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Abstract. — Let p be an odd prime number, W an absolutely unramified p-adically complete
discrete valuation ring with algebraically closed residue field, and X a curve of genus at least
two over the field of fractions K of W . In the present paper, we study, under the assumption
that X has stable reduction over W , torsion points on X, i.e., torsion points of the Jacobian
variety J of X which lie on the image of the Albanese embedding X ↪→ J with respect to
a K-rational point of X. A consequence of the main result of the present paper is that if,
moreover, J has good reduction over W , then every torsion point on X is K-rational after
multiplying p. This result is closely related to a conjecture of R. Coleman concerning the
ramification of torsion points. For instance, this result leads us to a solution of the conjecture
in the case where a given curve is hyperelliptic and of genus at least p.
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Introduction

Throughout the present paper, let p be an odd prime number and k an algebraically

closed field of characteristic p. Write W
def
= W (k) for the ring of Witt vectors with

coefficients in k and K for the field of fractions of W . Let K be an algebraic closure
of K. Write Ktm ⊆ K for the maximal tamely ramified extension of K in K and

ΓK
def
= Gal(K/K) for the absolute Galois group of K determined by the algebraic closure

K. Let g ≥ 2 be an integer and X a curve over K [i.e., a scheme of dimension one which
is projective, smooth, and geometrically connected over K] of genus g. Write J for the
Jacobian variety of X. In the present paper, suppose that

2010 Mathematics Subject Classification. — Primary 14H25; Secondary 11G20, 14H40, 14H55,
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the curve X over K has stable reduction over W , which thus implies that
the abelian variety J over K has semistable reduction over W .

Write, moreover, XK
def
= X×KK, JK

def
= J×KK, and Xcl

K
, Jcl

K
for the sets of closed points

of XK , JK , respectively. Thus, we have natural bijections XK(K)
∼→ Xcl

K
, JK(K)

∼→ Jcl
K

,

which thus determine natural actions of ΓK on Xcl
K

, Jcl
K

, respectively.
Let x0 ∈ X(K) be a K-rational point of X. Then we have the Albanese embedding

X ↪→ J with respect to x0 ∈ X(K), i.e., the closed immersion overK obtained by, roughly
speaking, mapping “x” to the invertible sheaf corresponding to the divisor “[x]− [x0]” —
where we write “[−]” for the prime divisor determined by “(−)” — of degree zero. By
this embedding, we have an injection

ϕx0 : Xcl
K

↪→ Jcl
K
.

In the present paper, we study a torsion point on XK , i.e., a closed point of XK whose
image, via ϕx0 for some x0 ∈ X(K), is a torsion point in Jcl

K
. In particular, in the present

paper, we study a ramified torsion point on XK , i.e., a non-K-rational torsion point on
XK [cf. Definition 3.5, (i)].

In Introduction, let us consider the following situation:

(‡): Let x0 ∈ X(K) be a K-rational point of X. By means of the above
injection ϕx0 : Xcl

K
↪→ Jcl

K
, we regard Xcl

K
as a subset of Jcl

K
. Let x ∈ Xcl

K

(⊆ Jcl
K

) be a closed point of XK . Suppose that x ∈ Jcl
K

is torsion.

Let us first recall that, in [4], R. Coleman stated a conjecture concerning the ramifi-
cation of torsion points on a curve which satisfies certain conditions [cf. [4], Conjecture
B]. The following is the statement of a slightly stronger version of the conjecture. Note
that the original conjecture of Coleman is the following conjecture in the case where the
pair (X, x0) can be descended to a subfield of K which is finite over the field of rational
numbers.

CONJECTURE (Coleman). — In the situation (‡), suppose, moreover, that the following
two conditions are satisfied:

(1) It holds that p ≥ 5.

(2) The curve X, hence also the abelian variety J , over K has good reduction over
W .

Then x ∈ Jcl
K

is K-rational. In other words, there is no ramified torsion point on
XK.

Moreover, Coleman essentially proved the following result concerning the above con-
jecture [cf. [4], Corollary 20.2]:

THEOREM (Coleman). — In the situation of Conjecture, suppose, moreover, that one of
the following three conditions is satisfied:

(a) The special fiber of the good model of J is an ordinary abelian variety over k.
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(b) The special fiber of the good model of J is isomorphic to the direct product of
supersingular elliptic curves over k.

(c) It holds that 2g < p.

Then x ∈ Jcl
K

is K-rational.

Next, let us recall that A. Tamagawa studied, in [13], the ramification of torsion points
in the case where the abelian variety-part of the special fiber of the semistable model of
J is an ordinary abelian variety. Tamagawa proved, for instance, the following result [cf.
[13], Theorem 0.1]:

THEOREM (Tamagawa). — In the situation (‡), suppose, moreover, that the following
three conditions are satisfied:

(1) It holds that p ≥ 29.

(2) The abelian variety-part of the special fiber of the semistable model of J is an
ordinary abelian variety over k.

(3) The curve X over K is not hyperelliptic.

Then x ∈ Jcl
K

is K-rational.

In the present paper, by combining the idea of Tamagawa that was applied in [13]
with the study of the Galois representations associated to finite flat commutative group
schemes, we prove the following result [cf. Theorem 3.4]. This result concerns the rami-
fication of torsion points after multiplying p without any assumption on the reduction of
J .

THEOREM A. — In the situation (‡), it holds that p · x ∈ Jcl
K

is Ktm-rational.

In the case where J has good reduction over W , we obtain the following result [cf.
Theorem 3.4, (ii)]:

THEOREM B. — In the situation (‡), if, moreover, the abelian variety J over K has
good reduction over W , then p · x ∈ Jcl

K
is K-rational.

In §3 of the present paper, by means of Theorems A and B, we study the geometry
of curves which admit ramified torsion points. As one of consequences, we prove the
following nonexistence of ramified torsion points [cf. Corollary 3.6]:

THEOREM C. — In the situation (‡), suppose that the following two conditions are
satisfied:

(1) It holds that g ≥ p.

(2) The abelian variety J over K has good reduction over W .
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Suppose, moreover, that one of the following three conditions is satisfied:

(a) The curve XK over K is hyperelliptic [i.e., of gonality 2].

(b) The curve XK over K is of gonality > p.

(c) Every Weierstrass point of XK is K-rational.

Then x ∈ Jcl
K

is K-rational. In other words, there is no ramified torsion point on
XK.

