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Abstract

We consider on-diagonal heat kernel estimates and the laws of the iterated logarithms for a switch-
walk-switch random walk on a lamplighter graph under the condition that the random walk on the
underlying graph enjoys sub-Gaussian heat kernel estimates.
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1 Introduction

Let G be a connected infinite graph and consider the situation that on each vertex of G there is a lamp.
Consider a lamplighter on the graph that makes the following random movements; first, the lamplighter
turns on or o↵ the lamp on the site with equal probability, then he/she moves to the nearest neighbor
of G with equal probability, and turns on or o↵ the lamp on the new site with equal probability. The
lamplighter repeats this random movement. Such a movement can be considered as a random walk on
the wreath product of graphs Z2 oG which is roughly a graph putting Z2 = {0, 1} on each vertex of G (see
Definition 2.1 for precise definition), and it is called a “switch-walk-switch walk” or “lamplighter walk”
on Z2 oG. We are interested in the long time behavior of the walk. Some results are known when G is a
specific graph. Pittet and Salo↵-Coste [13] established on-diagonal heat kernel asymptotics of the random
walk on Z2 o Zd and they obtained the following estimates; there exist positive constants c1, c2, c3, c4 > 0
such that

c1 exp
h
�c2n

d
d+2

i
 h2n(g, g)  c3 exp

h
�c4n

d
d+2

i
. (1.1)

holds for all g 2 Z2 o Zd, where hn(·, ·) is the heat kernel (see [17, 18] for earlier results which are for the
case of G = Z and [5] for the case that G is a finitely generated group with polynomial volume growth).
Revelle [16] considered the lamplighter walk on the wreath product H o Z when H is either a finite set
or it is in a class of groups. He obtained some relations between the rate of escape of random walks on
H and the law of the iterated logarithm (LIL in short) on H o Z. In particular, when H = Z2 he proved
that there exist (non-random) constants c1, c2, c3, c4 > 0 such that the following hold for all x 2 Z2 o Z:

c1  lim sup
n!1

d(Y0, Yn)
n1/2(log log n)1/2

 c2, c3  lim inf
n!1

d(Y0, Yn)
n1/2(log log n)�1/2

 c4, Px-a.s., (1.2)

where {Yn} is the lamplighter random walk and d(·, ·) is a graph distance on Z2 o Z.

We are interested in the following question:

(Question) How does the exponents in (1.1), (1.2) change when the graph G is more general?
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Figure 1: The Sierpinski gasket graph.
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Figure 2: The Sierpinski carpet graph.

In this paper, we will consider the question when G is typically a fractal graph. Figure 1 and Figure 2
illustrate concrete examples of fractal graphs. It is known that the random walk on such a fractal graph
behaves anomalously in that it di↵uses slower than that of a simple random walk on Zd. It was proved
that the heat kernel hn(x, y) of the random walk {Xn}n�0 enjoys the following sub-Gaussian estimates;
there exist positive constants c1, c2, c3, c4 > 0 such that

c1

ndf /dw
exp

 
�c2

✓
d(x, y)dw

n

◆1/(dw�1)
!
 h2n(x, y)  c3

ndf /dw
exp

 
�c4

✓
d(x, y)dw

n

◆1/(dw�1)
!

(1.3)

holds for all d(x, y)  2n (note that h2n(x, y) = 0 when d(x, y) > 2n), where d(·, ·) is the graph distance,
df is the volume growth exponent of the fractal graph and dw is called a walk dimension which expresses
how the random walk on the fractal spreads out. Indeed, by integrating (1.3), one can obtain the following
estimates; there exist positive constants c1, c2 > 0 such that

c1n
1/dw  Ed(X2n, X0)  c2n

1/dw

holds for all n > 0. For more details on di↵usions on fractals and random walks on fractal graphs, see
[1], [9] and [11]. As we see, properties of random walks on graphs are related to the geometric properties
of the graphs. The volume growth is one of such properties. For the graphs with polynomial volume
growth, there are well-established general methods to analyze the properties of random walks on them.
But for the graphs with exponential volume growth, these methods are not applicable. In this sense, the
graphs with exponential volume growth give us interesting research subject. The wreath product Z2 oG
is one of the models which belongs to this category, and this is another reason why we are interested in
the lamplighter random walks on fractal graphs.

We consider the random walk on Z2 oG, where the random walk on G enjoys the sub-Gaussian heat
kernel estimates (1.3). The main results of this paper are the following;

(1) Sharp on-diagonal heat kernel estimates for the random walk on Z2 oG (Theorem 2.3),

(2) LILs for the random walk on Z2 oG (Theorem 2.4).

The on-diagonal heat kernel estimates are heavily related to the asymptotic properties of the spectrum
of the corresponding discrete operator. We can obtain the exponent df/(df + dw) in our framework as
the generalization of d/(d + 2).

For the LILs, we establish the LIL for dZ2oG(Y0, Yn), where {Yn}n�0 is the random walk on Z2 o G,
and the so-called another law of the iterated logarithm that gives the almost sure asymptotic behavior
of the liminf of dZ2oG(Y0, Yn). Note that in (1.2), various properties that are specific for Z were used,
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so the generalization is highly non-trivial. We have overcome the di�culty by finding some relationship
between the range of the random walk on G and dZ2oG(Y0, Yn). To our knowledge, these are the first
results on the LILs for the wreath product except for Z.

The outline of this paper is as follows. In section 2, we explain the framework and the main results
of this paper. In section 3, we give some consequences of sub-Gaussian heat kernel estimates. These are
preliminary results for section 4 and section 5, where we mainly treat the lamplighter random walks on
fractal graphs. In section 4, we prove the on-diagonal heat kernel estimates. Section 5 has three subsec-
tions. In subsection 5.1, we give a relation between the range of random walk on G and dZ2oG(Y0, Yn).
Here, one of the keys is to prove the existence of a path that covers a subgraph of G with the length of
the path being (uniformly) comparable to the volume of the subgraph (Lemma 5.3). In subsection 5.2,
we state the LILs for the range of the random walk on fractal graphs and prove the LILs for the random
walk on Z2 oG when G is a strongly recurrent graph. In subsection 5.3, we prove the LILs for the random
walk on Z2 o G when G is a transient graph. In the Appendix A, we give an outline of the proof of the
LILs for the range of the random walk.

