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Abstract

We consider the following zero-sum game related to the knapsack problem. Given an instance
of the knapsack problem, Alice chooses a knapsack solution and Bob chooses a cardinality k
with knowing Alice’s solution. Then, Alice obtains a payoff equal to the ratio of the profit of
the best k items in her solution to that of the best solution of size at most k. For α > 0, a
knapsack solution is called α-robust if it guarantees payoff α. If Alice adopts a deterministic
strategy, the objective of Alice is to find a max-robust knapsack solution. By applying the
argument in Kakimura and Makino (2013) for robustness in general independence systems, a
1/

√
µ-robust solution exists and is found in polynomial time, where µ is the exchangeability of

the independence system.
In the present paper, we address randomized strategies for this zero-sum game. Random-

ized strategies in robust independence systems are introduced by Matuschke, Skutella, and
Soto (2015) and they presented a randomized strategy with 1/ ln(4)-robustness for a certain
class of independence systems. The knapsack problem, however, does not belong to this class.
We first establish the intractability of the knapsack problem by showing an instance such that
the robustness of an arbitrary randomized strategy is O(log logµ/ logµ) and O(log log ρ/ log ρ),
where ρ is the ratio of the size of a maximum feasible set to that of minimum infeasible set
minus one. We then exhibit the power of randomness by designing two randomized strategies
with robustness Ω(1/ logµ) and Ω(1/ log ρ), which substantially improve upon that of deter-
ministic strategies and almost attain the above upper bounds. It is also noteworthy that our
strategy applies to not only the knapsack problem but also independence systems for which an
(approximately) optimal solution under a cardinality constraint is computable.

Keywords: Robust independence system, Randomized strategy, Knapsack problem,
Exchangeability

1 Introduction

1.1 Cardinality robustness in independence systems

Cardinality robustness in independence systems is introduced by Hassin and Rubinstein [3], defined
as follows. Let (E,F) be an independence system. That is, E is a finite set of items and F ⊆ 2E
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is the feasible set family satisfying that ∅ ∈ F and X ⊆ Y ∈ F implies X ∈ F . A feasible set is
often referred to as a solution. Let pe ∈ R+ represent the profit of item e ∈ E, and let OPTk ⊆ E
be a feasible set maximizing its profit among those of size at most k. That is, OPTk satisfies that
OPTk ∈ F , |OPTk| ≤ k, and p(OPTk) = max{p(X) | X ∈ F , |X| ≤ k}, where the profit p(X) of a
feasible set X is defined by p(X) :=

∑
e∈X pe. For X ∈ F , let X(k) denote a subset of X satisfying

that |X(k)| ≤ k and p(X(k)) = max{p(X ′) | X ′ ⊆ X, |X ′| ≤ k}. Intuitively, X(k) consists of k
p-highest items in X. For α > 0, a feasible set X ∈ F is called α-robust if p(X(k)) ≥ α · p(OPTk)
for an arbitrary positive integer k.

Our problem is to find a feasible set with large robustness. This is described as the following
zero-sum game.

Alice chooses a feasible set X ∈ F , and Bob chooses a cardinality k with knowing Alice’s
set. Then, Alice obtains a payoff p(X(k))/p(OPTk).

In this zero-sum game, the objective of Alice is to find a feasible set with maximum robustness.
It is not difficult to see that, if F is the independent set family of a matroid on E, then a greedy

solution is 1-robust. More generally, Hassin and Rubinstein [3] proved that a greedy solution is
r(F)-robust, where r(F) is the rank quotient of (E,F) [4, 7].

A p2-optimal solution, i.e., a feasible setX ∈ F maximizing
∑

e∈X p2e, often has larger robustness

than a greedy solution. Hassin and Rubinstein [3] showed that a p2-optimal matching is 1/
√
2-

robust, and there exist graphs not containing an α-robust matching for an arbitrary α > 1/
√
2.

Fujita, Kobayashi, and Makino [2] discussed the case where F is defined by matroid intersection, i.e.,
common independent sets of two matroids on E, and proved that a p2-optimal common independent
set is 1/

√
2-robust. It is also shown in [2] that determining whether a graph has an α-robust

matching is NP-hard for an arbitrary α > 1/
√
2. Analysis for general independence systems is

due to Kakimura and Makino [5], who proved that a p2-optimal feasible set is a 1/
√

µ(F)-robust
solution, where µ(F), the exchangeability of (E,F), is defined as the minimum integer µ satisfying
that

∀X,Y ∈ F , ∀e ∈ Y −X, ∃Z ⊆ X − Y s.t. |Z| ≤ µ, (X − Z) ∪ {e} ∈ F . (1)

In [5], it is also shown that the above robustness is tight in the sense that for an arbitrary positive
integer µ, there exists an independence system (E,F) such that µ(F) = µ and no α-robust solution
exists for arbitrary α > 1/

√
µ.