Note that Theorem C yields some conditional results of the above conjecture of Cole-
man. Indeed, by, for instance, Theorem C in the case where the condition (a) is satisfied,
we conclude that the conjecture of Coleman holds if X is hyperelliptic and of genus ≥ p
[cf. also Remark 3.6.1].

The present paper is organized as follows: In §1, we consider the Galois representa-
tions associated to finite flat commutative group schemes. In particular, we discuss the
relationship between the level of a finite flat commutative group scheme over W [cf. Def-
inition 1.2, (i)] and the ramification of the Galois representation associated to the finite
flat commutative group scheme [cf. Proposition 1.8, Lemma 1.9]. In §2, we consider a
Galois module of type S [cf. Definition 2.3, (i)], i.e., a ΓK-module which is isomorphic
to a finite ΓK-submodule of the ΓK-module obtained by considering torsion points of an
abelian variety with semistable model over W . In particular, we prove the triviality of
the Galois action on a subquotient of a Galois module of type S which satisfies a tech-
nical condition [cf. Lemma 2.7]. In §3, we prove the main result of the present paper
[cf. Theorem 3.4], which is closely related to the above conjecture due to Coleman [cf.
Remark 3.4.1]. Moreover, by means of the main result, we study the geometry of curves
which admit ramified torsion points [cf. Corollary 3.6, Corollary 3.8, Corollary 3.9].
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Remark 1.9.1, (ii), and a refinement of an earlier version of Corollary 3.9, (i) [i.e., the
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0. Notations and Conventions

Groups. — Let G be a group and S a set on which G acts. Then we shall write SG ⊆ S
for the subset of S of G-invariants, GS ⊆ G for the [necessarily normal and uniquely

determined] maximal subgroup of G which acts on S trivially, and G[S]
def
= G/GS. Thus,

the action of G on S factors through the natural surjection G � GS, and, moreover, the
resulting action of GS on S is faithful.

Modules. — Let M be a module, n ≥ 0 an integer, and l a prime number. Then we
shall write Aut(M) for the group of automorphisms of the module M , M [n] ⊆ M for
the submodule of M obtained by forming the kernel of the endomorphism of M given
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by multiplication by n, and Ml
def
=

⋃
i≥1 M [li] ⊆ M . If, moreover, M is finite, then we

shall write M 6=l ⊆M for the submodule of M generated by elements of the Ml′ ’s, where
l′ ranges over the prime numbers such that l′ 6= l. Thus, if M is finite, then we have a
natural decomposition M = Ml ⊕M 6=l.

Let G be a group and M a G-module. Then we shall say that an element x ∈M of M
is a weak G-invariant if, for every γ, δ ∈ G, the following holds: If (1−γ)2(δ ·x) = 0, then
(1− γ)(δ · x) = 0. [Thus, if x ∈M is a G-invariant, then x ∈M is a weak G-invariant.]

Varieties. — Let k be a field. Then we shall say that a scheme over k is a variety over
k if the scheme is separated and of finite type over k.

Let V be a variety over k and k an algebraic closure of k. Then we shall write Vk
def
=

V ×k k for the variety over k determined by V and V cl
k

for the set of closed points of Vk.

Thus, if k is perfect, then we have a natural bijection Vk(k)
∼→ V cl

k
, which thus determines

a natural action of Gal(k/k) on V cl
k

; moreover, the natural injection V (k) ↪→ Vk(k) from

the set V (k) of k-rational points of V determines a bijection V (k)
∼→ (V cl

k
)Gal(k/k).

Curves. — Let k be a field. Then we shall say that a scheme over k is a curve over k
if the scheme is of dimension one and, moreover, projective, smooth, and geometrically
connected over k. Thus, a curve over k is a variety over k.

Let C be a curve over k and g ≥ 0 an integer. We shall say that C is of genus g if
H1(C,OC) is of dimension g over k. We shall say that C is of gonality g if the minimum
among the degrees of finite morphisms from C to curves of genus zero over k is equal to
g.

Suppose that the curve C is of genus g ≥ 2, and that the field k is of characteristic
zero. Let k be an algebraic closure of k, c ∈ Ccl

k
, and n ≥ 0 an integer. We shall say

that the integer n is a Weierstrass non-gap at c ∈ Ccl
k

if there exists a section of OCk
on

Ck \ {c} of order −n at c [i.e., the integer n contains the Weierstrass monoid of Ck at
c ∈ Ccl

k
]. We shall say that c ∈ Ccl

k
is a Weierstrass point of Ck if there exists an integer

1 ≤ i ≤ g such that i is a Weierstrass non-gap at c ∈ Ccl
k
. Note that, as is well-known

[cf., e.g., [1], Chapter I, Exercises E-8, (ii), and E-9], if we write N for the number of
Weierstrass points of Ck, then it holds that 2g + 2 ≤ N ≤ g3 − g. We shall say that the
pair (C, c) is exceptional [cf. [13], Definition in the discussion entitled “Weierstrass points
on hyperelliptic curves”] if 2 is a Weierstrass non-gap at c ∈ Ccl

k
[i.e., Ck is hyperelliptic,

and the hyperelliptic involution of Ck is ramified at c ∈ Ccl
k
].

1. Level and Ramification of Finite Flat Commutative Group Schemes

In the present §1, we consider the Galois representations associated to finite flat com-
mutative group schemes. In particular, we discuss the relationship between the level of a
finite flat commutative group scheme [cf. Definition 1.2, (i), below] and the ramification
of the Galois representation associated to the finite flat commutative group scheme [cf.
Proposition 1.8, Lemma 1.9, below].

In the present §1, let p be an odd prime number and k an algebraically closed field

of characteristic p. Write W
def
= W (k) for the ring of Witt vectors with coefficients in k
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and K for the field of fractions of W . Let K be an algebraic closure of K and L ⊆ K

a(n) [possibly infinite] algebraic extension of K. Write ΓL
def
= Gal(K/L) for the absolute

Galois group of L determined by the algebraic closure K, v0 for the [uniquely determined]
p-adic valuation on K such that v0(p) = 1, and W ⊆ K, V ⊆ L for the rings of integers
of K, L, respectively.

DEFINITION 1.1.

(i) Let M be a V -module which is annihilated by a power of p. Then we shall write

lvV (M)
def
= v0(AnnV (M)).

(ii) Suppose that [L : K] <∞. Then we shall write

lvΩ(L/K)
def
= lvV (Ω1

V/W ).

Thus, it follows that
lvΩ(L/K) = v0(δL/K)

— where we write δL/K for the different of the finite extension L/K.

