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RECONSTRUCTION OF INERTIA GROUPS ASSOCIATED TO

LOG DIVISORS FROM A CONFIGURATION SPACE GROUP

EQUIPPED WITH LOG-FULL SUBGROUPS

KAZUMI HIGASHIYAMA

Abstract. In the present paper, we study configuration space groups. The

goal of this paper is to reconstruct group-theoretically various log divisors of a
log configuration space of a smooth log curve from the associated configuration
space group equipped with log-full subgroups.

0. Introduction

Let p, l be distinct prime numbers; k an algebraically closed field of characteristic

zero or p; S
def
= Spec(k); (g, r) a pair of nonnegative integers such that 2g−2+r > 0;

X log → S a smooth log curve of type (g, r) (cf. Notation 1.3, (iv)); n ∈ Z>1. In the
present paper, we study the n-th log configuration space X log

n associated to X log →
S (cf. Definition 2.1). The log scheme X log

n is a suitable compactification of the
usual n-th configuration space UXn associated to the smooth curve determined by

X log. Write Πn
def
= πpro-l

1 (X log
n ) for the pro-l configuration space group determined

by X log
n (cf. [MzTa], Definition 2.3, (i)), i.e., the maximal pro-l quotient of the

fundamental group of the log scheme X log
n . We shall refer to an irreducible divisor

of the underlying scheme of X log
n contained in the complement of UXn as a log

divisor of X log
n . The log divisor V determines an inertia group IV (≃ Zl) ⊂ Πn,

which plays a central role in the present paper. Let V1, . . . , Vn be distinct log

divisors of X log
n such that V1 ∩ · · · ∩ Vn ̸= ∅. Then we shall refer to P

def
= V1 ∩

· · · ∩ Vn as a log-full point (cf. Definition 2.2, (ii), and Remark 2.3, (ii)). The
log-full point P = V1 ∩ · · · ∩ Vn determines a log-full subgroup A(≃ IV1

× · · · ×
IVn ≃ Z⊕n

l ) ⊂ Πn (cf. Definition 2.2, (iii)). It is known that log-full subgroups
of a configuration space group may be characterized group-theoretically whenever
the configuration space group is equipped with a suitable action of a profinite
group (cf. [HMM], Theorem 3.7). In the present paper, we reconstruct group-
theoretically inertia groups associated to log divisors in a configuration space group
from the configuration space group equipped with log-full subgroups. Moreover, we
reconstruct group-theoretically inertia groups associated to tripodal divisors (cf.
Definition 3.1, (ii)) and drift diagonals (cf. Definition 3.1, (v)), as well as drift
collections (cf. Definition 8.14) and drift fiber subgroups (cf. Definition 9.1).

Our main result is as follows:

Theorem 0.1. For � ∈ {◦, •}, let p�, l� be distinct prime numbers; k� an alge-

braically closed field of characteristic zero or p�; S� def
= Spec(k�); (g�, r�) a pair
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of nonnegative integers such that 2g� − 2 + r� > 0;

X log� → S�

a smooth log curve of type (g�, r�); n� ∈ Z>1; X
log�
n� the n�-th log configuration

space associated to X log� → S�; Π� def
= πpro-l�

1 (X log�
n� );

ϕ : Π◦ ∼→ Π•

an isomorphism of profinite groups. We suppose that r� > 0; ϕ induces a bijection
between the set of log-full subgroups of Π◦ and the set of log-full subgroups of Π•.
Then the following hold:

(i) ϕ induces a bijection between the set of inertia groups of Π◦ associated to log

divisors of X log ◦
n◦ and the set of inertia groups of Π• associated to log divisors

of X log •
n• (cf. Theorem 5.3).

(ii) ϕ induces a bijection between the set of inertia groups of Π◦ associated to

tripodal divisors of X log ◦
n◦ and the set of inertia groups of Π• associated to

tripodal divisors of X log •
n• (cf. Theorem 6.4).

(iii) ϕ induces a bijection between the set of inertia groups of Π◦ associated to

drift diagonals of X log ◦
n◦ and the set of inertia groups of Π• associated to drift

diagonals of X log •
n• (cf. Theorem 7.3).

(iv) ϕ induces a bijection between the set of drift collections of Π◦ and the set of
drift collections of Π• (cf. Theorem 8.15).

(v) ϕ induces a bijection between the set of drift fiber subgroups of Π◦ and the set
of drift fiber subgroups of Π• (cf. Theorem 9.3).

Note that one may define the notion of a log-full point even if r = 0 (cf. [HMM],
Definition 1.1). Since there is no log-full point if r = 0, we however suppose that
r > 0 in the present paper. Note also that, roughly speaking, Theorem 0.1, (i),
asserts that we may extract group-theoretically a “geometric direct summand Zl”
(i.e., a log divisor) from “Z⊕n

l ” (i.e., a log-full subgroup).
This paper is organized as follows: In §1, we explain some notations. In §2, we

define log configuration spaces, log-full points, and log divisors. In §3, we define
tripodal divisors and drift diagonals, and we study the geometry of various log
divisors. In §4, we reconstruct scheme-theoretically non-degenerate elements (cf.
Definition 4.5, (i)) of a log-full subgroup. In §5, we reconstruct log divisors. In §6,
we reconstruct tripodal divisors. In §7, we reconstruct drift diagonals. In §8, we
reconstruct drift collections. In §9, we reconstruct drift fiber subgroups.

1. Notations

Notation 1.1. (i) Let G be a group. If we apply the notation “e” to an element
of G, then “e ∈ G” always denotes the identity element of G.

(ii) Let G be a group, H ⊆ G a subgroup, and α ∈ G. We write

ZG(H)
def
= {g ∈ G | gh = hg for any h ∈ H}

for the centralizer of H in G;

NG(H)
def
= {g ∈ G | gHg−1 = H}
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for the normalizer of H in G;

ZG(α)
def
= ZG(⟨α⟩) = {g ∈ G | gα = αg}.

Notation 1.2. Let Slog be an fs log scheme.

(i) Write S for the underlying scheme of Slog.
(ii) Write MS for the sheaf of monoids that defines the log structure of Slog.
(iii) Let s be a geometric point of S. Then we shall denote by I(s,MS) the ideal of

OS,s generated by the image of MS,s\O×
S,s via the homomorphism of monoids

MS,s → OS,s induced by MS → OS which defines the log structure of Slog.
(iv) Let s ∈ S and s a geometric point of S which lies over s. Write (MS,s/O×

S,s)
gp

for the groupification of MS,s/O×
S,s. Then we shall refer to the nonnegative

integer rank(MS,s/O×
S,s)

gp as the log rank at s. Note that one verifies easily

that rank(MS,s/O×
S,s)

gp is independent of the choice of s, i.e., depends only
on s.

(v) Let m ∈ Z. Then write

Slog≤m def
= {s ∈ S | the log rank at s is ≤ m}.

Note that Slog≤m is open in S.

(vi) Write US
def
= Slog≤0 and refer to US as the interior of Slog.

Notation 1.3. Let (g, r) be a pair of nonnegative integers such that 2g−2+r > 0.

(i) Write Mg,r for the moduli stack of smooth curves of type (g, r) over Z and

Mg,r for the moduli stack of pointed stable curves of type (g, r) over Z. Here,
we assume the marking sections to be ordered.

(ii) Write
Cg,r → Mg,r

for the tautological curve over Mg,r; Dg,r
def
= Mg,r \Mg,r for the divisor at

infinity.

(iii) Write Mlog

g,r for the log stack obtained by equipping the moduli stack Mg,r

with the log structure determined by Dg,r.

(iv) The divisor given by the union of the divisor of Cg,r corresponding to the

marked points with the inverse image in Cg,r of Dg,r determines a log structure

on Cg,r; we denote the resulting log stack by Clog

g,r. Thus, we obtain a morphism
of log stacks

Clog

g,r → Mlog

g,r

which we refer to as the tautological log curve overMlog

g,r. If S
log is an arbitrary

log scheme, then we shall refer to a morphism

C log → Slog

which is obtained as the pull-back of the tautological log curve via some

morphism Slog → Mlog

g,r as a stable log curve (of type (g, r)). If C → S is
smooth, i.e., any geometric fiber of C → S has no nodes, then we shall refer
to C log → Slog as a smooth log curve (of type (g, r)).

(v) A smooth log curve of type (0, 3) will be referred to as a tripod. A vertex of a
semi-graph of anabelioids of pro-l PSC-type (cf. [CmbGC], Definition 1.1, (i))
of type (0, 3) (cf. [CbTpI], Definition 2.3, (iii)) will be referred to as a tripod.
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2. Log configuration spaces and log divisors

Let p, l be distinct prime numbers; k an algebraically closed field of characteristic

zero or p; S
def
= Spec(k); (g, r) a pair of nonnegative integers such that 2g−2+r > 0;

X log → S

a smooth log curve of type (g, r); n ∈ Z>0. We suppose that

r > 0.

In the present §2, we define log configuration spaces, log-full points, and log divisors.

Definition 2.1. The smooth log curve X log over S determines a “classifying mor-

phism” S → Mlog

g,r. Thus, by pulling back the morphism Mlog

g,r+n → Mlog

g,r given

by forgetting the last n marked points via this morphism S → Mlog

g,r, we obtain a
morphism of log schemes

X log
n → S.

We shall refer to X log
n as the n-th log configuration space associated to X log → S.

Note that X log
1 = X log. Write X log

0
def
= S.

