,OX(2KX)) = 0. Then, X is a projective sur-

face with only rational singularities by (1) and (3) of Lemma 2.31, since we have

H2(X,OX) ≃ H0(X,OX(KX))∨ = 0 and H1(M,OM ) = 0. Moreover, the canonical

injection H0(M,OM (2KM )) ⊂ H0(X,OX(2KX)) = 0 and the vanishing H1(M,OM )

= 0 imply that M is a rational surface, by Castelnuovo’s criterion. �

Proposition 2.33. Let X be a normal Moishezon surface and let π : X → T be

a P1-fibration to a non-singular projective curve T (here, a general fiber of π is

isomorphic to P1 (cf. Notation and conventions, 5)). Then, the following hold :

(1) The X is a projective surface with only rational singularities. In particular,

ρ̂(X) = ρ(X).

(2) The higher direct image sheaf Riπ∗OX is zero for any i > 0.

(3) Any curve contained in a fiber of π is isomorphic to P1.

(4) If a scheme-theoretic fiber F of π is irreducible and reduced, then π is

smooth along F .

(5) If an invertible sheaf L on X is π-numerically trivial (cf.Definition 2.14(1)),

then L is isomorphic to the pullback of an invertible sheaf on T .

(6) If any fiber of π is irreducible, then ρ(X) = 2.

(7) If F1, F2, . . . , Fk are the reducible fibers of π, then

ρ(X) = 2 +
∑k

i=1
(n(Fi)− 1).

Proof. (1) and (2): For a general fiber F , we have KXF = −2, since F ≃ P1.

Thus, H0(X,OX(KX)) ≃ H2(X,OX)∨ = 0, and X is projective by Lemma 2.31(1).

Let µ : M → X be the minimal resolution of singularities. Then, there is a proper

birational morphismM → Y to a P1-bundle Y over T , whereM → Y is a succession

of blowdowns of (−1)-curves. Hence, Ri(π◦µ)∗OM = 0 for any i > 0. By the Leray

spectral sequence for π and µ, we have R1π∗OX = 0 and π∗(R
1µ∗OM ) = 0. Note

that Riπ∗OX = 0 for i ≥ 2, since any fiber of π is one-dimensional. The vanishing

of π∗(R
1µ∗OM ) implies the vanishing of the skyscraper sheaf R1µ∗OM . Thus, X

has only rational singularities. The equality ρ̂(X) = ρ(X) follows from Remark 2.8

and Lemma 2.31(2).

(3) and (4): For any effective divisor G contained in a fiber of π, we have

H1(G,OG) = 0 by (1), since 0 = R1π∗OX → R1π∗OG is surjective. In particular,

pa(Γ) = 0 for any irreducible component Γ of any fiber of π; this proves (3). If a

scheme-theoretic fiber F is irreducible and reduced, then F ≃ P1, and π is smooth

along F by the flatness of π; this proves (4).

(5): We have deg(L|Γ) = 0 for any irreducible component Γ of any fiber of π.

Thus, µ∗L ≃ (π ◦ µ)∗M for an invertible sheaf M on T , since π ◦ µ is expressed
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as the composition of the succession M → Y of blowdowns of (−1)-curves and the

P1-bundle Y → T . Taking µ∗, we have an isomorphism L ≃ π∗M.

(6): Assume that every fiber of π is irreducible. For a fixed fiber F , let us consider

a homomorphism v : Pic(X) → Z defined by v(L) = deg(L|F ) for invertible sheaves
L on X. If F ′ is another fiber of π, then F ′ ∼∼∼ αF for some positive rational number

α. Thus, the kernel of v is just π∗ Pic(T ) by (5). The image of v is not zero, since

v(A) > 0 for an ample invertible sheaf A. Therefore, ρ(X) = 2.

(7): Let us choose an irreducible component Γi of Fi for each 1 ≤ i ≤ k.

Since Fi − Γi is negative-definite, we have the contraction morphism f : X → X

of
∑k
i=1(Fi − Γi) by Theorem 2.6. Then, X is also a normal projective surface

with only rational singularities by (1), since there is a P1-fibration π̄ : X → T with

π = π̄ ◦f . Moreover, ρ̂(X) = ρ(X) = 2 by (6). On the other hand, ρ(X)−ρ(X) =∑k
i=1(n(Fi)− 1) by Lemma 2.10. Thus, (7) follows, and we are done. �

Remark 2.34. In the situation of Proposition 2.33, if X is non-singular, then every

fiber is a simple normal crossing divisor. This well-known property is shown by the

vanishing R1π∗OX = 0 as follows. For arbitrary three irreducible components Γ,

Γ′, and Γ′′ of a given fiber, we have

H1(Γ,OX(−Γ′)|Γ) = H1(Γ,OX(−Γ′ − Γ′′)|Γ) = 0

by the vanishing H1(OG) = 0 for G = Γ+Γ′ and for G = Γ+Γ′ +Γ′′ (cf. the proof

of (3) above). This implies ΓΓ′ ≤ 1 and Γ ∩ Γ′ ∩ Γ′′ = ∅. Therefore, the fiber is a

simple normal crossing divisor.

3. Two-dimensional toric varieties and log-canonical pairs

In this section, we recall several properties on toric varieties and log-canonical

pairs in the 2-dimensional case. We recall in Section 3.1 some of well-known basics

on toric varieties, especially on toric surfaces. A toroidal singularity is a singularity

arising at a toric variety. This is defined in Section 3.2 with a few properties in

the surface case. The notion of log-canonical has appeared in the study of minimal

models of algebraic varieties. In Section 3.3, we discuss the definition and some

general properties of log-canonical pairs (X,B) for a normal surface X and an

effective Q-divisor B. When B is reduced, we have classification results on the

singularities of this log-canonical pair (X,B), which is explained in Section 3.4.

In Section 3.5, we classify the singularities of (X,B) along a compact irreducible

component C of B such that B is a reduced divisor on a normal surface X and

(X,B) is log-canonical along C with (KX +B)C ≤ 0.

3.1. Projective toric surfaces. We recall here some basic properties on toric

varieties, especially on toric surfaces. For details on the theory of toric varieties,

the reader refers to the books [24], [41], [12], etc.

An n-dimensional normal algebraic variety X is called a toric variety if there is

an action of the n-dimensional algebraic torus T = Gnm on X such that it has an

open orbit U which is isomorphic to T by the action. In other words, U ⊂ X is an

equivariant embedding of T. In particular, X is a rational variety. The T is called

the open torus of X. The complement D = X \U is a divisor on X, which is called
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the boundary divisor. By abuse of notation (cf. Convention 1.4), the pair (X,D) is

also called a toric variety. A two-dimensional toric variety is called a toric surface.

The toric variety is determined by the group

N = Homgroup(Gm,T)

of one-parameter subgroups of T and by a certain finite collection △, called a fan

in [41] and [12] (or a f.r.p.p. decomposition in [24]), of strictly convex rational

polyhedral cones in N ⊗Z R. We denote by TN(△) the toric variety defined by N

and △ (this is denoted by TN emb(△) in [41]). The group

M = Homgroup(T,Gm)

is called the character group of T. There is a natural non-singular bilinear form

〈 , 〉 : M×N → Z (cf. [24, Ch. 1, p. 2]). A one-dimensional cone of △ is expressed

as R≥0v for a primitive element v of N, i.e., N/Zv is torsion free. The cone R≥0v

corresponds to a prime divisor Γ on X = TN(△) which is the closure of an orbit of

T, and we have

ordΓ(m) = 〈m, v〉
for any function m ∈ M, where ordΓ(m) stands for the order of zeros or the minus

of the order of poles along Γ of the rational function m on X. Note that each

m ∈ M is regarded as a morphism U ≃ T → Gm.

For toric varieties X and Y , a morphism f : X → Y of schemes is called a

morphism of toric varieties (or a toric morphism) if f is equivariant with respect

to some homomorphism φ : TX → TY between the open tori TX and TY of X and

Y , respectively: This means symbolically that f(t · x) = φ(t) · f(x) for any x ∈ X

and t ∈ TX . The toric morphism f is also described by a homomorphism between

the groups of one-parameter subgroups of TX and TY and by an information of

fans.

Remark 3.1. For a given toric variety X with an open torus T, there exists a T-

equivariant open immersion X →֒ X̂ to a compact toric variety X̂ with the same

open torus T. This is a consequence of Sumihiro’s theorem [51, Th. 3] on equivariant

completion.

Example 3.2. Let X be an affine toric surface with a zero-dimensional orbit. Then,

X ≃ SpecC[σ∨ ∩M] for a convex cone σ = R≥0e1 + R≥0e2 of N⊗ R ≃ R2, where

e1 and e2 are primitive elements of N, (e1, e2) is a basis of N⊗ R,

σ∨ = {m ∈ M⊗ R | 〈m,x〉 ≥ 0 for any x ∈ σ},
and C[σ∨ ∩M] is the semi-group ring defined by the semi-group σ∨ ∩M, which is

finitely generated. Let Γi be the prime divisor associated with the ray R≥0ei for i =

1, 2. Then, Γ1 ∩Γ2 is a point O, which is the zero-dimensional orbit corresponding

to σ. By a suitable coordinate change, we may assume that there exist integers

n > q ≥ 0 with gcd(n, q) = 1 such that N = Ze2 + Zu for u := (1/n)(e1 + qe2).

If q = 0, then n = 1, X ≃ A2, and Γ1 and Γ2 are coordinate lines. Assume that

q > 0. Then, the singularity (X,O) is a cyclic quotient singularity. In fact, for the

submodule N0 = Ze1 + Ze2, the induced toric morphism

X0 = TN0
(σ) ≃ A2 → X = TN(σ)
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is regarded as the quotient map for the action of the cyclic group Z/nZ on A2 given

by (x, y) 7→ (ζx, ζqy) for an n-th primitive root ζ of unity and for a coordinate

(x, y) of A2. This (X,O) is called a cyclic quotient singularity of order n, or more

explicitly, a cyclic quotient singularity of type (n, q) (or type (1/n)(1, q) in some

literature). Note that this is a rational singularity. It is well known that the

minimal resolution µ : M → X of the cyclic quotient singularity of type (n, q) is

given by Hirzebruch–Jung’s method and this is described as a toric morphism (cf.

[24, Ch. I, §2, pp. 35–38]). For example, the inverse image µ−1(Γ1 ∪ Γ2) is a linear

chain of rational curves in the sense of Definition 4.1 in which the proper transforms

Γ′
1 and Γ′

2 of Γ1 and Γ2, respectively, in M are the end components of the chain.

Furthermore, the self-intersection number −bi of the i-th irreducible component Ci
of the linear chain µ−1(O) = C1 + C2 + · · · + Cl is determined by the continued

fraction
n

q
= [b1, b2, . . . , bl] = b1 −

1

[b2, . . . , bl]
= b1 −

1

b2 −
1

[b3, . . . , bl]

= · · · .

The dual graph of µ−1(Γ1 ∪ Γ2) is written as in

②
Γ′
2

✐
C1

✐
C2

✐
Cl

②
Γ′
1

where ✐(resp. ②) stands for the exceptional (resp. non-exceptional) component.

Example 3.3. Let X = TN(△) be a projective toric surface. Then, the fan △ is

determined by a collection (v1, . . . , vk) of non-zero elements of N ≃ Z⊕2 satisfying

the following conditions:

(i) Each vi is primitive in N, i.e., N/Zvi is torsion free.

(ii) The (vi, vi+1) is a basis of N ⊗ R for any 1 ≤ i ≤ k − 1 and the same for

(vk, v1).

(iii) We set σi := R≥0vi+R≥0vi+1 for 1 ≤ i ≤ k− 1, and σk = R≥0vk+R≥0v0.

Then:

• If j ≡ i+ 1 mod k, then σi ∩ σj = R≥0vj .

• If i− j mod k is not in {0, 1,−1}, then σi ∩ σj = {0}.
Here, the fan △ consists of σi, R≥0vj , and {0} for all i and j above. Let Γi be

the prime divisor associated with the one-dimensional cone R≥0vi. Then, Γi ≃ P1,

and the union D =
∑k
i=1 Γi is the boundary divisor. The two-dimensional cone σi

corresponds to the intersection point Γi ∩ Γi+1 for 1 ≤ i ≤ k − 1, and σk to the

point Γk∩Γ1. These points are the zero-dimensional orbits of T. As a consequence,

we see that D is a cyclic chain of rational curves in the sense of Definition 4.3

below. Moreover, by Example 3.2, X has only cyclic quotient singularities, and the

singularities are lying on SingD. In particular, X is Q-factorial.

Remark 3.4. Every compact toric surface is projective by Lemma 2.31(2), since it

has only rational singularities (cf. Example 3.2).

We list some facts on toric varieties of arbitrary dimension.
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Fact 3.5. (1) The toric variety X = TN(△) is compact if and only if the union

of the cones in △ coincides with N⊗Z R (cf. [41, Th. 1.11]).

(2) For any toric varietyX, there is a proper birational toric morphismM → X

giving a resolution of singularities of X (cf. [24, Ch. I, Th. 11]).

(3) For a toric variety X with the boundary divisor D, one has KX +D ∼ 0.

In fact, this is well known when X is non-singular (cf. [41, Cor. 3.3]). In

the general case, it is shown by taking push-forward for the open immersion

X \ SingX →֒ X.

The following is shown in [12, §3.4, p. 63, Proposition]:

Lemma 3.6. For a toric variety X = TN(△) with the boundary divisor D, there

is an exact sequence

(III-1) M
u−→ F(D)

clZD−−→ CL(X) → 0

for the class map clZD in Definition 2.24 and for the character group M = Hom(N,Z).

Here, an element of M is regarded as a semi-invariant rational function on X, and

the map u associates with m ∈ M the principal divisor div(m). The map u is

injective when the cones in △ generate the vector space N⊗ R.

Now, we return to the two-dimensional case. The projective toric surfaces are

described geometrically from some simple examples.

Example 3.7. (1) Let L = L1 + L2 + L3 be the union of three lines on the

projective plane P2 such that L1 ∩ L2 ∩ L3 = ∅. Then, (P2, L) is a toric

surface. One can show that any non-singular projective toric surface with

exactly three one-dimensional orbits is isomorphic to (P2, L).

(2) For the Hirzebruch surfaceXe = P(O⊕O(e)) of degree e ≥ 0 with the ruling

π : Xe → P1, the pair (Xe, D) is an example of projective toric surfaces for

the divisor

D := σ0 + σ∞ + F1 + F2

consisting of sections σ0 and σ∞ of π with σ2
0 = −e, σ2

∞ = e, and σ0 6=
σ∞, and of two distinct fibers F1 and F2 of π. One can show that any

non-singular projective toric surface with four one-dimensional orbits is

isomorphic to some (Xe, D) above.

(3) In (2) above, π : (Xe, D) → (P1, P1 + P2) is a toric morphism of toric

varieties, where Pi = π(Fi) for i = 1, 2.

(4) Let (X,D) be a non-singular projective toric surface and let f : Y → X be

the blowing up at a point P of SingD. Then, (Y,DY ) is a projective toric

surface for DY = f−1(D), and f is a toric morphism. In fact, the action of

the open torus of X naturally lifts to Y .

Lemma 3.8. Let X be a toric surface with boundary divisor D. Let g : X → Z be a

proper birational morphism to another normal surface Z such that the g-exceptional

locus is contained in D (Here, Z is not assumed to be a scheme). Then, Z is also

a toric surface having g∗(D) as a boundary divisor, and g is a toric morphism. If

X is compact, then X and Z are both projective.
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Proof. By Remark 3.1, we may assume that X is compact. Then, X is projec-

tive by Remark 3.4. Every irreducible component of D is the closure of an one-

dimensional orbit of the open torus T = X \D. Hence, the action of T descends to

Z. This implies that Z is a T-equivariant compactification of T ≃ Z \ g∗(D), and

g is T-equivariant. It remains to prove that Z is a projective scheme. Note that

g∗(D) 6= 0, since there is an ample divisor supported on D. Hence, H2(Z,OZ) =

H0(Z,OZ(KZ))
∨ = 0 by KZ + g∗(D) ∼ g∗(KX +D) ∼ 0 (cf. Fact 3.5(3)). Thus, Z

is a projective surface by Lemma 2.31(1). �

By Example 3.7 and Lemma 3.8, we have:

Proposition 3.9. (1) Any non-singular projective toric surface (X,D) is ob-

tained from (P2, L) or from (Xe, D) in Example 3.7 by a succession of

blowings up at nodes of the boundary divisors (cf. [41, Th. 1.28], [12, p. 43,

Prop.]).

(2) For a normal Moishezon surface X and a reduced divisor D, the pair (X,D)

is a projective toric surface if and only if X\D is non-singular and (M,DM )

is a projective toric surface for a minimal resolution µ : M → X of singu-

larities and for DM = µ−1(D). In this case, µ is a toric morphism.

By Lemma 3.6 or by Proposition 3.9, we have:

Lemma 3.10. Let (X,D) be a projective toric surface. Then, ρ(X) = ρ̂(X) =

r(D) = n(D)− 2. In particular, δ(X,D) = c(X,D) = 0.

Proof. We have ρ(X) = ρ̂(X) by Lemma 2.31 and Example 3.2. There are two

proofs of ρ̂(X) = r(D) = n(D) − 2. The first proof uses Lemma 3.6: By the

exact sequence (III-1), we have n(D) = ρ̂(X) = rankCL(X) and n(D) − r(D) =

rankM = 2. In the second proof, by Proposition 3.9 and by Lemma 2.27, we are

reduced to the case where (X,D) is isomorphic to (P2, L) or (Xe, D) in Example 3.7,

and in the case, the equalities hold trivially. �

3.2. Toroidal singularities.

Definition 3.11. Let X be a normal variety and B a reduced divisor.

(1) The pair (X,B) is said to be toroidal at a point P if X \ B ⊂ X is a

toroidal embedding at P in the sense of [24, Ch. II, §1]. By [4, Cor. (2.6)],

this is equivalent to the existence of an affine toric variety V and two étale

morphisms τ : U → X and θ : U → V with a point Q ∈ U lying over P such

that

• τ (resp. θ) is an étale neighborhood of P (resp. θ(Q)) in the sense of

Definition 3.12 below, and

• θ−1(T) = τ−1(X \B) for the open torus T of V .

(2) The pair (X,B) is said to be toroidal along a subset Z of X if (X,B) is

toroidal at each point of Z. If (X,B) is toroidal along X, then (X,B) is

said to be toroidal.

The notion of étale neighborhood mentioned above is defined as follows.

Definition 3.12 ([4, p. 27]). Let X be a scheme (or an algebraic space) and P a

point of X. An étale neighborhood of (X,P ) is defined as a pair (U , Q) of a scheme
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(or an algebraic space) U and a point Q ∈ U together with an étale morphism

τ : U → X such that P = τ(Q) and τ induces an isomorphism k(P ) ≃ k(Q) of

residue fields.

By the study of singular affine toric surfaces in Example 3.2 and by Fact 3.5(3),

we have:

Lemma 3.13. Let (X,B) be a pair of normal surface X and a reduced divisor B.

For a point P ∈ B, assume that (X,B) is toroidal at P . Then, KX +B is Cartier

at P , and one of the following holds :

(i) X is non-singular at P , and B is also non-singular at P ;

(ii) X is non-singular at P , and B is a normal crossing divisor at P with

P ∈ SingB;

(iii) (X,P ) is a cyclic quotient singularity of type (n, q) for some n > q > 0 with

gcd(n, q) = 1. Moreover, (X,P ) has a common étale neighborhood with

(TN(σ), O) for the toric surface (TN(σ),Γ1+Γ2) and the point O = Γ1∩Γ2

in Example 3.2.

Corollary 3.14. Let X be a normal surface and B a reduced divisor such that

(X,B) is toroidal. Let µ : M → X be the minimal resolution of singularities and

set BM = µ−1(B). Then, BM is a normal crossing divisor and KM + BM =

µ∗(KX +B). In particular, (X,B) is log-canonical (see Definition 3.16 below).

Proof. We may assume that (X,B) is a singular affine toric surface. Then, the

minimal resolution of X has been described in Example 3.2. Hence, (M,BM )

is toric and BM is a simple normal crossing divisor. By Fact 3.5(3), we have

KM + BM ∼ 0 and KX + B ∼ 0. Thus, KM + BM = µ∗(KX + B), and (X,B) is

log-canonical by Corollary 3.19. �

Remark 3.15. Let X be a normal surface and B a non-zero effective divisor such

that KX + B is Cartier along B. Then, B is Gorenstein and its dualizing sheaf

ωB is isomorphic to OX(KX + B)|B . In fact, the exact sequence 0 → OX(−B) →
OX → OB → 0 induces another exact sequence

0 → ωX → HomOX
(OX(−B), ωX) → ωB → 0,

which is isomorphic to

0 → OX(KX) → OX(KX +B) → OX(KX +B)|B → 0.

In particular, if (X,B) is toroidal along B, then B is Gorenstein.

3.3. Log-canonical pairs.

Definition 3.16. Let X be a normal surface and B an effective Q-divisor. For a

proper birational morphism µ : M → X from a non-singular surface M , we have an

equality

KM = µ∗(KX +B) +
∑

aiEi,

where Ei are the irreducible components of the union E of µ−1(SuppB) and the

µ-exceptional locus, ai ∈ Q, and µ∗ stands for the numerical pullback (cf. Defini-

tion 2.1). The pair (X,B) is said to be log-canonical (resp. log-terminal) if there

is a proper birational morphism µ above such that E is a normal crossing divisor

and that ai ≥ −1 (resp. ai > −1) for any i.
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Remark 3.17. (1) We can compare KM and µ∗(KX) by a rational two-form on

X and its pullback to M . Thus, we can write the equality as above, which

is not only a linear equivalence relation.

(2) The definition of log-canonical (resp. log-terminal) above does not depend

on the choice of µ : M → X with E being a normal crossing divisor. This

property is generalized to Lemma 3.18 below.

(3) The notion of log-canonical (resp. log-terminal) is étale local on X: For

an étale morphism U → X, if (X,B) is log-canonical (resp. log-terminal),

then so is (U , B|U ) for the pullback B|U of B. Conversely, if (U , B|U ) is

log-canonical (resp. log-terminal), then so is (U,B|U ) for the image U of

U → X.

(4) For a subset Z of X, we say that (X,B) is log-canonical (resp. log-terminal)

along Z if (U,B|U ) is log-canonical (resp. log-terminal) for some open neigh-

borhood U of Z: In case Z is a point P , we say that (X,B) is log-canonical

(resp. log-terminal) at P . By (3) above and by [4, Cor. (2.6)], the log-

canonicity (resp. log-terminality) of (X,B) at a point P depends only on

the completion ÔX,P of the local ring OX,P and on the pullback of B by

Spec ÔX,P → X.

(5) The notion of log-canonical (resp. log-terminal) for (X,B) is defined for

any dimension in case KX + B is Q-Cartier. In two-dimensional case, if

(X,B) is log-canonical in the sense of Definition 3.16, then KX + B also

Q-Cartier (cf. [22, Cor. 9.5]).

(6) The notion of log-terminal (resp. log-canonical) is introduced in [23]. The

log-terminal is called Kawamata log terminal (klt) in [28], [29] when the

boundary divisor B is not zero; instead another notion of log terminal is

introduced in [28], which is not useful in the study of singularities. Indeed,

it is not necessarily étale local and its definition does depend on the choice

of good non-singular models M of X.

The following useful lemma is not so mentioned in the literature on birational

geometry except in the case where f is a proper birational morphism. This is proved

implicitly in [21, Prop. 1.7] or [23, Lem. 0-2-12]. We shall give a proof by tracing

the argument there, which uses the logarithmic ramification formula (cf. [16, the

formula (R) in p. 180], [18, Th. 11.5]). The same argument of our proof works for

higher dimensional case in which KX +B is Q-Cartier.