Kakimura, Makino, and Seimi [6] focused on the case where (E,F) is defined by an instance
of the knapsack problem. An instance (E, p,w,C) of the knapsack problem consists of the set E
of items, the profit vector p ∈ RE

+, the weight vector w ∈ RE
+, and the capacity C ∈ R+. A

subset X ⊆ E is feasible if its weight w(X) :=
∑

e∈X we is at most the capacity, i.e., F = {X ⊆ E |
w(X) ≤ C}. Kakimura, Makino, and Seimi [6] proved that the problem of computing a knapsack
solution with the maximum robustness is weakly NP-hard, and also presented an FPTAS for this
problem.

1.2 Randomized strategies

The above results correspond to deterministic strategies (or pure strategies) of the zero-sum game.
Matuschke, Skutella, and Soto [8] introduced randomized strategies (or mixed strategies) for the
robust independence systems. In this setting, Alice calls a probability distribution on the feasible
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sets, and Bob chooses an integer k with knowing the distribution of Alice. The robustness of
Alice’s strategy is defined by the expected payoff. That is, if Alice chooses a distribution in which
a solution Xi has probability λi, then the robustness of this strategy is

min
k

E[p(Xi(k))]

p(OPTk)
= min

k

∑
i λip(Xi(k))

p(OPTk)
.

For the robust matching case, Matuschke, Skutella, and Soto [8] presented a randomized strategy
with robustness 1/ ln(4), a significant improvement upon the robustness 1/

√
2 of the deterministic

strategy. They further showed that this strategy applies to bit-concave independence systems,
which are defined as follows.

If pe = 2le for each e ∈ E with le ∈ Z (i.e., p is a bit-function), then a greedy solution
is 1-robust. Equivalently, for an arbitrary bit-function p, it holds that 2p(OPTk+1) ≥
p(OPTk) + p(OPTk+2) for all k ∈ Z>0 (bit-concavity).

Examples of bit-concave independence systems include matroid intersection, b-matchings, strongly
base orderable matchoids, strongly base orderable matroid parity systems.

1.3 Our results

We address randomized strategies for the robust independence systems defined by an instance of
the knapsack problem. It is not difficult to see that those independence systems are not necessarily
bit-concave.

We provide upper and lower bounds for the robustness in terms of the exchangeability µ(F)
and a new parameter ρ(F), defined by

ρ(F) :=
amax

amin
, amax := max{|X| | X ∈ F}, amin := min{|X| | X ̸∈ F} − 1. (2)

We remark that the parameters µ(F) and ρ(F) represent the intractability of the independence
system (E,F). Clearly µ(F) ≥ 1 and ρ(F) ≥ 1, µ(F) = 1 holds if and only if F is the independent
set family of a matroid, and ρ(F) = 1 holds if and only if F is the independent set family of a
uniform matroid. If F is defined by the matchings in a graph, then µ(F) ≤ 2. For the problem of
finding a feasible set X maximizing p(X), the greedy algorithm attains 1/µ(F)-approximation [9].
A greedy solution also yields 1/ρ(F)-approximation as well (see Proposition 2). We also note that
ρ is a parameter whose definition is similar to 1/r(F). Thus, roughly speaking, the larger µ(F) or
ρ(F) becomes, the harder optimization over (E,F) becomes.

We first establish the intractability of the robust knapsack problem by showing a family of
instances which do not admit a randomized strategy with constant robustness. Indeed, for those in-
stances, we prove that the robustness of an arbitrary randomized strategy is O(log log µ(F)/ logµ(F))
and O(log log ρ(F)/ log ρ(F)).