Definition 2.2. (i) Write

Πn
def
= πpro-l

1 (X log
n )

for the maximal pro-l quotient of the fundamental group of the log scheme
X log

n .
(ii) Let P be a closed point of Xn. We shall say that P is a log-full point of X log

n

if

dim(OXn,P /I(P,MXn)) = 0,

i.e., P is of maximal log rank (cf. Notation 1.2, (iv)).
(iii) Let P be a log-full point of X log

n and P log the log scheme obtained by restrict-
ing the log structure of X log

n to the reduced closed subscheme of Xn deter-

mined by P . Then we obtain an outer homomorphism πpro-l
1 (P log) → Πn. We

refer to Im(πpro-l
1 (P log) → Πn), well-defined up to conjugation, as a log-full

subgroup at P .
(iv) Let G be a semi-graph of anabelioids of pro-l PSC-type and G the underlying

semi-graph of G. Then we shall write

Cusp(G)

for the set of cusps of G and

Cusp(G)

for the set of cusps of G. Thus, we have a natural bijection Cusp(G) ∼→
Cusp(G).

(v) Let P be a point of X log
n . Then P parametrizes a pointed stable curve of type

(g, r+n) (cf. Definition 2.1), which thus determines a semi-graph of anabelioids
of pro-l PSC-type. We shall write GP for this semi-graph of anabelioids of pro-l
PSC-type.
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(vi) Let us fix an ordered set

Cr,n
def
= {c1, . . . , cr, x1

def
= cr+1, . . . xn

def
= cr+n}.

Then, by definition, for each point P of X log
n , we have a natural bijection

Cr,n
∼→ Cusp(GP ). In the following, let us identify the set Cusp(GP ) with

Cr,n.
(vii) We shall refer to an irreducible divisor of Xn contained in the complement

Xn \ UXn of the interior UXn of X log
n as a log divisor of X log

n . That is to
say, a log divisor of X log

n is an irreducible divisor of Xn whose generic point
parametrizes a pointed stable curve with precisely two irreducible components
(cf. Definition 2.1).

(viii) Let V be a log divisor of X log
n . Then we shall write GV for “GP ” in the case

where we take “P” to be the generic point of V .
(ix) For 1 ≤ i ≤ n, write pi : X

log
n → X log for the projection morphism of co-profile

{i} (cf. [MzTa], Definition 2.1, (ii)). Let ι
def
= (pi)1≤i≤n : X

log
n → X log×S · · ·×S

X log.

Remark 2.3. (i) By establishing a similar theory to the theory discussed in
[Hsh2], §3, one verifies easily that, for each finite collection of log divisors
V1, . . . , Vm, the intersection V1 ∩ · · · ∩ Vm is isomorphic, over S, to

Xi1 ×S (M0,i2+3 ×Z · · · ×Z M0,ij+3 ×Z S)

for some nonnegative integers j, i1, . . . , ij . Thus, the intersection V1∩· · ·∩Vm

is irreducible (cf. also [Hsh2], Proposition 3.1, (i)).
(ii) By the definition, together with (i), for distinct log divisors V1, . . . , Vn, if

V1 ∩ · · · ∩ Vn ̸= ∅, then P
def
= V1 ∩ · · · ∩ Vn is a log-full point.

3. Various log divisors

We continue with the notation of the preceding Section. We suppose that n ∈ Z>1.
In the present §3, we define various log divisors and study the geometry of various
log divisors.

Definition 3.1. (i) For positive integers 1 ≤ i < j ≤ n, write

πi,j : X ×S · · · ×S X → X ×S X

for the projection of the fiber product of n copies of X → S to the i-th and
j-th factors. Write δ′i,j for the inverse image via πi,j of the image of the
diagonal embedding X ↪→ X ×S X. Write δi,j for the uniquely determined
log divisor of X log

n whose generic point maps to the generic point of δ′i,j via
Xn → X×S · · ·×SX (cf. Definition 2.2, (ix)). We shall refer to the log divisor
δi,j as a naive diagonal of X log

n .
(ii) Let V be a log divisor of X log

n . We shall say that V is a tripodal divisor if one
of vertices of GV is a tripod.

(iii) Let y1, y2 ∈ Cr,n be distinct elements. We shall use the notation V (y1, y2) to
denote a tripodal divisor which satisfies the following condition (if it exists):
Since V (y1, y2) is a tripodal divisor ofX

log
n , GV (y1,y2) has precisely two vertices

v1, v2, one of which is a tripod. Let v1 be a tripod. (Note that since n > 1
and (it is immediate that) v2 is of type (g, n+r−1), v2 is not a tripod.) Then
y1, y2 are cusps of GV (y1,y2)|v1 (cf. [CbTpI], Definition 2.1, (iii)).
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(iv) Let V be a log divisor of X log
n . We shall say that V is a (g, r)-divisor if one

of vertices of GV is of type (g, r).
(v) Let V be a log divisor of X log

n . We shall say that V is a drift diagonal if there
exist a naive diagonal δ and an automorphism α of X log

n over S such that
V = α(δ).

Remark 3.2. (i) One verifies immediately that a tripodal divisor which satisfies
the condition in Definition 3.1, (iii), (i.e., “V (y1, y2) for fixed y1, y2”) is unique
(if it exists).

(ii) Let V be a tripodal divisor of X log
n . Then it follows immediately that there

exist distinct elements y1, y2 ∈ Cr,n such that V = V (y1, y2).

Proposition 3.3. The following hold.

(i) It holds that

{naive diagonals} = {V (xi, xj) | 1 ≤ i < j ≤ n}.

(ii) If (g, r) ̸= (0, 3), then

{tripodal divisors}
= {V (y1, y2) | y1, y2 ∈ Cr,n are distinct elements, {y1, y2} ̸⊆ {c1, . . . , cr}}.

(iii) If (g, r) = (0, 3), then

{tripodal divisors} = {V (y1, y2) | y1, y2 ∈ Cr,n are distinct elements}.

(iv) Let V be a tripodal divisor and α an automorphism of X log
n over S. Then

α(V ) is a tripodal divisor.

Proof. First, assertion (i) follows immediately from the various definitions involved.
Next, assertions (ii), (iii) follow immediately from Remark 3.2, (ii), together with
the definition of tripodal divisors. Finally, assertion (iv) follows from the fact that

α lifts to an automorphism of X log
n+1 relative to the natural morphism X log

n+1 → X log
n

(cf. [NaTa], Theorem D), which thus implies that GV is isomorphic to Gα(V ). �

Proposition 3.4. The following hold.

(i) It holds that

{naive diagonals} ⊆ {drift diagonals} ⊆ {tripodal divisors} ⊆ {log divisors}.

(ii) If (g, r) ̸= (0, 3), (1, 1), then

{naive diagonals} = {drift diagonals}.

(iii) If (g, r) = (0, 3) or (1, 1), then

{drift diagonals} = {tripodal divisors}.

Proof. First, we verify assertion (i). The first and third inclusions follow imme-
diately from the various definitions involved. The second inclusion follows from
Proposition 3.3, (i), (iv). This completes the proof of assertion (i). Next, assertion
(ii) follows from [CbTpII], Lemma 2.7, (iii). Finally, we consider assertion (iii).
Let us first suppose that (g, r) = (0, 3). Then it follows immediately that X log

n is

isomorphic to (Mlog

0,n+3)k
def
= Mlog

0,n+3×ZS over S, on which the symmetric group on
n+3 letters naturally acts. Thus, by considering the automorphism of Cr,n = C3,n

which permutes the third (resp. first; second; fourth) marked point to the (n+3)-rd
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(resp. fourth; third; (n+3)-rd) marked point, we obtain an automorphism α1 (resp.
α2; α3; α4) of X

log
n over S. Then it holds that

α1(V (xi, xn)) = V (xi, c3) (1 ≤ i ≤ n− 1), α4α1(V (x1, xn)) = V (xn, c3),

α2(V (xi, x1)) = V (xi, c1) (2 ≤ i ≤ n), α4α2(V (x1, xn)) = V (x1, c1),

α3α1(V (xi, xn)) = V (xi, c2) (1 ≤ i ≤ n− 1), α4α3α1(V (x1, xn)) = V (xn, c2),

α3α1α2(V (x1, xn)) = V (c1, c2), α1α4α3α1(V (x1, xn)) = V (c2, c3),

α2α1(V (x1, xn)) = V (c1, c3).

Thus, it follows from Proposition 3.3, (i), (iii), that every tripodal divisor is a drift
diagonal. This completes the proof of assertion (iii) in the case where (g, r) = (0, 3).

Next, suppose that (g, r) = (1, 1). Thus, the underlying schemeX ofX log = X log
1

is naturally equipped with a structure of elliptic curve over S. (The group operation
of this elliptic curve will be written additively.) Now we have two automorphisms
of UXn over S

α : UXn

∼→ UXn : (z1, . . . , zn) 7→ (zn − z1, . . . , zn − zn−1, zn),

β : UXn

∼→ UXn : (z1, . . . , zn) 7→ (z1, z1 − z2, . . . , z1 − zn)

which thus induce the automorphisms α, β of X log
n over S. Then

α(V (xi, xn)) = V (xi, c1) (1 ≤ i ≤ n− 1), β(V (xn, x1)) = V (xn, c1).

Thus, it follows from Proposition 3.3, (i), (ii), that every tripodal divisor is a drift
diagonal. This completes the proof of assertion (iii) in the case where (g, r) =
(1, 1). �

Definition 3.5. Let G be a semi-graph of anabelioids of pro-l PSC-type.

