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Abstract

In this paper, we address the minimum 2-edge connected spanning subgraph problem and
the graph-TSP in regular bipartite graphs. For these problems, we present new approximation
algorithms, each of which finds a restricted 2-factor close to a Hamilton cycle in the first step.

We first prove that every regular bipartite graph of degree at least three has a square-free
2-factor. This immediately leads to 4/3-approximation algorithms for the minimum 2-edge
connected spanning subgraph problem and the graph-TSP in regular bipartite graphs.

We then design a 7/6-approximation algorithm for the minimum 2-edge connected spanning
subgraph problem in 3-edge connected cubic bipartite graphs, which begins with a 2-factor
intersecting all 3- and 4-edge cuts. This improves upon the previous best ratio due to Boyd,
Iwata and Takazawa (2013), who designed a 6/5-approximation algorithm for 3-edge connected
cubic graphs. Our algorithm employs the ideas in this algorithm and makes use of bipartiteness
to attain a better ratio 7/6.

1 Introduction

The traveling salesman problem (TSP) is one of the most famous and important NP-hard problems.
The TSP has fascinated a lot of researchers and numerous approaches to the TSP have formed the
core of the research fields of graph theory, combinatorial optimization, and operations research. A
main challenge in the theoretical aspect of the TSP is to attack the famous 4/3-conjecture, saying
that the integrality gap of the subtour elimination relaxation is 4/3 for the metric TSP (see [13], for
example). The Barnette conjecture [3] is another famous conjecture related to the TSP, which says
that every 3-connected bipartite planar cubic graph, so-called a Barnette graph, is Hamiltonian.

In the present paper, we address approximation of NP-hard problems related to the TSP in
regular bipartite graphs, which would be a conducive step to these conjectures. We mainly discuss
the minimum 2-edge connected spanning subgraph problem, i.e., finding a 2-edge connected spanning
subgraph with minimum number of edges in a given 2-edge connected graph. This problem is widely
studied in network design, and closely related to the TSP as well: if a Hamilton cycle exists, then
it is an optimal solution. Hence this problem is NP-hard even in regular bipartite graphs [1], which
provide a superclass of Barnette graphs.
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We further deal with the graph-TSP, which is a special class of the metric TSP. In an instance
of the graph-TSP, a connected graph G = (V,E) is given and the distance between u, v ∈ V is
defined by the length of the shortest path between u, v in G. Equivalently, this is a problem of
finding a spanning Eulerian multi-subgraph H of G with minimum number of edges. That is, H is a
connected graph in which every vertex in V has an even degree and multiple edges with multiplicity
at most two are allowed. Again, a Hamilton cycle would be an optimal solution, if exists.

The graph-TSP is a simple and important class of the metric TSP. A family of graphs con-
sisting of two vertices connected by three paths of length k provides instances of the graph-TSP
asymptotically attaining the integrality gap 4/3. It is also appreciated that the graph-TSP in cubic
graphs retains the essential difficulty of the general graph-TSP. Moreover, in the present paper
we focus on a case where G is bipartite. Unlike other combinatorial optimization problems such
as the matching, covering, and coloring problems, not many results benefitting from bipartiteness
has been known for the TSP, until recent results of Correa, Larré and Soto [8] and of Karp and
Ravi [20]. In this paper, we exhibit advantages of bipartiteness by designing a simple algorithm for
the minimum 2-edge connected subgraph problem and the graph-TSP, and further improving the
approximation ratio for the former problem.

1.1 Related work

While the minimum 2-edge connected spanning subgraph problem is MAX SNP-hard even in cubic
graphs [9], Khuller and Vishkin [21] gave a 3/2-approximation algorithm for this problem in general
graphs, followed by a 17/12-approximation algorithm due to Cheriyan, Sebő and Szigeti [6]. A
breakthrough for the graph-TSP is made by Mömke and Svensson [25]. They presented a novel
idea to obtain a substantial improvement upon the 1.5-approximation of Christofides [7], which
is followed by tighter analyses [26, 27]. For the graph-TSP in subcubic graphs, the idea in [25]
yields 4/3-approximation, which proves the 4/3-conjecture for this class of the TSP. Since then,
the graph-TSP and the minimum 2-edge connected subgraph problem has been studied even more
actively. Sebő and Vygen [30] presented a 7/5-approximation algorithm for the graph-TSP and a
4/3-approximation algorithm for the minimum 2-edge connected spanning subgraph problem.

