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PRO-p GROTHENDIECK CONJECTURE FOR HYPERBOLIC

POLYCURVES

KOICHIRO SAWADA

Abstract. In the present paper, we study the geometrically pro-p fundamen-

tal groups of hyperbolic polycurves, i.e., successive extensions of families of
hyperbolic curves. Among others, we show that the isomorphism class of a hy-

perbolic polycurve of dimension ≤ 4 defined over a sub-p-adic field satisfying a
certain group-theoretic condition completely determined by its geometrically
pro-p fundamental group.

Introduction

Let k be a field of characteristic zero, k an algebraic closure of k, Gk := Gal(k/k)
the absolute Galois group of k, and X a variety over k (in this paper, a variety
over k is a scheme that is of finite type, separated, and geometrically connected
over k. cf. Definition 1.4). Write ΠX for the étale fundamental group of X. Then
the structure morphism X → Spec k induces a natural surjection ΠX ↠ Gk. Write
∆X/k for the kernel of the surjection ΠX ↠ Gk. A. Grothendieck proposed the
following philosophy (cf. [7],[8]):

For certain types of k, if X is “an anabelian variety” over k, then
the isomorphism class of X is completely determined by the funda-
mental group ΠX as a profinite group equipped with the surjection
ΠX ↠ Gk.

We often call this philosophy “Grothendieck conjecture”. Although we do not
have any general definition of the notion of “an abelian variety”, successive exten-
sions of families of hyperbolic curves (hereinafter called “hyperbolic polycurves”
cf. Definition 2.1(ii)) have been regarded as typical examples of anabelian vari-
eties. The Grothendieck conjecture for hyperbolic polycurves of dimension ≤ 2 was
proved in [11] (cf. [11] Theorems 16.5, a2.4), and thereafter, in [10], it is extended
to the case of hyperbolic polycurves of dimension ≤ 4 (cf. [10] Corollary 3.18).

On the other hand, we can consider the pro-p version of the Grothendieck con-
jecture. Let p be a prime number and X → Y a morphism between connected
noetherian schemes. Write ∆X/Y for the kernel of the (outer) homomorphism
ΠX → ΠY induced by the morphism X → Y , ∆p

X/Y for the maximal pro-p quo-

tient of ∆X/Y , and ΠpX/Y := ΠX/ ker(∆X/Y ↠ ∆p
X/Y ). Then let us consider the

following:

For certain types of k, if X is an “anabelian variety” over k, then is
the isomorphism class of X completely determined by the geomet-
rically pro-p fundamental group ΠpX/k as a profinite group equipped

with the surjection ΠpX/k ↠ Gk?

In [11], a very strong form of the pro-p Grothendieck conjecture for hyperbolic
curves has been obtained (cf. [11] Theorem 16.5). In the present paper, we consider
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the pro-p Grothendieck conjecture for hyperbolic polycurves. However, we cannot
apply an argument similar to [10] without any assumptions. Indeed, let

X = Xn → Xn−1 → · · · → X2 → X1 → Spec k = X0

be a sequence of parametrizing morphisms of a hyperbolic polycurve X over k (cf.
Definition 2.1(ii)). Then for any triplet of integers (i, j, l) such that 0 ≤ i < j <
l ≤ n, we have an exact sequence of profinite groups

1→ ∆Xl/Xj
→ ∆Xl/Xi

→ ∆Xj/Xi
→ 1

(cf. Remark 2.8), which plays important roles in [10]. Nevertheless, since the op-
eration of taking the maximal pro-p quotient of a profinite group is not exact, the
sequence

1→ ∆p
Xl/Xj

→ ∆p
Xl/Xi

→ ∆p
Xj/Xi

→ 1

is not exact in general. For this reason, we introduce a condition that the above
sequence is exact, which we call (∗)p (cf. Definition 2.10), and we consider the pro-p
Grothendieck conjecture for hyperbolic polycurves satisfying condition (∗)p. The
following is one of the main results of the present paper.

Theorem A (cf. Theorems 3.4, 3.17, Corollaries 3.19, 3.21). Let p be a prime
number, n a positive integer, k a sub-p-adic field (cf. Definition3.1), X a hyperbolic
polycurve of dimension n over k satisfying condition (∗)p, Y a normal variety over
k, and ϕ : ΠpY/k → ΠpX/k an open homomorphism. Suppose that one of the following

conditions (1), (2), (3), (4) is satisfied:

(1) n = 1.
(2) The following conditions are satisfied:

(2-i) n = 2.
(2-ii) The kernel of ϕ is topologically finitely generated.

(3) The following conditions are satisfied:
(3-i) n = 3.
(3-ii) The kernel of ϕ is finite.
(3-iii) Y is of p-LFG-type (cf. Definition 2.25)
(3-iv) 3 ≤ dim(Y ).

(4) The following conditions are satisfied:
(4-i) n = 4.
(4-ii) ϕ is injective.
(4-iii) Y is a hyperbolic polycurve over k satisfying condition (∗)p.
(4-iv) 4 ≤ dim(Y ).

Then ϕ arises from a uniquely determined dominant morphisms Y → X over k.

The following result follows from Theorem A.

Theorem B (cf. Corollary 3.22). Let p be a prime number, k a sub-p-adic field,
and X,Y hyperbolic polycurves over k satisfying condition (∗)p. Suppose that either
X or Y is of dimension ≤ 4. Then the natural map

Isomk(Y,X)→ IsomGk
(ΠpY/k,Π

p
X/k)/ Inn(∆

p
X/k)

is bijective.

This implies that the isomorphism class of a hyperbolic polycurve of dimension
≤ 4 over a sub-p-adic field satisfying condition (∗)p is completely determined by
the geometrically pro-p fundamental group. Condition (∗)p is (at least, in order
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to perform the proofs in the present paper,) essential. Most part of the proof of
Theorem A is analogous to the proof of the Grothendieck conjecture for hyperbolic
polycurves in [10], together with Theorem A in the case where condition (1) is
satisfied, which was essentially proved in [11] (cf. [11] Theorem 16.5). However,
the difference between the pro-p version and the original (profinite) version is the
necessity of considering base schemes. In other words, ΠpX/Y depends on the base

scheme Y , although ΠX does not depend on Y . It seems (to the author) that
choosing a suitable base scheme to complete the proof is very difficult. In the present
paper, to avoid this problem, first we assume a certain condition stronger than (∗)p
and use the maximal pro-p quotient ΠpX of ΠX (cf. Theorem 3.16, Corollaries 3.18,
3.20), which is independent of the base scheme. Then, by replacing the base field
k by a suitable Galois extension and then descending, we complete the proof of
Theorem A.

On the other hand, if X and Y are hyperbolic polycurves over a field k, it
follows that Isomk(Y,X) is finite (cf. Proposition 4.5). Thus, if the natural map
discussed in Theorem B is bijective without the assumption that “either X or Y is
of dimension ≤ 4” holds, then IsomGk

(ΠpY/k,Π
p
X/k)/ Inn(∆

p
X/k) is finite. In general,

it is not known that the map discussed in Theorem B is bijective. However, we can
prove the finiteness of IsomGk

(ΠpY/k,Π
p
X/k)/ Inn(∆

p
X/k).

Theorem C (cf. Theorem 4.6). Let p be a prime number, k a sub-p-adic field,
X,Y hyperbolic polycurves over k. Suppose that at least one of X/k, Y/k satisfies
condition (∗)p. Then the set

IsomGk
(ΠpY/k,Π

p
X/k)/ Inn(∆

p
X/k)

is finite.

Remark . A morphism (resp. k-morphism) Y → X between connected noetherian
schemes (resp. k-schemes) induces an outer homomorphism ΠY → ΠX (resp. outer
homomorphism ΠY → ΠX over Gk), i.e., a ΠX -conjugacy class of homomorphisms
ΠY → ΠX (resp. ∆X/k-conjugacy class of homomorphisms ΠY → ΠX over Gk).
However, we sometimes choose one homomorphism belonging to the ΠX - (resp.
∆X/k-) conjugacy class of homomorphisms ΠY → ΠX induced by Y → X, and we
call it the homomorphism induced by Y → X.

1. Étale Fundamental Groups of Varieties

In the present §1, we study étale fundamental groups of algebraic varieties. Let
k be a field of characteristic zero, k an algebraic closure of k, Gk := Gal(k/k), and
Primes the set of all prime numbers.

Definition 1.1. Let X be a connected noetherian scheme.

(i) We shall write

ΠX

for the étale fundamental group of X (for some choice of basepoint).
(ii) Let Y be a connected noetherian scheme and f : X → Y a morphism.

Then we shall write

∆f = ∆X/Y ⊂ ΠX



4 KOICHIRO SAWADA

for the kernel of the outer homomorphism ΠX → ΠY induced by f . If
Y = SpecA, then by abuse of notation we sometimes write

∆X/A

instead of ∆X/Y . (Similar notations will be used for ΠpX/S ,∆
p
f/S = ∆p

X→Y/S ,∆
(p)
X/Y ,

which are defined below.)

Lemma 1.2 ([10] Lemma 1.2). Let X be a connected noetherian normal scheme.
Write η → X for the generic point of X. Then the outer homomorphism Πη → ΠX
induced by the morphism η → X is surjective.

Lemma 1.3 ([10] Lemma 1.3). Let X,Y be connected noetherian schemes and
f : X → Y a morphism. Suppose that Y is normal, and that f is dominant and of
finite type. Then the outer homomorphism ΠX → ΠY induced by f is open.

Definition 1.4. Let X be a scheme over k. Then we shall say that X is a variety
over k if X is of finite type, separated, and geometrically connected over k.

Lemma 1.5 ([10] Lemma 1.5). Let X be a variety over k. Then the sequence of

schemes X ×k k
pr1→ X → Spec k determines an exact sequence of profinite groups

1→ ΠX×kk
→ ΠX → Gk → 1.

In particular, we obtain an isomorphism ΠX×kk

∼→ ∆X/k (which is well-defined up

to ΠX-conjugation).

Lemma 1.6 ([10] Lemma 1.6). Let X,Y be a connected noetherian schemes and
f : X → Y a morphism. Suppose that f is of finite type, separated, dominant and
generically geometrically connected. Suppose, moreover, that Y is normal. Then
the outer homomorphism ΠX → ΠY induced by f is surjective.

Lemma 1.7 ([10] Lemma 1.7). Let X be a variety over k. Suppose that Gk is
topologically finitely generated (e.g., the case where k = k). Then the profinite
group ΠX is topologically finitely generated.

Definition 1.8. Let X,Y be integral noetherian schemes and f : X → Y a domi-
nant morphism of finite type. Then we shall write

Nor(f) = Nor(X/Y )→ Y

for the normalization of Y in the finite extension of the function field of Y obtained
by forming the algebraic closure of the function field of Y in the function field
of X. Note that Nor(f) = Nor(X/Y ) is integral and normal, and the morphism
Nor(f) = Nor(X/Y )→ Y is dominant and affine.

Lemma 1.9 ([10] Lemma 1.9). Let X,Y be integral noetherian schemes and f :
X → Y a dominant morphism of finite type. Suppose that X is normal. Then
f factors through the natural morphism Nor(f) → Y , and the resulting morphism
X → Nor(f) is dominant and generically geometrically irreducible. If, moreover, X
and Y are varieties over k and f is a morphism over k, then the natural morphism
Nor(f)→ Y is finite and surjective, and Nor(f) is a normal variety over k.

