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Abstract. Hoshi and Mochizuki constructed a surjection from a sub-
group of the group of outomorphisms of étale fundamental groups of con-
figuration spaces of hyperbolic curves to the Grothendieck-Teichmüller
group by means of the combinatorial anabelian geometry developed by
them. In the present paper, we prove that this surjection is split sur-
jective. Also, in order to give this splitting, we prove that an exact
sequence associated to rationally degenerate semi-graphs of anabelioids
of PSC-type is split surjective.
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Introduction

Let Σ be a nonempty set of prime numbers which either contains all prime
numbers or satisfies ♯(Σ) = 1, and n a positive integer. Write

Πn

for the maximal pro-Σ quotient of the étale fundamental group of the n-th
configuration space of a hyperbolic curve C over an algebraically closed field
of characteristic zero, and

OutFC(Πn)

for the (closed) subgroup of Out(Πn) consisting of FC-admissible outomor-
phisms of Πn (i.e., arising from automorphisms of Πn that preserve the fiber
subgroups of Πn and the cuspidal inertia subgroups of the fiber subgroups
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(cf. [15, Definition 1.1, (ii)])). Suppose that

n ≥
{

4 if C is proper,
3 if C is affine.

Write GT for the pro-Σ Grothendieck-Teichmüller group. In [7], Hoshi and
Mochizuki constructed the tripod homomorphism

TT : OutFC(Πn) −→ GT,

and proved that the tripod homomorphism is surjective. This result may
be regarded as a combinatorial group-theoretic version of the fact that the
natural outer homomorphism

π1((Mg,r)Q) // // GQ

is surjective where (Mg,r)Q is the moduli stack of r-pointed smooth proper
curves of genus g over Q, and GQ is the absolute Galois group of Q. In the
present paper, we prove the following result (cf. Corollary 3.4, Remark 3.3):

Theorem A. The tripod homomorphism
TT : OutFC(Πn) −→ GT

is split surjective.

In particular, by Theorem A, we have an outer action of GT on Πn which
is faithful. Also, Theorem A may be regarded as a combinatorial group-
theoretic version of the fact that the natural surjective outer homomorphism

π1((Mg,r)Q) // // GQ

is split surjective. (For example, by means of a totally degenerate stable
curve over Q, we may verify that the surjection π1((Mg,r)Q) ↠ GQ is split
surjective (cf. [9])).

In order to prove Theorem A, we also consider a variant of Theorem A, as
follows: Here, we do not put the assumption that either Σ contains all prime
numbers or satisfies ♯(Σ) = 1. Let G be a semi-graph of anabelioids of pro-
Σ PSC-type, i.e., roughly speaking, a system of the dual (semi-)graph of a
pointed stable curve X over an algebraically closed field of characteristic zero
and Galois categories obtained from irreducible components of X, marked
points of X, and nodes of X (cf. [14, Definition 1.1, (i)]; also §1). For a
vertex v ∈ Vert(G) of G, we shall denote by G|v a certain semi-graph of
anabelioids of pro-Σ PSC-type with Vert(G) obtained as [6, Definition 2.1,
(iii)] (cf. also Definition 1.1, (i)). Write

Aut| grph |(G)
for the group of automorphisms of G which induce the identity automorphism
on the underlying semi-graph of G, and

Glu(G) ⊆
∏

v∈Vert(G)
Aut| grph |(G|v)

for the closed subgroup of glueable collections of outomorphisms of the direct
product

∏
v∈Vert(G) Aut| grph |(G|v) consisting of elements (αv)v∈Vert(G) such

that the image of αv in (ẐΣ)× by the cyclotomic character does not depend
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on v ∈ Vert(G) (cf. [6, Definition 4.9]; also Definition 1.2, (iv), Definition
1.3). In [6], Hoshi and Mochizuki proved that the image of the natural
homomorphism

ρVert
G : Aut| grph |(G) −→

∏
v∈Vert(G)

Aut| grph |(G|v)

is equal to Glu(G). In §2, we prove the following result (cf. Theorem 2.5):

Theorem B. Let G be a rationally degenerate semi-graph of anabelioids of
pro-Σ PSC-type, i.e., roughly speaking, a semi-graph of anabelioids of pro-Σ
PSC-type obtained from a pointed stable curve whose irreducible components
are rational (cf. Definition 1.1, (viii)). Then the surjection

ρVert
G : Aut| grph |(G) −→ Glu(G)

is split surjective.

In §3, by means of Theorem B, we prove Theorem A.

Acknowledgments. The author would like to thank Yuichiro Hoshi and
Akio Tamagawa for carefully reading preliminary versions of this paper and
giving many comments. This research was partially supported by Grant-in-
Aid for JSPS Fellows (KAKENHI No. 14J01306).

Notations and Conventions

Sets: For a set A, we shall write ♯(A) for the cardinality of A, and 2A for
the power set of A.

Numbers: The notation Primes will be used to denote the set of all prime
numbers. The notation Z will be used to denote the ring of rational integers.
For a nonempty subset Σ of Primes, the notation ẐΣ will be used to denote
the pro-Σ completion of Z, and the notation (ẐΣ)× will be used to denote
the multiplicative group of ẐΣ .

Profinite groups: For a profinite group G and a closed subgroup H ⊆ G
of G, we shall write Gab for the abelianization of G (i.e., the quotient of
G by the closure of the commutator subgroup [G, G] of G), and ZG(H)
(respectively, NG(H)) for the centralizer (respectively, normalizer) of H in
G, i.e.,

ZG(H) := {g ∈ G | g · h · g−1 = h for any h ∈ H} ⊆ G

(respectively, NG(H) := {g ∈ G | g · H · g−1 = H} ⊆ G).
It is immediate from the definitions that

ZG(H) ⊆ NG(H) ; H ⊆ NG(H).
For a profinite group G and a closed subgroup H ⊆ G of G, we shall denote

by Aut(G) the group of (continuous) automorphisms of the topological group
G, by Inn(H ⊆ G) the image of the homomorphism obtained by sending
h ∈ H to the inner automorphism Inn(h ∈ G) of G determined by h ∈ G,
and by Out(G) the quotient of Aut(G) with respect to the normal subgroup
Inn(G ⊆ G) ⊆ Aut(G). We shall refer to an element of Out(G) as an
outomorphism of G. If, moreover, G is topologically finitely generated, then
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one verifies that the topology of G admits a basis of characteristic open
subgroups, which thus induces a profinite topology on the group Aut(G),
hence also a profinite topology on the group Out(G).

For profinite groups G1, G2 and a homomorphism f : G1 → G2 of profinite
groups, we shall say that f is split surjective if there exists a homomorphism
of profinite groups g : G2 → G1 such that f ◦ g : G2 → G2 is the identity
automorphism of G2.

1. The exact sequence relating glueable outomorphisms

In the present §1, we review some notions of the combinatorial anabelian
geometry developed by Hoshi and Mochizuki, including the exact sequence
relating glueable outomorphisms associated to a semi-graph of anabelioids of
pro-Σ PSC-type (cf. Theorem 1.4, below). Throughout the present paper,
let Σ be a nonempty subset of Primes.

First, we recall the notion of semi-graphs (cf. [13, §1]). We shall say that
the collection G of the following date is a semi-graph:

(i) a set V — whose elements we refer to as vertices;
(ii) a set E — whose elements we refer to as edges — each of whose

elements e is a set of cardinality 2 satisfying the property e ̸= e′ ∈
E =⇒ e ∩ e′ = ∅;

(iii) a collection ζ of maps ζe for e ∈ E — which we refer to as the
coincidence maps — such that ζe : e → V ∪ {V} is a map from the
set e to the set V ∪ {V}.

