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By

Naofumi Honda∗and Takahiro Kawai∗∗

§ 1. Introduction

This is a sequel of our previous papers ([3] and [5]), which aim at some better un-
derstanding of Sato’s postulates on the S-matrix. ([9]; see also [6], [7], [8] and references
cited therein for this subject.) We report on, in this article, singularity structure of the
nonzero-α LN surface, i.e., the projection of the nonzero-α Landau-Nakanishi variety to
the base space, associated with the truss bridge diagram Tn of lower degree (n = 1, 2, 3)
and that with the complemented truss bridge diagram T̃3 which is obtained by addition
of an external line to the non-external vertex (i.e., a vertex without an external line) of
T3. Singular points of these surfaces are classified into two kinds: a cusp and a pinch
point. Further, a common shape so called the “Whitney umbrella” is observed near
these singular points (cf. Fig.5), where a pinch point appears as a tip of the umbrella
at which parametrization of the surface degenerates and a cusp forms a shank of the
umbrella which is a self-intersection point of the surface. We give precise description of
these singular points for diagrams listed above.

Concrete understanding of pinch points and cusps is believed to be useful for further
study of the Landau-Nakanishi geometry. As such an evidence, in the last two sections,
we see that an acnode, i.e., an isolated point, found by R. J. Eden et al. [1] in the
Landau-Nakanishi geometry of T2 and the higher codimensional component appearing
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in the nonzero-α LN surface of T3 (cf. [3] and [5]) can be well understood from the
viewpoint of singularity structure.

§ 2. A LN surface: a review

We briefly recall the notations and terminologies used in this paper, which are
basically the same as those in [3] and [5].

Let G be a Feynman graph. Then G consists of, by definition, finitely many points
V1, V2, . . . , Vn′ (called vertices), finitely many line segments L1, L2, . . . , LN (called
internal lines) and finitely many half-lines Le

1, Le
2, . . . , Le

n (called external lines), where
each of the end-points W+

` and W−
` of L` (` = 1, 2, . . . , N) coincides with some Vj

(j = 1, 2, . . . , n′) with W+
` 6= W−

` and the (unique) end-point of Le
r (r = 1, 2, . . . , n)

coincides with some Vj (j = 1, 2, . . . , n′).

Figure 1. An example of a Feynman graph.

In this article we assume that each internal line and each external line are oriented
(and specified with an arrow like “→−” if necessary). Using this orientation we define
the incidence number [j : `] for a pair of a vertex Vj and an internal line L` by the
following rule:

(2.1) [j : `] =


+1 when the internal line L` ends at the vertex Vj ,

−1 when L` starts from Vj ,

0 neither of the end-points of L` coincides with Vj .

The incidence number [j : r] for a pair of a vertex Vj and an external line Le
r is defined

in a similar manner. Furthermore, for an oriented closed loop C in G, we set

(2.2) σ(C, `) =


+1 if L` ⊂ C and if L` and C have the same orientation,

−1 if L` ⊂ C and if L` and C have different orientations,

0 otherwise.

We also assume that a ν-dimensional real (or complex if so specified) vector pr =
(pr,0, . . . , pr,ν−1) is assigned to each external line Le

r, and strictly positive number m`

and vector k` = (k`,0, . . . , k`,ν−1) are assigned to each internal line L`.
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Definition 2.1. The LN surface L(G) associated with a Feynman graph G

is, by definition, the totality of external vectors (p1, . . . , pn) in Rνn that satisfies the
following equations for some (α1, . . . , αN ; k1, . . . , kN ) ∈ RN × RνN :

(2.3)



n∑
r=1

[j : r]pr +
N∑

`=1

[j : `]k` = 0 (j = 1, 2, . . . , n′),

N∑
`=1

σ(C, `) α`k` = 0 (any closed loop C in G),

α`(k2
` − m2

`) = 0, k`,0 > 0 (` = 1, 2, . . . , N),

N∑
`=1

|α`| > 0.

Here, for k` = (k`,0, k`,1, . . . , k`,ν−1), we set k2
` = k2

`,0 − k2
`,1 − · · · − k2

`,ν−1.

We also obtain several variants of L(G) by modifying Definition 2.1 as follows:

1. The positive-α LN surface L+(G) of G is defined by (2.3) with the additional
conditions α` ≥ 0 for all `.

2. The leading positive-α LN surface L⊕(G) of G is defined by (2.3) with the additional
conditions α` > 0 for all `.

3. The nonzero-α LN surface L⊗(G) of G is defined by (2.3) with the additional
conditions α` 6= 0 for all `.

Since L⊕(G) and L⊗(G) are generally neither open nor closed, we often study their
(topological) closures instead of themselves, which are denoted by [L⊕(G)] and [L⊗(G)],
respectively.

A hooked 3-lines hq with q hooks consists of 3 lines, the upper line, the middle line
and the lower line, such that the middle line moves in a zigzag between the upper line
and the lower line forming q hooks labeled by u (a hook formed by the upper line and
the middle line) or d (a hook formed by the lower line and middle line) as shown below
as an example in Figure 2.

As a special case of a hooked 3-lines diagram, we have a truss bridge diagram:

Definition 2.2. A hooked 3-lines diagram generated by the sequence udud . . . ud

or udud . . . udu is called a “truss bridge diagram”. We denote by Tn the truss bridge
diagram with n-trusses.
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d d d

u u u

h6 :

Figure 2. A hooked 3-lines associated with “duduud”.

Figure 3. The truss bride T3 (ududu).

Hereafter, we always assume the following two conditions.

(H1) The space-time dimension is 2, i.e., ν = 2.

(H2) The masses assigned to internal lines are all equal to m > 0.