Throughout this paper, we use the following notation.

Notation. (1) For two non-negative sequences {a(n)}n�0 and {b(n)}n�0, we write

• a(n) ⇣ b(n) if there exist positive constants c1, c2 > 0 such that c1a(n)  b(n)  c2a(n) holds
for for all n.

• a(n) ⇡ b(n) if there exist positive constants c1, c2, c3, c4 > 0 such that c1a(c2n)  b(n) 
c3a(c4n) holds for all n.

(2) We use c, C, c1, c2, · · · to denote deterministic positive finite constants whose values are insignificant.
These constants do not depend on time parameters n, k, · · · , distance parameters r, · · · , and vertices
of graphs.

2 Framework and main results

In this section, we introduce the framework and the main results of this paper.

2.1 Framework

Let G = (V (G), E(G)) be an infinite, locally finite, connected graph. We assume V (G) is a countable
set. We say that G is a graph of bounded degree if

M = sup
v2V (G)

deg v < 1 (2.4)

holds. We denote d(x, y) the graph distance of x, y in G, i.e. the shortest length of paths between x and
y. If we want to emphasize the graph G, we write dG(x, y) instead of d(x, y).

Next, we introduce a wreath product of the graph.

Definition 2.1 (Wreath product). Let G = (V (G), E(G)) and H = (V (H), E(H)) be graphs. We define
the wreath product of G and H (denoted by H oG) in the following way. We define the vertex set of the
wreath product as

V (H oG) =

8<
:(f, v) 2

0
@ Y

z2V (G)

H

1
A⇥ V (G) | ]Supp(f) < 1

9=
; ,

where Supp f = {x 2 V (G) | f(x) 6= 0}. For (f, u), (g, v) 2 V (H oG), ((f, u), (g, v)) 2 E(H oG) if either
(a) or (b) are satisfied:
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(a) f = g and (u, v) 2 E(G),

(b) u = v, f(x) = g(x) (8x 2 V (G) \ {u}) and (f(u), g(u)) 2 E(H).

We call G the underlying graph of H oG and H the fiber graph of H oG.

Throughout the paper, we will only consider the case H = Z2 that consists of two vertices {0, 1}, say,
and one edge that connects the two vertices. (As in Remark 2.5(2), the results in this paper hold when
H is a finite graph.) We denote the elements of V (Z2 oG) by bold alphabets x,y · · · and the elements of
V (G) by standard alphabets x, y, · · · .

Next, we introduce the notion of weighted graphs. Let µ : V (G) ⇥ V (G) ! [0,1) be a symmetric
function such that µxy = µ(x, y) > 0 if and only if (x, y) 2 E(G). We call the pair (G,µ) a weighted
graph. For a weighted graph (G,µ), we define a measure m = mG on V (G) by m(A) =

P
z2A m(x)

for A ⇢ V (G) where m(x) =
P

y:y⇠x µxy. We will write V (x, r) = VG(x, r) = m(B(x, r)), where
B(x, r) = {y 2 V (G) | d(x, y)  r}.

Let {Xn}n�0 be the (time-homogeneous) random walk on G whose transition probability is P =
(p(x, y))x,y2V (G), where p(x, y) = µxy/m(x). We call {Xn}n�0 the random walk associated with the
weighted graph (G,µ). {Xn}n�0 is reversible w.r.t. m, i.e. m(x)p(x, y) = m(y)p(y, x) for all x, y 2 V (G).
Define

pn(x, y) := Px(Xn = y), 8x, y 2 V (G).

pn(x, y)/m(y) is called the heat kernel of the random walk.
Throughout this paper, we assume the following conditions for the graph and the random walks.

Assumption 2.2. Let (G,µ) be a weighted graph. We assume the following for (G,µ).

(1) (p0-condition) : (G,µ) satisfies p0-condition, i.e. there exists p0 > 0 such that µxy/m(x) � p0 holds
for all x, y 2 V (G).

(2) (df -set condition) : There exist positive constants c1, c2 > 0 such that

c1r
df  V (x, r)  c2r

df (2.5)

holds for all x 2 V (G), r � 0. Here, we regard 0df as 1.

(3) (Sub-Gaussian heat kernel estimates) : The heat kernel
pn(x, y)
m(y)

of {Xn}n�0 satisfies the following

estimates:

pn(x, y)
m(y)

 c1

V (x, n
1

dw )
exp

 
�c2

✓
d(x, y)dw

n

◆ 1
dw�1

!
(2.6)

holds for all x, y 2 V (G), n � 1, and

pn(x, y)
m(y)

+
pn+1(x, y)

m(y)
� c3

V (x, n
1

dw )
exp

 
�c4

✓
d(x, y)dw

n

◆ 1
dw�1

!
(2.7)

holds for x, y 2 V (G), n � 1 with d(x, y)  n. We define

ds/2 = df/dw (2.8)

and call it the spectral dimension.
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The fractal graphs such as the Sierpinski gasket graph and the Sierpinski carpet graph given in section
1 satisfy Assumption 2.2. Note that from Assumption 2.2 (2), we have c1  mG(x)  c2 for all x 2 V (G).
Hence

c1]A  m(A)  c2]A, 8A ⇢ V (G) (2.9)

holds, where ]A is the cardinal number of A. Also, note that under (2.4) and Assumption 2.2, we have

0 < inf
x,y2V (G),x⇠y

µxy  sup
x,y2V (G),x⇠y

µxy < 1. (2.10)

Next, we define the lamplighter walk on Z2 o G. We denote the transition probability on Z2 by
P (Z2) = (p(Z2)(a, b))a,b2Z2 , where P (Z2) is given by

p(Z2)(a, b) =
1
2
, for all a, b 2 Z2 .