Lemma 1.10 ([10] Proposition 1.10(i)). Let S,X, and Y be connected noetherian
normal schemes, Y → X → S morphisms of schemes, and s→ S a geometric point
of S. Suppose that the following conditions are satisfied:
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(1) Y → X is dominant and induces an outer surjection ΠY ↠ ΠX .
(2) X → S is surjective, of finite type, separated, and generically geometrically

integral.
(3) Y → S is of finite type, separated, faithfully flat, geometrically normal, and

generically geometrically connected.
(4) For any connected finite étale covering X ′ → X and any geometric point

s′ → Nor(X ′/S) of Nor(X ′/S) that lifts the geometric point s of S, the
geometric fiber X ′ ×Nor(X′/S) s

′ of X ′ → Nor(X ′/S) at s′ → Nor(X ′/S)
is connected. (Note that it follows from Lemma 1.9 that condition (4) is
satisfied if the image of the geometric point s → S is the generic point of
S).

Then the sequence of connected schemes X ×S s
pr1→ X → S determines an exact

sequence of profinite groups

ΠX×Ss → ΠX → ΠS → 1.

Lemma 1.11 ([10] Corollary 1.11). Let S,X be connected noetherian normal
schemes and X → S a morphism of schemes that is surjective, of finite type, sep-
arated, and generically geometrically irreducible. Suppose that the function field of
S is of characteristic zero. Suppose, moreover, that one of the following conditions
is satisfied:

(1) There exists an open subscheme U ⊂ X of X such that the composite
U ↪→ X → S is surjective and smooth.

(2) There exist a connected normal scheme Y and a morphism Y → X that is
proper, surjective, and that induces an isomorphism between the respective
function fields, such that the composite Y → X → S is smooth.

Then ∆X/S is topologically finitely generated.

Definition 1.12. Let G be a profinite group, Σ a subset of Primes. Then we shall
write

GΣ

for the maximal pro-Σ quotient of G. Let p be a prime number. Then we shall
write simply

Gp

for the pro-p group G{p}.

Remark 1.13. The right exactness of G 7→ GΣ is well-known. Moreover, one verifies
easily that if U ⊂ GΣ is an open subgroup of GΣ and V the inverse image of U ⊂ GΣ

by the natural surjection G↠ GΣ, then the natural isomorphism V Σ ∼→ U exists.

Definition 1.14. Let p be a prime number, S,X connected noetherian normal
schemes, and X → S a morphism of schemes. Then we shall write

ΠpX/S

for the quotient of ΠX by the kernel of the natural surjection ∆X/S ↠ ∆p
X/S (which

is a characteristic subgroup of ∆X/S).

Remark 1.15. We shall use not only ΠpX/S but also the maximal pro-p quotient of

ΠX , which we shall write ΠpX (as Definition 1.12 above).
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Remark 1.16. It is well-known that an open subgroup of ΠX corresponds to a
connected finite étale covering of X. Let U be an open subgroup of ΠpX/S (resp.

ΠpX). Then we can take the connected finite étale covering of X corresponding to
the inverse image of U by the natural surjection ΠX ↠ ΠpX/S (resp. ΠX ↠ ΠpX),

which we shall call simply the covering corresponding to U .

Definition 1.17. Let p be a prime number, S a connected noetherian scheme,
X,Y connected noetherian schemes over S, and f : X → Y a morphism over S.
Then we shall write

∆p
f/S = ∆p

X→Y/S := ker(ΠpX/S → ΠpY/S), ∆
(p)
f = ∆

(p)
X/Y := ker(ΠpX → ΠpY ).

Note that ∆p
X→Y/S = ker(∆p

X/S → ∆p
Y/S), and ker(∆X/S → ∆Y/S ↠ ∆p

Y/S) ⊂
∆X/S is the inverse image of ∆p

X→Y/S ⊂ ∆p
X/S by the natural surjection ∆X/S ↠

∆p
X/S .

Lemma 1.18. Let p be a prime number, S,X, Y connected noetherian schemes and
X → Y → S morphisms of schemes. Suppose that the outer homomorphism ΠX →
ΠY induced by X → Y is surjective. Then ∆p

X→Y/S is the image of ∆X/Y ⊂ ΠX
by the natural surjection ΠX ↠ ΠpX/S.

Proof. Since ΠX ↠ ΠY is surjective, the sequence of profinite groups

1→ ∆X/Y → ∆X/S → ∆Y/S → 1

is exact. Thus, the sequence of pro-p groups

∆p
X/Y → ∆p

X/S → ∆p
Y/S → 1

is exact. This induces a surjection ∆p
X/Y ↠ ker(∆p

X/S → ∆p
Y/S) = ∆p

X→Y/S , hence

∆X/Y → ∆p
X→Y/S is surjective. This completes the proof of Lemma 1.18. □

Definition 1.19. Let G be a profinite group. Then we shall say that G is slim if
every open subgroup of G is center-free.

Lemma 1.20. Let G be a profinite group and Π1,Π2 profinite groups over G. For
i = 1, 2, write ∆i = ker(Πi → G). Suppose that ∆2 is slim. Write Homopen

G (Π1,Π2)
for the set of open homomorphisms from Π1 to Π2 over G. Then the natural map

Homopen
G (Π1,Π2)→ Hom(∆1,∆2)

is injective.

Proof. Let φ,ψ ∈ Homopen
G (Π1,Π2) be elements of Homopen

G (Π1,Π2) that map to
the same element θ ∈ Hom(∆1,∆2) by the above map. Note that θ : ∆1 → ∆2

is an open homomorphism. Let a ∈ Π1 and b ∈ ∆1. Then we have φ(aba−1) =
θ(aba−1) = ψ(aba−1) and φ(b) = θ(b) = ψ(b), hence ψ(a)−1φ(a)θ(b) = θ(b)ψ(a)−1φ(a).
On the other hand, ψ(a)−1φ(a) ∈ ker(Π2 ↠ G) = ∆2. Thus, since b ∈ ∆1 is ar-
bitrary, ψ(a)−1φ(a) ∈ Z∆2(Im θ). Now since ∆2 is slim and Im θ ⊂ ∆2 is an open
subgroup of ∆2, one verifies easily that Z∆2(Im θ) = {1}, which implies that φ = ψ.
This completes the proof of Lemma 1.20. □



PRO-p GROTHENDIECK CONJECTURE FOR HYPERBOLIC POLYCURVES 7

2. Pro-p Fundamental Groups of Hyperbolic Polycurves

In the present §2, we study pro-p étale fundamental groups of hyperbolic poly-
curves. Let k be a field of characteristic zero, k an algebraic closure of k, Gk :=
Gal(k/k), and Primes the set of all prime numbers.

Definition 2.1 (cf. [10] Definition 2.1). Let S be a scheme and X a scheme over
S.

(i) We shall say that X is a hyperbolic curve (of type(g, r)) over S if there exist
• a pair of nonnegative integers (g, r);
• a scheme Xcpt which is smooth, proper, geometrically connected, and
of relative dimension one over S;

• a (possibly empty) closed subscheme D ⊂ Xcpt of Xcpt which is finite
and étale over S

such that
• 2g − 2 + r > 0;
• any geometric fiber of Xcpt → S is (a necessarily smooth proper curve)
of genus g;

• the finite étale covering D ↪→ Xcpt → S is of degree r;
• X is isomorphic to Xcpt \D over S.

We shall refer to the above integer g as the genus of X over S.
(ii) We shall say that X is a hyperbolic polycurve (of relative dimension n)

over S if there exist a positive integer n and a (not necessarily unique)
factorization of the structure morphism X → S

X = Xn → Xn−1 → · · · → X2 → X1 → S = X0

such that, for each i = 1, . . . , n, Xi → Xi−1 is a hyperbolic curve. We
shall refer to the above morphism X → Xn−1 as a parametrizing morphism
for X and refer to the above factorization of X → S as a sequence of
parametrizing morphisms.

Remark 2.2. In the notation of Definition 2.1(ii), suppose that S is a normal (resp.
smooth) variety of dimension m over k. Then any hyperbolic polycurve of relative
dimension n over S is a normal (resp. smooth) variety of dimension n+m over k.

Remark 2.3. A sequence of parametrizing morphisms of X → S

X = Xn → Xn−1 → · · · → X2 → X1 → S = X0

is not necessarily unique, but, when we call X/S a hyperbolic polycurve, we always
fix a sequence of parametrizing morphisms of X → S unless otherwise specified.

Definition 2.4 (cf. [10] Definition 2.2). In the notation of Definition 2.1(i), sup-
pose that S is normal. Then the pair “(Xcpt, D)” is uniquely determined up to
canonical isomorphism over S (cf. [12] §0). We shall refer to Xcpt as the smooth
compactification of X over S and refer to D as the divisor of cusps of X over S.

Proposition 2.5 ([10] Proposition 2.3). Let n be a positive integer, S a connected
noetherian separated normal scheme over k, X a hyperbolic polycurve of relative
dimension n over S, and Y → X a connected finite étale covering of X. For each
i = 0, . . . , n, write Yi := Nor(Y/Xi). Then the following hold:

(i) For each integer i such that 1 ≤ i ≤ n, Yi is a hyperbolic curve over

Yi−1. Moreover, if we write Y cpt
i for the smooth compactification of the
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hyperbolic curve Yi over Yi−1, then the composite Y cpt
i → Yi−1 → Xi−1

is proper and smooth. Furthermore, if we write Y cpt
i → Zi−1 → Xi−1 for

the Stein factorization of the proper morphism Y cpt
i → Xi−1, then Zi−1 is

isomorphic to Yi−1 over Xi−1.
(ii) For each integer i such that 0 ≤ i ≤ n, the natural morphism Yi → Xi is a

connected finite étale covering.

In particular, Y is a hyperbolic polycurve of relative dimension n over Nor(Y/S),
and the factorization

Y = Yn → Yn−1 → · · · → Y1 → Nor(Y/S) = Y0

is a sequence of parametrizing morphisms.

Remark 2.6. Hereafter, if X/S is a hyperbolic polycurve as in Proposition 2.5 and
Y → X is a connected finite étale covering of X, we regard Y as the hyperbolic
polycurve over Nor(Y/S) with the natural sequence of parametrizing morphisms as
in Proposition 2.5 unless otherwise specified.

Proposition 2.7 ([10] Proposition 2.4 (i),(ii)). Let (m,n) be a pair of integers such
that 0 ≤ m < n, S a connected noetherian separated normal scheme over k, and X
a hyperbolic polycurve of relative dimension n over S. Then the following hold:

(i) For any geometric point xm → Xm of Xm, the sequence of connected

schemes X ×Xm
xm

pr1→ X → Xm determines an exact sequence of profinite
groups

1→ ΠX×Xmxm → ΠX → ΠXm → 1.

In particular, we obtain an isomorphism ΠX×Xmxm

∼→ ∆X/Xm
(which is

well-defined up to ΠX-conjugation).
(ii) Let T be a connected noetherian separated normal scheme over S and T →

Xm a morphism over S. Then the natural morphisms X ×Xm T
pr1→ X and

X ×Xm T
pr2→ T determine an outer isomorphism

ΠX×XmT
∼→ ΠX ×ΠXm

ΠT

and an isomorphism

∆X×XmT/T
∼→ ∆X/Xm

(which is well-defined up to ΠX-conjugation).

