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Abstract
Problems of allocating indivisible goods to agents in an efficient and fair manner

without money have long been investigated in the literature. The random assignment
problem is one of them, where we are given a fixed feasible (available) set of indi-
visible goods and a profile of ordinal preferences over the goods, one for each agent,
and we determine an assignment of goods to agents in a randomized way using lotter-
ies. A seminal paper of Bogomolnaia and Moulin (2001) shows a probabilistic serial
mechanism to give an efficient and envy-free solution to the assignment problem.

In this paper we consider an extension of the random assignment problem to
the case where we are given a family B of feasible sets of indivisible goods. In
particular we consider the case where B is a family of bases of a matroid. Under
the agents’ ordinal preferences over goods we show an extension of the probabilistic
serial mechanism to give an efficient and envy-free solution that probabilistically
makes a choice of a member (a base) of the family and its assignment to agents. The
theory of submodular optimization plays a crucial rôle in the extension.

Keywords: Random assignment, probabilistic serial mechanism, ordinal preference, match-
ings, matroids, independent flows, submodular optimization

1. Introduction
Problems of allocating indivisible goods to agents in a fair and efficient manner without
money have long been investigated in the literature (see, e.g., [19, 23, 1, 4, 13, 14, 3,
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10, 11, 2, 21]). Suppose that we are given a fixed feasible (available) set of indivisible
goods and a profile of ordinal preferences over the goods, one for each agent. Then,
using lotteries, we can guarantee fairness of a solution assigning available goods to agents
probabilistically. Such a problem is called the random assignment problem [4]. A seminal
paper of Bogomolnaia and Moulin [4] shows a probabilistic serial mechanism to give a
solution to the random assignment problem.

In this paper we consider an extension of the random assignment problem to the case
where we are given a family B of feasible sets of indivisible goods. In particular we
consider the case where B is a family of bases of a matroid (see [22, 18]). Note that the
random assignment problem considered in the literature treats only a single set of avail-
able indivisible goods. The random assignment problem with multiple indivisible goods
was also investigated in [5, 11, 14], which is not treated in the present paper. Paper [5]
also investigated extensions of the ordinary random assignment problem with additional
constraints, which are diffrent from our matroidal ones.

Under the agents’ ordinal preferences over goods we show an extension of the prob-
abilistic serial mechanism introduced by Bogomolnaia and Moulin [4] to give a solution
that makes a probabilistic choice of a member (a base) of the family and its assignment
to agents. We show that our extended probabilistic serial mechanism gives a solution
that is efficient and envy-free with respect to the partial order defined by the stochastic
dominance relation introduced by Bogomolnaia and Moulin [4].

The well-known Birkhoff-von Neumann theorem on bi-stochastic matrices shows that
every bi-stochastic matrix is expressed as a convex combination of permutation matrices,
which plays a crucial rôle in designing the probabilistic serial mechanism developed by
Bogomolnaia and Moulin [4]. On the other hand, our extended probabilistic serial mech-
anism heavily depends on the results of submodular optimization such as the integrality
of the independent flow polyhedra ([6, 8]), which generalizes the Birkhoff-von Neumann
theorem.

The present paper is organized as follows. Section 2 gives some definitions and pre-
liminaries to be used later. In Section 3 we describe the random assignment problem and
we first consider the base polytope of the given matroid as a set of divisible goods and
show a procedure Random Assignment to find an allocation of the divisible goods in an
efficient and fair manner. In Section 4 we consider our original problem of allocating the
indivisible goods and show how to design a lottery that realizes the probability distribution
of getting goods for each agent which is obtained by procedure Random Assignment.
Section 5 gives concluding remarks.
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2. Definitions and Preliminaries
Let N be a finite set of agents and E be that of goods. Each agent i ∈ N has an ordinal
preference ≻i over set E of goods, which is a linear ordering of E. Suppose that |N | = n
and |E| = m, where | · | denotes the cardinality. For any subset X ⊆ E denote by χX the
characteristic vector of X in RE , i.e., χX(e) = 1 for e ∈ X and χX(e) = 0 for e ∈ E \X .
We also write χe instead of χ{e} for e ∈ E.

For the ordinary random assignment problem considered in the literature we are given
one available (feasible) set of goods to be allocated (e.g., [4, 13, 3]). In this paper we deal
with a more general problem, where there exists a family B ⊆ 2E of available (feasible)
sets of goods that forms a family of bases of a matroid on E. We consider how to choose
one set B from among B and at the same time how to allocate B to agents in an efficient
and fair manner probabilistically.

A pair (E,B) of a finite nonempty set E and a family B ⊆ 2E is called a matroid with
a family B of bases if the following two hold ([22, 18]).

• B ̸= ∅,

• for any B1, B2 ∈ B and any e ∈ B1 \ B2 there exists e′ ∈ B2 \ B1 such that
(B1 \ {e}) ∪ {e′} ∈ B.

The rank function ρ : 2E → Z≥0 associated with matroid (E,B) is defined by

ρ(X) = max{|X ∩B| | B ∈ B} (∀X ⊆ E). (2.1)

Note that every base B ∈ B has the same cardinality equal to ρ(E). In the sequel we
assume without loss of generality that |N | = ρ(E), unless otherwise stated. (If |N | >
ρ(E), we may introduce dummy |N | − ρ(E) goods of coloops, while if |N | < ρ(E), we
may consider a truncation of (E,B) to have bases of cardinality |N |.)1

Two simple examples of matroids are given as follows. They will be used to show the
behavior of our solution in the next section.

Uniform matroids: For a positive integer k ≤ m(= |E|) every subset of cardinality k of
E is feasible, i.e.,

B = {X | X ⊆ E, |X| = k}.

When k = m(= |E|), B consists of only one base E, which is the one available set of
goods as is considered in the literature for the ordinary random assignment problem.

