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Abstract. In this article we survey the fundamental theory of the exact WKB
analysis, that is, the WKB analysis based on the Borel resummation method.
Starting with the exact WKB analysis for second order linear ordinary differ-
ential equations, we explain its application to the computation of monodromy
groups of Fuchsian equations and its generalization to higher order equations.
Some recent developments of the theory such as the exact WKB analysis for
completely integrable systems are also briefly discussed.
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1. Introduction

Since the very beginning of the quantum mechanics, the WKB (Wentzel-Kramers-
Brillouin) approximation has been employed to obtain approximate eigenfunctions
and solve the eigenvalue problems for Schrödinger equations. The (full-order) WKB
approximations provide formal solutions (with respect to the Planck constant) of
Schrödinger equations but, as they are divergent in almost all cases, they were
not so often used in rigorous mathematical analysis. Around 1980, using the Borel
resummed WKB solutions, Voros ([36]) successfully studied spectral functions of
quartic oscillators and also Silverstone ([33]) discussed the WKB-type connection
problem more rigorously. After their pioneering works, Pham, Delabaere and oth-
ers (cf., e.g., [30], [9], [11], [12], [13]) have developed this new kind of WKB analysis
(sometimes called “exact WKB analysis” or “complex WKB analysis”) based on
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the Borel resummation technique with the aid of Ecalle’s theory of resurgent func-
tions ([14], [15], [16], see also [32]). At present it turns out that the exact WKB
analysis is very efficient not only for eigenvalue problems of Schrödinger equations
but also for the global study of differential equations in the complex domain.

In this article, mainly using some concrete and illuminating examples, we
explain the fundamental theory of the exact WKB analysis, its application to the
global study of differential equations in the complex domain, and some recent
developments of the theory.

The explanation will be done basically by following our monographs [27]
and [25]. To be more specific, the article is organized as follows: We first discuss
the exact WKB analysis for second order linear ordinary differential equations of
Schrödinger type

(
d2

dx2
− η2Q(x)

)
ψ = 0, (1.1)

where Q(x) is a polynomial or a rational function and η denotes the inverse of
the Planck constant (and hence a large parameter). Starting with the definition of
WKB solutions, we introduce the Stokes geometry and explain the fundamental
theorems of the exact WKB analysis, in particular, Voros’ connection formula for
Borel resummed WKB solutions, the most important result in the theory, in Sec-
tion 2. Then, after illustrating an outline of the proof of the fundamental theorems
in Section 3, we discuss its application to the computation of monodromy groups
of Fuchsian equations (Section 4) and wall crossing formulas for WKB solutions
with respect to the change of parameters contained in the equation (Section 5).
In the latter part of the article, we consider generalizations of the exact WKB
analysis to higher order linear ordinary differential equations of the form

(
dm

dxm
+ ηp1(x)

dm−1

dxm−1
+ · · ·+ ηmpm(x)

)
ψ = 0. (1.2)

In Section 6 we discuss the problem of new Stokes curves pointed out by Berk-
Nevins-Roberts ([8]), which is peculiar to higher order equations, and introduce the
notion of virtual turning points with the help of the theory of microlocal analysis
to treat new Stokes curves in a more intrinsic manner. Finally, in Section 7, we
explain some recent developments of the theory such as the exact WKB analysis for
completely integrable systems. These recent developments are also closely related
to the problem of new Stokes curves and virtual turning points for higher order
equations.
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2. Exact WKB analysis for second order linear ODEs of
Schrödinger type

2.1. WKB solutions

Let us first discuss the exact WKB analysis for second order linear ordinary dif-
ferential equations of Schrödinger type

(
d2

dx2
− η2Q(x)

)
ψ = 0, (2.1)

where Q(x) is a polynomial or a rational function. Throughout this article η de-
notes a large parameter and is often assumed to be real and positive.

Definition 2.1. A WKB solution of (2.1) is a formal solution of the following form:

ψ(x, η) = exp(ηy0(x))
∞∑

n=0

ψn(x)η
−(n+α), (2.2)

where y0(x) and ψn(x) are suitable analytic functions of x and α ≥ 0 is a constant.

In the case of (2.1) WKB solutions can be readily constructed in the following
way: Assume that a solution of (2.1) has the form

ψ(x, η) = exp

∫ x

S(x, η)dx, (2.3)

then S(x, η) should satisfy

S2 +
dS

dx
= η2Q(x) (“Riccati equation”). (2.4)

We further suppose that S = S(x, η) can be expanded as S = ηS−1(x) + S0(x) +
η−1S1(x) + · · · . It then follows from (2.4) that

(S−1)
2 = Q(x), (2.5)

2S−1Sn+1 +

n∑

k=0

SkSn−k +
dSn

dx
= 0 (n = −1, 0, 1, . . .). (2.6)

That is, once S−1 = ±
√
Q(x) is fixed, we obtain two solutions S±(x, η) of (2.4)

in a recursive manner.

Remark 2.2. Let us denote S± as S± = ±Sodd+Seven, then the following relation
is readily confirmed.

2SoddSeven +
dSodd

dx
= 0, i.e., Seven = −1

2

d

dx
logSodd. (2.7)
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Thus for Eq. (2.1) we obtain the following WKB solutions:

ψ±(x, η) =
1√
Sodd

exp

(
±
∫ x

x0

Sodddx

)

= exp
(
±η
∫ x

x0

√
Q(x)dx

) ∞∑

n=0

ψ±,n(x)η
−(n+1/2), (2.8)

where x0 is an arbitrarily chosen reference point.
Unfortunately WKB solutions are, in general, divergent. In fact, the following

holds.

Proposition 2.3. (i) Each Sn(x) and ψ±,n(x) are holomorphic on

U := {x ∈ C |Q(x) is holomorphic near x and Q(x) 6= 0 }. (2.9)

(ii) For any compact set K in U , there exist positive constants AK and CK satis-
fying

|Sn(x)| ≤ AKC
n
Kn!, |ψ±,n(x)| ≤ AKC

n
Kn! (x ∈ K) (2.10)

for any n.

To give an analytic meaning to WKB solutions, we employ the Borel resum-
mation technique (or the Borel-Laplace method) with respect to a large parameter
η in the exact WKB analysis.

Definition 2.4. Let η > 0 be a large parameter. For an infinite series f = exp(ηy0)∑
n≥0 fnη

−(n+α) (α > 0, y0, fn : constants), we define

fB(y) =

∞∑

n=0

fn
Γ(n+ α)

(y + y0)
n+α−1 : Borel transform of f , (2.11)

F (η) =

∫ ∞

−y0

e−yηfB(y)dy : Borel sum of f , (2.12)

provided that they are well-defined. Here Γ(s) denotes Euler’s Γ-function and the
integration path of (2.12) is taken to be parallel to the positive real axis.

See, e.g., [7], [10] for the details of the Borel-Laplace method. Here we only
refer the following very fundamental properties of the Borel transform and the
Borel sum.

Proposition 2.5. (i) If f is convergent, then (y+y0)
1−αfB(y) is an entire function

of exponential type. In this case the Borel sum F (η) of f is well-defined for a
sufficiently large η > 0 and coincides with the original f .
(ii) If f is Borel summable, that is,

(a)
∑ fn

Γ(n+ α)
(y + y0)

n is convergent in a neighborhood of y = −y0,

(b) fB(y) can be analytically continued along the integration path of the
Borel sum, and
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(c)

∫ ∞

−y0

e−yηfB(y)dy exists for a sufficiently large η > 0,

then the following asymptotic formula holds :

exp(−ηy0)ηαF (η) ∼
∞∑

n=0

fnη
−n (η > 0, η → ∞). (2.13)

Proposition 2.6. For ψ(x, η) = exp(ηy0(x))
∑

n≥0 ψn(x)η
−(n+α) (α > 0, α 6∈ Z)

the following formulas hold :

(i)
[ ∂
∂x
ψ
]
B
=

∂

∂x
ψB.

(ii)
[
ηmψ

]
B
=
( ∂
∂y

)m
ψB (m = 1, 2, . . .).

(iii)
[
η−mψ

]
B
=

1

(m− 1)!

∫ y

−y0(x)

(y − y′)m−1ψB(x, y
′)dy′

(
=:
( ∂
∂y

)−m

ψB

)
.

Furthermore, for ψ =
∑
ψn(x)η

−(n+α) and ϕ =
∑
ϕn(x)η

−(n+β) (α, β > 0) we
have

(iv)
[
ϕψ
]
B
= ϕB ∗ ψB :=

∫ y

0

ϕB(x, y − y′)ψB(x, y
′)dy′.

2.2. WKB solutions of the Airy equation and their Borel transforms

To investigate properties of the Borel transform of WKB solutions, we consider
WKB solutions of the Airy equation in this subsection.