We then exhibit the power of randomness by designing two randomized strategies with ro-
bustness Ω(1/ logµ(F)) and Ω(1/ log ρ(F)). These lower bounds substantially improve upon that
of deterministic strategies, and almost attain the above upper bounds. Roughly speaking, the
Ω(1/ log ρ(F))-robust strategy is a uniform distribution of the optimal solutions under different
cardinality constraints, which are efficiently computed by an FPTAS [1]. In the Ω(1/ logµ(F))-
robust strategy, we modify the Ω(1/ log ρ(F))-robust strategy so that some items in the optimal
solution are always chosen, which helps attaining good robustness when µ(F) is small.
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Furthermore, we extend the aforementioned results to general independence systems. We show
that the Ω(1/ log ρ(F))-robust strategy is applied to general independence systems. We also provide
upper bounds O(1/ log ρ(F)) and O(1/ logµ(F)) on robustness, which proves the tightness of our
Ω(1/ log ρ(F))-robust strategy.

We also point out that an independence system defined by an instance (E, p,w,C) of the
knapsack problem is an example of an independence system which is bit-concave but not concave,
when all items have unit densities, i.e., pe/we is identical. This provides an answer to a question
posed by [8].

1.4 Organization of the paper

The rest of this paper is organized as follows. In Section 2, we show an instance of the knap-
sack problem for which no randomized strategy attains constant robustness, and provide upper
bounds O(log logµ(F)/ logµ(F)) and O(log log ρ(F)/ log ρ(F)) on robustness. Our randomized
strategies with robustness Ω(1/ logµ(F)) and Ω(1/ log ρ(F)) appear in Section 3. Bit-concavity in
the unit density case is also discussed in this section. In Section 4, we discuss general independence
systems. Section 5 concludes this paper with a few remarks.

2 Upper Bounds on Robustness

As we described in Section 1.2, there exists a randomized strategy with robustness at least 1/ln(4)
for bit-concave independence systems [8]. In this section, we show that there exists an instance of
the knapsack problem for which no randomized strategy can achieve a constant robustness.

Theorem 1. For an arbitrary constant κ > 0, there exists an instance of the knapsack problem
such that the robustness of an arbitrary randomized strategy is less than κ.

Proof. For a given constant κ > 0, let M and T be integers larger than 3/κ. Consider the following
instance of the knapsack problem (see Table 1).

• There are T + 1 types of items, say type 0, type 1, . . . , type T .

• For each i = 0, 1, . . . , T , there are M2i items of type i, and the weight and profit of each item
of type i are M2T−2i and M2T−i, respectively.

• The capacity is C = M2T .

Observe that the total weight of the items of type i is equal to C for each i. Since the den-
sity pe/we of an item e of type i becomes larger for large i, it is better to choose items of type i with
large i under a soft cardinality constraint. However, the profit of a single item of type i is small
for large i, and hence it is better to choose items with small i under a hard cardinality constraint.
For this instance, we show that the robustness of an arbitrary randomized strategy is less than κ.

Let ∆ ⊆ RT+1
+ be the set of all vectors δ = (δ0, δ1, . . . , δT ) ∈ RT+1

+ such that δiM
2i is an

integer for i = 0, 1, . . . , T and
∑

i δi ≤ 1. For δ ∈ ∆, let Xδ ⊆ E denote the feasible solution of
the knapsack instance that contains δiM

2i items of type i for i = 0, 1, . . . , T . Note that
∑

i δi ≤ 1
corresponds to the capacity constraint and there is a one-to-one correspondence between ∆ and
the set of all feasible solutions.
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Table 1: An instance denying a constant robustness. The capacity is C = M2T .

type w p number of items density p/w total profit

0 M2T M2T 1 1 M2T

1 M2T−2 M2T−1 M2 M M2T+1

2 M2T−4 M2T−2 M4 M2 M2T+2

...
i M2T−2i M2T−i M2i M i M2T+i

...
T − 1 M2 MT+1 M2T−2 MT−1 M3T−1

T 1 MT M2T MT M3T

Since the set of all items of type i is a feasible solution, we have that p(OPTM2i) ≥ M2T+i for
each i = 0, 1, . . . , T . For each δ ∈ ∆ and for each i ∈ {0, 1, . . . , T}, it holds that

p(Xδ(M
2i)) ≤

i−1∑
j=0

δjM
2j ·M2T−j + δiM

2i ·M2T−i +M2i ·M2T−i−1,

where the last term bounds the total weight of the items of types i + 1, i + 2, . . . , T in Xδ(M
2i),

because each weight is at most M2T−i−1 and the number of items is at most M2i. The right hand
side of this inequality is bounded by i−1∑

j=0

δj

M2T+i−1 + δiM
2T+i +M2T+i−1 ≤ δiM

2T+i + 2M2T+i−1,

which shows that

p(Xδ(M
2i)) ≤

(
δi +

2

M

)
· p(OPTM2i) (i = 0, 1, . . . , T ).