Graphic matroids: For a connected graph G = (V,E) with a vertex set V and an edge
set E every edge subset that forms a spanning tree is feasible, i.e., (E,B) is the graphic

1We can also treat the case when |N | > ρ(E) by imposing a matroidal constraint on N given by the
uniform matroid on N of rank ρ(E), without introducing dummy goods. See (4.7) for related arguments.
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matroid represented by graph G = (V,E) withB being the family of edge sets of spanning
trees.

For a given matroid (E,B) with its rank function ρ : 2E → Z≥0 let B(ρ)(⊂ RE) be
the base polytope of the matroid, which is given by the convex hull of all the characteristic
vectors χB in RE of bases B ∈ B and is represented by

B(ρ) = {x ∈ RE | ∀X ⊂ E : x(X) ≤ ρ(X), x(E) = ρ(E)}, (2.2)

where for any X ⊆ E we define x(X) =
∑

e∈X x(e) (see, e.g., [8]). We assume that
ρ({e}) = 1 for all e ∈ E without loss of generality. Also consider the lower hereditary
closure of the base polytope B(ρ) given by

P(ρ) = {x ∈ RE | ∀X ⊆ E : x(X) ≤ ρ(X)}, (2.3)

which is called the submodular polyhedron associated with ρ. Given a vector x ∈ P(ρ),
a subset X of E is called tight for x if we have x(X) = ρ(X), and there exists a unique
maximal tight set, denoted by sat(x), for x, which is equal to the union of all tight sets
for x. We also have

sat(x) = {e ∈ E | ∀α > 0 : x+ αχe /∈ P(ρ)}, (2.4)

which is the set of elements e ∈ E for which we cannot increase x(e) without leaving
P(ρ). (See [8] for more details about these concepts and related facts.) Matroid (E,B) is
often denoted by (E, ρ) as well.

3. Random Assignment
In the seminal paper [4] by Bogomolnaia and Moulin they proposed a new solution
through what is called the probabilistic serial (PS) mechanism from the point of view
of stochastic dominance when there is only one feasible set of goods. We extend the PS
mechanism so as to deal with the case where we are given a family B of feasible sets of
goods that forms a base family of a matroid (E,B) on E.

First, we consider the base polytope B(ρ) as a set of divisible goods and find an allo-
cation of the divisible goods in an efficient and fair manner.

3.1. Random assignment as an allocation of divisible goods
Let P be an N × E matrix satisfying the following two:

1. P (i, e) ≥ 0 for all i ∈ N and e ∈ E.
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2. Regarding each ith row Pi = (P (i, e) | e ∈ E) of P as a vector in RE
≥0, we have∑

i∈N

Pi ∈ B(ρ). (3.1)

Then we call P a random assignment matrix (or random assignment for short). Let us
define the base x∗

P associated with P by

x∗
P =

∑
i∈N

Pi. (3.2)

For each i ∈ N let agent i’s preference be given by

Li : ei1 ≻i e
i
2 ≻i · · · ≻i e

i
m, (3.3)

where {ei1, ei2, · · · , eim} = E and ei1 is the most favorite good for agent i. Let L be the
profile of preferences Li (i ∈ N). Based on the collection (a multiset) of the first (most
favorite) elements ei1 of all agents i ∈ N , define a nonnegative integral vector b(L) ∈ ZE

≥0

by
b(L) =

∑
i∈N

χei1
, (3.4)

where note that we may have ei1 = ej1 for distinct i, j ∈ N .
Denote the random assignment problem by P = (N,E,L = (Li | i ∈ N), (E, ρ)).

Our random assignment algorithm by the extended PS mechanism is described as follows.
During the execution of the following algorithm the current lists Li may get shorter be-
cause of removal of exhausted goods.

———————————————————————————————————
Random Assignment
Input: A preference profile L = (Li | i ∈ N) and a matroid (E, ρ) with ρ(E) ≤ |N |(=
n).
Output: A random assignment matrix P ∈ RN×E

≥0 .
Step 0: For each i ∈ N put xi ← 0 ∈ RE (the zero vector) and put S0 ← ∅, p← 1, and

x∗ ← 0.
Step 1: For current (updated) L = (Li | i ∈ N), using b(L) in (3.4), compute

λ∗ = max{λ ≥ 0 | x∗ + λb(L) ∈ P(ρ)}. (3.5)

For each i ∈ N put xi ← xi + λ∗χei1
.

Put x∗ ← x∗ + λ∗b(L) and Sp ← sat(x∗).
Step 2: Put T ← Sp \ Sp−1.
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Update Li (i ∈ N) by removing all elements of T from current Li (i ∈ N).
Step 3: If ρ(Sp) < ρ(E), then put p← p+ 1 and go to Step 1.

Otherwise (ρ(Sp) = ρ(E)) put P (i, e)← xi(e) for all i ∈ N and e ∈ E.
Return P .

———————————————————————————————————

For each agent i ∈ N the ith row sum
∑

e∈E P (i, e) of the output matrix P is equal
to ρ(E)/|N |. Note that the procedure works for any matroid with ρ(E) < |N | without
introducing dummy goods as well.

It is worth mentioning that the procedure of determining λ∗ in Step 1 is the same as
the monotone algorithm considered in [7] (also see [8, Sec. 9]), while a special case of the
same problem for multi-terminal network flows was also considered earlier in [15] and
later in [9].

To see the behavior of the procedure Random Assignment let us consider two illus-
trative examples as follows.