In the remainder of the present §1, let G be a finite flat commutative group scheme
over W which is annihilated by a power of p. Thus, we have an exact sequence of finite
flat commutative group schemes over W

0 −→ G◦ −→ G −→ Gét −→ 0

— where G◦ ⊆ G is connected, and Gét is étale over W . Write KG ⊆ K for the [necessarily
finite Galois] extension of K corresponding to the kernel of the natural action of ΓK on
G(K) — i.e., the finite Galois extension of K corresponding to the quotient ΓK �
ΓK [G(K)] — and WG ⊆ KG for the ring of integers of KG.

DEFINITION 1.2.

(i) We shall write

lv(G)
def
= lvW (G(K)⊗Zp W ) (∈ Z)

and refer to lv(G) as the level of G.

(ii) Let M be a W -module. Then we shall write

t∗G(M)
def
= (e∗GΩ1

G/W )⊗W M

— where we write eG for the identity section of G/W — and

tG(M)
def
= HomW (t∗G(W ),M).

We shall refer to t∗G(M) (respectively, tG(M)) as the M-valued cotangent (respectively,
tangent) space of G/W . Note that since G is étale over K, it follows that t∗G(M), hence
also tG(M), is annihilated by a power of p.

(iii) We shall write

lvΩ(G)
def
= lvW (t∗G(W )).
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(iv) Suppose that L is Galois over K, and that KG ⊆ L. [So G(W ) = G(V )]. Then
we shall define a homomorphism of W -modules

evL : G(W )⊗Zp W = G(V )⊗Zp W −→ tG(Ω1
V/W ⊗V W )

as follows [cf. [7], §4.7]: Let x ∈ G(V ) be a V -valued point of G. Then, by considering the
operation of restricting differential forms on G over W to x, we obtain a homomorphism
t∗G(W ) → Ω1

V/W , hence also a homomorphism of W -modules

ex : t∗G(W ) −→ Ω1
V/W ⊗V W.

Thus, the assignment “x 7→ ex” determines a map

G(V ) −→ tG(Ω1
V/W ⊗V W ).

Now since [one verifies easily that] this map is a homomorphism of Zp-modules, this map
determines the homomorphism evL as above.

REMARK 1.2.1. — Thus, it holds that t∗G ≤ lvΩ(G) and t∗G 6< lvΩ(G) [cf. [9], Definition
1.3, (ii)]. If, moreover, G is of p-rectangle-type [cf. [9], Definition 2.1, (ii)], then lv(G) of
Definition 1.2, (i), coincides with lv(G) of [9], Definition 2.1, (ii).

THEOREM 1.3 (Fontaine). — The following hold:

(i) The W -module Coker(evK) is annihilated by a power of p. Moreover, it holds
that

lvW (Coker(evK)) ≤ 1

p− 1
.

(ii) It holds that

lvΩ(KG/K) < lv(G) +
1

p− 1
.

Proof. — Assertion (i) follows from [7], Corollaire to Théorème 3. Assertion (ii) follows
from [8], Corollaire to Théorème A. �

PROPOSITION 1.4. — It holds that

lvΩ(G) ≤ lvΩ(KG/K) +
1

p− 1
.

Proof. — Let us first observe that we have a commutative diagram of W -modules

G(KG)⊗Zp W G(W )⊗Zp W

evKG

y evK

y
tG(Ω1

WG/W ⊗WG
W ) −−−→ tG(Ω1

W/W
)

— where the lower horizontal arrow is injective [cf., e.g., [7], Lemma 4]. Thus, it follows
from Theorem 1.3, (i), that

lvW

(
Coker

(
tG(Ω1

WG/W ⊗WG
W ) ↪→ tG(Ω1

W/W
)
))

≤ 1

p− 1
.
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In particular, we conclude that

lvW (tG(Ω1
W/W

)) ≤ lvΩ(KG/K) +
1

p− 1
.

Finally, let us observe that it follows immediately from [7], Corollaire 1, (1), that

lvW (tG(Ω1
W/W

)) = lvΩ(G).

This completes the proof of Proposition 1.4. �

THEOREM 1.5 (Raynaud). — Every homomorphism over K between the generic fibers
[i.e., the results of base-changing via W ↪→ K] of finite flat commutative group schemes
over W uniquely extends to a homomorphism between the original finite flat commuta-
tive group schemes over W . Moreover, the kernel of the resulting homomorphism between
the original finite flat commutative group schemes over W is flat over W .

Proof. — This follows from [11], Corollaire 3.3.6, (1). �

LEMMA 1.6. — Let n ≥ 0 be an integer. Write G[pn] ⊆ G for the finite flat commutative
group scheme over W obtained by forming the kernel of the endomorphism of G given by
multiplication by pn [cf. Theorem 1.5]. Then the exact sequence of finite flat commutative
group schemes over W

0 −→ G[pn] −→ G −→ G/G[pn] −→ 0

determines a commutative diagram of W -modules

0 −−−→ t∗G/G[pn](W ) −−−→ t∗G(W ) −−−→ t∗G[pn](W ) −−−→ 0

o
y ∥∥∥ o

y
0 −−−→ pn · t∗G(W ) −−−→ t∗G(W ) −−−→ t∗G(W )⊗W W/pn −−−→ 0

— where the horizontal sequences are exact, and the vertical arrows are isomorphisms.

Proof. — Let us observe that one verifies immediately that the exact sequence of finite
flat commutative group schemes over W

0 −→ G[pn] −→ G
pn

−→ G

determines an exact sequence

t∗G(W )
pn

−→ t∗G(W ) −→ t∗G[pn](W ) −→ 0,

which thus determines an isomorphism

t∗G(W )⊗W W/pn ∼−→ t∗G[pn](W ).

Thus, Lemma 1.6 follows from [9], Lemma 1.6. This completes the proof of Lemma 1.6.
�

PROPOSITION 1.7. — It holds that

lvΩ(G) = lv(G◦).
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Proof. — Write n
def
= lv(G◦). Then it follows from a similar conclusion to the conclusion

“t∗G ≤ lv(G)” of [9], Lemma 2.3 [cf. also Remark 1.2.1 of the present paper], that, to verify
Proposition 1.7, it suffices to verify that pn−1 · t∗G(W ) 6= {0}. To this end, assume that
pn−1 · t∗G(W ) = {0}. Then it follows from Lemma 1.6 that t∗G/G[pn−1](W ) = {0}, which

thus implies that G/G[pn−1] is étale over W . Thus, the composite G◦ ↪→ G � G/G[pn−1]
is trivial, i.e., G◦ ⊆ G[pn−1] — which contradicts our assumption that lv(G◦) = n. This
completes the proof of Proposition 1.7. �

PROPOSITION 1.8. — It holds that

lv(G◦)− 1

p− 1
≤ lvΩ(KG/K) < lv(G) +

1

p− 1
.