Hence, for a randomized strategy choosing Xδ with probability λδ, it holds that

∑
δ∈∆

λδp(Xδ(M
2i)) ≤

(∑
δ∈∆

λδδi +
2

M

)
· p(OPTM2i) (i = 0, 1, . . . , T ),

which implies that the robustness of this strategy is at most mini{
∑

δ∈∆ λδδi+2/M}. On the other
hand, since

T∑
i=0

(∑
δ∈∆

λδδi

)
=
∑
δ∈∆

(
λδ

T∑
i=0

δi

)
≤
∑
δ∈∆

λδ = 1,

it follows that mini{
∑

δ∈∆ λδδi} ≤ 1/(T +1). Therefore, the robustness is at most 1
T+1 +

2
M , which

is smaller than κ.
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Since Theorem 1 shows that no randomized strategy can achieve a constant robustness, a
reasonable objective is to achieve a good robustness in terms of some parameters. We can see that
the difficulty of the above instance comes from the huge gap between the weights of light items and
heavy items, which makes µ(F) and ρ(F) larger. Recall that µ(F) and ρ(F) are defined in (1) and
(2), respectively.

In what follows, we take µ(F) and ρ(F) as parameters. We first show that the greedy algorithm
attains 1/ρ(F)-approximation for finding a feasible set X maximizing p(X), as well as 1/µ(F)-
approximation [9]. Here, the greedy algorithm means adding an element with highest profit to the
solution as long as it is feasible. This suggests that µ(F) and ρ(F) represent the intractability of
the independence system (E,F).

Proposition 2. Let (E,F) be an independence system and p ∈ RE
+ be a profit vector. For the

problem of finding a feasible set X ∈ F maximizing p(X), the greedy algorithm finds a 1/ρ(F)-
approximate solution.

Proof. Let Y and OPT be the output of the greedy algorithm and an optimal solution, respectively.
By the definition of amin, Y contains amin highest profit elements in E, that is, E(amin) ⊆ Y . Let
p0 := min{pe | e ∈ E(amin)}. Since pe′ ≤ p0 for each e′ ∈ OPT − OPT(amin) and |OPT| ≤ amax,
we have

p(OPT) = p(OPT(amin)) + p(OPT−OPT(amin))

≤ p(E(amin)) + (|OPT| − amin)p0

≤ p(E(amin)) + (amax − amin) ·
p(E(amin))

amin

=
1

ρ(F)
· p(E(amin))

≤ 1

ρ(F)
· p(Y ),

which shows that Y is a 1/ρ(F)-approximate solution.

The proof of Theorem 1 shows that, for the instance in Table 1, the robustness of an arbitrary
randomized strategy is O(log log ρ(F)/ log ρ(F)) and O(log log µ(F)/ logµ(F)).

Theorem 3. There exists an independence system (E,F) defined by an instance of the knapsack
problem such that the robustness of an arbitrary randomized strategy is O(log logµ(F)/ logµ(F))
and O(log log ρ(F)/ log ρ(F)).

Proof. Let T = M in Table 1. Then, µ(F) = ρ(F) = M2M and the robustness of an arbitrary
randomized strategy is at most 3/M . Since logM2M = Θ(M logM) and log logM2M = Θ(logM),
we obtain the theorem.

We close this section with remarking that ratio µ(F)/ρ(F) can be arbitrarily large and small.
To see this, consider an instance of the knapsack problem in which C = 2M , there is one item
of weight M , and there are 2M items of weight 1. In this instance, µ(F) = M and ρ(F) =
2M/(M +1) < 2, which shows that µ(F)/ρ(F) can be arbitrarily large. Also, consider an instance
in which C = 2M − 1, there are two items of weight M , and there are M items of weight 1. In this
instance, µ(F) = 1 and ρ(F) = M , showing that µ(F)/ρ(F) can be arbitrarily small.
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3 Randomized Strategies

We have already seen that the robustness of an arbitrary randomized strategy is O(log log µ(F)/ logµ(F))
and O(log log ρ(F)/ log ρ(F)). This section is devoted to presenting positive results, randomized
strategies with robustness Ω(1/ log ρ(F)) and Ω(1/ logµ(F)) in Sections 3.1 and 3.2, respectively.
Theorem 3 suggests that these results are almost tight, and the latter robustness substantially im-
proves upon the robustness 1/

√
µ(F) of a deterministic strategy in [5]. We also show in Section 3.3

that 1/ ln(4)-robust strategy in [8] works for the case when all items have unit densities, i.e., pe/we

is identical.