§ 3. Pinch points and cusps of T1, T2 and T3

We study, in this section, singularity structure of the nonzero-α LN surface L⊗ ⊂
Rνn associated with the truss bridge diagram Tn of lower degree (n = 1, 2, 3). Here
a singular point of L⊗ is, by definition, a point in the (topological) closure [L⊗] of
L⊗ at which [L⊗] is not real analytic smooth, and we denote by [L⊗]sing the set of
singular points of L⊗. To make its structure easily understood, we present several
pictures of [L⊗] drawn by a computer, in which one can observe a specific shape so
called a “Whitney umbrella” near [L⊗]sing. As a matter of fact, [L⊗]sing consists of
the following two kinds of singularity: Let Ω be an open subset in RdimR L⊗

, and let
ϕ : Ω → Rνn be a real analytic map such that ϕ(Ω) = [L⊗] and ϕ gives an isomorphism
between Ω \ ϕ−1([L⊗]sing) and [L⊗] \ [L⊗]sing. Such an analytic map ϕ is sometimes
called parametrization of L⊗.

• A pinch point: the image of a critical point of ϕ. That is, p ∈ [L⊗] is a pinch point
if and only if there exists q ∈ Ω with p = ϕ(q) such that the rank of dϕ becomes
less than dimR L⊗ at q.
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• A cusp: a self-intersection point of [L⊗]. That is, a point p ∈ [L⊗] is called a cusp
if and only if there exist distinct points q1 and q2 in Ω with p = ϕ(q1) = ϕ(q2).

Note that subsequent computations are performed with the following conventions.

1. For a vector v = (v0, v1) ∈ R2, we apply the linear transformation

(3.1) ṽ0 = v0 + v1, ṽ1 = v0 − v1

to internal and external vectors. All the computations are performed with the new
coordinates.

2. Hence Lorentz metric v2 = v2
0 − v2

1 for v = (v0, v1) becomes ṽ0ṽ1 in the new
coordinates (ṽ0, ṽ1).

3. All the masses assigned to internal lines are assumed to be 1.

§ 3.1. The singularity structure of the nonzero-α LN surface of T1

Let us first consider the truss bridge diagram T1. We have essentially 3-external
lines which emanate from the vertices A, B and C, and hence, the dimension of the
space of external vectors is 6. However, since the sum of the external vectors must be
zero by the energy-momentum conservation laws and since the LN surface is Lorentz
invariant, we can regard the nonzero-α LN surface L⊗(T1) as a surface in R3.

We specify the coordinates (x, y, z) of the external vectors as described in Fig.4,
that is, the external vector on the line from A is (x, x) and that from C is (y, z).

(x, x) (y, z)

s

t

A

B

C

Figure 4. The truss bridge diagram T1.

In what follows, for example, the symbol AB denotes not only the line AB itself but
also an internal vector on this line. Set AC = (s, 1/s) and BC = (t, 1/t) for positive
real numbers s > 0 and t > 0. Then, by the energy-momentum conservation laws at
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the vertex A, we obtain AB = (1/s, s). Hence, by using parameters s > 0 and t > 0,
each internal vector is expressed by

(3.2) AB = (1/s, s) , AC = (s, 1/s) , BC = (t, 1/t) ,

and we define the analytic map ϕ : R2
>0 → R3 by

(3.3)


x = s + 1/s,

y = s + t,

z = 1/s + 1/t.

The map ϕ gives the required parametrization of L⊗(T1) as we will see.

We first compute a pinch point of T1. Note that we have

(3.4) dx = (1 − 1/s2)ds, dy = ds + dt, dz = −1/s2ds − 1/t2dt.

If s 6= 1, clearly we get dx ∧ dy 6= 0. Furthermore, when s = 1 and t 6= 1, we have
dy ∧ dz 6= 0. Therefore dϕ degenerates only at s = t = 1, and hence, the pinch point of
T1 is just one point given by

(3.5) (s, t) = (1, 1), that is, (x, y, z) = (2, 2, 2).

Remark 3.1. We have the equivalence

(3.6) (s, t) = (1, 1) ⇐⇒ AB = AC = BC.

Hence we can conclude that the external vectors are located at a pinch point of T1 when
all the internal vectors coincide.

Now let us compute cusps of T1. It suffices to determine points where ϕ is not
injective. Note

(3.7)


x = s + 1/s,

y = s + t,

z = 1/s + 1/t,

⇐⇒


s x − s2 − 1 = 0,

y − t − s = 0,

s t z − t − s = 0.

Suppose that (s1, t1) and (s2, t2) give the same x, y and z. Then we may assume either
s1 6= s2 or t1 6= t2. We first consider the case t1 6= t2. By eliminating the variable s of
the first and the second equations in (3.7), we obtain

−t2 + (2 y − x) t − y2 + x y − 1 = 0,
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and, by the first and the third ones in (3.7), we have(
−z2 + x z − 1

)
t2 + (2 z − x) t − 1 = 0.

Then, as both the equations share two roots t1 and t2, by employing Euclidean algorithm
(in this case, it is enough to divide the first equation by the second one and get its
remainder since the second equation is of the second order), we have, for any t,(

(−2 y + x) z2 +
(
2x y − x2 + 2

)
z − 2 y

)
t+(

y2 − x y + 1
)

z2 +
(
−x y2 + x2 y − x

)
z + y2 − x y = 0,

that is, {
(−2 y + x) z2 +

(
2x y − x2 + 2

)
z − 2 y = 0,(

y2 − x y + 1
)

z2 +
(
−x y2 + x2 y − x

)
z + y2 − x y = 0.

By putting (3.3) into these equations, we have
(s − 1) (s + 1) (t + s) (s t − 1)

s2 t2
= 0,

(s − 1) (s + 1) (t + s) (s t − 1)
s2 t

= 0.