Example. (Airy equation) Let us consider the Airy equation
(
d2

dx2
− η2x

)
ψ = 0 (2.14)

and its WKB solutions normalized at x = 0

ψ± =
1√
Sodd

exp

(
±
∫ x

0

Sodddx

)
= exp

(
±ηy0(x)

) ∞∑

n=0

ψ±,n(x)η
−(n+1/2), (2.15)

where y0(x) =
∫ x

0

√
xdx = (2/3)x3/2. We compute the Borel transform of (2.15)

explicitly.
By the recursion formulas (2.5)-(2.6) we easily find that each coefficient

Sn(x) of the formal power series solution of the Riccati equation associated with
(2.14) has the form Sn = cnx

−1−(3/2)n with some constant cn (n = −1, 0, 1, . . .).
This implies that each coefficient ψ±,n(x) of (2.15) also has the form ψ±,n =

d±,nx
−1/4−(3/2)n with another constant d±,n (n = 0, 1, 2, . . .). Hence the Borel

transform ψ±,B(x, y) can be written as

ψ±,B(x, y) =
1

x

∞∑

n=0

d±,n

Γ(n+ 1/2)

(
y

x3/2
± 2

3

)n−1/2

=
1

x
φ±(yx

−3/2) (2.16)
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with φ±(t) being an analytic function of one variable t = yx−3/2. On the other
hand, since ψ± is a solution of (2.14), it follows from Proposition 2.6, (ii) that
ψ±,B(x, y) should satisfy

(
∂2

∂x2
− x

∂2

∂y2

)
ψ±,B(x, y) = 0. (2.17)

Consequently we obtain the following ODE for φ±(t):
((

1− 9

4
t2
) d2
dt2

− 27

4
t
d

dt
− 2

)
φ± = 0, (2.18)

or, employing a change of variable s = 3t/4 + 1/2,
(
s(1− s)

d2

ds2
+
(3
2
− 3s

) d
ds

− 8

9

)
φ± = 0. (2.19)

Eq. (2.19) is nothing but Gauss’ hypergeometric equation (with the parameter
(α, β, γ) = (4/3, 2/3, 3/2)). Thus we have the following expression for ψ±,B(x, y):

ψ+,B(x, y) =

√
3

2
√
π

1

x
s−1/2F (5/6, 1/6, 1/2; s) , (2.20)

ψ−,B(x, y) =

√
3

2
√
π

1

x
(1− s)−1/2F (5/6, 1/6, 1/2; 1− s) , (2.21)

where F (α, β, γ; z) denotes Gauss’ hypergeometric function and s = 3yx−3/2/4 +
1/2.

Using this expression (2.20)-(2.21), we can deduce the following important
properties of WKB solutions of the Airy equation.

Property (A). In addition to the reference point (singularity) y = −y0(x) =
−(2/3)x3/2, ψ+,B(x, y) has a singularity also at y = y0(x) = (2/3)x3/2. This
singularity is sometimes called a “movable singularity”, since its relative location
with respect to the reference point moves according as x varies.

Property (B). The Borel sum Ψ+(x, η) is well-defined as long as ℑ (−y0(x)) 6=
ℑ y0(x), that is, provided that x does not belong to the set {ℑx3/2 = 0 }, whereas
it is not defined on {ℑx3/2 = 0 } where the movable singularity is located on the
integration path of the Borel sum.

Property (C). The set {ℑx3/2 = 0 } defined above consists of three half-lines
emanating from the origin in x-plane. If we consider the analytic continuation
of the Borel sum Ψ+(x, η) across one of them, say, the positive real axis, then
Ψ+(x, η) becomes the sum of the two Laplace integrals of ψ+,B(x, y) along Γj

(j = 0, 1) described in Figure 1.

Property (D). After the analytic continuation across the positive real axis, the
Borel sum Ψ+(x, η) becomes the following

Ψ+  Ψ+ + iΨ−, (2.22)
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y

t

t
✓
✒ ✸

❘

− 2
3x

3/2

2
3x

3/2

Γ0

Γ1

γ+ (path of analytic continuation from above)

γ− (path of analytic continuation from below)

Figure 1 : Integration paths Γ0 and Γ1 (wiggly lines designate cuts
to define a multi-valued analytic function ψ+,B(x, y)).

that is, a Stokes phenomenon occurs for Ψ+(x, η) on the positive real axis. Formula
(2.22) is often called the “connection formula” for Ψ+(x, η).

The connection formula (2.22) is a direct consequence of Property (C) and
the following discontinuity formula for the Borel transform ψ+,B(x, y):

△y=y0(x) ψ+,B(x, y) = iψ−,B(x, y), (2.23)

where the discontinuity (or the “alien derivative” in the sense of Ecalle) of ψ+,B(x, y)
is defined as follows:

△y=y0(x) ψ+,B(x, y) := (γ+)∗ψ+,B(x, y)− (γ−)∗ψ+,B(x, y), (2.24)

where (γ±)∗ψ+,B denotes the analytic continuation of ψ+,B along γ±, that is, the
discontinuity is the difference between the analytic continuations of ψ+,B(x, y)
above the cut and below the cut (cf. Figure 1). Note that in the case of the Airy
equation the discontinuity formula (2.23) immediately follows from the expression
(2.20)-(2.21) and Gauss’ formula for hypergeometric functions:

s−1/2F (5/6, 1/6, 1/2; s) =
1

2
(1− s)−1/2F (5/6, 1/6, 1/2; 1− s)

+
1√
3
F (4/3, 2/3, 3/2; 1− s) (2.25)

(cf. [17, p.105, 2.9(1)-2.9(24) and p.108, 2.10(1)]).

2.3. Stokes geometry and connection formula

Taking into account Properties (A)-(D) for the Airy equation observed in the
preceding subsection, we introduce the notion of turning points and Stokes curves
for (2.1) as follows:



8 Yoshitsugu Takei

Definition 2.7. (i) A zero of Q(x) is called a turning point of (2.1). In particular,
a simple zero of Q(x) is called a simple turning point of (2.1).
(ii) A Stokes curve of (2.1) is, by definition, an integral curve of the vector field

(or, more precisely, the direction field) ℑ
√
Q(x)dx = 0 emanating from a turning

point, that is, a curve defined by

ℑ
∫ x

a

√
Q(x)dx = 0, (2.26)

where a is a turning point of (2.1).

In the case of the Airy equation (2.14) the origin is the unique turning point (which
is simple) and the Stokes curves are given by {ℑx3/2 = 0 }.

Q(x) = x2 − 1 Q(x) = 1− x2

Q(x) = x3 − 1 Q(x) =
x(x− 1)

((x+ 1)(x+ 2)(x− 3))2

Figure 2 : Several examples of the Stokes geometry.

In what follows we usually assume the following non-degenerate condition:

Condition (ND). There is no Stokes curve of (2.1) which connects two turning
points. In other words, every Stokes curve of (2.1) emanating from a turning point
flows into a singular point of Q(x).

Then, in parallel with the case of the Airy equation, the following fundamental
theorems do hold for a second order equation (2.1) under Condition (ND).

Theorem 2.8. Assume Condition (ND). Then WKB solutions ψ±(x, η) are Borel
summable except on Stokes curves.
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Theorem 2.9. (Voros [36]) Let x = a be a simple turning point of (2.1). Then,
for WKB solutions

ψ±(x, η) =
1√
Sodd

exp

(
±
∫ x

a

Sodddx

)
(2.27)

of (2.1) normalized at x = a, the following properties hold in a neighborhood of
(x, y) = (a, 0):

(i) ψ±,B(x, y) have singularities at y = ±y0(x) = ±
∫ x

a

√
Q(x)dx (cf. Figure 3).

(ii)

△y=y0(x) ψ+,B(x, y) = iψ−,B(x, y), △y=−y0(x) ψ−,B(x, y) = iψ+,B(x, y). (2.28)

(iii) On a Stokes curve Γ emanating from x = a the following connection formula

y

x
x

y = y0(x)

y = −y0(x)

x = a

q

q
✻

Figure 3 : Singularity locus of ψ+,B(x, y) near a simple turning point
x = a.

holds for the Borel sums Ψ± of ψ±.

Type (+) : When ℜ
∫ x

a

√
Q(x)dx > 0 holds on Γ, that is, ψ+ is dominant over

ψ− there, then
Ψ+  Ψ+ ± iΨ−, Ψ−  Ψ−. (2.29)

Type (−) : When ℜ
∫ x

a

√
Q(x)dx < 0 holds on Γ, that is, ψ− is dominant over

ψ+ there, then
Ψ+  Ψ+, Ψ−  Ψ− ± iΨ+. (2.30)

Here the sign ± depends on which direction one crosses the Stokes curve Γ. To
be more precise, when one crosses Γ in an anticlockwise (resp., clockwise) manner
viewed from x = a, we adopt the sign + (resp., −).
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3. Proof of the fundamental theorems

In this section we explain an outline of the proof of Theorems 2.8 and 2.9.

3.1. Proof of Theorem 2.8

First, following the argument of Koike-Schäfke [28] and using in part an idea of
Costin [10], we explain the proof of Theorem 2.8.