(i) We shall say that a vertex of G is a terminal vertex if precisely one node abuts
to it.

(ii) We shall say that a node of G is a terminal node if it abuts to a terminal
vertex.

(iii) Write

Node(G)
for the set of nodes of G.

(iv) Write

TerNode(G) ⊆ Node(G)
for the set of terminal nodes of G.

(v) Write

Vert(G)
for the set of vertices of G.

(vi) Write

Edge(G)
for the set of edges of G.

Proposition 3.6. Let P be a log-full point of X log
n and A a log-full subgroup at P .

The following hold.

(i) It holds that ♯Node(GP ) = n and GP has a precisely n + 1 vertices, one of
which is of type (g, r) and other vertices are tripods. Moreover, the underlying
semi-graph of GP is a tree.
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(ii) Write Node(GP ) = {e1, . . . , en} (cf. (i)). Then for each 1 ≤ i ≤ n, there exists
a unique log divisor Vi such that there exists a natural isomorphism of GVi with
(GP ) Node(GP )\{ei} (cf. [CbTpI], Definition 2.8) which preserves ordering of
the sets of cusps. In this situation, let us identify GVi with (GP ) Node(GP )\{ei}.
Moreover, these Vi’s satisfy that P = V1 ∩ · · · ∩ Vn and A = IV1 × · · · × IVn ,
where IVi ⊆ Πn is a suitable inertia group associated to Vi contained in A.

Proof. Assertion (i) and the first assertion of assertion (ii) follow immediately from
the various definitions involved. The final assertion of assertion (ii) follows from
[CbTpI], Lemma 5.4, (ii). �
Definition 3.7. Let P be a log-full point of X log

n and V1, . . . , Vn the log divisors
such that P = V1 ∩ · · · ∩ Vn (cf. Proposition 3.6, (ii)). We shall say that Vi is a
terminal divisor of P if there exists a terminal node e ∈ TerNode(GP ) such that
GVi = (GP ) Node(GP )\{e} (cf. Proposition 3.6, (ii)).

Lemma 3.8. Let P be a log-full point of X log
n and V1, . . . , Vn the log divisors such

that P = V1 ∩ · · · ∩ Vn (cf. Proposition 3.6, (ii)). The following hold.

(i) If Vi is a terminal divisor of P , then Vi is a tripodal divisor or a (g, r)-divisor.
(ii) If Vi is a tripodal divisor, then Vi is a terminal divisor of P .

Proof. Assertion (i) follows from Proposition 3.6, (i). Assertion (ii) follows imme-
diately from the various definitions involved. �
Theorem 3.9. For � ∈ {◦, •}, let p�, l� be distinct prime numbers; k� an alge-

braically closed field of characteristic zero or p�; S� def
= Spec(k�); (g�, r�) a pair

of nonnegative integers such that 2g� − 2 + r� > 0;

X log� → S�

a smooth log curve of type (g�, r�); n� ∈ Z>1; X
log�
n� the n�-th log configuration

space associated to X log� → S�; Π� def
= πpro-l�

1 (X log�
n� );

ϕ : Π◦ ∼→ Π•

an isomorphism of profinite groups. Then the following hold:

(i) (g◦, r◦, n◦) = (g•, r•, n•).
(ii) If (g�, r�) ̸= (0, 3), (1, 1), then ϕ induces a bijection between the set of fiber

subgroups (cf. [MzTa], Definition 2.3, (iii)) of Π◦ and the set of fiber subgroups
of Π•.

(iii) We suppose that (g�, r�) ̸= (0, 3), (1, 1). Write ι� : Π� → Π�1 × · · · × Π�1
for the outer homomorphism induced by X log�

n� → X log� ×S� · · · ×S� X log�

(cf. Definition 2.2, (ix)), where Π�1
def
= πpro-l

1 (X log�). Then ϕ induces a
commutative diagram

Π◦ ϕ //

ι◦

��

Π•

ι•

��
Π◦

1 × · · · ×Π◦
1

∼ // Π•
1 × · · · ×Π•

1.

Proof. Assertion (i) follows from [HMM], Theorem 2.4, (i). Assertion (ii) follows
from [MzTa], Corollary 6.3. Assertion (iii) follows from assertion (ii). �
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4. Reconstruction of non-degenerate elements of log-full subgroups

We continue with the notation of the preceding Section. In the present §4, we
reconstruct scheme-theoretically non-degenerate elements (cf. Definition 4.5, (i),
below) of a log-full subgroup (cf. Theorem 4.14, below).

Proposition 4.1. Let P be a log-full point of X log
n , V1, . . . , Vn the log divisors such

that P = V1 ∩ · · · ∩ Vn, and A = IV1 × · · · × IVn the log-full subgroup at P (cf.
Proposition 3.6, (ii)). The following hold.

(i) There exists a tripodal divisor in {Vi}1≤i≤n. Suppose that V1 is a tripodal
divisor. Thus, GV1 has precisely two vertices v1, v

′
1, one of which is a tripod.

Suppose that v1 is a tripod.
(ii) If r = 1, then there exists a (g, r)-divisor in {Vi}1≤i≤n. Suppose that Vn is a

(g, r)-divisor.
(iii) In the situation of (i), if (g, r) ̸= (0, 3), then there exists i0 ∈ {1, . . . , n} such

that xi0 is a cusp of GV1 |v1 (cf. [CbTpI], Definition 2.1, (iii)). In this case,

write p : X log
n → X log

n−1 for the projection morphism of profile {i0} (cf. [MzTa],
Definition 2.1, (ii)).

(iv) In the situation of (i), if (g, r) = (0, 3), then there exists i0 ∈ {1, . . . , 3 + n}
such that ci0 is a cusp of GV1 |v1 . In this case, write p : X log

n → X log
n−1 for the

morphism determined by the morphism (Mlog

0,n+3)k → (Mlog

0,n+2)k obtained by

forgetting the i0-th marked point (cf. the proof of Proposition 3.4, (iii))．

(v) In the situation of (iii) or (iv), it holds that V ′
1

def
= p(V1) = Xn−1 and V ′

i
def
=

p(Vi) is a log divisor of X log
n−1 (2 ≤ i ≤ n).

(vi) In the situation of (v), it holds that V ′
i ̸= V ′

j (1 ≤ i < j ≤ n).

(vii) In the situation of (v), it holds that p(P ) is a log-full point of X log
n−1.

(viii) In the situation of (iii) or (iv), for each (g, r), by abuse of notation, we write

p : Πn → Πn−1 for the outer homomorphism induced by p. Then A′ def
= p(A)

is a log-full subgroup of Πn−1 and we obtain exact sequences

1 // Πn/n−1
def
= Ker(p) // Πn

p // Πn−1
// 1

1 // IV1
// A

p // A′ // 1.

Proof. Assertions (i), (ii) follow from Proposition 3.6, (i), and Lemma 3.8, (i).
Assertion (iii) follows from Proposition 3.3, (ii). Assertion (iv) is immediate. As-

sertion (v) follows from our choice of p : X log
n → X log

n−1. We verify assertion (vi).
By assertion (v), it holds that V ′

1 ̸= V ′
i (1 < i ≤ n). Thus, we may assume without

lose of generality that GVi has precisely two vertices vi, v
′
i such that xi0 is a cusp

of GVi |v′
i
. Let us recall that we have identified Cusp(GVi), Cusp(GVj ) with Cr,n (cf.

Definition 2.2, (vi)). We assume that V ′
i = V ′

j . Then one verifies easily that GVj

has precisely two vertices vj , v
′
j such that

(Cusp(GVi |vi) ∩ Cusp(GVi)) ∪ {xi0} = Cusp(GVj |vj ) ∩ Cusp(GVj );

♯Cusp(GVi |vi) + 1 = ♯Cusp(GVj |vj
);

(Cusp(GVj
|
v′
j

) ∩ Cusp(GVj
)) ∪ {xi0} = Cusp(GVi

|v′
i
) ∩ Cusp(GVi

);



10 KAZUMI HIGASHIYAMA

♯Cusp(GVj |v′
j

) + 1 = ♯Cusp(GVi |v′
i
);

g(vi) = g(vj), g(v′i) = g(v′j),

where we write g(v(−)), g(v
′
(−)) for the “genus” of GV(−)

|
v(−)

,GV(−)
|
v′
(−)

(cf. [CbTpI],

Definition 2.3, (ii)). Thus, we obtain a contradiction (cf. our choice of p : X log
n →

X log
n−1). In particular, we conclude that V ′

i ̸= V ′
j . Assertion (vii) is immediate.

Assertion (viii) follows from assertion (v), (vii). �

Proposition 4.2. Let P be a log-full point of X log
n ; V, V1, . . . , Vn log divisors such

that P = V1 ∩ · · · ∩ Vn; IV an inertia group associated to V . Then it holds that

P ∈ V ⇐⇒ there exists a log-full subgroup A at P such that IV ⊂ A.

Proof. =⇒ is immediate. We consider ⇐=. We suppose that IV ⊂ A = IV1 × · · · ×
IVn . We apply induction on n.

First, we suppose that n = 2. Write pi : X
log
2 → X log

1 for the projection mor-
phism of profile {i} (i = 1, 2) and, by abuse of notation, pi : Π2 → Π1 for the outer
homomorphism induced by pi (i = 1, 2). Then we obtain exact sequences

1 // Ker(p1) // Π2
p1 // Π1

// 1,

1 // Ker(p2) // Π2
p2 // Π1

// 1.