Lemma 3.18. Let X be a normal surface and B an effective Q-divisor. Let f : Y →
X be a dominant morphism from a non-singular surface Y . Let G be the Q-divisor

on Y such that the ramification formula for f is equivalent to

KY = f∗(KX +B) +G.

Let G =
∑
γiGi be the irreducible decomposition. If (X,B) is log-terminal (resp.

log-canonical), then γi > −1 (resp. γi ≥ −1) for any i. The converse holds when

SuppG =
∑
Gi is a normal crossing divisor and f is proper surjective.

Proof. Let µ : M → X be a proper birational morphism from a non-singular surface

M and let ν : N → Y be a proper birational morphism from a non-singular surface
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N such that f ◦ ν = µ ◦ g for a morphism g : N →M , i.e., the diagram

N
ν−−−−→ Y

g

y
yf

M
µ−−−−→ X

is commutative, and that the following are satisfied:

• The union E of µ−1(SingX ∪ SuppB) and the µ-exceptional locus is a

simple normal crossing divisor.

• There is a normal crossing divisor F on N such that g−1(E) ⊂ F and that

N \ F → X is étale.

We have the logarithmic ramification formula (cf. [16, §4])
(III-2) KN + F = g∗(KM + E) +R

for g, in which R is an effective divisor supported on F . By considering the rami-

fication along E, we see that every irreducible component of R does not dominate

any irreducible component of E. Note that g∗E+R−F is the ramification divisor

for g. In particular, g∗E +R− F is effective and F = Supp(g∗E +R).

Let ∆ be a Q-divisor on M supported on E determined by

KM + E = µ∗(KX +B) + ∆,

where µ∗ denotes the numerical pullback. Note that (X,B) is log-canonical if and

only if ∆ is effective and that (X,B) is log-terminal if and only if ∆ is effective

and Supp∆ = E. Since KY = f∗(KX + B) + G is equivalent to the logarithmic

ramification formula (III-2), we have

G = ν∗(R− F + g∗∆).

Assume that (X,B) is log-canonical, i.e., ∆ is effective. Then, G+ν∗F is effective

for the reduced divisor ν∗F , which implies that G+Gred is effective, i.e., γi ≥ −1

for any i. Assume that (X,B) is log-terminal, i.e., ∆ is effective and Supp∆ = E.

Then, Supp(g∗∆ + R) = Supp(g∗E + R) = F , and it implies that G + Gred is

effective with Supp(G+Gred) = Gred: This is equivalent to that γi > −1 for any i.

Hence, the first assertion has been proved.

For the second assertion, we assume that Gred is normal crossing and that f is

proper surjective. In particular, g is surjective. Since ν−1(Gred) ⊂ F , we have the

logarithmic ramification formula

KN + F = ν∗(KY +Gred) +Rν ,

where Rν is an effective divisor. Note also that Rν+ν
∗Gred−F is effective, since Y

is non-singular, and that F ⊂ Supp(Rν + ν∗Gred). Comparing the formulas above,

we have

g∗∆+R = ν∗(G+Gred) +Rν .

If γi ≥ −1 for any i, i.e., G + Gred is effective, then g∗∆ + R is effective, and it

implies that ∆ is effective, since g is surjective and since all the common irreducible

components of R and g∗E are contracted to points by g. Thus, (X,B) is log-

canonical in this case. If γi > −1 for any i, i.e., G+Gred is effective with Supp(G+
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Gred) = Gred, then ∆ is effective and

F = Supp(g∗E +R) ⊃ Supp(g∗∆+R) = Supp(ν∗Gred +Rν) ⊃ F.

Hence, in this case, Supp∆ = E, and (X,B) is log-terminal. Thus, we are done. �

Corollary 3.19. Let τ : V → X be a proper surjective morphism of normal sur-

faces. Let D and ∆ be effective Q-divisors on V without common irreducible com-

ponents and let B be an effective Q-divisor on X such that the ramification formula

for τ is equivalent to:

KV +D = τ∗(KX +B) + ∆.

If (V,D) is log-canonical (resp. log-terminal), then so is (X,B). If ∆ = 0 and if

(X,B) is log-canonical (resp. log-terminal), then so is (V,D).

Proof. This is derived from Lemma 3.18 applied to Y → X for a proper birational

morphism Y → V from a certain non-singular surface Y . �

Remark. Corollary 3.19 is proved essentially in [29, Prop. 5.20(4)] in the case where

f is a finite morphism, which uses the logarithmic ramification formula only for

birational morphisms. The proof of [29, Prop. 5.20(4)] is sketchy and there are

hidden some arguments like taking Galois closure and equivariant partial resolution,

or flattening.

Corollary 3.20. Let X be a normal surface with an effective Q-divisor B. Let

g : X → X be a proper birational morphism to another normal surface X and set

B := g∗(B).

(1) If (X,B) is log-canonical and −(KX + B) is g-nef, then (X,B) is log-

canonical.

(2) For a subset Z of X, if (X,B) is log-canonical along Z, the g-exceptional

locus is contained in Z, and if −(KX + B) is nef on Z, then (X,B) is

log-canonical along g(Z).

Proof. It is enough to prove (1), since (2) is a consequence of (1) applied to the

proper birational morphism g−1(U) → U for an open neighborhood U of g(Z). Let

E be a g-exceptional Q-divisor determined by

KX +B = g∗(KX +B) + E.

Then, −E is g-nef, and it implies that E is effective by Lemma 2.2. Let ∆ be the

maximal effective Q-divisor such that B ≥ ∆ and E ≥ ∆, and set B′ := B−∆ and

E′ := E −∆. Then,

KX +B′ = g∗(KX +B) + E′.

Since (X,B) is log-canonical, (X ′, B′) is also log-canonical, and hence, (X,B) is

log-canonical by Corollary 3.19. �

3.4. Singularities on boundary curves for log-canonical surfaces. The an-

alytic germs of log-canonical pairs (X,B) of a normal surface X and a reduced

divisor B have been classified by Kawamata in [22, Theorem 9.6] by a geometric

construction. Alexeev gives the same classification in [1] by a numerical calculation.

Note that the case where B = 0 has been done by Sakai in [47, Appendix] by an-

other numerical calculation. The numerical classification is also treated implicitly

in [20, §2], [53, §3], and [52, §2]. As the classification in case B 6= 0, we have:
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Case (i): ② ✐ ✐ ②

Case (ii): ② ✐ ✐

Case (iii): ② ✐ ✐ ✐ −2

✐ −2

Figure 1. Dual graphs in Theorem 3.21

Theorem 3.21. Let X be a normal surface, B a reduced divisor on X, and P a

closed point of B. Then, the pair (X,B) is log-canonical at P if and only if there

is an étale neighborhood (U , Q) of (X,P ) satisfying one of the following conditions :

(i) B|U = B1+B2 for prime divisors B1, B2 with {Q} = B1∩B2, and (U , B|U )
is toroidal ;

(ii) B|U is non-singular, and there is another prime divisor B′ of U such that

B|U ∩B′ = {Q} and (U , B|U +B′) is toroidal ;

(iii) B|U is non-singular, and there exist a finite surjective morphism τ : U ′ → U
of degree two and prime divisors B′

1, B
′
2 on U ′ such that

• τ is étale outside Q,

• τ∗(B|U ) = B′
1 +B′

2, B
′
1 ∩B′

2 = τ−1(Q) = {Q′} for a point Q′, and

• (U ′, B′
1 +B′

2) is toroidal.

As a consequence, when P ∈ SingX, the dual graph of the exceptional divisor on

the minimal resolution of X around P is embedded in the graphs in Figure 1 for

each case. In the graphs, ❣stands for the exceptional components, and ✇stands

for the proper transforms of irreducible components of B; The −2 indicates that the

corresponding curve is a (−2)-curve.

Definition 3.22. In the situation of Theorem 3.21, we say that the point P is of

type T (resp. P, resp. D) for (X,B) if the condition (i) (resp. (ii), resp. (iii)) is

satisfied.

As a consequence of Theorem 3.21, we have:

Corollary. Let X be a normal surface, B a reduced divisor, and P a point of B.

Then, the following conditions are equivalent to each other :

(i) (X,B) is toroidal at P , and P ∈ SingB;

(ii) (X,B) is log-canonical at P , and P is of type T for (X,B);

(iii) (X,B) is log-canonical at P , and P ∈ SingB.

Remark. For a point P ∈ B, it is of type P for (X,B) if and only if (X,B) is purely

log terminal (plt) at P in the sense of [28], [29].
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Using Theorem 3.21 and Example 3.2, it is an exercise to prove:

Corollary 3.23. Let X, B, and P be as in Theorem 3.21. Let r be the smallest

positive integer such that r(KX +B) is Cartier at P .

(1) If P is of type P and P ∈ SingX, then (X,P ) is a cyclic quotient singularity

of order r > 1.

(2) If P is of type D, then r = 2, and (X,P ) is either a cyclic quotient singu-

larity with the dual graph of type A3 or a quotient singularity by a binary

dihedral group.

(3) Assume that P ∈ B ∩ SingX. Then, r = 1 if and only if P ∈ SingB, and

it is also equivalent to that P is of type T .

As a consequence of (1)–(3) above, we have:

Corollary 3.24. Assume that (X,B) is log canonical along an irreducible compo-

nent C of B. Then, the following conditions are mutually equivalent :

• KX +B is Cartier along C;

• C ∩ SingX ⊂ SingB;

• (X,B) is toroidal along C;

• there is no singular points of X on C which are of type P or D for (X,B).

Lemma 3.25. Let X be a normal surface with a unique singular point P and B

a reduced divisor containing P . Assume that (X,B) is log-canonical at P . For the

minimal resolution µ : M → X of singularities, let ∆ be the µ-exceptional Q-divisor

defined by

KM +B′ = µ∗(KX +B)−∆,

where B′ is the proper transform of B in M . Then, ∆ is effective, and moreover :

• If P is of type P for (X,B), then ∆B′ = 1 − 1/r for the smallest positive

integer r such that r(KX +B) is Cartier at P (cf. Corollary 3.23(1)).

• If P is of type D for (X,B), then ∆B′ = 1.

Sketch of Proof. The µ-exceptional locus is a simple normal crossing divisor con-

sisting of non-singular rational curves, and the dual graph is the Dynkin diagram

Ak or Dl for some k or l (cf. Theorem 3.21). The Q-divisor ∆ is effective, since

−∆ is µ-nef, and it is an easy exercise to calculate the irreducible decomposition

∆ =
∑
δi∆i by the description of (X,P ) in Theorem 3.21. As a result, we see that

B′ intersects Supp∆ transversally, and B′∩Supp∆ is a point of an end component

of ∆, say ∆1, where the multiplicity δ1 = 1 − 1/r in case of type P and δ1 = 1 in

case of type D. �

Definition 3.26. Let (X,B) be a log-canonical pair of a normal surface X and a

reduced divisor B. We define D(X,B) to be the set of points of B which are of

type D for (X,B). We also define P(X,B) to be the set of points of B which are

singular points of X and are of type P for (X,B). Moreover, for an integer r > 1,

we set Pr(X,B) to be the subset of P(X,B) consisting of points P such that r

equals the order of the cyclic quotient singularities (X,P ) (cf. Corollary 3.23(1)).



33

Remark. For (X,B) above, one has

P(X,B) =
⊔

r>1
Pr(X,B),

(B ∩ SingX) \ SingB = P(X,B) ⊔ D(X,B).

3.5. On compact boundary curves of log-canonical pairs. For a normal sur-

face X and a reduced divisor D, we shall classify the singularities on a compact

irreducible component C of D such that (KX+D)C ≤ 0 and (X,D) is log-canonical

along C.

Lemma 3.27. Let X be a normal surface and D a reduced divisor such that (X,D)

is log-canonical and X\D is non-singular. Let µ : M → X be the minimal resolution

of singularities and set D♭
M to be the union of the proper transform D′ of D on M

and the µ-exceptional divisors lying over SingD. Then,

(III-3) KM +D♭
M = µ∗(KX +D)−∆

for a µ-exceptional effective Q-divisor ∆ lying over P(X,D)∪D(X,D). Moreover,

the following equalities hold for any compact irreducible component C of D and its

proper transform C ′ in M :

(D♭
M − C ′)C ′ = ♯C ∩ (D − C) + 2nC ,(III-4)

∆C ′ = νC(D) +
∑

r>1

r − 1

r
νC(P, r).(III-5)

Here, nC is the number of nodes of C \ (D − C) contained in SingX,

νC(D) := ♯C ∩ D(X,D), and νC(P, r) := ♯C ∩ Pr(X,D).

Proof. We define ∆ by the equality (III-3). First, we shall prove that ∆ is effective

with µ(Supp∆) ⊂ P(X,D)∪D(X,D) and prove (III-5). Let P be a singular point

of X. Then, P ∈ D. If P ∈ SingD, then (X,D) is toroidal at P by Theorem 3.21,

and µ−1(P ) ∩ Supp∆ = 0 by Corollary 3.14. If P 6∈ SingD, then P is of type P
or D for (X,D). In this case, by Lemma 3.25, ∆ is effective on a neighborhood of

µ−1(P ), and ∆C ′ = 1 − 1/r (resp. ∆C ′ = 1) if P is of type P (resp. D), where

r equals the order of the cyclic quotient singularity (X,P ) in case P ∈ P(X,D).

Therefore, ∆ is effective, µ(Supp∆) ⊂ P(X,D)∪D(X,D), and the equality (III-5)

holds.

Next, we shall prove (III-4). Let Q be an arbitrary point in C ∩ SingD. Then,

(X,D) is toroidal at Q, and it is well known (cf. Corollary 3.14 above) that µ−1(Q)

for the minimal resolution µ is a union of non-singular rational curves whose dual

graph is the Dynkin diagram Ak for some k (or a linear chain of rational curves

in the sense of Definition 4.1 below) and that µ−1(Q) intersects C ′ transversely

at end components. Thus, C ′ ∩ µ−1(Q) consists of one point (resp. two points) if

Q ∈ C ∩ (D − C) (resp. Q is a node of C \ (D − C)). This observation on µ−1(Q)

implies the equality (III-4). �

Proposition 3.28. Let X be a normal surface and let D be a reduced divisor on X.

Let C be a compact irreducible component of D such that (X,D) is log-canonical

along C and (KX +D)C ≤ 0. Then, one of the following eight cases occurs :

(A) C is an elliptic curve and C ∩ (D − C) = C ∩ SingX = ∅; In this case,

KX +D is Cartier along C and OX(KX +D)|C ≃ OC .
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(B) C is a nodal rational curve with one node, C∩(D−C) = ∅, and C∩SingX ⊂
SingC; In this case, KX+D is Cartier along C and OX(KX+D)|C ≃ OC .

(C) C ≃ P1, ♯C ∩ (D − C) = 2, and C ∩ SingX ⊂ C ∩ (D − C); In this case,

KX +D is Cartier along C and OX(KX +D)|C ≃ OC .

(D) C ≃ P1 and C ∩ (D − C) = ∅; In this case, −2 ≤ (KX +D)C ≤ 0.

(E) C ≃ P1, ♯C ∩ (D − C) = 1, and C ∩ SingX ⊂ C ∩ (D − C); In this case,

KX +D is Cartier along C and (KX +D)C = −1.

(F) C ≃ P1, ♯C∩(D−C) = 1, ♯C∩P(X,D) = 1, and C∩D(X,D) = ∅; In this

case, r(KX + D) is Cartier along C for the order r of the cyclic quotient

singular point in C ∩ P(X,D), and (KX +D)C = −1/r.

(G) C ≃ P1, ♯C∩(D−C) = 1, ♯C∩P(X,D) = 2, and C∩D(X,D) = ∅; In this

case, the points in C ∩P(X,D) are A1-singularities, 2(KX +D) is Cartier

along C, KX +D is not Cartier at C ∩ P(X,D), and (KX +D)C = 0.

(H) C ≃ P1, ♯C∩(D−C) = 1, C∩P(X,D) = ∅, and ♯C∩D(X,D) = 1; In this

case, 2(KX+D) is Cartier along C, KX+D is not Cartier at C∩D(X,D),

and (KX +D)C = 0.

Proof. We may assume that X \ D is non-singular. Let µ : M → X, D♭
M , and ∆

be as in Lemma 3.27. Then, we have

0 ≥ (KX +D)C = (KM +D♭
M )C ′ +∆C ′(III-6)

= 2pa(C
′)− 2 + (D♭

M − C ′)C ′ +∆C ′ ≥ 2pa(C
′)− 2,

from (III-3) in Lemma 3.27, since ∆ is effective. In particular, pa(C
′) ≤ 1. Assume

that pa(C
′) = 1. Then, C ∩ (D − C) = C ∩ SingX = ∅ by (III-4) in Lemma 3.27.

Consequently, C ≃ C ′ is an elliptic curve or a nodal rational curve, and we have

OX(KX +D)|C ≃ ωC ≃ OC by adjunction. Thus, we have the case (A) or (B).

Therefore, we may assume that pa(C
′) = 0, i.e., C ′ ≃ P1. Then, by (III-6), we

have (D♭
M−C ′)C ′+∆C ′ ≤ 2. Assume that (D♭

M−C ′)C ′ = 2. Then, (KX+D)C =

∆C ′ = 0 by (III-6). In particular, KX +D is Cartier along C, and C ∩ SingX ⊂
SingD by (III-5) in Lemma 3.27 and by Corollary 3.24. Here, if C is non-singular,

then C ≃ P1, and ♯C ∩ (D−C) = (D♭
M −C ′)C ′ = 2 by (III-4): Thus, the case (C)

occurs. Note that in this case, we have OX(KX +D)|C ≃ OC by (KX +D)C = 0.

If C is singular, then C is a nodal rational curve with one node and C∩(D−C) = ∅
by (III-4); moreover, C ∩ SingX ⊂ SingC by (III-5), since ∆C ′ = 0: Thus, the

case (B) occurs, where we have OX(KX +D)|C ≃ ωC ≃ OC by Remark 3.15.

For the rest, we may assume that (D♭
M − C ′)C ′ ≤ 1 and C ′ ≃ P1. Then,

♯C ∩ (D − C) ≤ 1 and C ≃ C ′ ≃ P1 by (III-4). If C ∩ (D − C) = ∅, then the case

(D) occurs, and we have −2 ≤ (KX +D)C ≤ 0 by (III-6). Thus, we may assume

that ♯C ∩ (D − C) = 1. Then, (D♭
M − C ′)C ′ = 1 by (III-4), and

(III-7) 0 ≥ (KX +D)C = ∆C ′ − 1 ≥ −1

by (III-6). If ∆C ′ = 0, then C∩SingX ⊂ C∩(D−C) by (III-5) and (KX+D)C =

−1: Thus, we have the case (E). The remaining cases are divided into the cases

(F)–(H) by (III-5) and (III-7). In fact, if C ∩D(X,D) 6= ∅ (resp. ♯C ∩P(X,D) = 1,

resp. ♯C ∩ P(X,D) ≥ 2), we have the case (H) (resp. (F), resp. (G)), by (III-5).

Therefore, one of the cases (A)–(H) occurs, and we are done. �
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4. Key concepts

In this section, we prepare some concepts playing important roles for proving

Theorems 1.3, 1.5, 1.6, 1.7, etc. The notions of linear and cyclic chains of rational

curves are introduced in Section 4.1, where, as applications, we can prove some

results on log-canonical surfaces (X,D) with reduced divisor D such that −(KX +

D) is nef. There is also proved a result on c(X,D) for a linear (or cyclic) chain

D of rational curves. The structure of double-covers étale in codimension one is

explained in Section 4.2, and as an application, we obtain a result on the structure

of a log-canonical surface (X,D) such that D is a linear chain of rational curves

and that 2(KX + D) ∼ 0. The notion of toroidal blowing up is introduced in

Section 4.3, and it is proved that a toroidal blowing up is étale locally a toric

birational morphism. We also prove a result on the existence of a toroidal blowing

up and a fibration to P1 for a log-canonical surface (X,D) with c(X,D) < 2 and

H1(X,OX) = 0. The notion of tangential blowing up is introduced in Section 4.4

and a few properties are mentioned.

4.1. Linear and cyclic chains of rational curves.

Definition 4.1. Let D be a compact non-zero connected reduced divisor on a

normal surfaceX. IfD =
∑k
i=1 Ci for irreducible components C1, . . . , Ck satisfying

the following conditions, then D is called a linear chain of rational curves :

(i) Each irreducible component Ci is a non-singular rational curve.

(ii) If k ≥ 2, then Ci∩Cj = ∅ for |i−j| > 1 and ♯Ci∩Ci+1 = 1 for 1 ≤ i ≤ k−1.

In other words, D is a union of non-singular rational curves whose dual graph is

the Dynkin diagram Ak for some k ≥ 1. The components C1 and Ck above are

called the end components of D. The union of non-end component is denoted by

D♮, i.e., D♮ =
∑

1<i<k Ci.

Remark 4.2. The linear chainD of rational curves above has the following properties

when (X,D) is log-canonical along D:

• D is Gorenstein and pa(D) = 0;

• Pic(D) ≃ ⊕k
i=1 Pic(Ci) ≃ Z⊕k;

• IfD is reducible, i.e., if k > 1, then ωD|C ≃ OP1(−1) for any end component

C, and ωD|D♮ ≃ OD♮ , where ωD stands for the dualizing sheaf.

In fact, by Theorem 3.21(i), (X,D) is toroidal at any point of D, and hence, D is

locally isomorphic to a normal crossing divisor on a non-singular surface. Therefore,

we have the properties above by the configuration of the irreducible components Ci
of D, and by [3, Th. (1.7)].

Definition 4.3. A compact non-zero connected reduced divisor D on a normal

surface X is called a cyclic chain of rational curves if it satisfies the following

conditions:

(i) Every irreducible component of D is a rational curve.

(ii) If D is irreducible, then D is a nodal rational curve with pa(D) = 1.

(iii) If D is reducible, then any irreducible component C of D is non-singular

and ♯(D − C) ∩ C = 2.
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Remark 4.4. Let D be a cyclic chain of rational curves and let l be the number

of irreducible components of D. By Theorem 3.21(i) and by the configuration of

the irreducible components, we have the following properties when (X,D) is log-

canonical along D:

• The D is Gorenstein, pa(D) = 1, and ωD ≃ OD.

• If l = 2, then D = C1 +C2 for two non-singular rational curves C1 and C2

intersecting with each other at two distinct points.

• If l ≥ 3, then the dual graph of D forms a cycle, i.e., we can write

D =
∑

i∈Z/lZ
Ci

for non-singular rational curves Ci such that Ci∩Cj = ∅ for j 6∈ {i−1, i, i+

1} and ♯Ci ∩ Cj = 1 for j ∈ {i− 1, i+ 1}.
• The number l coincides with the topological Euler number e(D).

Lemma 4.5. Let X be a normal surface and let D be a compact non-zero connected

reduced divisor on X such that

• (X,D) is log-canonical along D, and

• −(KX +D) is nef on D (cf. Definition 2.14(2)), i.e., (KX +D)C ≤ 0 for

any irreducible component C of D.

Then, D is an elliptic curve, a linear chain of rational curves, or a cyclic chain of

rational curves, and the following hold :

(1) If D is an elliptic curve, then D ∩ SingX = ∅ and OX(KX +D)|D ≃ OD.

(2) If D is a cyclic chain of rational curves, then KX +D is Cartier along D

and OX(KX +D)|D ≃ OD.