We can lift P = (p(x, y))x,y2G and P (Z2) = (p(Z2)(a, b))a,b2Z2 on Z2 oG, by

p̃(G)((f, x), (g, y)) =

(
p(x, y) if f = g

0 otherwise
,

p̃(Z2)((f, x), (g, y)) =

(
1
2 if x = y and f(v) = g(v) for all v 6= x

0 otherwise
.

Let Yn = {(⌘n, Xn)}n�0 be a random walk on Z2 oG whose transition probability p̃ is given by

p̃((f, x), (g, y)) = p̃(Z2) ⇤ p̃(G) ⇤ p̃(Z2)((f, x), (g, y))

=
X

(h1,w1),(h2,w2)

p̃(Z2)((f, x), (h1, w1))p̃(G)((h1, w1), (h2, w2))p̃(Z2)((h2, w2), (g, y)).

Note that if (f, x), (g, y) 2 V (Z2 oG) satisfy x ⇠ y and f(z) = g(z) for all z 6= x, y then

P (Yn+1 = (g, y) | Yn = (f, x)) =
1
4
p(x, y),

and otherwise it is zero.
This random walk moves in the following way. Let Xn be the site of lamplighter at time n and ⌘n

be the on-lamp state at time n. The lamplighter changes the lamp at Xn with probability 1/2, moves
on G according to the transition probability P = (p(x, y))x,y2G, and then changes the lamp at Xn+1

with probability 1/2. The lamplighter repeats this procedure. (In the first paragraph of section 1, we
discussed the case when {Xn} is a simple random walk on G.)

Note that {Yn}n�0 is reversible w.r.t. mZ2oG, where

mZ2oG((⌘, x)) = m(x).

We denote the transition probability of {Yn}n�0 as p(x,y) (cf. p(x, y) is the transition probability of
{Xn}n�0). We sometimes write m(x) instead of mZ2oG(x).

2.2 Main results

In this subsection, we state the main results of this paper.
First, we state the result of on-diagonal heat kernel estimates.
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Theorem 2.3. Suppose that Assumption 2.2 holds. Then the following holds;

p2n(x,x)
mZ2oG(x)

⇡ exp[�n
df

df +dw ], 8x 2 Z2 oG. (2.11)

Next we state the results of the LIL when ds/2 < 1 and ds/2 > 1 respectively.

Theorem 2.4. Let G be a graph of bounded degree.
(I) Assume that Assumption 2.2 and ds/2 < 1 hold. Then there exist (non-random) constants c1, c2, c3, c4 >
0 such that the following hold for all x 2 V (Z2 o Z):

c1  lim sup
n!1

dZ2oG(Y0, Yn)
nds/2(log log n)1�ds/2

 c2, Px-a.s. (2.12)

c3  lim inf
n!1

dZ2oG(Y0, Yn)
nds/2(log log n)�ds/2

 c4, Px-a.s. (2.13)

(II) Assume that Assumption 2.2(1),(2), (2.6), and ds/2 > 1 hold. Then there exist (non-random)
positive constants c1, c2 > 0 such that the following hold for all x 2 V (Z2 oG):

c1  lim inf
n!1

dZ2oG(Y0, Yn)
n

 lim sup
n!1

dZ2oG(Y0, Yn)
n

 c2, Px-a.s. (2.14)

Remark 2.5. (1) Note that (2.7) is not needed for Theorem 2.4(II). Since the transient case is dis-
cussed under a general framework in [12] (see subsection 5.3), we do not pursue the minimum
assumption for (2.14) to hold.

(2) We can obtain the same results (by the same proof) if we replace Z2 to a finite graph H with ]H � 2
and p(Z2) to p(H), where p(H) is the transition probability on H given by

p(H)(a, b) =
1
]H

, for all a, b 2 V (H). (2.15)

(3) For each 0 < ↵ < 1, Rau [15, Proposition 1.2] constructed the graph G↵ such that the random walk
on G↵ satisfies the following heat kernel estimates :

p2n(x, x) ⇡ exp(�n↵).

For the case 1/3  ↵ < 1, the graphs constructed by Rau are the wreath product on Z, but the fiber
graphs are di↵erent site by site. (The definition of wreath product given by Rau is more general
than ours.)
On the other hand, for each df , dw such that 2  dw  1 + df and df � 1, Barlow [2, Theorem 2]
constructed weighted graphs that satisfy Assumption 2.2. Combining this and Theorem 2.3, we can
give an alternative example where the heat kernel enjoys (2.15) for any given 1/3  ↵ < 1.

(4) For the case of ds/2 = 1, we could not obtain the LIL in general. However, one can obtain the LIL
for the case of Z2 as follows. (Note that ds/2 = 1 in this case since df = dw = 2.)
Define Rn = ]{X0, · · · , Xn}. Dvoretzky and Erdős [7, Theorem 1,4] proved the following law of
large number of Rn:

lim
n!1

Rn

⇡n/ log n
= 1, P -a.s.

In Proposition 5.1 and 5.2, we will show that 1
4Rn  dZ2oZ2(Y0, Yn) holds for all but finitely many

n and there exist a positive constant C > 0 such that dZ2oZ2(Y0, Yn)  CRn holds for all n. Using
these facts, we see that there exist positive constants c1, c2 > 0 such that for all x 2 V (Z2 oG)

c1  lim inf
n!1

dZ2oZ2(Y0, Yn)
n/ log n

 lim sup
n!1

dZ2oZ2(Y0, Yn)
n/ log n

 c2, Px-a.s.

hold. As we see, the exponents di↵er from those of ds/2 < 1 and ds/2 > 1.
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3 Consequences of heat kernel estimates

In this section, we give preliminary results obtained from the sub-Gaussian heat kernel estimates (2.6), (2.7).
First, the following can be obtained by a simple modification of [1, Lemma 3.9]. (Note that only (2.6)

is needed here.)

Lemma 3.1. There exist positive constants c1, c2 > 0 such that

Py

✓
max

0jn
d(x,Xj) � 3r

◆
 c1 exp

 
�c2

✓
rdw

n

◆ 1
dw�1

!
(3.16)

holds for all n � 1, r � 1, x, y 2 V (G) with d(x, y)  r.

The following lemma will be used in subsection 5.1. Again, only (2.6) is needed for the lemma.