Example 1: Consider N = {1, 2, 3, 4} and E = {a, b, c, d}. We are given a uniform
matroid M = (E,B) of rank two, i.e.,

B = {X | X ⊂ E, |X| = 2}. (3.6)

Suppose that preferences of all agents are given as follows.

i ∈ N preference Li

1 a ≻1 b ≻1 c ≻1 d
2 a ≻2 c ≻2 b ≻2 d
3 a ≻3 c ≻3 d ≻3 b
4 b ≻4 a ≻4 d ≻4 c

(Here we consider the case when |N | > ρ(E).)
Then by the procedure Random Assignment we have

P =


a b c d

1 1/3 1/6 0 0
2 1/3 0 1/6 0
3 1/3 0 1/6 0
4 0 1/3 + 1/6 0 0

,

where

b(L) =
( a b c d

3, 1, 0, 0
)
, S1 = {a}, λ∗ = 1/3 for p = 1
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and
b(L) = (0, 2, 2, 0), S2 = {a, b, c, d}, λ∗ = 1/6 for p = 2

to get the random assignment matrix P . Also, vectors x∗
p on Tp = Sp \ Sp−1 for p = 1, 2

are given by

T1 = {a}, T2 = {b, c, d},
x∗
1(a) = 1, x∗

2(b) = 2/3(= 4/6), x∗
2(c) = 1/3(= 2/6), x∗

2(d) = 0.

Hence x∗
P = (1, 2/3, 1/3, 0). Note that {a}, {a, b, c}, and {a, b, c, d}(= sat(x∗

P )) are tight
sets for x∗

P .
Note that if we add dummy goods e and f of coloops, we may have

P =


a b c d e f

1 1/3 1/6 0 0 1/4 1/4
2 1/3 0 1/6 0 1/4 1/4
3 1/3 0 1/6 0 1/4 1/4
4 0 1/3 + 1/6 0 0 1/4 1/4

,

whose every row sum is equal to one.

Example 2: Let us consider Example 1 except that set {a, b} is excluded from the family
B of feasible sets given by (3.6), i.e.,

B = {X | X ⊂ E, |X| = 2, X ̸= {a, b}}. (3.7)

This is a graphic matroid, which can be represented by a graph shown in Figure 1.

�

�

� �

Figure 1: A graph with edge set E = {a, b, c, d}.
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Under the same preferences given in Example 1 we get

P =


a b c d

1 1/4 0 1/4 0
2 1/4 0 1/4 0
3 1/4 0 1/4 0
4 0 1/4 0 1/4

,

where

b(L) = (3, 1, 0, 0), S1 = {a, b}, λ∗ = 1/4 for p = 1,

b(L) = (0, 0, 3, 1), S2 = {a, b, c, d}, λ∗ = 1/4 for p = 2,

and each row sum of P is equal to 1/4 + 1/4 = 1/2. Also, vectors x∗
p on Tp = Sp \ Sp−1

for p = 1, 2 are given by

T1 = {a, b}, T2 = {c, d},
x∗
1(a) = 3/4, x∗

1(b) = 1/4, x∗
2(c) = 3/4, x∗

2(d) = 1/4.

Hence x∗
P = (3/4, 1/4, 3/4, 1/4).

3.2. Ordinal efficiency and envy-freeness
We show that the random assignment matrix P obtained by Random Assignment is an
efficient and envy-free allocation of divisible goods in B(ρ), where precise definitions of
efficiency and envy-freeness will be given below.

3.2.1. Ordinal efficiency

Let P and Q be random assignment matrices for Problem P = (N,E,L = (Li | i ∈
N), (E, ρ)). For each agent i ∈ N with preference relation ≻i given by ei1 ≻i · · · ≻i e

i
m,

define a relation (sd-dominance relation2)⪰d
i between the ith rows Pi and Qi of P and Q,

respectively, as follows.

Pi ⪰d
i Qi ⇐⇒ ∀ℓ ∈ {1, · · · ,m} :

ℓ∑
k=1

P (i, eik) ≥
ℓ∑

k=1

Q(i, eik). (3.8)

The random assignment matrix P is sd-dominated by Q if we have Qi ⪰d
i Pi for all i ∈ N

and P ̸= Q. We say that P is ordinally efficient if P is not sd-dominated by any other
random assignment ([4]).

2sd stands for stochastic dominance, which was introduced in [4].
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Let us define a (directed) graph H(P ) = (V,A) with a vertex set V and an arc set A
given by

V =
( ∪
i∈N

Ei
)
∪ E, (3.9)

A =
( ∪
i∈N

Ai
)
∪ A0 ∪ A∗, (3.10)

where each Ei is a disjoint copy of E, and Ai, A0, and A∗ are defined by

Ai = {(eik+1, e
i
k) | k = 1, · · · ,m− 1} (∀i ∈ N), (3.11)

A0 = {(ei, e) | i ∈ N, e ∈ E, ei ∈ Ei, ei is a copy of e}
∪{(e, ei) | i ∈ N, e ∈ E, ei ∈ Ei, ei is a copy of e, P (i, e) > 0}, (3.12)

A∗ = {(e, e′) | e, e′ ∈ E, e′ ∈ dep(x∗
P , e) \ {e}}. (3.13)

(See Figure 2 for a graph H(P ), where some of the broken arcs may not exist in A0.)
Here, we identify eik (k = 1, · · · ,m) appearing in (3.11) with the corresponding copies in
Ei for each i ∈ N . Also note that dep appearing in (3.13) is what is called the dependence
function ([8]) associated with the base polytope B(ρ), and dep(x, e) for any x ∈ B(ρ) and
e ∈ E is given by

dep(x, e) = {e′ ∈ E | ∃α > 0 : x+ α(χe − χe′) ∈ B(ρ)}. (3.14)

We now have the following theorem, which is a generalization of [4, Lemma 3].

Theorem 3.1: A random assignment P is ordinally efficient if and only if there exists no
directed cycle containing at least one arc of ∪i∈NA

i in H(P ) = (V,A) defined above.