Proof. — This follows from Theorem 1.3, (ii); Proposition 1.4, together with Proposi-
tion 1.7. �

The following result is the main result of the present §1:

LEMMA 1.9. — Let H be a finite flat commutative group scheme over W . Suppose that
KH ⊆ KG [cf. the notation introduced in the discussion preceding Definition 1.2]. Then
it holds that

lv(H◦) ≤ lv(G).

Proof. — It follows from Proposition 1.8, together with our assumption, that

lv(H◦)− 1

p− 1
≤ lvΩ(KH/K) ≤ lvΩ(KG/K) < lv(G) +

1

p− 1
.

Thus, since [we have assumed that] p ≥ 3, it holds that lv(H◦) ≤ lv(G). This completes
the proof of Lemma 1.9. �

REMARK 1.9.1.

(i) One verifies immediately that even if p = 2, one may apply the various arguments
given in the present §1. In particular, even if p = 2, one may prove Proposition 1.8, as
well as a similar assertion to Lemma 1.9 [i.e., the assertion obtained by replacing the
“lv(G)” of the display of Lemma 1.9 by “lv(G) + 1”]. We leave the routine details to the
interested reader.

(ii) One verifies immediately from Theorem 1.5 that the exact sequence 0 → G◦(K) →
G(K) → Gét(K) → 0 of [not ΓK-modules but abstract] modules is split. One also verifies
immediately that the action of ΓKG◦ (⊇ ΓKG

) on G(K) determines and is determined by

a homomorphism ΓKG◦ → HomZp(G
ét(K), G◦(K)). By means of these observations, one

verifies easily that one may replace the respective “lv(G)” of the right-hand sides of the
displays of Proposition 1.8 and Lemma 1.9 by “lv(G◦)”. We leave the routine details to
the interested reader.

(iii) Let us recall that we have worked in a situation of absolute ramification index
one, i.e., a situation where the base discrete valuation field is of absolute ramification
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index one. Now let us observe that Theorem 1.5 may be applied in a situation of absolute
ramification index < p − 1 [cf. [11], Corollaire 3.3.6, (1)]. In particular, even if we are
in a situation of absolute ramification index < p − 1, one may obtain a similar result to
Proposition 1.8, as well as a similar result to Lemma 1.9. We leave the routine details to
the interested reader.

2. Galois Modules of Type S

In the present §2, we consider a Galois module of type S [cf. Definition 2.3, (i), below],
i.e., a ΓK-module which is isomorphic to a finite ΓK-submodule of the ΓK-module obtained
by considering torsion points of an abelian variety with semistable model over W . In
particular, we prove the triviality of the Galois action on a subquotient of a Galois module
of type S which satisfies a technical condition [cf. Lemma 2.7 below].

In the present §2, we maintain the notation introduced at the beginning of §1. Write,
moreover, Ktm ⊆ K for the maximal tamely ramified extension of K in K.

LEMMA 2.1. — Let M be a finite module, Γ ⊆ Aut(M) a subgroup of Aut(M), and
x ∈ M an element of M . Write x = xp + x 6=p for the representation of x ∈ M with
respect to the natural direct decomposition M = Mp⊕M 6=p and Sx ⊆M for the subset of
M consisting of the elements y ∈M which satisfy one of the following three conditions:

(1) There exist elements γ1, γ2 ∈ Γ of Γ and an integer i ≥ 0 such that y = pi(γ1 −
γ2)x ∈M .

(2) There exist elements γ1, γ2 ∈ Γ of Γ and an integer i ≥ 0 such that y = pi(γ1 −
γ2)xp ∈M .

(3) There exist elements γ1, γ2, γ3, γ4 ∈ Γ of Γ and an integer i ≥ 0 such that
y = pi(γ1 − γ2)(γ3 − γ4)x ∈M .

Note that one verifies immediately that the subset Sx ⊆M , hence also the subset Sx[p]
def
=

Sx ∩M [p], of M is stable under the action of Γ on M . Suppose that the following two
conditions are satisfied:

(a) The element x ∈M is a weak Γ-invariant.

(b) For every γ ∈ Γ, it holds that (1− γ)2M 6=p = {0}.
Then the following hold:

(i) It holds that xp ∈MΓSx[p]
.

(ii) Suppose, moreover, that the following condition is satisfied:

(c) The Γ-module M is generated by x ∈M .

Then it holds that ΓSx[p] = {1}.

Proof. — To verify assertion (i), assume that xp 6∈ MΓSx[p]
. Write n for the smallest

[necessarily positive] integer such that pnxp ∈MΓSx[p]
. Now since pn−1xp 6∈MΓSx[p]

, there
exists a(n) [necessarily nontrivial] element γ ∈ ΓSx[p] of ΓSx[p] such that pn−1(1−γ)xp 6= 0.
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For 1 ≤ i ≤ n, write

yi
def
= pn−i(1− γpi−1

)xp ∈ M.

Now I claim that the following assertion holds:

Claim 2.1.A: It holds that y1 ∈ Sx[p] \ {0}.

Indeed, the fact that y1 (= pn−1(1− γ)xp) 6= 0 has already been verified. It follows from

(2), together with the definition of yi, that yi ∈ Sx. Moreover, since pnxp ∈ MΓSx[p]
, and

γ ∈ ΓSx[p], it holds that py1 = pn(1− γ)xp = 0, i.e., that y1 ∈ M [p]. This completes the
proof of Claim 2.1.A.

Next, I claim that the following assertion holds:

Claim 2.1.B: It holds that yi = y1 for every 1 ≤ i ≤ n.

We prove Claim 2.1.B by induction on i. Suppose that, for 1 ≤ i ≤ n − 1, it holds that
yi = y1. Then it follows from Claim 2.1.A, together with the induction hypothesis, that
p2 · pn−i−1(1− γpi−1

)xp = pyi = py1 = 0, which thus implies that p · pn−i−1(1− γpi−1
)xp ∈

Sx[p] [cf. (2)]. In particular, since γ ∈ ΓSx[p], it holds that

(∗) p · pn−i−1(1− γpi−1

)2xp = 0.