The central step is to verify the Borel summability of formal power series
solutions of the Riccati equation

S2 +
dS

dx
= η2Q(x). (3.1)

For the sake of simplicity we assume Q(x) is a polynomial and consider the Borel
summability of S(x, η) = S+(x, η) only. We now write S(x, η) as

S(x, η) = ηS−1(x) + S0(x) + T (x, η), T (x, η) =

∞∑

n=1

Sn(x)η
−n. (3.2)

Then T (x, η) satisfies

dT

dx
+ 2S−1(ηT − S1) + 2S0T + T 2 = 0. (3.3)

In view of Proposition 2.6, the Borel transform TB of T satisfies

∂TB
∂x

+ 2
√
Q(x)

∂TB
∂y

+ 2S0(x)TB + TB ∗ TB = 0, TB(x, 0) = S1(x). (3.4)

Since holomorphic solutions of (3.4) are unique near y = 0, it suffices to show
the existence of a global holomorphic solution of (3.4) near the positive real axis
R+ = { y ≥ 0 }.
Definition 3.1. Let K be a compact subset of U = {x ∈ C |Q(x) 6= 0 }. For a point
x0 ∈ K we define

Γx0
:= {x ∈ C | ℑ

∫ x

x0

√
Q(x)dx = 0 },

Γ(±)
x0

:= {x ∈ Γx0
| ℜ
∫ x

x0

√
Q(x)dx ≷ 0 } ∪ {x0 },

K̂ :=
⋃

x∈K

Γx, K̂(±) :=
⋃

x∈K

Γ(±)
x .

Theorem 3.2. Let Q(x) be a polynomial of degree d and K be a compact subset of

U = {x ∈ C |Q(x) 6= 0 }. If K̂(−) does not contain a turning point in its closure,
the following hold :

(i) TB(x, y) is holomorphic in Ω := K̂(−) × { y | dist(y,R+) < δ } for a sufficiently
small number δ > 0.
(ii) There exist positive constants C1 and C2 that satisfy

∣∣TB(x, y)
∣∣ ≤ C1

1 + |x|d/2+2
eC2|y| in Ω. (3.5)
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The proof of Theorem 3.2 consists of four steps.

Step 1. We employ the so-called Liouville transformation defined by

z(x) =

∫ x

x0

√
Q(x) dx. (3.6)

Writing TB(x, y) = u(z, y), we find that u(z, y) satisfies

∂u

∂z
+ 2

∂u

∂y
+ 2A1(z)u+A2(z)u ∗ u = 0, u(z, 0) = A0(z), (3.7)

where

A0(z(x)) = S1(x), A1(z(x)) =
S0(x)√
Q(x)

, A2(z(x)) =
1√
Q(x)

. (3.8)

Step 2. By using a linear change of variables s = 2z − y, t = y and integrating
(3.7) once with respect to the variable t, we can convert (3.7) into the following
integral equation:

u(z, y) =A0

(
z − y

2

)
−
∫ y

0

A1

(
z − y − y′

2

)
u
(
z − y − y′

2
, y′
)
dy′

− 1

2

∫ y

0

A2

(
z − y − y′

2

)
(u ∗ u)

(
z − y − y′

2
, y′
)
dy′. (3.9)

Step 3. To discuss the existence of solutions of (3.9), we introduce the following
domains:

Ω−(K, δ) := { z ∈ C | dist
(
z, z(K̂(−))

)
< δ }, (3.10)

R := { (z, y) ∈ C
2 | dist(y,R+) < δ and the segment [z, z − y/2]

is contained in Ω−(K, δ) }. (3.11)

Note that R is star-shaped with respect to the variable y (i.e., (z, y) ∈ R implies
(z, θy) ∈ R for any θ ∈ [0, 1]) and that

z(K̂(−))× { y ∈ C | dist(y,R+) < δ } ⊂ R
holds. Furthermore, if δ > 0 is sufficiently small, we may assume that Aj(z) (j =
0, 1, 2) are holomorphic and bounded in the closure of Ω−(K, δ).

In what follows we solve the integral equation (3.9) in R.

Step 4. Let

Oλ :=
{
u(z, y)

∣∣∣ u is holomorphic in R and

‖u‖λ := sup
(z,y)∈R

∫ y

0

|u(z, y′)|e−λ|y′| d|y′| <∞
}
, (3.12)

where λ > 0 is a parameter. Then we can prove
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Proposition 3.3. Oλ is a Banach algebra with respect to the convolution ∗, that is,
Oλ is a Banach space and the following holds :

If u, v ∈ Oλ, then u ∗ v ∈ Oλ and ‖u ∗ v‖λ ≤ ‖u‖λ‖v‖λ. (3.13)

Proposition 3.4. Let F (u) denote the right-hand side of (3.9), that is,

(F (u))(z, y) =A0

(
z − y

2

)
−
∫ y

0

A1

(
z − y − y′

2

)
u
(
z − y − y′

2
, y′
)
dy′

− 1

2

∫ y

0

A2

(
z − y − y′

2

)
(u ∗ u)

(
z − y − y′

2
, y′
)
dy′. (3.14)

Then F (u) defines a contractive mapping from {u ∈ Oλ | ‖u‖λ ≤ 1 } to itself when
λ > 0 is sufficiently large.

Therefore the contractive mapping principle provides us with a (unique) holo-

morphic solution of (3.9) in R ⊃ z(K̂(−)) × { y ∈ C | dist(y,R+) < δ }. The ex-
ponential estimate (3.5) for its solution can be obtained by repeating the above

argument after replacing T by T̃ = (x − x1)
d/2+2T (x1 ∈ K̂(−)) and further by

using the boundedness of the norm ‖u‖λ of the solution.
Theorem 3.2 assures the Borel summability of formal power series solutions

S±(x, η) of the Riccati equation. Once the Borel summability of S±(x, η) is estab-
lished, then the Borel summability of WKB solutions

ψ±(x, η) =
1√
Sodd

exp

(
±
∫ x

x0

Sodddx

)

of (2.1) can be confirmed by the following argument:

(I) When the integration path from x0 to x does not cross any Stokes curve, then
the Borel summability of ψ± immediately follows from Theorem 3.2.

(II) Even when the integration path crosses several Stokes curves, if we deform
the integration path in such a way that

at every crossing point x̂ of the integration path with a Stokes curve
Γ, we avoid the crossing with Γ and go to x = ∞ along one side of Γ
and then return to x = x̂ along the other side of Γ,

then the Borel summability of ψ± is ensured by Theorem 3.2 also in this case.
Note that Condition (ND) guarantees that such a deformation of the integration
path is always possible.

This is an outline of the proof of Theorem 2.8. See [28] for more details of
the discussion.

3.2. Proof of Theorem 2.9

To prove Theorem 2.9, we make use of the transformation theory to the Airy
equation developed in [4], [27, Chapter 2].

Let us consider (
d2

dx̃2
− η2Q̃(x̃)

)
ψ̃ = 0 (3̃.15)
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and apply a change of variable x = x(x̃) to (3̃.15). If we further employ a change

of unknown function ψ̃(x̃) = (dx/dx̃)−1/2ψ(x(x̃)), then (3̃.15) is transformed to
(
d2

dx2
− η2Q(x)

)
ψ = 0 (3.15)

with

Q̃(x̃) =
(dx
dx̃

)2
Q(x(x̃))− 1

2
η−2{x; x̃}. (3.16)

Here {x; x̃} stands for the Schwarzian derivative:

{x; x̃} =
d3x/dx̃3

dx/dx̃
− 3

2

(d2x/dx̃2
dx/dx̃

)2
.

Taking this relation into account, we introduce the following terminology.

Definition 3.5. We say that (3̃.15) is transformed (in the sense of exact WKB anal-
ysis) to (3.15) at x̃ = x̃0 if there exists an infinite series x(x̃, η) =

∑
n≥0 xn(x̃)η

−n

that satisfies the following conditions:
(i) xn(x̃) is holomorphic in a fixed neighborhood Ũ of x̃ = x̃0 (i.e., Ũ is indepen-
dent of n).
(ii) The following relation holds (as formal power series of η−1):

Q̃(x̃) =
(∂x
∂x̃

(x̃, η)
)2
Q(x(x̃, η))− 1

2
η−2{x(x̃, η); x̃}. (3.17)

Under this terminology we can prove the following

Theorem 3.6. Let x̃ = ã be a simple turning point of
(
d2

dx̃2
− η2Q̃(x̃)

)
ψ̃ = 0, (3̃.15)

that is, ã is a simple zero of Q̃(x̃). Then at x̃ = ã (3̃.15) can be transformed (in
the sense of exact WKB analysis) to the Airy equation

(
d2

dx2
− η2x

)
ψ = 0. (3.18)

Theorem 3.6 is proved by constructing x(x̃, η) = x0(x̃)+x1(x̃)η
−1 + · · · that

satisfies

Q̃(x̃) =
(∂x
∂x̃

(x̃, η)
)2
x(x̃, η)− 1

2
η−2{x(x̃, η); x̃} (3.19)

in a recursive manner. For example, the top order part x0(x̃) is given by

x0(x̃) =

(
3

2

∫ x̃

ã

√
Q̃(x̃) dx̃

)2/3

(3.20)

and the higher order part xn(x̃) is determined by solving a first order ODE of the
form (

2
x0
x′0

d

dx̃
+ 1

)
xn = (given), i.e.,

(
2z

d

dz
+ 1

)
xn = (given)
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degree by degree. Here z denotes a new independent variable z = x0(x̃). Note that
xn(x̃) identically vanishes for an odd integer n and also that xn(x̃) satisfies the
estimate

|xn(x̃)| ≤ ACnn! (3.21)

for some positive constants A,C > 0 in a fixed neighborhood Ũ of x̃ = ã.