(Proof) “Only if’ part: Let P be an ordinally efficient random assignment. Suppose to the
contrary that there exists a directed cycle in H(P ) = (V,A) that contains at least one arc
of ∪i∈NA

i. Then there exists such a directed cycle C in H(P ) that has no short-cut arc
taken from A∗. More precisely, let (eik+1, e

i
k) be an arc in C ∩ Ai for some i ∈ N and

k ∈ {1, · · · ,m− 1} and suppose that going from eik to eik+1 along the direction of C, we
find arcs of A∗ appearing in the order of (e1, e′1), · · · , (eℓ, e′ℓ). Then C is chosen so that
there is no short-cut arc (ep, e

′
q) ∈ A∗ with 1 ≤ p < q ≤ ℓ.

For a sufficiently small α > 0 define for each i ∈ N and e ∈ E

P ′(i, e) =


P (i, e) + α if a = (ei, e) ∈ C ∩ A0,
P (i, e)− α if a = (e, ei) ∈ C ∩ A0,
P (i, e) otherwise.

(3.15)

We can see from the choice of C that for a sufficiently small α > 0, P ′ is nonnegative
and x∗

P ′ is a base in B(ρ) (see [8, Lemma 4.5]). Hence P ′ is a random assignment and
sd-dominates P , a contradiction.
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Figure 2: The graph H(P ) with e11 = f , enm = f ′, and f ′ ∈ dep(x∗
P , f).

“If” part: Let P and Q be any random assignments such that P is sd-dominated by Q.
Modify the graph H(P ) = (V,A) by replacing A∗ by its subset

A∗ ← {(e, e′) ∈ A∗ | x∗
P (e) < x∗

Q(e), x
∗
P (e

′) > x∗
Q(e

′)}, (3.16)

where recall that x∗
P (e) =

∑
i∈N P (i, e) and x∗

Q(e) =
∑

i∈N Q(i, e) for all e ∈ E. We
can construct a nonnegative circulation φ : A→ R≥0 in H(P ) that satisfies

φ(ei, e) = max{0, Q(i, e)− P (i, e)}, (3.17)
φ(e, ei) = max{0, P (i, e)−Q(i, e)} (3.18)

for all arcs (ei, e), (e, ei) ∈ A0 with i ∈ N and e ∈ E with ei ∈ Ei being a copy of e and

∂φ(v) = 0 (∀v ∈ V ) (3.19)

as follows. (Here ∂φ(v) is the boundary of φ at v and ∂φ(v) = 0 means the flow conser-
vation at v.) For each i ∈ N put

φ(eik+1, e
i
k) =

k∑
ℓ=1

(
Q(i, eiℓ)− P (i, eiℓ)

)
≥ 0 (k = 1, · · · ,m− 1), (3.20)
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where the nonnegativity follows from the assumption that Q sd-dominates P . Equations
(3.17), (3.18), and (3.20) imply the flow conservation at every v ∈ Ei for all i ∈ N .
Moreover, since x∗

P and x∗
Q are bases in B(ρ), there exist nonnegative flow values φ(e, e′)

for all (e, e′) ∈ A∗ such that for each e ∈ E with x∗
Q(e) > x∗

P (e)

x∗
Q(e)− x∗

P (e) =
∑
{φ(e, e′) | e′ ∈ E with (e, e′) ∈ A∗} (3.21)

and for each e′ ∈ E with x∗
Q(e

′) < x∗
P (e

′)

x∗
P (e

′)− x∗
Q(e

′) =
∑
{φ(e, e′) | e ∈ E with (e, e′) ∈ A∗} (3.22)

(see [8] and [6, Lemma 9]). The flow conservation at every v ∈ E follows from (3.17),
(3.18), (3.21), and (3.22).

Note that the nonnegative circulation φ can be decomposed into positive flows along
elementary directed cycles Ck (k ∈ K) and that at least one flow value φ(a) for a ∈
∪i∈NA

i defined by (3.20) is positive since P ̸= Q. Hence there exists a directed cycle Ck

in H(P ) for some k ∈ K that contains at least one arc of ∪i∈NA
i. 2

Moreover, we show the following theorem. While we can show it based on Theorem
3.1, we give another direct proof of it, which may provide us further insight into the
ordinal efficiency. We will examine the relationship between Theorem 3.1 and a certain
minimum-cost flows in Section 3.4.

Theorem 3.2: The random assignment matrix P computed by Random Assignment is
ordinally efficient.

(Proof) By Procedure Random Assignment we get a random assignment P together
with a chain S0 = ∅ ⊂ S1 ⊂ · · · ⊂ Sp = E. Let Q be an arbitrary random assignment
and suppose that Q = P or Q sd-dominates P . It suffices to prove Q = P .

At the qth execution of Step 1 of Random Assignment define

Fq = {i ∈ N | ei1 ∈ Tq}. (3.23)

Let us denote ei1 (the top element in current Li) at the qth execution of Step 1 by ei1(q) and
suppose that for some integer q∗ ≥ 1 we have

Q(i, ei1(q)) = P (i, ei1(q)) (∀q = 1, · · · , q∗ − 1, ∀i ∈ Fq) (3.24)

and we execute the q∗th Step 1. Then, because of Step 1 of Random Assignment we
have ∑

i∈Fq

P (i, ei1(q)) = ρ(Sq)− ρ(Sq−1) (q = 1, · · · , q∗). (3.25)

11



Since Q = P or Q sd-dominates P , it follows from (3.24) that Q(i, ei1(q
∗)) ≥ P (i, ei1(q

∗))
for all i ∈ Fq∗ . Hence from (3.24) and (3.25) we must have

Q(i, ei1(q
∗)) = P (i, ei1(q

∗)) (∀i ∈ Fq∗), (3.26)

since we have
∑

i∈Fq∗
Q(i, ei1(q

∗)) ≤ ρ(Sq∗)−ρ(Sq∗−1). (Here,
∑q∗

q=1

∑
i∈Fq

Q(i, ei1(q)) ≤
ρ(Sq∗).)

