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Abstract

Let X be a stable curve over a complete discrete valuation ring R of
mixed characteristic or positive characteristic. In the present paper, we
study geometry of coverings of X. Under certain assumptions, we prove
that by replacing R by a finite extension of R, there exists a morphism
from a stable curve to X such that the morphism of generic fibers is finite
étale and the morphism of special fibers is non-finite.
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introduction

Let R be a complete discrete valuation ring with algebraically closed residue
field, X a stable curve over S := SpecR = {η, s}, where η (resp. s) stands for
the generic point (resp. closed point). Write Xη (resp. Xs) for the generic fiber
(resp. special fiber). Suppose that Xη is smooth. After choosing base points,
we obtain the (surjective) specialization morphism of fundamental groups

sp : π1(Xη) −→ πadm
1 (Xs),

where the left (resp. right) hand side denotes the étale (resp. admissible (cf.
Notations and Conventions)) fundamental group of Xη := Xη ×η η (resp. Xs).

In the present paper, we study geometry of coverings of curves from the
point of view of the specialization morphism of fundamental groups. A closed
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point x of X is called a vertical point if, by replacing S by a finite extension
of S, there is a stable covering f : Y −→ X (cf. Definition 2.1) such that the
inverse image f−1(x) is not a finite set. We use the notation Xver

s to denote the
set of vertical points of Xs. We may post a question as follows:

Question: What is Xver
s ?

If R has equal characteristic (0, 0), then sp is an isomorphism. Thus, the
admissible coverings of Xs can be determined by the étale coverings of Xη (cf.
[17, Proposition 1.1]). This means that for any finite étale covering of generic
fiber Xη, by stable reduction theorem, by replacing R by a finite extension of
R, the morphism of special fibers induced by the étale covering of generic fibers
is an admissible covering. Then Xver

s = Ø.
If R has mixed characteristic (0, p) or equal characteristic (p, p). We can

consider that whether or not the set Xver
s is empty. Moreover, we can ask that

whether or not Xver
s contains a smooth point.

The problem that whether or not Xver
s contains a smooth point is called

resolution of nonsingularities. The motivation of resolution of nonsingulari-
ties is partly came from anabelian geometry. The technique of resolution of
nonsingularities in the case of p-adic number fields was first introduced by S.
Mochizuki (cf. [7, the proof of Theorem 9.2]). In the situation of Mochizuki, X
is a smooth curve over the valuation ring of a p-adic number field. By applying
the technique of resolution nonsigularities, Mochizuki reduced the Grothendieck
conjecture for proper, hyperbolic curves over number fields to the Grothendieck
conjecture for proper, singular, stable curves over finite fields, which is then
reduced to the Grothendieck conjecture for affine curves over finite fields which
had been proven by A. Tamagawa. Afterward, in [17], Tamagawa introduced
the problem of resolution of nonsingularities and proved a theorem in the case
of mixed characteristic. More precisely, Tamagawa’s theorem (cf. [17, Theorem
0.2 (v)]) is essentially as follows: if R is strictly of mixed characteristic with
residue field Fp and X is non-isotrivial, then Xver

s = Xcl
s , where X

cl
s denotes the

set of the closed points of Xs.
In the present paper, we consider Question in the cases of mixed charac-

teristic and equal characteristic. If R is an arbitrary complete DVR of mixed
characteristic, we have a theorem as follows (see also Theorem 2.5).

Theorem 0.1. Xver
s is an infinite countable set which contains all the nodes of

Xs, and the closure of Xver
s in Xs is equal to Xs.

On the other hand, if R has equal characteristic (p, p), in the case of good
reduction, we have a theorem as follows (see also Theorem 2.7).

Theorem 0.2. Suppose that X is a non-isotrivial smooth curve over S, and
Xs can be defined over Fp. Then, Xver

s is not empty.

In particular, Theorem 0.2 can be regarded as a certain analogue of Mochizuki’s
result for the case of positive characteristic. In the case of bad reduction, we
have the following theorem (see also Theorem 2.8).
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Theorem 0.3. Suppose that Xs is an irreducible, singular curve. Then, Xver
s

is not empty.