Therefore either s = 1 or st = 1 holds. Suppose s = 1. Then we have x = 2, and
thus, we get s1 = s2 = 1, which contradicts t1 6= t2 because of y − t − s = 0 in (3.7).
Hence we exclude s = 1. On the other hand, on {st = 1}, ϕ is not injective because
(s, t) = (s∗, 1/s∗) and (s, t) = (1/s∗, s∗) give the same (x, y, z). By applying the
same argument to the case s1 6= s2, we obtain the same set {st = 1} on which ϕ is not
injective.

Summing up, ϕ is injective on {st 6= 1}, that is, the restriction

(3.8) ϕ : R2
>0 \ {st = 1} → R3

becomes an embedding. Furthermore, the image of {st = 1} by ϕ is the half line
{x = y = z} with x ≥ 2, and it is doubly covered by ϕ. Hence the cusps of L⊗(T1) form
an open half line

(3.9) {(x, y, z) ∈ R3; x = y = z, x > 2}

whose end-point is the pinch point (2, 2, 2).

Remark 3.2. As a pinch point is characterized by a configuration of internal vec-
tors, we can also characterize cusps in terms of a configuration of the internal vectors.
Since we have

(3.10) st = 1 ⇐⇒ AB = BC,

the external vectors are located at a cusp when the internal vectors AB and BC coincide.
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Figure 5. L⊗(T1) viewed from (116, 287).
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Figure 6. L⊗(T1) viewed from (281, 289).
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§ 3.2. The singularity structure of the nonzero-α LN surface of T2

Let us consider the truss bridge diagram T2. We have essentially 4-external lines
which emanate from the vertices A, B, C and D, and hence, the dimension of the
space of external vectors is 8. By the same reasoning as that in T1, we can regard the
nonzero-α LN surface L⊗(T2) of T2 as a hypersurface in R5. However the dimension of
the ambient space is still too big to understand L⊗(T2) visually. Therefore, instead of
studying the hypersurface in R5 directly, we consider a family of slices of L⊗(T2) cut with
3-dimensional linear subspaces, where we choose each subspace so that it transversally
intersects with the singular points of L⊗(T2).

Let a and b be real numbers. Then we specify the coordinates (x, y, z) and the
parameters (a, b) of the external vectors as described in Fig.7, that is, the external
vector on the line from A is (x, x), that from B is (y, a) and that from C is (z, b).

(x, x)

(y, a)

(z, b)s

t

A

B

C

D

Figure 7. The truss bridge diagram T2.

Let s and t be positive real numbers. We set

(3.11) AC = (s, 1/s), BC = (t, 1/t).

Then, by considering the energy-momentum conservation laws at each vertex A, B and
C, we obtain

(3.12)

AB = (1/s, s) , AC = (s, 1/s) , BC = (t, 1/t) ,

BD =
(

t

s t + a t − 1
,

s t + a t − 1
t

)
,

CD =
(
− s t

b s t − t − s
, −b s t − t − s

s t

)
.

Note that, since an internal vector is located in the future light cone, i.e., the region
{(v0, v1); v0 > 0, v1 > 0}, (s, t) belongs to

(3.13) Ω := {(s, t) ∈ R2
>0; st + at − 1 > 0, t + s − bst > 0}.
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Then the real analytic map ϕ : Ω → R3 is defined by

(3.14)



x = s + 1/s,

y =
s2 t2 + a s t2 − s t − a t + 1

s (s t + a t − 1)
,

z =
b s t2 − t2 + b s2 t − s t − s2

b s t − t − s
.

This ϕ gives the required parametrization of a slice of L⊗(T2). Note that the slice
is a surface in R3 and it is also called the nonzero-α LN surface for simplicity.

We can compute pinch points and cusps by the same arguments as those for T1.
The pinch points of T2 are the following 3-points:

(P1) (s, t) = (1, 1), i.e.,

(3.15) (x, y, z) =
(

2,
1
a
,

2 b − 3
b − 2

)
.

The external vectors are located at this pinch point if and only if the configuration
of internal vectors becomes

(3.16) AB = BC = AC.

(P2) (s, t) =
(

1
b
,

2b

ab + 1

)
, i.e.,

(3.17) (x, y, z) =
(

b2 + 1
b

, −b (a b − 3)
a b + 1

,
1
b

)
.

The external vectors are located at this pinch point if and only if the configuration
of internal vectors becomes

(3.18) BC = CD = BD.

(P3) (s, t) =
(

1,
2

a + b

)
, i.e.,

(3.19) (x, y, z) =
(

2, −b2 − 2 b − a2 + 2 a + 4
(b − a − 2) (b + a)

,
b2 + 2 b − a2 − 2 a − 4

(b − a − 2) (b + a)

)
.

The external vectors are located at this pinch point if and only if the configuration
of internal vectors becomes

(3.20) AB = AC, BD = CD.
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The cusps of T2 are given as follows. Note that, outside these cusps, ϕ becomes an
embedding.

(C1) The image of {st = 1}, which is the half curve defined by

(3.21) (x − z)(x − b) = 1, y = 1/a (x > 2).

Note that its end-point is the pinch point (P1). Furthermore, this half curve is
realized by the configuration of internal vectors with

(3.22) AB = BC.

(C2) The image of {s = 1/b}, which is the half line defined by

(3.23) x =
b2 + 1

b
, z = 1/b

(
y > −b (a b − 3)

a b + 1

)
.

Note that its end-point is the pinch point (P2). This half line is realized by the
configuration of internal vectors with

(3.24) BC = CD.

(C3) This is a half portion of some analytic curve C whose end-point is the pinch point
(P3). The defining equation of C is very complicated and long. See also the following
remarks.