Lemma 3.2. There exist positive constants c1, c2 > 0 such that

Px

✓
max

0jn
d(x,Xj)  r

◆
 c1 exp

⇣
�c2

n

rdw

⌘
(3.17)

holds for all x 2 V (G), n, r � 1.

Proof. We first show that there exists a positive constant c1 > 0 such that

Px

✓
max

0jrdw
d(x,Xj)  2c1r

◆
 1

2
(3.18)

holds for all x 2 V (G) and all r � 1. Using heat kernel estimates, we have

Px

 
sup

0jrdw

d(x,Xj)  2c1r

!
 Px(d(x,Xrdw )  2c1r)

c2
1

(rdw)df /dw

X
y2B(x,2c1r)

m(y) exp

 
�c3

✓
d(x, y)dw

r

◆1/(dw�1)
!

c2
1

(rdw)df /dw
m(B(x, 2c1r))  c4(2c1)df .

Taking c1 small, we obtain (3.18).
We now prove (3.17). It is enough to consider the case n � rdw since otherwise (3.17) by adjusting

constants. Let k � 1 be such that krdw  n < (k+1)rdw and let ti = irdw . Then by the Markov property
and (3.18) we have

Px

✓
max

0jn
d(x,Xj)  c1r

◆
 Px

0
@ \

0ik�1

⇢
max

tijti+1
d(Xti , Xj)  2c1r

�1A


⇢

sup
y

Py

✓
max

0jrdw
d(y,Xj)  2c1r

◆�k


✓

1
2

◆k

 c5 exp(�c6k)  c7 exp(�c8nr�dw).

Hence we obtain (3.17) by adjusting constants.
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In the next proposition, we show that Lemma 3.2 is sharp up to constants if we assume both (2.6)
and (2.7). The idea of the proof is based on [14, Lemma 7.4.3], where a similar estimate was given for a
class of random walks on Zd.

Proposition 3.3. There exist positive constants c1, c2 > 0 such that

Px

✓
max

0jn
d(x,Xj)  r

◆
� c1 exp

⇣
�c2

n

rdw

⌘

holds for all n, r � 1 with r  n.

The proof consists of the following two lemmas.

Lemma 3.4. There exists ✏ 2 (0, 1) such that

Py(d(x,Xn) � r)  1� ✏

holds for all r, n � 1 with n  rdw and x, y 2 V (G) with d(x, y)  r.

Proof. We follow the argument in [14, Lemma 7.4.7]. Let � = 1/(dw � 1). Let `x,y be a geodesic path
from x to y in G. Let xn 2 `x,y be the [n1/dw ]-th vertex from y. Then B(xn, [n1/dw ]) ⇢ B(x, r) holds
since for all z 2 B(xn, [n1/dw ]) we have d(x, z)  d(x, xn) + d(xn, z)  (d(x, y) � [n1/dw ]) + [n1/dw ]  r.
Also for all z 2 B(xn, [n1/dw ]), we have d(y, z)  d(y, xn)+d(xn, z)  2[n1/dw ]. Hence, by (2.7) and (2.5)
we have

Py (d(x,Xn)  r) �c1

X
z2B(x,r)

m(z)
V (y, n1/dw)

exp

�c2

✓
d(y, z)dw

n

◆��

�c1

X
z2B(xn,[n1/dw ])

m(z)
V (y, n1/dw)

exp

�c2

✓
d(y, z)dw

n

◆��

�c3

0
@ X

z2B(xn,[n1/dw ])

m(z)
ndf /dw

1
A exp

⇥
�c42dw�

⇤
� c5 exp

⇥
�c42dw�

⇤
.

The proof completes by taking ✏ = c5 exp
⇥
�c42dw�

⇤
(note that we may take c5 < 1).

Lemma 3.5. Let ✏ as in Lemma 3.4. Then there exists ⌘ � 1 such that for all x, y 2 V (G) with
d(x, y)  r and for all ` with k[rdw ]  `  (k + 1)[rdw ], we have

Py

✓
max
0j`

d(x,Xj)  3⌘r, d(x,X`)  r

◆
�
⇣ ✏

2

⌘k+1
.

Proof. We follow the argument in the proof of [14, Lemma 7.4.3]. We prove the assertion by induction
for k.

Step I: We first prove the case k = 0. Let � = 1/(dw�1). In general, 1  P (A)+P (B)+P ((A[B)c)
holds for any events A,B. So take A,B as A = {sup0j` d(x,Xj) > 3⌘r}, B = {d(x, X`) > r}. Let
`  rdw . By Lemma 3.1 and Lemma 3.4 we have

1  Py

✓
max
0j`

d(x,Xj) > 3⌘r
◆

+ Py (d(x,X`) > r) + Py

✓
max
0j`

d(x,Xj)  3⌘r, d(x,X`)  r

◆

 c1 exp

�c2

✓
(⌘r)dw

`

◆��
+ (1� ✏) + Py

✓
max
0j`

d(x,Xj)  3⌘r, d(x,X`)  r

◆
.
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From above and using `  rdw we have

Py

✓
max
0j`

d(x,Xj)  3⌘r, d(x,X`)  r

◆
� ✏� c1 exp


�c2

✓
(⌘r)dw

`

◆��
� ✏� c1 exp

⇥
�c2⌘

dw�
⇤
.

Taking ⌘ >

⇢
1
c2

log (2c1/✏)
��dw

_ 1, we obtain

Py

✓
max
0j`

d(x,Xj)  3⌘r, d(x, X`)  r

◆
� ✏

2
.

for `  rdw .
Step II: Assume that the result holds up to k. Let ` satisfy k[rdw ]  `  (k + 1)[rdw ]. Define

`0 = k[rdw ]. Then using the Markov property and induction hypothesis we have

Py

✓
max
0j`

d(x,Xj)  3⌘r, d(x,X`)  r

◆

�Py

✓
max
0j`

d(x,Xj)  3⌘r, d(x,X`)  r, d(x,X`0)  r

◆

=Ey


1{max0j`0 d(x,Xj)3⌘r,d(x,X`0 )r}PX`0

✓
d(x,X`�`0)  r, max

0j`�`0
d(x,Xj)  3⌘r

◆�

� ✏
2
Py

✓
max

0j`0
d(x,Xj)  3⌘r, d(x,X`0)  r

◆
�
⇣ ✏

2

⌘k+1
.