(3) Assume that D is a reducible linear chain of rational curves. Then, KX+D

is Cartier along D♮ ∪ SingD, and

OX(KX +D)|D♮ ≃ OD♮ ,

where D♮ stands for the union of non-end components of D.

Proof. We shall consider the eight cases (A)–(H) of Proposition 3.28 for each ir-

reducible component of D. Assume that an irreducible component C of D is not

rational. Then, C is in the case (A). Here, D = C, since D is connected. Hence, D

is an elliptic curve, D ∩ SingX = ∅, and OX(KX +D)|D ≃ OD. Assume next that

an irreducible component C of D is singular. Then, C is in the case (B). Here,

D = C, since D is connected. Hence, D is a nodal rational curve with one node,

i.e., an irreducible cyclic chain of rational curve, KX +D is Cartier along D, and

OX(KX +D)|D ≃ OD.

Therefore, by Proposition 3.28, we may assume that every irreducible component

C is isomorphic to P1, and ♯C ∩ (D − C) ≤ 2 for any C. Then, D is a linear chain

or a cyclic chain of rational curves.

Assume that D is a reducible cyclic chain of rational curves. Then, every irre-

ducible component C of D belongs to the case (C). In particular, KX+D is Cartier

along D. Moreover, OX(KX +D)|D ≃ ωD ≃ OD by Remarks 3.15 and 4.4.

Assume finally that D is a reducible linear chain of rational curves. We know

that KX+D is Cartier along SingD (cf. Corollary 3.23(3)). Hence, we may assume

that D♮ 6= 0, i.e., n(D) ≥ 3. Then, every irreducible component C of D♮ belongs
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to the case (C), and consequently, KX + D is Cartier along D♮, and KX + D is

numerically trivial on D♮ (cf. Definition 2.14(2)). Since D♮ is also a linear chain of

rational curves, Pic(D♮) is the direct sum of Pic(C) for all C ⊂ D♮ by Remark 4.2,

and it implies that OX(KX +D)|D♮ ≃ OD♮ . Thus, we are done. �

Corollary 4.6. Let D be a compact non-zero connected reduced divisor on a normal

surface X such that (X,D) is log-canonical along D and KX +D is Cartier along

D. Then, the following three conditions are mutually equivalent :

(i) OX(KX +D)|D ≃ OD;

(ii) (KX +D)C = 0 for any irreducible component C of D;

(iii) D is either an elliptic curve or a cyclic chain of rational curves.

Proof. If (ii) holds, then every irreducible component C of D satisfies one of the

conditions (A), (B), (C) of Proposition 3.28, since KX + D is Cartier along D.

Thus, we have (ii) ⇒ (iii) as in the proof of Lemma 4.5. The implication (i) ⇒ (ii)

is trivial, and the implication (iii) ⇒ (i) follows from Remarks 3.15 and 4.4. �

Lemma 4.7. Let X be a normal Moishezon surface with a reduced divisor D such

that

• (X,D) is log-canonical along D,

• −(KX +D) is nef on D,

• D is connected and big, and

• D is not an elliptic curve.

Then, D is a linear chain or a cyclic chain of rational curves, and X is a projective

rational surface with only rational singularities. In particular, ρ̂(X) = ρ(X). If D

is a cyclic chain of rational curves, then there is an effective divisor G such that

G ∼ KX + D, D ∩ SuppG = ∅, and that the intersection matrix of G is negative

definite if G 6= 0.

Proof. The divisor D is a linear chain or a cyclic chain of rational curves by

Lemma 4.5. We have H1(M,OM ) = 0 for a non-singular projective surface M bira-

tional toX by Lemma 2.32, since the big divisorD consists of rational curves andX

has only rational singularities on D by Theorem 3.21. In particular, H1(X,OX) =

H1(X,OX(KX)) = 0. On the other hand, KX is not pseudo-effective. In fact,

for the Zariski-decomposition D = P + N of D (cf. [54, Th. 7.7], [10, Th. (1.12)],

[44, Cor. (7.5)]), the positive part P is nef and big, and KXP < (KX +D)P ≤ 0

by SuppP ⊂ D. Thus, X is a rational surface with only rational singularities by

Lemma 2.32. Then, ρ̂(X) = ρ(X) by Remark 2.8 and Lemma 2.31(2).

Assume that D is a cyclic chain of rational curves. Then, we have an exact

sequence

0 → OX(KX) → OX(KX +D) → OX(KX +D)|D ≃ OD → 0

by Lemma 4.5 (cf. Remark 3.15). Since H1(X,OX(KX)) = 0, we can find an

effective divisor G such that G ∼ KX +D and D∩SuppG = ∅. Here, G is negative

definite by the Hodge index theorem, since GP = 0. Thus, we are done. �

Remark. In Lemma 4.7, if G = 0, then (X,D) is log-canonical, since X \ D has

only rational Gorenstein singularities by KX +D ∼ 0.
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Proposition 4.8. Let X be a normal Moishezon surface and D a reduced divisor

on X.

(1) If c(X,D) ≤ 1 and if D is connected, then D is big.

(2) If D is a linear chain of rational curves, then c(X,D) ≥ 1.

(3) If D is a cyclic chain of rational curves, then c(X,D) ≥ 0.

(4) If D is a cyclic chain of rational curves with c(X,D) = 0 and if −(KX+D)

is nef, then δ(X,D) = 0.

Proof. We may assume that c(X,D) ≤ 1 for the proof. By contracting negative

components of D, we have a birational morphism g : X → X to another Moishezon

surface X such that

• the g-exceptional locus is contained in D, and

• every irreducible component of D := g∗(D) is nef.

Then, δ(X,D) = δ(X,D) and c(X,D) = c(X,D) by Lemma 2.27. In particular,

D is a reducible non-zero divisor, since we have n(D) ≥ 2 by

n(D) = r(D) + 2− c(X,D) ≥ r(D) + 1.

IfD is connected, then so isD, and nowD
2
> 0 since it is reducible. Therefore, D =

g−1(D) is also big. This proves (1). If D is a linear (resp. cyclic) chain of rational

curves, then so is D. If −(KX + D) is nef, then −(KX + D) = g∗(−(KX + D))

is also nef. Hence, in order to prove the remaining assertions, by replacing (X,D)

with (X,D), we may assume that every irreducible component of D is nef.

Assume that D is a linear chain of rational curves. Let E and E′ be the end

components of D. If n(D) ≥ 4, then E ∩ E′ = ∅ and there is an irreducible

component C of D such that C ∩ E 6= ∅ and C ∩ E′ = ∅. Then, C + E is nef

and big, and (C + D)E′ = 0. Hence, E′2 < 0 by the Hodge index theorem, and

this contradicts that E′ is nef. Therefore, n(D) ≤ 3. As a consequence, we have

c(X,D) ≥ r(D) − 1. If c(X,D) ≤ 0, then r(D) = 1 and n(D) = 3. However,

if n(D) = 3, then EC > 0, E′C > 0, and EE′ = 0 for the other irreducible

component C: This contradicts: r(D) = 1. Therefore, c(X,D) ≥ 1, and we have

proved (2).

Assume next that D is a cyclic chain of rational curves. If n(D) ≥ 5, then we

can find three irreducible components C0, C2, C3 of D such that C0∩ (C2∪C3) = ∅
and C2 ∩ C3 6= ∅. Then, C2 + C3 is nef and big, and we have C2

0 < 0 by the

Hodge index theorem applied to C0(C2 +C3) = 0. This contradicts that C0 is nef.

Thus, n(D) ≤ 4. As a consequence, we have c(X,D) ≥ r(D) − 2. In particular,

c(X,D) ≥ 0 when r(D) ≥ 2. If r(D) = 1, then n(D) ≤ 3, since any two irreducible

components of D intersect with each other. Thus, c(X,D) = 3− n(D) ≥ 0 in this

case. Therefore, c(X,D) ≥ 0 holds in any case, and we have proved (3).

For the proof of (4), we assume that c(X,D) = 0 and that −(KX + D) is

nef. Note that KX is not pseudo-effective by KXD < (KX +D)D ≤ 0, since the

nef divisor D is big by (1). Therefore, X is projective by Lemma 2.31(1). Since

4 ≥ n(D) = r(D) + 2 ≥ 3, one of the following two cases occurs:

(I) r(D) = 1 and n(D) = 3.

(II) r(D) = 2 and n(D) = 4.
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There is an extremal ray R on NE(X) such that DR > 0 and KXR < 0 by

Corollary 2.20(2), since (−D) − KX is nef and −D is not nef. We consider the

contraction morphism contR associated with R (cf. Theorem 2.21). If contR is the

trivial morphism to a point, then ρ̂(X) = 1, and it implies that ρ̂(X) = r(D) = 1

and δ(X,D) = c(X,D) = 0.

Assume that contR is a fibration π : X → T to a non-singular projective curve

T . Then, (KX + D)F ≤ 0 and DF > 0 for a general fiber F of π. This implies

that ρ̂(X) = 2, F ≃ P1, and 1 ≤ DF ≤ 2. In the case (I), since r(D) = 1, every

irreducible component of D dominates T , and thus n(D) ≤ DF = 2. This is a

contradiction. In the case (II), r(D) = ρ̂(X) = 2, and hence δ(X,D) = c(X,D) =

0.

Finally, we shall derive a contradiction assuming that contR is a birational mor-

phism f : X → X ′. The f is just the contraction of a negative curve Γ on X such

that R = R≥0 cl(Γ). Here, DΓ > 0 and (KX + D)Γ < 0. Since Γ 6⊂ D, we have

♯D ∩ Γ = 1 by Lemma 2.18. Let C0 be an irreducible component of D such that

D ∩ Γ = C0 ∩ Γ. Since n(D) ≥ 3, we have an irreducible component C1 such that

C1 ∩ Γ = ∅; this implies that r(D) ≥ 3, and hence, the case (I) does not occur. In

the case (II), since n(D) = 4, there is an irreducible component C2 of D such that

C0∩C2 = ∅. Then, C2
∼∼∼ rC0 for some r > 0 by the Hodge index theorem, since C0

and C2 are nef with C0C2 = 0. Then, C2Γ > 0, but this contradicts D∩Γ = C0∩Γ.

Thus, we are done. �

4.2. Double-covers étale in codimension one. We recall some basic properties

on double-covers étale in codimension one, and apply them to certain log-canonical

pairs (X,D) of dimension two such that 2(KX +D) ∼ 0.

Definition 4.9. Let X be a scheme with a quasi-coherent sheaf L. For a homomor-

phism σ : L⊗2 → OX which factors through the symmetric tensor product S2(L),
let R = R(L, σ) be the OX -algebra with OX ⊕L as an underlying OX -module and

with the multiplication map R⊗OX
R → R given by

(a, x)(b, y) = (ab+ σ(x⊗ y), ay + bx)

for local sections a and b of OX and local sections x and y of L. We define V =

V (L, σ) to be the scheme SpecX R(L, σ) finite over X, and set τ : V → X to be

the structure morphism. We denote by ι the automorphism of V over X defined

by (a, x) 7→ (a,−x).
It is an exercise to prove the following:

Lemma 4.10. In the situation above, let η : τ∗L → OV be the homomorphism

corresponding to the inclusion L ⊂ OX ⊕ L ≃ τ∗OV by the adjoint property of

τ∗ and τ∗. Then, η⊗2 = τ∗(σ). Moreover, for a given morphism f : Y → X of

schemes, there is a functorial bijection

HomX(Y, V ) → {ζ ∈ HomOY
(f∗L,OY ) | f∗(σ) = ζ⊗2}

which associates the homomorphism g∗(η) : f∗L ≃ g∗(τ∗L) → OY with a morphism

g : Y → V over X.

In the functorial bijection above, the automorphism ι : V → V corresponds to

−η. Thus, we have:
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Corollary 4.11. Assume that 2 is a regular element of H0(X,OX). Then, ι is an

involution, i.e., an automorphism of order two. Let L′ be another quasi-coherent

sheaf and σ′ : L′⊗2 → OX a homomorphism factoring through S2(L′). Then, giving

a morphism V (L, σ) → V (L′, σ′) over X which is equivariant under the involutions

ι, is equivalent to giving a homomorphism u : L′ → L such that σ′ = σ ◦ u⊗2. In

particular, V (L, σ) ≃ V (L, σ ◦ ε⊗2) for any automorphism ε : L → L.

Corollary 4.12. In the situation of Lemma 4.10, for a given quasi-coherent sheaf

M and a given homomorphism θ : τ∗M → OV , there exist homomorphisms ϕ : M
→ OX and ψ : M → L such that

θ = τ∗(ϕ) + η ◦ τ∗(ψ).

Proof. Let θ̃ : M → τ∗OV ≃ OX ⊕ L be the homomorphism corresponding to θ

by the adjoint property of τ∗ and τ∗. Let ϕ : M → OX (resp. ψ : M → L) be the

composition of θ̃ with the first (resp. second) projection. Then, ϕ and ψ satisfy the

equality above. In fact, by the adjoint property of τ∗ and τ∗, the homomorphism

τ∗(ϕ) (resp. η ◦ τ∗(ψ)) corresponds to the composition of ϕ (resp. ψ) with the

natural inclusion OX ⊂ OX ⊕ L (resp. L ⊂ OX ⊕ L). �

Lemma 4.13. In the situation of Definition 4.9, assume that L is an invertible

sheaf and that any residual characteristic of X is not two. Then, for a homomor-

phism σ : L⊗2 → OX , it is an isomorphism if and only if V (L, σ) is étale over

X.

Proof. Since OX ⊕L is locally free of rank two, τ : V → X is a flat finite morphism

of degree two. By base change, we may assume that X = SpecA for a local

ring A. Then, L ≃ OX , and σ is considered as an element of A. Thus, V ≃
SpecA[x]/(x2 − σ). The A-algebra A[x]/(x2 − σ) is étale over A if and only if σ is

a unit element, since 2 is invertible in A. �

In what follows in Section 4.2, we assume X to be a normal variety over C, i.e.,

a normal integral separated scheme of finite type over C (It is possible to treat the

case of algebraic spaces, but it is enough to consider only the case of schemes for

our purpose).

Definition. By a double-cover of a normal variety X, we mean a finite surjective

morphism τ : V → X of degree two from a normal variety V .

Remark. By the purity of branch locus, the double-cover τ is étale in codimension

one if and only if V is étale over the non-singular locus Xreg of X.

For a normal variety X and for a coherent torsion-free sheaf L of rank one, any

homomorphism σ : L⊗2 → OX factors through S2(L), since the image of σ is zero

or torsion-free of rank one. Thus, we can consider V (L, σ) of Definition 4.9 for such

L and σ. Lemma 4.14 below gives a criterion for V (L, σ) to be a double-cover of

X étale in codimension one.

Lemma 4.14. Let X be a normal variety (which is a scheme) and let (L, σ) be a

pair of a reflexive sheaf L of rank one and a homomorphism σ : L⊗2 → OX . We

set V = V (L, σ) and consider the following two conditions for (L, σ):
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(i) There exist no homomorphism u : L → OX such that σ = u⊗2.

(ii) The σ induces an isomorphism L[2] ≃ OX from the double-dual L[2] =

(L⊗2)∨∨. In other words, σ is regarded as a nowhere vanishing section of

L[−2].

If (L, σ) satisfies (ii), then V is normal and V → X is a finite morphism of degree

two étale in codimension one. If (L, σ) satisfies (i) in addition, then V is irreducible,

and hence V is a double-cover étale in codimension one. Conversely, for any double-

cover W → X étale in codimension one, there exists a pair (L, σ) above satisfying

(i) and (ii) such that W ≃ V (L, σ) over X.

The proof of Lemma 4.14 is well known at least when L is invertible, by Lemma

4.13 above, and the reduction to the case of invertible sheaf is done by using a

property that any reflexive sheaf satisfies Serre’s S2-condition (cf. [14, Prop. 1.6]).

We omit the proof.

Remark 4.15. In the situation of Lemma 4.14, assume that (L, σ) satisfies (ii).

Then, we have the following for V = V (L, σ) and for the structure morphism

τ : V → X.

(1) The homomorphism η of Lemma 4.10 induces an isomorphism (τ∗L)∨∨ ≃
OV .

(2) For any homomorphism σ′ : L⊗2 → OX satisfying (ii), there exists a finite

étale surjective morphism X∼ → X such that

V (L, σ)×X X∼ ≃ V (L, σ′)×X X∼

over X∼. In fact, σ′ = uσ for a unit element u of H0(X,OX), and hence,

X∼ = SpecX OX [x]/(x2 − u) satisfies the required condition by Corol-

lary 4.11. As a consequence, V (L, σ) and V (L, σ′) have the same singular-

ities.

(3) We have an isomorphism V ≃ V (L, σ′) for any homomorphism σ′ : L⊗2 →
OX satisfying (ii). In fact, σ′ = cσ for a non-zero constant c, and thus

σ′ = ε2σ for a square-root ε of c (cf. Corollary 4.11).

(4) The V is étale over a point P of X if and only if L is invertible at P (cf.

Lemma 4.13).

Lemma 4.16. Let X be a normal variety (which is a scheme) and let τ : V =

V (L, σ) → X be a double-cover étale in codimension one associated with a reflexive

sheaf L of rank one and a homomorphism σ : L⊗2 → OX inducing an isomor-

phism (L⊗2)∨∨ ≃ OX . Then, for any reflexive sheaf M of rank one, the double-

dual (τ∗M)∨∨ is an invertible sheaf if and only if, for any point P , either M or

HomOX
(L,M) is invertible at P .

Proof. It suffices to prove the ‘only if’ part. By replacingX with an open subset, we

may assume that there is a homomorphism θ : τ∗M → OV which induces an isomor-

phism (τ∗M)∨∨ ≃ OV . Let ϕ : M → OX and ψ : M → L be the homomorphism in

Corollary 4.12 for θ. Note that the homomorphism (ϕ,ψ) : M → OX ⊕ L = τ∗OV

defined by ϕ and ψ corresponds to θ by the adjoint property of τ∗ and τ∗. It is

enough to prove that, for any point P ∈ X, either ϕ or ψ is an isomorphism at P .
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Since θ is an isomorphism, the homomorphism

ϕ⊗2 − σ ◦ ψ⊗2 : M⊗2 → OX

induces an isomorphism (M⊗2)∨∨ ≃ OX . In fact, for the involution ι of V , the

tensor product θ⊗ι∗(θ) : τ∗M⊗2 → OV is identical to the pullback of ϕ⊗2−σ◦ψ⊗2

by τ . Therefore, we can construct a homomorphism k : OX ⊕ L → M such that

k ◦ (ϕ,ψ) = idM. In particular, M is a direct summand of OX ⊕L. Let us consider
the fibers

ϕ(P ) : M⊗ C(P )
ϕ⊗C(P )−−−−−→ C(P ) and

ψ(P ) : M⊗ C(P )
ψ⊗C(P )−−−−−→ L⊗ C(P )

of ϕ and ψ, respectively, over a point P ∈ X, where C(P ) denotes the residue field.

If ϕ(P ) 6= 0, then ϕ is an isomorphism at P . Hence, we may assume that ϕ(P ) = 0.

Then, M ⊗ C(P ) is a direct summand of L ⊗ C(P ). In particular, k induces an

isomorphism L → M at P , and hence, ψ is an isomorphism at P . Thus, we are

done. �

We apply the results above on double-covers étale in codimension one to the

study of two-dimensional log-canonical pairs. The following is related to the notion

of type D defined in Definition 3.22:

Lemma 4.17. Let X be a normal surface (which is a scheme), D a reduced divisor,

and P a point of D such that (X,D) is log-canonical at P and KX+D is not Cartier

at P . Let τ : V → X be a double-cover étale in codimension one such that KV +DV

is Cartier along τ−1(P ) for DV = τ−1(D). Then,

• P is a non-singular point of D, more precisely, P ∈ P2(X,D) ∪ D(X,D)

(cf. Definition 3.26),

• τ−1(P ) consists of one point Q, and

• (V,DV ) is log-canonical at Q.

Here, if P ∈ P2(X,D), then V and DV are non-singular at Q, and if P ∈ D(X,D),

then Q is a node of DV , i.e., Q is of type T for (V,DV ). Moreover, for any

isomorphism σ : OX(2(KX +D)) ≃ OX , there is an étale neighborhood U → X of

(X,P ) such that

V ×X U ≃ V (OX(KX +D), σ)×X U .

Proof. By Corollary 3.23(3), P is of type P or D for (X,D). In particular, D is non-

singular at P . Since τ is étale in codimension one, we have KV +DV = τ∗(KX+D),

and (V,DV ) is log-canonical along τ
−1(P ) by Corollary 3.19. Since KX +D is not

Cartier at P and KV +DV is Cartier along τ−1(P ), the double-cover τ is not étale

along τ−1(P ), and hence, τ−1(P ) consists of one point, say Q.

By Lemma 4.14, we have a reflexive sheaf L of rank one onX and an isomorphism

σ0 : L[2] ≃−→ OX such that V ≃ V (L, σ0). Moreover, by Lemma 4.16, we can find an

isomorphism L|U ≃ OX(KX+D)|U for an open neighborhood U of P . In particular,

2(KX +D) is Cartier at P . Hence, the last assertion follows from Remark 4.15(2).

It remains to prove P ∈ P2(X,D) ∪ D(X,P ) and prove the assertion on Q for

each type of P . Since (V,DV ) is log-canonical at Q and KV +DV is Cartier at Q,

by Corollary 3.23, we have either
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• V and DV are non-singular at Q, or

• Q is a node of DV .

In the first case, P is an A1-singular point, and P ∈ P2(X,D). In the second case,

P ∈ D(X,D) by Theorem 3.21. �

Remark. By Lemma 4.17, we can take V (OU (KU+B|U ), σ) → U as the double-cover

U ′ → U in Theorem 3.21(iii), for an isomorphism σ : OU (2(KU +B|U )) ≃−→ OU .

Proposition 4.18. Let X be a normal surface (which is a scheme) and D a re-

duced divisor such that (X,D) is log-canonical along D and that D is a reducible

linear chain of rational curves ; in particular, D is compact and connected. Let

τ : V = V (OX(KX +D), σ) → X be the morphism associated with an isomorphism

σ : OX(2(KX +D))
≃−→ OX . Then,

(1) τ is a double-cover étale in codimension one,

(2) (V,DV ) is log-canonical along DV with KV +DV ∼ 0 for DV = τ−1(D),

and

(3) DV is a reducible cyclic chain of rational curves.

Let E1 and E2 be the end components of D and set

Σi := Ei ∩ (SingX \ SingD)

for i = 1, 2. Then, τ is étale along DV \ τ−1(Σ1 ∪ Σ2), and one of the following

cases occurs for each i = 1, 2:

(a) The Σi consists of two A1-singular points of X belonging to P2(X,D). The

divisor τ−1(Ei) is irreducible and the induced morphism τ−1(Ei) → Ei is

a double-cover branched at Σi.

(b) The Σi consists of one point of type D for (X,D). The divisor τ−1(Ei)

consists of two irreducible components E′
i and E

′′
i which are isomorphic to

Ei by τ , and E
′
i ∩ E′′

i is a point identical to τ−1(Σi).