3.1 An Ω(1/ log ρ(F))-robust strategy

In this subsection, we present a randomized strategy with robustness Ω(1/ log ρ(F)). Recall that
ρ(F) is defined in (2).

Theorem 4. For an arbitrary independence system (E,F) defined by an instance of the knapsack
problem, there is a randomized strategy with robustness Ω(1/ log ρ(F)).

Proof. Let (E,F) be defined by an instance (E, p, w,C) of the knapsack problem and let m =
⌈log ρ⌉. Recall that, for each k, OPTk is an optimal solution of (E, p, w,C) subject to |OPTk| ≤ k.
Our randomized strategy is described as follows.

Strategy 1. Choose Xi := OPT2iamin
with probability 1/(m+ 1) for each i ∈ {0, 1, . . . ,m}.

We now show that the robustness of Strategy 1 is at least 1/(m+ 1) = Ω(1/ log ρ(F)).

• For an integer k with amin ≤ k < 2mamin, let j be an integer satisfying 2jamin ≤ k < 2j+1amin.
Then, we have that

p(Xj(k)) = p
(
OPT2jamin

)
≥ p(OPTk(2

jamin)) ≥
2jamin

k
· p(OPTk) ≥

1

2
· p(OPTk).

We also have that

p(Xj+1(k)) ≥
k

2j+1amin
· p(Xj+1) ≥

k

2j+1amin
· p(OPTk) ≥

1

2
· p(OPTk).

Thus,

E[p(X(k))] =
1

m+ 1

m∑
i=0

p(Xi(k)) ≥
1

m+ 1
· (p(Xj) + p(Xj+1(k))) ≥

1

m+ 1
· p(OPTk).

• For an integer k ≤ amin, we have p(X0(k)) = p(OPTk), since X0 = OPTamin is the set of amin

highest profit elements in E. Thus,

E[p(X(k))] ≥ 1

m+ 1
· p(X0(k)) =

1

m+ 1
· p(OPTk).

• For an integer k ≥ 2mamin, it holds that p(OPTk) = p(Xm) = p(Xm(k)). Thus,

E[p(X(k))] ≥ 1

m+ 1
· p(Xm(k)) =

1

m+ 1
· p(OPTk).
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Therefore, we conclude that the robustness of Strategy 1 is at least 1/(m+ 1).

We remark that computing OPT2iamin
is NP-hard. In order to obtain the strategy in polynomial

time, we efficiently compute a solution Xi approximating OPT2iamin
for each i via an FPTAS for

the knapsack problem with a cardinality constraint [1].

Corollary 5. For an arbitrary independence system (E,F) defined by an instance of the knapsack
problem, an Ω(1/ log ρ(F))-robust randomized strategy is obtained in polynomial time.

We also note that we can slightly improve the bound by following the proof of Theorem 4. Let
a∗max be the size of a minimum optimal solution of the knapsack problem. Then, we can replace
amax with a∗max in the proof to obtain an Ω(1/ log(a∗max/amin))-robust strategy, which is slightly
better than Ω(1/ log ρ(F)).

3.2 An Ω(1/ log µ(F))-robust strategy

In this subsection, we present an Ω(1/ logµ(F))-robust randomized strategy, where µ(F) is the
exchangeability of the independence system (E,F). Note that, for the case where only deterministic
strategies are allowed, Kakimura and Makino [5] showed the existence of 1/

√
µ(F)-robust solution.

That is, we improve this ratio to Ω(1/ logµ(F)) by allowing randomized strategies, to prove the
power of randomness in the robust knapsack problem. Our strategy is based on the ideas in
Section 3.1, but we need extra work for this case.

Theorem 6. For an arbitrary independence system (E,F) defined by an instance of the knapsack
problem, there is a randomized strategy with robustness Ω(1/ logµ(F)).

Proof. Let (E,F) be defined by an instance (E, p, w,C) of the knapsack problem. In this proof
we often abbreviate µ(F) as µ. We may assume that the weight of each element is at most C and
w(E) > C. Let Y ⊆ E be an optimal solution of this problem, and let Z ⊆ E be the set of amin

heaviest elements in E. Note that w(Z) ≤ C by the definition of amin.
Since |Y |/|Z| ≥ a∗max/amin, we can apply Strategy 1 when |Y |/|Z| ≤ µ (see a remark after

Corollary 5). We now address the case when |Y |/|Z| is much larger. In such a case, we choose
many light elements in Y in advance (with ignoring their profit), which is our main idea in the
proof. Let Y0 be the subset of Y that maximizes |Y0| subject to w(Y0) ≤ C − w(Z). That is, Y0
is obtained by taking light elements in Y greedily as long as w(Y0) ≤ C −w(Z). Now we have the
following lemma.