For a semi-graph G, we shall refer to an element b ∈ e of an edge e of G as a
branch of the edge e, and shall say that an edge e of G is open (respectively,
closed) if ζ−1

e ({V}) ̸= ∅ (respectively, = ∅). If v = ζe(b), for a branch b of
an edge e of G, then we shall say that the edge e abuts to the vertex v, and
that the branch b of the edge e abuts to the vertex v. For a semi-graph G
which has at least one vertex and one edge (respectively, does not have an
edge; does not have a vertex), we shall say that G is connected if any edge e
of G abuts to a vertex of G, and for any vertices v and v′ of G, there exist
a finite sequence

v = v1, v2, . . . , vn = v′

of vertices of G and a finite sequence

e1, e2, . . . , en−1

of edges of G such that ei abuts to vi and vi+1 (respectively, the cardinality
of the set of vertices of G is equal to 1; the cardinality of the set of edges
of G is equal to 1). A sub-semi-graph H of a semi-graph G is a semi-graph
satisfying the following properties:

(i) the set of vertices (respectively, edges) of H is a subset of the set of
vertices (respectively, edges) of G;

(ii) every branch of an edge of H that abuts, relative to G, to a vertex
v of G lying in H also abuts to v, relative to H;

(iii) if a branch of an edge of H either abuts, relative to G, to a vertex v
of G that does not lie in H, or does not abut to a vertex, relative to
G, then this branch does not abut to a vertex, relative to H.
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For a pointed stable curve X over an algebraically closed field, we shall refer
to as the dual semi-graph of X the semi-graph whose the vertices (respec-
tively, closed edges; open edges; branches of a closed edge) are precisely the
irreducible components (respectively, nodes; marked points; branches of a
node) of X, and coincidence maps are determined by the geometry of the
pointed stable curve X.

Next, we recall the notion of semi-graphs of anabelioids of pro-Σ PSC-
type (cf. [11, Appendix], [12, §1], [13, §2], [14, Definition 1.1]). We shall refer
to a Galois category as a connected anabelioid. For connected anabelioids
A and B, we shall define a morphism A → B of connected anabelioids to be
an exact functor B → A as Galois categories (cf. [1, Exposé V, Proposition
6.1]). For a connected anabelioid A, we shall refer to as the pro-Σ comple-
tion of A the connected anabelioid constituted by the full subcategory of A
determined by the objects dominated by a Galois covering of the final object
of A whose the prime factors of degree are contained in Σ, and the funda-
mental group ∆A of A the fundamental group as a Galois category relative
to some base point. Note that, by definition of a morphisms of connected
anabelioids, a morphisms A → B of connected anabelioids induces an outer
homomorphism from the fundamental group of A to the fundamental group
of B. We shall say that the collection G of the following date is a semi-graph
of anabelioids:

(i) a semi-graph |G| — which is referred as the underlying semi-graph
of G;

(ii) for each vertex v of |G|, a connected anabelioid Gv;
(iii) for each edge e of |G|, a connected anabelioid Ge, together with, for

each branch b ∈ e abutting to a vertex v, a morphism of connected
anabelioids b∗ : Ge → Gv.

In the above notation, we shall refer to Gv, Ge as the constituent anabelioids
of G. We shall say that a semi-graph of anabelioids is connected if the un-
derlying semi-graph is connected. For a connected semi-graph of anabelioids
G which |G| has at least one vertex, we shall denote by

B(G)

the category of objects given by date

{Sv, ϕe}

where v (respectively, e) ranges over the vertices (respectively, edges) of |G|;
for each vertex v, Sv is a object of Gv; for each edge e, with branches b1, b2
abutting to vertices v1, v2, respectively, ϕe : {(b1)∗}∗Sv1→̃{(b2)∗}∗Sv2 is an
isomorphism in Ge, and morphisms given by morphisms between such date.
For a semi-graph of anabelioids G which |G| has the unique edge e and does
not have a vertex, we shall write

B(G) := Ge.

One verifies immediately that this category B(G) is a connected anabelioid.
We shall refer to the fundamental group of B(G) as the fundamental group
of G. For a semi-graphs G of anabelioids, we shall refer to as the pro-Σ
completion of G the semi-graph of anabelioids by replacing the constituent
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anabelioids of G by its pro-Σ completion. We shall refer to as an automor-
phism of a semi-graph of anabelioids a collection of an automorphism of the
underlying semi-graph, together with a compatible system of isomorphisms
between the various anabelioids at each of the vertices and edges of the un-
derlying semi-graph, which are compatible with the various morphisms of
anabelioids associated to the branches of the underlying semi-graph. For
a pointed stable curve X over an algebraically closed field of characteristic
zero, we shall refer to as the semi-graph of anabelioids arising from X the
following semi-graphs G of anabelioids:

(i) |G| is the dual semi-graph of X;
(ii) for each vertex v, Gv is the connected anabelioid determined by the

category of étale coverings of the irreducible component Xv of X \
({the marked points of X} ∪ {the nodes of X}) corresponding to v;

(iii) for each open edge e of |G| which corresponds to the marked point
x of X, we denote the vertex v of |G| which abuts to e, and Xx

the scheme-theoretic intersection of X \({the marked points of X}∪
{the nodes of X}) and the completion of X at x. Then Ge is the
connected anabelioid determined by the category of étale coverings
of Xx, together with, for each branch b ∈ e, a morphism of connected
anabelioids b∗ : Ge → Gv determined by the natural morphism Xx →
Xv;

(iv) for each closed edge e of |G| which corresponds to a node νe of X,
we denote the vertices v1, v2 of |G| which abut to e, ν1

e (respec-
tively, ν2

e ) is the branch of νe corresponding to v1 (respectively, v2),
and Xe∩v1 (respectively, Xe∩v2) the scheme-theoretic intersection of
X \ ({the marked points of X}∪{the nodes of X}) and the comple-
tion of the branch ν1

e (respectively, ν2
e ) at the node νe. We shall fix

a (non-canonical) isomorphism Xe∩v1 ≃ Xe∩v2 over the base field,
and denote the resulting object by Xe. Then Ge is the connected
anabelioid determined by the category of étale coverings of Xe, to-
gether with, for each branch b ∈ e that ζe(b) = vi, a morphism
of connected anabelioids b∗ : Ge → Gvi determined by the natural
morphism Xe → Xvi .

We shall say that G is a semi-graph of anabelioids of pro-Σ PSC-type if
G is the pro-Σ completion of a semi-graph of anabelioids arising from a
pointed stable curve over an algebraically closed field of characteristic zero.
Let G be a semi-graph of anabelioids of pro-Σ PSC-type. We shall refer
to the maximal pro-Σ quotient of the fundamental group of G as the PSC-
fundamental group of G, and denote by ΠG the PSC-fundamental group of
G. We shall refer to an open edge (respectively, a closed edge) of G as a
cusp (respectively, a node) of G. We shall denote by Vert(G) (respectively,
Cusp(G); Node(G)) the set of vertices (respectively, cusps; nodes) of G. We
shall write Edge(G) := Cusp(G) ⊔ Node(G), r(G) for ♯(Cusp(G)), and Gz for
the connected anabelioid corresponding to z ∈ Vert(G)∪Cusp(G)∪Node(G).
We shall write

V : Edge(G) −→ 2Vert(G)

(respectively, E : Vert(G) −→ 2Edge(G);
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N : Vert(G) −→ 2Edge(G))
for the map obtained by sending e ∈ Edge(G) (respectively, v ∈ Vert(G);
v ∈ Vert(G)) to the set of vertices (respectively, edges; nodes) of G to which
e abuts (respectively, which abut to v; which abut to v). For a vertex v
(respectively, an edge e; a node ν; a cusp c), we shall refer to as a verticial
subgroup of v (respectively, an edge-like subgroup of e; a nodal subgroup
of ν; a cuspidal subgroup of c) the image of a homomorphism ∆Gv → ΠG
(respectively, ∆Ge → ΠG ; ∆Gν → ΠG ; ∆Gc → ΠG) determined by the natural
morphism Gv → B(G) (respectively, Ge → B(G); Gν → B(G); Gc → B(G)).
We shall denote by Πcpt

G the quotient of ΠG by the normal closed subgroup
generated by the cuspidal subgroups of ΠG . We shall write

g(G) := 1
2

· rankẐΣ (Πcpt
G )ab.

