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Abstract

We introduce a new framework of restricted 2-matchings close to Hamilton cycles.
Given a family U of vertex subsets, a 2-matching F is called U-free if, for each U ∈ U , F
contains at most |U |−1 edges in the subgraph induced by U . Our framework includes
Ck-free 2-matchings, i.e., 2-matchings without cycles of at most k edges, and 2-factors
covering prescribed edge cuts, both of which are intensively studied as relaxations of
Hamilton cycles.

The problem of finding a maximum U-free 2-matching is NP-hard. In this paper, we
prove that the problem is tractable when the graph is bipartite and each U ∈ U induces
a Hamilton-laceable graph. This case generalizes the C4-free 2-matching problem
in bipartite graphs. We establish a min-max theorem, a combinatorial polynomial-
time algorithm, and decomposition theorems by extending the theory of C4-free 2-
matchings. Our result provides the first polynomially solvable case for the maximum
Ck-free 2-matching problem for k ≥ 5.

1 Introduction

The Hamilton cycle problem is one of the most fundamental NP-hard problems in vari-
ous research fields such as combinatorial optimization, graph theory, and computational
complexity. One successful approach to the Hamilton cycle problem is to utilize matching
theory. In a graph G = (V,E), an edge set F ⊆ E is a 2-matching (resp., 2-factor) if
it has at most (resp., exactly) two edges incident to each vertex in V . Since a Hamilton
cycle is a special kind of a 2-matching (or 2-factor) and a 2-matching of maximum size is
found in polynomial time, it is reasonable to put restrictions on 2-matchings to provide a
tight relaxation of Hamilton cycles to which matching theory can be applied. Examples
include the following two kinds of restricted 2-matchings.

Ck-free 2-matchings. For a positive integer k, a 2-matching is called Ck-free if it con-
tains no cycles of length at most k. The larger k becomes, the closer a Ck-free 2-factor
becomes to a Hamilton cycle. If k ≥ |V |/2, a Ck-free 2-factor is a Hamilton cycle, whereas
a C2-free 2-matching is nothing other than a 2-matching.

2-factors covering prescribed edge cuts. An edge cut is a set of edges having exactly
one endpoint in some vertex subset X ⊂ V . Given a family K of edge cuts, an edge subset
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is called K-covering if it intersects every edge cut in K. A Hamilton cycle is exactly a
K-covering 2-factor, where K is the family of all edge cuts.

Recently, both Ck-free and K-covering 2-factors are intensively studied and applied
to approximation algorithm design for NP-hard problems related to the Hamilton cycle
problem, such as the graph-TSP and the minimum 2-edge connected spanning subgraph
problem [4, 5, 8, 12, 20, 30].

1.1 Previous Work

In general graphs, the Ck-free 2-matching problem is much more difficult than the 2-
matching problem. For the cases k ≥ 3, no algorithm is known other than Hartvigsen’s C3-
free 2-matching algorithm [14]. NP-hardness for the case k ≥ 5 is proved by Papadimitriou
(see [7]). More generally, Hell et al. [17] proved that the problem is NP-hard, unless
the excluded length of a cycle is a subset of {3, 4}. The case k = 4 is still open, and
conjectured to be solved in polynomial time [9]. Discrete convexity shown in [22] supports
this conjecture.

While only a few positive results are known for the Ck-free 2-matching problem in gen-
eral graphs, in bipartite graphs the C4-free 2-matching problem is efficiently solvable, and
fundamental theorems in matching theory are extended. Motivated by a stimulating paper
of Hartvigsen [15], Király [21] gave a min-max theorem for the C4-free 2-matching problem
in bipartite graphs, followed by a different min-max theorem by Frank [11]. Comparison
of these two theorems is discussed in [31], together with decomposition theorems corre-
sponding to the Dulmage-Mendelsohn and Edmonds-Gallai decompositions. Polynomial
combinatorial algorithms are designed by Hartvigsen [16] and Pap [25], which are again
slightly different and followed by an improvement in time complexity by Babenko [1]. For
the weighted version, while the NP-hardness of the weighted C4-free 2-matching problem
in bipartite graphs is proved by Király (see [11]), positive results such as a linear program-
ming formulation with dual integrality [23], a combinatorial algorithm [29], and discrete
convexity [22] are established when the edge weight satisfies a certain property. Since
the C6-free 2-matching problem is NP-hard even in bipartite graphs [13], the C4-free 2-
matching problem in bipartite graphs is one of the few cases where the Ck-free 2-matching
problem is tractable.