Proof. By assumption, KX +D is numerically trivial on D (cf. Definition 2.14(2)),

and KX +D is Cartier along D \ (Σ1 ∪Σ2) by Lemma 4.5(3). By Proposition 3.28,

the sets Σ1 and Σ2 are not empty, and the singularity of X around Σi for each i is

described as in either the case (G) or (H) of Proposition 3.28. In particular, KX+D

is not Cartier on Σ1∪Σ2 (cf. Corollary 3.23(3)). Hence, τ is a double-cover étale in

codimension one by Lemma 4.14. Then,KV+DV = τ∗(KX+D), and (V,DV ) is log-

canonical by Corollary 3.19. Moreover, OV (KV +DV ) ≃ (τ∗OX(KX+D))∨∨ ≃ OV

by Remark 4.15(1). Thus, KV + DV ∼ 0. Each connected component of DV is

a cyclic chain of rational curves or an elliptic curve by Corollary 4.6. Here, the

connected components dominate D, since D is connected. Hence, DV has at most

two connected components and these are reducible divisors. If DV is not connected,

then τ is étale along DV , and it implies that KX + D is Cartier along D. This

is a contradiction. Therefore, DV is connected and is a reducible cyclic chain of

rational curves.

We fix i = 1 or 2. Assume first that τ−1(Ei) is reducible. Then, τ−1(Ei) =

E′
i +E′′

i for two irreducible components of DV such that E′
i ≃ Ei and E

′′
i ≃ Ei via

τ and that E′
i ∩E′′

i consists of one point Qi. Since τ is étale along τ−1(Ei) \ {Qi},
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we have Σi = {τ(Qi)} and E′
i ∩ E′′

i = τ−1(Σi). Thus, (X,Ei,Σi) belongs to the

case (H) of Proposition 3.28, and the case (b) occurs.

Assume next that τ−1(Ei) is irreducible. Then, it is an irreducible component

of DV , and τ
−1(Ei) → Ei is a double-cover whose branch locus is just Σi. Thus,

Σi consists of two points and these are belonging to P2(X,D) by Lemma 4.17. In

particular, (X,Ei,Σi) belongs to the case (G) of Proposition 3.28, and the case (a)

occurs. Thus, we are done. �

4.3. Toroidal blowing up. We introduce the notion of toroidal blowing up and

give characterizations for a birational morphism to be a toroidal blowing up. We

also give a sufficient condition for the existence of a fibration from a toroidal em-

bedding.

Definition 4.19. Let X be a normal surface and D a reduced divisor. A proper

birational morphism f : Y → X from another normal surface Y is called a toroidal

blowing up with respect to (X,D) if the following conditions are satisfied:

• The f -exceptional locus Σ is contained in DY = f−1(D);

• (X,D) is toroidal along f(Σ), and (Y,DY ) is toroidal along Σ (cf. Defini-

tion 3.11);

• KY +DY = f∗(KX +D).

Lemma 4.20. Let X be a normal surface and D a reduced divisor such that (X,D)

is toroidal along D.

(1) If f : Y → X be a toroidal blowing up with respect to (X,D), then ♯(DY −
E) ∩ E = 2 for any f -exceptional prime divisor E, where DY = f−1(D).

Moreover, if X is compact, then

n(DY )− n(D) = r(DY )− r(D) = ρ̂(Y )− ρ̂(X).

(2) Let Γ be a compact irreducible component of D with Γ2 < 0, (KX+D)Γ ≤ 0,

and ♯(D − Γ) ∩ Γ ≥ 2. Let h : X → X be the contraction morphism of Γ.

Then, (X,D) is toroidal along D = h∗(D), and h is a toroidal blowing up

with respect to (X,D).

Proof. (1): Since KX + D is Cartier along D (cf. Lemma 3.13, Corollary 3.24),

KY + DY is also Cartier along DY , and we have (KY + DY )E = 0 for any f -

exceptional prime divisor E. Then, (Y,DY ) and E satisfy one of the four conditions

corresponding to (A), (B), (C), and (D) in Proposition 3.28 stated for (X,D) and

C. Now, E is not a connected component of D. For, otherwise, the point f(E) is a

connected component of D = f(DY ); this is a contradiction. Hence, only the case

(C) can occur, and thus, ♯(DY − E) ∩ E = 2. The latter equalities of (1) follow

from Lemmas 2.10 and 2.27, since the f -exceptional locus is contained in DY .

(2): Applying Proposition 3.28 to (X,D) and Γ, we have (KX + D)Γ = 0 and

♯(D − Γ) ∩ Γ = 2, since KX + D is Cartier along D with (KX + D)Γ ≤ 0 and

♯(D − Γ) ∩ Γ ≥ 2. It implies that KX + D = h∗(KX + D). Note that (X,D)

is log-canonical along D by Corollary 3.20. Now, h(Γ) is a singular point of D

by ♯(D − Γ) ∩ Γ = 2. Thus, (X,D) is toroidal at h(Γ) by Theorem 3.21. As a

consequence, h is a toroidal blowing up. �
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A proper birational toric morphism of toric surfaces is of course a toroidal blowing

up. Conversely, a toroidal blowing up is regarded as an étale localization of the

toric morphism of toric surfaces. This is a consequence of the following:

Proposition 4.21. Let X be a normal surface and D a reduced divisor such that

(X,D) is toroidal along D. Let f : Y → X be a proper birational morphism from

another normal surface Y such that the induced morphism Y \DY → X \D is an

isomorphism, where DY = f−1(D). Then, the following conditions are equivalent

to each other :

(i) The morphism f is a toroidal blowing up with respect to (X,D).

(ii) The pair (Y,DY ) is toroidal along DY , and (KY +DY )E = 0 and ♯(DY −
E) ∩ E = 2 for any f -exceptional prime divisor E.

(iii) For the minimal resolutions µ : M → X and ν : N → Y of singularities,

the induced birational morphism g = µ−1 ◦ f ◦ ν : N → M is a succession

of blowings up at nodes of the inverse images of DM = µ−1(D).

(iv) For any point y ∈ DY , there exist

• an étale neighborhood X of f(y) in X,

• a proper birational toric morphism φ : W → V of two-dimensional

toric varieties,

• an étale morphism i : X → V such that D|X = i−1(B) for the boundary

divisor B of the toric variety V , and

• a Cartesian diagram

f−1(X )
f |

f−1(X)−−−−−−→ X
y

yi

W
φ−−−−→ V,

where f−1(X ) = Y ×X X .

Proof. The equivalence (i) ⇔ (ii) has been shown in Lemma 4.20, and (iv) ⇒ (i)

follows from that KV +B ∼ 0 for any toric pair (V,B) (cf. Fact 3.5(3)). It is enough

to prove (i) ⇒ (iii) and (iii) ⇒ (iv).

(i) ⇒ (iii): The minimal resolution µ (resp. ν) of singularities of X (resp. Y ) is a

toroidal blowing up by Corollary 3.14. Hence, g : N →M is also a toroidal blowing

up. On the other hand, g is a succession blowings up at non-singular points. Then,

the non-singular points are nodes of the inverse image of DM by Lemma 4.20.

(iii)⇒ (iv): For a point y ofDY , we set x = f(y). If x 6∈ SingD, then x 6∈ SingX,

and f is an isomorphism over x by (iii). Thus, we may assume that x ∈ SingD.

By replacing X with an étale neighborhood of x, we may assume that there is an

étale morphism i : X → V to an affine toric surface V such that D = i−1(B) for the

boundary divisor B of V and that i−1(i(x)) = {x}. In particular, i(x) ∈ SingB.

Moreover, we may assume that f : Y → X is an isomorphism over X \ {x}.
Let Ṽ → V be the minimal resolution of singularities. Then, Ṽ is also a toric

surface, and M ≃ Ṽ ×V X for the minimal resolution M of singularities of X.

Let G (resp. E) be the exceptional locus for Ṽ → V (resp. M → X) and let B′

(resp. D′) be the proper transform of B (resp. D) in Ṽ (resp. M). Then, the

induced morphism E → G is an isomorphism, and in particular, D′ ∩ E → B′ ∩G



46

is bijective. For the minimal resolution N → Y of singularities, the birational

morphism g : N → M induced by f is a succession of blowings up at nodes of the

inverse images of DM by (iii). Thus, there exists a proper birational morphism

h : W̃ → Ṽ of non-singular surfaces which is a succession of blowings up at nodes of

the inverse images of B′+G and which induces g, i.e., there is a Cartesian diagram

N
g−−−−→ M

y
y

W̃
h−−−−→ Ṽ .

Then, W̃ is a non-singular toric surface and h is a toric morphism. Since the

exceptional locus for N → Y is contained in g−1(E), it is the inverse image of a

divisor on W̃ contained in h−1(G). Hence, we have a proper birational morphism

W̃ →W to a normal surface W and a morphism Y →W such that

N −−−−→ Y
y

y

W̃ −−−−→ W

is Cartesian. Then, W is also a toric surface by Lemma 3.8, and the induced

birational morphism W → V is a toric morphism, since it is equivariant for the

action of the open torus. Since N ≃ W̃ ×V X, the diagram

Y −−−−→ X
y

y

W −−−−→ V

is also Cartesian. In particular, Y →W is étale. Thus, (iii) ⇒ (iv) has been proved,

and we are done. �

The argument of (iii) ⇒ (iv) in the proof of Proposition 4.21 proves:

Corollary 4.22. Let X be a toric surface with boundary divisor B. Then, a proper

birational morphism f : Y → X from a normal surface Y is a toroidal blowing up

with respect to (X,B) if and only if Y is a toric surface with boundary divisor

f−1(B) and f is a toric morphism.

The following gives a sufficient condition for the existence of a fibration from a

toroidal blown up of a given pair (X,D).

Lemma 4.23. Let X be a normal projective surface with only rational singularities

such that H1(X,OX) = 0. Let D be a reduced divisor on X such that

• (X,D) is toroidal along SingD, and

• n(D) > r(D).

Then, there exist a toroidal blowing up f : Y → X with respect to (X,D) and a

fibration π : Y → T ≃ P1 such that DY = f−1(D) contains two distinct fibers of π.

Proof. Let clD : F(D) ⊗ R → N(X) be the class map defined in Definition 2.24.

Then, clD has non-trivial kernel by n(D) > r(D). Note that clD is defined over Q.
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Hence, by Lemma 2.31(4), we can find two non-zero effective Cartier divisors Θ1

and Θ2 such that

• SuppΘ1 ∪ SuppΘ2 ⊂ D,

• SuppΘ1 ∩ SuppΘ2 is a finite set, and

• Θ1 ∼ Θ2.

Let f : Y → X be the blowing up along the scheme-theoretic intersection Θ1 ∩Θ2

followed by the normalization. Then, f is a toroidal blowing up with respect to

(X,D), since (X,D) is toroidal along Θ1 ∩ Θ2 and since f is étale locally a toric

morphism (cf. Proposition 4.21). Then, there is an f -exceptional effective Cartier

divisor E such that

Θ∼
1 := f∗(Θ1)− E and Θ∼

2 := f∗(Θ2)− E

are mutually disjoint effective divisors. Thus, we have a morphism Y → P1 asso-

ciated with the base-point free pencil generated by Θ∼
1 and Θ∼

2 . Let π : Y → T

be the Stein factorization. Then, T ≃ P1 by H1(X,OX) = 0, and DY = f−1(D)

contains at least two distinct fibers of π. �

4.4. Tangential blowing up. We introduce the notion of tangential blowing up

and explain a few properties. The tangential blowing up is different from the

toroidal blowing up but has similar properties.

Definition 4.24. Let X be a normal surface and D a reduced divisor on X. Let

P be a point of D such that X and D are non-singular at P . Let (x, y) be a local

coordinate of X at P in which D is defined by y = 0. For an integer m ≥ 1, we set

I ⊂ OX to be the ideal defined by (xm, y), which is defined independently of the

choice of the local coordinate (x, y). We define the tangential blowing up of (X,D)

at P of order m to be the blowing up f : Y → X along I. The pair (Y,D′) for

the proper transform D′ of D in Y is called the tangential blown up of (X,D) at

P of order m. In many cases, f (resp. (Y,D′)) above is called simply a tangential

blowing (resp. blown) up of (X,D).

If m = 1, then I is the maximal ideal at P , so the tangential blowing up of

order one is just the blowing up at P . In order to explain the description of the

tangential blowing up of order m ≥ 2, let us consider a sequence

· · · → Xi → Xi−1 → · · · → X1 → X0

of blowings up, and reduced divisors Di on Xi with points Pi ∈ Di for each i ≥ 0

determined by the following properties:

• X0 = X, D0 = D, and P0 = P ;

• Xi → Xi−1 is the blowing up at Pi−1 for any i ≥ 1;

• Di is the proper transform of Di−1 in Xi for any i ≥ 1;

• Pi is the intersection of Di and the inverse image of Pi−1 for any i ≥ 1.

Then, the inverse image of P = P0 in Xi for i ≥ 2 is a linear chain of rational curves

consisting of (−2)-curves and a unique (−1)-curve. Here, the (−1)-curve is the

inverse image of Pi−1 and the (−2)-curves do not meet Di. It is an easy exercise to

prove the following lemma giving a geometric description of the tangential blowing

up.
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Lemma 4.25. Let f : Y → X be the tangential blowing up of (X,D) at P of order

m as above. Then, there is a birational morphism ϕm : Xm → Y over X such that

ϕm contracts all the irreducible components of the inverse image of P except the

component intersecting Dm.

Remark. The birational morphism Xm → X is called in [38, Def. 2.5] the elimina-

tion of the 0-dimensional subscheme defined by I.

Remark. The tangential blowing up is a generalization of the so-called “half point

attachment” introduced in the theory of open surfaces (cf. [17, §2], [11, (6.21)]): Let
(X,D) be a pair of a non-singular surface X and a normal crossing divisor D. Let

P be a point of D \ SingD and let f : Y → X be the blowing up at P . Then, f is

not a toroidal blowup with respect to (X,D). In fact, KY +DY = f∗(KX+D)+E

for the exceptional divisor E = f−1(P ), where the total transform DY = f∗(D)

is expressed as D′ + E for the proper transform D′ of D in Y . Note here that we

have the equality KY +D′ = f∗(KX +D) instead. Moreover, D′ is also a normal

crossing divisor and D′ ≃ D via f . The open surface Y \D′ is called the half-point

attachment of X \D.

We have the following immediately from Lemma 4.25.

Corollary 4.26. A tangential blowing up f : Y → X of order m satisfies the

following :

(1) There is a unique exceptional prime divisor E for f .

(2) The proper transform D′ of D in Y is isomorphic to D by f .

(3) One has f∗(D) = D′+mE, and the intersection of D′ and E is transversal.

(4) If m ≥ 2, then Y has a unique singular point Q on E, and here, Q 6∈ D′

and Q is a rational double point of type Am−1.

(5) The equality KY +D′ = f∗(KX +D) holds.

Remark. For the f above, we have D′ ( f−1(D) and X \D ≃ Y \f−1(D) ( Y \D′.

If X is compact, then

0 = n(D′)− n(D) ≤ r(D′)− r(D) ≤ ρ̂(Y )− ρ̂(X) = 1

by Lemma 2.27. Here, r(D′) = r(D) if and only if r(D) > r(D − C) for the

irreducible component C of D containing P , by Lemma 2.28(3).

5. Observation on P1-fibrations

In this section, we study in detail the structure of a pair (X,D) of a normal

Moishezon surface X and a reduced divisor D, and a fibration π : X → T to a non-

singular projective curve T which satisfy Condition 5.1 below. In Section 5.1, it is

shown that the X is a projective rational surface with only rational singularities,

the base curve T and a general fiber of π are all rational, and that D is either a

cyclic chain or a linear chain of rational curves. We study the structure of (X,D)

in case of cyclic chain (resp. linear chain) in Section 5.2 (resp. 5.3).
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5.1. Two possible cases. Throughout Section 5, we consider the triplet (X,D, π)

consisting of a normal Moishezon surface X, a reduced divisor D, and a morphism

π : X → T which satisfy Condition 5.1 below. In Section 5.1, we shall give a rough

classification of (X,D, π). Especially, it is shown that (X,D, π) belongs to the case

(A) or (B) of Lemma 5.2.

Condition 5.1.

(i) (X,D) is log-canonical along D;

(ii) −(KX +D) is nef on D (cf. Definition 2.14(2)), i.e., −(KX +D)C ≥ 0 for

any irreducible component C of D;

(iii) π is a fibration and T is a non-singular projective curve;

(iv) D is connected and contains at least two distinct fibers of π.

Lemma 5.2. Let (X,D, π : X → T ) be a triplet satisfying Condition 5.1. Then, T

and a general fiber of π are rational, and X is a projective rational surface with only

rational singularities. Moreover, D is big, and one of the following cases occurs :

(A) The divisor D is a cyclic chain of rational curves expressed as D = C1 +

C2 +F1 +F2 for two distinct fibers F1 and F2 of π and for two sections C1

and C2 of π such that C1 ∩ C2 = ∅.
(B) The divisor D is a linear chain of rational curves expressed as D = C0 +

F1 + F2 for two distinct fibers F1 and F2 and for a non-end component C0

such that C0 is a section or a double-section of π, i.e., C0F = 1 or 2 for a

general fiber F of π.

Proof. The divisor D is a linear or cyclic chain of rational curves by Lemma 4.5.

Suppose that D is expressed as in the case (A) or (B) above for two sections C1

and C2 or for the horizontal component C0. Then, the expression implies that D

is big, and by Lemma 4.7, X is a projective rational surface with only rational

singularities. In particular, T ≃ P1, which follows also from the rationality of C1

or C0. Moreover, a general fiber F of π is rational by KXF ≤ −DF < 0, where

(KX + D)F ≤ 0 follows from (KX + D)C ≤ 0 for any curve C ⊂ F1. Thus, it is

enough to prove that (A) or (B) occurs.

Assume first that D is a cyclic chain. Then, the fibers F1 and F2 are linear

chains of rational curves. Since D is connected, D − (F1 + F2) has an irreducible

component C1 intersecting F1. Then, π(C1) = T , and hence, C1 intersects also F2.

Hence, F1 + C1 + F2 is a linear chain of rational curves. Since D is assumed to be

a cyclic chain, D − (F1 + F2 + C1) has an irreducible component C2 intersecting

F1. Then, π(C2) = T , and C2 intersects also F2. Therefore, the cyclic chain D is

expressed as C1+C2+F1+F2, in which C1∩C2 = ∅. Now, KX +D is numerically

trivial on D (cf. Definition 2.14(2)) by Lemma 4.5. Thus, (KX + D)F = 0 for a

general fiber F , and it implies that F ≃ P1 and FC1 = FC2 = 1. Hence, C1 and

C2 are sections of π. Thus, we have the case (A).

Assume next that D is a linear chain. Then, F1 and F2 are also linear chains

and we can find an irreducible component C0 of D − (F1 + F2) intersecting F1.

Then, π(C0) = T , and C0 intersects also F2. Thus, F1 + C0 + F2 is a linear chain

in which C0 is not an end component. We shall show that D = F1 + C0 + F2. If

Γ is an irreducible component of D not contained in F1 +C0 + F2 but intersecting

F1 + C0 + F2, then C0 ∩ Γ = ∅, and Γ intersects F1 or F2. But if so, π(Γ) = T ,
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and Γ intersects both F1 and F2, which implies that F1 + C0 + F2 + Γ contains

a cyclic chain: This is a contradiction. Therefore, D = F1 + C0 + F2. Note that

(KX +D)F ≤ 0 for a general fiber F of π by the same argument as above. Thus,

F ≃ P1 and 0 < DF = C0F ≤ −KXF = 2. Hence, either C0F = 1 or C0F = 2

holds, and we have the case (B). �

5.2. The case where D is a cyclic chain. We study (X,D, π) in the case (A) of

Lemma 5.2. Here, D is a cyclic chain of rational curves expressed as C1+C2+F1+F2

for two mutually disjoint sections C1 and C2 and for two distinct fibers F1 and F2.

We set P1 := π(F1) and P2 := π(F2).

Proposition 5.3. In the case (A) of Lemma 5.2, the following hold :

(1) If −(KX +D) is nef, then KX +D ∼ 0.

(2) The inequality n(D) ≤ ρ(X)+ 2 holds, where the equality holds if and only

if π is smooth outside F1 ∪ F2.

(3) If n(D) = ρ(X)+2, then (X,D) is a toric surface and π is a toric morphism

to the toric curve (T, P1 + P2).

Proof. Since D is big, by Lemma 4.7, there is an effective divisor G on X \D such

that G ∼ KX + D and that G is negative definite if G 6= 0. If −(KX + D) is

nef, then G = 0 ∼ KX +D. This proves (1). By Proposition 2.33(7), we have an

inequality

ρ(X) ≥ 2 + (n(F1)− 1) + (n(F2)− 1) = n(D)− 2,

where the equality holds if and only if any fiber of π except F1 and F2 is irreducible.

Let F3 be an irreducible fiber different from F1 and F2. Then, F3 is reduced as a

scheme-theoretic fiber, since F3∩ (C1∪C2) is contained in the non-singular locus of

X (cf. Proposition 3.28). Therefore, π is smooth along F3 by Proposition 2.33(4).

Thus, (2) has been proved.

Assume that ρ(X) = n(D) − 2. Then, G = 0 by (2), since X \ D contains no

compact curves. Thus, KX +D ∼ 0. In order to show that (X,D) and π are toric,

we shall reduce to the non-singular case. Let µ : M → X be the minimal resolution

of singularities. Then, µ is a toroidal blowing up with respect to (X,D), since X \D
is non-singular by (2). We see thatDM = µ−1(D) is a cyclic chain of rational curves

with KM + DM = µ∗(KX + D) ∼ 0. Moreover, DM = C ′
1 + C ′

2 + F∼
1 + F∼

2 for

the proper transform C ′
i of Ci in M and for the total transform F∼

i of Fi in M , for

i = 1 and 2. Thus, the pair (M,DM ) with the fibration π ◦µ : M → T belongs also

to the case (A) of Lemma 5.2. Here, (X,D) is a toric surface if and only if (M,DM )

is so, by Lemma 3.8 and Corollary 4.22. Thus, by replacing M with X, we may

assume that X is non-singular. We have a birational morphism ν : X → X over T

to a P1-bundle p : X → T in which ν contracts only curves contained in F1 ∪ F2.

Here, D = ν∗(D) is a cyclic chain consisting of two sections ν(C1), ν(C2) and two

fibers ν∗(F1) and ν∗(F2) of p. In particular, (X,D) is a toric surface and p is a toric

morphism (X,D) → (T, P1+P2) (cf. Example 3.7). Moreover, ν : (X,D) → (X,D)

is a toroidal blowing up. Therefore, (X,D) is a toric surface by Corollary 4.22, and

we have proved (3). �

Lemma 5.4. In the case (A) of Lemma 5.2, assume that KX +D ∼ 0. Let F3 be

a fiber of π different from F1 and F2, and assume that π is not smooth along F3.
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Then, F3 is a reducible linear chain of rational curves with end components Γ1 and

Γ2 such that

(1) the section Ci intersects transversally with Γi for i = 1, 2, and

(2) (X,F3) is toroidal along F3.

As a consequence, X \D has only rational double points of type A as singularities.

Proof. By an argument in the proof of Proposition 5.3, the scheme-theoretic fiber

F3 is reduced at two points F3 ∩ (C1 ∪ C2). Moreover, F3 is reducible by Propo-

sition 2.33(4), since π is not smooth along F3. In particular, every irreducible

component of F3 is a negative curve. Let Γ1 and Γ2 be the irreducible components

of F3 which intersect C1 and C2, respectively.

First, we shall prove the assertion in the case where X is non-singular. By

KXΓi = −DΓi ≤ −CiΓi = −1 for i = 1, 2, we see that Γ1 and Γ2 are (−1)-curves

and Γ1 ∩ C2 = Γ2 ∩ C1 = ∅. If F3 = Γ1 + Γ2, we have nothing to prove. Assume

that F3 6= Γ1+Γ2. Then, the irreducible components Γ of F3 different from Γ1 and

Γ2 are all (−2)-curves by KXΓ = −DΓ = 0. In this situation, we can prove that

F3 is a linear chain of rational curves with Γ1 and Γ2 as end components. Indeed,

this is proved by induction on the number of irreducible components of F3 and by

considering the blowing down of the (−1)-curve Γ1. Thus, the assertion holds when

X is non-singular.