Moreover, by applying Theorem 0.3, we have the following corollary.

Corollary 0.4. Suppose that Xs is an irreducible, singular curve. Let Y −→ X
be a stable covering over S. Then Y ver

s is not empty.

Notations and Conventions

Curves and their moduli stacks:
By a curve over a field, we mean a finite type, separated, connected, one

dimensional reduced scheme over a field.
An r-pointed stable curve (X,DX) of type (g, r) over a scheme S consists of

a flat, proper morphism X −→ S, together with a closed subscheme DX ⊆ X
such that for each geometric point s of S:

(i) The geometric fiber Xs is a reduced and connected curve of genus g with
at most ordinary double points (i.e., nodes).

(ii) Xs is smooth at the points of DX .
(iii) The composite morphism DX ⊆ X −→ S is finite étale of degree r.
(iv) Let E be an irreducible component of Xs of genus gE . Then the sum

of the degree of the restriction of DX to E and the number of points where E
meets the closure of the complement of E in Xs is ≥ 3− 2gE .

(v) dim(H1(Xs,OXs)) = g.
In this situation, one verifies easily that 2g − 2 + r is ≥ 1.
We shall say that an S-scheme X is a stable curve of genus g over S if (X, ∅)

is a 0-pointed stable curve of genus g over S.
We shall say that a pointed stable curve (X,DX) over a scheme S is smooth

if the morphism of schemes X −→ S is smooth.
We denote (X,DX) a pointed stable curve over S with divisor of marked

points DX and underlying scheme X. For simplicity we also use the notation
X to denote the pointed stable curve (X,DX) when there is no confusion.

Let Mg,r be the moduli stack of stable curves of type(g, r) over SpecZ,
Mg,r the open substack of Mg,r parametrizing pointed smooth curves. Then

Mlog

g,r is the log moduli stack obtained by equipping Mg with the natural log

structure associated to the divisor with normal crossingsMg,r \Mg,r ⊂ Mg,r

relative to SpecZ. Let X g,r −→ Mg,r be the universal stable curve over Mg,
and Dg ⊂ X g,r the divisor given by the inverse image in X g,r of the divisor
Mg,r \ Mg,r ⊂ Mg,r. Dg,r determines a log structure on X g,r; denote the

resulting log stack by X log

g,r. Thus, we obtain a morphism of log stacks X log

g,r −→
Mlog

g,r. In particular, if r = 0 (i.e., stable curve), we use notation Mg (resp.

Mlog

g , X g, X
log

g ) to denote the stackMg,0 (resp. Mlog

g,0, X g,0, X
log

g,0).
For more details on stable curves, pointed stable curves and their moduli

stacks, see [3], [4].
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Galois categories and their fundamental groups:
We denote the categories of finite étale, finite Kummer log étale, finite tame,

and finite admissible coverings of “(−)” by Cov(−), Cov((−)log), Covtame(−),
Covadm(−), respectively.

The notations π1(−), π1((−)log), πtame
1 (−), πadm

1 (−) will be used to denote
the étale, Kummer log étale, tame, and admissible fundamental groups of “(−)”,
respectively.

The notation (−)ab denotes the abelianization of the group (−).
For more details on admissible coverings and admissible fundamental groups

for (pointed) stable curves, see [6], [7], [18].

1 P -ranks and specialization homomorphism

First, let us fix the notation. In this section, let k be an algebraically closed
field of characteristic p > 0.

Definition 1.1. Let X a stable curve of genus gX over k, and FX the absolute
Frobenius morphism ofX. The p-rank σ(X) ofX is defined as dimFpH

1(X,OX)FX ,
where (−)FX means the FX -invariant subspace.

By Artin-Schreier theory of étale cohomology, we have H1
ét(X,Z/pZ) ∼=

H1(X,OX)FX . Furthermore, H1
ét(X,Z/pZ) ∼= Hom(π1(X),Z/pZ). Therefore,

we can also define the p-rank of X as

σ(X) := rank(πp
1(X)ab),

where the right hand side means the rank of abelianization of pro-p étale fun-
damental group of X.

