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ON ANABELIAN PROPERTIES OF THE MODULI SPACES OF
CURVES OF GENUS TWO

NAOTAKE TAKAO

Abstract. In this paper, we study the higher dimensional anabelian ge-
ometry. In particular, we show the “relative isomorphism version” of the
Grothendieck conjecture for some finite étale coverings of the moduli stacks of
curves of genus two in characteristic 0. The key point of the proof is to prove

the Grothendieck conjecture for the configuration space of a hyperbolic curve
over a hyperbolic polycurve under some conditions.

1. Introduction

Let k be a field and X and Y connected schemes/stacks over Spec(k). For k, X
and Y , we consider the following two conditions

(rel-Isom-GC) Isomk(X,Y ) ∼→ IsomGk
(π1(X), π1(Y )) /Inn

(
π1(X ⊗k k̄)

)
,

(rel-Hom-GC) Homdom
k (X,Y ) ∼→ Homopen

Gk
(π1(X), π1(Y )) /Inn

(
π1(X ⊗k k̄)

)
.

Here GK stands for the absolute Galois group of K for a field K and a separable
closure K̄ of K, π1(U) stands for the étale fundamental group of U for a connected
scheme U and a geometric point of U , Homdom

K (U, V ) stands for the set of all dom-
inant K-morphisms from U to V , and Homopen

GK
(π1(U), π1(V )) /Inn

(
π1(V ⊗K K̄)

)
stands for the set of all open continuous homomorphisms from π1(U) to π1(V ) over
GK , divided by the right action of π1(V ⊗K K̄) on π1(V ) by the conjugation, for
connected schemes U , V , a field K and a separable closure K̄ of K.

The definition of “anabelian” is not known yet. But, it is conjectured that
(rel-Hom-GC) holds if X and Y are “anabelian” schemes over Spec(k).

Conjecture 1.1. Let Mg,r be the moduli stack of (g, r)-curves in characteristic 0.
It is conjectured that Mg,r is “anabelian” if 2g − 2 + r > 0. In fact, Grothendieck
wrote in the letter to Faltings [G] as follows:

Finally, my attention has been lately more and more strongly attracted by the
moduli varieties (or better modular multiplicities) Mg,ν of algebraic curves. I am
rather convinced that these also may be approached as“ anabelian”, namely that
their relation with the fundamental group is just as tight as in the case of anabelian
curves.

Definition 1.2 ((non-trivial) hyperbolic curve and hyperbolic polycurve). [cf. [H],
Definition 2.1]

(1) Let S be a scheme and X a scheme over S. We call X → S a hyperbolic
curve of type (g, r) if and only if the following four conditions hold:

(i) there exist non-negative integers g and r such that 2g − 2 + r > 0,
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(ii) there exists a proper smooth geometrically connected scheme Y over S of
relative dimension 1 such that all the geometric fibers are curves of genus g,

(iii) there exists a closed subscheme D of Y which is finite and étale over S of
degree r,

(iv) X is isomorphic to Y \ D over S.

(2) Let X → S be a hyperbolic curve of type (g, r). In this paper, we call
X → S a non-trivial hyperbolic curve of type (g, r) if and only if the following
condition holds:

there exist some algebraically closed field Ω and distinct morphisms s̄1, s̄2 from
Spec(Ω) to S such that the smooth compactification of X ×S s̄1 is not isomorphic
to the smooth compactification of X ×S s̄2.

(3) Let S be a scheme and X a scheme over S. If there exist a positive integer n
and a [not necessary unique] factorization X = Xn → Xn−1 → · · · → X1 → X0 = S
of the structure morphism X → S such that Xi/Xi−1 is a hyperbolic curve for each
i ∈ {1, · · · , n}, then X is called a hyperbolic polycurve over S.

When X and Y are the moduli stack of hyperbolic curves of genus 0 or 1,
several affirmative results to the conjecture 1.1 are already known [cf., e.g., [N],
Corollary 1.5.7 and [IN], Theorem C for genus 0, [K], Theorem 2.2 for genus 1].
Kinoshita’s theorem was proved by showing the Grothendieck conjecture for the
pure configuration spaces of a hyperbolic curve over a hyperbolic curve under some
conditions [cf. [K], Theorem 2.1].