For a pair (g, r) of nonnegative integers such that 2g − 2 + r > 0, we shall
say that G is of type (g, r) if g = g(G) and r = r(G). We shall denote
by Aut(G) the group of automorphisms of the semi-graph G of anabelioids,
and by Aut| grph |(G) the subgroup of Aut(G) of automorphisms of G which
induce the identity automorphism on the underlying semi-graph of G (cf. [7,
Remark 4.1.2]). Then the natural homomorphism

Aut(G) −→ Out(ΠG)

is an injection with closed image (cf. [14, §2]). Thus, we shall regard Aut(G)
as a closed subgroup of Out(ΠG) by the above injection. For an outomor-
phism α ∈ Out(ΠG) of ΠG , we shall say that α is graphic if α is contained
in Aut(G).

Now we recall various operations of semi-graphs of anabelioids of pro-Σ
PSC-type.

Definition 1.1 (cf. [6, §2]). Let G be a semi-graph of anabelioids of pro-Σ
PSC-type.

(i) For v ∈ Vert(G), we shall write G|v for the semi-graph of anabelioids
of pro-Σ PSC-type defined as follows: We take Vert(G|v) to consist
of the single element v, Cusp(G|v) to be the set of branches of G
which abut to v, and Node(G|v) to be the empty set. We take the
connected anabelioid of G|v corresponding to the unique vertex v to
be Gv. For each edge e ∈ E(v) of G and each branch b of e that
abuts to the vertex v, we take the connected anabelioid of G|v cor-
responding to the branch b to be a copy of the connected anabelioid
Ge. For each edge e ∈ E(v) of G and each branch b of e that abuts,
relative to G, to the vertex v, we take the morphism of connected
anabelioids (G|v)eb

→ (G|v)v — where we write eb for the cusp of G|v
corresponding to b — to be the morphism of connected anabelioids
Ge → Gv associated, relative to G, to the branch b.

(ii) Let H be a sub-semi-graph of |G|. Then we shall say that H is of
PSC-type if the following two conditions are satisfied:
(1) H has at least one vertex.
(2) If v is a vertex of H, and e is an edge of |G| that abuts to v,

then e is an edge of H.
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(iii) Let H be a sub-semi-graph of PSC-type of |G| (cf. (ii)). We shall
write G|H for the semi-graph of anabelioids defined as follows: the
underlying semi-graph is H; for each vertex v (respectively, edge e)
of H, the connected anabelioid corresponding to v (respectively, e) is
Gv (respectively, Ge); for each branch b of an edge e of H that abuts
to a vertex v of H, the morphism associated to b is the morphism
Ge → Gv associated to the branch of |G| corresponding to b. Then
we may verify that G|H is a semi-graph of anabelioids of pro-Σ PSC-
type. We shall refer to G|H as the semi-graph of anabelioids of pro-Σ
PSC-type obtained by restricting G to H.

(iv) We shall say that a subset S ⊆ Cusp(G) is omittable if the following
condition is satisfied: For each vertex v ∈ Vert(G) of G, if G|v is of
type (g, r), then it holds that 2g − 2 + r − ♯(E(v) ∩ S) > 0.

(v) Let S ⊆ Cusp(G) be a subset of Cusp(G) which is omittable (cf.
(iv)). Then, by eliminating the cusps contained in S, and for each
vertex v of G, replacing the connected anabelioid Gv corresponding
to v by the connected anabelioid of objects of Gv that restrict to
a trivial covering over the cusps contained in S that abut to v, we
obtain a semi-graph of anabelioids

G•S

of pro-Σ PSC-type. We shall refer to G•S as the partial compactifi-
cation of G with respect to S.

(vi) We shall say that a subset S ⊆ Node(G) is of separating type if the
semi-graph obtained by removing the closed edge corresponding to
the elements of S from |G| is not connected. Moreover, for each
node e ∈ Node(G), we shall say that e is of separating type if {e} is
of separating type.

(vii) Suppose that S ⊆ Node(G) is not of separating type (cf. (vi)). Then
one may define a semi-graph of anabelioids of pro-Σ PSC-type as fol-
lows: We take the underlying semi-graph H≻S to be the semi-graph
obtained by replacing each node e of |G| contained in S such that
V(e) = {v1, v2} ⊆ Vert(G) — where v1, v2 are not necessary distinct
— by two cusps that abut to v1, v2 ∈ Vert(G), respectively. We take
the connected anabelioid corresponding to a vertex v (respectively,
node e) of H≻S to be Gv (respectively, Ge). We take the connected
anabelioid corresponding to a cusp of H≻S arising from a cusp e of G
to be Ge. We take the connected anabelioid corresponding to a cusp
of H≻S arising from a node e of G to be Ge. For each branch b of H≻S

that abuts to a vertex v of a node e (respectively, of a cups e that
does not arise from a node of |G|), we take the morphism associated
to b to be the morphism Ge → Gv associated to the branch of |G|
corresponding to b. For each branch b of H≻S that abuts to a vertex
v of a cusp of H≻S that arises from a node e of |G|, we take the mor-
phism associated to b to be the morphism Ge → Gv associated to the
branch of |G| corresponding to b. We shall denote by the resulting
semi-graph of anabelioids of pro-Σ PSC-type

G≻S
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and refer to G≻S as the semi-graph of anabelioids of pro-Σ PSC-type
obtained from G resolving S. Let v ∈ Vert(G) be a vertex of G. Write
Hv for the unique sub-semi-graph of PSC-type of |G| (cf. (ii)) whose
set of vertices is {v}. Then one may verify easily that Node(G|Hv ) is
not of separating type (cf. (vi)), and

(G|Hv )≻Node(G|Hv )

(cf. (iii)) is naturally isomorphic to G|v (cf. (i)).
(viii) We shall say that G is totally degenerate if G|v (cf. (ii)) is of type

(0, 3) for any v ∈ Vert(G), and that G is rationally degenerate if
g(G|v) (cf. (ii)) is equal to 0 for any v ∈ Vert(G).

(ix) Let e ∈ Node(G) be a node of G. Write He for the unique sub-semi-
graph of PSC-type of |G| (cf. (i)) whose set of vertices is V(e). Then
one may verify easily that S := Node(G|He) \ {e} is not of separating
type (cf. (vi)). We shall write

G|e := (G|He)≻S

(cf. (iii), (vii)).
(x) Let v ∈ Vert(G) be a vertex of G. We shall say that v is terminal if

♯(N (v)) = 1 and, for the node e ∈ N (v) which abuts to v, ♯(V(e)) =
2 . Suppose that v is terminal. Write H\{v} for the unique sub-semi-
graph of PSC-type of |G| (cf. (ii)) whose set of vertices is Vert(G) \
{v}. We shall write

G\{v} := G|H\{v}

(cf. (iii)).
(xi) Let H be a sub-semi-graph of PSC-type (cf. (ii)), S ⊆ Node(G|H)

a subset of Node(G|H) that is not of separating type (cf. (vi)), and
T ⊆ Cusp((G|H)≻S) an omittable subset of Cusp((G|H)≻S) (cf. (iv)).
Then, by the definition of Aut| grph |(G), we obtain a natural homo-
morphism

Aut| grph |(G) −→ Aut| grph |(((G|H)≻S)•T )
(cf. (iii), (v), (vii)). In particular, for a vertex v ∈ Vert(G) of G, we
shall denote by α|v ∈ Aut(G|v) the image of α ∈ Aut| grph |(G) by the
natural homomorphism

Aut| grph |(G) −→ Aut| grph |(G|v).

Moreover, we recall the cyclotomic characters of semi-graphs of anabe-
lioids of pro-Σ PSC-type.

Definition 1.2 (cf. [6, §3]). Let G be a semi-graph of anabelioids of pro-Σ
PSC-type. For any e ∈ Cusp(G), we fix a cuspidal subgroup Πe of e.

