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DIFFERENCE BETWEEN l-ADIC GALOIS
REPRESENTATIONS AND PRO-l OUTER GALOIS

REPRESENTATIONS ASSOCIATED TO HYPERBOLIC
CURVES

YU IIJIMA

Abstract. Let l be a prime number, and k a field of characteristic zero.
In the present paper, we consider the issue of whether or not the image
of the pro-l outer Galois representation associated to a hyperbolic curve
over k is an l-adic Lie group. In particular, we prove that, if k satisfies a
mild assumption concerning l, then the image of the pro-l outer Galois
representation associated to a hyperbolic curve over k is not an l-adic
Lie group. Also, we consider the issue of whether or not the image of
the universal pro-l outer monodromy representation of the moduli stack
of hyperbolic curves is an l-adic Lie group.
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Introduction

Let l be a prime number, Σ a set of prime numbers containing l, k a field of
characteristic zero, k an algebraic closure of k, and C a hyperbolic curve over
k. Write Gk := Gal(k/k), ∆

{l}
C for the pro-{l} geometric étale fundamental

group of C, i.e., the maximal pro-{l} quotient of the étale fundamental group
π1(C ⊗k k) of C ⊗k k,

ρ
{l}
C : Gk −→ Out(∆{l}

C )

for the pro-{l} outer Galois representation associated to C, and

ρ
{l}- ab
C : Gk −→ Out((∆{l}

C )ab)
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Key words and phrases. pro-{l} outer Galois representation, hyperbolic curve, l-adic Lie
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for the homomorphism obtained from ρ
{l}
C and the maximal abelian quotient

∆
{l}
C ↠ (∆{l}

C )ab of ∆
{l}
C . (Although “pro-{l}” is often written “pro-l”, since

we also consider “pro-Σ”, we use this notation.) Note that, if C is proper,
then ρ

{l}- ab
C may be regarded as the l-adic Galois representation obtained

from the l-adic Tate module of the Jacobian variety of C.
In the present paper, we consider the natural surjection

im(ρ{l}
C ) // // im(ρ{l}- ab

C ) .

In the early 1990’s, research of the kernel of this surjection im(ρ{l}
C ) ↠

im(ρ{l}- ab
C ) was used to study the anabelian geometry (cf., e.g., [22], [20]). If

the surjection im(ρ{l}
C ) ↠ im(ρ{l}- ab

C ) is injective, then im(ρ{l}
C ) is an l-adic

Lie group. From this observation, we may pose the following question:
Do there exist a positive integer n and an l-adic Galois rep-
resentation

ρl
n : Gk −→ GLn(Zl)

such that ker(ρl
n) is equal to ker(ρ{l}

C )? In other words, is
im(ρ{l}

C ) an l-adic Lie group?
If k is a number field and ρl

n is obtained from the l-adic Tate module of
an abelian variety over k, then it was known that ker(ρl

n) is not equal to
ker(ρ{l}

C ) (cf. [10, Corollary 1.3]).
The first main result of the present paper is as follows (cf. Theorem 1.10):

Theorem A. Suppose that k is l-cyclotomically inertially full, i.e., there
exists a pair of an injection Q ↪→ k and a prime l of Q over l such that the
intersection of im(Gk(µl∞ ) → GQ(µl∞ )) and the inertia subgroup Il ⊆ GQ of
l is an open subgroup of Il∩GQ(µl∞ ), where µl∞ ⊆ Q is the group of roots of
l-power order of unity (cf. Definition 1.8). Then im(ρ{l}

C ) is not an l-adic
Lie group.

In particular, in this case, the natural surjection

im(ρ{l}
C ) // // im(ρ{l}- ab

C )

is not injective.

Theorem A follows from the analysis of the pro-{l} outer Galois repre-
sentation associated to a split tripod, i.e., P1 \ {0, 1,∞}. Also, we prove a
partial generalization of Theorem A for pro-Σ outer Galois representations
(cf. Corollary 1.12).

Next, we consider a geometric version of the above question. Let (g, r) be
a pair of nonnegative integers such that 2g−2+r > 0. Write (Mg,r)k for the
moduli stack of r-pointed smooth proper curves of genus g over k whose r

marked points are equipped with an ordering, ∆
{l}
g,r for the pro-{l} completion

of the (topological) fundamental group of a topological space obtained by
removing r distinct points from a connected orientable compact topological
surface of genus g,

ρ
{l}
g,r/k : π1((Mg,r)k) −→ Out(∆{l}

g,r)
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for the universal pro-{l} outer monodromy representation of (Mg,r)k, and

ρ
{l}- ab
g,r/k : π1((Mg,r)k) −→ Aut((∆{l}

g,r)ab)

for the homomorphism determined by ρ
{l}
g,r/k and the natural surjection

∆
{l}
g,r ↠ (∆{l}

g,r)ab.
The second main result of the present paper is as follows (cf. Corollary

2.2, Proposition 2.9):

Theorem B. Suppose that 3g − 3 + r > 0. Then the natural surjection

im(ρ{l}
g,r/k) // // im(ρ{l}- ab

g,r/k )

is not injective.
Suppose, moreover, that either (g, r) ̸= (1, 1) or l = 2. Then im(ρ{l}

g,r/k) is
not an l-adic Lie group.

The final portion of Theorem B follows from Theorem A and [14, Theorem
3.4]. Also, by means of the results of the classical anabelian geometry, we
prove the first portion of Theorem B in the case where (g, r) = (1, 1) and
l > 2. Finally, we prove a partial generalization of Theorem B for universal
pro-Σ outer monodromy representations (cf. Corollary 2.11), and a corollary
to Theorem B, which is a partial strengthening of Theorem A (cf. Corollary
2.15).

Acknowledgments. The author would like to thank Yuichiro Hoshi for
inspiring the author by means of his result given in [10], helpful suggestions,
and advice; Mamoru Asada and Hiroaki Nakamura for explaining to him
the unpublished result of Spencer Bloch concerning Proposition 2.9; Akio
Tamagawa for carefully reading preliminary versions of this paper, giving
many suggestions including Lemma 1.7, Corollary 1.12, Remark 2.8, and
heartfelt encouragement. This research was partially supported by Grant-
in-Aid for JSPS Fellows (KAKENHI No. 14J01306).

Notations and Conventions

Sets: If S is a set, then we shall denote by ♯(S) the cardinality of S.

Numbers: The notation Z (respectively, Q) will be used to denote the ring
of rational integers (respectively, the field of rational numbers). The nota-
tion Z>0 will be used to denote the (additive) monoid of positive integers.
Let l be a prime number. The notation Zl (respectively, Ql) will be used
to denote the l-adic completion of Z (respectively, Q). We shall refer to a
finite extension of Q as a number field.

Profinite groups: Let G be a profinite group. For x, y ∈ G, we shall write
[x, y] := x−1y−1xy ∈ G for the commutator of x and y. We shall write
Gab for the abelianization of G (i.e., the quotient of G by the closure of the
commutator subgroup [G, G] of G), and Gnilp for the maximal pro-nilpotent
quotient of G.

If G is a profinite group, then we shall denote by Aut(G) the group of (con-
tinuous) automorphisms of the topological group G, by Inn(G) the group
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of inner automorphisms of G, and by Out(G) the quotient of Aut(G) with
respect to the normal subgroup Inn(G) ⊆ Aut(G). If, moreover, G is topo-
logically finitely generated, then one verifies that the topology of G admits a
basis of characteristic open subgroups, which thus induces a profinite topology
on the group Aut(G), hence also a profinite topology on the group Out(G).

Curves: Let k be a field, X a scheme over k, and (g, r) a pair of nonnegative
integers. Then we shall say that X is a curve (of type (g, r)) over k if there
exist a scheme Xcpt over k which is smooth, proper, geometrically connected
and whose geometric fibers are of dimension 1 and of genus g, and a closed
subscheme D ⊆ Xcpt of Xcpt which is finite and étale over k of degree r,
such that X is isomorphic to Xcpt \D over k. In this case, these Xcpt and
D are uniquely determined by X up to unique canonical isomorphism over
k, and we shall refer to Xcpt as the smooth compactification of X and D as
the divisor of infinity of X. we shall say that a curve X over k is split if the
divisor of infinity of X is isomorphic to a disjoint union of copies of Spec k
over k.

Let k be a field. We shall say that a scheme X over k is a hyperbolic
curve over k if there exists a pair (g, r) of nonnegative integers such that
2g − 2 + r > 0, and that X is a curve of type (g, r) over k.

1. The pro-{l} outer Galois representations associated to
hyperbolic curves

In the present §1, we recall generalities on the outer Galois representa-
tions associated to hyperbolic curves, and prove Theorem A (cf. Theorem
1.10, below) by means of the analysis of the pro-{l} outer Galois repre-
sentation associated to a split tripod, i.e., P1 \ {0, 1,∞}. Also, we prove a
partial generalization of Theorem A for pro-Σ outer Galois representations
(cf. Corollary 1.12, below).