We have a connected finite étale covering M2,0 ← M0,6, because M2,0
∼←

M0,[6]/Z×. Using this fact, we will prove the main theorem of this article by show-
ing the Grothendieck conjecture for the pure configuration spaces of a hyperbolic
curve over a hyperbolic polycurve under some conditions.

2. Main result and Proof

Theorem 2.1. Let k be a sub-p-adic field for some prime number p and k̄ an
algebraic closure of k. For ξ ∈ {α, β}, let Cξ be a connected finite étale covering
over M0,6, Xξ

n = M2,n ×M2,0 Cξ (n = 0, 1, · · · ), and rξ a non-negative integer.
For i ∈ {0, 1, 2, 3}, write Cξ

i for the normalization of M0,i+3 in Cξ. For i ∈
{1, 2, 3}, write (gξ

i , rξ
i ) for the type of the hyperbolic curve Cξ

i /Cξ
i−1 [cf. Remark

2.1 below].
Suppose that gξ

i ≥ 1 or rξ
i > rη + 4 for any i ∈ {1, 2, 3} and {ξ, η} = {α, β}.

Then the natural map

Isomk

(
Xα

rα , Xβ
rβ

)
→ IsomGk

(
π1

(
Xα

rα

)
, π1

(
Xβ

rβ

))
/Inn

(
π1

(
Xβ

rβ ×k k̄
))

.

is bijective.

Remark 2.1. By [H], Proposition 2.3, Cξ is a hyperbolic polycurve and Cξ =
Cξ

3 → Cξ
2 → Cξ

1 → Cξ
0 is a sequence of parameterizing morphisms in the sense of

[H], Definition 2.1 (ii). In particular, Cξ
i → Cξ

i−1 is a hyperbolic curve for each
i ∈ {1, 2, 3}.

Proof of Theorem 2.1. When rα = 0 or rβ = 0, Xα
rα or Xβ

rβ is a hyperbolic poly-
curve of dimension 3. So, the assertion holds thanks to [H], Theorem B.
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Thus, we suppose that rα > 0 and rβ > 0. The injectivity of this map is
proved by [H], Proposition 3.2, (ii). Let ϕ ∈ IsomGk

(
π1

(
Xα

rα

)
, π1

(
Xβ

rβ

))
. Then

ϕ induces a surjetive morphism ϕrα : π1

(
Xα

rα

)
³ π1

(
Xβ

0

)
. The proof of the

surjectivity of the map in the statement of Theorem 2.1 is divided into four parts.
First, we claim that the following assertion holds:

Claim 2.2. ϕrα

(
π1

(
Xα

rα ×Xα
rα−1

x̄
))

= {1} for any k̄-valued point x̄ → Xα
rα−1.

Proof of Claim 2.2. We shall begin with the following

Lemma 2.3. Let K be a sub-p-adic field and K̄ an algebraic closure of K. Let S
be a connected separated normal scheme of finite type over Spec(K), X → S a non-
trivial hyperbolic curve of type (gX , rX), and Y a hyperbolic curve over Spec(K) of
type (gY , rY ). Suppose that at least one of the following four conditions is satisfied:

(i) gX ≤ gY ,
(ii) rX = 0 and rY > 0 and 2gX < 2gY + rY − 1,
(iii) rX > 0 and rY > 0 and 2gX + rX < 2gY + rY ,
(iv) rX > 0 and rY = 0 and 2gX + rX − 1 < 2gY .

Then, for any surjective continuous homomorphism φ : π1(X) → π1(Y ) over GK ,
φ (π1(X ×S s̄)) = {1} for any K̄-valued point s̄ → S.

Proof of Lemma 2.3. Under the assumption, by [H], Proposition 2.4, (i), we have
the following exact sequence

0 −−−−→ π1(X ×S s̄) −−−−→ π1(X) −−−−→ π1(S) −−−−→ 0 (exact)

for any K̄-valued point s̄ → S of S. Since K is of characteristic 0, π1(X ×S s̄)
is topologically finitely generated. Because φ is a surjective morphism over GK ,
φ induces a morphism π1(X ×S s̄) → π1(Y ⊗K K̄), which is denoted by the same
notation. Thus, φ (π1(X ×S s̄)) is topologically finitely generated, closed normal
subgroup of π1(Y ⊗K K̄). Moreover, as Y is a hyperbolic curve, π1(Y ⊗K K̄) is
elastic [cf. [M2], Proposition 2.3, (i)]. Hence, φ (π1(X ×S s̄)) is trivial or open in
π1(Y ⊗K K̄).