Remark 3.3. The cusps (C3) is the image by ϕ of the subset in the (s, t)-space

(3.25)

{
(b + a) s (s + a) (b s − 1) t4

+ (s + a) (b s − 1)
(
b s2 + a s2 − 2 s − b − a

)
t3

− (s − 1) (s + 1)
(
2 b s2 + a s2 + b2 s + 3 a b s + a2 s − 2 s − b − 2 a

)
t2

+ (s − 1) (s + 1)
(
s2 + 2 b s + 2 a s − 1

)
t + s

(
1 − s2

)
= 0
}
.

Remark 3.4. Clear description of a configuration of internal vectors which realizes
a point in the cusps (C3) is not yet known. For a specific (a, b), however, we have simple
description of these cusps as follows: Suppose a = b. Then we can easily confirm that
the distinct points

(s, t) = (s∗, 1/a) and (s, t) = (1/s∗, 1/a) (s∗ > 0, s∗ 6= 1)

give the same (x, y, z) by ϕ. The image of these points is defined by

(3.26) y = z = 1/a (x > 2),
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and it is the cusps (C3) when a = b.
Furthermore, when a is sufficiently close to b, we can find the cusps (C3) in the

following way: Set s = s(x) := 2−1(x +
√

x2 − 4) (x > 2) and

(3.27)
F (ρ, σ; x, a, b) :=

(
ρ +

1
s + a − ρ−1

− s−1

)
−
(

σ +
1

s−1 + a − σ−1
− s

)
,

G(ρ, σ; x, a, b) :=
(

s + ρ − 1
s−1 + ρ−1 − b

)
−
(

s−1 + σ − 1
s + σ−1 − b

)
.

Define the subspace H ⊂ R5 by

(3.28) {(ρ, σ, x, a, b) ∈ R5; a = b, ρ = σ = a−1}.

We can easily confirm

(3.29) F |H = G|H = 0.

Since

(3.30)
∂ρF |H = 1 − a2s−2, ∂σF |H = −1 + a2s2,

∂ρG|H = 1 − a2s2, ∂σG|H = −1 + a2s−2

hold, we get

(3.31) J |H = det

(
∂ρF ∂σF

∂ρG ∂σG

)∣∣∣∣∣
H

= 2a2(s−2 − s2) + a4(s4 − s−4).

Then, by noticing

(3.32) s2 − s−2 = x(s − s−1), s4 − s−4 = x(x2 − 2)(s − s−1),

we have

(3.33) J |H = a2x(s − s−1)(a2(x2 − 2) − 2),

from which J |H 6= 0 follows if x > 2 and x 6=
√

2/a2 + 2. Hence we can find an open
subset D in {(x, a, b) ∈ R3; x > 2} such that it is an open neighborhood of the locally
closed subset

(3.34) {(x, a, b) ∈ R3; x > 2, x 6=
√

2/a2 + 2, a = b}

and there exist real analytic functions ρ = ρ(x; a, b) and σ = σ(x; a, b) defined on D

satisfying

(3.35)
F (ρ(x; a, b), σ(x; a, b); x, a, b) = 0 ((x, a, b) ∈ D),
G(ρ(x; a, b), σ(x; a, b); x, a, b) = 0 ((x, a, b) ∈ D),
ρ(x; a, a) = σ(x; a, a) = 1/a ((x, a, a) ∈ D).
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Now define 2-points

(3.36) q1 = (s∗, ρ(x∗; a, b)), q2 = (1/s∗, σ(x∗; a, b)),

where x∗ := s∗ + 1/s∗ and s∗ is a positive real number satisfying (x∗, a, b) ∈ D. Then,
since ρ and σ satisfy F = G = 0, the points q1 and q2 give the same (x, y, z) by ϕ.
The (x, y, z) thus obtained belongs to the cusps (C3) because q1 6= q2 and ρ(x; a, a) =
σ(x; a, a) = 1/a hold.
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Figure 8. L⊗(T2) with (a, b) = (0.7, 0.95) viewed from (90, 320).
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Figure 9. L⊗(T2) with (a, b) = (0.7, 0.95) viewed from (281, 291).
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§ 3.3. The singularity structure of the LN surface of T3

Let us now consider the truss bridge diagram T3. By the same reasoning as that
for T2, the nonzero-α LN surface L⊗(T3) of T3 can be regarded as a subset in R5, and
hence, we need to consider a family of slices of L⊗(T3) cut with 3-dimensional linear
subspaces. Let a and b be real numbers. Then we specify the coordinates (x, y, z) and
the parameters (a, b) of the external vectors in the same way as that for T2 (see Fig.10
also).

(x, x)

(y, a)

(z, b)
s

t

A

B

C

D

E

Figure 10. The truss bridge diagram T3.

The biggest difference between T2 and T3 is existence of the “non-external vertex”
C, that strongly constrains a configuration of internal vectors. As a matter of fact, it
follows from Lemma 3.2 [5] that internal vectors satisfy either (A) or (B) below:

(3.37) (A) AC = CD and BC = CE (B) AC = CE and BC = CD.

Therefore we have a different component of L⊗(T3) corresponding to either (A) or (B).

3.3.1. The component of L⊗(T3) with the configuration (A)
We first study the component of L⊗(T3) where internal vectors satisfy the config-

uration (A). Note that, in this case, each slice of the component becomes a surface.
Set

(3.38) AC = (s, 1/s) and BC = (t, 1/t).

Then, it follows from the energy-momentum conservation laws and the configuration
(A) that we have

(3.39)

AC = CD = (s, 1/s) , AB = (1/s, s) , BC = CE = (t, 1/t) ,

BD =
(

t

s t + a t − 1
,

s t + a t − 1
t

)
,

DE =
(

t

b t − 1
,

b t − 1
t

)
.
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Define
Ω := {(s, t) ∈ R2

>0; bt − 1 > 0, st + at − 1 > 0},

and the analytic map ϕ : Ω → R3 by

(3.40)



x = s + 1/s,

y =
s2 t2 + a s t2 − s t − a t + 1

s (s t + a t − 1)
,

z =
b t2

b t − 1
.