Thus Eq. (3̃.15) is transformed to the Airy equation (3.18) near a simple
turning point ã by the formal coordinate transformation x = x(x̃, η). Furthermore,
in the current situation we can verify the following relation between WKB solutions

of (3̃.15) and those of (3.18) in all orders of η−1:

ψ̃±(x̃, η) =
(∂x
∂x̃

)−1/2

ψ±(x(x̃, η), η), (3.22)

where ψ̃± and ψ± are WKB solutions of (3̃.15) and (3.18) normalized at the
turning points in question, respectively:

ψ̃±(x̃, η) =
1√
S̃odd

exp

(
±
∫ x̃

ã

S̃odddx̃

)
, (3.23)

ψ±(x, η) =
1√
Sodd

exp

(
±
∫ x

0

Sodddx

)
. (3.24)

Theorem 2.9 is proved by considering the Borel transform of both sides of (3.22).
As a matter of fact, the multiplication operator η−1 turns out to be an integral
operator (∂/∂y)−1 via the Borel transformation in view of Proposition 2.6. Thus,
using the Taylor expansion, we find that the Borel transform of (3.22) is expressed
as

ψ̃±,B(x̃, y) =

(∑

j≥0

∂xj
∂x̃

( ∂
∂y

)−j
)−1/2 ∞∑

n=0

1

n!

(∑

j≥1

xj(x̃)
( ∂
∂y

)−j
)n( ∂n

∂xn
ψ±,B

)(
x0(x̃), y

)
.

(3.25)

As [6, Appendix C] shows, if we use (x, y) = (x0(x̃), y) as new independent vari-
ables instead of (x̃, y), the right-hand side of (3.25) can be expressed also as

∫ y

−y0

K
(
x, y − y′,

∂

∂x

)
ψ±,B(x, y

′) dy′ =: L
(
x,

∂

∂x
,
( ∂
∂y

)−1)
ψ±,B(x, y) (3.26)

with some integro-differential operator L = L(x, ∂/∂x, (∂/∂y)−1). The operator L
is what is called a “microdifferential operator” in the theory of microlocal analysis
(cf. [31]). As its consequence, it turns out that L does not change the location of
singularities of the operand. Hence, since the singular points of ψ±,B(x, y) are

y = ±
∫ x

0

√
x dx = ±2

3
x3/2
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(cf. Property (A) in Section 2.2), the singular points of ψ̃±,B(x̃, y) are also confined
to

y = ±2

3
x3/2

∣∣∣∣
x=x0(x̃)

= ±
∫ x̃

ã

√
Q̃(x̃) dx̃ = ±y0(x̃).

Furthermore, the discontinuity formula (2.28) of ψ̃±,B(x̃, y) is also confirmed as

△y=y0(x̃) ψ̃+,B(x̃, y) = △y=y0(x̃) (Lψ+,B)
∣∣∣
x=x0(x̃)

= L△y=2x3/2/3 ψ+,B

∣∣∣
x=x0(x̃)

= L(iψ−,B)
∣∣∣
x=x0(x̃)

= iψ̃−,B(x̃, y). (3.27)

Thus we have verified Theorem 2.9, (i),(ii). For more details we refer the reader
to [27, Chapter 2]. More recently Kamimoto and Koike [26] have proved the Borel
summability of the transformation series x = x(x̃, η), which guarantees that the
connection formula (2.29)-(2.30) for the WKB solutions (2.27) of (2.1) is derived
from that of the Airy equation. This completes the proof of Theorem 2.9.

4. Application — Computation of monodromy representations of
Fuchsian equations

In this section, as an application of the exact WKB analysis, let us compute the
monodromy representations of second order equations of the form

(
d2

dx2
− η2Q(x)

)
ψ = 0 (4.1)

with

Q(x) =
F (x)

G(x)2
(F (x), G(x) : polynomials). (4.2)

In what follows we assume that

degF = 2g + 2, F (x) = (x− a0) · · · (x− a2g+1),

degG = g + 2, G(x) = (x− b0) · · · (x− bg+1)

for some non-negative integer g ≥ 0 and that all aj and bk are mutually distinct.
Then the set of singular points of (4.1) is given by

S = { b0, . . . , bg+1, bg+2 = ∞}

and all singular points become regular singular. Thus Eq. (4.1) is the so-called
Fuchsian equation.

Remark 4.1. When g = 0, (4.1) is equivalent to Gauss’ hypergeometric equation.
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For such a Fuchsian equation the monodromy representation is naturally
defined: Take a base point x0 ∈ P 1(C) \ S and a fundamental system of solutions
(ψ0, ψ1) around x0. For any closed path γ in P 1(C) \ S emanating from x0 we
consider analytic continuation of (ψ0, ψ1) along γ:

(ψ0, ψ1) near x0  
analytic continuation

along γ

(γ∗ψ0, γ∗ψ1) = (ψ0, ψ1)
∃Aγ , (4.3)

where Aγ is an invertible 2 × 2 constant matrix. Then the monodromy represen-
tation of (4.1) is, by definition, the algebraic homomorphism

π1(P
1(C) \ S, x0) ∋ [γ] 7−→ Aγ ∈ GL2(C), (4.4)

where π1 designates the fundamental group.
From now on we compute the monodromy representation of (4.1) by making

use of WKB solutions. Before doing the computation, we prepare one proposition
which is concerned with the behavior of WKB solutions at a regular singular point.

Proposition 4.2. At each regular singular point x = bk, Sodd(x, η) has a pole of
order 1 and its residue there is explicitly given by

Res
x=bk

Sodd(x, η) = ckη

√
1 +

1

4c2k
η−2, (4.5)

where ck = Resx=bk

√
Q(x). (For k = g+2 we define cg+2 = Resζ=0(−

√
Q(1/ζ)/ζ).)

We explain the computation by using the following example discussed in [27,
Chapter 3].

Example. Let us consider
(
d2

dx2
− η2

(x2 − 9)(x2 − 1/9)

(x3 − exp(iπ/8))2

)
ψ = 0. (4.6)

In this case g = 1 and we number turning points and regular singular points as
follows:

a0 = −3, a1 = −1/3, a2 = 1/3, a3 = 3,

b0 = exp(33iπ/24), b1 = exp(iπ/24), b2 = exp(17iπ/24), b3 = ∞.

The Stokes geometry of (4.6) is described in Figure 4. As is shown in Figure 4,
we take a base point x0 between a0 and a1 and use (the Borel sums of) WKB
solutions

ψ± =
1√
Sodd

exp

(
±
∫ x

x0

Sodddx

)
(4.7)

as a fundamental system of solutions around x0. In Figure 4, for the later use, we
draw (in blue) a path Ck (0 ≤ k ≤ g + 2) of analytic continuation which starts
from x0 and returns to x0 after encircling a regular singular point bk once in an
anticlockwise manner, and also (in red) a path γj (0 ≤ j ≤ 2g + 1) which starts

from x0 and ends at a turning point aj . Note that the branch of
√
Q(x) is chosen
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Figure 4 : Stokes geometry of Eq. (4.6)

(wiggly lines designate cuts to define
√
Q(x)).

here so that
√
Q(x) ∼ 1/x holds near x = ∞. This choice of the branch of

√
Q(x)

assures

ℜ c1,ℜ c2 > 0, ℜ c0,ℜ c3 < 0

and hence it follows from Proposition 4.2 that on a Stokes curve flowing into b1 or
b2 (resp., b0 or b3) the connection formula (2.30) of type (−) (resp., (2.29) of type
(+)) holds. In what follows we also use the following notations:

ν±k := exp

(
iπ
(
1±

√
4c2kη

2 + 1
))

(k = 0, . . . , g + 2), (4.8)

uj := exp

(
2

∫

γj

Sodddx

)
, ujk := u−1

j uk (j, k = 0, . . . , 2g + 1). (4.9)

Computation of monodromy matrices Ak along Ck

Since π1(P
1(C) \ S, x0) is generated by Ck, it suffices to compute a mon-

odromy matrix Ak = ACk
along Ck (k = 0, 1, 2, 3). Let us first consider the

computation of A2 along C2.