Thus, since (1− γpi−1
)2x 6=p = 0 [cf. (b)], it holds that p · pn−i−1(1− γpi−1

)2x = 0, which

thus implies that pn−i−1(1− γpi−1
)2xp = pn−i−1(1− γpi−1

)2x ∈ Sx[p] [cf. (3)]. Thus, since
γ ∈ ΓSx[p], it holds that

(∗∗) pn−i−1(1− γpi−1

)3xp = 0.

It follows from (∗), (∗∗), together with Lemma 2.2 below, that

(1− (γpi−1

)p)pn−i−1xp = p(1− γpi−1

)pn−i−1xp,

i.e., that yi+1 = yi, as desired. This completes the proof of Claim 2.1.B.
Next, let us observe that it follows from Claim 2.1.A and Claim 2.1.B that

(1− γpn−1

)xp = yn = y1 ∈ Sx[p] \ {0}.
Thus, since γpn−1 ∈ ΓSx[p], and (1− γpn−1

)2x 6=p = 0 [cf. (b)], it holds that

(1− γpn−1

)2x = (1− γpn−1

)2xp = (1− γpn−1

)yn = 0,

which thus implies [cf. (a)] that (1− γpn−1
)x = 0. In particular, we conclude that

yn = (1− γpn−1

)xp = 0

— which contradicts Claim 2.1.A and Claim 2.1.B. This completes the proof of assertion
(i).

Finally, we verify assertion (ii). Let γ ∈ ΓSx[p] be an element of ΓSx[p]. Then since

xp ∈ MΓSx[p]
[cf. assertion (i)], and ΓSx[p] ⊆ Γ is normal, it holds that δ · xp ∈ MΓSx[p]

for every δ ∈ Γ. Thus, it holds that (1− γ)(δ · x) = (1− γ)(δ · x 6=p), which thus implies
that (1− γ)2(δ · x) = (1− γ)2(δ · x 6=p) = 0 [cf. (b)]. In particular, it follows from (a) that
(1 − γ)(δ · x) = 0. Thus, it follows from (c) that the action of γ on M is trivial. This
completes the proof of assertion (ii), hence also of Lemma 2.1. �
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LEMMA 2.2. — In the ring Z[T ] of polynomials in T with coefficients in Z, the congruence

1− T p ≡ p(1− T ) mod (p(1− T )2, (1− T )3)

holds.

Proof. — By “mod (1− T )3”, we obtain that

1− T p = 1− (1− (1− T ))p ≡ 1− (1− p(1− T ) + p(p− 1)(1− T )2/2)

= p(1− T )− p(p− 1)(1− T )2/2.

Thus, since [we have assumed that] p 6= 2, Lemma 2.2 holds. This completes the proof
of Lemma 2.2. �

DEFINITION 2.3. — Let M be a finite module equipped with an action of ΓK .

(i) We shall say that the ΓK-module M is of type G (respectively, of type S) if there
exist an abelian variety A over K which has good (respectively, semistable) reduction
over W and a ΓK-equivariant injection M ↪→ A(K).

(ii) We shall say that a ΓK-submodule N ⊆M of M is a G-part of M if the following
three conditions are satisfied:

(1) The ΓK-module N is of type G [which thus implies that the action of ΓK on
N 6=p is trivial — cf. Remark 2.3.1, (i), (ii), below].

(2) The action of ΓK on M/N is trivial.

(3) The action of ΓK on every nontrivial ΓK-stable subquotient of Np is nontrivial
[cf. Lemma 2.4, (ii), below].

(iii) We shall say that the action of ΓK on M is tame if the [necessarily finite] quotient
ΓK [M ] of ΓK is of order prime to p, i.e., the natural surjection ΓK � ΓK [M ] factors
through the quotient of ΓK corresponding to the Galois extension Ktm (⊆ K) of K.

REMARK 2.3.1.

(i) One verifies immediately from the various definitions involved that a ΓK-module
obtained by forming a subquotient of a finite ΓK-module of type G (respectively, of type
S) is of type G (respectively, of type S).

(ii) Let M be a finite ΓK-module of type G such that M = M 6=p. Then one verifies
immediately that the action of ΓK on M is trivial [cf., e.g., Lemma 2.4, (i), below].

(iii) It is well-known [cf., e.g., [10], Appendix A, Theorem A.6] that, for a finite ΓK-
module M , it holds that M is of type G if and only if there exist a finite flat commutative
group scheme G over W and a ΓK-equivariant isomorphism M

∼→ G(K).

LEMMA 2.4. — Let M be a finite ΓK-module of type G. Thus, by Remark 2.3.1, (iii),
there exist a finite flat commutative group scheme G over W and a ΓK-equivariant iso-
morphism M

∼→ G(K). Then the following hold:
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(i) The action of ΓK on M is trivial if and only if G is étale over W .

(ii) The action of ΓK on every nontrivial ΓK-stable subquotient of M is nontrivial if
and only if G is connected.

Proof. — These assertions follow immediately from Theorem 1.5. �

Now let us recall the following well-known lemma:

PROPOSITION 2.5. — Let M be a finite ΓK-module of type S. Then the following hold:

(i) The ΓK-module M has a G-part.

(ii) If M = M 6=p, then the action of ΓK on M is tame.

Proof. — Assertion (ii) follows immediately from assertion (i), together with conditions
(1) and (2) of Definition 2.3, (ii). Thus, to complete the verification of Proposition 2.5,
it suffices to verify assertion (i). On the other hand, assertion (i) follows from basic facts
concerning Galois actions on torsion points of semi-abelian schemes [cf., e.g., [6], Chapter
III, or [10], Appendix C, the discussion entitled “The Raynaud group”] as follows.

To verify assertion (i), let us first review some consequences of the discussions of [6],
Chapter III. Let A be an abelian variety over K which has semistable reduction over
W and n an integer such that M ⊆ A(K)[n]. Write AD for the dual abelian variety of
A. Then it follows from the discussions of [6], Chapter III, that there exist semi-abelian

schemes Ã, ÃD over W ; abelian schemes B, BD over W ; split tori T , TD over W ; free
Z/n-modules P , PD of finite rank equipped with the trivial actions of ΓK which satisfy
the following three conditions:

(a) The semi-abelian scheme Ã (respectively, ÃD) is an extension of B (respectively,
BD) by T (respectively, TD). In particular, we have exact sequences of ΓK-modules

0 −→ T (K)[n] −→ Ã(K)[n] −→ B(K)[n] −→ 0,

0 −→ TD(K)[n] −→ ÃD(K)[n] −→ BD(K)[n] −→ 0.