This ϕ gives the required parametrization of a slice of the component of L⊗(T3) with
the configuration (A). The slice becomes a surface in the 3-dimensional linear space
and it is often called the “surface component” of T3.

The pinch points are the following 3-points:

(P1) (s, t) =
(

1,
1
a

)
, i.e.,

(3.41) (x, y, z) =
(

2, 1/a,
b

a (b − a)

)
.

The external vectors are located at this pinch point if and only if the configuration
of internal vectors becomes

(3.42) AB = BD = AC (= CD).

(P2) (s, t) =
(

b − a,
2
b

)
, i.e.,

(3.43) (x, y, z) =
(

b − a +
1

b − a
,

3 b − 4 a

b (b − a)
, 4/b

)
.

The external vectors are located at this pinch point if and only if the configuration
of internal vectors becomes

(3.44) (BC =) CE = BD = DE.

(P3) (s, t) =
(

1,
2
b

)
, i.e.,

(3.45) (x, y, z) =
(

2, −b2 − 2 a b − 2 b + 4 a + 4
b (b − 2 a − 2)

, 4/b

)
.

The external vectors are located at this pinch point if and only if the configuration
of internal vectors becomes

(3.46) (CD =) AC = AB, (BC =) CE = DE.
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The cusps of T3 are given as follows. Note that, outside these cusps, ϕ becomes an
embedding.

(C1) The image of {t = 1/a}, which is the half line defined by

(3.47) y =
1
a
, z =

b

a (b − a)
(x > 2).

Note that its end-point is the pinch point (P1). Furthermore, this half line is realized
by the configuration of internal vectors with

(3.48) AB = BD.

(C2) The image of {s = b − a}, which is the half line defined by

(3.49) x = b − a +
1

b − a
, y = z − 1

b − a
(z > 4/b).

Note that its end-point is the pinch point (P2). Furthermore, this half line is realized
by the configuration of internal vectors with

(3.50) BD = DE.

(C3) This is a half portion of some analytic curve C whose end-point is the pinch point
(P3). The defining equation of C is very complicated and long. See also Remark
3.5 below. The situation is quite similar to the one for the cusps (C3) of T2.

Remark 3.5. The cusps (C3) is the image by ϕ of the subset in the (s, t)-space

(3.51)

{
b s (s + a) (b s − a s − 1) t4

+ (s + a) (b s − a s − 1)
(
b s2 − 2 s − b

)
t3

− (s − 1) (s + 1)
(
2 b s2 − a s2 + b2 s + a b s − a2 s − 2 s − b − a

)
t2

+ (s − 1) (s + 1)
(
s2 + 2 b s − 1

)
t + s

(
1 − s2

)
= 0
}
.
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Figure 11. L⊗(T3) with (A) and (a, b) = (0.9, 1.95) viewed from (119, 306).
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Figure 12. L⊗(T3) with (A) and (a, b) = (0.9, 1.95) viewed from (119, 306).
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3.3.2. The component of L⊗(T3) with the configuration (B)
We now study the component of L⊗(T3) where internal vectors satisfy the config-

uration (B). Note that, in this case, each slice of the component becomes a curve in
the 3-dimensional linear space and it is often called the “non-surface component” or the
“higher codimensional component”.

Let s > 0, and we set AC = (s, 1/s). It follows from the configuration (B) and the
closed loop condition for the triangle 4BCD that the internal vectors satisfy

(3.52) AC = CE, BC = BD = CD.

Then, the internal vectors are uniquely determined by the condition (3.52) and the
energy-momentum conservation laws at each vertex as follows.

(3.53)

AC = CE = (s, 1/s) , AB = (1/s, s) ,

BC = CD = BD =
(

2
s + a

,
s + a

2

)
,

DE =
(

s

b s − 1
,

b s − 1
s

)
.

Remark 3.6. When a Feynman graph has a non-external vertex, generally speak-
ing, its nonzero-α LN surface may have a higher codimensional component.

Define

(3.54) Ω = {s ∈ R>0; s + a > 0, bs − 1 > 0},

and the analytic map ϕ : Ω → R3 by

(3.55)



x = s + 1/s,

y =
3 s − a

s (s + a)
,

z =
b s2

b s − 1
.

Then the map ϕ gives the required parametrization of the higher codimensional compo-
nent of T3. Note that this curve is smooth if (a, b) 6= (1, 2), and it has only one singular
point s = 1, i.e., (x, y, z) = (2, 2, 2) if (a, b) = (1, 2).
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Figure 13. L⊗(T3) with (B) and (a, b) = (0.9, 1.95): The curve which crosses the surface
is the non-surface component, viewed from (119, 306).
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Figure 14. L⊗(T3) with (B) and (a, b) = (0.9, 1.95): The curve which crosses the surface
is the non-surface component, viewed from (119, 306).
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§ 4. An acnode in the Landau-Nakanishi geometry of T2

An acnode (i.e., an isolated point) appearing in the Landau-Nakanishi geometry of
T2 was first found by R. J. Eden et al. [1] (see also [2]). We study, in this section, its
origin from the viewpoint of singularity structure.

(b) (c) (d)

Figure 15. A rough picture of acnodes described in p.106 [2].