As is shown in Figure 4, C2 crosses three Stokes curves and at each crossing
point a Stokes phenomenon described by Theorem 2.9 occurs. For example, at the
first crossing point C2 crosses a Stokes curve emanating from a turning point a1.
Note that on this Stokes curve the connection formula (2.30) of type (−) holds, as
was noted before. Since (2.30) is described in terms of the WKB solutions

ϕ
(1)
± =

1√
Sodd

exp

(
±
∫ x

a1

Sodddx

)
(4.10)
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normalized at the turning point a1 where the Stokes curve in question emanates,
we factorize the WKB solutions (4.7) as

ψ± = ϕ
(1)
± exp

(
±
∫

γ1

Sodddx

)
. (4.11)

For the WKB solutions ϕ
(1)
± normalized at a1 we have the connection formula

(2.30). Hence for ψ± the following holds:

Ψ+  Ψ+, Ψ−  Ψ− − i exp

(
−2

∫

γ1

Sodddx

)
Ψ+ = Ψ− − iu−1

1 Ψ+, (4.12)

that is,

(Ψ+,Ψ−)  (Ψ+,Ψ−)

(
1 −iu−1

1

0 1

)
. (4.13)

The Stokes phenomenon at the second crossing point can be similarly computed
by using the WKB solutions

ϕ
(3)
± =

1√
Sodd

exp

(
±
∫ x

a3

Sodddx

)
(4.14)

normalized at a3 and the factorization

ψ± = ϕ
(3)
± exp

(
±
∫ a3

x0

Sodddx

)
. (4.15)

However, in this case the integration path γx0,a3
from x0 to a3 is not homotopic

to γ3; the closed path γx0,a3
(γ3)

−1 encircles two turning points b0, b1 and the cut
connecting a1 and a2. Thus the factorization formula (4.15) reads as

ψ± = ϕ
(3)
± exp

(
±
∫

γ3

Sodddx

)(
ν±0
)−1(

ν±1
)−1(

u21
)±1

(4.16)

and the Stokes phenomenon at the second crossing point is described by

(Ψ+,Ψ−)  (Ψ+,Ψ−)


1 −iu−1

3 u−2
21

ν+0 ν
+
1

ν−0 ν
−
1

0 1


 . (4.17)

It is now clear how to compute the Stokes phenomenon at the third crossing point
and consequently we obtain

A2 =

(
ν+2 0
0 ν−2

)
1 −iu−1

0

ν−2
ν+2

0 1




1 −iu−1

3 u212
ν+0 ν

+
1

ν−0 ν
−
1

0 1



(
1 −iu−1

1

0 1

)
. (4.18)

Note that after the analytic continuation along C2 Sodd changes its branch in view
of Proposition 4.2; this is the reason why the first matrix in the right-hand side of
(4.18) appears.
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The computation of the other matrices Ak is the same as that of A2. The
result is as follows:

A0 =

(
ν+0 0
0 ν−0

)


1 0

−iu1
ν+0
ν−0

1






1 0

−iu2
ν+0
ν−0

1






1 0

−iu2
ν+0 ν

+
1

ν−0 ν
−
1

1




×




1 0

−iu1u212
ν+0 ν

+
1

ν−0 ν
−
1

1



(

1 0
−iu3 1

)(
1 0

−iu0 1

)
, (4.19)

A1 =

(
ν+1 0
0 ν−1

)


1 0

−iu1
ν+1
ν−1

1






1 0

−iu2
ν+1
ν−1

1




×


1 −iu−1

2

ν−1
ν+1

0 1



(

1 0
iu2 1

)(
1 0
iu1 1

)
, (4.20)

A3 =

(
ν+3 0
0 ν−3

)
1 −iu−1

0

ν−3
ν+3

0 1






1 0

−iu0
ν+3
ν−3

1




×




1 0

−iu3u221
ν−0 ν

−
1 ν

−
2

ν+0 ν
+
1 ν

+
2

1



(
1 iu−1

0

0 1

)
. (4.21)

Finally, if we change a fundamental system of solutions as

ψ± =
1√
Sodd

exp

(
±
∫ x

x0

Sodddx

)
7−→ ψ̃± = exp

(
∓
∫

γ0

Sodddx

)
ψ±, (4.22)

then we find that every Ak can be described solely by {ν±k } and {ujk} (or {ν+k }
and {u01, u12} thanks to Remark 4.3 below).

Remark 4.3. Among {ν±k } and {ujk} we have the following relations:

ν+k ν
−
k = 1 (k = 0, 1, 2, 3),

ν+0 ν
+
1 ν

+
2 ν

+
3 u12u30 = 1.

In conclusion we have

Theorem 4.4. Every monodromy matrix can be described in terms of the following
two kinds of quantities :
(i) Characteristic exponents {ν±k } at regular singular points {bk}.
(ii) Contour integrals {ujk} of Sodd on the Riemann surface of

√
Q(x).
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5. Voros coefficients and wall-crossing formulas

As we have seen so far, the connection formula (or Theorems 2.8 and 2.9) is
very powerful to study the global behavior of solutions of second order ODEs.
The most important analytic ingredient of the connection formula is the movable
singular points y = ±y0(x) = ±

∫ x

a

√
Q(x)dx of the Borel transform of WKB

solutions. Here we should recall that, in applying the connection formula, we have
assumed Condition (ND), that is, non-existence of Stokes curves connecting two
turning points. In this section we consider the situation where this non-degeneracy
condition (Condition (ND)) is violated. In such a degenerate situation another kind
of singularities of the Borel transform of WKB solutions may play an important
role. The study of this degenerate situation is also related to the so-called “wall-
crossing formula” discussed by Gaiotto-Moore-Neitzke ([18]).

Let us consider the problem by using a simple example.

Example. (Weber equation) We consider the Weber equation
(
d2

dx2
− η2

(
c− x2

4

))
ψ = 0 (c > 0) (5.1)

and its WKB solutions

ψ± =
1√
Sodd

exp

(
±
∫ x

2
√
c

Sodddx

)
. (5.2)

Eq. (5.1) has two simple turning points x = ±2
√
c and they are connected by

a Stokes curve (“Stokes segment”), as is shown in Figure 2. In what follows we
study the effect of this Stokes segment.

As x = 2
√
c is a simple turning point, we can apply Theorem 2.9 to find that

the singularity locus of ψ+,B(x, y) form a cusp and have two branches y = ±y0(x)
near x = 2

√
c, where

y0(x) =

∫ x

2
√
c

√
c− x2

4
dx

(cf. Figure 3). These two branches of the singularity locus can be prolonged to
x = −2

√
c and they form again a cusp near x = −2

√
c. Repeating this process,

we thus obtain Figure 5 for the singularity locus of ψ+,B(x, y). They become a
“ladder-like” set and, as

2

∫ 2
√
c

−2
√
c

√
c− x2

4
dx = 2πc

holds, the singularities of ψ+,B(x, y) for fixed x have the periodic structure with
period 2πc. Among them the singularities −y0(x) + 2πnc (n ∈ Z) are often called
“fixed singularities”, as their relative location with respect to the reference singu-
larity −y0(x) does not depend on x.

The existence of fixed singularities can be rigorously confirmed by the fol-
lowing arguments.
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−2
√
c 2

√
c

x
y = −y0(x)

y = −y0(x) + 2πc

y = y0(x)

y = y0(x) + 2πc

y = y0(x)− 2πc

y

x

Figure 5 : Singularity locus of ψ+,B(x, y) for Eq. (5.1).

1st approach. We can verify the existence of fixed singularities by using the dif-
ferential equation that ψ±,B(x, y) satisfy:

(
∂2

∂x2
−
(
c− x2

4

) ∂2
∂y2

)
ψ±,B(x, y) = 0. (5.3)

According to the general result for the propagation of singularities of solutions for
linear partial differential equations established by the theory of microlocal analysis
(cf. [31]), the singularities of solutions of (5.3) propagate along a bicharacteristic
flow, that is, a Hamiltonian flow of the principal symbol of (5.3):





ẋ =
∂pB
∂ξ

= 2ξ,

ẏ =
∂pB
∂η

= −2
(
c− x2

4

)
η,

ξ̇ = −∂pB
∂x

= −x
2
η2,

η̇ = −∂pB
∂y

= 0,

(5.4)
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where ẋ = dx/dt etc. and pB(x, y, ξ, η) = ξ2 − (c − x2/4)η2 denotes the principal
symbol of (5.3). A solution of (5.4) with the initial condition (x(0), y(0), ξ(0), η(0)) =
(2
√
c, 0, 0, 1) is explicitly given by

x = 2
√
c cos t, y = −c(t− sin t cos t), ξ = −

√
c sin t, η = 1 (5.5)

and its projection to the base space C
2
(x,y), i.e.,

x = 2
√
c cos t, y = −c(t− sin t cos t) (5.6)

precisely describes the singularity locus of ψ±,B(x, y).

In this way the singularities of ψ±,B(x, y) can be analyzed by tracing the
bicharacteristic flow of the Borel transformed equation (5.3).

2nd approach. The second approach is more WKB-theoretic and provides us with
more detailed information about the fixed singularities.

We start with the following factorization of ψ±(x, η).

ψ±(x, η) = ψ
(∞)
± (x, η) exp

(
±
∫ ∞

2
√
c

(Sodd − ηS−1) dx

)
, (5.7)

where

ψ
(∞)
± (x, η) =

1√
Sodd

exp±
(
η

∫ x

2
√
c

S−1dx+

∫ x

∞
(Sodd − ηS−1)dx

)
(5.8)

is a WKB solution normalized at x = ∞. Thanks to Theorem 3.2, we find that

ψ
(∞)
± (x, η) is Borel summable near {x ∈ R |x > 2

√
c } and hence its Borel trans-

form ψ
(∞)
±,B(x, y) has no singularities near

{ y ∈ C | y = ∓y0(x) + ρ, ρ > 0 }

for a fixed x > 2
√
c. On the other hand, the second factor or its exponent

V :=

∫ ∞

2
√
c

(Sodd − ηS−1) dx, (5.9)

which is often called the “Voros coefficient”, has fixed singularities on the positive
real axis. As a matter of fact, V has the following expression in terms of the
Bernoulli numbers.

Proposition 5.1.

2V =

∞∑

n=1

21−2n − 1

2n(2n− 1)
B2n(icη)

1−2n, (5.10)

where B2n stands for the Bernoulli numbers defined by

w

ew − 1
= 1− w

2
+

∞∑

n=1

B2n

(2n)!
w2n. (5.11)



WKB analysis and Stokes geometry of differential equations 23

Proposition 5.1 is related to the shift operator with respect to the parameter
c and the explicit form (5.10) of V is derived from the following difference equation
for the solution S+ = S+(x, c, η) of the Riccati equation associated with (5.1). (To
clarify the dependence on the parameter c we here use the notation S+(x, c, η).)