Now, note that when q∗ = 1, (3.24) is void (and thus holds). Hence, by induction on
q = 1, · · · , p, we have shown Q = P . 2

3.2.2. Envy-freeness

We say a random assignment P is envy-free with respect to a profile of ordinal preferences
≻i for all i ∈ N if for all i, j ∈ N we have Pi ⪰d

i Pj .
We have the following theorem on envy-freeness. The proof is actually a direct adap-

tation of the one given by Bogomolnaia and Moulin [4] and Schulman and Vazirani [21]
for a non-matroidal problem setting.

Theorem 3.3: The random assignment matrix P computed by Random Assignment is
envy-free.
(Proof) It suffices to show that for any i ∈ N and k ∈ {1, · · · ,m} we have

k∑
ℓ=1

P (i, eiℓ) ≥
k∑

ℓ=1

P (j, eiℓ) (∀j ∈ N). (3.27)

Define

tik =
k∑

ℓ=1

P (i, eiℓ). (3.28)

When good eik is removed after an execution of Step 1, all goods eiℓ (ℓ = 1, · · · , k) have
been removed from E. It follows that for all j ∈ N the sum of possible values P (j, eiℓ)
for goods eiℓ (ℓ = 1, · · · , k) allocated to agent j is within tik in total. Hence we must have

tik ≥
k∑

ℓ=1

P (j, eiℓ) (∀j ∈ N). (3.29)

2

3.3. A lexicographic characterization of the solution
Recently, Bogomolnaia [2] and Schulman and Vazirani [21] have shown a lexicographic
characterization of the solution of the probabilistic serial mechanism for the ordinary
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random assignment problem. We show that their characterization extends to the random
assignment problem considered in the present paper.

For each i ∈ N and j = 1, · · · ,m define

Li(j) = {ei1, · · · , eij}, (3.30)

which is the set of top j goods in the preference list Li of agent i. Also let Q be any N×E
random assignment matrix and define for each j = 1, · · · ,m

Q(i, Li(j)) = Q(i, ei1) + · · ·+Q(i, eij). (3.31)

It should be noted that (Q(i, Li(j)) | i ∈ N, j ∈ {1, · · · ,m}) is obtained by a unimodular
transformation of (Q(i, eij) | i ∈ N, j ∈ {1, · · · ,m}) defined by (3.31).

Moreover, let us denote by T(Q(i, Li(j)) | i ∈ N, j ∈ {1, · · · ,m}) the linear ar-
rangement of values Q(i, Li(j)) for all i ∈ N and j ∈ {1, · · · ,m} in nondecreasing
order of magnitude. For simplicity we also write T(Q(i, Li(j))) as T(Q(i, Li(j)) | i ∈
N, j ∈ {1, · · · ,m}) in the sequel.

The lexicographic order among all T(Q(i, Li(j))) for all random assignment matri-
ces Q is defined as usual. For any two random assignment matrices P and Q suppose
that T(P (i, Li(j))) = (p1, p2, · · · , pnm) and T(Q(i, Li(j))) = (q1, q2, · · · , qnm). Then
we say T(P (i, Li(j))) is lexicographically greater than T(Q(i, Li(j))) if there exists an
integer k ∈ {1, · · · , nm} such that pi = qi for all i = 1, · · · , k − 1 and pk > qk.

We have the following theorem, whose proof is a direct adaptation of the one for
ordinary random assignment problem (with strict preferences) given by Bogomolnaia [2].

Theorem 3.4: The random assignment matrix P obtained by Random Assignment is
the unique lexicographic maximizer of T(Q(i, Li(j)) | i ∈ N, j ∈ {1, · · · ,m}) among
all random assignment matrices Q.

(Proof) Let Q be an arbitrary N × E random assignment matrix such that Q ̸= P . It
suffices to show that T(Q(i, Li(j))) is lexicographically smaller than T(P (i, Li(j))).

Since Q ̸= P , it follows from the procedure Random Assignment that there exists
a pair of i ∈ N and ℓ ∈ {1, · · · ,m} such that Q(i, Li(ℓ)) < P (i, Li(ℓ)). Let (i∗, ℓ∗) be
one such pair (i, ℓ) having the minimum value of Q(i, Li(ℓ)) and define for each i ∈ N

ℓi = min{j ∈ {1, · · · ,m} | P (i, Li(j − 1)) ≤ Q(i∗, Li∗(ℓ∗)) < P (i, Li(j))}, (3.32)

where we define P (i, Li(0)) = 0 and ℓi is well defined due to the definition of (i∗, ℓ∗).
Then it follows also from the procedure Random Assignment that

Q(i, Li(k)) = P (i, Li(k)) (∀i ∈ N, ∀k = 1, · · · , ℓi − 1), (3.33)
Q(i∗, Li∗(ℓ∗)) < P (i, Li(k)) (∀i ∈ N, ∀k = ℓi, · · · ,m). (3.34)

This implies that T(Q(i, Li(j))) is lexicographically smaller than T(P (i, Li(j))). 2
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3.4. Relation to minimum-cost independent flows
Let us define a graph H̄ = (V, Ā) with the vertex set V given by (3.9) and the arc set Ā
given by

Ā =
( ∪
i∈N

Ai
)
∪ Ā0, (3.35)

where Ai is given by (3.11) and Ā0 is given by

Ā0 = {(ei, e) | i ∈ N, e ∈ E, ei ∈ Ei, ei is a copy of e}. (3.36)

Let S̄+ = {eim | i ∈ N} be the set of entrances and S̄− = E be the set of exits. Moreover,
we consider a cost function γ : Ā → R. Denote N̄ = (H̄ = (V, Ā), S̄+, S̄−, (E, ρ), γ).
We call a nonnegative flow φ : Ā→ R≥0 an independent flow in N̄ if it satisfies

∂+φ(i) ≤ 1 (∀i ∈ S̄+), ∂+φ(S̄+) = ρ(E), ∂−φ ∈ B(ρ), (3.37)

and
∂φ(v) = 0 (∀v ∈ ∪i∈NE

i \ S̄+), (3.38)

where ∂+φ is the vector of out-flow values on S̄+ and ∂−φ is the vector of in-flow values
on S̄− for φ. (See Figure 3.) The cost of φ is given by