(b) The ΓK-modules of n-torsion points of A, Ã, AD, ÃD fit into exact sequences of
ΓK-modules

0 −→ Ã(K)[n] −→ A(K)[n] −→ P −→ 0,

0 −→ ÃD(K)[n] −→ AD(K)[n] −→ PD −→ 0.

(c) The natural pairing A(K)[n]×AD(K)[n] → µn(K) — where we write µn(K) ⊆ K
×

for the group of n-th roots of unity in K — determines a ΓK-equivariant isomorphism
[cf. [6], Chapter III, Corollary 7.4]

A(K)[n]/T (K)[n]
∼−→ HomZ(ÃD(K)[n],µn(K)).

Moreover, by (a), the quasi-finite flat commutative group schemes G
def
= Ã[n], ÃD[n] over

W obtained by forming the respective kernels of the endomorphisms of Ã, ÃD given by
multiplication by n is in fact finite over W . Thus, it follows from Remark 2.3.1, (iii), that
the following holds:
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(d) The finite ΓK-modules Ã(K)[n], ÃD(K)[n] are of type G. In particular, by (c), the
finite ΓK-module A(K)[n]/T (K)[n] is of type G.

If M = M 6=p, then it follows immediately — in light of Remark 2.3.1, (ii) — from (d),
together with the various definitions involved, that the ΓK-submodule of M determined
by T (K)[n] ⊆ A(K)[n] in the above discussion is a G-part. Thus, to complete the
verification of assertion (i), we may assume without loss of generality that M = Mp, and
that n is a power of p.

Since G = Ã[n] is a finite flat commutative group scheme over W [cf. the discussion
preceding (d)], we have an exact sequence of finite flat commutative group schemes over
W

0 −→ G◦ −→ G −→ Gét −→ 0

— where G◦ ⊆ G is connected, and Gét is étale over W . Now I claim that the following
assertion holds:

Claim 2.5.A: The finite ΓK-module A(K)[n]/G◦(K) is of type G.

Indeed, by (d), to verify Claim 2.5.A, it suffices to verify that the inclusion T (K)[n] ⊆
G◦(K) holds. On the other hand, this follows from the [easily verified] fact that the action
of ΓK on every nontrivial ΓK-stable subquotient of T (K)[n] is nontrivial. This completes
the proof of Claim 2.5.A.

Next, I claim that the following assertion holds:

Claim 2.5.B: The ΓK-submodule N ⊆ M of M determined by G◦(K) ⊆
A(K) is a G-part.

Indeed, it follows from the various definitions involved, together with Lemma 2.4, (ii),
that N satisfies conditions (1) and (3) of Definition 2.3, (ii). Next, to verify the assertion
that N satisfies condition (2) of Definition 2.3, (ii), let us consider the following exact
sequence of ΓK-modules [which arises from the first exact sequence of (b)]

0 −→ Gét(K) −→ A(K)[n]/G◦(K) −→ P −→ 0.

Since the actions of ΓK on Gét(K) and P are trivial, it follows immediately from Claim
2.5.A [cf. also Remark 2.3.1, (iii)] that the action of ΓK on A(K)[n]/G◦(K) is trivial.
Thus, since M/N is a ΓK-submodule of A(K)[n]/G◦(K), it follows that N satisfies con-
dition (2) of Definition 2.3, (ii). This completes the proof of Claim 2.5.B, hence also of
assertion (i). �

LEMMA 2.6. — Let M be a finite ΓK-module of type S. Suppose that there exists a weak
ΓK-invariant x ∈M of M such that the ΓK-module M is generated by x ∈M . Then
there exists a ΓK-submodule N ⊆M of M which satisfies the following two conditions:

(1) The ΓK-module N is of type G and annihilated by p.

(2) The natural surjection ΓK [M ] � ΓK [N ] is an isomorphism.

Proof. — Let F ⊆M be a G-part of M [cf. Proposition 2.5, (i)]. Write Sx[p] ⊆M for
the “Sx[p]” of Lemma 2.1 in the case where we take the “(M,Γ, x)” of Lemma 2.1 to be
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(M,ΓK [M ], x). Then it follows from condition (2) of Definition 2.3, (ii), together with the
definition of Sx, that Sx[p] ⊆ F [p]. Write N ⊆ (F [p] ⊆) M for the ΓK-submodule of M
generated by Sx[p]. Then it follows immediately from condition (1) of Definition 2.3, (ii),
that N satisfies condition (1) of Lemma 2.6. Moreover, since [it follows from conditions
(1) and (2) of Definition 2.3, (ii) that] (b) of Lemma 2.1 [in the case where we take the
“(M,Γ, x)” of Lemma 2.1 to be (M,ΓK [M ], x)] holds, it follows from Lemma 2.1, (ii),
that N satisfies condition (2) of Lemma 2.6. This completes the proof of Lemma 2.6. �

The following result is the main result of the present §2:

LEMMA 2.7. — Let M be a finite ΓK-module of type S. Suppose that there exists a
weak ΓK-invariant of M which generates the ΓK-module M . Then the action of ΓK

on p ·Mp is trivial.

Proof. — Let F ⊆ M be a G-part of M [cf. Proposition 2.5, (i)] and N ⊆ M a ΓK-
submodule of M which satisfies two conditions (1), (2) of Lemma 2.6. Then let us observe
that since Fp ⊆M , it follows from condition (2) of Lemma 2.6 that the natural surjection
ΓK � ΓK [Fp] factors through ΓK � ΓK [N ]. Thus, since both Fp and N are of type G,
it follows — in light of Remark 2.3.1, (iii), and Lemma 2.4, (ii) — from Lemma 1.9,
together with the fact that p ·N = {0} [cf. condition (1) of Lemma 2.6], that p ·Fp = {0}.
In particular, it follows from condition (2) of Definition 2.3, (ii), that the action of ΓK

on p ·Mp is trivial. This completes the proof of Lemma 2.7. �

3. Ramified Torsion Points on Curves

In the present §3, we prove the main result of the present paper [cf. Theorem 3.4
below], which is closely related to a conjecture due to R. Coleman concerning the ramifi-
cation of torsion points [cf. Remark 3.4.1 below]. Moreover, by means of the main result,
we study the geometry of curves which admit ramified torsion points [cf. Corollary 3.6,
Corollary 3.8, Corollary 3.9 below].

In the present §3, we maintain the notation of §2. Let g ≥ 2 be an integer and X a
curve of genus g over K which has stable reduction over W . Write J for the Jacobian
variety of X.