Remark 2.8. Note that for any triplet of integers (i, j, l) such that 0 ≤ i < j < l ≤ n,
by considering the commutative diagram of profinite groups

∆Xj/Xi

� _

��

1 // ∆Xl/Xj
//

��

ΠXl
// ΠXj

//

��

1

1 // ∆Xl/Xi
// ΠXl

// ΠXi
// 1
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(cf. Proposition 2.7 (i)), we obtain the natural exact sequence of profinite groups

1→ ∆Xl/Xj
→ ∆Xl/Xi

→ ∆Xj/Xi
→ 1.

Lemma 2.9. Let n be a positive integer, S a connected noetherian separated normal
scheme over k, and X a hyperbolic polycurve of relative dimension n over S. Then
the following hold:

(i) For any triplet of integers (i, j, l) such that 0 ≤ i < j < l ≤ n, the outer
homomorphism ∆Xl/Xi

→ ∆Xj/Xi
induced by the outer surjection ΠXl

→
ΠXj

(cf. Proposition 2.7 (i)) is surjective, and ∆Xl/Xi
is the inverse image

of ∆Xj/Xi
⊂ ΠXj

by the outer surjection ΠXl
↠ ΠXj

.
(ii) Let Y → X be a connected finite étale covering of X. Let us fix a basepoint

of Y . Then, for any pair of integers (i, j) such that 0 ≤ i < j ≤ n, ΠYi
(cf.

Proposition 2.5) naturally coincides with Im(ΠYj ↪→ ΠXj ↠ ΠXi), and this
determines an equality ∆Yj/Yi

= ∆Xj/Xi
∩ΠYj .

(iii) In the notation of (ii), suppose, moreover, given a pair of integers (i, j) such
that 0 ≤ i < j ≤ n and ∆Yj/Yi

= ∆Xj/Xi
. Then for any pair of integers

(l,m) such that i ≤ l < m ≤ j, we obtain an equality ∆Ym/Yl
= ∆Xm/Xl

.

Proof. First, we verify assertion (i). It follows immediately that ∆Xl/Xi
is the

inverse image of ∆Xj/Xi
⊂ ΠXj

by the outer surjection ΠXl
↠ ΠXj

, and it follows
from the surjectivity of ΠXl

→ ΠXj
that the outer homomorphism ∆Xl/Xi

→
∆Xj/Xi

is surjective. This completes the proof of assertion (i). Next, we verify
assertion (ii). The commutative diagram of connected schemes

Yj //

��

Xj

��

Yi // Xi

determines a commutative diagram of profinite groups

ΠYj
//

��

ΠXj

��

ΠYi
// ΠXi

,

where the vertical arrows are surjective and the horizontal arrows are injective.
Thus, it holds that ΠYi

= Im(ΠYj
↪→ ΠXj

↠ ΠXi
). Moreover, it follows immedi-

ately that ∆Yj/Yi
⊂ ∆Xj/Xi

∩ΠYj
, and it follows from the injectivity of ΠYi

→ ΠXi

that ∆Yj/Yi
⊃ ∆Xj/Xi

∩ ΠYj
. This completes the proof of assertion (ii). Finally,

we verify assertion (iii). To verify assertion (iii), it suffices to verify that for each
integer l such that i < l < j, equalities

∆Yj/Yi
= ∆Xj/Xi

, ∆Yl/Yi
= ∆Xl/Xi
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hold. Now it holds from (i) and (ii) that

∆Yj/Yi
= ∆Xj/Xi

∩ΠYj

= ∆Xj/Xl
∩∆Xj/Xi

= ∆Xj/Xi
,

∆Yl/Yi
= Im(∆Yj/Yi

↪→ ΠYj
↠ ΠYl

)

= Im(∆Yj/Yi
↪→ ΠYj

↠ ΠYl
↪→ ΠXl

)

= Im(∆Xj/Xi
↪→ ΠXj

↠ ΠXl
)

= ∆Xl/Xi
.

This completes the proof of assertion (iii). □

Definition 2.10. Let p be a prime number, n a positive integer, S a connected
noetherian separated normal scheme over k, and X a hyperbolic polycurve of rela-
tive dimension n over S. We shall say that X/S satisfies condition (∗)p if for any
triplet of integers (i, j, l) such that 0 ≤ i < j < l ≤ n, the sequence of profinite
groups

1→ ∆p
Xl/Xj

→ ∆p
Xl/Xi

→ ∆p
Xj/Xi

→ 1

is exact. We shall say that X/S satisfies condition (∗∗)p if for any pair of integers
(i, j) such that 0 ≤ i < j ≤ n, the sequence of profinite groups

1→ ∆p
Xj/Xi

→ ΠpXj
→ ΠpXi

→ 1

is exact.

Remark 2.11. The validity of conditions (∗)p and (∗∗)p depends on the sequence of
parametrizing morphisms (at least by definition). So, precisely, we should say that

X = Xn → Xn−1 → · · · → X2 → X1 → S = X0

satisfies condition (∗)p (or (∗∗)p), but we shall say as in Definition 2.10 for simplicity.
Moreover, if the base scheme S is clear from the context, then we sometimes say
more simply that X satisfies condition (∗)p (or (∗∗)p).

Example 2.12. If X is a hyperbolic curve over S, i.e., n = 1, then X/S satisfies
condition (∗)p.

Example 2.13. It is well-known that ifX/S is a configuration space of a hyperbolic
curve over S (cf. [14] Definition 2.1), then X/S satisfies condition (∗)p (cf. [14]
Proposition 2.2).

Remark 2.14. If X/S satisfies condition (∗)p, then ∆X/S admits various group-
theoretic properties (cf. e.g., Proposition 2.16(iii)). However, it is unknown whether
the validity of condition (∗)p for X/S only depends on the profinite group ∆X/S or
not.

Lemma 2.15. In the notation of Definition 2.10, X/S satisfies condition (∗∗)p if
and only if X/S satisfies condition (∗)p, and ∆p

X/S → ΠpX is injective.

Proof. Note that since the sequences of profinite groups

1→ ∆Xl/Xj
→ ∆Xl/Xi

→ ∆Xj/Xi
→ 1, 1→ ∆Xj/Xi

→ ΠXj → ΠXi → 1

are exact, the two sequences in Definition 2.10 are always right exact. If X/S
satisfies condition (∗∗)p, for any triplet of integers (i, j, l) such that 0 ≤ i < j <
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l ≤ n, the composite ∆p
Xl/Xj

→ ∆p
Xl/Xi

→ ΠpXl
, hence also ∆p

Xl/Xj
→ ∆p

Xl/Xi
,

is injective. Thus, X/S satisfies condition (∗)p. The injectivity of ∆p
X/S → ΠpX is

trivial. Conversely, suppose that X/S satisfies condition (∗)p, and that ∆p
X/S →

ΠpX is injective. Then for each integer i such that 0 ≤ i < n, ∆p
X/Xi

→ ΠpX is

injective. Thus, for any pair of integers (i, j) such that 0 ≤ i < j ≤ n, we have the
commutative diagram of profinite groups

1 // ∆p
X/Xj

// ∆p
X/Xi

//
� _

��

∆p
Xj/Xi

//

��

1

1 // ∆p
X/Xj

// ΠpX
// ΠpXj

// 1,

where the horizontal sequences are exact and ∆p
X/Xi

→ ΠpX is injective. Then

∆p
Xj/Xi

→ ΠpXj
is injective. Therefore, we conclude that X/S satisfies condition

(∗∗)p. This completes the proof of Lemma 2.15. □

Proposition 2.16. Let p be a prime number, (m,n) a pair of integers such that
0 ≤ m < n, S a connected noetherian separated normal scheme over k, and X a
hyperbolic polycurve of relative dimension n over S. Then the following hold:

(i) Suppose that X/S satisfies condition (∗)p. Then for any geometric point

xm → Xm of Xm, the sequence of connected schemes X ×Xm
xm

pr1→ X →
Xm determines an exact sequence of profinite groups

1→ ΠpX×Xmxm
→ ΠpX/S → ΠpXm/S

→ 1.

In particular, we obtain an isomorphism ΠpX×Xmxm

∼→ ker(ΠpX/S → ΠpXm/S
)

(which is well-defined up to ΠpX/S-conjugation).

(ii) Suppose that X/S satisfies condition (∗)p (resp. (∗∗)p). Let T be a con-
nected noetherian separated normal scheme over S. Then the hyperbolic
polycurve X ×S T/T satisfies condition (∗)p (resp. (∗∗)p). Moreover, the

natural morphisms X ×S T
pr1→ X and X ×S T → Xm ×S T determine an

outer isomorphism

ΠpX×ST/T

∼→ ΠpX/S ×Πp
Xm/S

ΠpXm×ST/T
(resp. ΠpX×ST

∼→ ΠpX ×Πp
Xm

ΠpXm×ST
)

and an isomorphism

∆p
X×ST/Xm×ST

∼→ ∆p
X/Xm

(which is well-defined up to ΠpX/Xm
(resp. ΠpX)-conjugation).

(iii) Suppose that X/S satisfies condition (∗)p. Then ∆p
X/Xm

is nontrivial, topo-

logically finitely generated, slim and torsion-free. In particular, ∆p
X/Xm

is

infinite.
(iv) ∆p

Xm+1/Xm
is elastic (cf. [13] Definition 1.1(ii)), i.e., the following holds:

Let N ⊂ ∆p
Xm+1/Xm

be a topologically finitely generated closed subgroup

of ∆p
Xm+1/Xm

that is normal in open subgroup of ∆p
Xm+1/Xm

. Then N is

nontrivial if and only if N is open in ∆p
Xm+1/Xm

.
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(v) Suppose that the hyperbolic curve Xm+1 over Xm is of type (g, r). Then the
abelianization of ∆p

Xm+1/Xm
is a free Zp-module of rank 2g+max{r−1, 0};

∆p
Xm+1/Xm

is a free pro-p group if and only if r ̸= 0.

(vi) For any positive integer N , there exists an open subgroup H ⊂ ∆p
Xm+1/Xm

of ∆p
Xm+1/Xm

such that the abelianization of H is a free Zp-module of rank

≥ N .

Proof. (cf. [10] Proposition 2.4) First, we verify assertion (i). Let us consider the
commutative diagram of profinite groups

1

��

1

��

∆p
X/Xm

��

ker(ΠpX/S ↠ ΠpXm/S
)

��

1 // ∆p
X/S

//

��

ΠpX/S
//

��

ΠS // 1

1 // ∆p
Xm/S

//

��

ΠpXm/S
//

��

ΠS // 1

1 1.

Then, since the two horizontal sequences and the two vertical sequences of the above
diagram are exact (cf. Proposition 2.7(i)), it holds that ∆p

X/Xm
= ker(ΠpX/S ↠

ΠpXm/S
). Thus, we verify from Proposition 2.7(i) that assertion (i) holds. Next, we

verify assertion (ii). Suppose that X/S satisfies condition (∗)p. Let t → X ×S T
be a geometric point of X ×S T . Then for any triplet of integers (i, j, l) such that
1 ≤ i < j < l ≤ n, we obtain from Proposition 2.7(ii) that

∆Xj×ST/Xi×ST
∼= Π(Xj×ST )×(Xi×ST )t

= ΠXj×Xi
t
∼= ∆Xj/Xi

.