For a set of integers A ⊆ Z, denote the set of edge cuts whose size belongs to A by
KA. Kaiser and Škrekovski [18] proved that every bridgeless planar cubic graph has a
K{3,4}-covering 2-factor, which is extended to a stronger result that every bridgeless cubic
graph has a K{3,4}-covering 2-factor [19]. While the proof in [19] was not algorithmic,
Boyd, Iwata, and Takazawa [4] designed a combinatorial algorithm for finding a K{3,4}-
covering 2-factor in bridgeless cubic graphs, together with a combinatorial algorithm for
finding a minimum-weight K{3}-covering 2-factor in bridgeless cubic graphs. Čada et al. [6]
exhibited a family of graphs which has no K{4,5}-covering edge subset with even degree at
every vertex, disproving a conjecture in [19].

1.2 Our Contribution

In the present paper, we introduce a new framework of restricted 2-matchings which
commonly generalizes Ck-free 2-matchings and K-covering 2-factors. For U ⊆ V , let
G[U ] = (U,E[U ]) denote the subgraph induced by U , i.e., E[U ] = {uv ∈ E | u, v ∈ U}.
For F ⊆ E, let F [U ] = F ∩ E[U ] = {uv ∈ F | u, v ∈ U}.
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Definition 1 (U-free 2-matchings). Let U ⊆ 2V be a family of vertex subsets. A 2-
matching F ⊆ E is called U-free if |F [U ]| ≤ |U | − 1 for each U ∈ U .

Equivalently, a 2-matching F is U-free if and only if |F [U ]| ̸= |U | for each U ∈ U , i.e.,
F excludes cycles through U . Moreover, if F is a 2-factor, then F is U-free if and only if
F ∩ δ(U) ̸= ∅ for every U ∈ U , where δ(U) denotes the set of edges having exactly one
endpoint in U . From these viewpoints, it is not difficult to see that U-free 2-matchings
include Hamilton cycles, Ck-free 2-matchings, and K-covering 2-factors as special cases:
put U = {U ⊆ V | |U | ≤ |V |/2}, U = {U ⊆ V | |U | ≤ k}, and U = {U ⊆ V | δ(U) ∈ K},
respectively.

The U-free 2-matching problem is defined as a problem of finding a U-free 2-matching
of maximum size for given G and U . Since the U-free 2-matching problem includes the
Hamilton cycle problem, the U-free 2-matching problem is NP-hard in general. Thus,
we need some assumption in order to obtain a tractable class of the U-free 2-matching
problem, such as the cases where G is bipartite and U = {U ⊆ V | |U | ≤ 4}, and G is
bridgeless cubic and U = {U ⊆ V | δ(U) ∈ K{3,4}}.

A main objective of this paper is to provide a broader well-solved class of the U-free
2-matching problem by extending the theory of C4-free 2-matchings in bipartite graphs.
For this purpose, we exploit a graph-theoretic concept of Hamilton-laceable graphs. For a
bipartite graph (V,E), we denote the two color classes by V + and V −. For X ⊆ V , let
X+ = X ∩ V + and X− = X ∩ V −.

Definition 2 (Hamilton-laceable graphs [26]). A bipartite graph G = (V,E) is Hamilton-
laceable if

(i) |V +| = |V −| and G has a Hamilton path between an arbitrary pair of u ∈ V + and
v ∈ V −, or

(ii) |V +| = |V −| − 1 and G has a Hamilton path between an arbitrary pair of distinct
vertices u, v ∈ V −.

In what follows, we work on the U-free 2-matching problem under the assumption
that G is bipartite and G[U ] is Hamilton-laceable for each U ∈ U . We note that, for a
2-factor F , |F [U ]| = |U | implies that |U+| = |U−|. Thus, we assume |U+| = |U−| for each
U ∈ U , and hence only the case (i) in Definition 2 occurs in our argument.

The smallest nontrivial example of a Hamilton-laceable graph would be a cycle of
length four, and hence our assumption includes the C4-free 2-matching problem in bipartite
graphs as a special case. Further examples and previous work of Hamilton-laceable graphs
are exhibited in § 2.