From now on, in this section, we assume that X is smooth over k. Write
X1 := X ×k,Fk

k for the pull-back of X by the Frobenius Fk of k. Thus,
we obtain a relative Frobenius morphism FX/k : X −→ X1. The canonical
differential (FX/k)∗(d) : (FX/k)∗(OX) −→ (FX/k)∗(Ω

1
X) is a morphism of OX -

modules. Write BX for the image of (FX/k)∗(d) which is called the sheaf of
locally exact differentials. One has the exact sequence

0 −→ OX1 −→ (FX/k)∗(OX) −→ BX −→ 0,

and BX is a vector bundle on X1 of rank p − 1. Raynaud’s theorem (cf. [11,
Theoreme 4.1.1]) shows that there is a divisor ΘX of J1

X , where J1
X is the pull-

back of the Jacobian JX of X by the Frobenius Fk. Furthermore, the support
of ΘX is as follows:

ΘX(k) = {[L] ∈ J1(k) | H1(X1, BX ⊗ L) ̸= 0}.

Let JX (resp. JY ) be the Jacobian of X (resp. Y ). Thus, the étale covering
f induces a natural morphism g : JX −→ JY of Jacobians. Write Jnew

Y for the
quotient of abelian varieties JY /g(JX), and we call Jnew

Y the new part of the
Jacobian JY of Y with respect to the morphism f .
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Definition 1.2. The µn-torsor f : Y −→ X is called to be new ordinary if the
new part Jnew

Y of Jacobian of Y with respect to the morphism f is an ordinary
abelian variety (i.e., the p-rank of Jnew

Y is equal to the dimension of Jnew
Y ).

Definition 1.3. Let M be a torsion abelian group. For each element x ∈ M ,
we define the saturation of x to be the subset of elements of in the form i.x,
where i is an integer prime to the order of x. We use the notation Sat(x) to
denote the saturation of x.

We have a relationship between new ordinary and theta divisors as the fol-
lowing.

Proposition 1.4. Let f : Y −→ X be a µn-torsor. Let y be a torsion point
of J1

X(k) of order n corresponding to the µn-torsor f1 : Y 1 −→ X1. Then
f : Y −→ X is new ordinary if and only if Sat(y)

∩
ΘX = Ø.

Proof. See [13, Proposition 2.1.4].

Let R := Fp[[t]] be a complete discrete valuation ring, X a smooth projective
hyperbolic curve over S := SpecR = {η, s}, where η (resp. s) stands for the
generic point (resp. closed point) of S. Suppose that X is non-isotrivial over
S (i.e., there dose not exist a proper and smooth k-curve X0, such that X is
isomorphic to X0 ×k S over S). Let X 1 be the Frobenius twist of X over S
and J 1

X the Jacobian of X 1 over S. This is an abelian scheme over S and
can be regarded as the Néron model of J 1

X ,η := J 1
X ×S η. Write J 1

X ,η{p′} and
J 1
X ,s{p′} for the set of prime to p torsion points of J 1

X ,η and J 1
X ,s, respectively,

where J 1
X ,s := J 1

X ×S s. By the specialization isomorphism of prime to p étale
fundamental groups, we have

J 1
X ,η{p′} −→ J 1

X ,s{p′}
is an isomorphism of abelian groups. Identifying the two abelian groups with
each other by the specialization isomorphism, we write J 1

X {p′} := J 1
X ,η{p′} =

J 1
X ,s{p′}. Consider the sets of prime to p torsion points of Raynaud theta divi-

sors of geometric generic fiber Xη := Xη ×η η and special fiber Xs, respectively.
We have

ΘXη{p′} ⊆ ΘXs{p′}.
Furthermore, A. Tamagawa proved a theorem as follows (cf. [16]):

Proposition 1.5. Let X be a smooth, non-isotrivial (i.e., the morphism S −→
MgX ,Fp

determined by X −→ S is not a constant morphism, where MgX ,Fp

denotes the coarse moduli space of MgX ,Fp
) projective hyperbolic curve over S.