Throughout the present paper, let Σ be a nonempty set of prime numbers,
l a prime number, k a field of characteristic zero, and k an algebraic closure
of k. For any extension k′ ⊆ k of k, write Gk′ := Gal(k/k′). Let Q be an
algebraic closure of Q. For any subfield K ⊆ Q of Q, write GK := Gal(Q/K).
For a positive integer m, let µm ⊆ Q be the group of m-th roots of unity,
and write

µm∞ :=
∪

n∈Z>0

µmn .

We shall denote by χl : GQ → Z×
l the l-adic cyclotomic character of GQ,

i.e., the composite of
GQ → Gal(Q(µl∞)/Q)→̃Z×

l

where the left-hand arrow is the natural surjection, and the right-hand arrow
is the isomorphism obtained by sending n ∈ Z×

l to the automorphism of
Q(µl∞) determined by µl∞ ∋ ζ 7→ ζn ∈ µl∞ . For an m and a Zl-module A,
we shall denote by A(m) the Tate twist of A, i.e., A(m) is the GQ-module for
which the base module is equal to A and the action of GQ is determined by,
for any σ ∈ GQ and any a ∈ A(m), σ ·a = χl(σ)ma. By means of an injection
Q ↪→ k, let us regard Q as a subfield of k. We shall write T := P1

Q\{0, 1,∞},
and Tk := T ⊗Q k.
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Definition 1.1. Let X be a scheme of finite type, separated, and geomet-
rically connected over k.

(i) We shall write
∆Σ

X

for the pro-Σ geometric étale fundamental group of X, i.e., the max-
imal pro-Σ quotient of the étale fundamental group π1(X ⊗k k) of
X ⊗k k, and

Π
Σ
X

for the geometrically pro-Σ étale fundamental group of X, i.e., the
quotient of the étale fundamental group π1(X) of X by the kernel of
the natural surjection π1(X ⊗k k) ↠ ∆Σ

X . (The étale fundamental
group of X is defined for the pair of X and a base point of X.
However, since the étale fundamental group of X is independent of
the choice of the base point — up to inner automorphism —, we
shall omit the base point.) Thus, we have a natural exact sequence
of profinite groups

1 // ∆Σ
X

// Π
Σ
X

// Gk
// 1 .

(ii) We shall write
ρΣ

X : Gk −→ Out(∆Σ
X)

for the outer Galois representation determined by the exact sequence
of (i). We shall refer to ρΣ

X as the pro-Σ outer Galois representation
associated to X. We shall write

ρΣ- ab
X : Gk −→ Aut((∆Σ

X)ab)

(resp. ρΣ- nilp
X : Gk −→ Out((∆Σ

X)nilp))
for the Galois representation determined by the exact sequence of (i)
and the natural surjection ∆Σ

X ↠ (∆Σ
X)ab (respectively, the natural

surjection ∆Σ
X ↠ (∆Σ

X)nilp).
(iii) We shall write

ΩΣ
X := k

ker(ρΣ
X)

, ΩΣ- ab
X := k

ker(ρΣ- ab
X )

, ΩΣ- nilp
X := k

ker(ρΣ- nilp
X )

.

Note that, by the definitions of ΩΣ
X , ΩΣ- ab

X , and ΩΣ- nilp
X , the inclu-

sions
ΩΣ- ab

X ⊆ ΩΣ- nilp
X ⊆ ΩΣ

X

hold.

Remark 1.2. Let (g, r) be a pair of nonnegative integers such that 2g−2+r >
0 and r ≤ 1, and C a hyperbolic curve over k of type (g, r).

(i) Write JC for the Jacobian variety of Ccpt. Then it follows immedi-
ately from the discussion given in [19, §18] and [16, Proposition 9.1]
that there exists a natural isomorphism of (∆Σ

C )ab with

∆Σ
JC

=
∏
p∈Σ

Tp(JC)
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where Tp(JC) is the p-adic Tate module of JC . Moreover, one verifies
that the Galois representation

ρΣ- ab
C : Gk −→ Aut((∆Σ

C )ab)

coincides, relative to this isomorphism (∆Σ
C )ab→̃

∏
p∈Σ Tp(JC), with

the usual Galois representation Gk → Aut(
∏

p∈Σ Tp(JC)) associated
to the abelian variety JC . Therefore, the equality

ΩΣ- ab
C = ΩΣ

JC

holds, and the Galois extension ΩΣ- ab
C of k is generated by the co-

ordinates of all torsion points of JC of which the prime factors of
the order are contained in Σ. In particular, we have an explicit
description of generators of the Galois extension ΩΣ- ab

C over k.
(ii) Suppose that k is a number field. Then it was known that Ω

{l}
C does

not coincide with Ω
{l}- ab
C (cf. [26, Corollary 4.1, and Remark 4.4]).

Also, more strongly, Hoshi proved that, for any abelian variety A

over k, Ω
{l}
C does not coincide with Ω

{l}
A (cf. [10, Corollary 1.3]).

Theorem 1.3 (Takao, Hoshi-Mochizuki). Let C be a hyperbolic curve over
k. Then the inclusion

ker(ρ{l}
C ) ⊆ ker(ρ{l}

Tk
),

hence also
Ω

{l}
Tk
⊆ Ω

{l}
C ,

holds.

Proof. This is a consequence of [26, Theorem 0.5, (2), Remark 0.3, (1), (2)]
or [11, Theorem C, (i)]. □

Remark 1.4.
(i) In [1, Theorem B], Anderson and Ihara proved that the Galois ex-

tension Ω
{l}
Tk

of k is generated by all higher circular l-units (cf. [1,
p.284, Definition]). In particular, we have an explicit description of
generators of the Galois extension Ω

{l}
Tk

over k.
(ii) Let (g, r) be a pair of nonnegative integers such that 2g− 2 + r > 0.

Suppose that k is a number field. Then it follows from [8, Theorem
C] that there are only finitely many isomorphism classes over k of
hyperbolic curves C of type (g, r) for which Ω

{l}
C coincides with Ω

{l}
Tk

.

Definition 1.5.
(i) We define the filtration

{∆{l}
T (m)} (m ∈ Z>0)

of ∆
{l}
T by

∆
{l}
T (1) := ∆

{l}
T ;

∆
{l}
T (m) := the closure of [∆{l}

T , ∆
{l}
T (m− 1)] for m > 1.
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(ii) Let l be a prime of Q over l. Write Il ⊆ GQ for the inertia subgroup
of l. For a positive integer m, we shall write

ρ
{l},m
T : GQ −→ Out(∆{l}

T /∆
{l}
T (m + 1))

for the outer Galois representation determined by ρ
{l}
T and the nat-

ural surjection ∆
{l}
T ↠ ∆

{l}
T /∆

{l}
T (m + 1),

Q(m) := Qker(ρ{l},m
T )

, Q(m)l := Qker(ρ{l},m
T )∩Il ,

grm g := Gal(Q(m + 1)/Q(m)),
and

grm hl := Gal(Q(m + 1)l/Q(m)l).
Let m be a positive integer. By definition, we may regard grm hl
as a subgroup of grm g. Also, since GQ(m) (respectively, GQ(m) ∩
Il) is a normal subgroup of GQ (respectively, Il), we regard grm g
(respectively, grm hl) as a group with GQ-action (respectively, Il-
action) by the conjugation action of GQ (respectively, Il).

Lemma 1.6 (Ihara).
(i) The equalities

Q(1) = Q(µl∞),
∪

m∈Z>0

Q(m) = Ω
{l}
T

hold.
(ii) Ω

{l}
T is a pro-{l} extension of Q(µl∞) which is unramified at every

nonarchimedean prime whose residue characteristic is ̸= l.
(iii) For a positive integer m, grm g is isomorphic to a finite direct sum

of Zl(m) as a group with GQ-action.

Proof. Assertion (i) follows immediately from [12, I, §4], [21, (2.5) Corollary],
and [26, Lemma 2.9]. Assertion (ii) follows from [12, I, §3, Theorem 1, (i),
and I, §5, Proposition 7, (ii)]. Assertion (iii) follows immediately from [12,
I, §5, Proposition 7, (ii), and I, §5, Proposition 8]. □

Lemma 1.7. Let l be a prime of Q over l. Write Il ⊆ GQ for the inertia
subgroup of l. Then there exists a positive integer m0 such that, for any odd
integer m ≥ m0, grm hl ̸= {0}.