In the present paper, we exhibit that the theory of C4-free 2-matching problem in
bipartite graphs satisfactorily extends when G[U ] is Hamilton-laceable for each U ∈ U .
We first present a min-max theorem extending Király’s min-max theorem [21]. We then
design a combinatorial algorithm for finding a maximum U-free 2-matching, which provides
a constructive proof for our min-max theorem. In the design of our algorithm, we make use
of both of Hartvigsen’s and Pap’s algorithms [16, 25]: the shrinking technique comes from
Pap’s algorithm; and the construction of a minimizer of the min-max theorem derives from
Hartvigsen’s method. Finally, we describe decomposition theorems extending those in [31]
and corresponding to the Dulmage-Mendelsohn and Edmonds-Gallai decompositions.

It is noteworthy that, unlike the literature of Ck-free 2-matchings and K-covering
2-factors, our assumption that each G[U ] is Hamilton-laceable does not depend on the
size of the forbidden structures. One benefit of this is that our result provides the first
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polynomially solvable case of the Ck-free 2-matching problem for k ≥ 5, and thus has
a potential to provide better approximation ratios for the graph-TSP and the minimum
2-edge connected subgraph problem.

We further remark that our framework contains both cases where multiplicities on
edges are forbidden or allowed. That is, in the former case we only deal with simple
2-matchings and one edge can only contribute one to the degree of its endpoints. In the
latter case, we can put multiplicity two on one edge to have degree two on the endpoints
of the edges. Actually, in the literature of Ck-free 2-matching problem, these two cases
have formed different streams. The aforementioned results are of the former case, and
results for the latter case include [2, 7, 24]. To the best of our knowledge, not much
connection between these two cases is found. In our framework, forbidding multiplicity on
an edge uv ∈ E corresponds to have {u, v} in U , and it is clear that G[{u, v}] is Hamilton-
laceable if uv ∈ E. While in this paper we mainly keep the former case in mind, we note
that our framework can represent the both cases.

1.3 Organization of the paper

The rest of the paper is organized as follows. In § 2, we show some previous work,
observation, and examples of Hamilton-laceable graphs. After that, we work on U-free 2-
matchings in bipartite graphs where G[U ] is Hamilton-laceable for each U ∈ U . We present
a min-max theorem in § 3. Section 4 is devoted to describing a combinatorial algorithm
for finding a maximum U-free 2-matching, which provides a constructive proof for the
min-max theorem. Finally, in § 5, we exhibit decomposition theorems corresponding to
the Dulmage-Mendelsohn and Edmonds-Gallai decompositions.

2 Hamilton-Laceable Graphs

This section is devoted to a discussion on Hamilton-laceable graphs. We first note that the
concept of Hamilton-laceable graphs is a bipartite analogue of that of Hamilton-connected
graphs, which is well-known in the field of graph theory [3]. A graph is Hamilton-connected
if it has a Hamilton path between an arbitrary pair of distinct vertices. Thus, a Hamilton-
connected graph is nonbipartite if it has at least three vertices.

In what follows, we always assume that G = (V,E) is bipartite. Trivial examples
of a Hamilton-laceable graph are the case where V + = ∅ or V − = ∅, and a graph of
two vertices connected by an edge. It is also clear that a complete bipartite graph on 2t
vertices, denoted by Kt,t, is Hamilton-laceable. Recall that a special case K2,2, a cycle of
length four, is an example of a Hamilton-laceable graph.

If G = (V,E) is Hamilton-laceable, a graph (V, Ẽ) satisfying Ẽ ⊇ E is also Hamilton-
laceable. Thus, it would be of interest to find Hamilton-laceable graphs with as few edges as
possible. Indeed, the concept of Hamilton-laceable graphs was introduced as a generalized
property of Hamiltonicity of d-dimensional rectangular lattices by Simmons [26], who
proved that all d-rectangular lattices are Hamilton-laceable except for the two-dimensional
lattices of order 2× r (r ̸= 2) and 3×2r. This result provides a class of Hamilton-laceable
graphs (V,E) with |E| ≈ d|V |. For instance, every hypercube is Hamilton-laceable.

Furthermore, Simmons [27] discussed the minimum number lt of the edges of Hamilton-
laceable graphs with |V +| = t. It holds that 3t − ⌈t/3⌉ ≤ lt ≤ 3t − 1 for the case (i) in
Definition 2, and lt = 3t + 1 for the case (ii) in Definition 2. Simmons [28] also showed
that deleting fewer than t− 1 edges from Kt,t or Kt,t+1 maintains Hamilton-laceability.