Suppose that p1(IV ) = {e}, which thus implies that IV ⊂ Ker(p1). Then it
follows that IV may be regarded as an inertia subgroup of Ker(p1) associated to
a cusp of the fiber of p1. Now let us observe that one verifies easily that p1(P ) is
a log-full point. In particular, Ker(p1|A) is isomorphic to Zl. Moreover, one also
verifies easily that Ker(p1|A) may be regarded as an inertia subgroup of Ker(p1)
associated to a cusp or node of the fiber, at p1(P ), of p1. Thus, since IV ⊂ A, by
[CmbGC], Proposition 1.2, (i), it holds that IV = Ker(p1|A), which thus implies
that Ker(p1|A) is an inertia subgroup of (not a node but) a cusp. In particular,
it follows immediately that Ker(p1|A) = IVj for some j = 1, 2. Thus, by again
[CmbGC], Proposition 1.2, (i), we conclude that V = Vj . In particular, P ∈ V .

Suppose that pi(IV ) ̸= {e} (i = 1, 2). Then one verifies easily that pi(IV ), pi(A)
are log-full subgroups of Π1 (i = 1, 2). By [CmbGC], Proposition 1.2, (i), it holds
that pi(IV ) = pi(A) (i = 1, 2) and pi(V ) = pi(P ) (i = 1, 2). Then one verify easily
that there exists j = 1, 2 such that V = Vj . In particular, P ∈ V .

Next, we suppose that n ≥ 3, and that the induction hypothesis is in force.

Write pi : X
log
n → X log

n−1 for the projection morphism of profile {i} (i = 1, 2) and,
by abuse of notation, pi : Πn → Πn−1 for the outer homomorphism induced by pi
(i = 1, 2). Then we obtain exact sequences

1 // Ker(p1) // Πn
p1 // Πn−1

// 1

1 // Ker(p2) // Πn
p2 // Πn−1

// 1.

If p1(IV ) = {e}, then it follows immediately from a similar argument to the
argument applied in the proof in the case of n = 2 and “p1(IV ) = {e}” that there
exists 1 ≤ j ≤ n such that IV = IVj and V = Vj . In particular, P ∈ V .

If pi(IV ) ̸= {e} (i = 1, 2), one verifies easily that pi(A) is a log-full subgroup of
Πn−1 (i = 1, 2) and pi(IV ) is a inertia group associated to pi(V ) (i = 1, 2). Since
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pi(IV ) ⊂ pi(A) (i = 1, 2), by the induction hypothesis, pi(P ) ∈ pi(V ) (i = 1, 2).
Then one verify easily that there exists 1 ≤ j ≤ n such that V = Vj . In particular,
P ∈ V . �

Proposition 4.3. Let V,W be log divisors and IV , IW inertia groups associated to
V,W , respectively. Then it holds that

V = W ⇐⇒ there exists g ∈ Πn such that IV = gIW g−1.

Proof. It follows from a similar argument to the argument applied in the proof of
Proposition 4.2. �

Proposition 4.4. Let P1, P2 be log-full points of X log
n , A1 a log-full subgroup at

P1, and A2 a log-full subgroup at P2. Then it holds that

P1 = P2 ⇐⇒ there exists g ∈ Πn such that A1 = gA2g
−1.

In particular,

♯{log-full points} = ♯{conjugacy classes of log-full subgroups}.

Proof. The final assertion follows from the first assertion. Let us prove the first
assertion. =⇒ is immediate. We consider ⇐=. We suppose that A1 = A2. Let
V1, . . . , Vn be log divisors such that P1 = V1 ∩ · · · ∩ Vn. Thus, we obtain that
A1 = IV1×· · ·×IVn . In particular, for each 1 ≤ j ≤ n, IVj ⊂ A1 = A2. In particular,
it follows from Proposition 4.2 that P2 ∈ Vj . Thus, P2 ∈ V1 ∩ · · · ∩ Vn = P1. �

In the remainder of the present §4, we shall apply the notational convention
introduced in the statement of Proposition 4.1.

Definition 4.5. Let α ∈ A and

A = IV1 × · · · × IVn : α 7→ (a1, . . . , an).

(i) We shall say that α is scheme-theoretically non-degenerate if ai ̸= e for any i.
(ii) We shall say that α is group-theoretically non-degenerate if ZΠn(α) is an

abelian group.

Theorem 4.6. It holds that

{scheme-theoretically non-degenerate elements of A}

= {group-theoretically non-degenerate elements of A}.

Proof. If r ̸= 1, this follows from Claim 4.8 and Claim 4.11, below.
If r = 1, this follows from Claim 4.8, Claim 4.11, and Claim 4.13, below. �

Lemma 4.7. It holds that

NΠn(A) = A,

i.e., a log-full subgroup is normally terminal in Πn.

Proof. We apply induction on n. By the definition, NΠn(A) ⊃ A. Let α ∈ NΠn(A).

Since αAα−1 = A, it follows that p(α)A′p(α)−1 = A′, where A′ def
= p(A). Note that

it follows immediately from Proposition 4.1, (viii), that A′ is a log-full subgroup of
Πn−1. Since A′ is normally terminal (by the induction hypothesis and [CmbGC],
Proposition 1.2, (ii)), it follows that p(α) ∈ A′. Thus, p(NΠn(A)) ⊆ A′. Since
p(NΠn(A)) ⊃ p(A) = A′, it follows that p(NΠn(A)) = A′.
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By Proposition 4.1, (viii), NΠn(A) ∩ Πn/n−1 ⊃ IV1 . Let α ∈ NΠn(A) ∩ Πn/n−1.

Since αAα−1 = A, it follows that αIV1α
−1 ⊆ A. Thus, since α ∈ Πn/n−1, it follows

from Proposition 4.1, (viii), that αIV1α
−1 ⊆ A ∩Πn/n−1 = IV1 . By replacing α by

α−1, it follows that αIV1α
−1 = IV1 , i.e., that α ∈ NΠn/n−1

(IV1) = IV1 (cf. [CmbGC],

Proposition 1.2, (ii)). Thus, we conclude that NΠn(A) ∩Πn/n−1 = IV1 .
It follows from the above discussion that we have an exact sequence

1 // IV1
// NΠn

(A)
p // A′ // 1.

By the five lemma (cf. Proposition 4.1, (viii)), it follows that NΠn(A) = A. �

Claim 4.8. Let (a1, . . . , an) ∈ IV1 × · · · × IVn = A. If a1, . . . , an ̸= e, then
ZΠn(a1 · · · an) is an abelian group.

Proof. Let X log
n+1 → X log

n be the projection morphism of profile {n + 1}. This
projection induces an exact sequence

1 // Ker(Πn+1 → Πn) // Πn+1
// Πn

// 1,

which gives rise to an outer representation ρ : Πn → Out(Ker(Πn+1 → Πn)). It
follows that ρ is injective (cf. [Asd], Remark of Theorem 1). Then there exists an

isomorphism ΠGP

∼→ Ker(Πn+1 → Πn) such that ρ determines an isomorphism

A
∼→ Dehn(GP )

(cf. [CbTpI], Definition 4.4; [CbTpI], Proposition 5.6, (ii)), and, moreover, it holds
that

Aut(GP ) = NOutC(Ker(Πn+1→Πn))(Dehn(GP ))

(cf. [CbTpI], Theorem 5.14, (iii)).
Since A ≃ Z⊕n

l is an abelian group, to verify that ZΠn(a1 · · · an) is an abelian
group, it suffices to verify that ZΠn(a1 · · · an) = A. Since A is an abelian group and
a1 · · · an ∈ A ⊆ Πn, it follows that ZΠn(a1 · · · an) ⊃ A. By [NodNon], Theorem A,
and [CbTpI], Corollary 5.9, (ii), it follows that ρ(ZΠn(a1 · · · an)) ⊆ Aut(GP ). Thus,
it follows that

ρ(ZΠn(a1 · · · an)) ⊆ Aut(GP ) ∩ ρ(Πn) = NOutC(Ker(Πn+1→Πn))(Dehn(GP )) ∩ ρ(Πn)

= Nρ(Πn)(Dehn(GP )) = Nρ(Πn)(ρ(A)) = ρ(NΠn(A)).

In particular, ZΠn(a1 · · · an) ⊆ NΠn(A). By Lemma 4.7, it follows that

ZΠn(a1 · · · an) = A.

�

Definition 4.9. Let G be a semi-graph of anabelioids of pro-l PSC-type and G the
underlying semi-graph of G. Suppose that G is a tree.

(i) Let e ∈ Edge(G); v ∈ Vert(G) such that e abuts to v; b a branch of e that
abuts to v. By replacing e by open edges e1, e2 such that e1 abuts to v and
e2 abuts to the vertex ̸= v to which e abuts (resp. e1 abuts to v and e2 is an
edge which abuts to no vertex) if e ∈ Node(G) (resp. e ∈ Cusp(G)), we obtain
two connected semi-graphs. Write G ̸∋b for the semi-graph (among these two
connected semi-graphs) that does not contain b. Write G∋b for the semi-graph
(among these two connected semi-graphs) that contains b.
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(ii) Let e1, e2 ∈ Edge(G); b1, b′1 the two branches of e1; b2, b
′
2 the two branches of

e2. We suppose that G ̸∋b1 ∩ G ̸∋b2 = ∅. Write H for the semi-graph obtained
by considering the “intersection” of G∋b1 and G∋b2 . Then we define the semi-
graph of anabelioids of pro-l PSC-type

Gb1/b2

as follows: We take the underlying semi-graph of Gb1/b2 to be the semi-graph
obtained by “gluing” H, G ̸∋b1 , and G ̸∋b2 by the correspondence “the branch
of H corresponding to b1 ↔ the branch of G ̸∋b2 corresponding to b′2”, “the
branch of H corresponding to b2 ↔ the branch of G ̸∋b1 corresponding to b′1”.
Then the various connected anabelioids in G naturally determine a semi-graph
of anabelioids of pro-l PSC-type Gb1/b2 whose underlying semi-graph is the
above resulting semi-graph.