Improvements in the approximation ratio in several graph classes are made. For the minimum
2-edge connected spanning subgraph problem in 3-edge connected cubic graphs, Huh [16] gave a
5/4-approximation algorithm. A further improvement is given by Boyd, Iwata and Takazawa [5],
who designed two algorithms with approximation ratio 6/5. For the graph-TSP in regular graphs,
Correa, Larré and Soto [8] gave a (4/3− 1/61236)-approximation algorithm for 2-connected cubic
graphs and a 23/18-approximation algorithm for Barnette graphs. Karp and Ravi [20] designed a
9/7-approximation algorithm in cubic bipartite graphs, and a (9/7 + 1/(21(r − 2))-approximation
algorithm for r-regular bipartite graphs. Further related work appears in [4, 10, 12, 17, 18, 28, 33,
34].

1.2 Our contribution

Since a Hamilton cycle is a special kind of a 2-factors and the 2-factor problem is well-solved, it is
quite reasonable to attack the TSP with the knowledge of 2-factors close to Hamilton cycles. Our
approach is to construct a restricted 2-factor in the first step, and then converting it to a feasible
solution with a bounded number of additional edges. In the present paper, we focus on two types of
2-factors close to Hamilton cycles: square-free 2-factors and 2-factors intersecting prescribed edge
cuts. A square-free 2-factor is a 2-factor which does not contain cycles of length at most four. Since
a Hamilton cycle is a 2-factor consisting of one cycle of length n, where n denotes the number of
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vertices, forbidding short cycles in 2-factors provides a tighter relaxation of Hamilton cycles to 2-
factors. On the other hand, since a Hamilton cycle is a 2-factor intersecting all edge cuts, 2-factors
intersecting prescribed edge cuts provide another tighter relaxation of Hamilton cycles.

We devise the following approximation algorithms:

• 4/3-approximation algorithms for the minimum 2-edge connected spanning subgraph problem
and the graph-TSP in regular bipartite graphs, and

• a 7/6-approximation algorithm for the minimum 2-edge connected spanning subgraph problem
in 3-edge connected cubic bipartite graphs.

The 4/3-approximation algorithms find a square-free 2-factor in the initial step. As is done in [20],
in a cubic bipartite graph, a square-free 2-factor is constructed by replacing squares by certain
gadgets and finding a 2-factor in the resulting cubic bipartite graph. This method, however, is not
applied to regular bipartite graphs with degree larger than three. We prove that an arbitrary regular
bipartite graph with degree at least three has a square-free 2-factor with the aid of characterizations
of bipartite graphs admitting a square-free 2-factor [11, 14, 15, 22]. A square-free 2-factor is found
in polynomial time by a maximum square-free 2-matching algorithm [2, 15, 29, 31], and the current
best time complexity is O(n3) [2]. After a square-free 2-factor is obtained, it is not difficult to
add at most n/3 edges to yields 4/3-approximation of a minimum 2-edge connected spanning
subgraph. Thus, our algorithm is quite simple and runs in O(n3) time. It is also remarkable that
the approximation ratio matches the current best ratio of the sophisticated algorithm due to Sebő
and Vygen [30] for general graphs.

We further make use of square-free 2-factors to design a 4/3-approximation algorithm for the
graph-TSP in regular bipartite graphs. While an algorithm with better approximation ratio ex-
ists [20], again our algorithm is much simpler.

The 7/6-approximation algorithm begins with a 2-factor intersecting all 3- and 4-edge cuts.
In 2-edge connected cubic graphs, the existence of a 2-factor intersecting all 3- and 4-edge cuts is
proved by Kaiser and Škrekovski [19], and a combinatorial algorithm running in O(n3) time is given
by Boyd, Iwata and Takazawa [5]. In [5], two 6/5-approximation algorithms for the minimum 2-
edge connected spanning subgraph problem in 3-edge connected cubic graphs are designed. Even in
3-edge connected cubic bipartite graphs, this ratio 6/5 has been the best. In this paper we employ
the ideas in [5] to obtain a better approximation ratio 7/6 in bipartite graphs. We remark that
bipartiteness helps both in improving the approximation ratio and in proving that the algorithm
does not hang up.

1.3 Organization of the paper

The rest of this paper is organized as follows. In Section 2, we exhibit basic definitions and
previous work on restricted 2-factors. In Section 3, we prove that every regular bipartite graph
with degree at least three has a square-free 2-factor, and obtain 4/3-approximation algorithms for
the minimum 2-edge connected spanning subgraph problem and the graph-TSP in regular bipartite
graphs. Section 4 is devoted to presenting a 7/6-approximation algorithm for the minimum 2-edge
connected spanning subgraph problem in 3-edge connected cubic bipartite graphs.