Then there exists a finite étale covering Y −→ X whose Galois closure is of
degree prime to p, such that

Sat(ΘYη{p′}) ⊊ Sat(ΘYs{p′})

holds in J 1
Y{p′}, where J 1

Y denotes the Jacobian of Y1 over S. In particular,
we have the specialization morphism π1(Xη) −→ π1(Xs) is not an isomorphism.
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Proof. See [16, Section 7].

Remark 1.5.1. This theorem was proved by Pop-Säıdi (cf. [10]) and Raynaud
(cf. [13]) under certain assumptions of Jacobian, and then, by Tamagawa in
general case (cf. [16]). In fact, Tamagawa proved much more. Tamagawa
showed that if (X , DX ) is a projective smooth hyperbolic curve over S with
divisor DX , then the specializtion morphism of tame fundamental groups along
the divisors is not isomorphism. As a corollary, we have the following beautiful
statement: over Fp, only finitely many isomorphism classes of smooth hyperbolic
curves have the same tame fundamental groups.

By Tamagawa’s theorem, we have a corollary as follows:

Corollary 1.6. Let X be a smooth, non-isotrivial projective curve over S. Then
there exists a finite étale covering Z such that

σ(Zη)− σ(Zs) > 0,

where Zη and Zs denote the geometric fiber and special fiber of Z, respectively.

Proof. By Proposition 1.5, we chose a finite étale covering Y −→ X whose
Galois closure is of degree prime to p, such that

Sat(ΘYη{p′}) ⊊ Sat(ΘYs{p′}).

So, we can choose an element z of J1
Y{p′} such that z ∈ Sat(ΘYs{p′}) and

z ̸∈ Sat(ΘYη{p′}). Then we obtain the étale covering Z −→ Y corresponding
to z. Moreover, by Proposition 1.4, Zη −→ Xη is new ordinary and Zs −→ Xs

is not new ordinary. Thus, we have σ(Zη)− σ(Zs) > 0.

2 Geometry of coverings of curves

In this section, we discuss geometry of coverings of stable curves. First, let us
fix the notation. Let R be a complete discrete valuation ring with algebraically
closed residue field k of characteristic p > 0, X a stable curve over S := SpecR =
{η, s}, where η (resp. s) stands for the generic point (resp. closed point) of S.
Write Xη (resp. Xη, Xs) for the generic fiber (resp. geometric generic fiber,
special fiber ) of X. Write ΓXs for the dual graph of Xs, v(ΓXs) (resp. e(ΓXs))
for the set of vertices (resp. edges) of ΓXs , and Xv for the irreducible component
corresponding to v ∈ v(ΓXs). Moreover, we assume that Xη is smooth.

Definition 2.1. Let Y be a stable curve over S. A morphism f : Y −→ X is
called stable covering of X if the morphism of generic fibers fη : Yη −→ Xη is
a finite étale morphism. Let G be a finite group. f is called G-stable covering
if f is a stable covering and fη is a G-étale covering (i.e., Galois étale covering
whose Galois group is G ).
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Definition 2.2. Let x be a closed point of special fiber Xs. x is called a vertical
point if by replacing S by a finite extension of S, there exists a stable covering
f : Y −→ X over S such that dim(f−1

s (x)) = 1. We use the notation Xver
s to

denote the set of vertical points of X.

There is a criterion for the existence of vertical points of a given stable
covering.

Proposition 2.3. Let x ∈ Xs be a closed point. Suppose that f : Y −→ X is a
G-stable covering over S such that for each irreducible component Z := {z} of

Spec ÔXs,x, and each point w of the fiber Y ×X z, the natural morphism from the
integral closure W s of Z in k(w)s to Z is wildly ramified, where k(w)s denotes
the maximal separable subextension of k(w) in k(z). Then dimf−1

s (x) = 1.

Proof. See [17] Proposition 4.3 (ii).