Lemma 7. It holds that µ|Z| ≥ |Y − Y0|.

Proof of Lemma 7. We first show the existence of a feasible set Y ∗ ⊆ Y ∪Z such that Z ⊆ Y ∗ and
|Y ∗ − Z| ≥ |Y − Z| − µ|Z − Y |. If Z − Y = ∅, then Y ∗ = Y satisfies these conditions. Otherwise,
let z be an element in Z − Y , and apply (1) between Y, Z ∈ F with respect to z ∈ Z − Y . Then,
by the definition of µ, there exists a feasible set Y ′ ⊆ Y ∪ {z} such that (Y ∩ Z) ∪ {z} ⊆ Y ′

and |Y − Y ′| ≤ µ. That is, if we replace Y with Y ′, then |Z − Y | decreases by one and |Y − Z|
decreases at most µ. Next, we apply the exchange between Y ′ and Z to obtain Y ′′. By repeating
this procedure |Z − Y | times, we obtain a feasible set Y ∗ ⊆ Y ∪ Z such that Z ⊆ Y ∗ and

|Y ∗ − Z| ≥ |Y − Z| − µ|Z − Y |. (3)
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Since Z ⊆ Y ∗ implies that w(Y ∗ − Z) ≤ C − w(Z), it holds that |Y0| ≥ |Y ∗ − Z| by the
definition of Y0. By combining this with (3), we have |Y0| ≥ |Y −Z|−µ|Z−Y |, which is equivalent
to µ|Z − Y | ≥ |Y − Z| − |Y0|. By adding µ|Y ∩ Z| ≥ |Y ∩ Z| to this inequality, we obtain
µ|Z| ≥ |Y − Y0|.

Define C ′ := C − w(Y0), E
′ := E − Y0, and m′ := ⌈log(|Y − Y0|/amin)⌉. Then, m′ = O(logµ)

by Lemma 7 and amin = |Z|. Consider the instance (E′, p, w,C ′) of the knapsack problem, where
p and w are restricted to E′. For each k, let OPT′

k be an optimal solution of (E′, p, w,C ′) subject
to |OPT′

k| ≤ k.
The following lemma plays an important role in our algorithm.

Lemma 8. For an arbitrary X ⊆ E with w(X) ≤ C, X can be partitioned into three sets X1, X2,
and X3 so that w(Xℓ) ≤ C ′ for ℓ = 1, 2, 3 (possibly Xℓ = ∅).

Proof of Lemma 8. We first observe that C ′ = C − w(Y0) ≥ w(Z) ≥ C/2 and there is no element
in X whose weight is greater than C ′.

If w(X) ≤ C ′, then the lemma is obvious. Otherwise, define X1, X2, and X3 as follows.

• Let X1 be a maximal subset of X satisfying that w(X1) ≤ C ′.

• Let X2 = {x} for some x ∈ X −X1.

• Let X3 = X − (X1 ∪X2).

Then, it is clear that w(X1) ≤ C ′ and w(X2) ≤ C ′. Furthermore, since w(X1 ∪ X2) > C ′ by
the maximality of X1, it follows that w(X3) = w(X) − w(X1 ∪ X2) < w(X) − C ′ ≤ C ′ from
C ′ ≥ C/2.

Our randomized strategy is described as follows.

Strategy 2. Choose Xi := OPT′
2iamin

∪ Y0 with probability 1/(m′ + 1) for each i ∈ {0, 1, . . . ,m′}.

We now analyze the robustness of Strategy 2. To simplify the notation, let X ′
i := OPT′

2iamin

for each i.

• For an integer k with amin ≤ k < 2m
′
amin, let j be an integer satisfying 2jamin ≤ k < 2j+1amin.