2 Preliminaries

In this section, we give some definitions of basic notions. Previous work on restricted 2-factors used
in subsequent arguments is also exhibited.
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LetG = (V,E) be a simple undirected graph with vertex set V and edge set E. For a subgraphH
of G, the vertex and edge sets of H are denoted by V (H) and E(H), respectively. Let δ(H) ⊆ E
denote the set of edges having exactly one endpoint in V (H). For X ⊆ V , the complement of X is
denoted by X̄, i.e., X̄ = V \X.

The degree of a vertex is the number of edges incident to the vertex. If every vertex in V has
the same degree r, then G is called regular, or r-regular. A 3-regular graph is often called cubic. A
subset F of E is a 2-matching if the degree of each vertex is at most two in (V, F ). In particular,
if (V, F ) is 2-regular, then F is called a 2-factor. A cycle is a connected 2-regular subgraph of G.
For a cycle C, the length of C is defined by the number of its edges and denoted by |C|. A path is
a connected subgraph in which every vertex has degree two except for two vertices of degree one.

We remark that in the literature a 2-matching may have multiplicities on edges, and a 2-
matching satisfying the above definition is often referred to as a simple 2-matching. In this paper,
however, we only discuss 2-matchings which is just a subset of edges, i.e., multiplicities are never
allowed, and a 2-matching always means a simple 2-matching.

Recall that a 2-matching is called square-free if it does not contain a cycle of length at most four.
The maximum square-free 2-matching problem is a problem of finding a square-free 2-matching of
maximum number of edges in a given graph. While the complexity of the maximum square-free 2-
matching problem is unknown, in bipartite graphs this problem is well-solved. In bipartite graphs,
two min-max formulas are established, one of which appears in [14, 15, 22] and the other in [11].
In [32], comparison of these two formulas is discussed and decomposition theorems based on the
former formula are established. Several algorithms for finding a maximum square-free 2-matching in
bipartite graphs are designed [2, 15, 29, 31], which slightly differ from each others, and the algorithm
in [2] has the best time complexity O(n3). For the weighted case, dual integrality, polynomial
solvability and discrete convexity are proved for edge weights with a certain property [23, 24, 31].

Another kind of 2-factors discussed in this paper is 2-factors intersecting prescribed edge cuts.
An edge cut is a minimal subset of edges whose removal makes the graph disconnected. An edge
cut of size k is called a k-edge cut. If the minimum size of an edge cut in a graph is k, the graph is
called k-edge connected. In the present paper, we deal with 2-factors intersecting all 3- and 4-edge
cuts. If G is 2-edge connected and cubic, a 2-factor intersecting all the 3- and 4-edge cuts always
exists [19], and is found in O(n3) time [5].

3 Approximation via Square-free 2-factors

In this section, we prove that every r-regular bipartite graphs with r ≥ 3 has a square-free 2-factor,
which leads to 4/3-approximation algorithms for the minimum 2-edge connected subgraph problem
and the graph-TSP in regular bipartite graphs.

For G = (V,E) and X ⊆ V , let G[X] denote the subgraph of G induced by X. If X,Y ⊆ V are
disjoint, then let E[X,Y ] denote the set of edges in E connecting X and Y . Denote the number
of components in G[X] consisting of a single vertex by q0(X). Similarly, denote the number of
components in G[X] consisting of a single edge (resp., single square) by q1(X) (resp., q2(X)).
Finally, let q(X) = q0(X) + q1(X) + q2(X).

Two characterization of bipartite graphs admitting a square-free 2-factor are established. The
following characterization appears in [14, 15, 22].

Theorem 1 ([14, 15, 22]). A bipartite graph G = (V,E) has a square-free 2-factor if and only if

|X| ≥ q(X̄) (1)

for each X ⊆ V .
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The following characterization follows from a min-max theorem for the maximum square-free
2-matching problem in bipartite graphs [11].

Theorem 2 ([11]). A bipartite graph G = (V,E) has a square-free 2-factor if and only if

|X| ≥ |X̄| − |E[X̄]|+ q2(X̄) (2)

for each X ⊆ V .

Both Theorems 1 and 2 help to prove that every r-regular bipartite graph with r ≥ 3 has a
square-free 2-factor, and below we present two proofs. Note that the existence of a square-free
2-factor is trivially determined in 1- or 2-regular bipartite graphs.