(i) Given a central extension of profinite groups

1 // ẐΣ // E // ΠG // 1 ,

and a cusp e ∈ Cusp(G), we shall refer to a section of this extension
over Πe ⊆ ΠG as a trivialization of this extension at the cusp e. We
shall write

H2
c (G, ẐΣ)
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for the set of equivalence classes

[E, (ιe : Πe → E)e∈Cusp(G)]

of collections of date (E, (ιe : Πe → E)e∈Cusp(G)) as follows:
(1) E is a central extension of profinite groups

1 // ẐΣ // E // ΠG // 1 ;

(2) for each e ∈ Cusp(G), ιe is a trivialization of this extension at
the cusp e. The equivalence relation “∼” is then defined as
follows: for two collections of date (E, (ιe)) and (E′, (ι′

e)), we
shall write (E, (ιe)) ∼ (E′, (ι′

e)) if there exists an isomorphism of
profinite groups α : E→̃E′ over ΠG which induces the identity
automorphism of ẐΣ , and, moreover, for each e ∈ Cusp(G),
maps ιe to ι′

e.
We shall refer to H2

c (G, ẐΣ) as the second cohomology group with
compact supports of G.

(ii) For a vertex v ∈ Vert(G) of G, we shall write

H2
c (v, ẐΣ) := H2

c (G|v, ẐΣ)

and refer to H2
c (v, ẐΣ) as the second cohomology group with compact

supports of v.
(iii) The set H2

c (G, ẐΣ) (cf. (i)) is equipped with a natural structure of
ẐΣ-module defined as follows:

• Let [E, (ιe)], [E′, (ι′
e)] ∈ H2

c (G, ẐΣ) be elements of H2
c (G, ẐΣ).

Then the fiber product E ×ΠG E′ of structures E ↠ ΠG , E′ ↠
ΠG is an extension of ΠG by ẐΣ × ẐΣ . Thus, the quotient S of
E ×ΠG E′ by the image of the composite of

ẐΣ � � // ẐΣ × ẐΣ � � // E ×ΠG E′

m � // (m, −m)

is an extension of ΠG by ẐΣ . On the other hand, it follows
from the definition of S that for each e ∈ Cusp(G), the sections
ιe and ι′

e naturally determine a section ιS
e : Πe → S over Πe.

Thus, we define

[E, (ιe)] + [E′, (ι′
e)] := [S, (ιS

e )].

Here, one may verify easily that the equivalence class [S, (ιS
e )]

depends only on the equivalence classes [E, (ιe)], [E′, (ι′
e)], and

that this definition of “+” determined a module structure on
H2

c (G, ẐΣ).
• Let [E, (ιe)] ∈ H2

c (G, ẐΣ) be an element of H2
c (G, ẐΣ) and a ∈

ẐΣ . Now the composite of

E × ẐΣ
pr1↠ E ↠ ΠG
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determines an extension of ΠG by ẐΣ × ẐΣ . Thus, the quotient
P of E × ẐΣ by the image of the composite of

ẐΣ � � // ẐΣ × ẐΣ � � // E × ẐΣ

m � // (m, −am)

is an extension of ΠG by ẐΣ . On the other hand, it follows from
the definition of P that for each e ∈ Cusp(G), the sections ιe

and the zero homomorphism Πe → ẐΣ naturally determine a
section ιP

e : Πe → P over Πe. Thus, we define

a · [E, (ιe)] := [P, (ιP
e )].

Here, one may verify easily that the equivalence class [P, (ιP
e )]

depends only on the equivalence class [E, (ιe)] and a ∈ ẐΣ , and
that this definition of “·” determines a ẐΣ-module structure on
H2

c (G, ẐΣ).
It follows from [6, Lemma 3.2] that the ẐΣ-module “H2

c (G, ẐΣ)”
does not depend on the choice of {Πe}e∈Cusp(G). (More precisely,
the ẐΣ-module “H2

c (G, ẐΣ)” is uniquely determined by G up to the
natural isomorphism obtained by [6, Lemma 3.2].) Also, for a vertex
v ∈ Vert(G) of G, H2

c (G, ẐΣ) and H2
c (v, ẐΣ) are free ẐΣ-modues of

rank 1 (cf. [6, Theorem 3.7, (ii)]).
(iv) We shall write

ΛG := HomẐΣ (H2
c (G, ẐΣ), ẐΣ)

(cf. (i), (iii)) and refer to ΛG as the cyclotome associated to G. For
a vertex v ∈ Vert(G) of G, we shall write

Λv := HomẐΣ (H2
c (v, ẐΣ), ẐΣ)

(cf. (ii), (iii)) and refer to Λv as the cyclotome associated to v.
(v) We shall write

χG : Aut(G) −→ Aut(ΛG) ≃ (ẐΣ)×

for the natural homomorphism induced by the natural action of
Aut(G) on H2

c (G, ẐΣ) and refer to χG as the pro-Σ cyclotomic char-
acter of G. For a vertex v ∈ Vert(G) of G, we shall write

χv : Aut(G|v) −→ Aut(Λv) ≃ (ẐΣ)×

for the natural homomorphism induced by the natural action of
Aut(G|v) on H2

c (v, ẐΣ) and refer to χv as the pro-Σ cyclotomic char-
acter of v. Then it follows from [6, Corollary 3.9, (ii), (iv)] that there
exists a natural isomorphism of ẐΣ-modules

Λv
∼−→ ΛG ,

and, under this isomorphism, for any α ∈ Aut| grph |(G),
χG(α) = χv(α|v).
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Finally, we recall the subgroup of “glueable” collections of outomorphisms.

Definition 1.3. Let G be a semi-graph of anabelioids of pro-Σ PSC-type.
We shall write

ρVert
G : Aut| grph |(G) −→

∏
v∈Vert(G)

Aut| grph |(G|v)

for the homomorphism determined by

α 7−→ (α|v)v∈Vert(G)

(cf. Definition 1.1, (xi)). We shall denote by Dehn(G) the kernel of ρVert
G ,

and by
Glu(G) ⊆

∏
v∈Vert(G)

Aut| grph |(G|v)

the closed subgroup of glueable collections of outomorphisms of the direct
product

∏
v∈Vert(G) Aut| grph |(G|v) consisting of elements (αv)v∈Vert(G) such

that χv(αv) = χw(αw) for any v, w ∈ Vert(G) (cf. Definition 1.2, (v)).

Theorem 1.4 (Hoshi-Mochizuki). Let G be a semi-graph of anabelioids of
pro-Σ PSC-type. Then the image of the homomorphism

ρVert
G : Aut| grph |(G) −→

∏
v∈Vert(G)

Aut| grph |(G|v)

(cf. Definition 1.3) is equal to Glu(G).
In particular, we obtain the following exact sequence of profinite groups

1 // Dehn(G) // Aut| grph |(G)
ρVert

G // Glu(G) // 1.

Proof. Theorem 1.4 follows from [6, Theorem B, (iii)]. □

Remark 1.5. In the notation of Theorem 1.4, it is not clear to the author
at the time of writing whether or not ρVert

G : Aut| grph |(G) ↠ Glu(G) is split
surjective. Nevertheless, if G is rationally degenerate (cf. Definition 1.1,
(viii)), then we are able to obtain the result that ρVert

G : Aut| grph |(G) ↠
Glu(G) is split surjective (cf. Theorem 2.5, below).

2. A splitting of the exact sequence relating glueable
outomorphisms in the rationally degenerate case

In the present §2, we prove that the exact sequence of profinite groups
appearing in Theorem 1.4 is split in the rationally degenerate case (cf. The-
orem 2.5, below).

In the present §2, we maintain the notation of the preceding §1.