Proof. Let m be an odd integer > 1. We regard Gal(Q(m)/Q(µl∞))ab as
a GQ-module by the conjugation action of GQ. We write Λ(l) ⊆ Q for the
maximal pro-{l} extension of Q(µl∞) which is unramified at every nonar-
chimedean prime whose residue characteristic is ̸= l, and

Resm : HomGQ(Gal(Λ(l)/Q(µl∞))ab,Zl(m))→ HomIl(Jl,Zl(m))

for the homomorphism obtained by the restriction from Gal(Λ(l)/Q(µl∞))ab

to Jl := im(Il ∩GQ(µl∞ ) → Gal(Λ(l)/Q(µl∞))ab). Now we claim that
There exists a positive integer m0 such that, for any integer
m ≥ m0, Resm is injective.
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Indeed, write X(l) for the maximal pro-{l} quotient of Gal(Λ(l)/Q(µl∞))ab/Jl.
It follows from [23, Propositin 11.1.4] that X(l)⊗Zl

Ql is of finite dimension
over Ql. Therefore, by consideration of the weights of X(l) ⊗Zl

Ql, there
exists a positive integer m0 such that, for any integer m ≥ m0,

HomGQ(X(l)⊗Zl
Ql,Ql(m)) = {0}.

This implies the above claim.
Suppose that m ≥ m0. Now it follows from [13, Proposition 1] that there

exists a nonzero element

κm ∈ HomGQ(Gab
Q(µl∞ ),Zl(m))

such that ker(κm) contains im(GQ(m+1) → Gab
Q(µl∞ )). By means of Lemma

1.6, (i), (ii), it follows from the above claim that there exists a nonzero
element

κ′
m ∈ HomIl(Jl,Zl(m))

such that ker(κ′
m) contains im(GQ(m+1) ∩ Il → Jl). Also, since, for any

positive integer n < m, grn hl is isomorphic to a finite direct sum of Zl(n)
as a Il-module (cf. Lemma 1.6, (iii)), by consideration of the weights of the
modules involved, the equality

HomIl((GQ(1) ∩ Il/GQ(m) ∩ Il)ab,Z(m)) = {0}

holds. Thus, the restriction of κ′
m to im(GQ(m)∩Il → Jl), hence also (GQ(m)∩

Il)/(GQ(m+1)∩Il) = grm hl, is nontrivial. This complete the proof of Lemma
1.7. □

Definition 1.8. We shall say that k is l-cyclotomically inertially full if
there exists a prime l of Q over l such that the intersection of im(Gk(µl∞ ) →
GQ(µl∞ )) and the inertia subgroup Il ⊆ GQ of l is an open subgroup of
Il ∩GQ(µl∞ ).

Remark 1.9.
(i) One may verify easily that whether or not k is l-cyclotomically in-

ertially full is independent of the choice of an injection Q ↪→ k.
(ii) If k is generalized sub-l-adic (i.e., may be embedded as a subfield of

a finitely generated extension of the field of fractions of the ring of
Witt vectors with coefficients in an algebraic closure of the finite field
of l elements), then k is l-cyclotomically inertially full. On the other
hand, by an elementary theory of cyclotomic fields, the maximal
abelian extension Qab ⊆ Q of Q is l-cyclotomically inertially full,
but not generalized sub-l-adic.

The following result is the main result of the present §1.

Theorem 1.10. Let C be a hyperbolic curve over k. Suppose that k is l-
cyclotomically inertially full (cf. Definition 1.8). Then im(ρ{l}

C ) is not an
l-adic Lie group.

In particular, in this case, Ω
{l}
C does not coincide with Ω

{l}- ab
C , and, for

any abelian variety A over k, Ω
{l}
C does not coincide with Ω

{l}
A .
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Proof. First, we verify the first portion of Theorem 1.10. It follows from
Theorem 1.3 that we have a surjection im(ρ{l}

C ) ↠ im(ρ{l}
Tk

). Thus, by [5,
9.6 Theorem, (ii)], to verify the first portion of Theorem 1.10, it suffices to
verify that im(ρ{l}

Tk
) is not an l-adic Lie group. Next, the natural projection

Tk → T induces the following commutative diagram of profinite groups

Gk
//

ρ
{l}
Tk ��

GQ

ρ
{l}
T��

Out(∆{l}
Tk

) ∼ // Out(∆{l}
T )

where the upper arrow is the natural homomorphism, and the lower arrow is
the isomorphism determined by the isomorphism ∆

{l}
Tk
→̃∆

{l}
T obtained by the

natural projection Tk → T . Also, since k is l-cyclotomically inertially full,
there exists a prime l of Q over l such that the intersection of im(Gk(µl∞ ) →
GQ(µl∞ )) and the inertia subgroup Il ⊆ GQ of l is an open subgroup of
Il ∩ GQ(µl∞ ). Therefore, by [5, 9.7 Theorem], to verify the first portion of
Theorem 1.10, it suffices to verify that ρ

{l}
T (Il ∩ GQ(µl∞ )) is not an l-adic

Lie group. Assume that ρ
{l}
T (Il ∩GQ(µl∞ )) is an l-adic Lie group. Then the

dimension of ρ
{l}
T (Il ∩ GQ(µl∞ )) as an l-adic analytic manifold is finite. On

the other hand, by Lemma 1.7, there exists a positive integer m0 such that,
for any positive odd integer m ≥ m0, grm hl ̸= {0}. In particular, by Lemma
1.6, (iii), for any odd integer m ≥ m0, the dimension of grm hl as an l-adic
analytic manifold is positive. Therefore, since ρ

{l}
T (Il ∩GQ(µl∞ )) is a pro-{l}

group (cf. [25, Lemma 4.5.5]), it follows immediately from [5, 4.8 Theorem,
and 8.36 Theorem] that the dimension of ρ

{l}
T (Il ∩GQ(µl∞ )) is infinite. This

contradicts that ρ
{l}
T (Il∩GQ(µl∞ )) is an l-adic Lie group. This completes the

proof of the first portion of Theorem 1.10.
Finally, since there exists a positive integer n (respectively, n′) which

Aut((∆{l}
C )ab) (respectively, Aut(∆{l}

A )) is isomorphic to GLn(Zl) (respec-
tively, GLn′(Zl)) (cf., e.g., [18, Remark 1.2.2] (respectively, [19, §18])),
im(ρ{l}- ab

C ) (respectively, ρ
{l}
A ) is an l-adic Lie groups. Thus, the final por-

tion of Theorem 1.10 follows from the first portion of Theorem 1.10. This
completes the proof of Theorem 1.10. □

Remark 1.11. In the notation of Theorem 1.10, our proof of the fact that

Ω
{l}- ab
C ⊊ Ω

{l}
C

depends on the analysis of the profinite group Gal(Ω{l}
Tk

/k). Thus, a question
that may occur to some readers is the following:

(Q): Is Ω
{l}
C equal to the composite of Ω

{l}- ab
C and Ω

{l}
Tk

?

If either C is proper or ♯(Ccpt(k) \ C(k)) = 1, then it follows from Remark
1.2, (i) and Remark 1.4, (i) that question (Q) is equivalent to the following
question:
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Is Ω
{l}
C generated by the coordinates of torsion points of l-

power order of the Jacobian variety of Ccpt and all higher
circular l-units over k?

However, in general, question (Q) has a negative answer (cf. Corollary 2.15,
below).

Corollary 1.12. Let C be a hyperbolic curve over k. Suppose that l is
contained in Σ, and that one of the following conditions is satisfied:

(a) ♯(Σ) <∞ and k is l-cyclotomically inertially full.
(b) k is a finitely generated extension of Q.

Then ΩΣ- nilp
C does not coincide with ΩΣ- ab

C .
In particular, in this case, ΩΣ

C does not coincide with ΩΣ- ab
C .

Proof. For any finite extension K of k, we have the following commutative
diagram of profinite groups

im(ρΣ- nilp
C⊗kK)
� _

��

// // im(ρΣ- ab
C⊗kK)
� _

��
im(ρΣ- nilp

C ) // // im(ρΣ- ab
C )

where the vertical arrows are injective. Thus, to verify the first portion of
Corollary 1.12, we may replace k by a finite extension of k.

Note that, since (∆Σ
C )nilp =

∏
p∈Σ ∆

{p}
C (respectively, (∆Σ

C )ab =
∏

p∈Σ(∆{p}
C )ab),

the natural homomorphism

im(ρΣ- nilp
C ) −→

∏
p∈Σ

im(ρ{p}
C )

(resp. im(ρΣ- ab
C ) −→

∏
p∈Σ

im(ρ{p}- ab
C ))

induced by the natural surjection im(ρΣ- nilp
C ) ↠ im(ρ{p}

C ) (respectively,
im(ρΣ- ab

C ) ↠ im(ρ{p}- ab
C )) for p ∈ Σ is injective. Let SΣ- nilp

l be an l-Sylow
subgroup of im(ρΣ- nilp

C ). Write SΣ- ab
l for the l-Sylow subgroup of im(ρΣ- ab

C )
which is the image of SΣ- nilp

l by the the natural surjection im(ρΣ- nilp
C ) ↠

im(ρΣ- ab
C ).