We thus complete the proof.

Given Lemma 3.5, it is straightforward to obtain Proposition 3.3.

4 On diagonal heat kernel

In this section, we give the proof of Theorem 2.3.
The lower bound follows by the same approach as in [14, Section 7] (cf. [13, Section 7] and [19, Section

15.D]). We use Proposition 3.3 for the proof.

Proof of the lower bound of Theorem 2.3. For notational simplicity, we assume ⌘ = 0. As we said
before we write mZ2oG as m. For any finite subset A ⇢ V (Z2 oG), using the Cauchy-Schwarz inequality
we have

p2n(x,x)
m(x)

=
X

y2V (Z2oG)

pn(x,y)pn(y,x)
m(x)

=
X

y2V (Z2oG)

pn(x,y)2

m(y)
�
X
y2A

pn(x,y)2

m(y)
� 1

m(A)
Px (Yn 2 A)2 .

(4.19)

Set A := {y = (f, y) 2 Z2 oG | y 2 BG(x, r), f(z) = 0 for all z 2 V (G) such that d(x, z) > r}. Using (2.5)
and (2.9), we have

mZ2oG(A) =
X

y2BG(x,r)

mG(y)2]BG(x,r)  c1r
df 2c2rdf

.

and using Proposition 3.3 we have

Px (Yn 2 A) � Px

✓
max

0jn
d(x, Xj)  r

◆
� c3 exp

h
�c4

n

rdw

i
.

9



Hence, by (4.19) we have

p2n(x,x)
m(x)

� c5 exp
h
�c6

⇣
df log r + rdf +

n

rdw

⌘i
.

Optimize right hand side (take r as n1/(df +dw)), then we obtain

p2n(x,x)
m(x)

� c exp

�Cn

df
df +dw

�
.

We thus complete the proof.

We next prove the upper bound of Theorem 2.3 (cf. [13, Section 8] and [19, Section 15.D]).

Proof of the upper bound of Theorem 2.3. For the switch-walk-switch random walk {Yn = (⌘n, Xn)}n�0

on Z2 o G, ⌘n is equi-distributed on {f 2
Q

z2V (G) Z2 | Supp f ⇢ R̄n}, where R̄n = {X0, X1, · · · , Xn}.
Hence, setting Rn = ]R̄n, we have

Px (Yn = x) =
nX

k=0

Px (Yn = x, Rn = k) 
nX

k=0

Ex

⇥
1{Rn=k}2�k

⇤
 Ex

⇥
2�Rn

⇤
.

In [8, Theorem 1.2], Gibson showed the following Donsker-Varadhan type range estimate: for any ⌫ > 0
and any x 2 V (G),

� log Ex

⇥
exp

�
�⌫m(R̄ndw V (x,n))

 ⇤
⇣ V (x, n).

Note that V (x, n) ⇣ ndf . Replacing n to n1/(df +dw) we have

Ex

⇥
exp

�
�⌫m(R̄n)

 ⇤
⇡ exp

h
�ndf /(df +dw)

i
.

Since cm(R̄n) � Rn (due to (2.9)), by the above estimates, we obtain the upper estimate, i.e.

p2n(x,x)
m(x)

 c exp

�Cn

df
df +dw

�
.

We thus complete the proof.

5 Law of the iterated logarithm

Throughout this section, we assume that G is of bounded degree. In this section, we will prove Theorem
2.4.

We first explain the idea of the proof. For notational simplicity, let o 2 V (G) be a distinguished point
and 0 be the element of

Q
v2V (G) Z2 such that 0(v) = 0 for all v 2 V (G). In order to realize a given

lamp state (⌘, x) 2 Z2 oG beginning from the lamp state (0, o) 2 Z2 oG, we need to visit all the “on-lamp
vertices”. SoX

i2V (G)

⌘(i)  dZ2oG((0, o), (⌘, x))

 (the minimum number of steps to visit all the “on-lamp vertices” from o to x) +
X

i2V (G)

⌘(i). (5.20)

Note that the lamp at a certain vertex of G (say z) cannot be changed without making the lamplighter
visit at z. From this and (5.20), we see that dZ2oG(Y0, Yn) is heavily related to the range of random walk
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{Xn}n�0 on G. Set Rn = ]{X0, X1, · · · , Xn}. Intuitively,
P

i2V (G) ⌘n(i) is close to 1
2Rn. Indeed, we will

show the following in Proposition 5.1 and Proposition 5.2:

1
4
Rn  dZ2oG(Y0, Yn) a.s. for all but finitely many n, (5.21)

dZ2oG(Y0, Yn)  (2M + 1)Rn, for all n, (5.22)

where M is defined by (2.4). We will prove (5.21) and (5.22) in subsection 5.1. The behavior of Rn di↵ers
for ds/2 < 1 and ds/2 > 1. In subsection 5.2 (resp. 5.3), we prove the LILs of Rn and dZ2oG(Y0, Yn) for
ds/2 < 1 (reps. for ds/2 > 1).

5.1 Relations between the distance and the range

The main goal of this subsection is to prove (5.21) and (5.22).

Proposition 5.1. For all but finitely many n, we have

1
4
Rn 

X
i2{X0,X1,··· ,Xn}

⌘n(i) Px-a.s. for all x 2 V (G). (5.23)

Proof. We fix x 2 V (G) and write P instead of Px. Define Sn =
P

i2{X0,X1,··· ,Xn} ⌘n(i). It is easy to see
that

P (Sn = l | Rn = k) =
✓

1
2

◆k ✓
k
l

◆
.

for 0  `  k. Then we have

P

✓
Sn 

1
4
Rn

◆
=

nX
l=0

P

✓
Sn 

1
4
l, Rn = l

◆
=

nX
l=0

1
4 lX

m=0

✓
1
2

◆` ✓
l
m

◆
P (Rn = l)


nX

l=0

exp
✓
� 1

16
l

◆
P (Rn = l) by the Cherno↵ bound

 P
⇣
Rn  n

1
2dw

⌘
+ exp

✓
� 1

16
n

1
2dw

◆
P (Rn � n

1
2dw )

 P

✓
sup

0`n
d(X0, X`)  n

1
2dw

◆
+ exp

✓
� 1

16
n

1
2dw

◆

 c1 exp(�c2n
1
2 ) + exp

✓
� 1

16
n

1
2dw

◆
, by Lemma 3.2.