Because each one of the conditions (ii)∼(iv) implies that the rank of the abelian-
ization of π1(X ×S s̄) is less than the rank of the abelianization of π1(Y ⊗K K̄),
φ (π1(X ×S s̄)) cannot be open. So φ (π1(X ×S s̄)) is trivial for any s̄ if one of the
conditions (ii)∼(iv) is satisfied. Next, we will show that φ (π1(X ×S s̄)) = {1} for
any s̄ if the condition (i) is satisfied. First, if φ (π1(X ×S s̄)) is open, then we have
a dominant morphism X×S s̄ → Y ⊗K K̄ by the Grothendieck conjecture [cf. [M1],
Theorem A]. Hence, if φ (π1(X ×S s̄)) is open for some s̄, then gX ≥ gY by the
Hurwitz formula. Namely, φ (π1(X ×S s̄)) = {1} for any s̄ if gX < gY . Second,
suppose that gX = gY and φ (π1(X ×S s̄)) is open in π1(Y ⊗K K̄) for some s̄. Then
the smooth compactification of X ×S s̄ and that of Y ⊗K K̄ are isomorphic over K̄
by (the Grothendieck conjecture [cf. [M1], Theorem A] and) the Hurwitz formula.
And, that holds for any s̄, since the isomorphism class of π1(X×S s̄) is independent
of the choice of s̄. This is a contradiction, because X → S is non-trivial and S is
of finite type over K. That is why φ (π1(X ×S s̄)) = {1} even if gX = gY . This
completes the proof of Lemma 2.3. ¤

We note that ϕrα : π1

(
Xα

rα

)
³ π1

(
Xβ

0

)
induces ϕ̃i : π1

(
Xα

rα

)
³ π1

(
Cβ

i

)
for

each i ∈ {1, 2, 3} and ϕ̃3 = ϕrα . By Lemma 2.3, ϕ̃1

(
π1

(
Xα

rα ×Xα
rα−1

x̄
))

= {1} for
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any k̄-valued point x̄ → Xα
rα−1 when gβ

1 6= 1. (Because the condition (i) is satisfied
when gβ

1 > 1 and the condition (iii) is satisfied when gβ
1 = 0 and rβ

1 > rα + 4.)
Next, we will show that ϕ̃1

(
π1

(
Xα

rα ×Xα
rα−1

x̄
))

= {1} when gβ
1 = 1. Suppose

that ϕ̃1

(
π1

(
Xα

rα ×Xα
rα−1

x̄
))

is open in π1

(
Cβ

1 ×k k̄
)

for some k̄-valued point

x̄ → Xα
rα−1. Because π1

(
Xα

rα ×Xα
rα−1

x̄
)

are mutually isomorphic for any k̄-valued

point x̄ → Xα
rα−1, ϕ̃1

(
π1

(
Xα

rα ×Xα
rα−1

x̄
))

is open in π1

(
Cβ

1 ⊗k k̄
)

for any x̄ →

Xα
rα−1. So, for any x̄ → Xα

rα−1, we have a non-trivial morphism from Cβ
1 ⊗k k̄ to

the Jacobian of the smooth compactification of Xα
rα ×Xα

rα−1
x̄ by the Grothendieck

conjecture [cf. [M1], Theorem A]. This implies that the Jacobians of all (proper
smooth) curves of genus 2 over k̄ are not simple. On the contrary, there exists
a (proper smooth) curves of genus 2 over k̄ whose Jacobian is simple, because
dim (A1 ×A1) = 2 < 3 = dim (ι (M2)), where Ag is the moduli stack of principally
polarized abelian varieties over k̄ of dimension g and ι : M2 → A2 is the Torelli
map. This is a contradiction. Hence, ϕ̃1

(
π1

(
Xα

rα ×Xα
rα−1

x̄
))

= {1} for any

x̄ → Xα
rα−1 even if gβ

1 = 1.

Thus, ϕ̃1

(
π1

(
Xα

rα ×Xα
rα−1

x̄
))

= {1} for any x̄ → Xα
rα−1 when gβ

1 ≥ 1 or

rβ
1 > rα + 4.