In particular, since X/S satisfies condition (∗)p, X ×S T/T also satisfies condition
(∗)p. On the other hand, we have the commutative diagram of profinite groups

1 // ∆p
X×ST/Xm×ST

// ΠpX×ST/T
//

��

ΠpXm×ST/T
//

��

1

1 // ∆p
X/Xm

// ΠpX/S
// ΠpXm/S

// 1,
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where the horizontal sequences are exact (cf. assertion (i)). Thus, we obtain an
outer isomorphism

ΠpX×ST/T

∼→ ΠpX/S ×Πp
Xm/S

ΠpXm×ST/T
.

If X/S satisfies condition (∗∗)p, then it follows from the commutative diagram of
profinite groups

∆p
Xj×ST/Xi×ST

// ΠpXj×ST

��

∆p
Xj/Xi

// ΠpXj
,

together with the injectivity of ∆p
Xj/Xi

↪→ ΠpXj
, that ∆p

Xj×ST/Xi×ST
→ ΠpXj×ST

is injective. Thus, it follows from Lemma 2.15 that X ×S T/T satisfies condition
(∗∗)p. On the other hand, we have the commutative diagram of profinite groups

1 // ∆p
X×ST/Xm×ST

// ΠpX×ST
//

��

ΠpXm×ST
//

��

1

1 // ∆p
X/Xm

// ΠpX
// ΠpXm

// 1,

where the horizontal sequences are exact. Thus, we obtain an outer isomorphism

ΠpX×ST
∼→ ΠpX ×Πp

Xm
ΠpXm×ST

.

This completes the proof of assertion (ii). Next, we verify assertion (iii). Let us
observe that it follows from assertion (i) that, to verify assertion (iii), we may
assume without loss of generality that m = n−1. On the other hand, if m = n−1,
i.e., X is a hyperbolic curve over Xm, assertion (iii) is well-known (cf. e.g., [16]
Proposition 1.1,1.6, [14] Proposition 1.4). This completes the proof of assertion
(iii). Assertion (iv) follows from [14] Proposition 1.5. Assertion (v) is well-known
(cf. e.g., [16] Corollary 1.2). Finally, we verify assertion (vi). Let x → Xm be a
geometric point of Xm. Since ∆Xm+1/Xm

∼= ΠpXm+1×Xmx
is an infinite profinite

group, there exists an open subgroup H ⊂ ∆Xm+1/Xm
of ∆Xm+1/Xm

such that
d := [ΠpXm+1×Xmx

: H] ≥ N . Then, ifXm+1/Xm is of type (g, r) andH corresponds

to a hyperbolic curve of type (g′, r′), it follows from Hurwitz’s formula (cf. e.g., [9]
Chapter IV, Corollary 2.4) that 2g′ − 2 + r′ = d(2g − 2 + r). Thus, it holds that
rankZp

Hab = 2g′ + max{r′ − 1, 0} ≥ d(2g + r − 2) ≥ d ≥ N . This completes the

proof of assertion (vi). □

Lemma 2.17.

(i) Let G be a profinite group, H ⊂ G a closed subgroup of G, and V ⊂ H an
open subgroup of H. Then there exists an open subgroup U ⊂ G of G such
that V = H ∩ U .

(ii) Let G be a profinite group, H ⊂ G a closed subgroup of G, N ⊂ G a
normal closed subgroup of G, and V ⊂ H an open subgroup of H such that
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V ⊃ H ∩ N . Then there exists a normal open subgroup U ⊂ G of G such
that U ⊃ N and U ∩H ⊂ V .

Proof. Note that if G is a profinite group and H is a closed subgroup (resp. normal
closed subgroup) of G, then H is the intersection of all open subgroups (resp.
normal open subgroups) of G containing H (cf. [15] Proposition 2.1.4). First, we
verify assertion (i). We have V =

∩
W W =

∩
W (W ∩H), where W runs over all

open subgroups of G containing V . Thus, since (W ∩H) \ V is a closed subset of
the compact set H \ V , there are open subgroups W1, . . . ,Wn of G containing V
such that H ∩

∩n
i=1Wi ⊂ V . Write U :=

∩n
i=1Wi. Then U is an open subgroup of

G. Moreover, since Wi ⊃ V , we obtain H ∩ U = V . This completes the proof of
assertion (i). Similarly, assertion (ii) follows from the fact that N =

∩
W W , where

W runs over all normal open subgroups of G containing N . □

Lemma 2.18 ([1] Proposition 3). Let Σ ⊂ Primes be a set of prime numbers, G a
profinite group, and N ⊂ G a normal closed subgroup of G. If the composite G→
Aut(N)→ Aut(NΣ) (where G→ Aut(N) is the map defined by g 7→ (h 7→ ghg−1)
and Aut(N) → Aut(NΣ) is the natural map) factors through GΣ, then the kernel
of the map NΣ → GΣ is contained in the center of NΣ. In particular, if NΣ is
center-free, then the map NΣ → GΣ is injective. If for any positive integer n there
are only finitely many open subgroups of index n in NΣ (e.g., the case where NΣ

is topologically finitely generated), then the map G→ Aut(NΣ) factors through GΣ

if and only if the image of G in the profinite group Aut(NΣ) is a pro-Σ group.

Lemma 2.19 ([15] Lemma 4.5.5). Let p be a prime number and G a topologically
finitely generated pro-p group. Then Aut(G) has an open pro-p subgroup.

Proposition 2.20. Let Σ ⊂ Primes be a finite set of prime numbers, S a connected
noetherian separated normal scheme over k, X a hyperbolic polycurve over S, and
X ′ → X a connected finite étale covering of X. Then there exists a connected finite
étale Galois covering Y → X of X such that the morphism Y → X factors through
X ′ → X, and, moreover, for any p ∈ Σ, Y satisfies condition (∗)p.

Proof. Write n for the relative dimension of X over S. Then, to verify Proposition
2.20, it follows from Remark 2.8, that it suffices to verify that there exists a con-
nected finite étale Galois covering Y → X of X such that the morphism Y → X
factors through X ′ → X, and, moreover, for any p ∈ Σ and for any pair of in-
tegers (i, j) such that 0 ≤ i < j ≤ n, the homomorphism ∆p

Yj/Yi
→ ∆p

Yj/Y0
(cf.

Proposition 2.5) is injective. Now I claim that the following assertion holds:

Claim A: Fix an integer m such that 0 ≤ m < n. Suppose given a
connected finite étale Galois covering Y → X ofX such that for any
p ∈ Σ and any pair of integers (i, j) such that m < i < j ≤ n, the
homomorphism ∆p

Yj/Yi
→ ∆p

Yj/Y0
is injective. Then there exists a

connected finite étale Galois covering Z → X of X such that the
morphism Z → X factors through Y → X, and, moreover, for any
p ∈ Σ and any pair of integers (i, j) such that m ≤ i < j ≤ n, the
homomorphism ∆p

Zj/Zi
→ ∆p

Zj/Z0
(cf. Proposition 2.5) is injective.
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Indeed, for each p ∈ Σ, we consider the commutative diagram

∆Ym+1/Y0
//

��

∆Ym/Y0

��

Aut(∆Ym+1/Ym
) //

��

Out(∆Ym+1/Ym
)

��

Aut(∆p
Ym+1/Ym

) // Out(∆p
Ym+1/Ym

),

which is obtained from the exact sequence

1→ ∆Ym+1/Ym
→ ∆Ym+1/Y0

→ ∆Ym/Y0
→ 1.

It follows from Proposition 2.16(iii) and Lemma 2.19 that Out(∆p
Ym+1/Ym

) has

an open pro-p subgroup. Fix such an open subgroup H ⊂ Out(∆p
Ym+1/Ym

) of

Out(∆p
Ym+1/Ym

), and write Wp ⊂ ∆Ym+1/Y0
for the subgroup obtained by forming

the inverse image of H ⊂ Out(∆p
Ym+1/Ym

) by the homomorphism ∆Ym+1/Y0
→

Out(∆p
Ym+1/Ym

). Then Wp is an open subgroup of ∆Ym+1/Y0
containing ∆Ym+1/Ym

,

and the image of the composite Wp ↪→ ∆Ym+1/Y0
→ Aut(∆p

Ym+1/Ym
) is pro-p.

On the other hand, we have ∆Ym+1/Y0
⊂ ∆Xm+1/X0

⊂ ΠXm+1 . Moreover, since
∆Ym+1/Ym

= ∆Xm+1/Xm
∩ΠYm+1

(cf. Lemma 2.9(ii)), ∆Ym+1/Ym
is a normal closed

subgroup of ΠXm+1
. Thus, it follows from Lemma 2.17(ii) that there exists a normal

open subgroup Vp ⊂ ΠXm+1
of ΠXm+1

such that ∆Ym+1/Ym
⊂ Vp∩∆Ym+1/Y0

⊂Wp.
Now let us write V :=

∩
p∈Σ Vp. Then V is a normal open subgroup of ΠXm+1

containing ∆Ym+1/Ym
. Write U ⊂ ΠY for the subgroup obtained by forming the

inverse image of V ⊂ ΠYm+1 by the outer surjection ΠY ↠ ΠYm+1 . Then U is the
intersection of ΠY and the subgroup of ΠX obtained by forming the inverse image
of V ⊂ ΠXm+1 by the outer surjection ΠX ↠ ΠXm+1 . Thus, U is a normal open
subgroup of ΠX . Moreover, since U ⊃ ∆Y/Ym+1

, U corresponds to a connected
finite étale Galois covering Z → X which factors through Y → X. To verify Claim
A, it suffices to verify that this covering Z → X of X satisfies the condition in the
statement of Claim A. Note that it follows from Lemma 2.9(ii) that

ΠZm+1 = Im(ΠZ = U ↪→ ΠY ↠ ΠYm+1) = V,

∆Zm+1/Z0
= ∆Ym+1/Y0

∩ΠZm+1 ⊂Wp,

∆Zm+1/Zm
= ∆Ym+1/Ym

∩ΠZm+1
= ∆Ym+1/Ym

,

∆Z/Zm+1
= ∆Y/Ym+1

∩ΠZ = ∆Y/Ym+1
.

Let p ∈ Σ. It suffices to verify that for any pair of integers (i, j) such that m ≤
i < j ≤ n, the homomorphism ∆p

Zj/Zi
→ ∆p

Zj/Z0
is injective. If m < i, then, since

∆Z/Zm+1
= ∆Y/Ym+1

, it follows from Lemma 2.9(iii) that ∆Zj/Zi
= ∆Yj/Yi

. Thus,

since the homomorphism ∆p
Yj/Yi

→ ∆p
Yj/Y0

is injective, ∆p
Zj/Zi

→ ∆p
Zj/Z0

is also

injective. Now suppose that m = i. We verify the injectivity of ∆p
Zj/Zi

→ ∆p
Zj/Z0

by induction on j. If j = m+1, it follows from our choice of Z → X that the image



16 KOICHIRO SAWADA

of the composite

∆Zm+1/Z0
↪→Wp → Aut(∆p

Ym+1/Ym
) = Aut(∆p

Zm+1/Zm
)

is a pro-p subgroup. Thus, since ∆p
Zm+1/Zm

is topologically finitely generated and

center-free (cf. Proposition 2.16(iii)), it follows from Lemma 2.18 that ∆p
Zm+1/Zm

→
∆p
Zm+1/Z0

is injective. Now suppose that m + 1 < j ≤ n, and that the induction

hypothesis is in force. Then we have the commutative diagram of profinite groups

1 // ∆p
Zj/Zj−1

// ∆p
Zj/Zm

//

��

∆p
Zj−1/Zm

//
� _

��

1

1 // ∆p
Zj/Zj−1

// ∆p
Zj/Z0

// ∆p
Zj−1/Z0

// 1,

where, since j − 1 > m, the two horizontal sequences are exact. Moreover, it
follows from the induction hypothesis that ∆p

Zj−1/Zm
→ ∆p

Zj−1/Z0
is injective. Thus,

∆p
Zj/Zm

→ ∆p
Zj/Z0

is also injective. This completes the proof of Claim A.