For general X, let us consider the minimal resolution µ : M → X of singularities.

Note that X \D has only rational double points as singularities, since X has only

rational singularities and KX + D ∼ 0. Hence, µ is a toroidal blowing up with

respect to (X,D) along D and is the minimal resolution of rational double points on

X\D. As a consequence, (M,DM ) is toroidal andKM+DM = µ∗(KX+D) ∼ 0. By

the same argument as in the proof of Proposition 5.3, we see that the pair (M,DM )

with the fibration π ◦µ satisfies the assumption of Lemma 5.4. Then, the assertion

for the non-singular case implies that the total transform F∼
3 = µ−1(F3) is a linear

chain of rational curves with Γ′
1 and Γ′

2 as end components, where Γ′
i is the proper

transform of Γi in M for i = 1, 2. Thus, Γ1 6= Γ2, and F3 = µ∗(F
∼
3 ) is a linear

chain of rational curves such that (X,F3) is toroidal along F3 by Lemma 4.20(2).

Note that X has only cyclic quotient singularities on F3. Hence, the last assertion

holds, since X \D is Gorenstein. Thus, we are done. �

Proposition 5.5. In the case (A) of Lemma 5.2, assume that −(KX +D) is nef

and n(D) = ρ(X) + 1. Then, KX +D ∼ 0, and there exist two rational curves Γ1

and Γ2 on X satisfying the following properties :

(1) Γ1+Γ2 is a linear chain of rational curves and is a fiber of π different from

F1 and F2;

(2) (X,Γ1 + Γ2) is toroidal along Γ1 + Γ2;

(3) Γ1C1 = Γ2C2 = 1 and Γ1 ∩ C2 = Γ2 ∩ C1 = ∅;
(4) if Γ is a negative curve on X not contained in D, then Γ = Γ1 or Γ2.

Let g : X → Z be the contraction morphism of Γ1, and set DZ = g∗(D) and Q :=

g(Γ1). Then, the following also hold :

(5) (Z,DZ) is a toric surface and the induced fibration Z → T by π is a toric

morphism to the toric curve (T, P1 + P2);
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(6) g is a tangential blowing up (cf. Definition 4.24) of (Z,DZ) at the point Q

of order k ≥ 1. Here, if k = 1, then Γ1 ∩ Γ2 is a non-singular point of X,

and if k > 1, then Γ1 ∩ Γ2 is an Ak−1-singularity of X.

Proof. We have KX + D ∼ 0 by Proposition 5.3(1). There is a unique reducible

fiber F3 of π different from F1 and F2 by Proposition 2.33(7), since

ρ(X) = n(D) + 1 = 2 + (n(F1)− 1) + (n(F2)− 1) + 1,

where n(F3) = 2. Let F3 = Γ1 + Γ2 be the irreducible decomposition. Then,

applying Lemma 5.4 and assuming C1Γ1 = 1 and C2Γ2 = 1, we have the properties

(1)–(3) above.

Let Γ be a negative curve on X not contained in D. Assume that π(Γ) = T .

Then, Γ ∩ F1 6= ∅ and Γ ∩ F2 6= ∅. Let µ : M → X be the minimal resolution of

singularities. Then, KM +DM = µ∗(KX +D) ∼ 0 for DM = µ−1(D), and

KMΓ′ = −DMΓ′ ≤ −2

for the proper transform Γ′ of Γ in M ; This contradicts Γ′2 + KMΓ′ ≥ −2 and

Γ′2 < 0. Hence, π(Γ) 6= T . Thus, Γ is an irreducible component of a reducible

fiber. Therefore, Γ = Γ1 or Γ2, and we have proved (4).

The pair (Z,DZ) in (5) is log-canonical by Corollary 3.20, and the pair with

the induced fibration Z → T satisfies the conditions in the case (A) of Lemma 5.2.

Thus, (5) is a consequence of Proposition 5.3(3). By Lemma 5.4, the inverse image

of Γ1 + Γ2 by the minimal resolution of X is a linear chain such that the proper

transforms of Γ1 and Γ2 are (−1)-curves as well as end components and that the

non-end components are all (−2)-curves. Therefore, g is a tangential blowing up

of (Z,DZ) at Q of order k ≥ 1 by Lemma 4.25 and Corollary 4.26. Thus, (6) has

been proved, and we are done. �

5.3. The case where D is a linear chain. We study (X,D, π) in the case (B) of

Lemma 5.2. Here, D is a linear chain of rational curves expressed as C0 + F1 + F2

for a non-end component C0 which is either a section or a double-section of π. We

also set P1 := π(F1) and P2 := π(F2).

Lemma 5.6. In the case (B) of Lemma 5.2, one has an inequality n(D) ≤ ρ(X)+1,

where the equality holds if and only if π is smooth outside F1 ∪ F2.

Proof. By Proposition 2.33(7), we have ρ(X) ≥ n(F1) +n(F2) = n(D)− 1, where

the equality holds if and only if any fiber is irreducible except for F1 and F2. Let

F3 be an irreducible fiber different from F1 and F2. By Proposition 2.33(4), it is

enough to prove that F3 is reduced as a scheme-theoretic fiber. Now C0 ∩ F3 is

contained in the non-singular loci of X and D (cf. Proposition 3.28). Hence, F3 is

reduced if C0 is a section. If C0 is a double-section, then the induced double-cover

τ := π|C0
: C0 → T is étale outside C0 ∩ (F1 ∪ F2), since C0 ∩ Fi = τ−1(Pi) is a

point for i = 1, 2. Thus, in this case, C0 ∩F3 consists of two points and is reduced.

Therefore, F3 is reduced, and we are done. �

Proposition 5.7. In the case (B) of Lemma 5.2, assume that

• −(KX +D) is nef,

• n(D) = ρ(X) + 1, and
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• C0 is a section of π.

Then, there is a section B of π not contained in D such that (X,B +D) is a toric

surface and that π : (X,B +D) → (T, P1 + P2) is a toric morphism.

Proof. Since π is smooth outside F1 ∪F2 by Lemma 5.6, we have SingX ⊂ D. For

i = 1, 2, let Ei be the end component of D such that Ei ⊂ Fi. Then, (KX+D)Ei <

0 for any i. In fact, if (KX +D)E1 = 0 for example, then (KX +D)Γ = 0 for any

irreducible component Γ of F1 by Lemma 4.5(3), and it implies that (KX+D)F = 0

for any general fiber F of π. However, this contradicts (KX + D)F = (KX +

C0)F = −1. Therefore, by Proposition 3.28, SingX ⊂ E1 ∪ E2 ∪ SingD, and

Σi := (Ei \ SingD) ∩ SingX is empty or consisting of one point of type P for

(X,D).

Let µ : M → X be the minimal resolution of singularities. By the information

above of SingX, we see that the µ-exceptional divisor is a union of linear chains of

rational curves, and hence, DM = µ−1(D) is a linear chain expressed as C̃0+F̃1+F̃2

for the proper transform C̃0 of C0 in M and for the fiber F̃i = µ−1(Fi) = (π ◦
µ)−1(Pi). We express the linear chain F̃i as Γ1 + Γ2 + · · · + Γl for rational curves

Γj such that the end component Γl intersects C̃0. More precisely, we write

Γ
(i)
j = Γj and l(i) = l

indicating i = 1, 2. Let m
(i)
j = mj be the multiplicity of the scheme-theoretic fiber

along Γi, i.e.,

(π ◦ µ)∗(Pi) =
∑lj

j=1
m

(i)
j Γ

(i)
j .

Then, m1 = ml = 1 (cf. Lemma 5.8 below). Note that Σi = ∅ if and only if Γ1 is

the proper transform E′
i of Ei in M . If Σi 6= ∅, then E′

i = Γk for some k > 1, and

µ−1(Σi) = Γ1 + · · ·+Γk−1; Here, we have mj ≥ j for any 1 < j ≤ k by Lemma 5.8

below, since µ is the minimal resolution of singularities. We can write

(V-1) KM +DM = µ∗(KX +D) +
∑2

i=1

∑li

j=1
p
(i)
j Γ

(i)
j ,

with 0 ≤ p
(i)
j < 1, where p

(i)
j 6= 0 if and only if Γ

(i)
j ⊂ µ−1(Σi) (cf. the proof of

Lemma 3.25). Thus, if a section C̃ of π ◦µ intersects Γ
(i)
j with p

(i)
j 6= 0, then j = 1.

Therefore,

(V-2) (KM +DM )C̃ ≤ p
(1)
1 + p

(2)
1 < 2

for any section C̃ of π ◦ µ, since −(KX +D) is nef.

Let h : M → Z be the contraction morphism of all the irreducible components of

F̃1+F̃2−(Γ
(1)
1 +Γ

(2)
1 ). Then,KM+DM is h-numerically trivial, since (KM+DM )Γ =

0 for any non-end component Γ of the linear chain DM of rational curves. Thus,

(V-3) KM +DM = h∗(KZ +DZ)

for DZ = h∗(DM ). We have a fibration ̟ : Z → T with ̟ ◦ h = π ◦ µ. For i = 1,

2, the image F i = h(F̃i) = h(Γ
(i)
1 ) is just the scheme-theoretic fiber ̟−1(Pi), since

m
(i)
1 = 1. Then, ̟ : Z → T is a P1-bundle by Proposition 2.33(4), since every

scheme-theoretic fiber of ̟ is irreducible and reduced. Here, DZ = C0 + F 1 + F 2

for the section C0 := h(C̃0).
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Assume that there is a section B of ̟ such that B∩C0 = ∅. Let B̃ be the proper

transform of B in M and set B := µ(B̃). Then, B̃+DM is a normal crossing cyclic

chain of rational curves, and KM + B̃ +DM is numerically trivial on B̃ +DM (cf.

Definition 2.14(2)) by Corollary 4.6. Since the µ-exceptional locus is contained in

DM , the B + D is a cyclic chain of rational curves, KX + B + D is numerically

trivial on B + D, and (X,B + D) is log-canonical (cf. Corollary 3.20). Thus,

(X,B+D) and π satisfy the conditions of Lemma 5.2(A) with ρ(X) = n(B+D)−2.

Therefore, (X,B +D) is toric and (X,B +D) → (T, P1 + P2) is a toric morphism

by Proposition 5.3(3).

Therefore, it remains to find a section B not intersecting C0. Assume that there

is no such a section. Then, C0 is not a minimal section CZ of the Hirzebruch surface

Z. We set e = −C2
Z ≥ 0 and let F denote a general fiber of ̟. Then,

C0 ∼ CZ + dF and KZ +DZ ∼ −CZ + (d− e)F

for an integer d ≥ e. By (V-3) and by (V-2) applied to the proper transform C̃Z of

CZ in M , we have

d = (KZ +DZ)CZ = (KM +DM )C̃Z ≤ p
(1)
1 + p

(2)
1 < 2.

If d = 0, then d = e = 0, and C0 is a minimal section; this contradicts the

assumption. Thus, d = 1, and 0 ≤ e ≤ 1. If e = 1, then we can take B as CZ , since

CZ ∩ C0 = ∅. Hence, we have (d, e) = (1, 0). Therefore, p
(i)
1 > 0 for any i = 1, 2,

and it implies that Σi 6= ∅. The section C̃Z must intersect Γ
(i)
1 for any i = 1, 2 by

the observation above on irreducible components Γ
(i)
j with p

(i)
j > 0. However, we

can find another minimal section CZ,1 such that CZ,1 ∩C0 = F 1 ∩C0. The proper

transform C̃Z,1 of CZ,1 in M does not intersect B
(1)
1 . This is a contradiction. As a

consequence, we can find a section B not intersecting C0, and we are done. �

The following lemma is used in the proof of Proposition 5.7.

Lemma 5.8. Let M be a non-singular surface with a P1-fibration ψ : M → T and

let F be a reducible fiber of ψ. Assume that F is a linear chain Γ1+Γ2+ · · ·+Γl of

rational curves Γi in this order, and let
∑

1≤i≤lmiΓi be the scheme-theoretic fiber

of ψ.

(1) If ml = 1, then m1 = 1.

(2) For an integer k > 1, assume that Γ2
i ≤ −2 for any i < k. Then, mi ≥ i

for any 1 ≤ i ≤ k.

Proof. Note that F is a simple normal crossing divisor (cf. Remark 2.34). Hence,

Γi ≃ P1 for any i, and ΓiΓi+1 = 1 for any 1 ≤ i < l. Then,

mi−1 +miΓ
2
i +mi+1 = 0

for any 1 ≤ i ≤ l, where we set m0 = ml+1 = 0. In particular, mi is divisible by

m1 for any 1 ≤ i ≤ l, and this proves (1). Moreover, under the assumption of (2),

we have

mi+1 −mi = mi(−Γ2
i − 2) +mi −mi−1 ≥ mi −mi−1

for any 1 ≤ i < k. This implies that mi ≥ i for any 1 ≤ i ≤ k. �
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Proposition 5.9. In the case (B) of Lemma 5.2, assume that C0 is a double-section

and n(D) = ρ(X) + 1. Then, π is smooth outside F1 ∪ F2, and 2(KX + D) ∼ 0.

Let τ : V = V (OX(KX +D), σ) → X be the double-cover étale in codimension one

associated with an isomorphism σ : OX(2(KX + D))
≃−→ OX (cf. Definition 4.9).

Then, (V,DV ) is a toric surface for DV = τ−1(D), and there is a toric morphism

πV : (V, τ−1(D)) → (T ′, P ′
1 + P ′

2) such that

• πV is the Stein factorization of π ◦ τ ,
• T ′ → T is a double-cover branched at {P1, P2} = π(F1 ∪ F2), and

• P ′
i is the point of T ′ lying over Pi for i = 1, 2.

Proof. The morphism π is smooth outside F1 ∪ F2 by Lemma 5.6. We shall show

that 2(KX + D) ∼ 0. For i = 1, 2, let Ei be the end component of D such that

Ei ⊂ Fi. Then, KX +D is Cartier along D−E1 −E2 and is numerically trivial on

D−E1−E2 by Lemma 4.5(3). Since (KX+D)F = 0 for a general fiber F , we have

(KX +D)Ei = 0 for i = 1, 2. Hence, (X,D,Ei) belongs to either the case (G) or

(H) of Proposition 3.28. As a consequence, 2(KX+D) is Cartier and π-numerically

trivial. Then, 2(KX +D) ∼ π∗L for a divisor L on T by Proposition 2.33(5), and

now L = 0 by 2 degL = C0π
∗L = 2(KX +D)C0 = 0. Therefore, 2(KX +D) ∼ 0.

By Proposition 4.18 and Remark 4.15(4), (V,DV ) is log-canonical with KV +

DV ∼ 0, DV is a cyclic chain of rational curves, and V \τ−1(F1∪F2) is non-singular

and étale over X \ (F1 ∪ F2). Here, τ−1(D − E1 − E2) is a disjoint union of two

copies of D − E1 − E2, and for each i = 1, 2, either τ−1(Ei) is irreducible or is

a union of two copies of Ei intersecting at one point. In particular, τ−1(Fi) is

connected and is a fiber of the Stein factorization πV : V → T ′ of π ◦ τ : V → T .

Thus, (V,DV ) and πV satisfy the condition of Lemma 5.2(A). Here, τ−1(C0) is just

the union of two sections of πV contained in DV . Hence, T
′ → T is a double-cover

isomorphic to C0 → T , which is branched at {P1, P2}, since C0F1 = C0F2 = 1.

In particular, τ−1(Fi) is the fiber over the point P ′
i ∈ T ′ lying over Pi for i = 1,

2. Since V \ τ−1(F1 ∪ F2) is smooth over T ′, we have n(DV ) = ρ(V ) + 2 by

Proposition 5.3(2). Therefore, (V,DV ) is a toric surface and πV is a toric morphism

by Proposition 5.3(3). �

6. Pseudo-toric surfaces

We introduce the notion of pseudo-toric surface in Section 6.1 and explain its

basic properties. Especially in Proposition 6.3, it is shown that the defect δ(X,D)

of a pseudo-toric surface (X,D) is always non-negative and that among pseudo-

toric surfaces, the toric surfaces are characterized by δ(X,D) = 0. The structure

of pseudo-toric surface of defect one is studied in detail in Section 6.2, where we

shall give a structure theorem as Theorem 6.4 and give a proof of Theorem 1.6.

6.1. Pseudo-toric surfaces and their basic properties.

Definition 6.1. A pair (X,D) of a normal projective surface X and a reduced

divisor D is called a pseudo-toric surface if the following conditions are satisfied:

(i) X is a rational surface with only rational singularities;

(ii) (X,D) is log-canonical along D, and KX +D ∼ 0;

(iii) every irreducible component of D is a rational curve;
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(iv) D is big.

Remark. Let X be a non-singular projective surface and D an anti-canonical re-

duced divisor of X. Assume that D is a simple normal crossing divisor consisting

of rational curves. Then, (X,D) is pseudo-toric if and only if D is big, by Defini-

tion 6.1. It is an exercise to prove that D is big if and only if one of the following

holds.

• There is an irreducible component C of D with C2 > 0.

• There is an irreducible component C of D with C2 = 0 and (D−C)C > 0.

• There is an irreducible component C of D such that C is a (−1)-curve

and that the push-forward D = g∗(D) is big for the contraction morphism

g : X → X of C.

Lemma 6.2. Let (X,D) be a pseudo-toric surface.

(1) The Weil-Picard number ρ̂(X) equals the Picard number ρ(X).

(2) The open subset X \D has only rational double points as singularities. In

particular, (X,D) is log-canonical.

(3) The divisor D is connected and is a cyclic chain of rational curves.

(4) If f : Y → X is a toroidal blowing up with respect to (X,D), then (Y,DY )

is also pseudo-toric for DY = f−1(D).

(5) Let f : Y → X be a tangential blowing up of (X,D) and let D′ be the proper

transform of D. Then (Y,D′) is pseudo-toric if and only if D′ is big.

(6) Let µ : M → X be the minimal resolution of singularities. Then, (M,DM )

is also pseudo-toric for DM = µ−1(D).

(7) Let g : X → X be a birational morphism to a normal Moishezon surface

X and set D = g∗(D). Then, (X,D) is a pseudo-toric surface. If the

g-exceptional locus is contained in D, then g is a toroidal blowing up with

respect to (X,D).

(8) There is a birational morphism g : X → X contracting only curves in X \D
such that X \D is affine for D = g∗(D).

Proof. (1): This is a consequence of Lemma 2.31.

(2): This follows from thatKX+D ∼ 0 and thatX has only rational singularities.

In fact, X \D is Gorenstein with only rational singularities.

(3): By Corollaries 3.24 and 4.6, (X,D) is toroidal along D (cf. Definition 3.11)

and that each connected component of D is a cyclic chain of rational curves. Sup-

pose that D is not connected. Then, by the Hodge index theorem, a connected

component E of D is negative definite, since D is big. Let g : X → X be the

contraction morphism of E. Then, KX + D ∼ 0 for the divisor D = g∗(D) 6= 0,

and

H2(X,OX) = H0(X,O(KX))∨ = 0.

Hence, X has only rational singularities by Lemma 2.31(3). However, the singular

point π(E) is irrational, since E is a cyclic chain of rational curves. This is a

contradiction. Therefore, D is connected and (3) holds.

(4) and (5): Let f : (Y,DY ) → (X,D) be either a toroidal blowing up or a

tangential blowing up. Here, DY = f−1(D) in the case of toroidal blowing up, and

DY is the proper transform ofD in the case of tangential blowing up. Then, (Y,DY )
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is also log-canonical, DY consists of rational curves, and KY +DY = f∗(KX+D) ∼
0 by Definition 4.19 and Corollary 4.26. Thus, (Y,DY ) is also pseudo-toric.

(6): The minimal resolution µ is expressed as a toroidal blowing up along D and

is the minimal resolution of X \D, which has only rational double points by (2).

Thus, KM + DM = µ∗(KX + D) ∼ 0, and (M,DM ) is also pseudo-toric by the

argument above.

(7): The pair (X,D) is log-canonical by (2) and by Corollary 3.20. We have

KX +D = g∗(KX +D) ∼ 0. Therefore, D is also a cyclic chain of rational curves

by Corollary 4.6. Moreover, D is big by Remark 2.13. Hence, X is a projective

rational surface with only rational singularities by Lemma 4.7. Thus, (X,D) is a

pseudo-toric surface. The latter assertion of (7) follows from Definition 4.19.

(8): The union of compact curves in X \ D is negative definite by the Hodge

index theorem, since D is big. Hence, we have the contraction morphism X → X of

the union of these curves by Theorem 2.6. Then, X \D contains no compact curves

for the image D of D. Here, (X,D) is pseudo-toric by (7) above. Thus, for the

proof of (8), we may assume that X = X, i.e., X \D contains no compact curves.

There is a birational morphism π : X → X ′ to a normal Moishezon surface X ′ such

that the π-exceptional locus is contained in D and that D′ := π∗(D) contains no

negative curves. Then, X \D ≃ X ′ \D′, since D = π−1(D′). Here, (X ′, D′) is also

pseudo-toric by (7). Thus, by replacing X ′ with X, we may assume furthermore

that every irreducible component of D is nef. Then, it is enough to show that D

is ample. Now, DC > 0 for any irreducible component C of D. In fact, since D is

connected by (3), we have DC = (D − C)C + C2 > 0 in case D is reducible, and

even in case D is irreducible, we have D2 > 0, since D is big. Thus, if DΓ = 0 for

an irreducible curve Γ on X, then Γ ⊂ X \D; this is a contradiction. Hence, D is

ample by the Nakai–Moishezon criterion of ampleness (cf. Remark 2.12). Thus, we

are done. �

Remark. Let (X,D) be a pseudo-toric surface such that X is non-singular. The

structure of (X,D) is studied by considering birational morphisms f : X → Z and

g : Z → S satisfying the following conditions:

• The (Z,DZ) and (S,DS) are pseudo-toric surfaces for DZ = f∗(D) and

DS = (g ◦ f)∗(D), and Z and S are non-singular.

• Every exceptional divisor for f is not contained in D.

• The exceptional locus of g is contained in DZ .

• There is no (−1)-curve on Z not contained in DZ , and there is no (−1)-

curve on S.

Here, f is a maximal succession of contractions of (−1)-curves not contained in

the images of D, and g is a succession of contractions of (−1)-curves contained in

DZ . The (Z,DZ) and (S,DS) are pseudo-toric by Lemma 6.2(7). Note that every

negative curve Γ on X not contained in D is either a (−1)-curve or a (−2)-curve,

since ΓD = −KXD ≥ 0. Since the pseudo-toric surfaces (S,DS) are classified easily,

we have a detailed structure of (X,D) by investigating the birational morphisms f

and g.

Proposition 6.3. Let (X,D) be a pseudo-toric surface. Then, the defect δ(X,D)

and the complexity c(X,D) (cf. Definition 2.23) are non-negative. Here, c(X,D) =
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0 if and only if (X,D) is a toric surface. In particular, a pseudo-toric surface of

defect one is a toric surface.