Proposition 4.10. Suppose that r ̸= 1 (resp. r = 1). Let 1 ≤ i ≤ n (resp.
1 ≤ i ≤ n− 1). Then there exists a log divisor H ̸= Vi such that

V1 ∩ · · · ∩ Vi−1 ∩H ∩ Vi+1 ∩ · · · ∩ Vn

is a log-full point.

Proof. It follows from Proposition 3.6, (ii), that there exists e ∈ Node(GP ) such
that GVi

= (GP ) Node(GP )\{e}. Let w1, w2 be distinct vertices of GP such that e
abuts to w1, w2.

First, let us suppose that w1, w2 are tripods. Let e, y1, y2 be cusps of GP |w1 and
e, y3, y4 cusps of GP |w2 , where y1, y2, y3, y4 ∈ (Cr,n

⨿
Node(GP )) \ {e} are distinct

elements.
Let b1 be a branch of y1 that abuts to w1; b2 a branch of y3 that abuts to

w2; G′ def
= (GP )b1/b2 (cf. Definition 4.9, (ii)). Then it follows immediately from

the definition that there exists a log divisor H ̸= Vi such that GH is naturally
isomorphic to G′ Node(G′)\{e} and V1 ∩ · · · ∩ Vi−1 ∩H ∩ Vi+1 ∩ · · · ∩ Vn is a log-full
point. This completes the proof of Proposition 4.10 in the case where w1, w2 are
tripods.

Thus, we may assume without loss of generality that w2 is not a tripod. Then it
follows from Proposition 3.6, (i), that w1 is a tripod and w2 is of type (g, r) ̸= (0, 3).
Next, let us observe that r ̸= 1. Indeed, if r = 1, then it follows immediately from
the fact that w2 is of type (g, r) ̸= (0, 3), together with the definition of Vn (cf.
Proposition 4.1, (ii)), that Vi = Vn. Thus, we obtain a contradiction (cf. our
assumption that i ≤ n−1 if r = 1). Thus, in summary, we are in the situation that
w1 is a tripod, w2 is of type (g, r) ̸= (0, 3), and r ̸= 1.

Let e, y1, y2 be cusps of GP |w1 , where y1, y2 ∈ (Cr,n

⨿
Node(GP ))\{e} are distinct

elements. Since r ̸= 0, 1, it follows that r + 1 ≥ 3. Let e, y3, . . . , yr+1 be cusps of
GP |w2 , where y3, . . . , yr+1 ∈ (Cr,n

⨿
Node(GP )) \ {e, y1, y2} are distinct elements.

Let b1 be a branch of y1 that abuts to w1; b2 a branch of y2 that abuts to w1; b3 a
branch of y3 that abuts to w2; GP the underlying semi-graph of GP . Then it holds
that Cusp((GP ) ̸∋b1) ∩ {c1, . . . , cr} = ∅ or Cusp((GP ) ̸∋b2) ∩ {c1, . . . , cr} = ∅. We

suppose that Cusp((GP )̸∋b2)∩{c1, . . . , cr} = ∅. Let G′ def
= (GP )b1/b3

. Then it follows
immediately from the definition that there exists a log divisor H ̸= Vi such that GH

is naturally isomorphic to G′ Node(G′)\{e} and V1 ∩ · · · ∩ Vi−1 ∩H ∩ Vi+1 ∩ · · · ∩ Vn

is a log-full point. �
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Claim 4.11. Suppose that r ̸= 1 (resp. r = 1). Let 1 ≤ i ≤ n (resp. 1 ≤ i ≤ n− 1)
and (a1, . . . , an) ∈ IV1 × · · · × IVn = A. Then ZΠn(a1 · · · ai−1ai+1 · · · an) is a non-
abelian group.

Proof. By Proposition 4.10, there exists a log divisor H ̸= Vi such that V1 ∩ · · · ∩
Vi−1 ∩H ∩ Vi+1 ∩ · · · ∩ Vn is a log-full point. Since

a1 · · · ai−1ai+1 · · · an ∈ IV1 × · · · × IVn , IV1 × · · · × IVi−1 × IH × IVi+1 × · · · × IVn

and IV1 × · · · × IVn , IV1 × · · · × IVi−1 × IH × IVi+1 × · · · × IVn are abelian groups, it
follows that

IV1 ×· · ·×IVn , IV1 ×· · ·×IVi−1 ×IH×IVi+1 ×· · ·×IVn ⊆ ZΠn(a1 · · · ai−1ai+1 · · · an).
Since IV1 × · · · × IVn , IV1 × · · · × IVi−1 × IH × IVi+1 × · · · × IVn are distinct log-
full subgroups (cf. Proposition 4.4) and contained in ZΠn(a1 · · · ai−1ai+1 · · · an), by
Lemma 4.7, it follows that ZΠn(a1 · · · ai−1ai+1 · · · an) is a non-abelian group. �
Proposition 4.12. If r = 1, then there exists 1 ≤ i ≤ n such that q induces an
isomorphism V1∩· · ·∩Vn−1

∼→ X, where q : X log
n → X log is the projection morphism

of co-profile {i} (cf. [MzTa], Definition 2.1, (ii)).

Proof. Let w1 be the unique vertex of GP of genus g. (Note that since r = 1, it holds
that g ̸= 0.) Then it follows immediately from Proposition 3.6, (i), together with
our assumption that r = 1, that there exist a unique vertex w2 of GP and a unique
node e ∈ Node(GP ) such that e abuts to w1, w2 and, moreover, w2 is a tripod.
Let e, y1, y2 be cusps of GP |w2 , where y1, y2 ∈ (Cr,n

⨿
Node(GP )) \ {e} are distinct

elements; b1 a branch of y1 that abuts to w2; b2 a branch of y2 that abuts to w2;
GP the underlying semi-graph of GP . Then it holds that Cusp((GP )̸∋b1)∩{c1} = ∅
or Cusp((GP )̸∋b2) ∩ {c1} = ∅. We suppose that Cusp((GP )̸∋b2) ∩ {c1} = ∅. Now
let us observe that it follows immediately from the definition that there exists
xi ∈ {x1, . . . , xn} such that xi be a cusp of (GP ) ̸∋b2 . Then it follows immediately
from our choice of i that the projection morphism q of co-profile {i} satisfies that

q : V1 ∩ · · · ∩ Vn−1
∼→ X. �

Claim 4.13. Let (a1, . . . , an) ∈ IV1 ×· · ·×IVn = A. If r = 1, then ZΠn(a1 · · · an−1)
is a non-abelian group.

Proof. By Proposition 4.12, there exists 1 ≤ i ≤ n such that q : V1∩· · ·∩Vn−1
∼→ X,

where q : X log
n → X log is the projection morphism of co-profile {i}. By abuse of

notation, we write q : Πn → Π1 for the outer homomorphism induced by q. Let

V log
1 ∩ · · · ∩ V log

n−1 be the log scheme obtained by restricting the log structure of

X log
n to the reduced closed subscheme of Xn determined by V1 ∩ · · · ∩ Vn−1. Then

it follows immediately that the morphism V log
1 ∩ · · · ∩ V log

n−1 → X log induced by q
determines a sequence of profinite groups

πpro-l
1 (V log

1 ∩ · · · ∩ V log
n−1) → DV1 ∩ · · · ∩DVn−1 ↪→ Πn → Π1,

where DVj

def
= ZΠn(IVj ) is the decomposition group associated to Vj determined

by IVj . It follows from a consideration of objects parametrized by the various

schemes that V log
1 ∩ · · · ∩ V log

n−1 → X log is of type N⊕n−1 (cf. [Hsh], Definition 6;

the statement of [Hsh2], Proposition 3.2). Since V log
1 ∩ · · · ∩V log

n−1 → X log is of type

N⊕n−1, one verifies immediately that for any connected ket covering (i.e., connected
finite Kummer log étale morphism (cf. [Kato], (3.3), and [Naka], Definition (2.1.2),
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(ii))) Z log → X log, (V log
1 ∩ · · · ∩V log

n−1)×Xlog Z log → V log
1 ∩ · · · ∩V log

n−1 is a connected

ket covering, i.e., πpro-l
1 (V log

1 ∩ · · · ∩ V log
n−1) → Π1 is a surjection. In particular, the

compositeDV1∩· · ·∩DVn−1 ↪→ Πn → Π1 is a surjection, i.e., q(DV1∩· · ·∩DVn) = Π1.
Thus, it follows immediately from the definitions that

Π1 = q(DV1 ∩ · · · ∩DVn−1) = q(ZΠn(IV1) ∩ · · · ∩ ZΠn(IVn−1))

⊆ q(ZΠn(a1) ∩ · · · ∩ ZΠn(an−1)) ⊆ q(ZΠn(a1 · · · an−1)) ⊆ q(Πn) = Π1.