Now we verify Proposition 2.20. First, let us write Y → X for the Galois closure
of X ′ → X. Then, if n − 1 > 0, by applying Claim A, where we take the data
“(m,Y → X)” to be (n − 1, Y → X), we obtain a covering Z → X. Next, let us
replace Y → X by Z → X. Then, again by applying Claim A, where we take the
data “(m,Y → X)” to be (n− 2, Y → X). If n− 2 > 0, by applying an argument
similar to the above argument repeatedly until m = 0. Then we obtain a covering
Z → X which satisfies the condition imposed on “Y → X” in the statement of
Proposition 2.20. This completes the proof of Proposition 2.20. □

Proposition 2.21. Let Σ ⊂ Primes be a finite set of prime numbers, S a connected
noetherian separated normal scheme over k, and X a hyperbolic polycurve of relative
dimension n over S. Suppose that for any p ∈ Σ, X/S satisfies condition (∗)p. Then
there exists a connected finite étale Galois covering T → S of S such that for any
p ∈ Σ, X ×S T/T satisfies condition (∗∗)p.

Proof. For each p ∈ Σ, let us consider the sequence ΠS → Out(∆X/S)→ Out(∆p
X/S).

Then it follows from Proposition 2.16(iii) and Lemma 2.19 that Out(∆p
X/S) has an

open pro-p subgroup. Fix such an open subgroup H ⊂ Out(∆p
X/S) of Out(∆p

X/S),

and write Up ⊂ ΠS for the subgroup obtained by forming the inverse image of
H ⊂ Out(∆p

X/S) by the homomorphism ΠS → Out(∆p
X/S). Let U ⊂ ΠS be a nor-

mal open subgroup of ΠS contained in
∩
p∈Σ Up. Write T → S for the connected

finite étale Galois covering of S corresponding to U ⊂ ΠS . Then X ×S T → X cor-
responds to the inverse image of U ⊂ ΠS by the outer homomorphism ΠX → ΠS ,
and, moreover, ∆X×ST/T = ∆X/S . Thus, for any p ∈ Σ, the image of the homomor-
phism ΠX×ST → Aut(∆p

X×ST/T
) = Aut(∆p

X/S) is a pro-p subgroup. Then, since

∆p
X/S is topologically finitely generated and center-free (cf. Proposition 2.16(iii)),

it follows from Lemma 2.18 that ∆p
X/S → ΠpX×ST

is injective. On the other hand,

X ×S T/T satisfies condition (∗)p (cf. Proposition 2.16(ii)). Thus, it follows from
Lemma 2.15 that X ×S T/T satisfies condition (∗∗)p. This completes the proof of
Proposition 2.21. □
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Lemma 2.22. Let p be a prime number, n a positive integer, S a connected noe-
therian separated normal scheme over k, and X a hyperbolic polycurve of relative
dimension n over S. Then the following hold:

(i) Suppose that X/S satisfies condition (∗)p. Let U ⊂ ΠpX/S be an open sub-

group of ΠpX/S. Write Y → X for the connected finite étale covering of

X corresponding to U and S′ := Nor(Y/S). Then for each integer i such
that 0 ≤ i ≤ n, ΠpYi/S′ (cf. Proposition 2.5) is canonically identified with

Im(U ↪→ ΠpX/S ↠ ΠpXi/S
), and, moreover, for any pair of integers (i, j)

such that 0 ≤ i < j ≤ n, ∆p
Yj/Yi

= ΠpYj/S′ ∩ ∆p
Xj/Xi

. In particular, Y/S′

satisfies condition (∗)p.
(ii) Suppose that X/S satisfies condition (∗∗)p. Let U ⊂ ΠpX be an open sub-

group of ΠpX . Write Y → X for the connected finite étale covering of X
corresponding to U and S′ := Nor(Y/S). Then for each integer i such
that 0 ≤ i ≤ n, ΠpYi

(cf. Proposition 2.5) is canonically identified with

Im(U ↪→ ΠpX ↠ ΠpXi
), and, moreover, for any pair of integers (i, j) such

that 0 ≤ i < j ≤ n, ∆p
Yj/Yi

= ΠpYj
∩∆p

Xj/Xi
. In particular, Y/S′ satisfies

condition (∗∗)p.

Proof. First, we verify assertion (i). For each integer i such that 0 ≤ i ≤ n, we
have the commutative diagram of profinite groups

1

��

1

��

∆X/Xi
// //

��

∆p
X/Xi

��

1 // ker(∆X/S ↠ ∆p
X/S)

//

��

∆X/S
//

��

∆p
X/S

//

��

1

1 // ker(∆Xi/S ↠ ∆p
Xi/S

) // ∆Xi/S
//

��

∆p
Xi/S

//

��

1

1 1,

where the two horizontal sequences and the two vertical sequences are exact. Thus,
the homomorphism ker(∆X/S ↠ ∆p

X/S) → ker(∆Xi/S ↠ ∆p
Xi/S

) is surjective. On

the other hand, since the inverse image of U ⊂ ΠpX/S by the surjection ΠX ↠ ΠpX/S
coincides with ΠY ⊂ ΠX , it follows that ker(∆X/S ↠ ∆p

X/S) is contained in ΠY .

Thus, ker(∆Xi/S ↠ ∆p
Xi/S

) is contained in ΠYi = Im(ΠY ↪→ ΠX ↠ ΠXi), hence

also in ∆Yi/S′ = ∆Xi/S ∩ ΠYi
(cf. Lemma 2.9(ii)). This implies that ∆Yi/S′ can

be obtained by taking the inverse image of some open subgroup V ⊂ ∆p
Xi/S

of



18 KOICHIRO SAWADA

∆p
Xi/S

by the surjection ∆Xi/S ↠ ∆p
Xi/S

, and, moreover, ∆p
Yi/S′ coincides with

V ⊂ ∆p
Xi/S

. Thus, we have ker(∆Yi/S′ ↠ ∆p
Yi/S′) = ker(∆Xi/S ↠ ∆p

Xi/S
), which

implies that ΠpYi/S′ = ΠYi/ ker(∆Yi/S′ ↠ ∆p
Yi/S′) coincides with Im(ΠYi ↪→ ΠXi ↠

ΠpXi/S
), and, moreover, ΠYi

is the inverse image of ΠpYi/S′ ⊂ ΠpXi/S
by the surjection

ΠXi
↠ ΠpXi/S

. In particular, we have U = ΠpY/S′ = Im(ΠY ↪→ ΠX ↠ ΠpX/S).

Thus, since ΠY → ΠYi is surjective (cf. Proposition 2.7(i)), by considering the
commutative diagram of profinite groups

ΠY
� � //

����

ΠX // //

����

ΠpX/S

����

ΠYi

� � // ΠXi
// // ΠpXi/S

,

it holds that ΠpYi/S′ = Im(U ↪→ ΠpX/S ↠ ΠpXi/S
).

Now let (i, j) be a pair of integers such that 0 ≤ i < j ≤ n. Then, since it holds
that ∆Yj/Yi

= ΠYj
∩∆Xj/Xi

(cf. Lemma 2.9(ii)), by considering the commutative
diagram of profinite groups

∆Yj/Yi
ΠYj
∩∆Xj/Xi

⊂

��

∆Xj/Xi
⊂

����

ΠXj

����

ΠpYj/S′ ∩∆p
Xj/Xi

⊂ ∆p
Xj/Xi

⊂ ΠpXj/S
,

it follows that ∆Yj/Yi
is the inverse image of the open subgroup ΠpYj/S′ ∩∆p

Xj/Xi
⊂

∆p
Xj/Xi

by the surjection ∆Xj/Xi
↠ ∆p

Xj/Xi
. Thus, it holds that ∆p

Yj/Yi
= ΠpYj/S′∩

∆p
Xj/Xi

. In particular, if 0 < i < j ≤ n, by considering the commutative diagram

of profinite groups

∆p
Yj/Yi

// ∆p
Yj/Y0

ΠpYj/S′ ∩∆p
Xj/Xi

� � // ΠpYj/S′ ∩∆p
Xj/X0

,

we conclude that ∆p
Yj/Yi

→ ∆p
Yj/Y0

is injective, i.e., Y/S′ satisfies condition (∗)p.
This completes the proof of assertion (i). Assertion (ii) is proved similarly. □

Lemma 2.23. Let p be a prime number, (m,n) a pair of integers such that 0 ≤
m < n, S a connected noetherian separated normal scheme over k, and X a hyper-
bolic polycurve of relative dimension n over S satisfying condition (∗∗)p. Then the
following hold:
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(i) The natural surjections ΠpX/S ↠ ΠpX ,Π
p
X/S ↠ ΠpXm/S

(cf. Proposition 2.16)

determine an isomorphism

ΠpX/S
∼→ ΠpX ×Πp

Xm
ΠpXm/S

.

(ii) Let Y be a connected noetherian scheme over Xm. Let us fix a homomor-
phism ΠpY/S → ΠpXm/S

arising from Y → Xm. Then there exists a natural

bijection

HomΠp
Xm

(ΠpY ,Π
p
X)

1:1→ HomΠp
Xm/S

(ΠpY/S ,Π
p
X/S).

If, moreover, ΠpY/S → ΠpXm/S
is surjective and the image of φ ∈ HomΠp

Xm
(ΠpY ,Π

p
X)

by the above bijection is ψ ∈ HomΠp
Xm/S

(ΠpY/S ,Π
p
X/S), then there is a nat-

ural one-to-one correspondence between the left cosets of Imφ ⊂ ΠpX in ΠpX
and the left cosets of Imψ ⊂ ΠpX/S in ΠpX/S. In particular, φ is an open

(resp. a surjective) homomorphism if and only if so is ψ.

Proof. Assertion (i) follows from the commutative diagram of profinite groups

1 // ∆p
X/Xm

// ΠpX/S
//

����

ΠpXm/S
/ /

����

1

1 // ∆p
X/Xm

// ΠpX
// ΠpXm

// 1,

where the horizontal arrows are exact. We verify assertion (ii). Suppose given
an element φ ∈ HomΠp

Xm
(ΠpY ,Π

p
X). Then a homomorphism ΠpY/S → ΠpX/S over

ΠpXm/S
is obtained from the commutative diagram

ΠpY/S
// //

��

ΠpY
φ //

  B
BB

BB
BB

B
ΠpX

����

ΠpXm/S
// // ΠpXm

(cf. assertion (i)). Thus, we obtain a natural map

HomΠp
Xm

(ΠpY ,Π
p
X)→ HomΠp

Xm/S
(ΠpY/S ,Π

p
X/S).