S+(x, c− η−1i, η)− S+(x, c, η) =
d

dx
log
(
η−1S+(x, c, η)− i

x

2

)
. (5.12)

Eq. (5.12) is an immediate consequence of the following commutation relation.
(
d

dx
− i

x

2
η

)(
d2

dx2
− η2

(
c− x2

4

))
=

(
d2

dx2
− η2

(
c− η−1i− x2

4

))( d

dx
− i

x

2
η

)
.

(5.13)
Using (5.12), we can verify that 2V satisfies a difference equation

φ(σ + 1)− φ(σ) = 1 + log

(
1 +

1

2σ

)
− (σ + 1) log

(
1 +

1

σ

)
, (5.14)

where σ = icη. Since the right-hand side of (5.10) is the unique formal solution of
the difference equation (5.14), we obtain Proposition 5.1.

It follows from Proposition 5.1 that

VB(y) =
1

4y

(
1

ey/(2ic) − 1
+

1

ey/(2ic) + 1
− 2ic

y

)
, (5.15)

which tells us that VB(y) has simple poles at y = 2mπc (m ∈ Z\{0}) with residues
(−1)m−1/(4πim). This verifies VB , and hence ψ±,B as well, has fixed singularities.
Furthermore, as the Borel sum of the Voros coefficient can be computed explicitly
by using (5.15) (in fact, Binet’s formula implies the Borel sum of 2V is given by

log
Γ(icη + 1/2)√

2π
− icη (log(icη)− 1)) (5.16)

for arg c < 0 (cf. [17, Section 1.9]) and

− log
Γ(−icη + 1/2)√

2π
− icη (log(icη)− 1))− πcη (5.17)

for arg c > 0, respectively), we obtain

Theorem 5.2. Let Ψ+(x, η) (resp., Ψ̃+(x, η)) denote the Borel sum of ψ+(x, η) for
x > 2

√
c when arg c < 0 (resp., arg c > 0). Then the following relation holds.

Ψ+ = (1 + exp(−2πcη))
−1/2

Ψ̃+(x, η). (5.18)

Thus a kind of Stokes phenomena occurs with WKB solutions of the Weber
equation (5.1) even when the parameter c varies (“parametric Stokes phenom-
ena”). Formula (5.18) exactly coincides with the wall-crossing formula discussed
by Gaiotto-Moore-Neitzke ([18]). It has been analyzed from the viewpoint of the
resurgent analysis by Pham and his collaborators (cf. [11], [13]). Note that, from
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the viewpoint of the resurgent analysis, (5.18) is equivalent to the following formula
for the alien derivative (in the sense of Ecalle) of ψ+,B at the fixed singularities:

△y=−y0(x)+2mπc ψ+,B(x, y) =
(−1)m

2m
ψ+,B(x, y − 2mπc). (5.19)

For more details we refer the reader to [35].

6. Exact WKB analysis for higher order ODEs

In this section we discuss generalization of the exact WKB analysis to higher order
linear ordinary differential equations

Pψ =

(
dm

dxm
+ ηp1(x)

dm−1

dxm−1
+ · · ·+ ηmpm(x)

)
ψ = 0. (6.1)

Here m ≥ 3 is an integer and η denotes a large parameter.

6.1. WKB solutions, Stokes geometry

Similarly to the case of second order equations, we can construct a WKB solution
of (6.1) of the form

ψj(x, η) = exp

(
η

∫ x

x0

ζj(x)dx

) ∞∑

n=0

ψj,n(x)η
−(n+1/2), (6.2)

where ζj(x) is a root of the characteristic equation of (6.1):

ζm + p1(x)ζ
m−1 + · · ·+ pm(x) = 0. (6.3)

For details of the construction of WKB solutions we refer the reader to [1], [2].

Definition 6.1. (i) A point x = a is said to be a turning point of (6.1) if (6.3)
has a multiple root at x = a. In other words, a turning point is a zero of the
discriminant of (6.3) in ζ. In particular, a simple zero of the discriminant is called
a simple turning point of (6.1). When ζj(a) = ζk(a) (j 6= k) holds at x = a, the
turning point x = a is said to be of type (j, k).
(ii) A Stokes curve of type (j, k) of (6.1) is, by definition, a curve defined by

ℑ
∫ x

a

(ζj(x)− ζk(x))dx = 0, (6.4)

where x = a is a turning point of type (j, k). Furthermore, if ℜ
∫ x

a
(ζj(x) −

ζk(x))dx > 0 holds in addition to (6.4), the Stokes curve is said to be of type
j > k.

In parallel with Theorem 2.9 the following theorem holds also for WKB so-
lutions of higher order equations.
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Theorem 6.2. Let x = a be a simple turning point of (6.1) of type (j, k). Then,
for suitably normalized WKB solutions ψj and ψk of (6.1), the following properties
hold in a neighborhood of (x, y) = (a, 0) :

(i) ψj,B(x, y) and ψk,B(x, y) are singular only along Γj ∪ Γk, where

Γj = { (x, y) | y = −
∫ x

a

ζj(x) dx }, Γk = { (x, y) | y = −
∫ x

a

ζk(x) dx }. (6.5)

(ii)

△y=−
∫ x
a

ζk(x)dxψj,B(x, y) = iψk,B(x, y), △y=−
∫ x
a

ζj(x)dxψk,B(x, y) = iψj,B(x, y).

(6.6)

Theorem 6.2 is proved in the following manner: We first consider the fac-
torization of the differential operator P to reduce the problem to that for second
order equations, and then use transformation theory similar to Theorem 3.6. To
be more specific, we prove the following two assertions.

Proposition 6.3. In a neighborhood of a simple turning point x = a, we can find
differential operators Q and R of order (m− 2) and 2, respectively, that satisfy

P = QR. (6.7)

Here Q and R have the form

Q =
dm−2

dxm−2
+ ηq1(x, η)

dm−3

dxm−3
+ · · ·+ ηm−2qm−2(x, η), (6.8)

R =
d2

dx2
+ ηr1(x, η)

d

dx
+ η2r2(x, η), (6.9)

where qj(x, η) =
∑

n≥0 qj,n(x)η
−n and rj(x, η) =

∑
n≥0 rj,n(x)η

−n are formal

power series in η−1 with holomorphic coefficients. Furthermore, the following con-
ditions are also satisfied.

(
ζm−2 + q1,0(x)ζ

m−3 + · · ·+ qm−2,0(x)
)∣∣∣

ζ=ζj(x) or ζk(x)
6= 0, (6.10)

ζ2 + r1,0(x)ζ + r2,0(x) = (ζ − ζj(x))(ζ − ζk(x)). (6.11)

Proposition 6.4. In a neighborhood of x = a, after the employment of the gauge
transformation

ψ 7−→
(
exp
(
−1

2
η

∫ x

a

r1(x, η) dx
))

ψ,

the second order differential equation Rψ = 0 in Proposition 6.3 can be transformed
(in the sense of exact WKB analysis) to the Airy equation.

For more detailed explanation see [25], [1], [2].
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6.2. BNR equation — Appearance of new Stokes curves

Theorem 6.2 asserts that, as far as the local theory near a simple turning point is
concerned, the behavior of Borel resummed WKB solutions of higher order equa-
tions is the same as that of second order equations. However, the global behavior is
completely different, as Berk et al [8] pointed out by using the following example.

Example. (BNR equation)
(
d3

dx3
+ 3η2

d

dx
+ 2ixη3

)
ψ = 0. (6.12)

The characteristic equation of (6.12) is ζ3+3ζ +2ix = 0. Considering its discrim-
inant, we find that (6.12) has two turning points x = ±1. Figure 6 indicates the
configuration of Stokes curves of (6.12).

x

1−1

x∗

type 2 < 3 type 1 < 2

Figure 6 : Stokes curves of the BNR equation (6.12).

As Figure 6 shows, there exist crossing points of Stokes curves for (6.12).
Such crossing points cause the following serious difficulty: We consider the analytic
continuation of the Borel sum of a WKB solution Ψ3(x, η) near a crossing point
x∗ of Stokes curves. Assuming the Borel summability, we can expect that a Stokes
phenomenon of the form

Ψ3  Ψ3 + αΨ2 (resp., Ψ2  Ψ2 + βΨ1)

with some suitable constant α (resp., β) occurs on a Stokes curve of type 2 < 3
(resp., of type 1 < 2), in view of Theorem 6.2. Hence, by the analytic continuation
along γ+ (cf. Figure 7) Ψ3 should be changed to Ψ3+α(Ψ2+βΨ1), whereas by the
analytic continuation along γ− Ψ3 should become Ψ3+αΨ2. This is a contradiction
if αβ 6= 0, since Eq. (6.12) does not have any singularity near x∗!
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Figure 7 : Paths of analytic continuation near x∗.