In particular, ZΠn(a1 · · · an−1) is a non-abelian group. �

Theorem 4.14. For � ∈ {◦, •}, let p�, l� be distinct prime numbers; k� an

algebraically closed field of characteristic zero or p�; S� def
= Spec(k�); (g�, r�) a

pair of nonnegative integers such that 2g� − 2 + r� > 0;

X log� → S�

a smooth log curve of type (g�, r�); n� ∈ Z>1; X
log�
n� the n�-th log configuration

space associated to X log� → S�; Π� def
= πpro-l�

1 (X log�
n� );

ϕ : Π◦ ∼→ Π•

an isomorphism of profinite groups; A◦ a log-full subgroup of Π◦. We suppose that

r� > 0 and A• def
= ϕ(A◦) is a log-full subgroup of Π•. Then ϕ induces a bijection

between the set of scheme-theoretically non-degenerate elements (cf. Definition 4.5,
(i)) of A◦ and the set of scheme-theoretically non-degenerate elements of A•.

Proof. This follows from Theorem 4.6. �

5. Reconstruction of log divisors

We continue with the notation of the preceding Section. In the present §5, we
reconstruct the set of inertia groups associated to log divisors (cf. Theorem 5.3,
below).

Definition 5.1. Let A be a log-full subgroup of Πn and a ∈ A. Write

Ia
def
= {b ∈ A | ⟨a⟩ ⊆ ⟨b⟩ or ⟨b⟩ ⊆ ⟨a⟩},

where we write (−) for the closed subgroup generated by (−).

Lemma 5.2. The following hold.

(i) There exist subgroups B0, . . . , Bn ⊆ A and elements bi,j ∈ A (0 ≤ i ≤ n − 1,
1 ≤ j ≤ n− 1) such that the following hold:
(a) B0 = {e}.
(b) bi,j ̸∈ B0 ∪ · · · ∪Bi (0 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1).
(c) Ibi,1 ( ⟨Ibi,1 , Ibi,2⟩ ( · · · ( ⟨Ibi,1 , . . . , Ibi,n−1⟩ (0 ≤ i ≤ n− 1).
(d) Bi+1 = ⟨Ibi,1 , . . . , Ibi,n−1⟩ (0 ≤ i ≤ n− 1).
(e) Every element of Bi is not (group-theoretically) non-degenerate (0 ≤ i ≤

n).
(ii) In the situation of (i), {Bi | 1 ≤ i ≤ n} = {

∏
1≤i≤n,i̸=i0

IVi | 1 ≤ i0 ≤ n}.
(iii) In the situation of (i), {IV1 , . . . , IVn} = {

∩
1≤i≤n,i̸=i0

Bi | 1 ≤ i0 ≤ n}.

Proof. Assertions (i), (ii) follow immediately from a straightforward consideration.
Assertion (iii) follows immediately from assertion (ii). �
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Theorem 5.3. For � ∈ {◦, •}, let p�, l� be distinct prime numbers; k� an alge-

braically closed field of characteristic zero or p�; S� def
= Spec(k�); (g�, r�) a pair

of nonnegative integers such that 2g� − 2 + r� > 0;

X log� → S�

a smooth log curve of type (g�, r�); n� ∈ Z>1; X
log�
n� the n�-th log configuration

space associated to X log� → S�; Π� def
= πpro-l�

1 (X log�
n� );

ϕ : Π◦ ∼→ Π•

an isomorphism of profinite groups. We suppose that r� > 0; ϕ induces a bijection
between the set of log-full subgroups of Π◦ and the set of log-full subgroups of Π•.
Then ϕ induces a bijection between the set of inertia groups of Π◦ associated to log

divisors of X log ◦
n◦ and the set of inertia groups of Π• associated to log divisors of

X log •
n• .

Proof. This follows from Theorem 4.14 and Lemma 5.2. �

6. Reconstruction of tripodal divisors

We continue with the notation of the preceding Section. In the present §6, we
reconstruct the set of inertia groups associated to tripodal divisors (cf. Theorem
6.4, below).

Lemma 6.1. Let V be a log divisor of X log
n . Write V log for the log scheme obtained

by equipping V with the log structure induced by the log structure of X log
n . Let

Y log → S be a smooth log curve of type (0, 3) and, for any m ∈ Z>0, Y
log
m the m-th

log configuration space associated to Y log → S.

(i) If V is a tripodal divisor, then V log≤1 is isomorphic to UXn−1 .

(ii) If V is a (g, r)-divisor, then V log≤1 is isomorphic to UYn−1 .
(iii) If V is neither a tripodal divisor nor a (g, r)-divisor, then there exists 1 ≤

m ≤ n− 2 such that V log≤1 is isomorphic to UYm ×S UXn−1−m .

Proof. This follows immediately from a consideration of objects parametrized by
the various schemes which appear in the statements. �

Definition 6.2. We shall say that a profinite group G is indecomposable if, for any
isomorphism of profinite groups G ≃ G1 ×G2, where G1, G2 are profinite groups,
it follows that either G1 or G2 is the trivial group. We shall say that a profinite
group G is decomposable if G is not indecomposable.

Lemma 6.3. Let V be a log divisor of X log
n and IV an inertia group associated to

V . The following holds.

(i) ZΠn(IV )/IV is either decomposable, isomorphic to Πn−1 (cf. Definition 2.2,

(i)), or isomorphic to Πtripod
n−1

def
= πpro-l

1 (Y log
n−1) (cf. Lemma 6.1).

(ii) If (g, r) ̸= (1, 1) or n ≥ 3, then it holds that V is a tripodal divisor if and only
if ZΠn(IV )/IV is isomorphic to Πn−1.

(iii) If (g, r) = (1, 1) and n = 2, then ♯{log divisors} = 4, ♯{tripodal divisors} = 3,
and ♯{log-full points} = 3.
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(iv) If (g, r) = (1, 1) and n = 2, then it holds that V is not a tripodal divisor if and
only if for any log-full subgroup A, there exists an inertia group associated to
V which is contained in A.

Proof. Assertions (i), (ii) follow from Lemma 6.1, and [Hsh], Corollary 2; Remark
B.2. Assertion (iii) follows immediately from the various definitions involved. As-
sertion (iv) follows from assertion (iii) and Proposition 4.2. �

Theorem 6.4. For � ∈ {◦, •}, let p�, l� be distinct prime numbers; k� an alge-

braically closed field of characteristic zero or p�; S� def
= Spec(k�); (g�, r�) a pair

of nonnegative integers such that 2g� − 2 + r� > 0;

X log� → S�

a smooth log curve of type (g�, r�); n� ∈ Z>1; X
log�
n� the n�-th log configuration

space associated to X log� → S�; Π� def
= πpro-l�

1 (X log�
n� );

ϕ : Π◦ ∼→ Π•

an isomorphism of profinite groups. We suppose that r� > 0; ϕ induces a bijection
between the set of log-full subgroups of Π◦ and the set of log-full subgroups of Π•.
Then ϕ induces a bijection between the set of inertia groups of Π◦ associated to

tripodal divisors of X log ◦
n◦ and the set of inertia groups of Π• associated to tripodal

divisors of X log •
n• .

Proof. Note that it follows from a well-known structure of the fundamental group
of a smooth log curve of type (g, r) over an algebraically closed field of character-

istic zero that πpro-l◦

1 (X log ◦) is isomorphic to πpro-l•

1 (X log •) if and only if l◦ = l•

and 2g◦ − 2 + r◦ = 2g• − 2 + r•; it follows from [Ind], Theorem 3.5, that Π� is
indecomposable. Thus, Theorem 6.4 follows from Theorem 5.3, Lemma 6.3, and
Theorem 3.9, (i). �

7. Reconstruction of drift diagonals

We continue with the notation of the preceding Section. In the present §7, we
reconstruct the set of inertia groups associated to drift diagonals (cf. Theorem 7.3,
below).

Lemma 7.1. The outer homomorphism ι : Πn → Π1×· · ·×Π1 induced by ι : X log
n →

X log×S · · ·×SX
log (cf. Definition 2.2, (ix)) is surjective whose kernel is the closure

of

⟨I | I is an inertia group associated to a naive diagonal ⟩.

Proof. It follows from [Hsh], Remark B.2, that in the commutative diagram

πpro-l
1 (UXn)

//

��

πpro-l
1 (UX1)× · · · × πpro-l

1 (UX1)

��
Πn ι

// Π1 × · · · ×Π1,

where πpro-l
1 (UXn) → πpro-l

1 (UX1) × · · · × πpro-l
1 (UX1) is the outer surjective homo-

morphism induced by the open immersion UXn ↪→ UX1 ×S · · · ×S UX1 , the two
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vertical arrows are isomorphisms. Thus, ι : Πn → Π1 × · · · × Π1 is surjective. By
[SGA1], Exposé X, Théorème 3.1,

Ker(ι) = ⟨αIα−1 | α ∈ Πn, I is an inertia group associated to a naive diagonal ⟩.
This completes the proof of Lemma 7.1. �

Lemma 7.2. Let V be a tripodal divisor and IV an inertia group associated to V .
Write ι : Πn → Π1 × · · · × Π1 for the outer homomorphism induced by ι : X log

n →
X log ×S · · · ×S X log (cf. Definition 2.2, (ix)). The following hold.

(i) If V is a naive diagonal, then ι(IV ) = {e}.
(ii) If V is not a naive diagonal, then ι(IV ) ̸= {e}.