Conversely, since

ΠpX = (ΠpX/S)
p,ΠpY = (ΠpY/S)

p,ΠpXm
= (ΠpXm/S

)p,

we obtain a natural map

HomΠp
Xm/S

(ΠpY/S ,Π
p
X/S)→ HomΠp

Xm
(ΠpY ,Π

p
X).

It follows immediately that these maps are inverse to each other.
Now suppose that ΠpY/S → ΠpXm/S

is surjective. Let φ ∈ HomΠp
Xm

(ΠpY ,Π
p
X).

Write ψ ∈ HomΠp
Xm/S

(ΠpY/S ,Π
p
X/S) for the image of φ ∈ HomΠp

Xm
(ΠpY ,Π

p
X) by
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the bijection HomΠp
Xm

(ΠpY ,Π
p
X)

1:1→ HomΠp
Xm/S

(ΠpY/S ,Π
p
X/S). Then, we have the

commutative diagram of profinite groups

1 // ker(ΠpY/S ↠ ΠpXm/S
) //

��

ΠpY/S
//

����

ΠpXm/S
//

����

1

1 // ∆
(p)
Y/Xm

//

��

ΠpY
//

φ

��

ΠpXm

// 1

1 // ∆
(p)
X/Xm

// ΠpX
// ΠpXm

// 1,

where the horizontal sequences are exact, and, moreover, since the operation of
taking the maximal pro-p quotient of a profinite group is right exact, the homo-

morphism ker(ΠpY/S ↠ ΠpXm/S
) → ∆

(p)
Y/Xm

is surjective. Thus, the above diagram

induces a one-to-one correspondence between the left cosets of Imφ ⊂ ΠpX in ΠpX
and the left cosets of Im(ker(ΠpY/S ↠ ΠpXm/S

) → ∆
(p)
X/Xm

) ⊂ ∆
(p)
X/Xm

in ∆
(p)
X/Xm

.

On the other hand, since X/S satisfies condition (∗∗)p, we have ∆(p)
X/Xm

= ∆p
X/Xm

.

Thus, the commutative diagram of profinite groups

1 // ker(ΠpY/S ↠ ΠpXm/S
) //

����

ΠpY/S
//

ψ

��

ΠpXm/S
// 1

1 // ∆p
X/Xm

// ΠpX/S
// ΠpXm/S

// 1,

where the horizontal sequences are exact, induces a one-to-one correspondence

between the left cosets of Im(ker(ΠpY/S ↠ ΠpXm/S
) → ∆

(p)
X/Xm

) ⊂ ∆
(p)
X/Xm

in

∆
(p)
X/Xm

= ∆p
X/Xm

and the left cosets of Imψ ⊂ ΠpX/S in ΠpX/S . This completes the

proof of assertion (ii). □

Remark 2.24. There are properties similar to Lemma 2.23 if X/S is a hyperbolic
polycurve satisfying condition (∗)p, i.e., the following hold:

(i) For each integer l such that 0 ≤ l ≤ m, the natural surjections ΠpX/Xl
↠

ΠpX/S ,Π
p
X/Xl

↠ ΠpXm/Xl
determine an isomorphism

ΠpX/Xl

∼→ ΠpX/S ×Πp
Xm/S

ΠpXm/Xl
.

(ii) Let l be an integer such that 0 ≤ l ≤ m and Y a connected noetherian
scheme over Xm. Let us fix a homomorphism ΠpY/Xl

→ ΠpXm/Xl
arising

from Y → Xm. Then there exists a natural bijection

HomΠp
Xm/S

(ΠpY/S ,Π
p
X/S)

1:1→ HomΠp
Xm/Xl

(ΠpY/Xl
,ΠpX/Xl

).
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If, moreover, ΠpY/Xl
→ ΠpXm/Xl

is surjective and the image of φ ∈ HomΠp
Xm/S

(ΠpY/S ,Π
p
X/S)

by the above bijection is ψ ∈ HomΠp
Xm/Xl

(ΠpY/Xl
,ΠpX/Xl

), then there is a

natural one-to-one correspondence between the left cosets of Imφ ⊂ ΠpX/S
in ΠpX/S and the left cosets of Imψ ⊂ ΠpX/Xl

in ΠpX/Xl
. In particular, φ is

an open (resp. a surjective) homomorphism if and only if so is ψ.

Definition 2.25. Let p be a prime number and X a variety over k. Then we shall
say that X is of p-LFG-type if, for any normal variety Y over k and any morphism
Y → X ×k k over k that is not constant, the image of the outer homomorphism
ΠpY → Πp

X×kk
is infinite.

Remark 2.26. It follows from an argument similar to the argument in [10] Remark
2.5.1, that if k′/k is a field extension of k, then X is of p-LFG-type if and only
if X ×k k′ is of p-LFG-type. On the other hand, it follows immediately from the
definition, if X is of p-LFG-type, then X is of LFG-type (cf. [10] Definition 2.5).

Lemma 2.27. Let p be a prime number and X,Y varieties over k. Suppose that
X is of p-LFG-type. Then the following hold:

(i) Suppose that there exists a quasi-finite morphism Y → X. Then Y is of
p-LFG-type.

(ii) Let f : X → Y be a morphism over k. Suppose that ∆p
f/k is finite. Then f

is quasi-finite. If, moreover, f is surjective, then Y is of p-LFG-type.
(iii) Let f : X → Y be a morphism over k. Suppose that Πp

X×kk
→ ΠpX is

injective and ∆
(p)
f is finite. Then f is quasi-finite. If, moreover, f is

surjective, then Y is of p-LFG-type.

Proof. (cf. [10] Lemma 2.6) First, we verify assertion (i). It follows from the fact
that if f is quasi-finite then so is the morphism Y ×k k → X ×k k determined by f ,
that to verify assertion (i), we may assume without loss of generality that k = k.
Let Z be a normal variety over k and Z → Y a nonconstant morphism over k.
Then since Y is quasi-finite over X, it follows that the composite Z → Y → X is
nonconstant. In particular, since X is of p-LFG-type, the image of the composite
ΠpZ → ΠpY → ΠpX , hence also ΠpZ → ΠpY , is infinite. This completes the proof of
assertion (i). Next, we verify assertion (ii). Note that we have the equality

∆p
f/k = ker(∆p

X/k → ∆p
Y/k) = ker(Πp

X×kk
→ Πp

Y×kk
) = ∆p

X×kk→Y×kk/k
.

Thus, it follows from the fact that if the morphism Y ×k k → X ×k k determined
by f is quasi-finite then so is f (cf. [2] Proposition 1.9.4), together with the fact
that if f is surjective then so is the morphism Y ×k k → X ×k k determined by f ,
that to verify assertion (ii), we may assume without loss of generality that k = k.
Let y → Y be a k-valued geometric point of Y and F a connected component
(which is necessarily a normal variety over k) of the normalization of the geometric
fiber of f at y. Then, since the composite of the outer homomorphism ΠF → ΠX
induced by natural morphism F → X and ΠpX → ΠpY factors through Πpy = {1},
ΠpF → ΠpX factors through ∆p

f/k ⊂ ΠpX . In particular, since ∆p
f/k is finite, the

image of ΠpF → ΠpX is finite. Thus, since X is of p-LFG-type, it follows that F is
finite over k. This implies that f is quasi-finite.

Now suppose that f is surjective. Let Z be a normal variety over k and Z → Y
a nonconstant morphism over k. Then since f is a quasi-finite surjection, and
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Z → Y is nonconstant, there exists a connected component C (which is necessarily
a normal variety over k) of the normalization of Z ×Y X such that the natural
morphism C → X over k is nonconstant. Thus, since X is of p-LFG-type, the
image of ΠpC → ΠpX , hence also that of ΠpC → ΠpX → ΠpY , is infinite. In particular,
since the composite C → X → Y factors through Z → Y , it follows that the image
of ΠpZ → ΠpY is infinite, which implies that Y is of p-LFG-type. This completes the
proof of assertion (ii). Finally, we verify assertion (iii). Let us observe that, since

if Πp
X×kk

= ∆p
X/k → ΠpX is injective then ∆

(p)
f ⊃ ker(Πp

X×kk
→ Πp

Y×kk
), it follows

from an argument similar to the argument used at the beginning of the proof of
assertion (ii), that to verify assertion (iii), we may assume without loss of generality
that k = k. But then assertion (iii) is the same as assertion (ii), which has already
been verified. This completes the proof of assertion (iii). □

Proposition 2.28. Let p be a prime number. Then every hyperbolic polycurve over
k satisfying condition (∗)p is of p-LFG-type.

Proof. (cf. [10] Proposition 2.7) First, let us observe that it follows that, to verify
Proposition 2.28, we may assume without loss of generality that k = k. Let X
be either Spec k or a hyperbolic polycurve over k satisfying condition (∗)p. Write
n := dim(X). We verify that X is of p-LFG-type by induction on n. If n = 0, i.e.,
X = Spec k, then X is clearly of p-LFG-type. Now suppose that n ≥ 1, and that
the induction hypothesis is in force. Let Y be a normal variety over k and Y → X a
nonconstant morphism over k. To verify Proposition 2.28, it suffices to verify that
the image of ΠpY → ΠpX is infinite.

Now suppose that the composite Y → X → Xn−1 is nonconstant. It follows
from the induction hypothesis that Xn−1 is of p-LFG-type. Thus, the image of the
composite ΠpY → ΠpX ↠ ΠpXn−1

, hence also that of ΠpY → ΠpX , is infinite.

Next, suppose that the composite Y → X → Xn−1 is constant. Write x→ Xn−1

for the k-valued geometric point of Xn−1 through which the constant morphism
Y → X → Xn−1 factors. Then the composite Y → X → Xn−1 determines a
nonconstant morphism Y → X ×Xn−1

x over k. Since X ×Xn−1
x is a hyperbolic

curve over x, it follows that the morphism Y → X ×Xn−1
x is dominant. Thus,

it follows from Lemma 1.3 that the outer homomorphism ΠY → ΠX×Xn−1
x, hence

also ΠpY → ΠpX×Xn−1
x, is open. Now let us observe that ΠpX×Xn−1

x
∼→ ∆p

X/Xn−1

(cf. Proposition 2.7(i)) is infinite (cf. Proposition 2.16). Thus, since X/S satisfies

condition (∗)p, the image of the composite ΠpY → ΠpX×Xn−1
x

∼→ ∆p
X/Xn−1

↪→ ΠpX is

infinite. This completes the proof of Proposition 2.28 □

Lemma 2.29 (cf. [16] Lemma 1.10). Let p be a prime number, (g0, r0) a pair of
nonnegative integers, and X a hyperbolic curve (resp. a nonproper hyperbolic curve)
over k. Then there exists a normal open subgroup U ⊂ ΠX×kk

of ΠX×kk
such that

ΠX×kk
/U is a p-group, and that if we write (g, r) for the type of the hyperbolic

curve corresponding to U ⊂ ΠX×kk
, then g ≥ g0 (resp. g ≥ g0, r ≥ r0).