First, we verify the first portion of Corollary 1.12 in the case where condi-
tion (a) is satisfied. Assume that ker(ρΣ- nilp

C ) is equal to ker(ρΣ- ab
C ). Then,

since, for any p ∈ Σ, im(ρ{p}
C ) is an almost pro-{p} group, i.e., im(ρ{p}

C )
has an open subgroup which is a pro-{p} group (cf. [25, Lemma 4.5.5]),
and ♯(Σ) < ∞, by replacing k by a finite extension of k, we may as-
sume that, for any p ∈ Σ, im(ρ{p}

C ), hence also im(ρ{p}- ab
C ), is a pro-{p}

group. Therefore, it follows from the injection im(ρΣ- nilp
C ) ↪→

∏
p∈Σ im(ρ{p}

C )
(respectively, im(ρΣ- ab

C ) ↪→
∏

p∈Σ im(ρ{p}- ab
C )) that the natural surjection

im(ρΣ- nilp
C ) ↠ im(ρ{l}

C ) (respectively, im(ρΣ- ab
C ) ↠ im(ρ{l}- ab

C )) induces an
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isomorphism SΣ- nilp
l →̃ im(ρ{l}

C ) (respectively, SΣ- ab
l →̃ im(ρ{l}- ab

C )). In par-
ticular, since the natural surjection im(ρΣ- nilp

C ) ↠ im(ρΣ- ab
C ) is an isomor-

phism, the natural surjection im(ρ{l}
C )→̃ im(ρ{l}- ab

C ) is an isomorphism . This
contradicts Theorem 1.10. This completes the proof of the first portion of
Corollary 1.12 in the case where condition (a) is satisfied.

Next, we verify the first portion of Corollary 1.12 in the case where condi-
tion (b) is satisfied. Assume that ker(ρΣ- nilp

C ) is equal to ker(ρΣ- ab
C ). Then,

by replacing k by a finite extension of k, it follows from [25, Lemma 4.5.5],
and [17, Theorem 4.12] that we may assume that im(ρ{l}

C ) is a pro-{l} group
which is slim (i.e., any open subgroup of im(ρ{l}

C ) is center-free). Also,
since, for p ∈ Σ, (∆{p}

C )ab is torsion-free (cf., e.g., [18, Remark 1.2.2]),
it follows from [4, Corollary 4.6] or [6, Theorem 1.1] that, by replacing
k by a finite extension of k, we may assume that the natural injection
im(ρΣ- ab

C ) ↪→
∏

p∈Σ im(ρ{p}- ab
C ) is an isomorphism. In particular, by replac-

ing SΣ- nilp
l by a suitable l-Sylow subgroup of im(ρΣ- nilp

C ), we may assume
that there exists an l-Sylow subgroup S

{p}
l of im(ρ{p}- ab

C ) for each p ∈ Σ such
that

SΣ- ab
l =

∏
p∈Σ

S
{p}
l .

Note that, since im(ρ{l}
C ) is a pro-{l} group, the restriction of the composite

of
im(ρΣ- ab

C )→̃ im(ρΣ- nilp
C ) ↠ im(ρ{l}

C )

to SΣ- ab
l is surjective. Also, for p ∈ Σ \ {l}, since S

{p}
l ×

∏
q∈Σ\{p}{1} is a

finite normal subgroup (cf. [25, Lemma 4.5.5]) of SΣ- ab
l , the image of the

composite of

ρp : S
{p}
l ×

∏
q∈Σ\{p}

{1} ↪→ im(ρΣ- ab
C )→̃ im(ρΣ- nilp

C ) ↠ im(ρ{l}
C )

is a finite normal subgroup of im(ρ{l}
C ). Thus, since a finite normal subgroup

of a slim profinite group is trivial (cf., e.g., [18, §0]), for p ∈ Σ \ {l}, the
image of ρp is trivial. Therefore, the restriction of the composite of

im(ρΣ- ab
C )→̃ im(ρΣ- nilp

C ) ↠ im(ρ{l}
C )

to S
{l}
l ×

∏
p∈Σ\{l}{1} is surjective. On the other hand, since there exists a

positive integer n which Aut((∆{l}
C )ab) is isomorphic to GLn(Zl) (cf., e.g.,

[18, Remark 1.2.2]), S
{l}
l ≃ S

{l}
l ×

∏
p∈Σ\{l}{1} (↪→ Aut((∆{l}

C )ab)) is an l-
adic Lie group. This and [5, Theorem 9.6, (ii)] contradict Theorem 1.10 .
This completes the proof of the first portion of Corollary 1.12 in the case
where condition (b) is satisfied.

Finally, the final portion of Corollary 1.12 follows from the first portion
of Corollary 1.12 (cf. Definition 1.1, (iii)). This completes the proof of
Corollary 1.12. □

By modifying the argument used in the proof of Corollary 1.12 in the case
where condition (b) is satisfied, we may obtain the following proposition
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which is a partial result in the case where k is a finitely generated extension
of an algebraically closed field. This result will be used in §2.

Proposition 1.13. Let C be a hyperbolic curve over k. Suppose that l is
contained in Σ, that k is a finitely generated extension of an algebraically
closed field, and that Ω

{l}
C does not coincide with Ω

{l}- ab
C . Then ΩΣ- nilp

C does
not coincide with ΩΣ- ab

C .
In particular, in this case, ΩΣ

C does not coincide with ΩΣ- ab
C .

Proof. First, by a standard argument in algebraic geometry, we may find
a quadruplet (F, F0, k0, C0) where F ⊆ k is an algebraically closed field
which k is a finitely generated extension of F , F0 ⊆ k is a finitely generated
extension of Q, k0 ⊆ k is a finitely generated extension of F0 which is linearly
disjoint with F over F0 and the composite of k0 and F is equal to k, and C0
is a hyperbolic curve over k0 which C0 ⊗k0 k is isomorphic to C over k. Let
F0 ⊆ F be an algebraic closure of F0. Write k1 for the composite of k0 and
F0, and C1 := C0⊗k0 k1. Then the natural morphism C0⊗k0 k → C0⊗k0 k1
induces the following commutative diagram of profinite groups

1 // ∆Σ
C

//

≀
��

Π
Σ
C

//

��

Gk
//

��

1

1 // ∆Σ
C1

// Π
Σ
C1

// Gk1
// 1

where the horizontal sequences are exact, and the left-hand vertical arrow
is an isomorphism. This commutative diagram of profinite groups induces
natural injections im(ρΣ- nilp

C ) ↪→ im(ρΣ- nilp
C1

), im(ρΣ- ab
C ) ↪→ im(ρΣ- ab

C1
). Note

that, since k1 is linearly disjoint with F over F0, Gk → Gk1 is surjec-
tive. Thus, im(ρΣ- nilp

C ) ↪→ im(ρΣ- nilp
C1

) and im(ρΣ- ab
C ) ↪→ im(ρΣ- ab

C1
) are

isomorphisms. Also, by replacing Σ by {l} in above argument, the natural
injections im(ρ{l}

C ) ↪→ im(ρ{l}
C1

) and im(ρ{l}- ab
C ) ↪→ im(ρ{l}- ab

C1
) are isomor-

phisms. In particular, since im(ρ{l}
C ) is not an l-adic Lie group, im(ρ{l}

C1
) is

also not an l-adic Lie group. Therefore, to verify that the natural surjection
im(ρΣ- nilp

C ) ↠ im(ρΣ- ab
C ) is not injective, we may replace C (respectively, k)

by C1 (respectively, k1). Suppose that C = C1 and k = k1. Also, it follows
from [25, Lemma 4.5.5] and [17, Theorem 4.12] that, by replacing k0 by a
finite extension of k0 (cf. the first paragraph of the proof of Corollary 1.12),
we may assume that im(ρ{l}

C0
) is a pro-{l} group and slim. Moreover, since,

for p ∈ Σ, (∆{p}
C )ab is torsion-free (cf., e.g., [18, Remark 1.2.2]), it follows

from [4, Corollary 4.6] or [3, Theorem 1.2] that, by replacing k0 by a finite
extension of k0, the natural injection im(ρΣ- ab

C ) ↪→
∏

p∈Σ im(ρ{p}- ab
C ) is an

isomorphism. Since we may regard Gk as a normal closed subgroup of Gk0 ,
we may regard im(ρ{l}

C ) (respectively, im(ρΣ- ab
C ); im(ρ{p}- ab

C ) for each p ∈ Σ)
as a normal closed subgroup im(ρ{l}

C0
) (respectively, im(ρΣ- ab

C0
); im(ρ{p}- ab

C0
)

for each p ∈ Σ). In particular, im(ρ{l}
C ), hence also im(ρ{l}- ab

C ), is also a
pro-{l} group.
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Next, assume that the natural surjection im(ρΣ- nilp
C ) ↠ im(ρΣ- ab