Lemma 2.1. Let G be a semi-graph of anabelioids of pro-Σ PSC-type which
is of type (0, 3), and e a cusp of G. Write Πe ⊆ ΠG for a cuspidal subgroup
associated to e, and

Aut|C|(ΠG , Πe)
for the intersection of

{σ ∈ Aut(ΠG) | σ(Πe) = Πe}



THE EXISTENCE OF GT-SECTIONS 13

and the subgroup of Aut(ΠG) given by the inverse image of

Aut| grph |(G) ⊆ Out(ΠG).
Then the following hold:

(i) The kernel of the natural homomorphism

Aut|C|(ΠG , Πe) −→ Aut| grph |(G)
is equal to Inn(Πe ⊆ ΠG) ⊆ Aut(ΠG).

(ii) The natural homomorphism Aut|C|(ΠG , Πe) → Aut| grph |(G) is split
surjective.

In particular, we obtain the following split exact sequence of profinite
groups

1 // Inn(Πe ⊆ ΠG) // Aut|C|(ΠG , Πe) // Aut| grph |(G) // 1.

Proof. Assertion (i) follows immediately from [14, Proposition 1.2, (ii)].
Next, by means of [14, Proposition 1.2, (ii)], assertion (ii) follows imme-
diately from the argument used in the proof of [8, §I, Proposition 3]. More
precisely, for cusps e1, e2 ∈ Cusp(G)\{e} of G, write Πe1 , Πe2 for a cuspidal
subgroup of e1, e2, respectively. Since a cuspidal subgroup is isomorphic to
ẐΣ , for i ∈ Cusp(G), we have a topologically generator gi ∈ Πi of Πi. Write

Φ∗ := {σ ∈ Aut|C|(ΠG , Πe) | σ(ge2) = c · (ge2)α · c−1,

with some α ∈ (ẐΣ)×, c ∈ [ΠG , ΠG ]} ⊆ Aut|C|(ΠG , Πe),
and pab : ΠG ↠ (ΠG)ab is the natural surjection. Then, to verify assertion
(ii), it suffices to show that the restriction of Aut|C|(ΠG , Πe) → Aut| grph |(G)
to Φ∗ induces an isomorphism

Φ∗ ∼−→ Aut| grph |(G).

First, we verify that the restriction of Aut|C|(ΠG , Πe) → Aut| grph |(G) to Φ∗

is injective. Now by means of assertion (i), to verify the injectivity of the
restriction of Aut|C|(ΠG , Πe) → Aut| grph |(G) to Φ∗, it suffices to show that
Φ∗ ∩ Inn(Πe ⊆ ΠG) = {1}. Let σ ∈ Φ∗ ∩ Inn(Πe ⊆ ΠG) be a element of
Φ∗∩Inn(Πe ⊆ ΠG). Then, since σ is contained in Inn(Πe ⊆ ΠG), there exists
an element d ∈ ẐΣ of ẐΣ such that Inn((ge)d ∈ ΠG) = σ. In particular, for
any g ∈ ΠG , pab(σ(g)) = pab(g). Also, by the definition of Φ∗, there exists
a pair (d′, c) of an element d′ ∈ ẐΣ of ẐΣ and an element c ∈ [ΠG , ΠG ] of
[ΠG , ΠG ] such that c · (ge2)d′ · c−1 = σ(ge2). Note that, since pab(σ(ge2)) =
pab(ge2), and (ΠG)ab is a free ẐΣ-module of rank 2 with a free generating
set {pab(ge), pab(ge2)}, d′ = 0. Thus, it follows from [14, Proposition 1.2,
(ii)] that there exists an element d′′ ∈ ẐΣ of ẐΣ such that (ge)d · (ge2)−d′′ =
c ∈ [ΠG , ΠG ]. In particular, since (ΠG)ab is a free ẐΣ-module of rank 2
with a free generating set {pab(ge), pab(ge2)}, d = d′′ = 0. This completes
the proof of that Φ∗ ∩ Inn(Πe ⊆ ΠG) = {1}. Next, we verify that the
restriction of Aut|C|(ΠG , Πe) → Aut| grph |(G) to Φ∗ is surjective. Let δ ∈
Aut| grph |(G) be an element of Aut| grph |(G), and δ′ ∈ Aut(ΠG) a pre-image
of δ by the natural surjection Aut(ΠG) ↠ Out(ΠG). Then, by replacing δ′

by a composite of δ′ and an element of Inn(ΠG ⊆ ΠG), and means of the
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definition of Aut| grph |(G), we may assume that δ′ ∈ Aut|C|(ΠG , Πe). Also, by
the definition of Aut|C|(ΠG , Πe), there exists a pair of α′ ∈ (ẐΣ)× and t ∈ ΠG
such that δ′(ge2) = t·(ge2)α′ ·t−1. Since (ΠG)ab is a free ẐΣ-module of rank 2
with a free generating set {pab(ge), pab(ge2)}, by replacing δ′ by a composite
of δ′ and an element of Inn(Πe ⊆ ΠG), we may assume that there exists
an element d′′′ ∈ ẐΣ of ẐΣ such that pab(t) = pab(ge2)d′′′ . Therefore, since
δ′(ge2) = (t · (ge2)−d′′′) · (ge2)α′ · (t · (ge2)−d′′′)−1 and (t · (ge2)−d′′′) ∈ [ΠG , ΠG ],
δ′ is contained in Φ∗. Thus, the restriction of Aut|C|(ΠG , Πe) → Aut| grph |(G)
to Φ∗ is surjective, hence also induces an isomorphism

Φ∗ ∼−→ Aut| grph |(G).
This completes the proof of assertion (ii). Finally, the final portion of Lemma
2.1 follows from assertions (i), (ii). This completes the proof of Lemma
2.1. □
Lemma 2.2. Let G be a rationally degenerate semi-graph of anabelioids of
pro-Σ PSC-type. Suppose that either G has no nodes or is not cyclically
primitive, i.e., ♯(Node(G)) = 1, and the unique node of G is of separating
type (cf. Definition 1.1, (vi)). Then the homomorphism

ρVert
G : Aut| grph |(G) −→ Glu(G)

is split surjective.

Proof. First, since G is a rationally degenerate semi-graph of anabelioids
of pro-Σ PSC-type which ♯(Node(G)) ≤ 1, we may check easily that there
exists an omittable subset S ⊆ Cusp(G) (cf. Definition 1.1, (v)) such that
the partial compactification G•S of G with respect to S (cf. Definition 1.1,
(vi)) is totally degenerate. Then it follows from [6, Theorem 4.8, (iii), (iv)]
that we obtain the following commutative diagram of profinite groups

1 // Dehn(G) //

≀
��

Aut| grph |(G)
ρVert

G //

��

Glu(G) //

��

1

1 // Dehn(G•S) // Aut| grph |(G•S)
ρVert

G•S // Glu(G•S) // 1

where the horizontal sequences are exact (cf. Theorem 1.4), and the left-
hand vertical arrow is an isomorphism. In particular, the commutative
diagram of profinite groups

Aut| grph |(G)
ρVert

G //

��

Glu(G)

��
Aut| grph |(G•S)

ρVert
G•S // Glu(G•S)

is cartesian. Therefore, to verify Lemma 2.2, by replacing G by G•S , we may
assume that G is totally degenerate.

Next, note that, if ♯(Node(G)) = 0, then Lemma 2.2 follows from Theorem
1.4. Thus, we may assume that ♯(Node(G)) ̸= 0. Suppose that ♯(Node(G)) =
1, and that the unique node of G is of separating type. Let e be the unique
node of G, v, w the vertices of G, and c a cusp of G|w. Write Πe ⊆ ΠG for a
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nodal subgroup associated to e. Then it follows from [5, Lemma 1.10] there
exists a unique vertical subgroup Πv ⊆ ΠG (respectively, Πw ⊆ ΠG) such
that Πe is contained in Πv ⊆ ΠG (respectively, Πw ⊆ ΠG). Note that Πv

(respectively, Πw) may be identified with ΠG|v (respectively, ΠG|w). Write
Πc ⊆ Πw for a cuspidal subgroup associated to c, and Aut|C|(Πv, Πe) for
the intersection of

{σ ∈ Aut(Πv) | σ(Πe) = Πe},

and the subgroup of Aut(Πv) given by the inverse image of

Aut| grph |(G|v) ⊆ Out(Πv).