Proof. Assertion (i) follows from Lemma 7.1. Assertion (ii) follows immediately
from Proposition 3.3, (i), (ii), (iii). �

Theorem 7.3. For � ∈ {◦, •}, let p�, l� be distinct prime numbers; k� an alge-

braically closed field of characteristic zero or p�; S� def
= Spec(k�); (g�, r�) a pair

of nonnegative integers such that 2g� − 2 + r� > 0;

X log� → S�

a smooth log curve of type (g�, r�); n� ∈ Z>1; X
log�
n� the n�-th log configuration

space associated to X log� → S�; Π� def
= πpro-l�

1 (X log�
n� );

ϕ : Π◦ ∼→ Π•

an isomorphism of profinite groups. We suppose that r� > 0; ϕ induces a bijection
between the set of log-full subgroups of Π◦ and the set of log-full subgroups of Π•.
Then ϕ induces a bijection between the set of inertia groups of Π◦ associated to drift

diagonals of X log ◦
n◦ and the set of inertia groups of Π• associated to drift diagonals

of X log •
n• .

Proof. Let us suppose that (g�, r�) = (0, 3) or (1, 1). Then it follows from Theorem
6.4 and Proposition 3.4, (iii), that ϕ induces a bijection between the set of inertia

groups of Π◦ associated to drift diagonals of X log ◦
n◦ and the set of inertia groups of

Π• associated to drift diagonals of X log •
n• . This completes the proof of Theorem 7.3

in the case where (g�, r�) = (0, 3) or (1, 1).

Let us suppose that (g�, r�) ̸= (0, 3), (1, 1). Write Π�1
def
= πpro-l�

1 (X log�). Then
it follows from Theorem 3.9, (iii), that ϕ induces a commutative diagram

Π◦ ϕ //

ι◦

��

Π•

ι•

��
Π◦

1 × · · · ×Π◦
1

∼ // Π•
1 × · · · ×Π•

1,

where ι� : Π� → Π�1 ×· · ·×Π�1 is the outer homomorphism induced by ι� : X log�
n� →

X log� ×S� · · · ×S� X log� (cf. Definition 2.2, (ix)). Thus, it follows from Theorem
6.4, Lemma 7.2, and Proposition 3.4, (ii), that ϕ induces a bijection between the set

of inertia groups of Π◦ associated to drift diagonals of X log ◦
n◦ and the set of inertia

groups of Π• associated to drift diagonals of X log •
n• . This completes the proof of

Theorem 7.3 in the case where (g�, r�) ̸= (0, 3), (1, 1). �
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8. Reconstruction of drift collections

We continue with the notation of the preceding Section. In the present §8, we
reconstruct drift collections (cf. Definition 8.14, below, and Theorem 8.15, below).

Definition 8.1. Let Λ be a set of drift diagonals. We shall say that Λ is a scheme-
theoretic drift collection if there exists an automorphism α of X log

n over S such that
Λ = {α(V ) | V is a naive diagonal}.

Definition 8.2. Let V1, V2 be distinct drift diagonals and IV1 , IV2 inertia groups
associated to V1, V2, respectively.

(i) Since V1, V2 are tripodal divisors (cf. Proposition 3.4, (i)), there exists a unique
vertex v1 (resp. v2) of GV1 (resp. GV2) such that v1, v2 are tripods (cf. Defini-
tion 3.1, (iii)). We shall say that {V1, V2} is a scheme-theoretically co-cuspidal
pair if there exists a cusp y ∈ Cr,n that is a cusp of GV1 |v1 , GV2 |v2 .

(ii) We shall say that {V1, V2} is a group-theoretically co-cuspidal pair if there is no
log-full subgroup A such that a conjugate of A contains IV1 and a conjugate
of A contains IV2 .

Lemma 8.3. Let V1, V2 be distinct drift diagonals. Then it holds that

{V1, V2} is a group-theoretically co-cuspidal pair

⇐⇒ there is no log-full point contained in V1 ∩ V2.

Proof. This follows from Proposition 4.2. �

Lemma 8.4. A scheme-theoretically co-cuspidal pair is a group-theoretically co-
cuspidal pair.

Proof. Let {V1, V2} be a scheme-theoretically co-cuspidal pair, v1 the unique vertex
of GV1 which is a tripod, and y1, y2 cusps of GV1 |v1 , where y1, y2 ∈ Cr,n are distinct
elements. We assume that there exists a log-full point P contained in V1 ∩ V2.
Then one verifies easily that for any generization G′ of GP , there exists a vertex
v of G′ such that y1, y2 are cusps of G′|v. Thus, it follows immediately from the
assumption that {V1, V2} is a scheme-theoretically co-cuspidal pair that P ̸∈ V2,
which thus implies a contradiction. �

Lemma 8.5. A group-theoretically co-cuspidal pair is a scheme-theoretically co-
cuspidal pair.

Proof. Let {V1, V2} be a pair of distinct drift diagonals which is not a scheme-
theoretically co-cuspidal pair. There exists a unique vertex v1 (resp. v2) of GV1

(resp. GV2) such that v1, v2 are tripods. Let y1, y2 be cusps of GV1 |v1 and y3, y4
cusps of GV2 |v2 , where y1, y2, y3, y4 ∈ Cr,n are distinct elements. Then one verifies
easily that there exist a log-full point P and terminal vertices t1, t2 of GP such
that t1, t2 are tripods, y1, y2 are cusps of GP |t1 , and y3, y4 are cusps of GP |t2 . In
particular, P ∈ V1∩V2. Thus, {V1, V2} is not a group-theoretically co-cuspidal pair
(cf. Lemma 8.3). �

Definition 8.6. Let V1, V2, V3 be distinct drift diagonals.

(i) Since V1, V2, V3 are tripodal divisors, there exists a unique vertex v1 (resp.
v2, v3) of GV1 (resp. GV2 , GV3) such that v1, v2, v3 are tripods. We shall say
that {V1, V2, V3} is a scheme-theoretically co-cuspidal triple if there exist cusps
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y1, y2, y3 ∈ Cr,n such that y1, y2 are cusps of GV1 |v1 ; y2, y3 are cusps of GV2 |v2 ;
y1, y3 are cusps of GV3 |v3 .

(ii) We shall say that {V1, V2, V3} is a group-theoretically co-cuspidal triple if there
exist log divisors W2, . . . ,Wn such that IV1 × IW2 × · · · × IWn , IV2 × I ′W2

×
· · · × I ′Wn

, IV3 × I ′′W2
× · · · × I ′′Wn

are log-full subgroups, where I(−), I
′
(−), I

′′
(−)

are inertia groups of (−).

Lemma 8.7. Let V1, V2, V3 be distinct drift diagonals. Then it holds that {V1, V2, V3}
is a group-theoretically co-cuspidal triple if and only if there exist log divisors
W2, . . . ,Wn such that V1 ∩W2 ∩ · · · ∩Wn, V2 ∩W2 ∩ · · · ∩Wn, V3 ∩W2 ∩ · · · ∩Wn

are log-full points.

Proof. This follows from Proposition 4.4 and Proposition 4.2. �

Lemma 8.8. A scheme-theoretically co-cuspidal triple is a group-theoretically co-
cuspidal triple

Proof. Let {V1, V2, V3} be a scheme-theoretically co-cuspidal triple. Since V1, V2, V3

are tripodal divisors, there exists a unique vertex v1 (resp. v2, v3) of GV1 (resp. GV2 ,
GV3) such that v1, v2, v3 are tripods. Then there exist cusps y1, y2, y3 ∈ Cr,n such
that y1, y2 are cusps of GV1 |v1 ; y2, y3 are cusps of GV2 |v2 ; y1, y3 are cusps of GV3 |v3 .
Thus, there exists a log divisor W2 such that GW2 has a vertex w which satisfies the
conditions that w is a vertex of type (0, 4) (cf. [CbTpI], Definition 2.3, (iii)) and
y1, y2, y3 are cusps of GW2 |w. In particular, one verifies easily that {V1, V2, V3} is a
group-theoretically co-cuspidal triple (cf. Lemma 8.7). �

Lemma 8.9. A group-theoretically co-cuspidal triple is a scheme-theoretically co-
cuspidal triple

Proof. Let {V1, V2, V3} be a group-theoretically co-cuspidal triple. There exist
y1, y2 ∈ Cr,n such that V1 = V (y1, y2). By lemma 8.7, there exist log divisors
W2, . . . ,Wn such that V1 ∩W2 ∩ · · · ∩Wn, V2 ∩W2 ∩ · · · ∩Wn, V3 ∩W2 ∩ · · · ∩Wn

are log-full points. Let Q be a generic point of W2 ∩ · · · ∩Wn. Then there exists
a unique vertex v of GQ such that y1 is a cusp of GQ|v. Since V1 ∩W2 ∩ · · · ∩Wn

is a log-full point, v is a vertex of type (0, 4) and there exists y3 ∈ Cr,n such
that y1, y2, y3 are cusps of GQ|v. Then it follows immediately from the definitions
that {V1, V2, V3} = {V (y1, y2), V (y2, y3), V (y1, y3)}. Thus, {V1, V2, V3} is a scheme-
theoretically co-cuspidal triple. �

Definition 8.10. Let Λ be a set of drift diagonals such that ♯Λ = n(n−1)
2 . We shall

say that Λ is a group-theoretic drift collection if there exist distinct drift diagonals
Vi,j (1 ≤ i < j ≤ n) such that Λ = {Vi,j | 1 ≤ i < j ≤ n}, and, moreover, the
following hold:

(a) For any 1 ≤ i ≤ n − 2, {Vi,i+1, Vi+1,i+2} is a (group-theoretically) co-cuspidal
pair.