C ) is an
isomorphism. Let p be an element of Σ\{l}. Since im(ρ{p}- ab

C )×
∏

q∈Σ\{p}{1}
is a normal closed subgroup of

∏
q∈Σ im(ρ{q}- ab

C0
), im(ρ{p}- ab

C )×
∏

q∈Σ\{p}{1}
is a normal closed subgroup of im(ρΣ- ab

C0
)(⊆

∏
q∈Σ im(ρ{q}- ab

C0
)). Thus, the

image of the composite of

im(ρ{p}- ab
C )×

∏
q∈Σ\{p}

{1} ↪→ im(ρΣ- ab
C )←̃ im(ρΣ- nilp

C ) ↠ im(ρ{l}
C )

where the right-hand arrow is the natural surjection, is a normal closed
subgroup of im(ρ{l}

C0
). On the other hand, since im(ρ{l}

C ) is a pro-{l} group,
the image of the composite of

im(ρ{p}- ab
C )×

∏
q∈Σ\{p}

{1} ↪→ im(ρΣ- ab
C )←̃ im(ρΣ- nilp

C ) ↠ im(ρ{l}
C )

is equal to the image of the composite of

S
{p}
l ×

∏
q∈Σ\{p}

{1} ↪→ im(ρΣ- ab
C )←̃ im(ρΣ- nilp

C ) ↠ im(ρ{l}
C )

(where S
{p}
l is an l-Sylow subgroup of im(ρ{p}- ab

C )). Also, since S
{p}
l is a

finite group (cf. [25, Lemma 4.5.5]), the image of composite of

im(ρ{p}- ab
C )×

∏
q∈Σ\{p}

{1} ↪→ im(ρΣ- ab
C )←̃ im(ρΣ- nilp

C ) ↠ im(ρ{l}
C )

is a finite normal subgroup of im(ρ{l}
C0

). Thus, since a finite normal subgroup
of a slim profinite group is trivial (cf., e.g., [18, §0]) and im(ρ{l}

C0
) is slim, the

image of the composite of

im(ρ{p}- ab
C )×

∏
q∈Σ\{p}

{1} ↪→ im(ρΣ- ab
C )←̃ im(ρΣ- nilp

C ) ↠ im(ρ{l}
C )

is trivial. Therefore, since

im(ρ{l}- ab
C )×

∏
q∈Σ\{l}

S
{q}
l

(where, for q ∈ Σ \ {l}, S
{q}
l is an l-Sylow subgroup of im(ρ{q}- ab

C )) is an
l-Sylow subgroup of im(ρΣ- ab

C ), the composite of

im(ρ{l}- ab
C )×

∏
q∈Σ\{l}

{1} ↪→ im(ρΣ- ab
C )←̃ im(ρΣ- nilp

C ) ↠ im(ρ{l}
C )

is surjective. In particular, we have the surjection im(ρ{l}- ab
C ) ↠ im(ρ{l}

C ).
However, we may verify immediately that this surjection im(ρ{l}- ab

C ) ↠
im(ρ{l}

C ) is the inverse map of the natural surjection im(ρ{l}
C ) ↠ im(ρ{l}- ab

C ).
This contradict the condition that Ω

{l}
C does not coincide with Ω

{l}- ab
C . This

completes the proof of the first portion of Proposition 1.13.
Finally, the final portion of Proposition 1.13 follows from the first portion

of Proposition 1.13 (cf. Definition 1.1, (iii)). This completes the proof of
Proposition 1.13. □
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2. The universal pro-{l} outer monodromy representation of
the moduli stack of hyperbolic curves

In the present §2, we recall generalities on the universal pro-{l} outer
monodromy representation of the moduli stack of hyperbolic curves, and
prove Theorem B (cf. Corollary 2.2, Proposition 2.9, below). Moreover,
we prove a partial generalization of Theorem B for universal pro-Σ outer
monodromy representations (cf. Corollary 2.11, below), and a corollary to
Theorem B, which is a partial strengthening of Theorem A (cf. Corollary
2.15, below).

We maintain the notation of the preceding §1. Let (g, r) be a pair of
nonnegative integers such that 2g − 2 + r > 0.

Definition 2.1.
(i) We shall denote by (Mg,r)k the moduli stack of r-pointed smooth

proper curves of genus g over k whose r marked points are equipped
with an ordering. We shall regard (Mg,r+1)k as an algebraic stack
over (Mg,r)k by the (1-)morphism (Mg,r+1)k → (Mg,r)k obtained
from forgetting the last marked point.

(ii) We shall write ∆g,r for the kernel of the surjection of profinite groups
π1((Mg,r+1)k)→ π1((Mg,r)k) determined by (Mg,r+1)k → (Mg,r)k.
It is well-known that ∆g,r is naturally isomorphic to the profinite
completion of the (topological) fundamental group ∆top

g,r of a topo-
logical space obtained by removing r distinct points from a connected
orientable compact topological surface of genus g. Thus, we have a
natural exact sequence of profinite groups

1 // ∆g,r
// π1((Mg,r+1)k) // π1((Mg,r)k) // 1 .

We shall write
∆Σ

g,r

for the maximal pro-Σ quotient of ∆g,r,

ρΣ
g,r/k : π1((Mg,r)k) −→ Out(∆Σ

g,r)

for the natural homomorphism determined by the above exact se-
quence of profinite groups and the natural surjection ∆g,r ↠ ∆Σ

g,r,

ρΣ- ab
g,r/k : π1((Mg,r)k) −→ Aut((∆Σ

g,r)ab)

for the natural homomorphism determined by ρΣ
g,r/k and the natural

surjection ∆Σ
g,r → (∆Σ

g,r)ab, and

ρΣ- nilp
g,r/k : π1((Mg,r)k) −→ Aut((∆Σ

g,r)nilp)

for the natural homomorphism determined by ρΣ
g,r/k and the natural

surjection ∆Σ
g,r → (∆Σ

g,r)nilp. We shall refer to ρΣ
g,r/k as the universal

pro-Σ outer monodromy representation of (Mg,r)k.
(iii) We shall write

Γg,r
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for the kernel of the surjection of profinite groups π1((Mg,r)k)→ Gk

determined by the natural morphism (Mg,r)k → Spec k. Thus, a
natural exact sequence of profinite groups

1 // Γg,r
// π1((Mg,r)k) // Gk

// 1 .

Note that it follows from the argument used in [24] that Γ is nat-
urally isomorphic to the profinite completion of the (pure) mapping
class group MCGg,r of type (g, r), i.e., the group of isotopy classes
of orientation-preserving automorphisms of a topological space ob-
tained by removing r distinct points from a connected orientable
compact topological surface of genus g that fix each removed point,
and the restriction of ρΣ

g,r/k (respectively, ρΣ- ab
g,r/k ; ρΣ- nilp

g,r/k ) to Γg,r may
be regarded as the homomorphism obtained from the natural homo-
morphism

MCGg,r −→ Out(∆top
g,r )

and the pro-Σ completion of ∆top
g,r (respectively, the abelianization

of the pro-Σ completion of ∆top
g,r ; the maximal pro-nilpotent quotient

of the pro-Σ completion of ∆top
g,r ). In particular, the properties of

the profinite group ρΣ
g,r/k(Γg,r), the natural surjection ρΣ

g,r/k(Γg,r) ↠
ρΣ- ab

g,r/k (Γg,r), and ρΣ- nilp
g,r/k (Γg,r) ↠ ρΣ- ab

g,r/k (Γg,r) as topological groups
are independent of the choice of the field k of characteristic zero.

Now we prove a part of the main result of the present §2 as a corollary of
Theorem 1.10 and [14, Theorem 3.4].

Corollary 2.2. Suppose that 3g − 3 + r > 0, and that either (g, r) ̸= (1, 1)
or l = 2. Then an open subgroup of the profinite group im(ρ{l}

g,r/k) is not an
l-adic Lie group.

In particular, in this case, the restriction of the natural surjection

im(ρ{l}
g,r/k) // // im(ρ{l}- ab

g,r/k )

to an open subgroup of im(ρ{l}
g,r/k) is not injective.