Now it follows from [14, Proposition 1.2, (ii)] and [6, Lemma 2.12, (i)] that,
for any α ∈ Aut| grph |(G), there exists a lifting α̃ ∈ Aut(ΠG) such that
α̃(Πc) = Πc, and α̃ ∈ Aut(ΠG) is uniquely determined up to composition
with an element of Inn(Πc ⊆ ΠG). Note that, since α is graphic and Πc ⊆
Πw, α̃(Πw) = Πw (cf. [5, Lemma 1.7]). If Nc ⊆ ΠG is the closed normal
subgroup of ΠG normally generated by Πc, then it follows immediately from
[6, Lemma 4.2] and the well-known structure of the fundamental group of
a hyperbolic curve that the natural surjection ΠG ↠ ΠG/Nc induces an
isomorphism

ΠG/Nc
∼−→ Πv,

and the composite of ΠG ↠ ΠG/Nc→̃Πv induces a surjection Πw ↠ Πe.
Thus, by identifying ΠG/Nc with Πv by the above isomorphism, the corre-
spondence α 7→ α̃ induces the natural homomorphism

δ : Aut| grph |(G) −→ Aut(Πv)

which factors through Aut|C|(Πv, Πe). Moreover, by the definition of ρVert
G ,

we have the following commutative diagram of profinite groups

Aut| grph |(G)
ρVert

G //

δ
��

Glu(G)

��

Aut|C|(Πv, Πe) // Aut| grph |(G|v)

where the right-hand vertical arrow is the natural projection, and the lower
horizontal arrow is the natural homomorphism induced by Aut(Πv) ↠
Out(Πv).

Now, by means of [6, Lemma 4.6], δ|Dehn(G) is injective, and δ(Dehn(G)) is
equal to Inn(Πe ⊆ Πv). In particular, we obtain the following commutative
diagram of profinite groups

1 // Dehn(G) //

≀
��

Aut| grph |(G)
ρVert

G //

δ
��

Glu(G) //

��

1

1 // Inn(Πe ⊆ Πv) // Aut|C|(Πv, Πe) // Aut| grph |(G|v) // 1
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where the horizontal sequences are exact (cf. Theorem 1.4, Lemma 2.1),
and the left-hand vertical arrow is an isomorphism. In particular, the com-
mutative diagram of profinite groups

Aut| grph |(G)
ρVert

G //

δ
��

Glu(G)

��

Aut|C|(Πv, Πe) // Aut| grph |(G|v)

is cartesian. Therefore, Lemma 2.2 follows from Lemma 2.1, (ii). This
completes the proof of Lemma 2.2. □

Lemma 2.3. Let G be a rationally degenerate semi-graph of anabelioids of
pro-Σ PSC-type of which any node is of separating type (cf. Definition 1.1,
(vi)). Then the homomorphism

ρVert
G : Aut| grph |(G) −→ Glu(G)

is split surjective.

Proof. We verify Lemma 2.3 by induction on ♯(Node(G)). If ♯(Node(G)) ≤ 1,
then Lemma 2.3 follows from Lemma 2.2. Now suppose that ♯(Node(G)) > 1,
and the induction hypothesis is in force. Then, since any node of G is of sepa-
rating type, one may verify that there exists a vertex v of G which is terminal
(cf. Definition 1.1, (x)). Let e ∈ N (v) be the unique node which abut to v.
One may verify that any node of G\{v} (cf. Definition 1.1, (x)) is of separat-
ing type. Then, by applying induction on ♯(Node(G)), the homomorphism
ρVert

G\{v}
: Aut| grph |(G\{v}) → Glu(G\{v}) is split surjective, i.e., there exists a

homomorphism of profinite groups sv : Glu(G\{v}) → Aut| grph |(G\{v}) such
that ρVert

G\{v}
◦ sv : Glu(G\{v}) → Glu(G\{v}) is the identity automorphism of

Glu(G\{v}). Write Sv ⊆ Aut| grph |(G) for the subgroup of Aut| grph |(G) given
by the inverse image of im(sv) ⊆ Aut| grph |(G\{v}) under the natural homo-
morphism Aut| grph |(G) → Aut| grph |(G\{v}) (cf. [6, Definition 2.14, (ii)]), and
Kv ⊆ Aut| grph |(G) for the subgroup of Aut| grph |(G) given by the intersec-
tion of Dehn(G) and Sv. Then it follows immediately from [6, Theorem 4.8,
(iii), and Proposition 4.10, (iv)] that the restriction of the homomorphism
ρVert

G : Aut| grph |(G) → Glu(G) to Sv ⊆ Aut| grph |(G) is surjective. Moreover,
by [6, Theorem 4.8, (iii)], the homomorphism

Aut| grph |(G) → Aut| grph |(G\{v}) × Aut| grph |(G|e)

given by the natural homomorphisms Aut| grph |(G) → Aut| grph |(G\{v}) and
Aut| grph |(G) → Aut| grph |(G|e) (cf. [6, Definition 2.14, (ii)], Definition 1.1,
(ix)) induces an isomorphism

Dehn(G) ∼−→ Dehn(G\{v}) × Dehn(G|e).

Therefore, it follows immediately from Theorem 1.4 that the natural homo-
morphism Aut| grph |(G) → Aut| grph |(G|e) induces the following commutative
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diagram of profinite groups

1 // Kv
//

≀
��

Sv

ρVert
G / /

��

Glu(G) //

��

1

1 // Dehn(G|e) // Aut| grph |(G|e)
ρVert

G|e // Glu(G|e) // 1

where the horizontal sequences are exact (cf. Theorem 1.4), and the left-
hand vertical arrow is an isomorphism. In particular, the commutative
diagram of profinite groups

Sv

ρVert
G //

��

Glu(G)

��
Aut| grph |(G|e)

ρVert
G|e // Glu(G|e)

is cartesian. Thus, it follows from Lemma 2.2 that Sv → Glu(G), hence also
ρVert

G : Aut| grph |(G) → Glu(G), is split surjective. This completes the proof
of Lemma 2.3. □
Lemma 2.4. Let G be a rationally degenerate semi-graph of anabelioids of
pro-Σ PSC-type which is cyclically primitive, i.e., ♯(Node(G)) = 1, and the
unique node of G is not of separating type ([6, Definition 4.1]). Then the
homomorphism

ρVert
G : Aut| grph |(G) −→ Glu(G)

is split surjective.
Proof. First, since G is rationally degenerate which ♯(Node(G)) = 1, we
may check easily that there exists an omittable subset S ⊆ Cusp(G) (cf.
Definition 1.1, (v)) such that the partial compactification G•S of G with
respect to S (cf. Definition 1.1, (vi)) is totally degenerate. Then it follows
from [6, Theorem 4.8, (iii), (iv)] that we obtain the following commutative
diagram of profinite groups

1 // Dehn(G) //

≀
��

Aut| grph |(G)
ρVert

G //

��

Glu(G) //

��

1

1 // Dehn(G•S) // Aut| grph |(G•S)
ρVert

G•S // Glu(G•S) // 1

where the horizontal sequences are exact (cf. Theorem 1.4), and the left-
hand vertical arrow is an isomorphism. In particular, the commutative
diagram of profinite groups

Aut| grph |(G)
ρVert

G //

��

Glu(G)

��
Aut| grph |(G•S)

ρVert
G•S // Glu(G•S)

is cartesian. Therefore, to verify Lemma 2.4, by replacing G by G•S , we may
assume that G is totally degenerate.
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Next, let v ∈ Vert(G) be the unique vertex of G, e ∈ Node(G) the unique
node of G, and c ∈ Cusp(G) the unique cusp of G. Write Πe ⊆ ΠG for
a nodal subgroup associated to e, MG := (ΠG)ab, Mvert

G ⊆ MG for the
ẐΣ-submodule of MG topologically generated by the images of the vertical
subgroups of ΠG , M comb

G := MG/Mvert
G , M edge

G ⊆ MG for the ẐΣ-submodule
of MG topologically generated by the images of the edge-like subgroups of
ΠG , and Aut| grph |(MG) for{

σ ∈ Aut(MG)
∣∣∣ σ(Mvert

G ) = Mvert
G , and σ induces the identity of M comb

G

}
.