In the book [2], R. J. Eden et al. had studied a family of LN curves of T2, which is,
by definition, the intersection of L⊕(T2) and a parameterized family of 2-dimensional
subspaces. They first change a parameter of the family to the complex domain, and
then, put it back to the real domain. After these changes of a parameter, they found
an isolated point (acnode) apart from the curve as it is shown in Fig.15. By further
continuous changes of a parameter (from (b) to (d) in Fig.15), the acnode continuously
moves and finally disappears after it hits on the curve.
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Figure 16. L⊗(T1).
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Figure 17. The analytic closure of L⊗(T1).
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At first glance, existence of such an acnode seems strange because the nonzero-α
LN surface of T2 generically has a shape like the one drawn in Fig.8, and thus, it is
impossible to obtain an isolated point possessed with such a behavior when we cut the
surface with a suitable family of 2-dimensional subspaces in R3. Singularity structure
studied in the previous section, however, can explain an origin of the acnode. In fact,
the cusps in T1, T2 and T3 are half portions of real analytic curves. Hence, if we take
the analytic closures of these surfaces, the whole parts of these curves appear. For
example, if we take the analytic closure of the nonzero-α LN surface of T1, then we get
the original surface with the whole line and a half portion of this line is located far from
the surface as Fig.17 shows.

Furthermore, their change of a parameter to the complex domain entails complexifi-
cation of the nonzero-α LN surface of T2. As a consequence, when they put a parameter
back to the real domain, the resulting surface contains the analytic closure of the origi-
nal surface. Hence the acnode they observed can be understood as a point in a portion
of an analytic extension of some cusps which is located far from the surface itself.

We give, in Fig.18, some slices of the analytic closure of the nonzero-α LN surface
of T2 cut with the 2-dimensional linear subspace {(x, y, z) ∈ R3; x + y = k}. One can
surely find an isolated point (acnode) which continuously moves and disappears after it
hits on the curve. We note that, if we consider a region which is much wider than that
shown below, we find another acnode as in Fig.15 (b) (see Fig. 19).

Figure 18. Slices by {x + y = k}.
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Figure 19. Slices by {x + y = 3.32} in the wider region.
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§ 5. The non-surface component of T3

As we pointed out in [3] (see Section 3 of this article also), L⊕(T3) contains two
components; one a hypersurface and the other with codimension 2. This is a phe-
nomenon which is not observed in L⊕(G) if G has no non-external vertex. In [3] and [5]
we studied the non-surface component (i.e., the codimension 2 component) of L⊕(T3)
by using the property that it coincides with the intersection of two LN surfaces associ-
ated with ice-cream cone diagrams IL and IR, which are obtained by contracting some
parts of T3 ([5, Section 5]). Here we present another approach that we understand the
non-surface component from the viewpoint of singularity structure of a surface compo-
nent. We first introduce the complemented truss bridge diagram T̃3 by adding an extra
external line to the non-external vertex of T3 and compute its pinch points and cusps.
Then we investigate correspondence between the non-surface component of T3 and the
restriction of pinch points and cusps of T̃3 to the ambient space of T3.

§ 5.1. The complemented truss bridge diagram T̃3

The complemented truss bridge diagram T̃3 is described in Fig. 20, which is obtained
by addition of the external line to the vertex C of T3. It has 5-external lines, and hence,
the nonzero-α LN surface L⊗(T̃3) of T̃3 is regarded as a hypersurface in R7. In this case,
we consider a family of slices of L⊗(T̃3) cut with 4-dimensional linear subspaces. Let
a, b and c be real numbers. We specify the coordinates (x, y, z, w) and the parameters
(a, b, c) of the external vectors as described in Fig.20, that is, the external vector on
the line from A is (x, x), that from B is (y, a), that from C is (w, c) and that from E

is (z, b). Note that the ambient space of T3 is identified with the subspace {w = c = 0}
in this situation.

(w, c)

(x, x)

(y, a)

(z, b)s

t

vA

B

C

D

E

Figure 20. The complemented truss bridge diagram T̃3.

Remark 5.1. The reason why we consider slices cut with 4-dimensional subspaces
instead of 3-dimensional ones is as follows: As we will see later, there exists a connected
component of pinch points of T̃3 which has non-transversal intersection with the ambient
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space of T3, i.e., the subspace {w = c = 0}. Hence we need, at least, a 4-dimensional
linear subspace so that it contains the ambient space of T3 and it intersects transversally
with each component of singular points of T̃3.

Let s, t and v be positive real numbers, and set

(5.1) AC = (s, 1/s), BC = (t, 1/t), CE = (v, 1/v).

Then it follows from the energy-momentum conservation laws that the internal vectors
are given by

(5.2)

AC = (s, 1/s) , AB = (1/s, s) , BC = (t, 1/t) , CE = (v, 1/v) ,

CD =
(
− s t v

c s t v − t v − s v + s t
, −c s t v − t v − s v + s t

s t v

)
,

BD =
(

t

s t + a t − 1
,

s t + a t − 1
t

)
,

DE =
(

v

b v − 1
,

b v − 1
v

)
.

Set

(5.3) Ω := {(s, t, v) ∈ R3
>0; bv − 1 > 0, st + at − 1 > 0, −cstv + tv + sv − st > 0}.

Then the analytic map ϕ : Ω → R4 is defined by
(5.4)

x = s + 1/s,

y =
s2 t2 + a s t2 − s t − a t + 1

s (s t + a t − 1)
,

z =
b v2

b v − 1
,

w = −c s t v2 − t v2 − s v2 − c s t2 v + t2 v − c s2 t v + 2 s t v + s2 v − s t2 − s2 t

c s t v − t v − s v + s t
.

This ϕ gives parametrization of a slice of L⊗(T̃3).