Lemma 2.30. Let p be a prime number, (g0, r0) a pair of nonnegative integers, S
a connected noetherian separated normal scheme over k, and X a hyperbolic curve
(resp. a nonproper hyperbolic curve) over S. Then there exists a connected finite
étale Galois covering Y → X of X such that if we write S′ := Nor(Y/S) and (g, r)
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for the type of the hyperbolic curve Y/S′, then g ≥ g0 (resp. g ≥ g0, r ≥ r0), and
that ΠpY/S′ → ΠpX/S is injective.

Proof. Let s→ S be a geometric point of S. Then it follows from Lemma 2.29 that
there exists a normal open subgroup V ⊂ ∆X/S of ∆X/S

∼= ΠX×Ss (cf. Proposition
2.7(i)) such that ∆X/S/V is a p-group, and that the pair of integers (g′, r′) corre-
sponding to V satisfies g′ ≥ g0(, r

′ ≥ r0). On the other hand, let us observe that
ker(∆X/S ↠ ∆p

X/S) ⊂ V ⊂ ∆X/S ⊂ ΠX . Thus, since ker(∆X/S ↠ ∆p
X/S) ⊂ ΠX is

a normal closed subgroup of ΠX , it follows from Lemma 2.17(ii) that there exists
a normal open subgroup U ⊂ ΠX such that ker(∆X/S ↠ ∆p

X/S) ⊂ U ∩∆X/S ⊂ V .

Write Y → X for the connected finite étale Galois covering of X, S′ := Nor(Y/S)
and (g, r) for the type of Y/S′. Then, since U ∩ ∆X/S = ∆Y/S′ ⊂ V , we obtain
g ≥ g′ ≥ g0(, r ≥ r′ ≥ r0). Moreover, since ∆Y/S′ ⊃ ker(∆X/S ↠ ∆p

X/S), the

homomorphism ∆p
Y/S′ → ∆p

X/S is injective. Thus, we have

ker(∆Y/S′ ↠ ∆p
Y/S′) = ker(∆X/S ↠ ∆p

X/S) ∩∆Y/S′ = ker(∆X/S ↠ ∆p
X/S).

This implies that ΠpY/S′ → ΠpX/S is injective. This completes the proof of Lemma

2.30. □

Lemma 2.31. Let p be a prime number, S a connected noetherian separated normal
scheme over k, X a hyperbolic curve over S, R a strictly henselian discrete valuation
ring over S, K the field of fractions of R, and SpecK → X a morphism over S.
Then it holds that the morphism SpecK → X factors through the open immersion
SpecK ↪→ SpecR if and only if the image of the outer homomorphism ΠSpecK →
ΠpX/S induced by the morphism SpecK → X is trivial.

Proof. (cf. [10] Lemma 2.8) Since ΠSpecR = {1} (cf. e.g., [6] Théorème (18.5.11)),
necessity is immediate. We verify sufficiency. Note that we have

ΠpX×SSpecR/ SpecR

∼→ ΠpX/S ×ΠS
ΠSpecR = ker(ΠpX/S ↠ ΠS)

(cf. Proposition 2.16(ii)). In particular, ΠpX×SSpecR/ SpecR → ΠpX/S is injective.

Thus, the image of ΠSpecK → ΠpX×SSpecR/ SpecR is trivial. This implies that, to

verify sufficiency, we may assume without loss of generality that S = SpecR.

Next, let us write R̂ for the completion of R and K̂ for the field of fractions of R̂.
Then, since Πp

X×RR̂/R̂
∼= ΠpX/R×ΠR

ΠR̂ = ΠpX/R (cf. Proposition 2.16(ii)), it follows

that if the image of ΠSpecK → ΠpX/R is trivial, then so is ΠSpec K̂ → Πp
X×RR̂/R̂

.

Thus, if we verify Lemma 2.31 in the case where R is complete, then the morphism

Spec K̂ → X ×R R̂ factors through Spec K̂ ↪→ Spec R̂. Then, it follows from the
commutative diagram of schemes

Spec R̂ //

����

X ×R R̂
pr1 // X

� _

��

SpecR // Xcpt

that the image of the morphism SpecR→ Xcpt is contained in X. Thus, it follows
from the valuative criterion of properness (cf. e.g., [9] Chapter II, Theorem 4.7)
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applied to the morphism Xcpt → S that the given morphism SpecK → X factors
through SpecK ↪→ SpecR. This implies that, to verify sufficiency, we may assume
without loss of generality that R is complete.

Now, to verify sufficiency, assume that the given morphism SpecK → X does
not factor through S = SpecR. Then it follows from Lemma 2.30 that there exists
a connected finite étale covering Y → X of X such that if we write (g, r) for the
type of the hyperbolic curve Y/S (note that it follows easily from the fact that ΠS
is trivial, together with Proposition 2.5(ii), that Nor(Y/S)

∼→ S), then r ≥ 2, and
that ΠpY/S → ΠpX/S is injective. For each cusp c of the hyperbolic curve X over

R, let c′ be a cusp of the hyperbolic curve Y over R which lies over c. Write Xcpt
c

(resp. Y cpt
c′ ) for the spectrum of the ring obtained by completing Xcpt (resp. Y cpt)

along c (resp. c′), and Xc := X ×Xcpt Xcpt
c , Yc′ := Y ×Y cpt Y cpt

c′ . Let y → S be a
geometric point of S. Then we have the exact sequence

0→ Ẑ(1)→
⊕
r

Ẑ(1)→ (ΠYy
)ab

(cf. [16], (1-5)), where the homomorphism Ẑ(1) →
⊕

r Ẑ(1) is the diagonal em-

bedding, and ΠYc′ is one of the direct summands Ẑ(1) of
⊕

r Ẑ(1). Thus, since

r ≥ 2, the morphism ΠpYc′
→ (ΠYy )

ab,p, hence also ΠpYc′
→ ΠpYy

= ∆p
Y/S ↪→ ΠpY/S

is injective. Next, let g ∈ ker(ΠpXc
→ ΠpX/S). Then, since ΠpYc′

is an open sub-

group of ΠpXc
, there exists a positive integer n such that gn ∈ ΠpYc′

. Thus, since

ΠpXc

∼= Zp is torsion free, it follows from our choice of Y → X that g = 1. This

implies that ΠpXc
→ ΠpX/S is injective. On the other hand, it follows from the

valuative criterion of properness applied to the morphism Xcpt → S that the mor-
phism SpecK → Xcpt factors through SpecK ↪→ S = SpecR. Thus, since the
given morphism SpecK → X does not factor through SpecK ↪→ S = SpecR,
SpecK → X factors through the natural morphism Xc → X associated to a suit-
able cusp c of X. Thus, since the image of the natural outer homomorphism
ΠSpecK → ΠpX/S is trivial, it follows that the image of ΠSpecK → ΠXc

is contained

in ker(ΠXc
↠ ΠpXc

). Note that ker(ΠXc
↠ ΠpXc

) is the intersection of all open
subgroups U ⊂ ΠXc

such that ΠXc
/U is a p-group. Such an open subgroup of U

contains Im(ΠSpecK → ΠXc
) ⊂ U , and, moreover, the pull-back of the étale cov-

ering of Xc corresponding to U on SpecK is a disjoint union of copies of SpecK.
Now let us consider the diagram of affine schemes

SpecK //
� _

��

Xc

��

SpecR // Xcpt
c .
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The diagram obtained by taking global sections of the above diagram is

R

[
1

π

]
R[[T ]]

[
1

T

]
oo

R

OO

R[[T ]],oo

OO

where π is a uniformizing parameter of R. Write a ∈ R for the image of T ∈ R[[T ]]
by the ring homomorphism R[[T ]] → R. Then a is contained in the maximal
ideal of R. On the other hand, the covering of Xc corresponding to U is the
spectrum of R[[T 1/pm ]] for a suitable nonnegative integer m. Note that if U runs
over all open subgroups as above, then m runs over all nonnegative integers. Thus,
we conclude that for each nonnegative integer m there exists b ∈ K× such that
a = bp

m

. However, by considering the valuation, it follows that there is no such an
element a ∈ R. This completes the proof of sufficiency, hence also that of Lemma
2.31. □

Lemma 2.32. Let p be a prime number, k′ a finite extension field of k, S a
normal variety over k, Y, Z normal varieties over k′, X a hyperbolic polycurve over
S satisfying condition (∗)p, Z → Y a morphism over k′, Y → S a morphism over
k, and f : Z → X a morphism over S. Suppose that the following conditions are
satisfied:

(1) Z → Y is dominant and generically geometrically irreducible. (Thus, it
follows from Lemma 1.6 that the natural outer homomorphism ΠZ → ΠY ,
hence also ΠpZ/S → ΠpY/S is surjective.)

(2) ∆p
Z→Y/S ⊂ ∆p

Z→X/S. (Thus, it follows from the surjectivity of ΠpZ/S →
ΠpY/S that the natural outer homomorphism ΠpZ/S → ΠpX/S induced by f

determines an outer homomorphism ΠpY/S → ΠpX/S.)

Then the morphism f : Z → X admits a unique factorization Z → Y → X such
that the morphism Y → X is an S-morphism.

Proof. (cf. [10] Lemma 2.9) First, let us observe that the asserted uniqueness of the
factorization under consideration follows from the fact that the morphism Z → Y is
dominant. Next, we verify that, to verify Lemma 2.32, it suffices to verify Lemma
2.32 in the case where X is a hyperbolic curve over S. To verify this, assume
that Lemma 2.32 holds if X is a hyperbolic curve over S. We verify Lemma 2.32
by induction on the relative dimension n of the hyperbolic polycurve X/S. The
case n = 1 is the assumption above. Now suppose that n ≥ 2, and that the
induction hypothesis is in force. Then since ∆p

Z→Y/S ⊂ ∆p
Z→X/S ⊂ ∆p

Z→X1/S
,

it follows from the case n = 1, that the morphism Z → X1 admits a unique
factorization Z → Y → X1 such that Y → X1 is an S-morphism. On the other
hand, since X/S satisfies condition (∗)p, it follows that ∆p

X/X1
→ ∆p

X/S is injective.

Thus, since ker(∆Z/X1
→ ∆p

Y/X1
) ⊂ ker(∆Z/X1

→ ∆p
Y/X1

→ ∆p
X/S), we obtain

∆p
Z→Y/X1

⊂ ∆p
Z→X/X1

. By the induction hypothesis, sinceX/X1 satisfies condition

(∗)p, the morphism f : Z → X admits a unique factorization Z → Y → X such
that Y → X is an X1-morphism (hence an S-morphism).
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Now let us assume that X/S is a hyperbolic curve. Moreover, let us assume
that k = k′ until Claim F below. Write Γ0 ⊂ X ×S Y for the scheme-theoretic
image of the natural morphism Z → X ×S Y over S and Γ := Nor(Z/Γ0). Then
Γ0 is an integral variety over k, and the natural morphism Z → Γ0 is dominant.
Moreover, it follows from Lemma 1.9 that Γ is a normal variety over k, the resulting
morphism Z → Γ is dominant and generically geometrically irreducible, and the
natural morphism Γ→ Γ0 is finite and surjective.

Next, I claim that the following assertion holds:

Claim A: Let y → Y be a geometric point of Y . Then the image
of the morphism Z ×Y y → X ×S y determined by f consists of
finitely many closed points of X ×S y.

Indeed, let F → Z×Y y be a connected component (which is necessarily a normal
variety over y) of the normalization of the reduced scheme associated to Z ×Y y.
Then, since the composite of natural morphisms F → Z ×Y y → Z → Y factors
through the geometric point y → Y , we obtain Im(ΠpF → ΠpZ/S) ⊂ ∆p

Z→Y/S .