2.1 Existence of vertical components: mixed characteris-
tic case

In this subsection, we assume that R has mixed characteristic (0, p). LetMg,r be
the coarse moduli space ofMg,r ×SpecZ Spec k. Given a point x ∈Mg,r, choose
a geometric point x above x and let (Cx, Dx) be a pointed curve corresponding
to the point x (well-defined up to isomorphism). Then the isomorphism type
of the (geometric) tame fundamental group πtame

1 ((Cx, Dx)) is independent of
the choice of x and (Cx, Dx) (and the implicit base point on (Cx, Dx) used to
define πtame

1 ((Cx, Dx)). We have a result proved by Säıdi and Tamagawa.

Proposition 2.4. Let U ⊆ Mg,r a subvariety of positive dimension. Then the
geometric tame fundamental group πtame

1 is not constant on U (i.e., there exist
two points b and a of U , such that a ∈ {b} holds, the specialisation homomor-
phism spb,a : πtame

1 ((Cb, Db)) −→ πtame
1 ((Ca, Da)) is not an isomorphism).

Proof. See [14, Theorem 3.12].

Theorem 2.5. Xver
s is an infinite countable set which contains all the nodes of

Xs, and the closure of Xver
s in Xs is equal to Xs.

Proof. Replacing X by a finite admissible covering, we can assume that Xs

is sturdy and untangled (each irreducible component is smooth and genus is
greater than 2, see [8, Section 0 Curves]).

Let Slog be a log regular scheme whose underlying scheme is S and the log
structure is determined by the closed point. There is a natural morphism from

Slog to the log moduli stackMlog

gX , where gX is the genus of Xη. Thus, we obtain

a stable log curve X log whose underlying scheme is X and the log structure of

X log is the pulling-back log structure ofMlog

gX ,1.
Let x be a closed point of Xs. Write Xv for an irreducible component which

contains x. We can regard Xv as a pointed smooth curve of type (gXv , rv) with
marked point Xv

∩
XSing

s , where XSing
s denotes the set of singular points of Xs.

7



Write ηX (resp. η̂X , ηv, η̂v) for the generic point of X (resp. generic point of

Spec ÔX,ηv , generic point of Xv, generic point of Spec ÔXs,x).

Consider the 2-th log configuration space X log :=Mlog

gX ,2 ×Mlog
gX

Slog of X.

Write ηlogv for the log scheme whose underlying scheme is ηv and the log struc-
ture is the pulling back log structure of X log. Write (X ′

v)
log for the 2-th log

configuration space of pointed smooth curve Xv, X log
v for (X ′

v)
log ×ηv ηlogv . By

the specialization theorem of log étale fundamental groups (cf. [18, Proposition
1]), we obtain a commutative diagram of fundamental groups and all seven rows
are exact.

1 −−−−→ π1(XηX
) −−−−→ π1(XXη ) −−−−→ π1(Xη) −−−−→ 1∥∥∥ S.

x S.

x
1 −−−−→ π1(XηX

) −−−−→ π1(XηX
) −−−−→ π1(ηX) −−−−→ 1∥∥∥ I.

x I.

x
1 −−−−→ π1(Xη̂X

) −−−−→ π1(Xη̂X
) −−−−→ π1(η̂X) −−−−→ 1

S.

y S.

y S.

y
1 −−−−→ π1(X log

η̃log
v

) −−−−→ π1(X log

ηlog
v

) −−−−→ π1(η
log
v ) −−−−→ 1

I.

x I.

x ∥∥∥
1 −−−−→ π1((Xv)

log

η̃log
v

) −−−−→ π1((Xv)
log

ηlog
v

) −−−−→ π1(η
log
v ) −−−−→ 1∥∥∥ S.

y S.

y
1 −−−−→ π1((X ′

v)
log
ηv

) −−−−→ π1((X ′
v)

log
ηv

) −−−−→ π1(ηv) −−−−→ 1∥∥∥ I.

x I.

x
1 −−−−→ π1((X ′

v)
log

η̂v
) −−−−→ π1((X ′

v)
log
η̂v

) −−−−→ π1(η̂v) −−−−→ 1,

where S. (resp. I.) means surjection (resp. injection) and η̃logv denotes the log
geometric point of ηlogv .