Proof. First, we verify the first portion of Corollary 2.2. By means of [5, 9.7
Theorem], to verify the first portion of Corollary 2.2, it suffices to show that
im(ρ{l}

g,r/k) is not an l-adic Lie group. Moreover, since a closed subgroup
of an l-adic Lie group is also an l-adic Lie group (cf. [5, 9.6 Theorem,
(i)]), to verify the first portion of Corollary 2.2, it suffices to show that
ρ

{l}
g,r/k(Γg,r) is not an l-adic Lie group. Assume that ρ

{l}
g,r/k(Γg,r) is an l-adic

Lie group. Then, since ρ
{l}
g,r/k(Γg,r) is compact, ρ

{l}
g,r/k(Γg,r) is a compact l-

adic Lie group. Thus, it follows from [5, 8.35 Corollary, and 9.6 Theorem,
(i), (ii)] that Out(ρ{l}

g,r/k(Γg,r)) is an l-adic Lie group. On the other hand, by
[14, Theorem 3.4], we have an injection

Gal(Ω{l}
T /Q) �

� // Out(ρ{l}
g,r/k(Γg,r)) .
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However, by Theorem 1.10, Gal(Ω{l}
T /Q) is not an l-adic Lie group. This

and [5, 9.6 Theorem, (i)] contradict that Out(ρ{l}
g,r/k(Γg,r)) is an l-adic Lie

group. This completes the first portion of Corollary 2.2.
Finally, since there exists a positive integer n which Aut((∆{l}

g,r)ab) is iso-
morphic to GLn(Zl) (cf., e.g., [18, Remark 1.2.2]), the final portion of Corol-
lary 2.2 follows from the first portion of Corollary 2.2 in the case where k is
algebraically closed. This completes the proof of Corollary 2.2. □
Remark 2.3.

(i) In the notation of Corollary 2.2, suppose that g is not equal to 1.
Then it seems that Corollary 2.2 follows from [2, Theorem B] and
the computation of the rank of the graded Lie algebra associated to
a central filtration of mapping class groups, without using Theorem
1.10.

(ii) In the notation of Corollary 2.2, since Γ0,3 = {1}, it is immediate
that a result similar to the results stated in Corollary 2.2 does not
hold in the case where (g, r) = (0, 3) and k is algebraically closed.
On the other hand, it is not clear to the author at the time of writ-
ing whether or not a result similar to the results stated in the first
portion of Corollary 2.2 holds in the case where (g, r) = (1, 1) and
l > 2. Nevertheless, we are able to obtain a result similar to the
results stated in the final portion of Corollary 2.2, even in the case
where (g, r) = (1, 1) and l > 2 (cf. Proposition 2.9, below).

Definition 2.4.
(i) We shall denote by

S(Gk, (∆Σ
g,r)nilp)

(resp. S(Gk, (∆Σ
g,r)ab))

the set of homomorphisms Gk → im(ρΣ- nilp
g,r/k ) (respectively, Gk →

im(ρΣ- ab
g,r/k )) obtained by the composite of a section of π1((Mg,r)k) ↠

Gk and the homomorphism ρΣ- nilp
g,r/k (respectively, ρΣ- ab

g,r/k ) considered
up to ρΣ- nilp

g,r/k (Γg,r)-inner automorphism (respectively, ρΣ- ab
g,r/k (Γg,r)-

inner automorphism).
(ii) Let C be a split hyperbolic curve of type (g, r) over k, and OC an or-

dering of Ccpt(k)\C(k), i.e., a bijection Ccpt(k)\C(k)→̃{1, 2, . . . , r}.
The classifying (1-)morphism Spec k → (Mg,r)k of the pair (C,OC)
determines — up to Γg,r-inner automorphism — a section of the
natural surjection π1((Mg,r)k) ↠ Gk. We shall write

s(C,OC) : Gk −→ π1((Mg,r)k)

for this section. If r ≤ 1, then the choice of the ordering of Ccpt(k) \
C(k) is unique. Therefore, if r ≤ 1, we shall write sC for s(C,OC).

(iii) We shall write

φΣ- nilp
g,r : (Mg,r)k(k) −→ S(Gk, (∆Σ

g,r)nilp)

(resp. φΣ- ab
g,r : (Mg,r)k(k) −→ S(Gk, (∆Σ

g,r)ab))
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for the map determined by sending the pair of a split hyperbolic
curve C of type (g, r) over k and an ordering OC of Ccpt(k) \ C(k)
to the composite of s(C,OC) (cf. (ii)) and the homomorphism ρΣ- nilp

g,r/k

(respectively, ρΣ- ab
g,r/k ). (Here, by consideration of isomorphic classes,

we regard (Mg,r)k(k) as a set.)

Remark 2.5. Let C be a split hyperbolic curve of type (g, r) over k, and OC

an ordering of Ccpt(k) \ C(k).
(i) Then it follows immediately from [9, Lemma 20] that the cartesian

(1-)diagram of algebraic stacks

C //

��

Spec k

��
(Mg,r+1)k

// (Mg,r)k

determined by the classifying (1-)morphism Spec k → (Mg,r)k of
the pair of (C,OC) induces the following commutative diagram of
profinite groups

1 // π1(C ⊗k k) //

≀
��

π1(C) //

��

Gk
//

s(C,OC )

��

1

1 // ∆g,r
//

����

π1((Mg,r+1)k) //

ρ
{l}
g,r+1/k����

π1((Mg,r)k) //

ρ
{l}
g,r/k����

1

1 // ∆
{l}
g,r

// im(ρ{l}
g,r+1/k) // im(ρ{l}

g,r/k) // 1

where the horizontal sequences are exact, the lower vertical arrows
are surjective, and the upper left-hand vertical arrow is an isomor-
phism, and the following commutative diagram of profinite groups

1 // π1(C ⊗k k) //

����

π1(C) //

����

Gk
// 1

1 // ∆
{l}
C

//

≀
��

Π
{l}
C

//

��

Gk
//

ρ
{l}
g,r/k

◦s(C,OC )
��

1

1 // ∆
{l}
g,r

// im(ρ{l}
g,r+1/k) // im(ρ{l}

g,r/k) // 1

where the horizontal sequences are exact, the upper vertical arrows
are surjective, and the lower left-hand vertical arrow is an isomor-
phism. In particular, we have an isomorphism

Π
{l}
C

∼−→ im(ρ{l}
g,r+1/k)×im(ρ{l}

g,r/k
) Gk

over Gk.
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(ii) Moreover, it follows from [26, Theorem 0.5, (2)] that there exists a
surjection im(ρ{l}

g,r/k) ↠ im(ρ{l}
Tk

) which fits into the following com-
mutative diagram of profinite groups

Gk
// //

sOC

��

im(ρ{l}
C ) // //
� _

��

im(ρ{l}
Tk

)

π1((Mg,)k) // // im(ρ{l}
g,r/k)

99 99ttttttttt

where the middle vertical arrow is the homomorphism determined
by the above second commutative diagram of profinite groups, and
the right-hand horizontal arrow is the homomorphism determined
by the inclusion ker(ρ{l}

C ) ⊆ ker(ρ{l}
Tk

) (cf. Theorem 1.3).

Lemma 2.6. Suppose that k is generalized sub-l-adic (i.e., may be embedded
as a subfield of a finitely generated extension of the field of fractions of the
ring of Witt vectors with coefficients in an algebraic closure of the finite field
of l elements), and that l is contained in Σ. Then the map

φΣ- nilp
g,r : (Mg,r)k(k) −→ S(Gk, (∆Σ

g,r)nilp)

(cf. Definition 2.4, (iii)) is injective.

Proof. First, one may verify that the natural map

S(Gk, (∆Σ
g,r)nilp)→ S(Gk, ∆{l}

g,r)

determined by the natural surjection im(ρΣ- nilp
g,r/k ) ↠ im(ρ{l}

g,r/k) fits into the
following commutative diagram of sets

(Mg,r)k(k)
φΣ- nilp

g,r //

φ
{l}- nilp
g,r

((PP
PPP

PPP
PPP

P
S(Gk, (∆Σ

g,r)nilp)

��

S(Gk, ∆
{l}
g,r).

Thus, to verify Lemma 2.6, one may assume that Σ is equal to {l}. Next,
let s and s′ be elements of (Mg,r)k(k) such that φ

{l}- nilp
g,r (s) is equal to

φ
{l}- nilp
g,r (s′). Write (Cs,Os) (respectively, (Cs′ ,Os′)) for the pair of the hy-

perbolic curve Cs (respectively, Cs′) of type (g, r) over k and the ordering
of Ccpt

s (k) \Cs(k) (respectively, Ccpt
s′ (k) \Cs′(k)) determined by the pulling

back the (1-)morphism (Mg,r+1)k → (Mg,r)k via s : Spec k → (Mg,r)k

(respectively, s′ : Spec k → (Mg,r)k). Then, since φ
{l}- nilp
g,r (s) is equal to

φ
{l}- nilp
g,r (s′), it follows from Remark 2.5, (i) that we obtain an isomorphism

Π
{l}
Cs

∼−→ Π
{l}
Cs′

over Gk. Thus, by consideration of the correspondence of the cuspidal in-
ertia subgroups determined by the above isomorphism, it follows from [17,
Theorem 4.12] that s is equal to s′. This completes the proof of Lemma
2.6. □
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Lemma 2.7. Suppose that there exists a prime number p which is not con-
tained in Σ. Then there exists a finite extension K of k such that the map

φΣ- ab
1,1 : (M1,1)K(K) −→ S(GK , (∆Σ

1,1)ab)

(cf. Definition 2.4, (iii)) is not injective.