§ 5.2. Pinch points of the complemented truss bridge diagram T̃3

Let us compute dϕ. Since x (resp. z) depends only on s (resp. v) and y depends
only on s and t, the 3 × 4 Jacobian matrix of ϕ takes a form as

(5.5) J :=


∂x

∂s
0

∂y

∂s

∂w

∂s

0
∂z

∂v
0

∂w

∂v

0 0
∂y

∂t

∂w

∂t

 .
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We also have

(5.6)
∂x

∂s
=

(s − 1) (s + 1)
s2

,
∂z

∂v
=

b v (b v − 2)
(b v − 1)2

,

from which

(5.7)
∂x

∂s
= 0 ⇐⇒ s = 1 and

∂z

∂v
= 0 ⇐⇒ v = 2/b

follows. By taking these observations into account, we compute a pinch point at which
Rank(J) < 3 holds.

Case I: s 6= 1 and v 6= 2/b.

In this case, we have

Rank(J) < 3 ⇐⇒ ∂y

∂t
= 0 and

∂w

∂t
= 0.

Since
∂y

∂t
=

(s + a) t (s t + a t − 2)
(s t + a t − 1)2

and
∂w

∂t
=

t (c s v − v + s) (c s t v − t v − 2 s v + s t)
(c s t v − t v − s v + s t)2

hold, we conclude that Rank(J) < 3 if and only if{
(s t + a t − 2) = 0,

(c s v − v + s) = 0.

Here we use the facts s + a > 0 and −cstv + tv + 2sv − st > 0 which follow from
the conditions st + at − 1 > 0 and −cstv + tv + sv − st > 0. Summing up, we have
one component of pinch points: Here we note that we find CD = −BD by (5.2) if
cstv − tv − 2sv + st = 0 and hence the point in question is located outside the region of
our concern in this paper.

(I.a) t =
2

s + a
and v = − s

c s − 1
(s free). For these parameters, we have

(5.8) w =
c s2

c s − 1
.

We can understand the pinch points (I.a) through a configuration of internal vec-
tors. First note that

(5.9) t =
2

s + a
⇐⇒ BC = BD and v = − s

c s − 1
⇐⇒ BC = CD.
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Therefore the external vectors are located at a pinch point (I.a) if and only if the
configuration of internal vectors satisfy

(5.10) BC = BD = CD.

In particular, when c = 0, we have w = 0 by (5.8) which implies v = s, i.e., AC = CE.
Summing up, if c = 0, we get

(5.11) BC = BD = CD, AC = CE,

and thus, it follows from (3.52) that the restriction of pinch points (I.a) to {w = c = 0}
coincides with the non-surface component of T3.

Case II: s = 1 and v 6= 2/b.

In this case,

Rank(J) < 3 ⇐⇒ ∂y

∂s

∂w

∂t
− ∂y

∂t

∂w

∂s
= 0.

As we have(
∂y

∂s

∂w

∂t
− ∂y

∂t

∂w

∂s

)∣∣∣∣
s=1

= − (t − 1) t (t + 1) (c v − a v − 2 v + 1) (c t v + a t v − 2 v + t)
(a t + t − 1)2 (c t v − t v − v + t)2

,

we obtain 3-components of pinch points:

(II.a) s = 1 and t = 1 (v free). For these parameters, we have

(5.12) w = −c v2 − 2 v2 − 2 c v + 4 v − 2
c v − 2 v + 1

and, in particular, when c = 0,

(5.13) w = −2 (v − 1)2

2 v − 1

holds.

(II.b) s = 1 and v = − 1
c − a − 2

(t free). For these parameters, we have

(5.14) w =
a c t2 + c t2 − a2 t2 − 3 a t2 − 2 t2 + a c t + c t − a2 t − 2 a t − t − c + a + 1

(c − a − 2) (a t + t − 1)

and, in particular, when c = 0,

(5.15) w =
(a + 1) (t + 1) (a t + 2 t − 1)

(a + 2) (a t + t − 1)
.



32 Naofumi Honda and Takahiro Kawai

In this case, (5.2) entails CD = −BD; hence the point in question is located outside
the region of our concern in this paper.

(II.c) s = 1 and v = − t

(c + a) t − 2
(t free). For these parameters, we have

(5.16)

w =
a c t3 + c t3 + a2 t3 + a t3 + a c t2 − c t2 + a2 t2 − 2 a t2 − t2 − c t − 3 a t + t + 2

(a t + t − 1) (c t + a t − 2)

and, in particular, when c = 0,

(5.17) w =
(t + 1) (a t − 1) (a t + t − 2)

(a t − 2) (a t + t − 1)
.

Note that this component passes through a pinch point of T3 when t = 1/a and it also
intersects with the non-surface component of T3 when t = 2/(a + 1).

Case III: s 6= 1 and v = 2/b.

In this case,

Rank(J) < 3 ⇐⇒ ∂y

∂t

∂w

∂v
= 0.

By noticing

∂y

∂t

∂w

∂v

∣∣∣∣
v=2/b

=
4 (s + a) t (s t + a t − 2) (c s t − t − s) (c s t + b s t − t − s)

(s t + a t − 1)2 (2 c s t + b s t − 2 t − 2 s)2
,

we have 3-components of pinch points:

(III.a) v = 2/b and t =
2

s + a
(s free). For these parameters, we have

(5.18)
w =

(
b s4 − 2 b c s3 − b2 s3 + 2 a b s3 − 2 s3 − 2 a b c s2 + 4 c s2 − a b2 s2 + a2 b s2

+ 4 b s2 − 4 a s2 − 4 b c s + 4 a c s − 2 b2 s + 4 a b s − 2 a2 s − 4 s + 4 b − 4 a
)

/
(
b (s + a)

(
s2 − 2 c s − b s + a s + 2

) )
and, in particular, when c = 0,

(5.19) w =
(s − b + a) (b s − 2)

(
s2 + a s + 2

)
b (s + a) (s2 − b s + a s + 2)

.