The motivation of introducing Hamilton-laceable graph in this paper comes from an
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analysis in [31], which reveals that cycles of length four in the C4-free 2-matching prob-
lem in bipartite graphs serve as factor-critical components for the nonbipartite matching
problem: if U ⊆ V induces a cycle of length four in a bipartite graph, for an arbitrary
pair u ∈ U+ and v ∈ U−, G[U ] contains a 2-matching of size three in which only u and v
has degree one. Observe that the definition of Hamilton-laceable graphs generalizes this
property. In the following sections we reveal that the property in Definition 2(i) plays a
key role to provide a tractable class of restricted 2-matchings in bipartite graphs.

3 A Min-Max Theorem

In this section, we describe a min-max theorem for the U-free 2-matching problem in
bipartite graphs where each U ∈ U induces a Hamilton-laceable graph. Our theorem is an
extension of Király’s min-max theorem [21] for the C4-free 2-matching problem in bipartite
graphs. For X ⊆ V , let X̄ = V \X and c′(X) denote the number of components in G[X]
consisting of a single vertex, a single edge, or a single cycle of length four.

Theorem 3 ([21]). Let G = (V,E) be a bipartite graph. Then, it holds that

max{|F | | F is a C4-free 2-matching} = min{|V |+ |X| − c′(X̄) | X ⊆ V }.

Observe that every component contributing to c′(X̄) is Hamilton-laceable. We now
exhibit our theorem extending Theorem 3. For X ⊆ V , let c(X) denote the number of
components in G[X] whose vertex set belongs to U .

Theorem 4. Let G = (V,E) be a bipartite graph and U ⊆ 2V be a family of vertex subsets
in G such that G[U ] is Hamilton-laceable for each U ∈ U . Then, it holds that

max{|F | | F is a U-free 2-matching} = min{|V |+ |X| − c(X̄) | X ⊆ V }. (1)

Before proving Theorem 4, we first show that the inequality max ≤ min in (1) holds
for an arbitrary G and U , i.e., G may not be bipartite and G[U ] may not be Hamilton-
laceable for U ∈ U . For disjoint vertex sets X,Y ⊆ V , let E[X,Y ] denote the set of edges
connecting X and Y , G[X,Y ] = (X ∪ Y,E[X,Y ]), and F [X,Y ] = F ∩ E[X,Y ].

Lemma 5. Let G = (V,E) be a graph and U ⊆ 2V be a family of vertex subsets in G. For
an arbitrary U-free 2-matching F and X ⊆ V , it holds that |F | ≤ |V |+ |X| − c(X̄).

Proof. Since F is a 2-matching, 2|F [X]|+ |F [X, X̄]| ≤ 2|X| follows. Moreover, since F is
U-free, it holds that |F [X̄]| ≤ |X̄| − c(X̄).

The following lemma directly follows from the proof for Lemma 5. For F ⊆ E and
u ∈ V , denote the number of edges in F incident to u by degF (u).

Lemma 6. If a U-free 2-matching F and X ⊆ V attain the equality in (1), it holds that

• F [X] = ∅,

• degF [{u},X̄](u) = 2 for each u ∈ X, and

• for each component Q in G[X̄],

|F [V (Q)]| =

{
|V (Q)| − 1 if V (Q) ∈ U ,
|V (Q)| otherwise.

We complete a proof of Theorem 4 by establishing an algorithm for finding a U-free
2-matching F and X ⊆ V attaining equality in (1) in § 4.
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4 A Combinatorial Algorithm

In this section, we describe a combinatorial polynomial-time algorithm for finding a max-
imum U-free 2-matching in bipartite graphs where each U ∈ U induces a Hamilton-
laceable graph. Our algorithm employs ideas both of the C4-free 2-matching algorithms
of Hartvigsen [16] and Pap [25].

4.1 Algorithm Description

Roughly speaking, our algorithm resembles Edmonds’ algorithm for nonbipartite match-
ings [10]. One main feature in our algorithm comes from Pap’s algorithm [25]: we shrink
U ∈ U after we find an alternating path, whereas in Edmonds’ and Hartvigsen’s algorithms
shrinking occurs in the middle of construction of alternating forests. Another feature de-
rives from Hartvigsen’s algorithm [16]. A minimizer X ⊆ V of the right-hand side of (1)
is basically determined as the set of vertices reachable from the deficient vertices. In our
algorithm, if a vertex resulting from shrinking U ∈ U satisfies certain properties, it is
regarded as reachable even if it is not reachable.