Proof. First, by replacing k by a finite extension of k, one may assume that
there exists an elliptic curve (E, O) over k such that Endk(E) is isomorphic
to Z, and that any torsion point of E of order p is k-rational. Write (E′, O′)
for the elliptic curve over k determined by the quotient of E by the subgroup
scheme D generated by t ∈ E(k) which is of order p, and f : (E, O) →
(E′, O′) for the isogeny over k determined by the quotient map.

Next, write M0(p) for the moduli stack of pairs (E,D) where E is an
elliptic curve and D is a cyclic subgroup scheme of E of order p over k;
C0(p) →M0(p) for the the family of hyperbolic curves of type (1, 1) deter-
mined by pulling back the (1-)morphism (M1,2)k → (M1,1)k via the natural
(1-)morphism M0(p) → (M1,1)k; the E → M0(p) for the family of elliptic
curves determined by the family of hyperbolic curves C0(p) → M0(p) of
type (1, 1); D ⊆ E for the universal cyclic subgroup of order p over M0(p);
E ′ → M0(p) for the quotient of E by D ⊆ E over M0(p); U := E \ D;
C0(p)′ → M0(p) for the family of hyperbolic curves of type (1, 1) deter-
mined by the image of the restriction of the quotient (1-)morphism E → E ′

to U ; i : Spec k →M0(p) for the classifying (1-)morphism of the pair (E, D);
s : Gk → π1(M0(p)) for the homomorphism determined by i. Thus, by con-
sideration of the definitions of C0(p)′, i, and s, there exist the following
cartesian (1-)diagrams of algebraic stacks

E \ {O} //

��

C0(p)

��

E′ \ {O′} //

��

C0(p)′

��
Spec k

i //M0(p), Spec k
i //M0(p),

hence also the following cartesian diagrams of profinite groups

π1(E \ {O}) //

��

π1(C0(p))

��

π1(E′ \ {O′}) //

��

π1(C0(p)′)

��
Gk

s // π1(M0(p)), Gk
s // π1(M0(p)).

Also, the following commutative (1-)diagram of algebraic stacks

C0(p)

$$I
II

II
II

II

U
� ?

OO

��

//M0(p)

C0(p)′

::uuuuuuuuu
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where the upper vertical arrow is the natural embedding, induces the fol-
lowing commutative diagram of profinite groups

1 // ∆1,1 // π1(C0(p)) // π1(M0(p)) // 1

1 // ∆1,p
//

� _

��

OOOO

π1(U) //
� _

��

OOOO

π1(M0(p)) // 1

1 // ∆1,1 // π1(C0(p)′) // π1(M0(p)) // 1

where the horizontal sequences are exact, the upper vertical arrows are sur-
jective, and the lower vertical arrows are injective. Moreover, since p is not
contained in Σ, one may verify that the left-hand vertical arrows of the above
commutative diagram of profinite groups induce the following commutative
diagram of profinite groups

∆1,1

����

∆1,p
� � //oooo

����

∆1,1

����
∆Σ

1,1

����

∆Σ
1,p

// //oooo ∆Σ
1,1

����
(∆Σ

1,1)ab (∆Σ
1,1)ab.

Thus, it follows from the above commutative diagrams of profinite groups
that φΣ- ab

1,1 (sE\{O}) is equal to φΣ- ab
1,1 (sE′\{O′}). Assume that E \ {O} is

isomorphic to E′ \ {O′}. Then we have an isomorphism of elliptic curves
i : (E′, O′)→̃(E, O) over k. Thus, we have the isogeny i◦f : (E, O)→ (E, O)
over k of degree p. However, this contradicts that Endk(E) is isomorphic to
Z. Therefore, E \ {O} is not isomorphic to E′ \ {O′}, and φΣ- ab

1,1 (sE\{O}) is
equal to φΣ- ab

1,1 (sE′\{O′}). This completes the proof of Lemma 2.7. □

Remark 2.8. In Lemma 2.7, Tamagawa pointed out that the condition that
p /∈ Σ is not necessary. Indeed, write ẐΣ for the pro-Σ completion of Z.
First, by means of the natural isomorphism

SL2(ẐΣ) ∼−→
∏
q∈Σ

SL2(Zq),

we may verify that the natural map

ϕΣ- ab : S(Gk, (∆Σ
1,1)ab) −→

∏
q∈Σ

S(Gk, (∆{q}
1,1 )ab)

determined by the natural surjection im(ρΣ- ab
g,r/k ) ↠ im(ρ{q}- ab

g,r/k ) for each q ∈
Σ is injective. On the other hand, by the theory of complex multiplications
of elliptic curves, and replacing k by a finite extension of k, there exists a
quadruplet

((E, O), (E′, O′), f : (E, O)→ (E′, O′), g : (E, O)→ (E′, O′))
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where (E, O) and (E′, O′) are elliptic curves over k which E is not iso-
morphic to E′ over k, f : (E, O) → (E′, O′) and g : (E, O) → (E′, O′) are
isogenies whose kernels are cyclic, and deg(f) is prime to deg(g). Write Σ′

(respectively, Σ′′) for the set of prime numbers which are not prime factors
of deg(f) (respectively, deg(g)). In particular, Σ := Σ′ ∪Σ′′ is equal to the
set of prime numbers. Then, by replacing M0(p) by M0(deg(f)) (respec-
tively,M0(deg(g))) (which is the moduli stack of pairs (E,D) where E is an
elliptic curve and D is a cyclic subgroup scheme of E of order deg(f) (re-
spectively, deg(g)) over k) in the argument used in the proof of Lemma 2.7,
we may verify that φΣ′- ab

1,1 (sE\{O}) (respectively, φΣ′′- ab
1,1 (sE\{O})) is equal

to φΣ′- ab
1,1 (sE′\{O′}) (respectively, φΣ′′- ab

1,1 (sE′\{O′})). Therefore, it follows
immediately from the injectivity of ϕΣ- ab that φΣ- ab

1,1 (sE\{O}) is equal to
φΣ- ab

1,1 (sE′\{O′}). Since E is not isomorphic to E′ over k, this completes the
proof of Lemma 2.7 in the case where Σ is the set of prime numbers.

Proposition 2.9. The restriction of the natural surjection

im(ρ{l}
1,1/k) // // im(ρ{l}- ab

1,1/k )

to an open subgroup of im(ρ{l}
1,1/k) is not injective.

Proof. Since ker(im(ρ{l}
1,1/k) ↠ im(ρ{l}- ab

1,1/k )) is torsion-free (cf. [2, Theorem
4, (ii), (iii)]), to verify Proposition 2.9, it suffices to verify that the natural
surjection im(ρ{l}

1,1/k) ↠ im(ρ{l}- ab
1,1/k ) is not injective. Therefore, to verify

Proposition 2.9, it suffices to verify that the natural surjection ρ
{l}
1,1/k(Γ1,1) ↠

ρ
{l}- ab
1,1/k (Γ1,1) is not injective.

Note that, to verify Proposition 2.9, we may assume without loss of gen-
erality that k is a number field (cf. Definition 2.1). Assume that the natural
surjection ρ

{l}
1,1/k(Γ1,1) ↠ ρ

{l}- ab
1,1/k (Γ1,1) is injective. Write

ar(ρ{l}
1,1/k) := im(ρ{l}

1,1/k)/ρ
{l}
1,1/k(Γ1,1),

and
ar(ρ{l}- ab

1,1/k ) := im(ρ{l}- ab
1,1/k )/ρ

{l}- ab
1,1/k (Γ1,1).

Then the natural surjection im(ρ{l}
1,1/k) ↠ im(ρ{l}- ab

1,1/k ) induces the the follow-
ing commutative diagram of profinite groups

1 // ρ
{l}
1,1/k(Γ1,1)

����

// im(ρ{l}
1,1/k)

����

// ar(ρ{l}
1,1/k)

����

// 1

1 // ρ
{l}- ab
1,1/k (Γ1,1) // im(ρ{l}- ab

1,1/k ) // ar(ρ{l}- ab
1,1/k ) // 1

where the horizontal sequences are exact, and the vertical arrows are surjec-
tive. Now since the natural surjection ρ

{l}
1,1/k(Γ1,1) ↠ ρ

{l}- ab
1,1/k (Γ1,1) is injec-

tive, the right square of the above commutative diagram is cartesian. Note
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that, by the definition of Γ1,1, for a section s of the natural homomorphism
π1((M1,1)k)→ Gk, the composite of

Gk
s→ π1((M1,1)k)→ ar(ρ{l}

1,1/k),

hence also
Gk

s→ π1((M1,1)k)→ ar(ρ{l}- ab
1,1/k ),

is independent of the choice of s. In particular, by means of the above
cartesian square

im(ρ{l}
1,1/k)

����

// ar(ρ{l}
1,1/k)

����

im(ρ{l}- ab
1,1/k ) // ar(ρ{l}- ab

1,1/k ),

we may verify that the natural map S(Gk, ∆
{l}
1,1) → S(Gk, (∆{l}

1,1)ab) deter-
mined by the natural surjection im(ρ{l}

1,1/k) ↠ im(ρ{l}- ab
1,1/k ) is injective. Since

this injection fits into the following commutative diagram of sets

(M1,1)k(k)
φ

{l}- nilp
1,1 //

φ
{l}- ab
1,1 ''OO

OOO
OOO

OOO
O

S(Gk, ∆
{l}
1,1)

��

S(Gk, (∆{l}
1,1)ab),

it follows from Lemma 2.6 that φ
{l}- ab
1,1 is injective. However, by replacing k

by a finite extension of k, this contradicts Lemma 2.7. This completes the
proof of Proposition 2.9. □
Remark 2.10. As written in [2, p.34], Proposition 2.9 is well-known at least
for experts. On the other hand, our proof of Proposition 2.9 differs somewhat
from the proof expected in [2, p.34] which was explained to the author by
Asada and Nakamura. Also, at the time of writing, the proof of Proposition
2.9 was not available in published form. Thus, the author gave the proof of
Proposition 2.9 in this paper.