For each i = 1, ..., 7, write 1 −→ ∆i −→ Πi −→ Gi −→ 1 for the i-th
row of the above commutative diagram, ρi : Gi −→ Out(∆i) for the outer
representation, and Imi for the image of ρ. Then by [17, Remark 2.3, Lemma
5.2], we obtain

Im1 = Im2 ←↩ Im3 ↠ Im4 ↠ Im5 = Im6 ←↩ Im7.

Write Dη̂X
(resp. Iηv ) for the image (resp. the kernel ) of π1(η̂X) −→ π1(Xη)

(resp. π1(η̂X) −→ π1(ηv)). Write Ix for π1(η̂v). We have a commutative
diagram as follows:
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π1(η̂X) −−−−→ Dη̂X
/IηX

−−−−→ Im6y x ∥∥∥
π1(ηv) π1(ηv) −−−−→ Im6x x

Ix −−−−→ Im7.

Suppose that the specialization morphism

spx : π1((X ′
v)

log

η̂v
) −→ π1((X ′

v)
log
x )

is not an isomorphism. Thus, by applying [17, Proposition 4.1 (ii)], we have the
image of wild inertia subgroup Iwx in Dη̂X

/IηX
is infinite. Then, by Proposition

2.3, we have x ∈ Xver
s .

If x is a node of Xs, then (X ′
v)x is a singular curve. Thus, by [17, Corollary

3.11], spx is not an isomorphism. This means that Xver
s contains all the nodes

of Xs. If x is a smooth closed point of Xs, then (X ′
v)x is a smooth curve over

x. By applying Proposition 2.4, the closure of Xver
s in Xs is equal to Xs.

On the other hand, π1(Xη) is topologically finitely generated, then the set
of open subgoups is a countable set. In particular, Xver

s is a countable set. This
complete the proof of theorem.

2.2 Existence of vertical components: equal characteristic
case

In this subsection, we assume that R has characteristic p > 0.

Definition 2.6. Let f : Y −→ X a G-stable covering over S, v an element of
v(ΓXs). Suppose G is a p-group. f is called a v-wildly ramified covering if there
exists a point ηYv ∈ f−1

s (ηXv ), where ηXv denotes the generic point of Xv, such
that the extension of residue fields k(ηYv )/k(ηXv ) is not separable. f is called a
wildly ramified covering if f is a v-wildly ramified covering for some v ∈ v(ΓXs).

Theorem 2.7. Suppose that X is a non-isotrivial smooth curve over S, and
Xs can be defined over Fp. Then, Xver

s is not empty.

Proof. By using Corollary 1.6, by replacing X by a finite étale covering of X,
we may assume that σ(Xη)− σ(Xs) > 0.

Let G be a p-group. If Xver
s ̸= Ø, for any G-Galois étale covering Zη −→ Xη,

by replacing S by a finite base change of S, the morphism of stable models
Z −→ X induced by Zη −→ Xη is a finite morphism. Since G is a p-group, by
[12, Proposition 1 (i)], Zs is a smooth curve. Write ηZs for the generic point of
Zs, I ⊆ G for the inertia subgroup of ηZs . By [12, Proposition 5], we have the
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quotient scheme Z/I is a smooth curve over S. Since I is the inertia subgroup of
ηZs , Zs −→ Zs/I is a homeomorphism. Moreover, since the natural morphism
(Z/I)s −→ Zs/I is a homeomorphism (cf. [4, Corollary A7.2.2]), the natural
morphism of special fibers Zs −→ (Z/I)s induced by the quotient Z −→ Z/I is
a homeomorphism. By the computation of genera of special fiber and generic
fiber of stable curve Z/I, we have I is trivial. Thus, Zs is an étale covering
over Xs. Thus, the specialization morphism of pro-p étale fundamental groups
πp
1(Zη) −→ πp

1(Zs) is an isomorphism. This is a contradiction, then the theorem
follows.

Theorem 2.8. Suppose that Xs is an irreducible, singular curve. Then, Xver
s

is not empty.