Using the Borel-Cantelli lemma, we complete the proof.

Proposition 5.2. There exists a constant C > 0 such that

dZ2oG(Y0, Yn)  CRn

holds for all n � 0 and ! 2 ⌦.

To prove the above proposition, we need the following lemma. To exclude ambiguity, we first introduce
some terminologies. Let H be a connected subgraph of G.

• A path � on H is a sequence of vertices v0v1 · · · vk such that vi 2 V (H), vivi+1 2 E(H) hold
for all i. For a path �, we set V (�) = {v0, v1, · · · , vk}, and define the length of � as |�| = k.
ej = vjvj+1(j = 0, 1, · · · , k � 1) are said to be the edges of �.
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• For the path � given above and the given edge e 2 E(G), we define F (�, e) as F (�, e) = {el | el =
e, l 2 {0, 1, · · · , k � 1}}.

• We denote �!e = �!uv if the edge e is directed from u to v and say �!e a directed edge. For two directed
edges �!e1 = ��!u1v1 and �!e2 = ��!u2v2, �!e1 and �!e2 are equal if and only if u1 = u2, v1 = v2.

1
2

3
4 5

6
us us+1

Figure 3: an example of the path ⌘.

1

2 3

4us us+1

Figure 4: an example of the surgery of ⌘.

Recall that G is of bounded degree and M = supv2V (G) deg v(< 1).

Lemma 5.3. Let H be a finite connected subgraph of G. Define V (H) = {v1, · · · , vl}, E(H) =
{e1, · · · , em}, and suppose that all the element of V (H) and E(H) are distinct.

(1) There exists a path � = w0w1 · · ·wk in H such that

(a) {w0, w1, w2, · · · , wk} = {v1, v2, · · · , vl},
(b) Define ẽj = wjwj+1 for j = 0, 1, · · · , k � 1. Then ]{ẽj | ẽj = ẽs, j = 0, 1, · · · , k � 1}  2 holds

for all s = 0, 1, · · · , k � 1.

(2) Let � be as in (1). Then |�|  2lM(= 2M]V (H)).

Proof. (1) Take a path ⌘ = u0u1 · · ·un on H such that {u0, u1, · · · , un} = V (H). Define fj = ujuj+1. If
each edge fj satisfies ]{l 2 {0, 1, · · · , n} | fl = fj}  2 for j = 0, 1, · · · , n�1, then ⌘ satisfies the conditions
(a), (b). So we may assume that there exists fj such that ]{l 2 {0, 1, · · · , n� 1} | fl = fj} � 3 holds. For

such a edge fj , there exist at least two edges f (s)
j = usus+1, f

(t)
j = utut+1 2 F (⌘, fj) such that

��!
f (s)

j =
��!
f (t)

j .
Let s < t. Define ⌘st = usus+1us+2 · · ·ut�1ut (see Figure 3). Replace ⌘ = u0 · · ·us�1⌘stut+1 · · ·un to ⌘̃ =
ũ0ũ1 · · · ũn = u0 · · ·us�1⌘̃stut+1 · · ·un where ⌘̃st = usut�1ut�2 · · ·us+2. ⌘̃ is again a path, V (⌘̃) = V (H)
and ]F (⌘̃, fj) = ]F (⌘, fj) � 2 (see Figure 4). Repeat this operation to f0, f1, · · · , fn�1 inductively until
obtaining the path satisfying (a), (b).

(2) Note that wj appears in V (�) at most 2 deg(wj) times for each vertex wj 2 V (H) . The conclusion
can be verified easily.

Proof of Proposition 5.2 . {X0, X1, · · · , Xn} is itself a connected subgraph of G. So applying Lemma 5.3
for {X0, X1, · · · , Xn}, we have

min{|�| | � is a path starting at X0, V (�) = {X0, X1, · · · , Xn}}  2MRn.

By this and (5.20), we obtain dZ2oG(Y0, Yn)  (2M + 1)Rn.

5.2 Proof of Theorem 2.4(I)

In this subsection, we prove the LILs for {Yn}n�0 when ds/2 < 1.
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Theorem 5.4. Assume that Assumption 2.2 and ds/2 < 1 hold. Then there exist (non-random) constants
c1, c2 > 0 such that the following hold:

lim sup
n!1

Rn

nds/2(log log n)1�ds/2
= c1, Px-a.s. 8x 2 V (G), (5.24)

lim inf
n!1

Rn

nds/2(log log n)�ds/2
= c2, Px-a.s. 8x 2 V (G). (5.25)

This is a discrete analog of [4, Proposition 4.9, 4.10]. Note that the proof of the propositions relies
on the self-similarity of the process. Since our random walk does not satisfy this property, we need non-
trivial modifications for the proof. Quite recently, Kim, Kumagai and Wang [10, Theorem 4.14] proved
the LIL of the range for jump process without using self-similarity of process. By easy modifications, we
can apply their argument for our random walk. The proof of Theorem 5.4 will be given in Appendix A.

Proof of Theorem 2.4(I). By (2.9), (5.20), Proposition 5.1, Proposition 5.2 and Theorem 5.4, we obtain
(2.12) and (2.13).

5.3 Proof of Theorem 2.4(II)

In this subsection, we prove the LILs for {Yn}n�0 when ds/2 > 1.
First, we explain the notion of “uniform condition” defined in [12]. We define the Dirichlet form E on

the weighted graph (G,µ) by

E(f, g) =
X

x,y2V (G)

(f(x)� f(y))(g(x)� g(y))µxy,

for f, g : V (G) ! R, and the e↵ective resistance Re↵(·, ·) as

Re↵(A,B)�1 = inf{E(f, f); f |A = 1, f |B = 0}

for A,B ⇢ V (G) with A \ B = ;. Denote ⇢(x, n) = Re↵({x}, B(x, n)c) for any x 2 V (G), n 2 N and
⇢(x) = limn!1 ⇢(x, n).