Let us first recall the following well-known result:

PROPOSITION 3.1. — The abelian variety J over K has semistable reduction over
W . Moreover, it holds that the abelian variety J over K has good reduction over W if
and only if the dual graph of the special fiber of the stable model of X over W is a tree.

Proof. — This follows from, for instance, [3], §9.2, Example 8, and [3], §9.7, Corollary
2. �

DEFINITION 3.2. — Let x ∈ Xcl
K

be a closed point of XK . Then we shall write ϕx : Xcl
K
↪→

Jcl
K

for the injection between the sets of closed points determined by the Albanese em-

bedding of X with respect to x ∈ Xcl
K

.
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LEMMA 3.3. — Let x0 ∈ X(K) be a K-rational point of X and x ∈ Xcl
K

a closed point

of XK. Suppose that ϕx0(x) ∈ Jcl
K

is torsion. Write M ⊆ Jcl
K

for the [necessarily finite]

ΓK-submodule of Jcl
K

generated by ϕx0(x) ∈ Jcl
K
. Then the following hold:

(i) The ΓK-module M is of type S. If, moreover, the abelian variety J over K has
good reduction over W , then the ΓK-module M is of type G.

(ii) If (X, x) is not exceptional, then the element ϕx0(x) ∈ M is a weak ΓK-
invariant.

(iii) The action of ΓK on p ·Mp is trivial.

Proof. — Assertion (i) follows from Proposition 3.1, together with the various defini-
tions involved. Next, we verify assertion (ii). Let γ, δ ∈ ΓK be such that (1−γ)2δ·ϕx0(x) =
0. Then since x0 is K-rational, our assumption (1 − γ)2δ · ϕx0(x) = 0 implies that
[δ · x] + [γ2 · δ · x] = 2[γ · δ · x], where we write “[−]” for the prime divisor determined by
“(−)”. In particular, since (X, x), hence also (X, δ · x), is not exceptional, it holds that
δ · x = γ · δ · x, i.e., that (1− γ)δ · ϕx0(x) = 0. This completes the proof of assertion (ii).

Finally, we verify assertion (iii). If (X, x) is not exceptional, then assertion (iii) follows
from Lemma 2.7, together with assertions (i), (ii). If (X, x) is exceptional, then it follows
from [13], Proposition 3.1, (i), that the action of ΓK on 2 ·M is trivial. Thus, the action
of ΓK on Mp ⊆ 2 ·M , hence also on p ·Mp, is trivial. This completes the proof of assertion
(iii), hence also of Lemma 3.3. �

The following result is the main result of the present paper:

THEOREM 3.4. — In the notation introduced at the beginning of §3, let x0 ∈ X(K) be a
K-rational point of X and x ∈ Xcl

K
a closed point of XK. Suppose that ϕx0(x) ∈ Jcl

K
is

torsion. Then the following hold:

(i) The residue field of J at p · ϕx0(x) ∈ Jcl
K

is at most tamely ramified over K.

(ii) Suppose, moreover, that one of the following two conditions is satisfied:

(a) There exists an integer n ≥ 1 such that pn · ϕx0(x) ∈ Jcl
K

is K-rational.

(b) The abelian variety J over K has good reduction over W [cf. Proposition 3.1].

Then p · ϕx0(x) ∈ Jcl
K

is K-rational.

Proof. — Assertion (i) follows immediately from Lemma 3.3, (i), (iii), together with
Proposition 2.5, (ii). Assertion (ii) in the case where the condition (a) is satisfied follows
immediately from Lemma 3.3, (iii). Assertion (ii) in the case where the condition (b) is
satisfied follows immediately from Lemma 3.3, (i), (iii), together with Remark 2.3.1, (ii).
This completes the proof of Theorem 3.4. �

REMARK 3.4.1.

(i) R. Coleman stated, in [4], a conjecture concerning the ramification of torsion points
on a curve which satisfies certain conditions. Let us recall the statement of [a slightly
stronger version of] the conjecture as follows [cf. [4], Conjecture B]:
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In the notation introduced at the beginning of §3, let x0 ∈ X(K) be
a K-rational point of X and x ∈ Xcl

K
a closed point of XK . Suppose

that ϕx0(x) ∈ Jcl
K

is torsion. Suppose, moreover, that the following two
conditions are satisfied:

(1) It holds that p ≥ 5.

(2) The curve X, hence also the abelian variety J , over K has good
reduction over W .

Then ϕx0(x) ∈ Jcl
K

is K-rational.

As we discussed in Introduction of the present paper, Coleman himself proved the con-
jecture in the case where the given curve X satisfies a further assumption.

(ii) Observe that we conclude from Theorem 3.4 that, in the situation of the conjecture
of (i), it holds that

at least p · ϕx0(x) ∈ Jcl
K

is K-rational

[cf. Theorem 3.4, (ii), in the case where the condition (b) is satisfied]. Unfortunately,
however, at the time of this writing, the author cannot derive a solution of the conjecture
of (i) from Theorem 3.4.

REMARK 3.4.2. — Note that the proof of the main result of the present paper may be
regarded as a refinement [in the absolutely unramified case] of an argument of [12] given
by D. Rössler.

DEFINITION 3.5.

(i) We shall say that a closed point x ∈ Xcl
K

of XK is a ramified torsion point

(respectively, wildly ramified torsion point) if the closed point x ∈ Xcl
K

is not K-rational

(respectively, not Ktm-rational), and, moreover, there exists a K-rational point x0 ∈
X(K) of X such that ϕx0(x) ∈ Jcl

K
is torsion.

(ii) We shall refer to an equivalence class with respect to the following equivalence
relation “∼” on Xcl

K
as a torsion packet on X: For x, y ∈ Xcl

K
, write x ∼ y if ϕx(y)

(= −ϕy(x)) ∈ Jcl
K

is torsion.

(iii) We shall say that a torsion packet is a ramified torsion packet (respectively,
wildly ramified torsion packet) if the torsion packet contains a ramified (respectively,
wildly ramified) torsion point.

REMARK 3.5.1. — Thus, the conjecture of Coleman discussed in Remark 3.4.1, (i), is
equivalent to the following assertion:

In the notation introduced at the beginning of §3, suppose that the fol-
lowing two conditions are satisfied:

(1) It holds that p ≥ 5.
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(2) The curve X, hence also the abelian variety J , over K has good
reduction over W .

Then there is no ramified torsion point [cf. Definition 3.5, (i)] on XK , or,
equivalently, there is no ramified torsion packet [cf. Definition 3.5, (iii)] on
X.