∑
a∈Ā γ(a)φ(a). (See [6, 8] for

independent flows defined in full generality.)
It should be noted that for any random assignment matrix P for Problem P = (N,E,

L=(Li | i ∈ N), (E, ρ)) there uniquely exists an independent flow φ in N̄ such that
φ(ei, e) = P (i, e) and conversely, for any independent flow φ in N̄ the N×E matrix P =
(φ(ei, e) | i ∈ N, e ∈ E) is a random assignment. Denote by φP the independent flow
in N̄ determined by random assignment P . It should also be noted that φP (e

i
k+1, e

i
k) =

P (i, Li(k)) for all i ∈ N and k = 1, · · · ,m− 1 (see (3.31)).
As a consequence of Theorem 3.1 we have the following.

Theorem 3.5: Suppose |N | = ρ(E). Let γ : Ā → R be an arbitrary cost function
satisfying

γ(a) < 0 (∀a ∈
∪
i∈N

Ai), γ(a) = 0 (∀a ∈ Ā0). (3.39)

If φ is a minimum-cost independent flow in N̄ = (H̄ = (V, Ā), S̄+, S̄−, (E, ρ), γ), then
the random assignment matrix P with P (i, e) = φ(ei, e) for all i ∈ N and e ∈ E is
ordinally efficient for Problem P = (N,E,L = (Li | i ∈ N), (E, ρ)).

Moreover, for the solution P of Random Assignment, the corresponding indepen-
dent flow φP is of minimum cost for an appropriate cost function γ satisfying (3.39).

(Proof) Suppose that the independent flow φ has the minimum cost with respect to the
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Figure 3: A network N̄ = (H̄=(V, Ā), S̄+, S̄−, (E, ρ), γ) when |N | = ρ(E).

cost function γ. Consider an auxiliary graph H̄(φ) = (V, Ā(φ)) with the arc set

Ā(φ) = Ā ∪ {(eik, eik+1) | i ∈ N, k ∈ {1, · · · ,m− 1}, φ(eik+1, e
i
k) > 0}

∪{(e, ei) | e ∈ E, i ∈ N, φ(e, ei) > 0}
∪{(e, e′) | e, e′ ∈ E, e′ ∈ dep(∂−φ, e) \ {e}}, (3.40)

where Ā is given by (3.35). Also consider a length function γ̄φ : Ā(φ)→ R given by

γ̄φ(a) =


γ(a) if a ∈ ∪i∈NA

i

−γ(ã) if ã ∈ ∪i∈NA
i

0 otherwise
(∀a ∈ Ā(φ)), (3.41)

where ã denotes the reorientation of arc a.
It follows from the optimality of φ that there is no directed cycle of negative length

in the auxiliary graph H̄(φ) = (V, Ā(φ)) with length function γ̄φ ([8, 6]). Also note
that graph H(P ) = (V,A) defined in Section 3.2.1 is a subgraph of H̄(φ) and has no
arcs of positive length of H̄(φ) and the set of all arcs of negative length is exactly the
set ∪i∈NA

i in H(P ) = (V,A). Hence there exists no directed cycle in H(P ) = (V,A)
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containing at least one arc of ∪i∈NA
i, which implies that the random assignment matrix

P = (φ(ei, e) | i ∈ N, e ∈ E) is ordinally efficient, due to Theorem 3.1.
Moreover, it should be noted that because of Theorem 3.4, the lexicographic optimal-

ity of the solution P of Random Assignment, the corresponding independent flow φP

is of minimum cost for an appropriate cost function γ satisfying (3.39). Here recall that
φP (e

i
k+1, e

i
k) = P (i, Li(k)). 2

It should be noted that Theorem 3.5 does not assert that every ordinally efficient
random assignment P gives a minimum-cost independent flow φP in N̄ for some cost
function γ satisfying (3.39). The non-existence of a negative directed cycle in H̄(φ) =
(V, Ā(φ)) with some length function γ̄φ seems to be a slightly stronger requirement than
the non-existence of a cycle in H(P ) = (V,A) containing at least one arc of ∪i∈NA

i, for
φ = φP .

4. Randomized Mechanism
Now consider our original problem of allocating the indivisible goods probabilistically.
Given the sd-efficient and envy-free random assignment matrix P obtained as the output
of the procedure Random Assignment, we show how to design a lottery that realizes
the probability distribution Pi = (P (i, e) | e ∈ E) of getting goods e ∈ E for each agent
i ∈ N . Note that when |N | > ρ(E), every agent i receives no good with probability
1− ρ(E)/|N |.

4.1. Random assignments and independent flows
Consider a complete bipartite graph G = (S+, S−;A) with a vertex set V = S+ ∪ S−

given by
S+ = N, S− = E (4.1)

and an arc set A given by
A = N × E. (4.2)

For every arc a ∈ A we consider its capacity c(a) = +∞. The vertex set S+=N is the set
of entrances and S−=E is the set of exits. Denote by N = (G = (S+, S−, A), c, (E, ρ))
the network with the matroidal constraints on the exit set S− = E defined as follows.
(See Figure 4.)

Consider a nonnegative flow φ : A→ R≥0 in N and define ∂±φ : S± → R≥0 by

∂+φ(i) =
∑
{φ(i, e) | e ∈ E} (∀i ∈ S+ = N), (4.3)

∂−φ(e) =
∑
{φ(i, e) | i ∈ N} (∀e ∈ S− = E). (4.4)
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Figure 4: An independent-flow network N .