Theorem 3. Let G = (V,E) be an r-regular bipartite graph with r ≥ 3. Then, G has a square-free
2-factor.

Proof using Theorem 1. By Theorem 1, it suffices to prove (1) for arbitrary X ⊆ V . By counting
the degree of the vertices in the components contributing to q(X̄), we have that

|E[X, X̄]| ≥ rq0(X̄) + 2(r − 1)q1(X̄) + 4(r − 2)q2(X̄)

≥ rq(X̄). (3)

We remark that the second inequality follows from r ≥ 3.
On the other hand, by counting the degree of vertices in X, we have that

|E[X, X̄]| ≤ r|X|. (4)

Now the desired inequality |X| ≥ q(X̄) follows from (3) and (4).

Proof using Theorem 2. By Theorem 2, it suffices to prove (2) for arbitrary X ⊆ V . It is obvious
that

q2(X̄) ≤ 1

4
|E[X̄]|. (5)

By counting the degrees of vertices in X̄ and X, we have that

|E[X, X̄]| = r|X̄| − 2|E[X̄]|,
|E[X, X̄]| ≤ r|X|,

respectively. Thus,

|X| ≥ |X̄| − 2

r
|E[X̄]|

≥ |X̄| − |E[X̄]|+ q2(X̄).

The second inequality follows from r ≥ 3 and (5).

Note that a square-free 2-factor F is found by a maximum square-free 2-matching algorithm.
This implies 4/3-approximation for the minimum 2-edge connected spanning subgraph problem and
the graph-TSP. Let G be a 2-edge connected regular bipartite graph, an instance of the minimum
2-edge connected spanning subgraph problem. We assume r ≥ 3, since r = 1 contradicts 2-edge
connectivity and r = 2 implies that the entire graph is an optimal solution. Find a square-free
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2-factor F in G and denote the family of cycles in (V, F ) by CF . Since G is bipartite and F is
square-free, |C| ≥ 6 for each C ∈ CF , and hence |CF | ≤ n/6. Then contract each cycle C ∈ CF and
denote the resulting graph by G′. We remark that G′ is 2-edge connected and has |CF | vertices.
In G′, find a 2-edge connected spanning subgraph H ′ with at most 2|CF | − 2 edges. This can be
done, for example, by finding an ear decomposition and discarding ears consisting of a single edge.
Finally, the union of F and the edge set of H ′ provides a 2-edge connected subgraph of G, which
consists of n+ 2|CF | − 2 ≤ 4n/3− 2 edges.

Theorem 4. For the minimum 2-edge connected spanning subgraph problem in 2-edge connected
regular bipartite graphs, a solution of at most 4n/3− 2 edges is computed in O(n3) time.

A 4/3-approximation algorithm for the graph-TSP also follows from a square-free 2-factor. For
the graph-TSP, we only assume that G is a connected regular bipartite graph. Again find a square-
free 2-factor F in G and contract every cycle C ∈ CF to obtain G′. Then, find a spanning tree T ′

in G′, and add two copies of the edges in T ′ to F to obtain a spanning Eulerian multi-subgraph of
G consisting of n+ 2|CF | − 2 edges.

Theorem 5. For the graph-TSP in a connected regular bipartite graph, a solution of at most
4n/3− 2 edges is computed in O(n3) time.

4 Approximation via 2-factors Intersecting the 3- and 4-edge Cuts

In this section, we describe an algorithm for finding a minimum 2-edge connected spanning subgraph
of at most 7n/6 − 1 edges in 3-edge connected cubic bipartite graphs. For the nonbipartite case,
i.e., for 3-edge connected cubic graphs, Boyd, Iwata and Takazawa [5] designed 6/5-approximation
algorithms. We employ the ideas in [5] to attain an improved approximation ratio 7/6 in bipartite
graphs.

4.1 A rough sketch

Let G = (V,E) be a 3-edge connected cubic bipartite graph. Then G has a 2-factor F intersecting
all the 3- and 4-edge cuts [19], and F is found in O(n3) time [5].

Denote the family of cycles in (V, F ) by CF . Let us give an elementary observation of a cycle C ∈
CF . We assume that V (C) ⊊ V , since otherwise (V, F ) is a Hamilton cycle and we are done. Clearly
δ(C) is an edge cut, and since G is 3-edge connected and F intersects all 3- and 4-edge cuts, we
have that |δ(C)| ≥ 5. Thus, |δ(C)| ≥ 6 and |C| ≥ 6 follow since G is bipartite and cubic.