Definition 5.5 (Okamura [12]). We say that a weighted graph (G,µ) satisfies the uniform condition (U)
if ⇢(x, n) converges uniformly to ⇢(x) as n !1.

For A ⇢ G, define

T+
A = inf{n � 1 | Xn 2 A}.

We write T+
x in stead of T+

{x}.
The following is an improvement of [12, Corollary 2.3].

Proposition 5.6. Let G be a graph of bounded degree and (G,µ) be a weighted graph satisfying (U) and
(2.10). If supx Px(M < T+

x < 1) = O(M��) for some � > 0, then

1� F2  lim inf
n!1

Rn

n
 lim sup

n!1

Rn

n
 1� F1, Px-a.s. (5.26)

holds for all x 2 V (G), where F1 = infx2V (G) T+
x and F2 = supx2V (G) T+

x .

Remark 5.7. In [12, Corollary 2.3], a stronger condition supx Px(M < T+
x < 1) = O(M�1��) for

some � > 0 is imposed to prove 1 � F2  lim infn!1
Rn
n . As we prove below, it is enough to assume

supx Px(M < T+
x < 1) = O(M��).
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Proof of Proposition 5.6 . For the upper bound lim supn!1
Rn
n  1�F1, the proof in [12, Corollary 2.3]

goes through without any modifications.
Hence we prove 1� F2  lim infn!1

Rn
n under our assumption. Fix ✏ > 0. By [12, (2.5), (2.6), (2.7)]

there exists a 2 (0, 1) such that for any n and M < n we have

Px(
Rn

n
 1� F2 � ✏)  2

✏
sup

x2V (G)
Px(M < T+

x < 1) + an/(M+1). (5.27)

Choose k > 2/�. Replacing n to nk in (5.27), we have

Px(
Rnk

nk
 1� F2 � ✏)  2

✏
sup

x2V (G)
Px(M < T+

x < 1) + ank/(M+1)

=
2
✏
O(M��) + ank/(M+1). (5.28)

Take M = M(n) = nk/2 � 1 and we have

Px(
Rnk

nk
 1� F2 � ✏)  2

✏
O(

1
nk�/2

) + ank/2
. (5.29)

Since k�/2 > 1, we can apply the Borel-Cantelli lemma and we obtain

1� F2  lim inf
n!1

Rnk

nk
.

For any m, choose n as nk  m < (n + 1)k, we then have

Rm

m
� nk

m

Rnk

nk
=
✓

n

n + 1

◆k (n + 1)k

m

Rnk

nk
�
✓

n

n + 1

◆k Rnk

nk
.

Take lim infm!1 and we obtain 1� F2  lim infn!1
Rn
n .

Proof of Theorem 2.4(II). Note that the uniform condition (U) is satisfied in our framework by [12,
Proposition 4.6].

Since ds/2 > 1, we have

Px(M < T+
x < 1) 

1X
n=M+1

pn(x, x) 
1X

n=M+1

n�ds/2 = O(M1�ds/2).

By this and Proposition 5.6, we have

1� F2  lim inf
n!1

Rn

n
 lim sup

n!1

Rn

n
 1� F1, Px-a.s. (5.30)

Define G(x, x) =
P1

n=0 pn(x, x), and F (x, x) =
P1

n=1 Px(T+
x = n) = Px(T+

x < 1). It is well known
that

G(x, x)� 1 = F (x, x)G(x, x) (5.31)

holds. Since ds/2 > 1, we have

sup
x2V (G)

1X
n=0

pn(x, x) 
1X

n=0

1
nds/2

< 1.
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By this and (5.31) we have

F2 = sup
x

F (x, x) < 1. (5.32)

Thus, by (5.20), Proposition 5.1, Proposition 5.2, (5.30) and (5.32), we conclude that

0 <
1
4
(1� F2)  lim inf

n!1

dZ2oG(Y0, Yn)
n

 lim sup
n!1

dZ2oG(Y0, Yn)
n

 (2M + 1)(1� F1) < 1, a.s.

Hence we complete the proof.

Appendix A Proof of Theorem 5.4

In this section, we will explain briefly the essential part of the proof of Theorem 5.4 which is a discrete
analog of [4, Proposition 4.9, 4.10]. Note that the results in [4] are for the range of Brownian motion
on fractals, and the proof heavily relies on the self-similarity of Brownian motion. Quite recently, Kim,
Kumagai and Wang [10, Theorem 4.14] obtained the LIL of the range for jump processes on metric
measure spaces without scaling law of the process. We employ the results and techniques in [4], [6] and
[10], and prove the LIL for the range of the random walk without scaling law of the process and heat
kernel.

The key to prove the LILs for the range of the process is to establish those for the maximum of local
times. We assume df < dw and define the local times at x 2 V (G) up to the time n as

Ln(x) =

(
1

m(x)

Pn�1
k=0 1{Xk=x} if n � 1,

0 if n = 0.
(A.1)

and the maximum of the local times up to the time n as

L⇤n = sup
x2V (G)

Ln(x). (A.2)

Let ✓ = (dw � df )/2. We start with the following lemma.

Lemma A.1. There exist constants c0, c1, c2 > 0 such that

sup
i�1

max
x,y,z2V (G)

d(x,y)i

Pz

✓
max

0kTidw
|Lk(x)� Lk(y)| � �(id(x, y))✓

◆

 c0 exp(c1T ) exp(�c2�) (A.3)

holds for all T � 1 and � > 0.

Proof. This can be proved by easy modifications of the proof of [6, Proposition 6.3(a)]. The necessary
changes are the following; (i) to chase the dependence on T explicitly, (ii) to use the following relations
between the resistance metric and graph distance

R(x, y) ⇣ d(x, y)dw�df , 8x, y 2 V (G), (A.4)

which is a consequence of Assumption 2.2 (see [3]).