Given the random assignment matrix P computed by Random Assignment, put

φP (a) = P (i, e) (∀a = (i, e) ∈ A). (4.5)

Then the flow φP : A→ R≥0 is an independent flow in N and satisfies

∂−φP ∈ B(ρ), (4.6)
∂+φP (i) ≤ 1 (∀i ∈ N), (4.7)

where note that ∂−φP = x∗
P . Note that if |N | = ρ(E), then (4.7) together with (4.6)

implies
∂+φP (i) = 1 (∀i ∈ N). (4.8)

Define a polytope P ∗ by

P ∗ = {φ | φ is an independent flow in N satisfying (4.7)}. (4.9)

It should be noted that by definition any independent flow φ in N satisfies (4.6) and that
P ∗ is nonempty since φP ∈ P ∗.

The following integrality property holds true for independent flows in N ([6, 8]),
which plays a crucial rôle in our problem setting.
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Proposition 4.1: The polytope P ∗ defined by (4.9) is integral. Every integral independent
flow in P ∗ is {0, 1}-valued and is an extreme point of P ∗.

It should be noted that every integral independent flow in P ∗ corresponds to a {0, 1}-
valued random assignment matrix Q such that every row Qi (i ∈ N) of Q has at most
one entry being equal to one and the set of columns e ∈ E with Q(i, e) = 1 forms a base
B ∈ B. Denote such base B by BQ. We call any {0, 1}-valued random assignment matrix
an assignment matrix.

Because of Proposition 4.1 and the remark given above we have

Theorem 4.2: For the random assignment matrix P computed by Random Assignment
there exist assignment matrices Q(k) (k ∈ K) and convex combination coefficients νk
(k ∈ K) such that

P =
∑
k∈K

νkQ
(k) (4.10)

and for each k ∈ K the set BQ(k) ⊆ E of non-zero column indices e ∈ E of Q(k) is a base
in B.

It is worth mentioning that Theorem 4.2 is a generalization of the Birkhoff-von Neu-
mann theorem on bi-stochastic matrices, even if the matroid (E,B) is a uniform matroid.
When |N | = |E| and E is the unique base, i.e., (E,B) is a free matroid, Theorem 4.2
becomes the Birkhoff-von Neumann theorem on bi-stochastic matrices.

The random assignment matrix P appearing in Example 1 in Section 3.1 can be ex-
pressed, for example, as

P =
1

6


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

+
1

6


1 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

+
1

3


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0



+
1

6


1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

+
1

6


0 0 0 0
1 0 0 0
0 0 1 0
0 0 0 0

 . (4.11)

Here note that |E| = 4 > 2 = ρ(E).
Based on the expression (4.10), we construct a randomized mechanism that gives P

as probability distributions on the set E of goods assigned to agents.
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———————————————————————————————————
Randomized Mechanism

1. Let BQ(k) be the base in B given by Q(k) for each k ∈ K appearing in (4.10).

2. Generate a base from among bases BQ(k) (k ∈ K) according to the probability
distribution νk (k ∈ K) and let k∗ be the generated index in K.

3. Assign goods in base BQ(k∗) to agents in N according to assignment matrix Q(k∗).

———————————————————————————————————

Consequently, we have

Theorem 4.3: For the random assignment matrix P computed by Random Assignment
each row Pi of P gives the probability distribution of receiving goods e ∈ E for each
agent i ∈ N according to the randomized procedure Randomized Mechanism.

It should be noted that the expression (4.10) for P is not unique but this does not affect
the probability distribution Pi of P for each i ∈ N realized by Randomized Mechanism.

In the following we show how to efficiently compute an expression (4.10).

4.2. Computing the probability distribution
For the random assignment matrix P (or independent flow φP ) and base x∗

P ∈ B(ρ)
computed by Random Assignment we first consider the unique minimal face of P ∗

containing φP .
Denote by D(x∗

P ) the set of all tight sets for x∗
P in B(ρ), where D(x∗

P ) is closed with
respect to the binary operations of set union and intersection and is a distributive lattice
(see [8]). Let a maximal chain of D(x∗

P ) be given by

C(x∗
P ) : Ŝ0 = ∅ ⊂ · · · ⊂ Ŝp = E. (4.12)

The chain of tight sets obtained during the execution of Random Assignment is a sub-
chain of (4.12). A maximal chain C(x∗

P ) is determined by the dependence structure as-
sociated with dep(x∗

P , e) for all e ∈ E and can be computed in strongly polynomial time
([8]). (Construct a directed graph G(x∗

P ) with vertex set E and the set of arcs (e, f) for
all e ∈ E and f ∈ dep(x∗

P , e) \ {e}. The sets dep(x∗
P , e) (e ∈ E) can be computed

by using any strongly polynomial submodular function minimization algorithm such as
[12, 20, 17]. Then C(x∗

P ) is a maximal chain of subsets of E that have no leaving arcs in
G(x∗

P ).)
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For each q = 1, · · · , p consider the minor, denoted by Mq, of matroid (E, ρ) obtained
by its restriction to Ŝq followed by the contraction of Ŝq−1. The minor Mq is the matroid
on Tq ≡ Ŝq \ Ŝq−1 with the rank function ρq given by

ρq(X) = ρ(X ∪ Ŝq−1)− ρ(Ŝq−1) (∀X ⊆ Tq). (4.13)

Also denote by x∗
q the restriction of x∗

P to Tq(= Ŝq \ Ŝq−1). Then x∗
q is a base of (Tq, ρq)

regarded as a polymatroid. In other words, x∗
q ∈ B(ρq). Note that x∗

P is a base of the
direct sum ⊕p

q=1Mq of minors Mq (q = 1, · · · , p). Let ρ̂ be the rank function of matroid
⊕p

q=1Mq. It should be noted that because of the maximality of chain C(x∗
P ), for each

q = 1, · · · , p the base polytope B(ρq) is full dimensional and base x∗
q is within the interior

of B(ρq) and that x∗
P is within the relative interior of the base polytope B(ρ̂) of ⊕p

q=1Mq,
which is the unique minimal face of B(ρ) containing x∗

P . (See [8, Chapter II].)
Put

Â0 = {a ∈ A | φP (a) = 0}, (4.14)
Â+ = A \ Â0, (4.15)
Î = {i ∈ N | ∂+φP (i) = 1}. (4.16)

Then, define a face of P ∗ containing φP by

P ∗(φP ) = {φ ∈ P ∗ | ∀i ∈ Î : ∂+φ(i) = 1, ∀a ∈ Â0 : φ(a) = 0, ∂−φ ∈ B(ρ̂)}. (4.17)

Lemma 4.4: The polytope P ∗(φP ) is the unique minimal face of P ∗ containing φP .
Moreover, P ∗(φP ) restricted in RÂ+

is the set of independent flows satisfying (4.7) in
the network N̂ = (Ĝ = (S+, S−; Â+), c, (E, ρ̂)).