Before describing the entire algorithm, we present how to shrink and expand U ∈ U .
In order to provide concise notation, in the rest of this section we denote the input of the

algorithm by Ĝ = (V̂ , Ê) and Û ⊆ 2V̂ , and the graph obtained by repeated shrinkings by
G = (V,E). In the algorithm, we maintain a U-free b-matching F in G, where U ⊆ 2V

and b ∈ {1, 2}V , which can be extended to a Û-free 2-matching in Ĝ. For b ∈ {1, 2}V , a
b-matching F is U-free if F [U ] is not a b-factor in G[U ] for every U ∈ U . Initially, G = Ĝ,
U = Û , bv = 2 for each v ∈ V , and F is an arbitrary U-free b-matching, e.g., F = ∅.

For two edge sets F1, F2 ⊆ E, denote the symmetric difference of F1 and F2 by
F1△F2, i.e., F1△F2 = (F1 \ F2) ∪ (F2 \ F1). Define the set of source vertices by S+ =
{u ∈ V + | degF (u) < bu} and sink vertices S− = {v ∈ V − | degF (v) < bv}. Suppose that
we have found an alternating path P from S+ to S− such that F△E(P ) is not a U-free
b-matching. We then apply the following shrinking procedure.

Procedure Shrink(F, P ). Denote the number of edges in P by 2l + 1. Let Pi be a path
consisting of the first 2i edges in P for i ∈ [1, l], P0 be an empty graph, and Pl+1 = P . Let
i∗ be the smallest index i such that F△E(Pi) contains a b-factor in G[U ] for some U ∈ U ,
and let F ′ = F△E(Pi∗−1). If more than one such U ∈ U exists, choose an arbitrary U .
We then update G, b, U , and F as follows. Let u+U and v−U be new vertices, which are
obtained by identifying the vertices in U+ and U−, respectively. Then, reset V , b, E, F ,
and U as

V := Ū ∪ {uU , vU},

bv :=

{
1 if v = u+U , v

−
U ,

bv otherwise,

E := E[Ū ] ∪ {u+Uv | uv ∈ E, u ∈ U+, v ∈ Ū−} ∪ {uv−U | uv ∈ E, u ∈ Ū+, v ∈ U−},
F := F ′[Ū ] ∪ {u+Uv | uv ∈ F ′, u ∈ U+, v ∈ Ū−} ∪ {uv−U | uv ∈ F ′, u ∈ Ū+, v ∈ U−},
U := {U ′ | U ′ ∈ U , U ′ ∩ U = ∅} ∪ {(U ′ \ U) ∪ {uU , vU} | U ′ ∈ U , U ⊊ U ′}.

See Figure 1 for an illustration. Observe that F is still a b-matching in G after the
update. We then again search an alternating path P from S+ to S−, and repeat the
above procedure.
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U

u+U v−Uf1e1 f2e2 e3

e4e5e6 f4f5

f3

f1e1 f2e2 e3

f3
e4e6 f4f5 e5

U

f1e1 f2 e3

f3
e4e6

f4f5

Figure 1: bv = 2 for each v. The thick edges are in F , thin edges in E \ F , and the
vertices in black are in S+ or S−. In the figure on the left, we have found P consisting of
e1, f1, e2, . . . , e5, f5, e6, and F△E(P ) contains a 2-factor in G[U ] for U ∈ U . In this case
i∗ = 5, and the figure in the middle shows F△E(P4). The figure on the right shows the
graph after Shrink(F, P ).

u+U v−U f1e1 f2e2 e3

f3
e4e6 f4f5 e5

U

f5 f4

u+U v−Uf1e1 f2 e3

f3
e4e6

e1

f5 f4

f1 e3

f3
e4e6

f2

Figure 2: The graph in the middle results from an augmentation in the graph on the left,
where the augmenting path P consists of f4, e4, f3, e3, f2, f5, e6. We then expand U , where
f̂+
U = f4 and f̂−

U = f2. to obtain the graph on the right.