Then it follows from [5, Remark 1.1.1] and the definition of Aut| grph |(G) that
the natural homomorphism Out(ΠG) → Aut(MG) induces a homomorphism
Aut| grph |(G) → Aut| grph |(MG). Also, since Πe ≃ ẐΣ ≃ M comb

G and MG is a
free ẐΣ-module of rank 2 (cf. [14, Remark 1.1.4]), the composite of Πe ↪→
ΠG ↠ MG induces an isomorphism Πe→̃M edge

G = Mvert
G . In particular, by

[6, Corollary 3.9, (iv), (v)], the composite of the natural homomorphism
Aut| grph |(G) → Aut| grph |(MG) and the natural restricting homomorphism
Aut| grph |(MG) → Aut(M edge

G ) ≃ (ẐΣ)× is equal to the composite of ρVert
G

and
χv : Glu(G) = Aut| grph |(G|v) → (ẐΣ)×.

Thus, we have the following commutative diagram of profinite groups

Aut| grph |(G)
ρVert

G //

��

Aut| grph |(G|v)

χv

��

Aut| grph |(MG) // Aut(M edge
G ) ∼ // (ẐΣ)×,

and the natural homomorphism

f : Dehn(G) −→ ker(Aut| grph |(MG) → Aut(M edge
G )).

Now, by considering the difference of the element of ker(Aut| grph |(MG) →
Aut(M edge

G )) and the identity automorphism of MG , we obtain an injection

g : ker(Aut| grph |(MG) → Aut(M edge
G )) → HomẐΣ (M comb

G , MG).

Moreover, since M edge
G is equal to Mvert

G , it follows immediately from the
definition of Aut| grph |(MG) that g factors through

HomẐΣ (M comb
G , M edge

G ) ⊆ HomẐΣ (M comb
G , MG).

Then, since G is a semi-graph of anabelioids of pro-Σ PSC-type arising from
a 1-pointed singular stable curve of genus 1 which has the unique connected
component, by [6, Proposition 5.6, (ii)] and [2, Exposé IX, Théorèm 11.5],
the composite g ◦ f induces an isomorphism

Dehn(G) ∼−→ HomẐΣ (M comb
G , M edge

G ).
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Therefore, we obtain the following commutative diagram of profinite groups

1 // Dehn(G) // Aut| grph |(G)
ρVert

G //

��

Aut| grph |(G|v) //

��

1

1 // Dehn(G) // Aut| grph |(MG) // Aut(M edge
G ) // 1

where the horizontal sequences are exact (cf. Theorem 1.4). In particular,
the commutative diagram of profinite groups

Aut| grph |(G)
ρVert

G //

��

Aut| grph |(G|v)

��

Aut| grph |(MG) // Aut(M edge
G )

is cartesian. On the other hand, since MG and M comb
G ≃ MG/M edge

G are free
ẐΣ-modules (cf. [14, Remark 1.1.4]), by consideration of the definition of
Aut| grph |(MG), one may verify easily that

Aut| grph |(MG) −→ Aut(M edge
G )

is split surjective. This completes the proof of Lemma 2.4. □
Theorem 2.5. Let G be a rationally degenerate semi-graph of anabelioids
of pro-Σ PSC-type (cf. Definition 1.1, (iv)). Then the homomorphism

ρVert
G : Aut| grph |(G) −→ Glu(G)

is split surjective.

Proof. First, we claim that
Let e ∈ Node(G) be a node of G which is not of separating
type. Suppose that ρVert

G≻{e}
: Aut| grph |(G≻{e}) → Glu(G≻{e})

(cf. Definition 1.1, (vii)) is split surjective. Then

ρVert
G : Aut| grph |(G) → Glu(G)

is split surjective.
Indeed, since ρVert

G≻{e}
: Aut| grph |(G≻{e}) → Glu(G≻{e}) is split surjective, there

exists a homomorphism of profinite groups se : Glu(G≻{e}) → Aut| grph |(G≻{e})
such that ρVert

G≻{e}
◦se : Glu(G≻{e}) → Glu(G≻{e}) is the identity automorphism

of Glu(G≻{e}). Write Se ⊆ Aut| grph |(G) for the subgroup of Aut| grph |(G)
given by the inverse image of im(se) ⊆ Aut| grph |(G≻{e}) under the natural
homomorphism Aut| grph |(G) → Aut| grph |(G≻{e}) (cf. Definition 1.1, (vii)),
and Ke ⊆ Aut| grph |(G) for the subgroup of Aut| grph |(G) given by the inter-
section Dehn(G) and Se. Then it follows immediately from [6, Theorem 4.8,
(iii), and Proposition 4.10, (iv)] that the restriction of the homomorphism
ρVert

G : Aut| grph |(G) → Glu(G) to Se ⊆ Aut| grph |(G) is surjective. Moreover,
by [6, Theorem 4.8, (iii)], the homomorphism

Aut| grph |(G) → Aut| grph |(G≻{e}) × Aut| grph |(G|e)
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given by the natural homomorphisms Aut| grph |(G) → Aut| grph |(G≻{e}) and
Aut| grph |(G) → Aut| grph |(G|e) (cf. Definition 1.1, (ix), (xi)) induces an
isomorphism

Dehn(G) ∼−→ Dehn(G≻{e}) × Dehn(G|e).
Therefore, it follows immediately from Theorem 1.4 that the natural homo-
morphism Aut| grph |(G) → Aut| grph |(G|e) induces the following commutative
diagram of profinite groups

1 // Ke
//

≀
��

Se

ρVert
G / /

��

Glu(G) //

��

1

1 // Dehn(G|e) // Aut| grph |(G|e)
ρVert

G|e // Glu(G|e) // 1

where the horizontal sequences are exact, and the left-hand vertical arrow is
an isomorphism. In particular, the commutative diagram of profinite groups

Se

ρVert
G //

��

Glu(G)

��
Aut| grph |(G|e)

ρVert
G|e // Glu(G|e)

is cartesian. Thus, it follows from Lemma 2.2 and Lemma 2.4 that Se →
Glu(G), hence also ρVert

G : Aut| grph |(G) → Glu(G), is split surjective. This
completes the proof of the claim.

Finally, by the above claim and induction, we may assume that any node
of G is of separating type. On the other hand, if any node of G is of separating
type, then Theorem 2.5 follows from Lemma 2.3. This completes the proof
of Theorem 2.5. □

3. A splitting of the tripod homomorphism

In the present §3, by means of Theorem 2.5, we prove that the tripod
homomorphism (cf. Theorem 3.3, below) is split surjective (cf. Corollary
3.4, below).

In the present §3, let (g, r) be a pair of nonnegative integers such that
2g − 2 + r > 0; n a positive integer; Σ a nonempty subset of Primes which
is equal to Primes or satisfies ♯(Σ) = 1; k an algebraically closed field of
characteristic zero; (Spec k)log the log scheme obtained by equipping Spec k
with the log structure determined by the fs chart N → k that maps 1 7→ 0;
X log = X log

1 a stable log curve of type (g, r) over (Spec k)log (cf. [14, §0]).
For each 1 ≤ m ≤ n, write

X log
m

for the m-th log configuration space of the stable log curve X log (cf. [6, §0]),
where we think of the factors as being labeled by the element of {1, . . . , m};

Πm

for the maximal pro-Σ quotient of the kernel of the natural surjection
π1(X log

m ) ↠ π1((Spec k)log). (The theory of fundamental groups of log schemes
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is discussed in [10, §4]; [3].) Thus, for each 1 ≤ m ≤ m′ ≤ n, we have a
projection

plog
m′/m : X log

m′ −→ X log
m

obtained by forgetting the factors that belong to {m + 1, . . . , m′}. For each
1 ≤ m ≤ m′ ≤ n, we shall write

pΠ
m′/m : Πm′ −→ Πm

for the surjection induced by plog
m′/m;

OutFC(Πm) ⊆ Out(Πm)

for the (closed) subgroup of Out(Πm) consisting of FC-admissible outomor-
phisms of Πm (i.e., arising from automorphisms of Πm which, for any fiber
subgroup F ⊆ Πm of Πm, preserve F and the set of cuspidal inertia sub-
groups of F (cf. [15, Definition 1.1, (ii)]));

OutFC(Πm)cusp ⊆ OutFC(Πm)

for the (closed) subgroup of OutFC(Πm) consisting FC-admissible outomor-
phisms of Πm that determine (via the surjection pΠ

n/1 : Πn ↠ Π1) an outo-
morphism of Π1 that induces the identity permutation of the set of conjugacy
classes of cuspidal inertia subgroups of Π1 (cf. [15, Definition 1.1, (v)]).