Proof. We have c(X,D) ≥ 0 by Proposition 4.8(3), and δ(X,D) ≥ c(X,D) by

Definition 2.23. If (X,D) is toric, then it is pseudo-toric with δ(X,D) = 0 by

Lemma 3.10. For the rest, it is enough to prove that (X,D) is toric when c(X,D) =

0. In this situation, we have also δ(X,D) = 0 by Proposition 4.8(4). Since n(D) >

ρ(X) ≥ r(D), by Lemma 4.23, there exist a toroidal blowing up f : (Y,DY ) →
(X,D) and a fibration π : Y → T to a non-singular curve T such that DY =

f−1(D) contains at least two fibers of π. Here, (Y,DY ) is also pseudo-toric and

δ(Y,DY ) = δ(X,D) = 0 by Lemma 2.27. Since DY is connected by Lemma 6.2(3),

(Y,DY ) and π satisfy the condition of Lemma 5.2(A). Thus, (Y,DY ) is toric by

Proposition 5.3(3), and (X,D) is toric by Lemma 3.8. �

6.2. The structure of pseudo-toric surfaces of defect one. We first prove

a structure theorem as Theorem 6.4 for the pseudo-toric surface (X,D) of defect

one. Using a special linear chain of rational curves defined in Definition 6.6 below,

we obtain results on the group Aut(X;D) of automorphisms X preserving each

irreducible component of D, on the coordinate ring of X \ D, and on the quasi-

Albanese map of X \ D. Finally, we prove Theorem 1.6 gathering these partial

results.

Theorem 6.4. Let X be a normal Moishezon surface with a reduced divisor D.

Then, (X,D) is a pseudo-toric surface of defect one if and only if there exist a

toroidal blowing up f : Y → X with respect to (X,D) and a tangential blowing up

g : Y → Z of a projective toric surface (Z,DZ) such that f−1(D) is the proper

transform of DZ in Y .

Proof. If Y is a tangential blowing up of toric surface (Z,DZ), then (Y,DY ) is

a pseudo-toric surface of defect one for the proper transform DY of DZ in Y by

Lemma 6.2(5) and by Proposition 4.8(1), since

c(Y,DY ) ≤ δ(Y,DY ) = n(DY )− (ρ(Y ) + 2) = n(DZ)− (ρ(Z) + 1) = 1.

Thus, if there is also a toroidal blowing up f : Y → X with respect to (X,D)

such that DY = f−1(D), then (X,D) is also pseudo-toric by Lemma 6.2(7), and

δ(X,D) = δ(Y,DY ) = 1 by Lemma 2.27.

Conversely, if (X,D) is a pseudo-toric surface of defect one, then, by Lemma 4.23,

there exist a toroidal blowing up f : (Y,DY ) → (X,D) and a fibration π : Y → T

to a non-singular curve T such that DY = f−1(D) contains at least two fibers of

π. Here, (Y,DY ) is also a pseudo-toric surface of defect one by Lemmas 6.2(4)

and 2.27. Thus, (Y,DY ) and π satisfy the condition of Lemma 5.2(A), and by

Proposition 5.5, there exist a toric surface (Z,DZ) and a tangential blowing up

g : Y → Z of (Z,DZ) such that DY is the proper transform of DZ . �

Remark. Let (X,D) be a pair of a normal Moishezon surface X and a reduced

divisor D on X which satisfies the conditions of Definition 6.1 except (iv). If

c(X,D) ≤ 1, then D is big by Proposition 4.8(1), and (X,D) is a pseudo-toric

surface. Thus, if δ(X,D) = 1, then (X,D) is a pseudo-toric surface of defect one

by Proposition 4.8(4), and in this case, we have δ(X,D) = c(X,D), or equivalently,

ρ(X) = r(D).
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Lemma 6.5. Let (X,D) be a pseudo-toric surface of defect one. Let f : (Y,DY ) →
(X,D) be a toroidal blowing up and π : Y → T ≃ P1 a P1-fibration such that

DY = f−1(D) contains the fibers of π over two distinct points P1 and P2 of T . The

existence of f and π is shown in Lemma 4.23. Then, the morphism

h := (π ◦ f−1)|X\D : X \D ≃ Y \DY → T \ {P1, P2}
induces a group isomorphism

h∗ : O(T \ {P1, P2})⋆ ≃−→ O(X \D)⋆.

In particular, h is uniquely determined up to isomorphism, the rational map π ◦
f−1 : X ···→T is independent of the choice of f and π up to birational equivalence,

and O(X \D)⋆ ≃ C⋆ × Z.

Proof. Since c(X,D) = 1, the kernel of the class map clD : F(D) ⊗ R → N(X)

is one-dimensional, and hence, the kernel of clZD : F(D) → CL(X) is of rank one.

Therefore, the divisor Θ1 − Θ2 in the proof of Lemma 4.23 is essentially unique,

and indeed, π∗(P1 − P2) is a generator of Ker(clZD). Thus, we have a commutative

diagram

1 −−−−→ O(T )⋆ −−−−→ O(T \ {P1, P2})⋆ −−−−→ Z −−−−→ 0

≃

y h∗

y
y≃

1 −−−−→ O(X)⋆ −−−−→ O(X \D)⋆ −−−−→ Ker(clZD) −−−−→ 0

of exact sequences by Lemma 2.25, and the middle homomorphism h∗ is an isomor-

phism. �

Definition 6.6. For a pseudo-toric surface (X,D) of defect one, let f : (Y,DY ) →
(X,D) be a toroidal blowing up with a P1-fibration π : Y → T ≃ P1 such that

DY = f−1(D) contains two fibers of π. Then, by Proposition 5.5, we have two

rational curves Γ1 and Γ2 on Y such that Γ1 + Γ2 is a unique reducible fiber of

π outside the two fibers contained in D. For i = 1 and 2, we define Li to be the

image f(Γi). The union L1 + L2 is denoted by L.

We have the following immediately from Proposition 5.5 and Lemma 6.5:

Lemma 6.7. (1) The union L = L1 + L2 is a linear chain of rational curves,

and is independent of the choice of f and π.

(2) The pair (X,L) is toroidal along L \D.

(3) The intersection point PL of L1 and L2 is not contained in D.

(4) If X \D is singular, then PL is the unique singular point of X \D and it

is a rational double point of type Ak for some k ≥ 1.

The rational curves L1 and L2 have the following characterization:

Proposition 6.8. Let (X,D) be a pseudo-toric pair of defect one and let ν : X ′ →
X be an arbitrary toroidal blowing up with respect to (X,D). If C is a negative

curve on X ′ not contained in ν−1(D), then ν(C) = L1 or L2.

Proof. The pair (X ′, D′) for D′ = ν−1(D) is also a pseudo-toric surface of defect

one by Lemmas 6.2(4) and 2.27. Let f : Y → X be the toroidal blowing up in

Definition 6.6. Then, there is a toroidal blowing up Y ′ → X ′ with respect to



60

(X ′, D′) such that the induced rational map Y ′ → Y is also a toroidal blowing

up with respect to (Y,DY ). By replacing X ′ with Y ′ and replacing C with the

proper transform in Y ′, we may assume that ν = f ◦ τ for a toroidal blowing up

τ : X ′ → Y with respect to (Y,DY ). By Proposition 5.5, τ−1(Γ1 + Γ2) is a unique

reducible fiber of π ◦ τ outside τ−1(F1 ∪ F2). Then, C = τ−1(Γ1) or τ−1(Γ2) by

Proposition 5.5(4) applied to π ◦ τ : X ′ → T . Therefore, ν(C) = L1 or L2. �

We present an example of L1 + L2 for a simple pseudo-toric surface.

Example 6.9. For the projective plane X = P2, let D = D1 +D2 be a union of a

line D1 and a conic D2 such that D1 ∩D2 consists of two points P1 and P2. Then,

(X,D) is pseudo-toric of defect one, and the linear chain L1 + L2 is just the union

of tangent lines of D2 at the two points P1 and P2. In fact, we can take a toroidal

blowing up f : Y → X as two-times blowings up at each point of {P1, P2} so that

f resolves the indeterminacy of the pencil generated by 2D1 and D2. For i = 1, 2,

the proper transform Γi in Y of the tangent line Li of D2 at Pi is a (−1)-curve,

and the union Γ1+Γ2 is a fiber of the fibration Y → P1 associated with the pencil.

Proposition 6.10. For a pseudo-toric surface (X,D) of defect one, the group

Aut(X;D) of automorphisms of X preserving each irreducible component of D is

isomorphic to the multiplicative group C⋆ = C \ {0}.
Proof. Let f : (Y,DY ) → (X,D) be a toroidal blowing up. Then, any automor-

phism in Aut(X;D) lifts to Aut(Y ;DY ), and conversely, any automorphism in

Aut(Y ;DY ) descends to Aut(X;D). Therefore, Aut(Y ;DY ) ≃ Aut(X;D). Hence,

by replacing (X,D) by (Y,DY ) in Definition 6.6, we may assume that there is

a P1-fibration π : X → T ≃ P1 such that D contains two fibers F1 = π−1(P1)

and F2 = π−1(P2). Then, L1 + L2 is just Γ1 + Γ2 in Definition 6.6. For any

σ ∈ Aut(X;D), we have σ(Γi) = Γi for i = 1, 2 by the uniqueness of L1 + L2

shown in Proposition 6.8 and by the uniqueness of the irreducible component of D

meeting Γi for each i. Hence, Aut(X;D) = Aut(X;D + Γ1 + Γ2).

Let g : X → Z be the contraction morphism of Γ1. Then, by Proposition 5.5,

(Z,DZ) is a toric surface for DZ = g∗(D) and the induced fibration π̄ : Z → T is

a toric morphism (Z,DZ) → (T, P1 + P2). We set F := g(Γ2), which is a fiber of

π̄. Since g is also a toroidal blowing up with respect to (Z,DZ + F ), we have an

isomorphism

Aut(X;D + Γ1 + Γ2) ≃ Aut(Z;DZ + F )

by the same argument as above. For the toric surface (Z,DZ), it is well known that

Aut(Z;DZ) is isomorphic to the group of C-rational points of the open torus Z\DZ ,

which is isomorphic to (C⋆)2. Now, the toric morphism π̄ induces a projection

(C⋆)2 ≃ Aut(Z;DZ) → Aut(T ;P1 + P2) ≃ C⋆

and Aut(Z;DZ + F ) is considered as the preimage of Aut(T ;P1 + P2 + P3) =

{idT } for the point P3 = π̄(F ). Hence, Aut(Z;DZ + F ) ≃ C⋆, and consequently,

Aut(X;D) ≃ C⋆. �

Lemma 6.11. For a pseudo-toric surface (X,D) of defect one, the complement

X \D is an affine surface with the coordinate ring isomorphic to

C[x, s, t, t−1]/(sx− (t− 1)k+1)
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for some k ≥ 0. Moreover, the following hold :

(1) Let f : (Y,DY ) → (X,D) be the toroidal blowing up in Definition 6.6 and

let g : Y → Z be the contraction morphism of Γ1. We set D♯
Z := g∗(DY −

C1) for the irreducible component C1 of DY intersecting Γ1. Then, the

morphism X \D ≃ Y \DY → Z \D♯
Z of affine surfaces induced by g ◦ f−1

is associated with the natural injective ring homomorphism

C[s, t, t−1] → C[x, s, t, t−1]/(sx− (t− 1)k).

In particular, the morphism h in Lemma 6.5 is associated with the natural

injective ring homomorphism

C[t, t−1] → C[x, s, t, t−1]/(sx− (t− 1)k).

(2) The action of θ ∈ C⋆ ≃ Aut(X;D) on X \D in Proposition 6.10 is given

by (x, s, t) 7→ (θx, θ−1s, t).

Proof. We may assume that (Y,DY ) = (X,D) and f = idX . Thus, there is a P1-

fibration π : X → T ≃ P1 such that D = C1+C2+F1+F2 for two sections C1 and

C2 of π with C1 ∩ C2 = ∅ and for two fibers F1 = π−1(P1) and F2 = π−1(P2). For

the reducible fiber Γ1 + Γ2 outside F1 ∪ F2, we may assume that Ci is the unique

irreducible component meeting Γi for i = 1, 2. For the toric surface (Z,DZ), the

coordinate ring of Z \ DZ is written as C[s±1, t±1], where the principal divisors

div(s) and div(t) on Z are expressed as

div(s) = g(C1)− g(C2) and div(t) = g∗(F1)− g∗(F2).

In particular, t is the pullback of a coordinate function of T \ {P1, P2} ≃ Gm.

The open subset Z \ D♮
Z is also affine and its coordinate ring A is isomorphic to

C[s, t±1]. We may assume that g(Γ2) is the fiber over the point: t = 1. Then,

the contraction morphism g : X → Z of Γ1 is expressed as the blowing up along

an ideal (s, (t − 1)k+1) for some k ≥ 0 (cf. Lemma 4.25). Thus, X \ D is affine

and its coordinate ring R is isomorphic to the degree zero part of the homogeneous

coordinate ring

A[X, Y±1]/(sX− (t− 1)k+1Y),

where X, Y are of degree one, and s, t are of degree zero. By setting x = X/Y, we

have

R ≃ C[x, s, t±1]/(sx− (t− 1)k+1).

The assertions (1) and (2) follow from this description and from the proof of Propo-

sition 6.10. �

Proposition 6.12. Let (X,D) be a pseudo-toric surface of defect one and let

µ : M → X be the minimal resolution of singularities with DM = µ−1(D).

(1) The divisor DM is normal crossing, and

KM +DM ∼ 0 and q̄(M \DM ) = 1

for the logarithmic irregularity q̄ (cf. [16], [18]).

(2) For the morphism h in Lemma 6.5, the composition

h ◦ (µ|M\DM
) : M \DM → X \D → T \ {P1, P2} ≃ Gm

is isomorphic to the quasi-Albanese map of M \DM (cf. [15], [18]).
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Proof. By Lemma 6.2(6), (M,DM ) is also a pseudo-toric surface. In particular,

DM is a normal crossing anti-canonical divisor, since M is non-singular. Moreover,

µ induces an isomorphism O(X \ D)⋆ ≃ O(M \ DM )⋆. Since q(M) = 0, the

equality q̄(M \ DM ) = 1 and the assertion (2) are derived from Proposition 2.26

and Lemma 6.5. �

Finally in Section 6.2, we shall prove Theorem 1.6.

Proof of Theorem 1.6. The assertions (1) and (2) have been proved in Proposi-

tion 6.10 and Lemma 6.11, respectively. The assertion (3) follows from Proposi-

tion 6.12. �

7. Half-toric surfaces

We introduce the notion of half-toric surface in Section 7.1 and study funda-

mental properties. In Section 7.2, we introduce the notion of H-surface, which is

regarded as an NC-minimal completion of an open surface of type H[−1, 0,−1] in

the sense of Fujita [11] (cf. Remark 7.14). The H-surface is unique up to isomor-

phism and it is useful to describe the structure of half-toric surfaces. We have an

explicit description of the involution of the characteristic double-cover of a half-toric

surface in Section 7.3. Section 7.4 is devoted to prove Theorem 1.7.

7.1. Definition of half-toric surface.

Definition 7.1. Let (X,D) be a pair of a normal projective surface X and a

reduced divisor D. It is called a half-toric surface if the following conditions are

satisfied:

(i) 2(KX +D) ∼ 0 but KX +D 6∼ 0;

(ii) There is a double-cover τ : V → X étale in codimension one such that V is

a toric surface with DV := τ−1(D) as the boundary divisor.

Lemma 7.2. Let (X,D) and τ : V → X be as in Definition 7.1.

(1) The pair (X,D) is log-canonical and KV +DV = τ∗(KX +D).

(2) The divisor D is big and is a linear chain of rational curves.

(3) The open subset X \D is non-singular and affine.

(4) Let E1 and E2 be end components of D and set Σi = Ei∩ (SingX \SingD)

for i = 1, 2. Then, τ is étale over X \ (Σ1 ∪ Σ2) and one of the cases (a)

and (b) of Proposition 4.18 occurs for each Σi.

(5) For any isomorphism σ : OX(2(KX +D))
≃−→ OX , one has an isomorphism

V ≃ V (OX(KX +D), σ)

over X (cf. Definition 4.9), and an isomorphism η : OV (KV +DV )
≃−→ OV

such that η⊗2 = τ∗(σ) via the canonical isomorphism τ∗OX(2(KX +D)) ≃
OV (2(KV +DV )).

Proof. Since τ is étale in codimension one, (1) is a consequence of Corollary 3.19.

The divisor D is big and connected, since so is DV = τ−1(D). Hence, D is either a

cyclic chain of rational curves or a linear chain of rational curves by Lemma 4.5. If

D is a cyclic chain, then KX +D ∼ 0 by Lemma 4.7; this is a contradiction. Thus,

D is a linear chain of rational curves, and this proves (2). The affineness of X \D
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follows from that of V \DV by Chevalley’s theorem (cf. EGA II, 6.7.1). We shall

prove the rest of (3) assuming (5). If P ∈ SingX \ D, then P is an A1-singular

point of X, since τ is étale in codimension one. Then, KX + D is Cartier at P ,

and it implies that V (OX(KX + D), σ) → X is étale over P by Remark 4.15(4).

This is a contradiction. Thus, (3) is proved by assuming (5). The assertion (4) is

a consequence of (5) and Proposition 4.18. Hence, it remains to prove (5).

By Lemma 4.14, V ≃ V (L, σ) for a reflexive sheaf L of rank one on X and a

homomorphism σ : L⊗2 → OX satisfying the conditions (i) and (ii) of Lemma 4.14.

Thus, in order to prove (5), it suffices to show that L ≃ OX(KX + D) by Re-

mark 4.15(3), where the existence of η follows from Remark 4.15(1). By (1) and by

KV +DV ∼ 0, we have an isomorphism

τ∗OV ≃ τ∗OV (KV +DV ) ≃ (τ∗OV ⊗OX
OX(KX +D))

∨∨
.

Since π∗OV ≃ OX ⊕ L, it induces

OX ⊕ L ≃ OX(KX +D)⊕ (L ⊗OX(KX +D))∨∨.

On the other hand, H0(X,OX(KX +D)) = 0 by Definition 7.1(i). Hence,

HomOX
(OX ,OX(KX +D)) = HomOX

(L, (L ⊗OX(KX +D))∨∨) = 0.

Therefore, L ≃ OX(KX +D), and we have proved (5). �

Lemma 7.3. Let (X,D) be a log-canonical pair of a normal projective surface X

and a reduced divisor D such that D is a big reducible linear chain of rational curves

and 2(KX +D) ∼ 0. Let V = V (OX(KX +D), σ) → X be the double-cover étale

in codimension one associated with an isomorphism σ : OX(2(KX + D))
≃−→ OX .

Then, (V,DV ) is a pseudo-toric surface for DV = τ−1(D). Here, (V,DV ) is a toric

surface if and only if (X,D) is a half-toric surface.

Proof. By Proposition 4.18, we see that (V,DV ) is log-canonical, KV +DV ∼ 0, and

DV is a reducible cyclic chain of rational curves. Here, DV = τ−1(D) is big. Thus,

X is a rational surface with only rational singularities by Lemma 4.7. Therefore,

(V,DV ) is a pseudo-toric surface (cf. Definition 6.1). The last assertion follows from

Definition 7.1 and Lemma 7.2(5). �

Definition. For a half-toric surface (X,D), by Lemma 7.2(5), the double-cover

τ : V → X in Definition 7.1 is unique up to isomorphism over X. The double-cover

τ or the pair (V, τ−1(D)) is called a characteristic double-cover of (X,D).

Lemma 7.4. For a half-toric surface (X,D), the following hold :

(1) Let f : Y → X be a birational morphism from another normal projective

surface Y such that (Y,DY ) is log-canonical and 2(KY + DY ) ∼ 0 for

DY = f−1(D). Then, (Y,DY ) is also a half-toric surface.

(2) Let f : Y → X be a toroidal blowing up with respect to (X,D). Then,

(Y,DY ) is also a half-toric surface for DY = f−1(D).

(3) Let g : X → X be a birational morphism of normal Moishezon surface X.

If g-exceptional locus is contained in D, then (X,D) is also a half-toric

surface for D = g∗(D).
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Proof. Let τ : V → X be a characteristic double cover of (X,D). We fix an isomor-

phism σ : OX(2(KX + D)) ≃ OX . Then, V is isomorphic to V (OX(KX + D), σ)

by Lemma 7.2(5).

(1) and (2): It suffices to prove (1), since (2) is a special case of (1). Now

2(KY + DY ) = f∗(2(KX + D)) ∼ 0, but KY + DY 6∼ 0, since f∗(KY + DY ) ∼
KX + D 6∼ 0. For the induced isomorphism f∗(σ) : OY (2(KY + DY )) ≃ OY , we

have a double-cover

λ : W := V (OY (KY +DY ), f
∗(σ)) → Y

étale in codimension one by Lemma 4.14. Here, (W,DW ) is log-canonical forDW :=

λ−1(DY ) by Corollary 3.19, and KW +DW ∼ 0 by Remark 4.15(1). Since KY +DY

is f -numerically trivial, f∗OY (KY + DY ) is a reflexive sheaf on X, and hence, is

isomorphic to OX(KX +D). Thus, we have an isomorphism

τ∗OV = OX ⊕OX(KX +D) → f∗λ∗OW = f∗(OY ⊕OY (KY +DY ))

of OX -algebras, and it induces a morphism h : W → V such that f ◦ λ = τ ◦ h.
Then, h is a toroidal blowing up with respect to (V,DV ), since DW = h−1(D)

and KW + DW = h∗(KV + DV ) ∼ 0. Therefore, (W,DW ) is a toric surface by

Corollary 4.22, and consequently, (Y,DY ) is a half-toric surface.

(3): Now 2(KX+D) = g∗(2(KX+D)) ∼ 0, and KX+D = g∗(KX+D). Hence,

KX +D 6∼ 0. Let V → V → X be the Stein factorization of τ ◦ g. Then, (V ,DV )

is a toric surface for the image DV of DV by Lemma 3.8, since the exceptional

locus of V → V is contained in DV = τ−1(D). The surface X is projective, since

the induced morphism τ̄ : V → X is finite and V is projective. Moreover, τ̄ is

étale in codimension one and τ−1(D) = DV . Therefore, (X,D) is also a half-toric

surface. �

Proposition 7.5. Let (X,D) be a half-toric surface and let µ : M → X be the min-

imal resolution of singularities. Then, DM = µ−1(D) is a simple normal crossing

divisor consisting of rational curves and its dual graph is expressed as follows :

✐Θ1
✐ ✐ ✐ Θ4

✐Θ2
✐ Θ3

Here, the four end components Θ1, . . .Θ4 are (−2)-curves satisfying

2(KM +DM ) ∼
∑4

i=1
Θi.

Let g : M → M be the contraction morphism of these four end components. Then,

µ = µ̄◦g for a birational morphism µ̄ : M → X, and (M,DM ) is a half-toric surface

for DM = g∗(DM ) = µ̄−1(D).

Proof. By Lemma 7.2, µ is an isomorphism on X \D and is a toroidal blowing up

with respect to (X,D) at least over an open neighborhood of SingX ∩SingD. The

set of singular points of X lying on D \ SingD is Σ1 ∪Σ2 for the sets Σ1 and Σ2 in

Lemma 7.2(4) and the singularities are described as in Proposition 4.18. Therefore,
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DM = µ−1(D) is a simple normal crossing divisor consisting of rational curves with

the dual graph above. Here, the end components Θ1, . . . , Θ4 are (−2)-curves lying

over Σ1 ∪ Σ2. Since µ is a toroidal blowing up over X \ (Σ1 ∪ Σ2), we can write

2(KM +DM )− µ∗(2(KX +D)) =
∑4

i=1
aiΘi +

∑
bjΓj

for the irreducible components Γj in µ
−1(Σ1 ∪ Σ2) not contained in Θ :=

∑4
i=1 Θi

and for some integers ai and bj . By the information of the dual graph of DM , we

have

(KM +DM )Θi = −1 and (KM +DM )Γj =

{
1, if Γj ∩Θ 6= ∅,
0, if Γj ∩Θ = ∅.

for any 1 ≤ i ≤ 4 and j. This implies that ai = 1 for any i and bj = 0 for any j,

and hence, we have the required linear equivalence relation on
∑4
i=1 Θi.