Hence, ϕ̃2

(
π1

(
Xα

rα ×Xα
rα−1

x̄
))

⊂ Ker
(
π1(C

β
2 ) → π1(C

β
1 )

)
. So, by the same

argument as above replacing ϕ̃1 by ϕ̃2 and π1

(
Cβ

1 ×k k̄
)

by Ker
(
π1(C

β
2 ) → π1(C

β
1 )

)
,

we can prove ϕ̃2

(
π1

(
Xα

rα ×Xα
rα−1

x̄
))

= {1} when gβ
2 ≥ 1 or rβ

2 > rα + 4.

Hence, ϕ̃3

(
π1

(
Xα

rα ×Xα
rα−1

x̄
))

⊂ Ker
(
π1(C

β
3 ) → π1(C

β
2 )

)
. So, by the same

argument as above replacing ϕ̃1 by ϕ̃3 and π1

(
Cβ

1 ×k k̄
)

by Ker
(
π1(C

β
3 ) → π1(C

β
1 )

)
,

we can prove ϕ̃3

(
π1

(
Xα

rα ×Xα
rα−1

x̄
))

= {1} when gβ
3 ≥ 1 or rβ

3 > rα + 4. This
completes the proof of Claim 2.2. ¤

Second, we claim that the following assertion holds:

Claim 2.4. ϕ induces ϕ0 : π1

(
Xα

0

)
∼→ π1

(
Xβ

0

)
.

Proof of Claim 2.4. By Claim 2.2, ϕrα determines ϕrα−1 : π1

(
Xα

rα−1

)
→ π1

(
Xβ

0

)
.

If rα − 1 = 0, then we have ϕ0 : π1

(
Xα

0

)
³ π1

(
Xβ

0

)
. If rα − 1 > 0, then we can

show that ϕrα−1 determines ϕrα−2 : π1

(
Xα

rα−2

)
→ π1

(
Xβ

0

)
by applying the same

argument to ϕrα−1 : π1

(
Xα

rα−1

)
→ π1

(
Xβ

0

)
. By repeating this procedure, we can

prove that ϕ determines ϕ0 : π1

(
Xα

0

)
³ π1

(
Xβ

0

)
. By applying the same argument

ϕ−1 : π1

(
Xβ

rβ

)
³ π1

(
Xα

rα

)
, we can prove that ϕ−1 determines ϕ−1

0 : π1

(
Xβ

0

)
³

π1

(
Xα

0

)
. Thus, we can prove that ϕ determines ϕ0 : π1

(
Xα

0

)
∼→ π1

(
Xβ

0

)
over Gk.

This completes the proof of Claim 2.4. ¤
Third, we claim that the following assertion holds:
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Claim 2.5. ϕ0 induces a k-isomorphism f0 : Xα
0

∼→ Xβ
0 .

Proof of Claim 2.5. Since both Xα
0 and Xβ

0 are hyperbolic polycurves of dimension
3, we obtain the conclusion by [H], Theorem B. This completes the proof of Claim
2.5. ¤

Finally, we claim that the following assertion holds:

Claim 2.6. f0 induces a k-isomorphism f : Xα
rα

∼→ Xβ
rβ

.

Proof of Claim 2.6. For each ξ ∈ {α, β}, let ηξ
0 → Xξ

0 be the generic point. Then,
by Claim 2.5, we have an isomorphism ηα

0
∼→ ηβ

0 . Thus, we have an isomorphism
π1(Xα

rα
×Xα

0
ηα
0 ) ∼→ π1(Xβ

rβ
×Xβ

0
ηβ
0 ) that is compatible with π1(ηα

0 ) ∼→ π1(η
β
0 ), by

[H], proposition 2.4 (ii), because we have an isomorphism ϕ0 : π1(Xα
0 ) ∼→ π1(X

β
0 ),

π1(ηα
0 ) ∼→ π1(η

β
0 ) and ϕ : π1(Xα

rα) ∼→ π1(X
β
rβ ).

By [MT], Corollary 6.3, this isomorphism preserves all fiber subgroups. So this
isomorphism preserves the length of each fiber. Hence, rα = rβ . Moreover, as k is a
sub-p-adic field, k is `-cyclotomically full for any prime `. Thus, by [HM], Corollary
2.6, we have an isomorphism Xα

rα
×Xα

0
ηα
0

∼→ Xβ
rβ

×Xβ
0

ηβ
0 that is compatible with

ηα
0 ' ηβ

0 . This together with [H], Lemma 2.10 brings us to the conclusion of Claim
2.6. ¤

This completes the proof of Theorem 2.1. ¤
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