Corollary 2.11. Suppose that 3g − 3 + r > 0, i.e., (g, r) is not equal to
(0, 3). Then the natural surjection

im(ρΣ- nilp
g,r/k ) // // im(ρΣ- ab

g,r/k )

is not injective.
In particular, in this case, the natural surjection

im(ρΣ
g,r/k) // // im(ρΣ- ab

g,r/k )

is not injective.

Proof. To verify the first portion of Corollary 2.11, it suffices to verify that
the natural surjection ρΣ- nilp

g,r/k (Γg,r) ↠ ρΣ- ab
g,r/k (Γg,r) is not injective. First,

we verify Corollary 2.11 in the case where either (g, r) ̸= (1, 1) or 2 ∈ Σ.
We may assume without loss of generality that k is algebraically closed.
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Let M→ (Mg,r)k be a connected finite étale covering of (Mg,r)k which is
representable by a scheme (cf., e.g., [7, Proposition 7.2]). Write k(M) for
the function field ofM, k(M) for an algebraic closure of k(M), and C for the
hyperbolic curve over k(M) of type (g, r) determined by the pulling-back of
the composite of

Spec k(M)→M→ (Mg,r)k

via the (1-)morphism (Mg,r+1)k → (Mg,r)k. Then we have the following
commutative diagram of profinite groups

1 // π1(C ⊗k(M) k(M)) //

≀
��

π1(C) //

��

Gk(M) //

��

1

1 // ∆g,r
//

����

Γg,r+1 //

����

Γg,r
//

����

1

1 // (∆Σ
g,r)nilp // ρΣ- nilp

g,r+1/k(Γg,r) // ρΣ- nilp
g,r/k (Γg,r) // 1

where the horizontal sequences are exact, the upper vertical arrows have
open images, the left-hand upper vertical arrow is an isomorphism, the lower
vertical arrows are surjective. Thus, there exist injections im(ρΣ- nilp

C ) ↪→
ρΣ- nilp

g,r/k (Γg,r) and im(ρΣ- ab
C ) ↪→ ρΣ- ab

g,r/k (Γg,r) which have open images, and
that fit into the following commutative diagram of profinite groups

im(ρΣ- nilp
C )
� _

��

// // im(ρΣ- ab
C )
� _

��
ρΣ- nilp

g,r/k (Γg,r) // // ρΣ- ab
g,r/k (Γg,r).

Let q be a prime number which is contained in Σ. If (g, r) = (1, 1), then we
replace q by 2. By replacing Σ by {q} in above argument, there exists an
injection im(ρ{q}

C ) ↪→ ρ
{q}
g,r/k(Γg,r) which has an open image. In particular, by

Corollary 2.2, im(ρ{q}
C ) is not a q-adic Lie group. Therefore, since k(M) is a

finitely generated extension over an algebraically closed field, it follows from
Proposition 1.13 that the natural surjection im(ρΣ- nilp

C ) ↠ im(ρΣ- ab
C ), hence

also ρΣ- nilp
g,r/k (Γg,r) ↠ ρΣ- ab

g,r/k (Γg,r), is not injective. This completes the proof
of the first portion of Corollary 2.11 in the case where either (g, r) ̸= (1, 1)
or 2 ∈ Σ.

Next, we verify the first portion of Corollary 2.11 in the case where (g, r) =
(1, 1) and 2 /∈ Σ. We may assume without loss of generality that k is a
number field. Then, by replacing {l} by Σ in the second paragraph the
proof of Proposition 2.9, Corollary 2.11 in the case where (g, r) = (1, 1) and
2 /∈ Σ follows from Lemmas 2.6, 2.7. This completes the proof of the first
portion of Corollary 2.11.
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Finally, since the natural surjection im(ρΣ
g,r/k) ↠ im(ρΣ- ab

g,r/k ) factors through
the natural surjection im(ρΣ- nilp

g,r/k ) ↠ im(ρΣ- ab
g,r/k ), the final portion of Corol-

lary 2.11 follows from the first portion of Corollary 2.11. This completes the
proof of Corollary 2.11 □
Remark 2.12. In the notation of Corollary 2.11, if g ̸= 1 and r ≤ 1, Corollary
2.11 follows immediately from the injectivity of the natural homomorphism
Out(∆top

g,r )→ Out(∆Σ
g,r) (cf., e.g., [14, Lemma 3.2]) and the nontriviality of

the Torelli subgroup of MCGg,r (cf. Definition 2.1).
Definition 2.13. Let C be a split hyperbolic curve of type (g, r) over k,
and OC an ordering of Ccpt(k) \ C(k). We shall say that C is quasi-{l}-
monodromically full if ρ

{l}
g,r/k ◦ s(C,OC)(Gk) is an open subgroup of im(ρ{l}

g,r/k).
Note that whether or not C is quasi-{l}-monodromically full is independent
of the choice of the ordering OC .
Remark 2.14.

(i) The notion of the quasi-{l}-monodromic fullness is introduced by
Hoshi (cf. [8, Definition 2.2]). In fact, the notion of the quasi-
{l}-monodromic fullness is defined for the general hyperbolic curves
which are not necessarily split.

(ii) Suppose that k is a finitely generated extension of Q. Then, by
[8, Corollary 2.6] (cf. also [15, Theorem 1.2]), there exist infinitely
many (geometrically non-isomorphic) pairs of a finite extension K
of k and a split hyperbolic curve C of type (g, r) over K such that
C is quasi-{l}-monodromically full. In particular, by replacing k by
a finite extension of k, there exists a split hyperbolic curve of type
(g, r) over k which is quasi-{l}-monodromically full.

Corollary 2.15. Let C be a split hyperbolic curve of type (g, r) over k
which is quasi-{l}-monodromically full (cf. Definition 2.13; also Remark
2.14, (ii)). Suppose that 3g − 3 + r > 0, i.e., (g, r) is not equal to (0, 3).
Then Ω

{l}
C is not equal to the composite of Ω

{l}- ab
C and Ω

{l}
Tk

.

Proof. Assume that Ω
{l}
C is equal to the composite of Ω

{l}- ab
C and Ω

{l}
Tk

.
This induces that the natural homomorphism determined by the inclusion
ker(ρ{l}

C ) ⊆ ker(ρ{l}
Tk

) (cf. Theorem 1.3)

im(ρ{l}
C ) −→ im(ρ{l}- ab

C )× im(ρ{l}
Tk

)
is injective. Thus, it follows from the quasi-{l}-monodromic fullness of C

that there exists an open subgroup U of im(ρ{l}
g,r/k) such that the composite

of
U ↪→ im(ρ{l}

g,r/k)→ im(ρ{l}- ab
g,r/k )× im(ρ{l}

Tk
)

— where the right arrow is the homomorphism determined by the natural
surjection im(ρ{l}

g,r/k) ↠ im(ρ{l}- ab
g,r/k ) and the homomorphism im(ρ{l}

g,r/k) ↠
im(ρ{l}

Tk
) (cf. Remark 2.5, (ii)) — is injective. Then, by [26, Theorem 0.5,

(2)], the kernel of the composite of

U ↪→ im(ρ{l}
g,r/k)→ im(ρ{l}- ab

g,r/k )× im(ρ{l}
Tk

)→ im(ρ{l}
Tk

)
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is equal to (U ∩ ρ
{l}
g,r/k(Γg,r)). Therefore, the natural homomorphism (U ∩

ρ
{l}
g,r/k(Γg,r))→ ρ

{l}- ab
g,r/k (Γg,r) is injective. However, since (U ∩ ρ

{l}
g,r/k(Γg,r)) is

an open subgroup of ρ
{l}
g,r/k(Γg,r), this contradicts Corollary 2.2 and Propo-

sition 2.9. This completes the proof of Corollary 2.15. □
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