(b) For any 1 ≤ i < j ≤ n − 1, if j ̸= i + 1, then {Vi,i+1, Vj,j+1} is not a (group-
theoretically) co-cuspidal pair.

(c) For any 1 ≤ i < j ≤ n, if j ̸= i+1, {Vi,j , Vi,i+1, Vi+1,j} is a (group-theoretically)
co-cuspidal triple.

Theorem 8.11. Let Λ be a set of drift diagonals. Then Λ is group-theoretic drift
collection if and only if Λ is scheme-theoretic drift collection (cf. Definition 8.1).
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Proof. This follows immediately from Claim 8.12 and Claim 8.13, below. �
Claim 8.12. A scheme-theoretic drift collection is a group-theoretic drift collection.

Proof. Let Λ be a scheme-theoretic drift collection. Then it follows from Proposition
3.3, (i), that there exist distinct elements y1, . . . , yn ∈ Cr,n such that

Λ = {V (yi, yj) | 1 ≤ i < j ≤ n}.

Then one verifies easily that if we write Vi,j
def
= V (yi, yj), then Vi,j ’s satisfy the

condition of Definition 8.10, which thus implies that Λ is a group-theoretic drift
collection. �
Claim 8.13. A group-theoretic drift collection is a scheme-theoretic drift collection.

Proof. Let Λ be a group-theoretic drift collection. By Remark 3.2, (ii), and Def-
inition 8.10, (a), there exist y1, y2, y3 ∈ Cr,n such that V1,2 = V (y1, y2), V2,3 =
V (y2, y3). By Remark 3.2, (ii), and Definition 8.10, (a), (b), there exist y4, . . . , yn ∈
Cr,n such that Vi,i+1 = V (yi, yi+1). By Remark 3.2, (ii), and Definition 8.10, (c),
it holds that Vi,j = V (yi, yj). Thus, if (g, r) = (0, 3) or (1, 1), then it follows from
the proof of Proposition 3.4, (iii), that Λ = {V (yi, yj) | 1 ≤ i < j ≤ n} is a scheme-
theoretic drift collection. Moreover, if (g, r) ̸= (0, 3), (1, 1), then it follows from
Proposition 3.4, (ii), that Λ = {V (yi, yj) | 1 ≤ i < j ≤ n} is a scheme-theoretic
drift collection. �
Definition 8.14. We shall refer to {IV | V ∈ Λ} as a drift collection of Πn, where
Λ is a (group-theoretic) drift collection and IV is an inertia group of Πn associated
to V ∈ Λ.

Theorem 8.15. For � ∈ {◦, •}, let p�, l� be distinct prime numbers; k� an

algebraically closed field of characteristic zero or p�; S� def
= Spec(k�); (g�, r�) a

pair of nonnegative integers such that 2g� − 2 + r� > 0;

X log� → S�

a smooth log curve of type (g�, r�); n� ∈ Z>1; X
log�
n� the n�-th log configuration

space associated to X log� → S�; Π� def
= πpro-l�

1 (X log�
n� );

ϕ : Π◦ ∼→ Π•

an isomorphism of profinite groups. We suppose that r� > 0; ϕ induces a bijection
between the set of log-full subgroups of Π◦ and the set of log-full subgroups of Π•.
Then ϕ induces a bijection between the set of drift collections of Π◦ and the set of
drift collections of Π•.

Proof. This follows from Theorem 7.3 and Theorem 8.11. �

9. Reconstruction of drift fiber subgroups

We continue with the notation of the preceding Section. In the present §9, we re-
construct drift fiber subgroups (cf. Definition 9.1, below, and Theorem 9.3, below).

Definition 9.1. Let H be a closed subgroup of Πn. We shall say that H is a
drift fiber subgroup if there exist an automorphism α of X log

n over S and a fiber
subgroup F ⊆ Πn (cf. [MzTa], Definition 2.3, (iii)) such that H = β(F ), where β
is an automorphism of Πn which arises from α.
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Proposition 9.2. If (g, r) ̸= (0, 3), (1, 1), then

{drift fiber subgroups} = {fiber subgroups}.

Proof. This follows immediately from [CbTpII], Lemma 2.7, (iii). �

Theorem 9.3. For � ∈ {◦, •}, let p�, l� be distinct prime numbers; k� an alge-

braically closed field of characteristic zero or p�; S� def
= Spec(k�); (g�, r�) a pair

of nonnegative integers such that 2g� − 2 + r� > 0;

X log� → S�

a smooth log curve of type (g�, r�); n� ∈ Z>1; X
log�
n� the n�-th log configuration

space associated to X log� → S�; Π� def
= πpro-l�

1 (X log�
n� );

ϕ : Π◦ ∼→ Π•

an isomorphism of profinite groups. We suppose that r� > 0; ϕ induces a bijection
between the set of log-full subgroups of Π◦ and the set of log-full subgroups of Π•.
Then ϕ induces a bijection between the set of drift fiber subgroups of Π◦ and the set
of drift fiber subgroups of Π•.

Proof. For each j, write Π�j
def
= πpro-l�

1 (X log�
j ). Let F ◦ ⊂ Π◦ be a drift fiber

subgroup of Π◦. Then there exists a drift collection Λ◦ of Π◦ such that the following
holds:

Write ι◦ : Π◦ → Q◦ for the surjection obtained by taking the quo-
tient by the normal closed subgroup generated by the elements of
a drift collection Λ◦ of Π◦. Now it follows from Lemma 7.1 and
[MzTa], Corollary 3.4, that there exist n◦ surjections Q◦ → Π◦

1

which determine an isomorphism Q◦ ∼→ Π◦
1 × · · · ×Π◦

1. Then there
exists a surjection p◦ among these n◦ surjections whose kernel con-
tains F ◦.

Next, let us observe that we have a commutative diagram

Π◦ ϕ //

p◦

��

Π•

p•

��
Π◦

1
// Π•

1,

where p• is the surjection corresponding to p◦ via ϕ. It follows immediately from
Theorem 8.15, together with the definition p◦, that Ker(p�) has a natural structure
of configuration space group and F ◦ is a fiber subgroup of Ker(p◦). By [MzTa],

Corollary 6.3, F • def
= ϕ(F ◦) is a fiber subgroup of Ker(p•). Thus, again by the

definition of p◦, together with the various definitions involved, F • is a drift fiber
subgroup of Π•. �

Acknowledgements

I would like to thank Professor Yuichiro Hoshi and Professor Shinichi Mochizuki
for suggesting the topics and helpful discussions.



RECONSTRUCTION OF LOG DIVISORS 23

References

[Asd] M. Asada, The faithfulness of the monodromy representations associated with certain fam-
ilies of algebraic curves, J. Pure Appl. Algebra 159 (2001), 123-147.

[SGA1] A. Grothendieck and M. Raynaud, Revêtements Étales et Groupe Fondamental (SGA1),
Lecture Notes in Math. 224 (1971), Springer-Verlag.

[Hsh] Y. Hoshi, The exactness of the log homotopy sequence, Hiroshima Math. J. 39 (2009), no.
1, 61-121.

[Hsh2] Y. Hoshi, On the fundamental groups of log configuration schemes, Math. J. Okayama
Univ. 51 (2009), 1-26.

[NodNon] Y. Hoshi and S. Mochizuki, On the combinatorial anabelian geometry of nodally non-
degenerate outer representations, Hiroshima Math. J. 41 (2011), no. 3, 275-342.

[CbTpI] Y. Hoshi and S. Mochizuki, Topics surrounding the combinatorial anabelian geometry

of hyperbolic curves I: Inertia groups and profinite Dehn twists, Galois-Teichmüller Theory
and Arithmetic Geometry, 659-811, Adv. Stud. Pure Math., 63, Math. Soc. Japan, Tokyo,
2012.

[CbTpII] Y. Hoshi and S. Mochizuki, Topics surrounding the combinatorial anabelian geometry

of hyperbolic curves II: Tripods and Combinatorial Cuspidalization, RIMS Preprint 1762
(November 2012).

[Kato] K. Kato, Logarithmic structures of Fontaine-Illusie, Algebraic analysis, geometry, and
number theory (J.-I. Igusa, ed.), Johns Hopkins Univ. (1989), 191-224.

[Ind] A. Minamide, Indecomposability of Anabelian Profinite Groups, RIMS Preprint 1814 (Jan-
uary 2015).

[HMM] Y. Hoshi, A. Minamide and S. Mochizuki, Group-theoreticity of numerical invariants and
distinguished subgroups of configuration space groups, in preparation.

[CmbGC] S. Mochizuki, A combinatorial version of the Grothendieck conjecture, Tohoku Math
J. 59 (2007), 455-479.

[CmbCsp] S. Mochizuki, On the Combinatorial Cuspidalization of Hyperbolic Curves, Osaka J.

Math. 47 (2010), 651-715.
[MzTa] S. Mochizuki and A. Tamagawa, The Algebraic and Anabelian Geometry of Configuration

Spaces, Hokkaido Math. J. 37 (2008), no. 1, 75-131.
[NaTa] H. Nakamura and N. Takao, Galois Rigidity of pro-l Pure Braid Groups of Algebraic

Curves, Trans. Amer. Math. Soc. 350 (1998), 1079-1102.
[Naka] C. Nakayama, Logarithmic étale cohomology, Math. Ann. 308 (1997), 365-404.


	web-title
	RIMS1851