Definition 3.1. We shall write

GXlog

for the semi-graph of anabelioids of pro-Σ PSC-type arising from the pointed
stable curve X over k determined by the stable log curve X log over (Spec k)log

(cf. [15, Example 2.5]). Thus, we have a natural outer isomorphism

Π1
∼−→ ΠG

Xlog .

Theorem 3.2 (Hoshi-Mochizuki). Suppose that

n ≥
{

4 if r = 0,

3 if r ≥ 1.

Let T ⊆ Π3 be the central {1, 2, 3}-tripod, i.e., roughly speaking, the tripod
that arises, in the case where the given log stable curve has no nodes, by
blowing up the intersection of the three diagonal divisors of the direct product
of three copies of the curve (cf. [7, Definition 3.7, (ii)]). Write

OutFC(Πn)[T ] ⊆ OutFC(Πn)

for the (closed) subgroup of OutFC(Πn) consisting of FC-admissible outo-
morphism α of Πn such that the outomorphism of Π3 determined (via the
surjection pΠ

n/3 : Πn ↠ Π3) by α preserves the Π3-conjugacy class of T ⊆ Π3.
Then it holds that

NΠ3(T ) = T × ZΠ3(T ),
and that

OutFC(Πn)[T ] = OutFC(Πn).
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Thus, by applying [7, Lemma 3.10, (i)] to outomorphisms of Π3 determined
(via the surjection pΠ

n/3 : Πn ↠ Π3) by elements of OutFC(Πn), one obtains
a natural homomorphism

TT : OutFC(Πn) −→ Out(T ).
Write

Out(T )∆+

for the image of the homomorphism TT : OutFC(Πn) → Out(T ). We shall
refer to the resulting surjection TT : OutFC(Πn) → Out(T )∆+ as the tripod
homomorphism associated to Πn.

Proof. Theorem 3.2 follows from [7, Theorem A, (ii), and Theorem C, (i),
(ii)]. □
Remark 3.3. In the notation of Theorem 3.2, Out(T )∆+ may be naturally
identified with the pro-Σ Grothendieck-Teichmüller group GT (cf. [7, The-
orem C, (iv)], [15, Remark 3.19.1]). In particular, (the isomorphic class of)
Out(T )∆+ is independent of the choice of the triple (g, r, n) and X log.

Corollary 3.4. Suppose that

n ≥
{

4 if r = 0,

3 if r ≥ 1.

Let T ⊆ Πn be the central {1, 2, 3}-tripod (cf. [7, Definition 3.7, (ii)]). Then
the tripod homomorphism

TT : OutFC(Πn) −→ Out(T )∆+

is split surjective.

Proof. First, by considering a suitable stable log curve of type (g, r) over
(Spec k)log, applying a suitable specialization isomorphism, and means of [7,
Propositon 3.24, (i)], to verify Corollary 3.4, we may assume without loss of
generality that GXlog is totally degenerate. Moreover, It follows immediately
from [4, Lemma 1.4, (i)] and the commutative diagram of [7, Remark 3.19.1]
that there exist elements of ker(TT ) that induce, relative to pΠ

n/1 : Πn ↠ Π1,
arbitrary permutations of the set of conjugacy classes of cuspidal inertia
group of Π1. Therefore, the restriction of the TT : OutFC(Πn) → Out(T )∆+

to OutFC(Πn)cusp ⊆ OutFC(Πn) is surjective. Thus, to verify that the tripod
homomorphism TT : OutFC(Πn) → Out(T )∆+ is split surjective, it suffices to
show that the restriction TT : OutFC(Πn) → Out(T )∆+ to OutFC(Πn)cusp ⊆
OutFC(Πn) is split surjective.

Next, we consider the homomorphism
ρbrch

n : OutFC(Πn)brch −→ Glu(Πn)
(i.e., roughly speaking, the homomorphism obtained by naturally extend-
ing ρVert

G to the closed subgroup of OutFC(Πn) consisting of FC-admissible
outomorphisms α of Πn such that the outomorphism of Π1 determined by
α induces the identity automorphism of Vert(G), Node(G), and, moreover,
fixes each of the branches of every node of G (cf. [7, Definition 4.11])). Write

OutFC(Πn)brch
cusp := OutFC(Πn)brch ∩ OutFC(Πn)cusp,
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and
Glu(Πn)cusp := im(OutFC(Πn)brch

cusp
ρbrch

n→ Glu(Πn)).
(Here, for v ∈ Vert(GXlog), we denote by (Πv)n ⊆ Πn a configuration space
subgroup associated to v (cf. [7, Definition 4.3]).) Since ρbrch

n : OutFC(Πn)brch →
Glu(Πn) is surjective (cf. [7, Theorem 4.14, (iii)]), one may verify from the
various definitions involved that Glu(Πn)cusp is equal to

Glu(Πn) ∩
∏

v∈Vert(G
Xlog )

OutFC((Πv)n)cusp.

Then, since GXlog is totally degenerate, it follows immediately from [7, Theo-
rem 3.18] that there exists an isomorphism Glu(Πn)cusp→̃ Out(T )∆+ which
fits into the following commutative diagram of profinite groups

OutFC(Πn)brch
cusp

ρbrch
n // //

� _

��

Glu(Πn)cusp

≀
��

OutFC(Πn)cusp TT // // Out(T )∆+

where the horizontal arrows are surjective, the left-hand vertical arrow is
injective, and the right-hand vertical arrow is an isomorphism. Thus, to
verify that the restriction of the tripod homomorphism OutFC(Πn)cusp →
Out(T )∆+ is split surjective, it suffices to show that the surjection

ρbrch
n : OutFC(Πn)brch

cusp → Glu(Πn)cusp

is split surjective.
Finally, one may verify from [5, Theorem B] and the various defini-

tions involved that the natural homomorphism OutFC(Πn) → OutFC(Π1)
determined by pΠ

n/1 : Πn ↠ Π1 induces an inclusion OutFC(Πn)brch
cusp ↪→

Aut| grph |(GXlog), and that this inclusion fits into the following commuta-
tive diagram of profinite groups

1 // Dehn(GXlog) // OutFC(Πn)brch
cusp

ρbrch
n //

� _

��

Glu(Πn)cusp //
� _

��

1

1 // Dehn(GXlog) // Aut| grph |(GXlog)
ρVert

G
Xlog // Glu(GXlog) // 1

where the horizontal sequences are exact (cf. [7, Theorem 4.14, (iii)], The-
orem 1.4), and the vertical arrows are injective. In particular, the commu-
tative diagram of profinite groups

OutFC(Πn)brch
cusp

ρbrch
n //

� _

��

Glu(Πn)cusp
� _

��
Aut| grph |(GXlog)

ρVert
G

Xlog // Glu(GXlog)

is cartesian. Thus, since GXlog is totally degenerate, it follows from Theorem
2.5 that ρbrch

n : OutFC(Πn)brch
cusp → Glu(Πn)cusp, hence also TT : OutFC(Πn) →

Out(T )∆+, is split surjective. This completes the proof of Corollary 3.4. □
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