Since Θ is µ-exceptional, µ factors through the contraction morphism g : M →M

of Θ. Let µ̄ be the induced birational morphismM → X and set DM := g∗(DM ) =

µ̄−1(D). Then, DM is a linear chain of rational curves, (M,DM ) is log-canonical,

and 2(KM +DM ) = µ̄∗(2(KX +D)) ∼ 0. Thus, (M,DM ) is a half-toric surface by

Lemma 7.4(1). �

Proposition 7.6. In the situation of Lemma 7.3, if δ(X,D) = 1, then (X,D) is

a half-toric surface.

Proof. By Lemma 4.23, there exist a toroidal blowing up f : Y → X with respect

to (X,D) and a P1-fibration π : Y → T ≃ P1 such that DY = f−1(D) contains

two distinct fibers of π. Here, (Y,DY ) satisfies the condition of Lemma 7.3, and

δ(Y,DY ) = δ(X,D) = 1 by Lemma 2.27. By Lemma 7.4(3), we may replace X

with Y . Then, (X,D) and π : X → T are as in the situation of Section 5, and we

have the case (B) in Lemma 5.2. Since δ(X,D) = 1 and 2(KX +D) ∼ 0, the pair

(X,D) is a half-toric surface by Proposition 5.9. �

7.2. An H-surface and a half-toric surface.

Definition 7.7. Let S be a non-singular projective rational surface and let DS be

a reduced simple normal crossing divisor. If DS has an irreducible decomposition

DS = C + E1 + E2 +Θ1,1 +Θ1,2 +Θ2,1 +Θ2,2

with the dual graph:

✐E1
✐
C

✐ E2

✐Θ1,1

✐Θ1,2

✐ Θ2,1

✐ Θ2,2

and if the following four conditions are satisfied, then (S,DS) is called a pre H-

surface:

(i) C is a non-singular rational curve;

(ii) E1 and E2 are (−1)-curves;
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(iii) Θi,j are all (−2)-curves for any 1 ≤ i, j ≤ 2;

(iv) There is no (−1)-curve in S \DS .

If C2 = 0 holds in addition, then (S,DS) is called an H-surface.

Lemma 7.8. For the pre H-surface (S,DS) above, there is a linear equivalence

relation

(VII-1) 2(KS +DS) ∼ Θ :=
∑

1≤i,j≤2
Θi,j .

For i = 1, 2, we set

Fi := 2Ei +Θi,1 +Θi,2.

Then, there exists a P1-fibration π : S → T ≃ P1 such that

• Fi is a scheme theoretic fiber of π for any i = 1, 2,

• C is a double-section of π, and

• the double-cover C → T is branched at two points P1 := π(F1) and P2 :=

π(F2).

If π is smooth outside F1 ∪ F2, then (S,DS) is an H-surface.

Proof. By the information of the dual graph of DS , for each i = 1, 2, we have a

P1-fibration S → T ≃ P1 such that Fi is the scheme-theoretic fiber. Here, we have

the common fibration π, since F1 ∩ F2 = ∅ and CF1 = CF2 = 2. In particular,

π|C : C → T is a double-cover branched at {P1, P2}, since C ∩Fi is a point as a set.

Next, we shall show (VII-1). We set

L := KS + C + E1 + E2 +
1

2
Θ = KS + C +

1

2
(F1 + F2).

Then, (VII-1) is equivalent to the numerical equivalence relation L ∼∼∼ 0, since S

is rational. We have LG = 0 for any irreducible component G of DS by a direct

calculation from the information of the dual graph of DS . Since DS is big, if L is

nef, then L ∼∼∼ 0 by the Hodge index theorem. Thus, for the proof of (VII-1), it is

enough to derive a contradiction assuming that L is not nef. In this situation, there

is an extremal curve Γ with LΓ < 0 by the cone theorem (cf. Theorem 2.19). Note

that ρ(X) > 2, since we can contract E1 +Θ1,1 to a non-singular point. Thus, Γ is

a (−1)-curve satisfying

(C + E1 + E2) ∩ Γ = ∅ and ΘΓ ≤ 1.

Here, if ΘΓ > 0, then ΘF1 = ΘF2 > 0, and it implies that ΘΓ ≥ 2. Therefore,

Θ ∩ Γ = ∅ and this contradicts the condition (iv) of Definition 7.7. Thus, (VII-1)

has been proved.

The last assertion is shown as follows. Suppose that π is smooth outside F1∪F2.

It is enough to prove: C2 = 0. Let g : S → Z be the contraction morphism

of E1 + Θ1,1 + E2 + Θ2,1. Then, the induced P1-fibration πZ : Z → T is smooth.

Hence, Z is isomorphic to the Hirzebruch surface Fn = P(O⊕O(n)) for some n ≥ 0.

Here, the image CZ := g(C) is isomorphic to C over T satisfying C2
Z = C2+4, and

the image Fi,Z := g(Θi,2) is the fiber over Pi for i = 1, 2. Hence,

KZ + CZ + FZ ∼ 0

for a fiber FZ of πZ by (VII-1). This implies that C2
Z = 4, since K2

Z = 8 and

KZFZ = −2. Therefore, C2 = 0, and (S,DS) is an H-surface. �
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We can construct an H-surface from a plane conic with two tangent lines as

follows.

Example 7.9. Let C0 be a non-singular plane conic, and let L1 and L2 be two

tangent lines to C0. Let Q0 be the point L1 ∩ L2, and let Qi be the point C0 ∩ Li
for i = 1, 2. Let f : S1 → P2 be the blowing up at the three points Qi and set

Bi = f−1(Qi) for i = 1, 2. Let C1, L
′
1, and L′

2 be the proper transforms of

C0, L1, and L2 in S1, respectively. Then, L′
i and Bi are (−1)-curves intersecting

at a point Q′
i, and C1 intersects L′

i + Bi at Q′
i, for each i = 1, 2. Moreover,

(L′
1 + B1) ∩ (L′

2 + B′) = ∅ and C2
1 = 2. Let g : S → S1 be the blowing up at

{Q′
1, Q

′
2} and let DS be the union of the proper transform C of C1, the exceptional

divisor Ei = g−1(Q′
i), the proper transform Θi,1 of L′

i, and the proper transform

Θi,2 of Bi for i = 1, 2. Then, (S,DS) is an H-surface, since DS have the same dual

graph as in Definition 7.7, S \DS is affine, and C2 = 0.

We can also construct an H-surface from a certain double-section of a Hirzebruch

surface, as follows.

Example 7.10. Let p : Fn → P1 be the ruling of the Hirzebruch surface Fn =

P(O ⊕ O(n)) and let C0 be a non-singular curve linearly equivalent to −KFn
− F

for a fiber F of p. Such C0 exists only when n ≤ 1, and in this case, we have C0 ≃ P1

and C2
0 = 4. Then, there exist exactly two fibers L1 and L2 which intersect C0

tangentially. Let f : S1 → Fn be the blowing up at the two points C0 ∩ (L1 ∪ L2).

Note that S1 is isomorphic to the S1 in Example 7.9 when n = 1. Let Bi be the

exceptional curve f−1(C0 ∩Li) for i = 1, 2. Then, the proper transform L′
i of Li is

a (−1)-curve intersecting Bi transversely at a point Q′
i, and the proper transform

C1 of C0 intersects L′
i + Bi at Q

′
i, for i = 1, 2. Here, C2

1 = 2. Let g : S → S1 be

the blowing up at {Q′
1, Q

′
2}. Then, (S,DS) is an H-surface for the union DS of

the proper transform C of C1, the g-exceptional divisor Ei = g−1(Q′
i), the proper

transform Θi,1 of L′
i, and the proper transform Θi,2 of Bi, for i = 1, 2. In fact, DS

has the same dual graph as in Definition 7.7, S \DS is affine, and C2 = 0.

Lemma 7.11. Every H-surface (S,DS) is isomorphic to the H-surface obtained

in Example 7.9. In particular, S \ DS is affine, the morphism π in Lemma 7.8

is smooth outside F1 ∪ F2, and moreover, π induces a Gm-fiber bundle S \ DS →
T \ {P1, P2}.

Proof. Since C2 = 0 and C ≃ P1, there is a fibration ̟ : S → E ≃ P1 such that C

is a smooth fiber of ̟. Here, E1 and E2 are sections of π and the four (−2)-curves

Θi,j are all contained in fibers of ̟, since E1C = E2C = 1 and Θi,jC = 0. We

can take an irreducible component ∆1 of the fiber of ̟ containing Θ1,1 such that

Θ1,1 ∩∆1 6= ∅. We set d1 := Θ1,1∆1 > 0. Then, d1 = F1∆1 = F2∆1, and

0 = (KS + C +
1

2
(F1 + F2))∆1 = KS∆1 + d1

by (VII-1). Since ∆2
1 < 0, we see that ∆1 is a (−1)-curve and d1 = 1. Moreover,

F2∆1 = 1 implies that E2 ∩∆1 = ∅ and (Θ2,1 +Θ2,2)∆1 = 1. By exchanging Θ2,1

and Θ2,2 if necessarily, we may assume that Θ2,1∆1 = 1 and Θ2,2 ∩∆1 = ∅. Then,
H1 := 2∆1 +Θ1,1 +Θ2,1 is a scheme-theoretic fiber of ̟.
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✐E1
✐
C

✐ E2

✐Θ1,1

✐Θ1,2

✐ Θ2,1

✐ Θ2,2

✐
∆1

✐

∆2

Figure 2. Dual graph of DS +∆1 +∆2

Let h : S → Z be the contraction morphism of ∆1 +E1 +Θ1,2 +E2 +Θ2,2. We

set Li := h∗(Θi,1) for i = 1, 2, and C0 := h∗(C). Then, Z is also a non-singular

surface, and C0, L1, and L2 are non-singular rational curves such that

L2
1 = L2

2 = L1L2 = 1, C2
0 = 4, C0L1 = C0L2 = 2,

L1 ∼ L2 and 2(KZ + C0) + L1 + L2 ∼ 0.

Therefore, K2
Z = 9, and as a consequence, Z ≃ P2, C0 is a conic, and L1 and L2 are

tangent lines of C0. Hence, (S,DS) is obtained as in Example 7.9. We know that

S\DS is affine by Example 7.9. By the construction of (S,DS) in Example 7.10, we

see that π is smooth outside F1 ∪F2 and that the morphism S \DS → T \ {P1, P2}
induced by π is a Gm-fiber bundle. �

Corollary 7.12. For an H-surface (S,DS), there exist (−1)-curves ∆1 and ∆2 on

S such that

(1) ∆1 and ∆2 are sections of π,

(2) (∆1 +∆2) ∩ (E1 + E2 + C) = ∅, and
(3) (S,D♯

S) is a toric surface for D♯
S := DS − C +∆1 +∆2.

In particular, DS + ∆1 + ∆2 = D♯
S + C has the dual graph in Figure 2 after

interchanging Θ2,1 and Θ2,2 if necessarily.

Proof. By the proof of Lemma 7.11, after replacing Θ2,1 and Θ2,2 if necessary,

we have (−1)-curves ∆1 and ∆2 on S such that ∆i is a section of π and Hi =

2∆i + Θi,1 + Θi,2 is a fiber of ̟ for i = 1, 2. Let k : S → Y be the contraction

morphism of ∆1 + Θ2,1 + ∆2 + Θ2,2. Then, ρ(Y ) = ρ(S) − 4 = 2, and as a

consequence, the induced morphism Y → E ≃ P1 is a P1-bundle. Let D♯
Y be the

image of D♯
S . Then, D♯

S = k−1(D♯
Y ) and (Y,D♯

Y ) is a toric surface. Since k is a

toroidal blowing up with respect to (Y,D♯
Y ), by Corollary 4.22, (S,D♯

S) is a toric

surface. �

Corollary 7.13. Let (S,DS) be an H-surface. Then,

CL(S \DS) ≃ Z/2Z,

and the Gm-bundle S \ DS → T \ {P1, P2} in Lemma 7.11 is isomorphic to the

quasi-Albanese map of S \DS. In particular,

O(S \DS)
⋆ ≃ C⋆ × Z.
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Proof. The class group CL(S \DS) is the cokernel of the class map

c := clZDS
: F(DS) → CL(S)

(cf. Definition 2.24). Since (S,D♯
S) is toric for the divisor D♯

S of Corollary 7.12,

CL(S) ≃ Pic(S) ≃ Z⊕6 is generated by the linear equivalence classes of the ir-

reducible components of D♯
S . On the other hand, the image of c is generated

by the linear equivalence classes of the irreducible components of DS . There is

no divisor B supported on DS such that BF = 1 for a fiber F of π : S → T .

But ∆1F = 1 for the divisor ∆1 of Corollary 7.12. Thus, CL(S \ DS) 6= 0.

Since C ∼ H1 = 2∆1 + Θ1,1 + Θ2,1 as in the proof of Lemma 7.11, we have

CL(S \DS) ≃ Z/2Z.

The kernel of c consists of principal divisors B supported on DS . This B is a

multiple of F1 − F2. In fact, BF1 = 0 implies that SuppB ⊂ DS − C = F1 ∪ F2,

and BC = 0 implies that Supp(B −m(F1 − F2)) ⊂ Θ =
∑

Θi,j for some m ∈ Z.

Here, B = m(F1 − F2), since Θ is negative definite. By the proof of Lemma 2.25,

we have a commutative diagram

O(T )⋆ −−−−→ O(T \ {P1, P2})⋆ −−−−→ F(P1 + P2)
clZP1+P2−−−−−→ CL(T )

=

y φ

y π∗

y
yπ∗

O(S)⋆ −−−−→ O(S \DS)
⋆ −−−−→ F(DS)

clZDS−−−−→ CL(S)

of exact sequences related to class maps. Since π∗(Pi) = Fi for i = 1, 2, the

homomorphism

Ker(clZP1+P2
) → Ker(clZDS

)

induced by π∗ is an isomorphism by the observation above on B. Hence, the second

vertical homomorphism φ in the diagram is an isomorphism. Note that φ is induced

from the Gm-fiber bundle p : S \DS → T \ {P1, P2}. Therefore, p is isomorphic to

the quasi-Albanese map of S \DS by Proposition 2.26, since q(S) = 0. �

Remark 7.14. By Lemma 7.11, we see that, for an H-surface (S,DS), the open

subset S \DS is an open surface of type H[−1, 0,−1] in the sense of Fujita in [11,

(8.19)] and (S,DS) is an NC-minimal completion of S \ DS in his sense (cf. [11,

Th. (8.5), (8.9), (8.18), Table (8.64)]).

Proposition 7.15. For an H-surface (S,DS), let S → S be the contraction mor-

phism of the four end components Θi,j of DS. Then, (S,DS) is a half-toric surface

for the image DS of DS, and the characteristic double-cover of (S,DS) is isomor-

phic to P1 × P1. Moreover, δ(S,DS) = 1 holds.

Proof. Let τ : V = V (OS(−(KS +DS)), σ) → S (cf. Definition 4.9) be the double-

cover associated with a natural homomorphism

σ : OS(−(KS +DS))
⊗2 ≃ OS(−Θ) →֒ OS

induced by (VII-1). Here, V is non-singular and the branch locus of τ is Θ. Then,

we have the following properties:

• Θ̂i,j := τ−1(Θi,j) is a (−1)-curve for any i, j.

• Êi := τ−1(Ei) is a (−2)-curve, and is a double-cover of Ei for i = 1, 2.
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• τ−1(C) is a disjoint union Ĉ1 ∪ Ĉ2 of two copies of C.

Let V → V be the contraction morphism of the four (−1)-curves Θ̂i,j . Then, the

induced morphism τ̄ : V → S is a double-cover étale in codimension one. We set

Gi,1 := τ∗(Êi) and Gi,2 := τ∗(Ĉi) for i = 1, 2. Then, Gi,j ≃ P1 and

Gi,jGi′,j′ =

{
1, if i = i′;

0, if i 6= i′,

for any i, i′, j, and j′. Thus, DV :=
⋃

1≤i,j≤2Gi,j is a cyclic chain of four rational

curves with self-intersection number zero. Note that DV = τ̄−1(DS) and V \DV is

affine, since V \DV ≃ τ−1(S \DS) and S \DS is affine. Therefore, V ≃ P1 × P1,

and DV is a union of two fibers of the first projection V → P1 and of two fibers

of the second projection V → P1. In particular, (V ,DV ) is a toric surface, and

consequently, (S,DS) is a half-toric surface. The equality δ(S,DS) = 1 is derived

from ρ(S) = ρ(S)− 4 = 2 and n(DS) = 3. �

Lemma 7.16. Let (X,D) be a half-toric surface with a P1-fibration π : X → T ≃ P1

such that δ(X,D) = 1 and that D contains two distinct fibers of π. Let µ : M → X

be the minimal resolution of singularities and set DM := µ−1(D). Then, for the

H-surface (S,DS) above, there is a toroidal blowing up f : M → S with respect to

(S,DS) such that DM = f−1(DS).

Proof. By Lemma 5.2 and Propositions 5.7 and 5.9, D is a linear chain of rational

curves expressed as C0 + F1 + F2 for a double-section C0 and two fibers F1 and

F2 of π such that π is smooth outside F1 ∪ F2. By the proof of Proposition 7.5,

DM = µ−1(D) is a simple normal crossing divisor expressed as CM+F1,M+F2,M for

the proper transform CM of C0 inM and two fibers F1,M and F2,M of µ◦π : M → T .

Here, for i = 1, 2, the fiber Fi,M is written as Gi+Θi,1+Θi,2 for a linear chain Gi of

rational curves and two (−2)-curves Θi,1 and Θi,2 such that, for an end component

Gi,0 of Gi, Θi,j ∩ Gi = Θi,j ∩ Gi,0 for any j = 1, 2. We have 2(KM + DM ) ∼
Θ :=

∑
i,j Θi,j by Proposition 7.5. Let f : M → N be the contraction morphism of

G1+G2−(G1,0+G2,0). Then, f is a succession of contractions of (−1)-curves. For,

ifGi,0 is a (−1)-curve, thenGi = Gi,0, sinceGi,0+Θi,1+Θi,2 is not negative definite.

Hence, N is non-singular, and DN = f∗(DM ) has the same dual graph as that of

DS in Definition 7.7. Thus, (N,DN ) is a pre H-surface. We set Fi,N := f∗(Fi,M )

for i = 1, 2. Then, the P1-fibration πN : N → T induced from π : X → T is smooth

outside F1,N ∪ F2,N by construction. On the other hand, πN is isomorphic to the

fibration π in Lemma 7.8 defined for the pre H-surface (N,DN ), where F1,N ∪F2,N

corresponds to F1 ∪ F2 in Lemma 7.8. Therefore, (N,DN ) is an H-surface by

Lemma 7.8. �

7.3. On certain involutions of toric surfaces. We shall show that a half-toric

surface is characterized as the quotient surface of a projective toric surface by a

special involution.

Lemma 7.17. Let ι be an involution of the two-dimensional algebraic torus T :=

SpecC[t±1
1 , t±1

2 ] such that

(i) ι∗η = −η for the two-form η = (t−1
1 dt1) ∧ (t−1

2 dt2), and

(ii) the fixed point set of ι contains no prime divisor on T.
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Then, after changing the coordinate (t1, t2) of T, the ι is given by

ι∗(t1) = −t1 and ι∗(t2) = t
−1
2 .

In particular, ι has no fixed point.

Proof. The induced involution ι∗ : C[t±1
1 , t±1

2 ] → C[t±1
1 , t±1

2 ] is given by

(VII-2) ι∗(t1) = λ1t
a1
1 t

a2
2 and ι∗(t2) = λ2t

b1
1 t

b2
2

for suitable λ1, λ2 ∈ C⋆ = C \ {0} and suitable integers a1, a2, b1, b2 such that the

matrix

A =

(
a1 a2
b1 b2

)

has order at most two and

(VII-3) λ−1
1 = λa11 λ

a2
2 and λ−1

2 = λb11 λ
b2
2 .

Then, detA = −1 by (i). In particular, A has eigenvalues 1 and −1. For a C-

scheme Z, let T(Z) denote the set HomSpecC(Z,T) of the morphisms from Z to

the two-dimensional algebraic torus T. Then, T(Z) is an abelian group. We write

T(C) for T(SpecC). For an element u ∈ T(Z), let σu denote the (left) action of u

on T× Z = T×SpecC Z over Z. Then,

σu ◦ σv = σu·v

for any u, v ∈ T(Z), where · denotes the multiplication in T(Z). For u ∈ T(C), the

σu is an automorphism of T, and if (t1(u), t2(u)) = (u1, u2) ∈ (C⋆)2, the associated

ring homomorphism σ∗
u : C[t

±1
1 , t±1

2 ] → C[t±1
1 , t±1

2 ] is given by

σ∗
u(t1) = u1t1, and σ∗

u(t2) = u2t2.

Let ιA be an involution of T defined by

ι∗A(t1) = t
a1
1 t

a2
2 , and ι∗A(t2) = t

b1
1 t

b2
2 .

Then, ιA is equivariant with respect to the action of T, i.e.,

ιA(u · v) = ιA(u) · ιA(v)
for any u, v ∈ T(Z) for any C-scheme Z. In particular,

ιA ◦ σν = σιA(ν) ◦ ιA and ιA ◦ σιA(ν) = σν ◦ ιA
for any ν ∈ T(C). The relations among ι, A, and (λ1, λ2) above (cf. (VII-2) and

(VII-3)) are translated as

ι = ιA ◦ σλ and ιA(λ) = λ−1,

where λ is an element of T(C) defined by (λ1, λ2) = (t1(λ), t2(λ)). In particular,

the action of ι on T(C) is given by

ν 7→ ι(ν) = ιA(λ · ν) = ιA(λ) · ιA(ν) = λ−1 · ιA(ν).
Therefore, the fixed point set Fix(ι) of ι is the set of element ν ∈ T(C) satisfying

(VII-4) λ = ιA(ν) · ν−1.
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We shall show that Fix(ι) = ∅. Take an eigenvector t(p, q) of A with eigenvalue

1 such that p and q are integers, we define a morphism f : C := SpecC[s±1] → T

by

f∗(t1) = sp and f∗(t2) = sq.

Then, f is a morphism of group schemes, and ιA ◦ f = f by the choice of (p, q).

If ν ∈ Fix(ι), then the image of σν ◦ f : C → T is contained in Fix(ι) by (VII-4).

Indeed, we have:

ι ◦ (σν ◦ f) = ιA ◦ σλ·ν ◦ f = ιA ◦ σιA(ν) ◦ f = σν ◦ ιA ◦ f = σν ◦ f.

This is a contradiction to (ii). Hence, Fix(ι) = ∅.
Next, we shall show that

P−1AP =

(
1 0

0 −1

)

for a matrix P ∈ SL(2,Z) by applying Lemma 7.18 below. Assume the contrary.

Then, A 6≡ I mod 2 by Lemma 7.18(2) for the identity matrix I. By Lemma 7.18(1)

applied to the multiplicative abelian group L = C⋆, we see that the image of the

homomorphism T(C) → T(C) given by ν 7→ ν−1ιA(ν) is just the set of elements λ′

of T(C) such that ιA(λ
′) = λ′−1. Therefore, we have an element ν ∈ T(C) satisfying

λ = ν−1ιA(ν), which means that Fix(ι) 6= ∅ by (VII-4). This is a contradiction.

Therefore, by changing the coordinates (t1, t2), we may assume that

A =

(
1 0

0 −1

)
.