Proof. For proving the theorem, we only need to prove that there exists an
admissible covering of X whose set of vertical points is not empty. On the other
hand, there exists an admissible covering X ′

s of Xs such that X ′
s is untangled

and sturdy (cf. [8, Section 0 Curves]). Thus, for proving the theorem, by the
assumption Xs is irreducible and applying [17, Corollary 3.11], we may assume
that X is a stable curve over S such that the following conditions holds: (1)
Xs is untangled and sturdy; (2) π1(Xη) ⊗ Fp −→ πadm

1 (Xs) ⊗ Fp is not an
isomorphism; (3) Xη endowed with the action of a finite group H, and the
quotient X/H is a stable curve over S such that the morphism of generic fibers
Xη −→ (X/H)η (resp. the morphism of special fibers Xs −→ (X/H)s) induced
by the natural morphism X −→ X/H is an étale covering (resp. an admissible
covering) with Galois group H and the special fiber of X/H is an irreducible,
singular curve.

From now on, we suppose that Theorem 2.8 does not hold and by replacing
S by a finite extension of S, we may assume that all the étale Z/pZ-coverings of
Xη have stable reductions over S. Note that for any finite Z/pZ-stable covering,
the image of nodes and smooth points are nodes and smooth points, respectively
(cf. [19, Proposition 2.1]).

Claim 1: There exists a Z/pZ-stable covering of f : Y −→ X such that f
is a wildly ramified covering.

If Claim 1 does not hold, we have that for any Z/pZ-stable covering f :
Y −→ X, the morphism of special fibers fs : Ys −→ Xs is generically étale.
Then by [19, Proposition 2.4], fs is an admissible covering. This contradicts
our assumption (2). We completes the proof of Claim 1.

For a Z/pZ-stable covering f : Y −→ X, by the computation of genera of
generic fiber and special fiber of Y , fs : Ys −→ Xs is not purely inseparable.
Thus, if we suppose that fs is not an admissible covering, by Claim 1, there
exist two vertices v1 and v2 of v(ΓXs) which linked by an edge e ∈ e(ΓXs) such
that f is a v1-wildly ramified covering and f is not a v2-wildly ramified ramified
covering. Moreover, we have the following claim.
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Claim 2: There exists a Z/pZ-stable covering g : Z −→ X such that g is
a v2-wildly ramified covering and g is not a v1-wildly ramified covering.

Let us prove Claim 2. Let v, v′ ∈ v(ΓXs
) be two vertices which linked

by an edge. we define the relation v ⇝ v′ if all the v-wildly ramified cover-
ings are v′-wildly ramified coverings. Write Γv for the maximal subgraph of
ΓXs under the relation “ ⇝ ”. The set of vertices of v(Γv) consists of the
vertices satisfy the following condition hold: v′′ ∈ v(Γv) if there is a chain
v0e01v1e12...vn−1e(n−1)nvn such that (a) v0 = v and vn = v′′; (b) ei(i+1) links
vi and vi+1; (c) v0 ⇝ v1, ..., vn−1 ⇝ vn. The set of edges of v(Γv) consists of
the edges satisfy the following condition hold: e ∈ e(Γv) linked ve1 and ve2 is
contained in e(Γv) if v

e
1, v

e
2 ∈ v(Γv). If Claim 2 does not hold, by the definition

of Γv1 and Γv2 , we have Γv1 ⊆ Γv2 . But note that the v(ΓXs) is transitive under
the action of H, we obtain Γv1 = Γv2 . In particular, we have v1 ⇝ v2. This is
a contradiction, then Claim 2 follows.

By replacing S by a finite extension of S, we may assume that Yη ×Xη Zη

admits a stable model W over S. The natural morphisms Wη = Yη ×Xη Zη −→
Yη andWη = Yη×XηZη −→ Zη induce two morphisms of stable curvesW −→ Y
and W −→ Z over S, respectively. Write T for the fiber product Y ×X Z. We
obtain a natural morphism n : W −→ T by the universal property of fiber
products. Write h for the stable covering W −→ X induced by the natural
morphism Wη −→ Xη, h