COROLLARY 3.6. — In the notation introduced at the beginning of §3, let x ∈ Xcl
K

be
a ramified torsion point on XK. Suppose that one of the following two conditions is
satisfied:

(1) The abelian variety J over K has good reduction over W .

(2) The closed point x ∈ Xcl
K

is a wildly ramified torsion point.

Then the following hold:

(i) Suppose that condition (1) (respectively, (2)) is satisfied. Let γ be an element of
ΓK (respectively, of the uniquely determined p-Sylow subgroup of ΓK). Then it holds that
p · ϕγ·x(x) = 0.

(ii) The prime number p is a Weierstrass non-gap at x ∈ Xcl
K
. In particular, if

g ≥ p, then x ∈ Xcl
K

is a Weierstrass point of XK.

(iii) There is a finite morphism XK → P1
K

of degree p over K which is totally

ramified at x ∈ Xcl
K
. In particular, the curve XK over K is of gonality ≤ p.

(iv) If g ≥ p, then the curve XK over K is not hyperelliptic.

Proof. — First, we verify assertion (i). It follows immediately from the various defini-
tions involved that there exists a K-rational point x0 ∈ X(K) of X such that ϕx0(x) ∈ Jcl

K
is torsion. Thus, since [one verifies immediately that] (1− γ)ϕx0(x) = ϕγ·x(x), assertion
(i) follows from Theorem 3.4. This completes the proof of assertion (i).

Next, we verify assertion (ii). Suppose that condition (1) (respectively, (2)) is satisfied.
Then it follows immediately from the various definitions involved that there exists an
element γ of ΓK (respectively, of the uniquely determined p-Sylow subgroup of ΓK) such
that ϕγ·x(x) 6= 0, which thus implies [cf. assertion (i)] that ϕγ·x(x) is of order p. Thus,
we conclude immediately from the various definitions involved that p is a Weierstrass
non-gap at x ∈ Xcl

K
. This completes the proof of assertion (ii). Assertion (iii) follows

immediately from assertion (ii).
Finally, we verify assertion (iv). It follows from assertion (iii) that there exists a finite

morphism XK → P1
K

of degree p over K. Thus, since [we have assumed that] g ≥ p ≥ 3,

it follows from Lemma 3.7, (i), below that there is no finite morphism XK → P1
K

of degree

2 over K. This completes the proof of assertion (iv), hence also of Corollary 3.6. �

REMARK 3.6.1. — Note that, in Corollary 3.6, (iv), one cannot remove the hypothesis
“g ≥ p”. Indeed, if p = 3, then the hyperelliptic modular curve “X1(13)” [of genus 2]
over K has good reduction over W and admits a ramified torsion point [cf. [2], Appendix,
the discussion following Conjecture 6.4].
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LEMMA 3.7. — Let d ≥ 1 be an integer and φ, ψ : XK → P1
K

finite morphisms over K.
Suppose that φ is of degree p, that ψ is of degree d, and that g > (p−1)(d−1). Then
the following hold:

(i) It holds that d ∈ pZ, which thus implies that d ≥ p.

(ii) Suppose that d = p. Then the invertible sheaf φ∗OP1
K
(1) on XK is isomorphic to

the invertible sheaf ψ∗OP1
K
(1) on XK.

Proof. — These assertions follow immediately from the Castelnuovo-Severi inequality
[cf., e.g., [1], Chapter VIII, Exercise C-1]. �

COROLLARY 3.8. — In the situation of Corollary 3.6, suppose, moreover, that g >
(p− 1)2. Then the following hold:

(i) The curve XK over K is of gonality p.

(ii) Let φ : XK → P1
K

be a finite morphism of degree p over K [cf. (i)]. Then φ is

totally ramified at x ∈ Xcl
K
.

(iii) If condition (1) (respectively, (2)) in the statement of Corollary 3.6 is satisfied,
then the curve X has exactly one ramified (respectively, wildly ramified) torsion
packet.

Proof. — Assertion (i) (respectively, (ii)) follows immediately from Corollary 3.6, (iii),
together with Lemma 3.7, (i) (respectively, (ii)). Assertion (iii) follows immediately from
assertions (i), (ii). This completes the proof of Corollary 3.8. �

COROLLARY 3.9. — In the situation of Corollary 3.6, let us suppose that condition (1)
(respectively, (2)) in the statement of Corollary 3.6 is satisfied. Write dx (> 1) for the
extension degree over K of the residue field of X at x ∈ Xcl

K
, dx,p for the “p-part” of dx,

i.e., dx,p
def
= ](Zp/dx), and Dx

def
= dx (respectively,

def
= dx,p). Then the following hold:

(i) It holds that Dx ≤ g(p− 1)2.

(ii) Suppose, moreover, that g > (p − 1)2. If condition (1) (respectively, (2)) in
the statement of Corollary 3.6 is satisfied, then the number of ramified (respectively,
wildly ramified) torsion points on XK is ≤ 2 + 2g/(p− 1). In particular, it holds that
Dx ≤ 2 + 2g/(p− 1).

Proof. — First, we verify assertion (i). Write (x ∈) {x1, x2, . . . , xDx} ⊆ Xcl
K

for the

orbit of x ∈ Xcl
K

by the action of ΓK (respectively, the uniquely determined p-Sylow
subgroup of ΓK). Then it follows from Corollary 3.6, (i), that, for every i ∈ {2, . . . , Dx},
it holds that ϕx1(xi) ∈ Jcl

K
is of order p, which thus implies that (1−p) ·ϕx1(xi) = ϕx1(xi).

In particular, we conclude that

{ϕx1(x1), ϕx1(x2), . . . , ϕx1(xDx)} ⊆ ϕx1(X) ∩ (1− p) · ϕx1(X).

Thus, it follows from [5], Lemma 4.1, that Dx ≤ g(1 − p)2. This completes the proof of
assertion (i).
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Next, we verify assertion (ii). If condition (1) (respectively, (2)) in the statement of
Corollary 3.6 is satisfied, then write N for the number of ramified (respectively, wildly
ramified) torsion points on XK . Let φ : XK → P1

K
be a finite morphism of degree p

over K [cf. Corollary 3.8, (i)]. Then, by applying Corollary 3.8, (ii), and the Riemann-
Hurwitz formula to φ, we conclude that 2g − 2 ≥ −2p + (p − 1)N , which thus implies
that N ≤ 2 + 2g/(p− 1). This completes the proof of Corollary 3.9. �
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Invent. Math. 65 (1981/82), no. 3, 379–409.
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