Then, it holds that

p(Xj+1(k)) ≥ p(X ′
j+1(k)) ≥

k

2j+1amin
· p(X ′

j+1) ≥
k

2j+1amin
· p(OPT′

k) ≥
1

2
· p(OPT′

k). (4)

By Lemma 8, OPTk −Y0 can be partitioned into three sets OPT1
k, OPT2

k, and OPT3
k so that

w(OPTℓ
k) ≤ C ′ for ℓ = 1, 2, 3, which shows that

p(OPTk) = p(OPTk − Y0) + p(OPTk ∩ Y0)

≤ p(OPT1
k) + p(OPT2

k) + p(OPT3
k) + p(Y0(k))

≤ 3p(OPT′
k) + p(Xj+1(k)). (5)

By (4) and (5), we have that p(OPTk) ≤ 7p(Xj+1(k)). Thus,

E[p(X(k))] =
1

m′ + 1

m′∑
i=0

p(Xi(k)) ≥
1

m′ + 1
· p(Xj+1(k)) ≥

1

7(m′ + 1)
· p(OPTk).
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• For an integer k ≤ amin, we have p(X0(k)) = p(OPTk), since X ′
0 is the set of amin highest

profit elements in E′ = E − Y0. Thus,

E[p(X(k))] ≥ 1

m′ + 1
· p(X0(k)) =

1

m′ + 1
· p(OPTk).

• For an integer k ≥ 2m
′
amin, we note that p(OPT′

k) = p(Y − Y0) = p(X ′
m′) = p(X ′

m′(k)). By
Lemma 8, OPTk − Y0 can be partitioned into three sets OPT1

k, OPT2
k, and OPT3

k so that
w(OPTℓ

k) ≤ C ′ for ℓ = 1, 2, 3, which shows that

p(OPTk) = p(OPTk − Y0) + p(OPTk ∩ Y0)

≤ p(OPT1
k) + p(OPT2

k) + p(OPT3
k) + p(Y0(k))

≤ 3p(OPT′
k) + p(Xm′(k))

= 4p(Xm′(k)).

Thus,

E[p(X(k))] ≥ 1

m′ + 1
· p(Xm′(k)) =

1

4(m′ + 1)
· p(OPTk).

Therefore, we conclude that the robustness of Strategy 2 is at least 1/7(m′ + 1) = Ω(1/ logµ).

3.3 Unit density case

In this subsection, we show that an instance of the knapsack problem (E, p,w,C) defines a bit-
concave indendence system (see Section 1.2 for definition) if all items have unit densities, i.e., pe/we

is identical, and thus 1/ ln(4)-robust strategy in [8] works for this case.

Proposition 9. If an independence system is defined by an instance (E, p,w,C) of the knapsack
problem in which pe/we is identical, then it is bit-concave. This implies that there is a randomized
strategy with robustness 1/ ln(4).

Proof. Let p be a bit-function, i.e., pe = 2le for each e ∈ E with le ∈ Z. Without loss of generality,
assume that pe/we = 1 for each e ∈ E. It suffices to show that a greedy solution X for this problem
is 1-robust. To derive a contradiction, assume that X is not 1-robust, and let k be the minimum
integer such that p(X(k)) < p(OPTk). Let Z := X(k) ∩OPTk and let e0 be the cheapest element
in OPTk − Z. We consider the following two cases separately.

• Consider the case when pe ≥ pe0 for every e ∈ X(k)− Z.

Let Z ′ := {e ∈ Z | pe ≤ pe0}. Then,

p(X(k − |Z ′| − 1)) ≤ p(X(k)− Z ′)− pe0 < p(OPTk − Z ′)− pe0 ≤ p(OPTk−|Z′|−1),

which contradicts the minimality of k.

• Consider the case when there exists e′ ∈ X(k)− Z with pe′ < pe0 .

Let X ′ := {e ∈ X(k) | pe ≥ pe0}. Then, the existence of e′ implies that |X ′| ≤ k − 1. By
the definition of bit-functions, both p(X ′ − Z) and p(OPTk − Z) are integral multiples of
pe0 , which shows that p(X ′ − Z) ≤ p(OPTk − Z) − pe0 . Since w = p, we obtain w(X ′) ≤
w(OPTk)−we0 ≤ C −we0 , which contradicts that e0 is not contained in the greedy solution.
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Therefore, the independence system is bit-concave, and this shows the existence of a randomized
strategy with robustness 1/ ln(4) by [8].

We note that this proposition answers a question posed by [8]:

We are not aware of natural systems that are bit-concave but not concave.

Indeed, an independence system defined by an instance (E, p,w,C) of the knapsack problem with
unit densities is bit-concave by Proposition 9. On the other hand, such an independence system is
not necessarily concave, i.e., 2p(OPTk+1) ≥ p(OPTk)+ p(OPTk+2) does not necessarily hold when
p is not a bit-function. To see this, consider the instance of the knapsack problem such that there
are four items, the values of pe = we are 5, 2, 2, and 2, respectively, and C = 6. In this instance,
p(OPT1) = p(OPT2) = 5 and p(OPT3) = 6, which shows that 2p(OPT2) < p(OPT1) + p(OPT3).