To resolve this paradoxical problem Berk et al ([8]) proposed to introduce
a “new Stokes curve” of type 1 < 3 that emanates from x∗ and tends to ∞ (cf.
Figure 8). As a matter of fact, if a Stokes phenomenon of the form

Ψ3  Ψ3 − αβΨ1

occurs on it, the contradiction disappears. Berk et al confirmed the existence of a
new Stokes curve by investigating an integral representation of solutions of (6.12)
through the steepest descent method ([8], see also [34]).

If we consider the structure of singularities of ψ3,B(x, y) in y-plane (the so-
called Borel plane) near x∗, we find that at x∗ three relevant singular points
−yj(x) := −

∫ x
ζj(x)dx (j = 1, 2, 3) of ψ3,B(x, y) have the same imaginary part.

From the singularity structure the new Stokes curve is characterized as a curve
where the two distant singular points −y3(x) and −y1(x) have the same imaginary
part. Note that on the upper portion of the new Stokes curve −y1(x) is visible from
−y3(x), whereas it is not visible on the lower portion, as is indicated in Figure 8.
In this way a new Stokes curve is also related to the singularities of the Borel
transform ψj,B(x, y) of WKB solutions. Since the sheet structure of the Riemann
surface of ψj,B(x, y) is complicated, a new Stokes curve may become inert on some
portion of it.

6.3. Virtual turning points

The Borel transform ψj,B(x, y) of WKB solutions of the BNR equation (6.12)
satisfies (

∂3

∂x3
+ 3

∂3

∂x∂y2
+ 2ix

∂3

∂y3

)
ψj,B(x, y) = 0. (6.13)

Since the new Stokes curve of the BNR equation is related to the singularities of
ψj,B(x, y), let us investigate the bicharacteristic flow of (6.13) to understand the
singularity structure of ψj,B(x, y) and a new Stokes curve more thoroughly.
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Figure 8 : New Stokes curve passing through x∗ and singularities of
ψ3,B(x, y) in the Borel plane near x∗.

The bicharacteristic flow of (6.13) is defined by




ẋ =
∂pB
∂ξ

= 3ξ2 + 3η2,

ẏ =
∂pB
∂η

= 6ξη + 6ixη2,

ξ̇ = −∂pB
∂x

= −2iη3,

η̇ = −∂pB
∂y

= 0,

(6.14)

where pB(x, y, ξ, η) = ξ3+3ξη2+2ixη3 is the principal symbol of (6.13). A solution
of (6.14) with the initial condition (x(0), y(0), ξ(0), η(0)) = (1, 0,−i, 1) (note that
ξ(0) = −i is a double root of ζ3 + 3ζ + 2ix = 0 at x = 1) is given by

x = −4t3 − 6t2 + 1 = −(2t+ 1)(2t2 + 2t− 1),

y = −6it4 − 12it3 − 6it2 = −6it2(t+ 1)2,

ξ = −2it− i, η = 1.

(6.15)

Hence its projection to the base space C
2
(x,y), which describes the singularities of

ψj,B(x, y), becomes as is visualized in Figure 9. Near the simple turning points
x = ±1 two branches of singularities coalesce and form a cuspidal singularity. We
also observe that, in addition to these turning points, the singularities make a
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Figure 9 : Bicharacteristic curve of (6.13).

self-intersection point at (x, y) = (0,−3i/2) and two branches intersect there. In
fact, if we regard this self-intersection point (to be more precise, its x-component
x = 0) as a new kind of turning points and add a Stokes curve

ℑ
∫ x

0

(
ζ1(x)− ζ3(x)

)
dx = 0

emanating from this point to Figure 6 (i.e., the original configuration of Stokes
curves of (6.12)), we obtain Figure 10. Thus we can re-obtain a new Stokes curve
of the BNR equation.

This consideration naturally leads to the following

Definition 6.5. Let

PBψB =

(
∂m

∂xm
+ p1(x)

∂m

∂xm−1∂y
+ · · ·+ pm(x)

∂m

∂ym

)
ψB = 0 (6.16)

be the Borel transformed equation of (6.1) and

pB(x, y, ξ, η) = ξm + p1(x)ξ
m−1η + · · ·+ pm(x)ηm (6.17)

its principal symbol. Then we call the x-component of a self-intersection point of
a bicharacteristic curve of (6.16) a virtual turning point of (6.1). Here a bichar-
acteristic curve of (6.16) means the projection of a bicharacteristic flow of (6.16)
onto the base space C

2
(x,y).

We can verify that each singularity of ψj,B(x, y) (or, equivalently, a bichar-
acteristic curve) is locally described by y = −

∫ x
ζk(x)dx and at a virtual turning

point two branches of singularities of ψj,B(x, y) (for example, y = −
∫ x

ζk(x)dx
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x

1−1

x∗

2 < 3 1 < 21 < 3

3 < 2 2 < 13 < 1

t
“virtual turning point”PPPPP✐

Figure 10 : Complete Stokes geometry of the BNR equation (6.12).
(A dotted line indicates the inert portion of a new Stokes curve.)

and y = −
∫ x

ζl(x)dx with k 6= l) cross by its definition. Thus we can natu-
rally define a Stokes curve emanating from a virtual turning point (concretely by
ℑ
∫ x

(ζk(x)− ζl(x))dx = 0 in the above situation).

Remark 6.6. A virtual turning point was first introduced in [5] under the name of
“new turning point”.

Remark 6.7. A crossing point of Stokes curves is highly dependent on the way how
the Borel resummation is performed (for example, it heavily depends on arg η),
whereas the definition of a virtual turning point is independent of the way of
resummation. In this sense a virtual turning point is related to the operator P in
(6.1) more intrinsically than a new Stokes curve.

Once the definition of virtual turning points is provided, we obtain the fol-
lowing recipe for finding the proper Stokes geometry of a higher order equation
(6.1).

Recipe 6.8.

(a) Draw all Stokes curves that emanate from turning points defined in Defini-
tion 6.1.

(b) Draw the new Stokes curve that emanates from a virtual turning point.

(c) As the portion of a new Stokes curve near a virtual turning point is inert, we
draw the new Stokes curve in (b) by a dotted line until it hits a crossing point of
(new) Stokes curves.
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(d) When the new Stokes curve in (b) is of type j > l and it hits a crossing point
of a (new) Stokes curve of type j > k and that of type k > l, we use a solid line
to draw the portion of the new Stokes curve in (b) after passing over the crossing
point.

Practically speaking, Recipe 6.8 is powerful enough to discuss the Stokes
geometry (including new Stokes curves) of a higher order equation (6.1). However,
it is not complete: As there exist in general infinitely many virtual turning points
due to the existence of fixed singularities, it is necessary to exclude redundant
virtual turning points.

Example. (
d3

dx3
− 6(x+ 1)η2

d

dx
+ (4x+ 2i)η3

)
ψ = 0. (6.18)

As discussed in [5, Example 2.5], (6.18) has infinitely many virtual turning points.
Among them at most three are non-redundant and Figure 11 describes the com-
plete Stokes geometry of (6.18). (In Figure 11 wiggly lines designate cuts to define
a root ζj(x) of the characteristic equation associated with (6.18) as a single-valued
function.)

Figure 11 : Complete Stokes geometry of Eq. (6.18).

At present no complete criterion is available for the determination of redun-
dant virtual turning points. This problem is also related to the Borel summability
of WKB solutions of a higher order equation (6.1). To establish the Borel summa-
bility of WKB solutions of a higher order equation is still an open problem.

For more detailed explanation of virtual turning points and new Stokes curves
including the connection formula on it, we refer the reader to [25].
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Remark 6.9. Honda made a detailed study on the efficiency of Recipe 6.8 and gave
a satisfactory answer to the finiteness of non-redundant virtual turning points. See
[23] and [24] for his study.

Remark 6.10. Recently the Stokes geometry of higher order equations including
new Stokes curves (but no virtual turning points) is investigated under the name
of “spectral networks” also by Gaiotto-Moore-Neitzke ([19], [20]).

7. Some recent developments

In the final section we briefly discuss two recent developments of the exact WKB
analysis, both of which are related to the problem of new Stokes curves and virtual
turning points for higher order ODEs.

7.1. Borel summability of formal solutions of inhomogeneous second order equa-
tions

Let us first discuss the Borel summability of formal solutions of the following
inhomogeneous second order equations:

Pψ =

(
d2

dx2
+ ηp(x)

d

dx
+ η2q(x)

)
ψ = F (x), (7.1)

where p(x), q(x), F (x) are assumed to be polynomials for the sake of simplicity.
As one can easily confirm, Eq. (7.1) has a unique formal power series solution of
the form

ψ̂ = η−2ψ2(x) + η−3ψ3(x) + · · · , (7.2)

whose coefficients ψn(x) (n = 2, 3, . . .) are determined by the recursive relation

qψ2 = F, qψ3 + pψ′
2 = 0, qψn + pψ′

n−1 + ψ′′
n−2 = 0 (n ≥ 4).

In [29] we showed the following result for the Borel summability of ψ̂:

Theorem 7.1. Let ζ±(x) be the roots of ζ2 + p(x)ζ + q(x) = 0, i.e., ζ±(x) =

(−p±
√
p2 − 4q)/2.

Case I (The case where p(x) ≡ 0). Assume p(x) ≡ 0. Then, if a curve

ℑ
∫ x

x0

√
−q(x) dx = 0 passing through x0 does not flow into a turning point (i.e.,

x0 is not located on any Stokes curve of Pψ = 0), then ψ̂ is Borel summable at
x = x0.