(Proof) In the system of inequalities (and equations) that defines P ∗ of (4.9), the given φP

satisfies ∂+φP (i) = 1 for all i ∈ Î , φP (a) = 0 for all a ∈ Â0, and

∂−φP (X) = ρ(X) (∀X ∈ D(x∗
P )), (4.18)

which includes all the inequalities for P ∗ satisfied with equality by φP . Note that (4.18)
is implied by

∂−φP (X) = ρ(X) (∀X ∈ C(x∗
P )), (4.19)

sinceD(x∗
P ) is a distributive lattice and ρ is modular onD(x∗

P ). Also note that the system
of equations (4.19) together with ∂−φP ∈ B(ρ) is equivalent to ∂−φP ∈ B(ρ̂). Hence
(4.17) defines the unique minimal face of P ∗ containing φP .

Moreover, the latter statement holds true because of the definition of the network N̂ .
2
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We begin with base x∗
1 ≡ x∗

P ∈ B(ρ̂) and independent flow φ̂1 ≡ (the restriction of
φP on Â+) in network N̂ = (Ĝ = (S+, S−; Â+), c, (E, ρ̂)) such that x∗

1 = ∂−φ̂1. If φP

is already {0, 1}-valued, we are done. Hence we assume that φP is not {0, 1}-valued.
Perform the following procedure.

——————————————————————————————————–

1. Put t← 1.

2. Find a {0, 1}-valued independent flow φt in N̂ .

3. Compute
β∗
t = max{β > 0 | φ̂t + β(φ̂t − φt) ∈ P ∗(φ̂t)}. (4.20)

4. Put φ̂t+1 ← φ̂t + β∗
t (φ̂t − φt) and x∗

t+1 ← x∗
t + β∗

t (x
∗
t − ∂−φt).

5. If flow φ̂t+1 is not {0, 1}-valued, then put t← t+ 1, update N̂ for the current base
x∗
t and flow φ̂t, and go to Step 2.

Otherwise put φt+1 ← φ̂t+1.
Return φs for all s = 1, · · · , t+ 1 and β∗

s for all s = 1, · · · , t.

——————————————————————————————————

During the execution of the above procedure P ∗(φ̂t) appearing in (4.20) is the unique
minimal face of P ∗ containing φ̂t, due to Lemma 4.4. At the tth execution of Step 3 with
current rank function ρ̂ we have the unique minimal face B(ρ̂) of B(ρ) containing x∗

t .
Then β∗

t in (4.20) is the maximum value of β that satisfies

∂+φ̂t(i) ≤ 1 (∀i ∈ N), (4.21)
φ̂t(a) + β(φ̂t(a)− φt(a)) ≥ 0 (∀a ∈ Â+

t ), (4.22)
x∗
t + β(x∗

t − ∂−φt) ∈ B(ρ̂), (4.23)

where Â+
t = {a ∈ A | φ̂t(a) > 0}. Note that since φ̂t is within the relative interior

of P ∗(φ̂t), we get β∗
t > 0. We can compute β∗

t in strongly polynomial time (see [16]).
Also note that the final value of t is O(|N ||E|) since every execution of Step 3 and Step
4 makes at least one strict inequality in (4.21) or (4.22) hold with equality or makes the
length of a maximal chain C(x∗

t+1) greater than that of C(x∗
t ).

We regard each φs (s = 1, · · · , t + 1) as a flow in the original network N by putting
φs(a) = 0 for all a ∈ A \ Â+

s , and similarly for φ̂s (s = 1, · · · , t + 1). From the output
φs for all s = 1, · · · , t+ 1 and β∗

s for all s = 1, · · · , t we have

φ̂s+1 = (1 + β∗
s )φ̂s − β∗

sφs (∀s = 1, · · · t), (4.24)

or
φ̂s = (1 + β∗

s )
−1(φ̂s+1 + β∗

sφs) (∀s = 1, · · · t). (4.25)
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Eliminating φ̂s for s = 1, · · · , t and using φ̂t+1 = φt+1, we can obtain the following
expression.

φP (= φ̂1) =
t+1∑
s=1

νsφs (4.26)

for some convex combination coefficients νs (s = 1, · · · , t + 1). Each {0, 1}-valued
flow φs gives a desired assignment matrix Q(s), and νs (s = 1, · · · , t + 1) the desired
probability distribution on the set of assignment matrices Q(s) (s = 1, · · · , t + 1). Note
that (4.26) is equivalent to

P =
t+1∑
s=1

νsQ
(s), (4.27)

which thus can be computed in strongly polynomial time.

5. Concluding Remarks
We have shown that the probabilistic serial mechanism of Bogomolnaia and Moulin [4]
can be extended to the case where we are given a family of bases of a matroid as a family
of available sets of goods. The present paper opens many research subjects on a new class
of random assignment problems with additional constraints given by combinatorial sub-
modularity structures such as matroids and polymatroids. We should further investigate
extensions of those results which have been established till now for the ordinary random
assignment problem in order to gain further insights into the random assignment problem
in full generality.
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