As stated in Section 3, we already have a 4/3-approximation algorithm beginning with F . In
order to improve the approximation ratio, the following lemma plays a key role.

Lemma 6 ([5]). Let G = (V,E) be a 2-edge-connected graph and C be a cycle in G with at most two
chords. Let V ∗ ⊆ V (C) be the set of vertices not incident to the chords. For any vertex v∗ ∈ V ∗,
there is a Hamilton path in G[V (C)] starting at v∗ and ending at some vertex u∗ ∈ V ∗.

Since G is cubic, if C has k chords, then |δ(C)| = |C| − 2k. Since |δ(C)| ≥ 6, if |C| ≤ 10, then
C has at most two chords and hence Lemma 6 is applied to C. We call a cycle C small if |C| ≤ 10,
and large if |C| ≥ 12.

Roughly, we execute the ear-decomposition method described in Section 3. A key idea to
improving the approximation ratio is that, for a small cycle C, we add a Hamilton path in G[V (C)]
instead of C itself, which saves one edge per one small cycle.
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C2 C3

C4

C5

C1

H

Figure 1: A lollipop consisting of thick edges within and connecting C2, C3, C4 and C5.

A nontrivial difficulty in this idea is that picking a Hamilton path prescribes the next cycle to
visit, and this cycle might be already contained in the current ear. A detailed argument to resolve
this difficulty is described in Section 4.2.

4.2 Lollipops and tadpoles

In order to get rid of the difficulty described in Section 4.1, we employ the idea of lollipops and
tadpoles in [5]. If we arrive at a large cycle C already contained in the current ear, construct a
lollipop L, which is a subgraph consisting of C and the subgraph traversed after C. We then treat L
as if it is one large cycle, and restart constructing an ear from L. See Figure 1 for an illustration. In
Figure 1, H is a 2-edge connected subgraph consisting of previously constructed ears. The current
ear under construction consists of C1, . . . , C5, where C1 and C5 are small cycles of length six, and
C2, C3 and C4 are large cycles (some vertices in large cycles are omitted). We have now reached
C2 again after traversing a Hamilton path in G[V (C5)], and then we construct a lollipop, which
consists of thick edges within and connecting C2, C3, C4 and C5.

If we reach a small cycle C already contained in the current ear, construct a tadpole T , which
is a subgraph consisting of a picked Hamilton path P in G[V (C)] and the subgraph traversed after
C. A tadpole is decomposed into two parts, the tail T+ and head T−. Let sP and tP be the initial
and terminal vertices of P , respectively, and let vP be the vertex at which we have reached C again.
The tail P+ is a subpath of P between sP and vP . The head T− is a subgraph consisting of the
edges in E(T ) \ E(T+). We then traverse an edge f connecting T− and V \ V (T ). See Figure 2
for an illustration. In Figure 2, we have reached C2 again after traversing a Hamilton path in
G[V (C5)], and then we construct a tadpole T consisting of thick edges within and connecting C2,
C3, C4 and C5. The tail T+ is a path of thick edges between v0 and v6, and the head T− consists
of path of thick edges between v3 and v6, within C3, C4, C5, and connecting C2, C3, C4, C5.

A further obstacle is that an edge f connecting T− and V \ V (T ), an edge traversed when
leaving T , might not exist. That is, if all edges in δ(T−) have the other endvertex in T+, then we
cannot move from T− and the algorithm would hang up. Indeed, in the nonbipartite case [5], this
occurs when the cycle C providing T+ has length ten. Thus, a cycle in CF of length ten cannot be
a small cycle, which results in the approximation ratio 6/5.

In the bipartite case, however, we can prove that this obstacle never appears. A precise argument
is postponed in Lemma 7, after algorithm description.
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C2 C3

C4

C5

C1

H

v0

v1
v2

v7
v6

v5

v4

v3

Figure 2: A tadpole T consisting of thick edges within and connecting C2, C3, C4, C5. The tail of
T is a path between v0 and v6, and the other edges of T form the head of T .

4.3 Algorithm description

We are now ready to exhibit algorithm description, followed by a proof for its validity. Note that
lollipops and tadpoles do not become nested. If a lollipop or tadpole is to be contained in a newly
constructed one, then it is discarded and we only possess inclusion-wise maximal ones. We refer to
a cycle in the initial 2-factor F which is not contained in any lollipops or tadpoles as independent.