′ for the natural morphism T −→ X. Note that we
have h = h′ ◦ n and h is finite. Thus, n is a finite morphism. Then W is
the normalization of T . Write Xv1 (resp. Xv2) for the irreducible component
of Xs corresponding to v1 (resp. v2), Y1 (resp. Y2) for the closed subscheme
Y ×X Xv1 ⊂ Y (resp. Y ×X Xv2 ⊂ Y ), Z1 (resp. Z2) for the closed subscheme
Z ×X Xv1 ⊂ Z (resp. Z ×X Xv2 ⊂ Z), T1 (resp. T2) for the closed subscheme
T ×X Xv1 ⊂ T (resp. T ×X Xv2 ⊂ T ), W1 (resp. W2) for the closed subscheme
W ×X Xv1 ⊂ W (resp. W ×X Xv2 ⊂ W ). By the construction of Y and Z, we
have T −→ Y is étale at the generic point of Y1 and T −→ Z is étale at the
generic point of Z2. Thus, OT,ηT1

and OT,ηT2
are normal, where ηT1 and ηT2

denote the respective generic points of T1 and T2. Then n|W1
: W1 −→ T1 and

n|W2 : W2 −→ T2 are birational. Moreover, since T1 and T2 are smooth, W1

and W2 are smooth too. Then n|W1 and n|W2 are isomorphisms.
Write qe for the node corresponding to e which links Xv1 and Xv2 . The

inverse image h−1(qe) only consists of one point which is denoted by we. Write

X̂v1 := {η̂Xv1
} and X̂v2 := {η̂Xv2

} for the irreducible components of Spec ÔXs,qe ,

respectively, where η̂Xv1
and η̂Xv2

denote the generic points of Spec ÔXs,qe . Note

that OX̂v1
and OX̂v2

are DVRs. Write ĥs for the morphism Spec ÔWs,we −→
Spec ÔXs,qe induced by h, η̂W1 := (ĥs)

−1(η̂Xv1
) and η̂W2 := (ĥs)

−1(η̂Xv2
) for

the generic points of the irreducible components of Spec ÔWs,we , k(η̂W1) and

k(η̂W2) for the residue fields, respectively. Write Ŵ s
1 and Ŵ s

2 for the respective

integral closure of X̂v1 and X̂v2 in k(η̂1we
)s and k(η̂1we

)s, where k(η̂W1)
s and

k(η̂W2)
s denote the respective maximal separable subextension of k(η̂Xv1

) and
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k(η̂Xv2
) in k(η̂W1

) and k(η̂W2
). Note that O

Ŵv1
and O

Ŵv2
are DVRs.

Claim 3: The morphism OX̂v1
−→ O

Ŵv1
(resp. OX̂v2

−→ O
Ŵv2

) induced

by the natural morphism Ŵ s
1 −→ X̂v1 (resp. Ŵ s

2 −→ X̂v2) is a wildly ramified
extension.

Write ηXv1
(resp. ηXv2

) for the generic point of irreducible component Xv1

(resp. Xv2). Write te ∈ T1

∩
T2 (resp. ηT1 , ηT2) for the inverse image of

(h′)−1(qe) (resp. (h
′)−1(ηXv1

), (h′)−1(ηXv2
)). We have

T1 −→ T s
1 −→ Xv1

and
T2 −→ T s

2 −→ Xv2 ,

where T s
1 and T s

2 are smooth projective curves whose function fields are the
maximal separable subextensions of k(ηT1)/k(ηXv1

) and k(ηT2)/k(ηXv2
), respec-

tively. Then by the construction of T , we have T s
1 and T s

2 are isomorphic to Z1

and Y2, respectively. Thus, T s
1 −→ Xv1 and T s

2 −→ Xv2 are wildly ramified at
the image of t of the morphism T1 −→ T s

1 and the image of t of the morphism
T2 −→ T s

2 , respectively. Since the n|W1 and n|W2 are isomorphisms, we have

Ŵ s
1
∼= Spec ÔT s

1 ,te
and Ŵ s

2
∼= Spec ÔT s

2 ,te
. Then Claim 3 follows.

Then Proposition 2.3 and Claim 3 imply Xver
s is not empty. This is a con-

tradiction. Then the theorem follows.
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