The next theorem is the analogue of [10, Proposition 4.5]. Since our proof is di↵erent from that of
[10, Proposition 4.5] which uses a scaling argument, we give the proof below.
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Theorem A.2 (Moduli of continuity of local times). There exist constants c, C > 0 such that

Po

0
B@ max

x,y2Bd(o,u1/dw )
d(x,y)L

max
0tu

|Lt(x)� Lt(y)| � A

1
CA  c

(u1/dw)2df

L2df
exp

✓
� CA

(u1/dwL)✓

◆
. (A.5)

holds for all o 2 V (G), u � 1,  � 1 and A,L > 0.

Proof. Let G(i) be a graph with V (G(i)) = Bd(o, 6i) and E(G(i)) = {(x, y) 2 E(G) | x, y 2 V (G(i))}.
We denote mi(·) = mi(· \ V (G(i))) as the weight of G(i). Then the following holds by the proof of [6,
Theorem 6.1]; There exists a positive constant c1 (not depending on i) such that

mi(Bd(x, r)) � c1r
df (A.6)

for all x 2 V (G(i)) and r 2 [1, 12i]. Set 6i = u1/dw . By (A.6), we have

min
x2V (G(i))

mi(Bdi(x, r)) = min
x2V (G(i))

mi(Bd(x, ir)) � c1i
df rdf .

We now apply a discrete version of Garsia’s Lemma (see [6, Proposition 3.1, Remark 3.2]) for the graph
G(i) with distance di = 1

i d, p(x) = x✓,  (x) = exp(c5|x|) � 1, and the function on V (G(i)) as f(x) =
1

i2✓
Lt(x) where 0  t  u. For x, y 2 V (G(i)) = Bd(o, 6i) with d(x, y)  L and t 2 [0, u], we have

1
i2✓

|Lt(x)� Lt(y)|  4
Z 2di(x,y)

0
s✓�1 log

 
�
�

1
i2✓ Lt

�
c1i2df s2df /22df

+ 1

!
ds

 4
Z 2L/i

0
s✓�1 log

 
�̃
�

1
i2✓ Lu

�
c2i2df s2df

+ 1

!
ds, (A.7)

where

�
✓

1
i2✓

Lt

◆
:=

X
x,y2V (G(i))

exp
✓

c⇤
|Lt(x)� Lt(y)|

(id(x, y))✓

◆
m(x)m(y),

�̃
✓

1
i2✓

Lu

◆
:=

X
x,y2V (G(i))

exp
✓

c⇤
sup0tu |Lt(x)� Lt(y)|

(id(x, y))✓

◆
m(x)m(y),

for some c⇤ > 0 that will be chosen later. Define v =
�̃
�

1
i2✓ Lu

�
c2i2df s2df

. Then by (A.7), we have

1
i2✓

|Lt(x)� Lt(y)|  4
c✓
3

2df

1
i✓

�̃
✓

1
i2✓

Lu

◆Z 1

b

✓
1
v

◆✓/(2df )+1

log(v + 1)dv

= c5
1
i✓

�̃
✓

1
i2✓

Lu

◆Z 1

b

✓
1
v

◆✓/(2df )+1

log(v + 1)dv,

where b =
�̃
�

1
i2✓ Lu

�
c4L2df

, c3 = (1/c2)1/(2df ), c4 = c222df . By easy calculus we have

Z 1

b

✓
1
v

◆✓/(2df )+1

log(v + 1)dv  log(b + 1) + 2df/✓
✓

2df
· b✓/2df

.
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Thus we have

1
i2✓

|Lt(x)� Lt(y)|  c6

✓
L

i

◆✓ ⇢
log(b + 1) +

2df

✓

�
.

where c6 = 8dfc5/✓, so

Po

0
B@ max

x,y2Bd(o,u1/dw )
d(x,y)L

max
0tu

|Lt(x)� Lt(y)| � A

1
CA  Po

✓
log(b + 1) � A

c6(iL)✓
� 2df

✓

◆

 c7

E0

h
�̃
�

1
i2✓ Lu

�i
L2df

exp(�c8
A

(iL)✓
).

By Lemma A.1, taking c⇤ < c2, noting  � 1 and 6i = u1/dw , we have

Eo


�̃
✓

1
i2✓

Lu

◆�
=

X
x,y2V (G(i))

Eo


exp

✓
c⇤

sup0tu |Lt(x)� Lt(y)|
(id(x, y))✓

◆�
m(x)m(y)


X

x,y2V (G(i))

X
n

exp(c⇤(n + 1))Po

✓
sup0tu |Lt(x)� Lt(y)|

(id(x, y))✓
� n

◆
m(x)m(y)


X

x,y2V (G(i))

X
n

exp(c⇤(n + 1)) exp

 
c9

✓
1


◆dw
!

exp(�c2n)m(x)m(y)

c10i
2df  c11u

2df /dw2df .

Therefore we have

Po

0
B@ max

x,y2Bd(o,u1/dw )
d(x,y)L

max
0tu

|Lt(x)� Lt(y)| � A

1
CA  c11

u2df /dw2df

L2df
exp

✓
�c12

A

(u1/dwL)✓

◆
.

Thus we complete the proof.

Given Theorem A.2, the following theorem can be proved similarly to the proof in [10, Theorem 4.10,
4.13]. (See also [4, Proposition 4.7, 4.8].)

Theorem A.3 (LILs for the local times). There exist positive constants c1, c2 such that the following
hold.

lim sup
n!1

L⇤n
n1�ds/2(log log n)ds/2

= c1 Px-a.s. for 8x 2 V (G), (A.8)

lim inf
n!1

L⇤n
n1�ds/2(log log n)ds/2�1

= c2 Px-a.s. for 8x 2 V (G). (A.9)

Given Theorem A.3, the proof of Theorem 5.4 can be done similarly as in [10, Theorem 4.14] by using
the relation n =

P
x2Rn

Ln(x)  RnL⇤n. (See also [4, Proposition 4.9, 4.10]).
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