Input. A 3-edge connected cubic bipartite graph G = (V,E).

Output. A 2-edge connected spanning subgraph H = (V,E(H)) of G such that |E(H)| ≤ 7n/6−1.

Step 0. Find a 2-factor F intersecting every 3- and 4-edge cuts in G. Let C0 be an arbitrary cycle
in CF , let H := C0, and then go to Step 1.

Step 1. If V (H) = V , then return H. Otherwise, let H ′ be an empty graph and e = uv be an
edge in δ(H), where u ∈ V (H) and v ∈ V \ V (H). Then, go to Step 2.

Step 2. Let C ∈ CF be a cycle containing v. If C is not contained in H, then go to Step 3.
Otherwise, go to Step 4.

Step 3. Apply one of the following four cases.

• If C is a large cycle not contained in H ∪H ′, then go to Step 3.1.

• If C is a small cycle not contained in H ∪H ′, then go to Step 3.2.

• If C is contained in a lollipop in H ′ or is an independent large cycle in H ′, then go to
Step 3.3.

• If C is contained in a tadpole in H ′ or is an independent small cycle in H ′, then go to
Step 3.4.

Step 3.1. Add e and C to H ′. Let f be an edge in δ(C) \ {e} and reset e := f and v to be the
endvertex of f not in C. Then, go back to Step 2.

Step 3.2. Let PC be a Hamilton path in G[V (C)] starting from v and ending in a vertex incident
to an edge f ∈ δ(C). Add e and PC to H ′, reset e := f and v to be the endvertex of f not
in C. Then, go back to Step 2.
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Step 3.3. Add e to H ′ and construct a lollipop L. Remove all lollipops and tadpoles properly
contained in L. Let f be an edge in δ(L) \E(H ′) and reset e := f and v to be the endvertex
of f not in L. Then, go back to Step 2.

Step 3.4. Add e to H ′ and construct a tadpole T . Remove all lollipops and tadpoles properly
contained in T . Let f be an edge connecting T− and V \ V (T ). Reset e := f and v to be the
endvertex of f not in T . Then, go back to Step 2.

Step 4. Add e and H ′ to H. Then, go back to Step 1.

We now prove is that there exist an edge f connecting T− and V \ V (T ) in Step 3.4, which
establishes the validity of the algorithm.

Lemma 7. Let T be a tadpole. Then, there exists an edge f connecting T− and V \ V (T ).

Proof. Suppose to the contrary that such f does not exist. Denote the cycle providing the tale
of the tadpole T by CT . Clearly CT is a small cycle, i.e., |CT | ≤ 10. Since f does not exist, we
have that G \ V (CT ) is disconnected. Since F covers every 3- and 4-edge cuts and G is 3-edge
connected, there exist at least five edges between CT and each component in G \CT . This implies
that |CT | = 10, G \CT has exactly two components, and there exist exactly five edges between CT

and each component in G \ CT .
Denote the two components in G \ CT by Q0 and Q1. The existence of the initial 2-factor F

and the bipartiteness of G imply that both Q0 and Q1 have an even number of vertices. Thus
|δ(Q0)| and |δ(Q1)| are even, contradicting that there are exactly five edges between Q0 and CT ,
and between Q1 and CT .

Now the description of the algorithm is completed. It is not difficult to see that the approxi-
mation ratio of the algorithm is 7/6.

Theorem 8. The above algorithm finds a 2-edge connected subgraph of at most 7n/6− 1 edges in
O(n3) time.

Proof. It is clear that the output graphH is 2-edge connected, and the algorithm runs in O(n3) time,
which is the time complexity for finding the initial 2-factor F . We now show that |E(H)| ≤ 7n/6−1.

Let α and β be the numbers of small and large cycles in the initial 2-factor F , respectively.
Since a small cycle is of size at least six and a large cycle at least twelve, it holds that

n ≥ 6α+ 12β. (6)

The output graph H consists of |C| − 1 edges in G[V (C)] for a small cycle C ∈ CF other than
the initial cycle C0, |C| edges of E[C] for a large cycle C ∈ CF , and at most two connecting edges
per one cycle in CF \ {C0}. Therefore,

|E(H)| ≤

 ∑
C∈CF

|C| − (α− 1)

+ 2(α+ β − 1) = n+ α+ 2β − 1 ≤ 7

6
n− 1. (7)

The last inequality follows from (6).
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search Group, 1999.
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