If an alternating path P from S+ to S− such that F△E(P ) is U-free b-matching is
found, then we reset F := F△E(P ) to augment the current solution, and expand the
shrunk vertex sets to return to the original graph Ĝ as follows. First note that the shrunk
vertex sets in Û form a laminar family, and it suffices to expand the maximal shrunk
vertex sets. For a maximal shrunk vertex set U ⊆ V̂ , denote the unique edge in F incident
to u+U by f+

U , and to v−U by f−
U , if exist. Let f̂+

U , f̂−
U ∈ Ê be the edges corresponding

to f+
U , f−

U ∈ E, respectively. Denote the vertex in U+ incident to f̂+
U by û+U , and that

in U− incident to f̂−
U by v̂−U . If f+

U (resp., f−
U ) does not exist, let û+U (resp., v̂−U ) be an

arbitrary vertex in U+ (resp., U−). Now, since Ĝ[U ] is Hamilton-laceable, Ĝ[U ] has a
Hamilton path PU between û+U and v̂−U . In expanding U , we add E(PU ) to F . That is,

F̂ := F ∪
∪

U∈U∗ E(PU ). See Figure 2 for an illustration of augmentation and expansion.

It is not difficult to see that F̂ is a U -free 2-matching.
The entire algorithm is described as follows.

Input: A bipartite graph Ĝ = (V̂ , Ê) and Û ⊆ 2V̂ such that Ĝ[U ] is Hamilton-laceable
for each U ∈ Û .

Output: A maximum Û-free 2-matching F̂ in Ĝ.

Step 0: Put G = Ĝ and U = Û . Let F be an arbitrary U-free 2-matching in G and then
go to Step 1.

Step 1: Let S+ = {u ∈ V + | degF (u) < bu} and S− = {v ∈ V − | degF (v) < bv}. Orient
each edge in E \ F from V + to V − and each edge in F from V − to V + to obtain
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a directed graph D. If D has a directed path P from S+ to S−, then go to Step 2.
Otherwise, go to Step 5.

Step 2: Let EP ⊆ E be the set of edges corresponding to the directed edges in P . If
F ′ = F△EP is a U-free b-matching, then go to Step 3. Otherwise, go to Step 4.

Step 3 (Augmentation): Reset F := F ′, expand all maximal shrunk vertex sets, and
then go back to Step 1.

Step 4 (Shrinking): Apply Shrink(F, P ), and then go back to Step 1.

Step 5 (Termination): Expand all maximal shrunk vertex sets and return F̂ .

4.2 Proof for Optimality

In the termination of the algorithm, we have a digraph D in which no directed path from
S+ to S− exists. Let R ⊆ V denote the set of vertices reachable from S+ in D, and define
R′ ⊆ V by

R′ = R ∪ {v ∈ R̄− | v is not a shrunk vertex, degF [R+,{v}](v) = 2}
∪ {v ∈ R̄− | v = v−U for some U ∈ U , uv ∈ F for some u ∈ R+}.

Finally, define X ⊆ V̂ by the set of vertices corresponding to (R̄′)+ ∪ (R′)−.

Lemma 7. The output F̂ of the algorithm and X defined above attain the equality in (1).

Proof. It is not difficult to see that F̂ [X] = ∅. Moreover, since every v ∈ X satisfies
degF̂ [{v},X̄] = 2, we have that |F̂ [X, X̄]| = 2|X|. Finally, in G, all edges in E[X̄] belong

to F . Thus, each edge in Ê[X] is in F̂ or belongs to Ê[U ] for some U ∈ U shrunk in G.
By the definition of Q, it holds that v−U has no adjacent edge in E[X], which implies that

Ĝ[U ] forms a component in Ĝ[X̄]. Thus, it follows that |F̂ [X̄]| = |X̄| − c(X̄). Therefore,
we conclude

|F̂ | = |F̂ [X]|+ |F̂ [X, X̄]|+ |F̂ [X̄]| = 2|X|+ |X̄| − c(X̄) = |V |+ |X| − c(X̄).

Now Theorem 4 immediately follows from Lemmas 5 and 7. Thus, our algorithm
provides a constructive proof for Theorem 4.