Then, λ21 = 1 by (VII-3). If λ1 = 1, then the locus {t2 = c} ⊂ T for a constant

c with c2 = λ2 is contained in Fix(ι) by (VII-2). Thus, λ1 = −1. By changing

t2 again, we may assume that the equalities (VII-2) determining the action of ι is

written as

ι∗(t1) = −t1 and ι∗(t2) = t
−1
2 .

Thus, we are done. �

The lemma below is used in the proof of Lemma 7.17 above.

Lemma 7.18. Let A be an integral 2× 2 matrix having eigenvalues 1 and −1. For

the 2× 2 identity matrix I, the following hold :

(1) For an abelian group L, let (A ± I)L be the endomorphism L⊕2 → L⊕2

induced from A± I : Z⊕2 → Z⊕2 by taking tensor product with L over Z. If

A 6≡ I mod 2, then, Ker(A− I)L = Im(A+ I)L, where Ker and Im denote

the kernel and the image, respectively.

(2) If A ≡ I mod 2, then

P−1AP =

(
1 0

0 −1

)

for a matrix P ∈ SL(2,Z).
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Proof. There is a positive integer e such that Im(A + I) = eKer(A − I), since A

has eigenvalues 1 and −1. Since A+ I ≡ 0 mod e and trace(A) = 0, we have e = 1

or 2. Assume that A 6≡ I mod 2. Then e = 1, and it implies that

0 → Z ≃ Ker(A+ I) → Z⊕2 A+I−−−→ Z⊕2 A−I−−−→ Im(A− I) ≃ Z → 0

is an exact sequence. Since this sequence is split, its tensor product with L is also

an exact sequence for any abelian group L. Thus, Ker(A− I)L = Im(A+ I)L, and

we have proved (1). Let t(p1, p2) (resp. t(q1, q2)) be an integral vector generating

Ker(A− I) (resp. Ker(A+ I)). Then,

P−1AP =

(
1 0

0 −1

)
for P :=

(
p1 q1
p2 q2

)
.

By replacing (p1, p2) with (−p1,−p2) if necessary, we may assume that detP > 0.

It suffices to prove detP = 1 in case A ≡ I mod 2. Note that we have e = 2 in this

case, since Im(A+ I) ⊂ 2Z2. The image of t(p1, p2) by A+ I is t(2p1, 2p2), and it

generates Im(A+ I) = 2Ker(A− I). Therefore, t(p1, p2) and
t(q1, q2) generate Z2,

and hence, detP = 1, and we have proved (2). �

Proposition 7.19. Let (V,DV ) be a projective toric surface and let ι : V → V be

an involution such that ι(DV ) = DV . If ι∗η 6= η for a nowhere vanishing section

η of OV (KV +DV ) and if the fixed point set Fix(ι) of ι contains no prime divisor

on V \ DV , then Fix(ι) is a finite set contained in D. In particular, (X,D) is a

half-toric surface for the quotient surface X of V by ι and for the image D of DV

in X.

Proof. Let U be the open torus V \ DV . Then, U ≃ SpecC[t±1
1 , t±2 ], where the

coordinate function ti for i = 1, 2, is regarded as a rational function on V which is

invertible on U . The restriction of η to U is expressed as (t−1
1 dt1) ∧ (t−1

2 dt2) or its

multiple by a non-zero constant. Here, ι∗η = −η, since ι is an involution. Then, ι

has no fixed point in U by Lemma 7.17.

It is enough to prove that any irreducible component of DV is not contained

in the fixed point locus Fix(ι) of ι. In fact, if this is true, then the quotient

morphism τ : V → X is étale in codimension one, and η⊗2 descends to a nowhere

vanishing section of OX(2(KX + D)) with 2(KV + DV ) = τ∗(2(KX + D)), since

η⊗2 is preserved by ι. Furthermore, in this situation, KX +D 6∼ 0. For, a nowhere

vanishing section ζ of OX(KX +D) induces a nowhere vanishing section τ∗(ζ) of

OV (KV +DV ) which satisfies ι∗(τ∗ζ) = τ∗ζ; this is a contradiction to: τ∗η = −η.
This implies that (X,D) is a half-toric surface. Therefore, we are reduced to show

the non-existence of irreducible components of DV contained in Fix(ι).

Let Γ be an irreducible component of DV . By the description of the toric surface

V by a fan (cf. Example 3.3), Γ corresponds to a ray R≥0v in N ⊗ R, where N is

the group of one-parameter subgroups of the torus U and v is a primitive element

of N. Now, N is identified with Z⊕2 in such a way that (m,n) ∈ Z⊕2 corresponds

to a one-parameter subgroup f : SpecC[s±1] → U defined by

f∗(t1) = sm and f∗(t2) = sn.

Hence, if an element (m,n) of Z2 corresponds to v, then

gcd(m,n) = 1, ordΓ(t1) = m, and ordΓ(t2) = n
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(cf. [12, p. 61, Lemma], [24, I, Th. 1’], [41, Prop. 1.6, (v)]), where ordΓ(ϕ) denotes

the order of zeros (or the minus of the order of poles) of a rational function ϕ along

Γ. By Lemma 7.17, we may assume that the restriction of ι to U corresponds to

an automorphism ι∗ of C[t±1
1 , t±1

2 ] given by

ι∗(t1) = −t1 and ι∗(t2) = t−1
2 .

Assume that ι(Γ) = Γ. Then, n = 0 and m = ±1. Consequently, Γ is an

irreducible component of the principal divisor div(t1), and the restriction t̄2 of t2
to Γ is a non-constant rational function on Γ. We have ι∗Γ(t̄2) = t̄−1

2 for the induced

automorphism ιΓ = ι|Γ : Γ → Γ. This implies that ιΓ is not the identity morphism,

and hence Γ 6⊂ Fix(ι). Therefore, Fix(ι) contains no irreducible component of DV ,

and we are done. �

7.4. The structure of a half-toric surface. By applying results in Sections 7.2

and 7.3, we investigate further properties on the half-toric surfaces and prove The-

orem 1.7. As a corollary of Lemma 7.17, we have:

Proposition 7.20. For a half-toric surface (X,D), the open subset X \ D is a

non-singular affine surface with the coordinate ring isomorphic to

C[x, x−1, y, z]/(x(y2 − 1)− z2).

In particular, the isomorphism class of X \D is independent of the choice of half-

toric surfaces (X,D). The fundamental group π1((X \ D)an) of the associated

complex analytic manifold (X \ D)an is generated by two elements a, b with one

relation: ab = ba−1. In other words, π1((X \ D)an) ≃ Z ⋊ Z, where the normal

subgroup Z is regarded as a Z-module by m · x = (−1)mx.

Proof. The X \D is non-singular and affine by Lemma 7.2(3). This is derived also

from Lemma 7.17. It implies that V \ DV → X \ D is a finite étale morphism

from an affine surface for the characteristic double-cover (V,DV ) of (X,D). The

coordinate ring R of X \D is isomorphic to the ι∗-invariant ring of the coordinate

ring of V \DV for the Galois involution ι. By Lemma 7.17, for a suitable coordinate

(t1, t2) of V \DV and for a monomial tm1 tn2 , we have

ι∗(tm1 tn2 ) = (−1)mtm1 t
−n
2 .

Hence, the invariant ring of C[t±1
1 , t±1

2 ] is generated by

x := t21, x−1 = t
−2
1 , y :=

1

2
(t2 + t

−1
2 ), z :=

1

2
t1(t2 − t

−1
2 ).

By writing t2 and t
−1
2 in terms of t1, y, z, we have one relation: xy2 − z2 = x.

Since x(y2 − 1)− z2 is irreducible in C[x, y, z], we have the description above of R.

Let C2 → (C⋆)2 be the map defined by (z1, z2) 7→ (e(z1), e(z2)), where e(z) =

exp(2π
√
−1z). This map is a universal covering map of (V \ DV )

an. We may

assume that e(z1) = t1 and e(z2) = t2 for the coordinate (z1, z2) of C
2 and for the

coordinate (t1, t2) above of V \DV . The fundamental group π1((V \DV )
an) ≃ Z⊕2

acts on C2 by (z1, z2) 7→ (z1+m, z2+n) for (m,n) ∈ Z⊕2. The involution ι : V → V

lifts to an automorphism b : C2 → C2 defined as (z1, z2) 7→ (z1 + 1/2,−z2). Thus,

π1((X \ D)an) is isomorphic to the automorphism subgroup of C2 generated by b

and Z⊕2. Since b2(z1, z2) = (z1 + 1, z2), the group π1((X \D)an) is generated by b
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and an automorphism a defined by a(z1, z2) = (z1, z2+1). Here, we have a relation:

a ◦ b = b ◦ a−1, and this determines π1((X \D)an). �

Remark 7.21. For an H-surface (S,DS) (cf. Definition 7.7), we have a half-toric

surface (S,DS) with S \ DS ≃ S \ DS in Proposition 7.15. By Proposition 7.20

above, we see thatX\D is isomorphic to the open surface S\DS of typeH[−1, 0,−1]

in the sense of Fujita [11, (8.19)] (cf. [11, Th. (8.5), Table (8.64)]) for any half-toric

surface (X,D). The topological fundamental group of the open surface of type

H[−1, 0,−1] is also calculated in [11, Table (8.64), Example (7.24)], but its method

is different from ours.

Proposition 7.22. For a half-toric surface (X,D), let Aut(X;D) be the group of

automorphisms of X preserving each irreducible components of D. Then, Aut(X;D)

≃ C⋆ × Z/2Z, and the action of Aut(X;D) on the open subset X \D is given by

(x, y, z) 7→ (λ2x, (−1)ky, (−1)kλz)

with respect to the expression of the coordinate ring of X \D in Proposition 7.20

for λ ∈ C⋆ and k ∈ {0, 1}.

Proof. Let τ : V → X be the characteristic double-cover of (X,D). An automor-

phism σ of X lifts to an automorphism σV of V commuting with the Galois involu-

tion ι of τ , since τ is étale in codimension one. Assume that σ ∈ Aut(X;D). Then

σV preserves τ∗Di for any irreducible component Di of D, and in particular, σV
preserves DV = τ−1(D). Hence, σV acts on V \DV . The action of σV on V \DV is

determined by an automorphism σ∗
V of the coordinate ring C[t±1

1 , t±2
2 ], where we

may assume that the coordinate (t1, t2) satisfies ι∗(t1) = −t1 and ι∗(t2) = t
−1
2

by Lemma 7.17. The σ∗
V is given by

σ∗
V (t1) = λta11 t

a2
2 and σ∗

V (t2) = νtb11 t
b2
2

for some λ, ν ∈ C \ {0} and for some integers a1, a2, b1, b2 such that

det

(
a1 a2
b1 b2

)
= ±1.

The lift σV satisfies ι ◦ σV = σV ◦ ι. Thus,
a2 = b1 = 0, a1 = ±1, b2 = ±1, ν = ±1,

and σ∗
V is given by

σ∗
V (t1) = λtε11 and σ∗

V (t2) = ε3t
ε2
2

for some constants λ ∈ C \ {0} and ε1, ε2, ε3 ∈ {±1}. As in the proof of Proposi-

tion 7.19, an irreducible component Γ of DV corresponds to a pair (m,n) of integers

with gcd(m,n) = 1 defined by

ordΓ(t1) = m and ordΓ(t2) = n.

The irreducible component ι(Γ) corresponds to (m,−n). Since Γ+ι(Γ) is preserved
by σV , we have

(ordΓ(σ
∗
V (t1)), ordΓ(σ

∗
V (t2))) = (ε1m, ε2n) = (m,n) or (m− n).
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Thus, ε1 = 1, since m 6= 0 for some Γ. Conversely, if an automorphism σ∗
V of

C[t±1 , t
±
2 ] is given by

σ∗
V (t1) = λt1 and σ∗

V (t2) = ε3t
ε2
2

for some λ ∈ C⋆ = C \ {0} and ε2, ε3 ∈ {±1}, then σ∗
V is induced from an

automorphism σV of V such that σV commutes with ι and that σV preserves

τ∗(Di) for any irreducible component Di of D. The subgroup of Aut(V ) consisting

of such σV is isomorphic to C⋆ × (Z/2Z⊕ Z/2Z), and we have an exact sequence

0 → Z/2Z
φ−→ C⋆ × (Z/2Z⊕ Z/2Z) → Aut(X;D) → 1

in which φ(1) = (−1, (1, 0)) corresponds to ι. Therefore, Aut(X;D) ≃ C⋆ × Z/2Z.

For an element (λ, k) ∈ C⋆×Z/2Z (where k = 0 or 1), let σ be the associated auto-

morphism in Aut(X;D). Then, the action of σ on X \D lifts to an automorphism

on C[t±1 , t
±
2 ] given by

(t1, t2) 7→ (λt1, (−1)kt2).

Hence, the induced automorphism σ∗ of the coordinate ring of X \D is given by

σ∗(x) = λ2x, σ∗(y) = (−1)ky and σ∗(z) = λ(−1)kz.

Thus, we are done. �

Lemma 7.23. The equality δ(X,D) = 1 holds for any half-toric surface (X,D).

Proof. We consider the class map clZD : F(D) → CL(X) (cf. Definition 2.24). The

cokernel of clZD is isomorphic to the divisor class group CL(X \D), and the kernel

of clZD is isomorphic to O(X \ D)⋆/C⋆ by Lemma 2.25. By Proposition 7.20 and

Remark 7.21, we have an isomorphism X \D ≃ S \DS for an H-surface (S,DS).

Thus, CL(X \ D) ≃ Z/2Z and O(X \ D)⋆/C⋆ ≃ Z by Corollary 7.13. Therefore,

δ(X,D) = ρ(X) + 2− n(D) = 1. �

The isomorphism X \ D ≃ S \ DS in Remark 7.21 is extended to a suitable

birational map X ···→S as follows.

Proposition 7.24. Let (X,D) be a half-toric surface. Then, there exist birational

morphisms ν : Y → X and h : Y → S satisfying the following conditions :

(1) (Y,DY ) is a half-toric surface for DY = ν−1(D) and Y \DY ≃ X \D by

ν;

(2) (S,DS) is the half-toric surface associated with an H-surface (S,DS) in

Proposition 7.15, where DY = h−1(DS) and h is a toroidal blowing up with

respect to (S,DS).

Proof. We have n(D) = ρ(X) + 1 > r(D) by Lemma 7.23, and (X,D) is toroidal

along SingD by Lemma 7.2. Thus, we can apply Lemma 4.23 to (X,D). As a

consequence, by replacing X by a toroidal blowing up, we may assume that X

admits a P1-fibration π : X → T such that D has two distinct fibers of π. Let

µ : M → X be the minimal resolution of singularities. Then, there is a toroidal

blowing up f : M → S with respect to (S,DS) such that µ−1(D) = f−1(DS)

by Lemma 7.16. Let g : M → M be the contraction morphism of the four end

components of µ−1(D) in Proposition 7.5. Then, (Y,DY ) := (M, g∗(µ
−1(D))) is a

half-toric surface and the morphism ν : Y → X induced by µ satisfies (1) by the
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proof of Proposition 7.5. Moreover, the morphism h : Y → S induced by f is just a

toroidal blowing up with respect to (S,DS) and DY = h−1(D) by Lemma 7.16. �

Lemma 7.25. For a half-toric surface (X,D), let µ : M → X be the minimal

resolution of singularities of X and set DM = µ−1(D). Then, q̄(M \ DM ) = 1

for the logarithmic irregularity q̄. The quasi-Albanese map of M \DM is a smooth

morphism α : M \DM → Gm which is described in the following two ways :

(1) The α is the composition of the isomorphism M \DM ≃ X \D ≃ S \DS in

Remark 7.21 for an H-surface (S,DS) and the Gm-fiber bundle S \ DS →
T \ {P1, P2} induced from the P1-fibration π : S → T in Lemma 7.8 (cf.

Lemma 7.11).

(2) The morphism α of affine varieties is isomorphic to the morphism associ-

ated with the natural ring homomorphism

C[x, x−1] → C[x, x−1, y, z]/(x(y2 − 1)− z2)

for the description of the coordinate ring of X \D ≃ M \DM in Proposi-

tion 7.20.

Proof. By Lemma 7.12, Proposition 7.20, and Remark 7.21, we have isomorphisms

C⋆ × Z ≃ O(T \ {P1, P2})⋆ ≃ O(S \DS)
⋆ ≃ O(X \D)⋆ ≃ O(M \DM )⋆.

Then, the equality q̄(M \DM ) = 1 and the assertion (1) are derived from Proposi-

tion 2.26, since q(M) = 0. The remaining assertion (2) follows from the description

of O(X \D) in Proposition 7.20. �

Finally in Section 7.4, we shall prove Theorem 1.7.

Proof of Theorem 1.7. For a half-toric surface (X,D), from Definition 7.1, we see

that X is a projective rational surface with only rational singularities. The pair

(X,D) is log-canonical and D is a big linear chain of rational curves by Lemma 7.2.

The equality δ(X,D) = 1 is proved in Lemma 7.23. This completes the proof of

the first assertion (1) of Theorem 1.7. The assertions (2) and (3) have been proved

in Proposition 7.20. Similarly, the assertions (4), (5), and (6) have been proved

in Proposition 7.22, Lemma 7.25, and Proposition 7.5, respectively. Thus, we are

done. �

8. Proofs of Theorems 1.3 and 1.5

Finally, we shall prove Theorems 1.3 and 1.5. Note that the proofs below do not

use the results on pseudo-toric surfaces and half-toric surfaces obtained in Sections 6

and 7 except Lemma 7.23 on the defect of half-toric surface.

Proof of Theorem 1.3. We may assume that δ(X,D) ≤ 1 or c(X,D) ≤ 0. For,

otherwise, the assertions of Theorem 1.3 hold trivially. Under the assumption, we

have D 6= 0, since δ(X, 0) = ρ̂(X) + 2 ≥ 3 and c(X, 0) = 2. Moreover, X is

projective by Lemma 2.31(1), since we have H2(X,OX) ≃ H0(X,OX(KX))∨ = 0

by the assumption that −(KX+D) is nef. Furthermore, we can prove the following:

(a) D is a big reducible linear (or cyclic) chain of rational curves;

(b) X is a projective rational surface with only rational singularities;

(c) 0 ≤ δ(X,D) = c(X,D) ≤ 1;
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(d) δ(X,D) = c(X,D) = 1 when D is a linear chain.

In fact, D is connected and reducible by Proposition 2.29. Hence, D is a linear chain

or a cyclic chain of rational curves by Lemma 4.5, andD is big by Proposition 4.8(1).

Thus, we have (a). The (b) follows from Lemma 2.32, and the (c) and (d) follow

from Proposition 4.8. In particular, we have proved the inequality δ(X,D) ≥
c(X,D) ≥ 0.

For the rest of Theorem 1.3, “if” part follows from Lemma 3.10 on toric surface,

the definition of defect for pseudo-toric surface, and from Lemma 7.23 on half-toric

surface. Thus, it suffices to show the “only if” part.

Let f : Y → X be a toroidal blowing up with respect to (X,D) and set DY =

f−1(D). Then, (Y,DY ) is also log-canonical along DY , and −(KY + DY ) =

f∗(−(KX + D)) is nef. Moreover, δ(X,D) = c(Y,DY ) = δ(X,D) = c(X,D)

by Lemma 2.27. In particular, (Y,DY ) also satisfies the same conditions in The-

orem 1.3. We shall show that if Theorem 1.3 holds on (Y,DY ), then the same

holds on (X,D). In fact, Lemma 3.8 implies that if (Y,DY ) is toric, then (X,D)

is also toric, and that if (Y,BY +DY ) is toric for a prime divisor BY 6⊂ DY , then

(X,B + D) is toric for B = f∗(BY ) 6⊂ D. Moreover, if (Y,DY ) is a pseudo-toric

surface of defect one (resp. a half-toric surface), then so is (X,D) by Lemma 6.2(7)

(resp. Lemma 7.4(3)). Thus, we can replace (X,D) with (Y,DY ).

Since n(D) − r(D) = 2 − c(X,D) ≥ 1, by applying Lemma 4.23 and by the

replacement above, we may assume that there is a fibration π : X → T ≃ P1 and

that D contains at least two fibers. Then, (X,D, π) belongs to the case (A) or (B)

of Lemma 5.2.

Suppose that (X,D, π) belongs to the case (B). Then, D is a linear chain of

rational curves containing a section or a double-section of π, and δ(X,D) = 1 by

(d) above or by Lemma 5.6. If D contains a section, then (X,B + D) is a toric

surface for a prime divisor B 6⊂ D by Proposition 5.7. If D contains a double-

section, then (X,D) is a half-toric surface by Proposition 5.9 (cf. Definition 7.1).

Suppose next that (X,D, π) belongs to the case (A). Then, D is a cyclic chain of

rational curves, andKX+D ∼ 0 by Proposition 5.3(1). If δ(X,D) = 0, then (X,D)

is a projective toric surface by Proposition 5.3(3). If δ(X,D) = 1, then (X,D) is a

pseudo-toric surface of defect one by Proposition 5.5 (cf. Definition 6.1).

These arguments complete the proof of Theorem 1.3. �

Proof of Theorem 1.5. We may assume that c(X,D) ≤ 1 for the proof. Then, D

is reducible by

n(D) = r(D) + 2− c(X,D) ≥ r(D) + 1 ≥ 2.

Moreover, D is big by Proposition 4.8(1). Then, Lemma 4.7 implies that X is a

normal projective rational surface with only rational singularities and that D is a

linear chain or a cyclic chain of rational curves. Hence, we have c(X,D) ≥ 0 by (2)

and (3) of Proposition 4.8.

Here, assume that c(X,D) = 0. Then, D is a cyclic chain of rational curves

by Proposition 4.8(2). Thus, by Lemma 4.7, we have an effective divisor G on

X \ D such that KX + D ∼ G. Let g : X → X be the contraction morphism of

G: This exists because G is negative definite when G 6= 0 (cf. Lemma 4.7). We

set D = g∗(D). Then, (X,D) satisfies the same assumptions (i), (ii), and (iii)
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of Theorem 1.5, and 0 ≤ c(X,D) ≤ c(X,D) = 0 by Lemma 2.27. Moreover,

KX +D ∼ 0. Therefore, (X,D) is a projective toric surface by Theorem 1.3.

Conversely, assume that there is a morphism g : X → X satisfying (1) and (2) of

Theorem 1.5. Then, D ≃ D and n(D) = n(D). For the rest of the proof, it suffices

to show: c(X,D) = 0. Let ∆ be a divisor on X supported on D such that g∗∆ ∼ 0.

Then, ∆ = g∗(g∗∆) ∼ 0. This argument implies that the kernel of the class map

clZD : F(D) → CL(X) (cf. Definition 2.24) is isomorphic to the kernel of the class

map clZ
D
: F(D) → CL(X). Hence, r(D) = r(D), and c(X,D) = c(X,D) = 0.

Thus, we are done. �

References

[1] V. Alexeev, Classification of log canonical surface singularities: Arithmetical proof, Chapter

3 of [28], pp. 47–58.

[2] V. Alexeev, Boundedness and K
2 for log surfaces, Internat. J. Math. 5 (1994), 779–810.

[3] M. Artin, Some numerical criteria for contractibility of curves on algebraic surfaces, Amer.

J. of Math. 84 (1962), 485–496.

[4] M. Artin, Algebraic approximation of structures over complete local rings, Publ. Math.
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[33] B. G. Mŏı̌sezon, A criterion for projectivity of complete algebraic abstract varieties, Izv.

Akad. Nauk SSSR Ser. Mat. 28 (1964), 179–224, (Amer. Math. Soc. Translations Ser. 2, 63

(1967), 1–50).
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