Note that this component passes through a pinch point of T3 when s = b−a and it also
intersects with the non-surface component of T3 when s = 2/b.



A study of pinch points and cusps in the Landau-Nakanishi geometry 33

(III.b) v = 2/b and t =
s

c s − 1
(s free). For these parameters, we have

(5.20) w =
c s2

c s − 1
.

In this case, (5.2) entails CD = −CE, and hence, the point in question is located
outside the region of our concern in this paper.

(III.c) v = 2/b and t =
s

(c + b) s − 1
(s free). For these parameters, we have

(5.21) w =
b c s2 + b2 s2 − 4 c s − 4 b s + 4

b (c s + b s − 1)

and, in particular, when c = 0,

(5.22) w =
(b s − 2)2

b (b s − 1)
.

Case IV: s = 1 and v = 2/b.

Always Rank(J) < 3 in this case. Hence we have one component of pinch points:

(IV.a) s = 1 and v = 2/b (t free). For these parameters, we have

(5.23) w =
2 b c t2 + b2 t2 − 2 b t2 + 2 b c t − 4 c t + b2 t − 4 b t + 4 t − 2 b + 4

b (2 c t + b t − 2 t − 2)

and, in particular, when c = 0,

(5.24) w =
(b − 2) (t + 1) (b t − 2)

b (b t − 2 t − 2)
.

Note that this component passes through a pinch point of T3 when t = 2/b.

Summing up, for the restriction of pinch points of T̃3 to the ambient space of T3, i.e.,
the subspace {w = c = 0}, we have observed the following two facts: The 3-components
(II.c), (III.a) and (IV.a) of pinch points of T̃3 transversally intersect with the ambient
space of T3 for generic parameters. Their intersection contains all pinch points of T3.

The component (I.a) of pinch points of T̃3, however, has non-transversal intersection
with the ambient space of T3. The important fact is that their intersection is nothing
but the non-surface component of T3.
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§ 5.3. Cusps of T̃3 emanating from the pinch points (I.a)

Let us consider the surface S̃ generated by external vectors when internal vectors
of T̃3 satisfy the conditions

(5.25) AC = CE, BC = CD

with the energy-momentum conservation laws at each vertex and k2
` = 1 for any internal

vector k`. Here we forget a closed loop condition, in particular, the one for the triangle
4BCD. Note that the conditions AC = CE and BC = CD imply (w, c) = (0, 0), and
hence, S̃ is contained in the ambient space of T3.

It is easy to see that parametrization of S̃ is given by (5.4) with v = s and c = 0,
i.e.,

(5.26)



x = s + 1/s.

y =
s2 t2 + a s t2 − s t − a t + 1

s (s t + a t − 1)
,

z =
bs2

bs − 1
,

w = 0.

Since x and z depend only on the variable s, by eliminating the variable s in the
expressions of x and z, we obtain the surface
(5.27)

S := {(x, y, z, w) ∈ R4; b x z2 − b2 z2 − z2 − b x2 z + b2 x z + 2 b z − b2 = 0, w = 0}
' {(x, y, z) ∈ R3; b x z2 − b2 z2 − z2 − b x2 z + b2 x z + 2 b z − b2 = 0}.

For a fixed s (as a consequence, x and z are also fixed), we regard the second equation
in (5.26) as the following algebraic equation of t.

(5.28) (−s2 − as)t2 + (s2y + asy + s + a)t − sy − 1 = 0.

The discriminant of the above equation is

(5.29) D := (s + a) (s y + 1)
(
s2 y + a s y − 3 s + a

)
,

and hence, the equation (5.28) has a real root if and only if

(5.30) y ≥ 3s − a

s2 + as
.

As a matter of fact, we have
3s − a

s2 + as
≥ −1/s
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because
3s − a

s2 + as
+ 1/s = 4/(s + a) > 0

hold by the future light cone condition st + at− 1 > 0. We also have y > −1/s because
of

y + 1/s =
(s + a) t2

s t + a t − 1
> 0.

Hence we conclude that D ≥ 0 if and only if (5.30) holds.

As a consequence of the above observation, when y =
3s − a

s2 + as
, we have the double

root t = 2/(s + a) in (5.28). In addition, it follows from (5.2) that t = 2/(s + a) is
equivalent to BC = BD. Hence, by noticing the fact

(x, y, z, w) ∈ S̃ ⇐⇒ (x, y, z, w) ∈ S and y ≥ 3s − a

s2 + as
,

we know that the boundary ∂S̃ of S̃ coincides with the non-surface component of T3

because AC = CE and BC = CD = BD hold on ∂S̃. Furthermore, if y >
3s − a

s2 + as
,

(5.28) has two distinct roots t1 and t2 which give the same x, y and z by (5.26). Therefore
the parametrization (5.26) doubly covers the subset S̃ \ ∂S̃, which entails that S̃ \ ∂S̃

are cusps of T̃3. Summing up, we have obtained the following theorem.

Theorem 5.2. The restriction of [L⊗(T̃3)] to the ambient space of T3 coincides
with the union of the surface and non-surface components of T3 and S̃. Furthermore,
the non-surface component of T3 is obtained by the restriction of pinch points (I.a) of
T̃3 to the ambient space of T3, and S̃ is the union of cusps of T̃3 emanating from the
non-surface component of T3.
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Figure 21. The surface and non-surface components of L⊗(T3) with (a, b) = (0.9, 1.95),
viewed from (61, 53).
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Figure 22. L⊗(T̃3) with (w, a, b, c) = (0, 0.9, 1.95, 0), viewed from (61, 53).
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Figure 23. L⊗(T̃3) with (w, a, b, c) = (0.0003, 0.9, 1.95, 0) viewed from (61, 53).
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