4.3 Complexity

In this subsection, we show that the time complexity of our algorithm is polynomial in the
size of the input of the algorithm. Denote n = |V̂ | and m = |Ê|. We should notice that
the input size of the algorithm depends on how Û is given, and Û might have a exponential
size in n, e.g., Û = {U ⊆ V̂ | |U | ≤ n/2}. Nevertheless, in many cases determining if a
given edge set is Û-free is done efficiently, such as the Ck-free 2-matching case and the
K-covering 2-factor case. Therefore, we denote by γ the time for determining if an edge
set is Û-free, and use γ in complexity analysis of the algorithm instead of |Û |.

It is not difficult to see that shrinkings occur O(n) times between augmentations. Since
augmentations occur O(n) times, shrinkings occur O(n2) times in total.

After each shrinking, we search an alternating path, which takes O(m) time. More-
over, we determine if F△E(Pi) is U -free O(n) times for each shrinking. Thus, the time
complexity between shrinkings is O(nγ +m).

Therefore, the total complexity of our algorithm is O(n3γ + n2m).
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Theorem 8. Our algorithm finds an optimal solution in O(n3γ + n2m) time.

5 Decomposition Theorems

This section is devoted to decomposition theorems for the U -free 2-matching problem in
bipartite graphs where each U ∈ U induces a Hamilton-laceable graph. These theorems
correspond to the Dulmage-Mendelsohn and Edmonds-Gallai decompositions, and extend
decomposition theorems for the C4-free 2-matchings in bipartite graphs [31].

Let X1 ⊆ V be a minimizer of (1) obtained by the algorithm in § 4. By exchanging the
roles of V + and V −, i.e., searching alternating paths from S− to S+, we obtain another
minimizer X2 ⊆ V of (1). Now partition V into three sets D,A,C ⊆ V , where

D = X̄+
1 ∪ X̄−

2 , A = X+
2 ∪X−

1 , C = V \ (D ∪A).

We first provide a characterization of D. Note that such characterization appears in
both of the Dulmage-Mendelsohn and Edmonds-Gallai decompositions.

Theorem 9. The vertex set D is characterized as

D = {v | ∃a maximum U-free 2-matching F with degF (v) ≤ 1}.

Proof. It suffices to discuss V +. Let u ∈ D+ = X̄+
1 . By the definition of X1, at the last

stage of the algorithm where no path between S+ and S− is found, u is reachable from
S+ or is shrunk into a vertex reachable from S+. Denote a path from S+ to u by P .
Then, it is not difficult to see that F△EP provides a maximum U-free 2-matching F with
degF (u) = 1. For u ∈ D̄+ = X+

1 , it holds that degF (u) = 2 by Lemma 6.

The following theorem, corresponding to the Dulmage-Mendelsohn decomposition, sug-
gests that X1 and X2 are canonical minimizers of (1).

Theorem 10. For an arbitrary minimizer Y ⊆ V of (1), it holds that X+
2 ⊆ Y + ⊆ X+

1

and X−
1 ⊆ Y − ⊆ X+

2 .

Proof. It suffices to prove Y + ⊆ X+
1 and X−

1 ⊆ Y −. For each u ∈ Y +, by Lemma 6,
degF (u) = 2 holds for every maximum U-free 2-matching F . Thus, u ∈ D̄+ = X+

1 follows
from Theorem 9.

We next prove X−
1 ⊆ Y −. Suppose to the contrary that there exists v ∈ X−

1 \ Y −.
Let F be an arbitrary maximum U-free 2-matching. Since v ∈ X−

1 , by Lemma 6 there
exist two vertices u1, u2 ∈ X̄+

1 ⊆ Ȳ + such that u1v, u2v ∈ F . Denote the component
in G[Ȳ ] containing u1, u2, v by Q. Since u1, u2 are reachable from S+, we have that
|F [V (Q)]| < |V (Q)|, and thus |F [V (Q)]| = |V (Q)| − 1 and Q ∈ U by Lemma 6.

Denote QX = V (Q) ∩ X1 and QX̄ = V (Q) ∩ X̄1. We now show that there exists an
edge e ∈ E[Q+

X̄
, Q−

X̄
] \ F . By Lemma 6, every vertex in Q−

X is connected to two vertices

in Q+
X̄

by two edges in F , implying that |Q+
X̄
| > |Q−

X | and

1 ≤ |F [Q+
X̄
, Q−

X̄
]| ≤ 2|Q+

X̄
| − 2|Q−

X | − 1.