Case II (The case where p(x) 6≡ 0). Suppose that the following three conditions
are satisfied:

(i) x0 is not located on any Stokes curve of Pψ = 0, that is, a curve ℑ
∫ x

x0

(ζ+−
ζ−) dx = ℑ

∫ x

x0

√
p2 − 4q(x) dx = 0 passing through x0 does not flow into a turning
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point.
(ii) A curve Γ0

± defined by

ℑ
∫ x

x0

(−ζ∓) dx = ℑ
∫ x

x0

p±
√
p2 − 4q

2
dx = 0, (7.3)

that is, a steepest descent path of ℜ
∫ x

x0

(−ζ∓) dx passing through x0, can be ex-

tended to x = ∞.
(iii) When Γ0

± crosses a Stokes curve of Pψ = 0 of type ± > ∓ at x = x1, then
a bifurcated path Γ1

∓ emanating from x = x1 defined by

ℑ
∫ x

x1

(−ζ±) dx = 0 (7.4)

is also extensible to x = ∞.

If these three conditions (i)-(iii) are satisfied, then ψ̂ is Borel summable at x = x0.

Remark 7.2. In Case II, if Γ0
± and/or Γ1

∓ cross other Stokes curves of Pψ = 0,
we further consider additional bifurcated paths emanating from crossing points
similarly defined as in (iii) and impose their extensibility to x = ∞.

An inhomogeneous second order equation can be thought of as a special
case of a third order homogeneous equation. (As a matter of fact, (7.1) can be
written as (d/dx)(F (x)−1Pψ) = 0.) Hence, Theorem 7.1 suggests the difficulty for
characterizing the Borel summability of formal solutions of higher order equations.

7.2. WKB analysis for completely integrable systems

The following equation is a variant of the BNR equation.

(
d3

dx3
+
c

2
η2

d

dx
+
x

4
η3
)
ψ = 0, (7.5)

where a parameter c is introduced into the coefficient of the first order term. If,
in addition, we consider a differential equation in the variable c, we obtain the
following holonomic system of differential equations in two variables (x1, x2) =
(x, c):





(
∂3

∂x31
+
x2
2
η2

∂

∂x1
+
x1
4
η3
)
ψ = 0,

(
η
∂

∂x2
− ∂2

∂x21

)
ψ = 0.

(7.6)
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Eq. (7.6) can be written also in the form of completely integrable systems of first
order equations as follows:





η−1 ∂

∂x1
Ψ = P (x)Ψ, P =




0 1 0
0 0 1

−x1/4 −x2/2 0


 ,

η−1 ∂

∂x2
Ψ = Q(x)Ψ, Q = P 2 +

x2
3

− η−1

4



0 0 0
0 0 0
1 0 0


 ,

(7.7)

where Ψ is an unknown 3-vector. Eq. (7.6) (or, equivalently, (7.7)) is called the
“Pearcey system” as a particular solution of (7.6) is given by the Pearcey integral.
In what follows we discuss the exact WKB analysis of the Pearcey system or, more
generally, of holonomic systems (or completely integrable systems).

For such a holonomic system with a large parameter η, making use of the
complete integrability condition, we can construct a WKB solution of the form

ψ(j) = exp

∫ x

ω(j) (7.8)

(j = 1, 2, 3 in the case of the Pearcey system), where ω(j) = S(j)dx1 + T (j)dx2 is
an infinite series of the closed 1-form:

S(j) = ηS
(j)
−1 + S

(j)
0 + η−1S

(j)
−1 + · · · , T (j) = ηT

(j)
−1 + T

(j)
0 + η−1T

(j)
−1 + · · · . (7.9)

As a matter of fact, the top order part ω
(j)
−1 = S

(j)
−1dx1 + T

(j)
−1 dx2 is determined

by some algebraic equations (for example, in the case of the Pearcey system,

(S
(j)
−1, T

(j)
−1 ) satisfies

(S
(j)
−1)

3 +
x2
2
S
(j)
−1 +

x1
4

= 0, T
(j)
−1 = (S

(j)
−1)

2

) and, once ω
(j)
−1 is fixed, the higher order parts ω

(j)
n = S

(j)
n dx1 + T

(j)
n dx2 (n ≥ 0)

are uniquely determined in a recursive manner.

Turning points and Stokes surfaces are defined in parallel with Definition 6.1.

Definition 7.3. (i) A point a = (a1, a2) ∈ C
2 is said to be a turning point of type

(j, k) if

(ω
(j)
−1 − ω

(k)
−1 )
∣∣∣
x=a

= 0, i.e., S
(j)
−1(a) = S

(k)
−1 (a) and T

(j)
−1 (a) = T

(k)
−1 (a) (7.10)

hold for some (j, k) with j 6= k.
(ii) A Stokes surface of type (j, k) is, by definition, a real hypersurface defined by

ℑ
∫ x

a

(ω
(j)
−1 − ω

(k)
−1 ) = 0, (7.11)

where a = (a1, a2) is a turning point of type (j, k).
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For example, by straightforward computations we find that the set of turning
points of the Pearcey system is explicitly given by

Λ = { (x1, x2) ∈ C
2 | 27x21 + 8x32 = 0 }. (7.12)

Note also that, by the definition, the section of the Stokes surfaces of the Pearcey
system (7.6) with x2 = c contains the Stokes curves of the BNR equation (7.5).

The following result of Hirose impressively shows an advantage of considering
the Pearcey system instead of considering the BNR equation.

Theorem 7.4. (Hirose [21]) The Stokes surface of the Pearcey system (7.6) con-
tains not only the Stokes curves of the BNR equation (7.5) but also its new Stokes
curves in their section with x2 = c.

The reason why the Stokes surface of (7.6) contains the new Stokes curves of
(7.5) is the following: If we change the parameter c (or x2) in (7.5), we encounter
the degenerate configuration where a Stokes curve emanating from a turning point
hits another turning point with different type at some value of c. As was discussed
in [3], the role of a new Stokes curve and that of an ordinary Stokes curve are
interchanged through such a degenerate configuration. Otherwise stated, by the
change of the parameter c a new Stokes curve of (7.5) is continuously deformed to
an ordinary Stokes curve. Thus, in C

2
(x1,x2)

new Stokes curves and ordinary Stokes

curves are connected and hence the Stokes surface of (7.6) inevitably contains the
new Stokes curves of (7.5).

Theorem 7.4 strongly suggests that the exact WKB analysis for holonomic
systems or completely integrable systems may play an important role also in the
analysis of new Stokes curves for higher order ODEs.

Another peculiar feature of the Pearcey system is that the set Λ of its turning
points has a unique cuspidal singularity at the origin (x1, x2) = (0, 0). At this
cuspidal singularity two turning points with different types coalesce. Furthermore,
the virtual turning point of the BNR equation (7.5) also coalesces there.

For this cuspidal singular point of the Pearcey system Hirose proves the
following intriguing result.

Theorem 7.5. (Hirose [22]) Under some genericity condition every completely
integrable system of two independent variables can be transformed (in the sense of
exact WKB analysis) to the Pearcey system at a cuspidal singularity of the set of
turning points.

For the proof of Theorem 7.5 see [22].
To clarify the implication of Theorem 7.5, let us consider, for example, the

following holonomic system:




(
∂3

∂x31
+

2

3
x2η

∂2

∂x21
+

1

3
x1η

2 ∂

∂x1
− α

3
η3
)
ψ = 0,

(
η
∂

∂x2
− ∂2

∂x21

)
ψ = 0.

(7.13)
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Eq. (7.13) is the so-called “(1, 4)-hypergeometric system”, an example of (conflu-
ent) hypergeometric systems of two variables. Note that, when x2 is fixed, (7.13)
is equivalent to (6.18) discussed in Section 6.3.

By a straightforward computation we confirm that the set of turning points
of (7.13) has three cuspidal singular points. Then Theorem 7.5 tells us that at each
cuspidal singular point the (1, 4)-hypergeometric system (7.13) can be transformed
to the Pearcey system. In particular, there exists a virtual turning point that
coalesces with two ordinary turning points with different types at each cuspidal
singularity. These three virtual turning points are all non-redundant and play an
important role in describing the complete Stokes geometry of the higher order
ODE (6.18) discussed in Section 6.3. In this way the cuspidal singularity of the
set of turning points of a completely integrable system is closely related to the
problem of (non-)redundant virtual turning points of a higher order ODE.

These two results of Hirose brings a new insight to the problem of new Stokes
curves and virtual turning points for higher order ODEs. It is the future problem to
develop the exact WKB analysis for completely integrable systems in a systematic
manner.
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Inst. H. Poincaré, 71 (1999), 1–94.

[14] J. Ecalle, Les fonctions résurgentes. Tome I, II, III. Publ. Math. d’Orsay, Univ.
Paris-Sud, 1981 (Tome I, II), 1985 (Tome III).

[15] , Cinq applications des fonctions résurgentes. Publ. Math. d’Orsay, 84T62,
Univ. Paris-Sud, 1984.

[16] , Weighted products and parametric resurgence. Analyse algébrique des per-
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[21] S. Hirose, On the Stokes geometry for the Pearcey system and the (1, 4) hypergeo-
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