4 Extension to General Independence Systems

In this section, we extend our results to general independence systems. We show positive and
negative results in Sections 4.1 and 4.2, respectively.

4.1 Ω(1/ log ρ(F))-robustness

As we have already seen in Theorem 4, Strategy 1 is Ω(1/ log ρ(F))-robust if the independence
system is defined by the knapsack problem. This result is extended to general independence systems.

Theorem 10. For an arbitrary independence system (E,F), there is a randomized strategy with
robustness Ω(1/ log ρ(F)).

The proof is the same as Theorem 4. That is, our randomized strategy is described as follows,
where OPTk is an optimal feasible set subject to |OPTk| ≤ k and m = ⌈log ρ(F)⌉.

Strategy 3. Choose Xi := OPT2iamin
with probability 1/(m+ 1) for each i ∈ {0, 1, . . . ,m}.

Furthermore, if OPTk is (approximately) computable in polynomial time, then Strategy 3 is ob-
tained in polynomial time.

4.2 Upper bounds on robustness

In this subsection, we show hardness in general independence systems. More precisely, we improve
the upper bounds given in Theorem 3 to O(1/ logµ(F)) and O(1/ log ρ(F)) for general independence
systems.

Theorem 11. There exists an independence system (E,F) such that the robustness of an arbitrary
randomized strategy is O(1/ logµ(F)) and O(1/ log ρ(F)).

Proof. Let M be a constant larger than 1 (e.g., M = 10), and consider the following independence
system (E,F) (see Table 2).

• The set E consists of T + 1 types of items, say type 0, type 1, . . . , type T .

• For each i = 0, 1, . . . , T , type i has M2i items with profit M2T−i.
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Table 2: An independence system with small robustness.

type p number of items total profit

0 M2T 1 M2T

1 M2T−1 M2 M2T+1

2 M2T−2 M4 M2T+2

...
i M2T−i M2i M2T+i

...
T − 1 MT+1 M2T−2 M3T−1

T MT M2T M3T

• F is the collection of all the subsets of E consisting of at most one type of items.

It is not difficult to see that ρ(F) = µ(F) = M2T for this independence system. We show that the
robustness of an arbitrary randomized strategy is O(1/T ).

For i = 0, 1, . . . , T , let Xi be the feasible set consisting of all items of type i. By the definition
of F , {X0, X1, . . . , XT } is the set of all maximal feasible sets, and hence it suffices to consider a
randomized strategy choosing X0, X1, . . . , XT .

For i, j ∈ {0, 1, . . . , T}, we have that p(Xj(M
2i)) = M2T+i−|i−j|. Consider a randomized

strategy choosing Xj with probability λj . Since p(OPTM2i) = M2T+i, it follows that

T∑
j=0

λjp(Xj(M
2i)) =

 T∑
j=0

λjM
−|i−j|

 · p(OPTM2i) (i = 0, 1, . . . , T ),

which implies that its robustness is at most mini

{∑T
j=0 λjM

−|i−j|
}
. Since

T∑
i=0

 T∑
j=0

λjM
−|i−j|

 =
T∑

j=0

λj

(
T∑
i=0

M−|i−j|

)

≤
T∑

j=0

λj

(
1 + 2

∞∑
i′=1

M−i′

)

≤ 1 +
2

M − 1
= O(1),

the robustness is at most mini

{∑T
j=0 λjM

−|i−j|
}
= O(1/T ), which completes the proof.

Theorem 11 shows that the robustness Ω(1/ log ρ(F)) given in Theorem 10 is tight when we
consider general independence systems.

5 Concluding Remarks

In this paper, we have addressed randomized strategies for the robust independence systems de-
fined by the knapsack problem. We exhibited upper bounds on robustness in terms of the ex-
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changeability µ(F) and a newly introduced parameter ρ(F), which represent the intractability of
the independence system (E,F). We then designed randomized strategies with better robustness
than deterministic strategies, and extended those results to general independence systems.

A major task for future research would be filling the gap between the upper and lower bounds on
robustness. Extending Theorem 6, a lower bound in terms of the exchangeability µ(F), to general
independence systems, and providing upper or lower bounds in terms of the rank quotient r(F) are
also of interest.
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