Let xy ∈ F [Q+
X̄
, Q−

X̄
], where x ∈ Q+

X̄
and y ∈ Q−

X̄
. Since G[V (Q)] is Hamilton-laceable,

G[V (Q)] has a Hamilton path P between x and y. Then it follows that |E(P )[Q+
X̄
, Q−

X̄
]| ≥

2|Q+
X̄
| − 2|Q−

X | − 1, and hence

|E[Q+
X̄
, Q−

X̄
]| ≥ |E(P )[Q+

X̄
, Q−

X̄
] ∪ {xy}| ≥ 2|Q+

X̄
| − 2|Q−

X |.

Thus, E[Q+
X̄
, Q−

X̄
] \ F ̸= ∅. Then, the endpoint ve of e in V − should be reachable from

S+, contradicting that ve ∈ X̄.
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A

D

C

U2

U3

U1

U4

Figure 3: The thick lines are edges in a maximum U-free 2-matching F , and the thin lines
are edges in E \ F . The two vertices in black are those at which the degree of F is not
two. The vertex sets U1, U2, U3, and U4 are in U . Some edges in E \ F are omitted.

Finally, we establish the theorem below, which corresponds to the Edmonds-Gallai
decomposition. Figure 3 would help understanding the statements.

Theorem 11. The following statements hold.

(i) For each e ∈ E[D,A], there exists a maximum U-free 2-matching containing e.

(ii) The vertex set of each component in G[D] and G[D,C] is a singleton or belongs to
U .

(iii) Shrink the components in G[D] and G[D,C] in the manner of Shrink(F, P ) to obtain
a new graph G′ = (V ′, E′), denote the vertex subsets of V ′ corresponding to D,C by
D′, C ′, and define b′ ∈ {1, 2}D′∪C′

by

b′v =

{
1 if v = u+U or v = v−U for some U ∈ U ,
2 otherwise.

Then,

(a) G′[U ′] has a b′-factor, and

(b) for arbitrary A′ ⊆ A, it holds that b′(Γ(A′)∩D′) > 2|A′|, where Γ(A′) is the set
of vertices in V \A′ adjacent to some vertex in A′.

(iv) An arbitrary maximum U-free 2-matching F is composed of the following edges.

(a) In G[D] and G[D,C], F contains |V (Q)| − 1 edges in E[V (Q)] for each com-
ponent Q.

(b) For u ∈ A, F contains two edges connecting u and distinct components in G[D].

(c) In G[U ], F [U ] corresponds to a b′-factor in G′[U ′].

(v) Both A ∪ C+ and A ∪ C− minimize (1).

Proof. Assertion (v). This is clear from A ∪ C+ = X1 and A ∪ C− = X2.
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Assertion (i). By symmetry, it suffices to discuss e = uv ∈ E[D+, A−]. Let F be a
maximum U-free 2-matching found by the algorithm and suppose e ̸∈ F . Then, in
the last Step 1 of the algorithm, u is reachable from S+ or u is shrunk in some u+U
reachable from S+. Let P be a path starting from S+ and reaching u. Then, from
the current solution, we can obtain a new maximum U-free 2-matching containing
e by taking the symmetric difference with E(P ), adding e, deleting an appropriate
edge in δ({v}), and expanding the shrunk vertex sets.

Assertions (ii) and (iv)(a). Let Q be a component in G[X̄+
1 , X̄−

1 ] which is not a single-
ton. Since X̄+

1 is the set of vertices reachable from S+, it follows that F [V (Q)] <
|V (Q)|. By Lemma 6, it suffices to show that Q does not intersect both D− and C−.
Suppose otherwise. Then, there exists one vertex in V (Q)∩D− such that degF [Q](v) =

1, and degF [Q](v
′) = 2 holds for every vertex v′ ∈ V (Q)∩D−. This implies v′ ∈ X−

1 ,
a contradiction.

Assertions (iii)(a), (iv)(b), and (iv)(c). These assertions are now clear from Lemma 6
and Assertion (iv)(a).

Assertion (iii)(b). It suffices to discuss A′ ⊆ A− = X−
1 . Then the assertion follows that

A′ is reachable from S+ and Assertion (iv)(b).
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[6] R. Čada, S. Chiba, K. Ozeki, P. Vrána and K. Yoshimoto: {4, 5} is not coverable: A
counterexample to a conjecture of Kaiser and Škrekovski, SIAM Journal on Discrete
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Egerváry Research Group, 1999.
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