Thus, it follows from condition (2) that the image of the outer homomorphism
ΠpF → ΠpX/S is trivial. On the other hand, the composite of natural morphisms

F → Z ×Y y
pr1→ Z → X factors through the projection X ×S y

pr1→ X. Thus, since

the outer homomorphism ΠpX×Sy
→ ΠpX/S induced by X ×S y

pr1→ X is injective

(cf. Proposition 2.16(i)), it follows that the image of the outer homomorphism
ΠpF → ΠpX×Sy

induced by the morphism F → X ×S y is trivial. In particular, since

X ×S y is a hyperbolic curve over y, hence of p-LFG-type (cf. Proposition 2.28),
and the morphism F → X ×S y is a morphism between varieties over y, it follows
that the image of F → X ×S y consists of a closed point of X ×S y. Thus, the
image of the morphism Z ×Y y → X ×S y consists of finitely many closed points of
X ×S y. This completes the proof of Claim A.

Next, I claim that the following holds:

Claim B: The composite Γ → Γ0 ↪→ X ×S Y
pr2→ Y , hence also

the composite Γ0 ↪→ X ×S Y
pr2→ Y , is dominant and induces an

isomorphism between the respective function fields.

Indeed, since Z → Y is dominant and generically geometrically irreducible (cf.
condition (1)) and factors through Γ → Y , it follows from [5] Proposition (4.5.9)
that Γ → Y is dominant and generically geometrically irreducible. Since k, hence
also the function fields of Γ, Y , is of characteristic zero, to verify Claim B, it suffices
to verify that Γ→ Y is generically quasi-finite. To verify that Γ→ Y is generically
quasi-finite, let ηY → Y be a geometric point of Y whose image is the generic point
of Y . Then since the operation of forming the scheme-theoretic image commutes
with base-change by a flat morphism, Γ0 ×Y ηY is naturally isomorphic to the
scheme-theoretic image of the natural morphism Z×Y ηY → X×S ηY . Thus, since
the image of the morphism Z ×Y ηY → X ×S ηY consists of finitely many closed

points of X×S ηY (cf. Claim A), it follows that the composite Γ0 ↪→ X×S Y
pr2→ Y ,

hence (by the finiteness of Γ → Γ0) also the morphism Γ → Y , is generically
quasi-finite. This completes the proof of Claim B.

Next, I claim that the following assertion holds:

Claim C: ∆p
Γ→Y/S ⊂ ∆p

Γ→X/S .
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Indeed, it follows from Lemma 1.6 that ΠZ → ΠΓ, hence also ΠpZ/S → ΠpΓ/S ,

is surjective. Thus, since ∆p
Γ→Y/S (resp. ∆p

Γ→X/S) is the image of the subgroup

∆p
Z→Y/S (resp. ∆p

Z→X/S) of Π
p
Z/S by the surjection ΠpZ/S ↠ ΠpΓ/S , it follows from

condition (2) that ∆p
Γ→Y/S ⊂ ∆p

Γ→X/S . This completes the proof of Claim C.

Next, I claim that the following assertion holds:

Claim D: Let y → Y be a geometric point of Y . Then the image
of the morphism Γ ×Y y → X ×S y determined by Γ → Γ0 ↪→
X ×S Y

pr1→ X consists of finitely many closed points of X ×S y.
Indeed, we obtain a proof of Claim D by replacing “Z” in the proof of Claim A by
Γ (cf. Claim C). This completes the proof of Claim D.

Next, I claim that the following assertion holds:

Claim E: The composite Γ0 ↪→ X×S Y
pr2→ Y is an open immersion.

Indeed, let y → Y be a geometric point of Y . Then it follows from Claim D that
the image of the composite Γ×Y y → Γ0 ×Y y ↪→ X ×S y consists of finitely many
closed points of X ×S y. Thus, since Γ → Γ0 is surjective, and the morphism
Γ0 ×Y y ↪→ X ×S y is a closed immersion, we conclude that Γ0 ×Y y is quasi-finite

over y. In particular, Γ0 ↪→ X×SY
pr2→ Y is quasi-finite. Thus, it follows from Claim

B, together with [4] Corollaire (4.4.9), that the composite Γ0 ↪→ X ×S Y
pr2→ Y is

an open immersion. This completes the proof of Claim E.
Next, I claim that the following assertion holds:

Claim F: If X is proper over S, then f : Z → X admits a factor-
ization Z → Y → X such that Y → X is an S-morphism.

Indeed, if X is proper over S, then the composite Γ0 ↪→ X ×S Y
pr2→ Y is proper.

Thus, it follows from Claim E that the composite Γ0 ↪→ X ×S Y
pr2→ Y is an

isomorphism over S. In particular, f : Z → X admits a factorization Z → Y → X
such that Y → X is an S-morphism. This completes the proof of Claim F.

Next, I claim that the following assertion holds (note that in Claim G and Claim
H below, we do not assume that k = k′):

Claim G: If the genus of the hyperbolic curve X over S is ≥ 2,
then f admits a factorization Z → Y → X such that Y → X is an
S-morphism.

Indeed, let us consider the commutative diagram of schemes

Z //

��

X ×k k′
pr1 //

��

X

��

Y // S ×k k′
pr1 //

pr2

��

S

��

Spec k′ // Spec k,

where X ×k k′ is a hyperbolic curve of genus ≥ 2 over S×k k′. Since ΠS×kk′ → ΠS
is injective, it follows that ∆Z/S = ∆Z/S×kk′ ,∆Y/S = ∆Y/S×kk′ . Thus, we obtain
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ΠpZ/S = ΠpZ/S×kk′
,ΠpY/S = ΠpY/S×kk′

. This implies that ∆p
Z→Y/S = ∆p

Z→Y/S×kk′
.

Moreover, since ΠpX×kk′/S×kk′
is the inverse image of the open subgroup Gk′ ⊂ Gk

by the composite ΠpX/S → ΠS → Gk, Π
p
Z/S = ΠpZ/S×kk′

→ ΠpX/S factors through

ΠpX×kk′/S×kk′
. Thus, we conclude that ∆p

Z→X/S = ∆p
Z→X×kk′/S×kk′

. In particular,

to verify Claim G, we may assume without loss of generality that k = k′.
Now, since the genus of X/S is ≥ 2, Xcpt is a proper hyperbolic curve over S.

Thus, since ∆p
Z→Y/S ⊂ ∆p

Z→X/S ⊂ ∆p
Z→Xcpt/S , by applying Claim F, where we

take the data “(S, Y, Z,X)” to be (S, Y, Z,Xcpt), we conclude that the morphism
Z → Xcpt over S factors as a composite Z → Y → Xcpt, where Y → Xcpt is an S-
morphism. This implies that, to verify Claim G, it suffices to verify that Y → Xcpt

factors through X ⊂ Xcpt. Note that since Z → Y is dominant by condition (1),
it follows that the image of the generic point of Y by the morphism Y → Xcpt is
contained in X ⊂ Xcpt. Let y ∈ Y be a point of Y that is not the generic point
of Y and R0 a discrete valuation ring dominating OY,y (cf. e.g., [3] Proposition
(7.1.7)). Write R for the strict henselization of R0. Then R is a strict henselian
discrete valuation ring, and, moreover, the image of the closed point of SpecR by
the composite SpecR → SpecR0 → SpecOY,y → Y is y. On the other hand,
since the composite ηR → SpecR→ Y , where we write ηR for the spectrum of the
quotient field of R, factors through Γ → Y (cf. Claim B), together with the fact
that ΠSpecR = {1}, that the image of the composite ΠηR → ΠSpecR → ΠpY/S , hence

also the composite ΠηR → ΠpΓ/S → ΠpX/S (cf. Claim C), is trivial. Thus, it follows

from Lemma 2.31 that ηR → Γ → X factors through ηR ↪→ SpecR. In particular,
the composite SpecR → Y → Xcpt factors through X ⊂ Xcpt. This implies that
the image of y ∈ Y by the morphism Y → Xcpt is contained in X ⊂ Xcpt. Thus,
the morphism Y → Xcpt factors through X ⊂ Xcpt. This completes the proof of
Claim G.

Finally, I claim that the following assertion holds:

Claim H: f admits a factorization Z → Y → X such that Y → X
is an S-morphism.

Indeed, it follows from an argument similar to the argument used at the beginning
of the proof of Claim G, that to verify Claim H, we may assume without loss of gen-
erality that k = k′. Then, it follows from Lemma 2.30 that there exists a connected
finite étale Galois covering X ′ → X of X such that if we write S′ := Nor(X ′/S),
then the genus of X ′/S′ is ≥ 2, and, moreover, ΠpX′/S′ → ΠpX/S is injective.

Write Y ′ → Y for the connected finite étale Galois covering of Y corresponding
to the inverse image of ΠpX′/S′ ⊂ ΠpX/S by ΠpY/S → ΠpX/S (cf. condition (2)), and

Z ′ := Z×Y Y ′ pr1→ Z for the connected (cf. condition (1)) finite étale Galois covering
of Z corresponding to Y ′ → Y . Then, since the image of ∆p

Z′→Y ′/S′ ⊂ ΠpZ′/S′ by the

composite ΠpZ′/S′ → ΠpY ′/S′ → ΠpY/S → ΠpX/S is trivial, it follows from the injectiv-

ity of ΠpX′/S′ → ΠpX/S that the image of ∆p
Z′→Y ′/S′ ⊂ ΠpZ′/S′ by ΠpZ′/S′ → ΠpX′/S′

is trivial. Thus, we conclude that ∆p
Z′→Y ′/S′ ⊂ ∆p

Z′→X′/S′ . On the other hand,

the image of ΠS′ ⊂ ΠS (resp. ΠY ′ ⊂ ΠY ) by the surjection ΠS ↠ Gk (resp.
ΠY ↠ Gk) is an open subgroup of Gk, which corresponds to some finite field exten-
sion k′ (resp. k′′). Then, (S′, Y ′, Z ′, X ′, k′, k′′) satisfies the conditions (1), (2) for
“(S, Y, Z,X, k, k′)” in the statement of Lemma 2.32. Thus, since X ′ is a hyperbolic
curve over S′ of genus ≥ 2, it follows from Claim G that the natural morphism
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Z ′ → X ′ over S′ factors as a composite Z ′ → Y ′ → X ′, where Y ′ → X ′ is an
S′-morphism. In particular, the natural morphism Z ′ → X over S admits a unique
factorization Z ′ → Y ′ → X, where Y ′ → X is an S-morphism. Moreover, in light
of this uniqueness, the factorization Z ′ → Y ′ → X ′ is compatible with the nat-
ural actions of Gal(Z ′/Z) ∼= Gal(Y ′/Y ). This compatibility with Galois actions
thus implies that we obtain a factorization Z → Y → X such that Y → X is an
S-morphism. This completes the proof of Claim H, hence also of Lemma 2.32. □

Corollary 2.33. Let p be a prime number, k′ a finite extension field of k, S a
normal variety over k, Y, Z normal varieties over k′, X a hyperbolic polycurve over
S satisfying condition (∗∗)p, Z → Y a morphism over k′, Y → S a morphism over
k, and f : Z → X a morphism over S. Suppose that the following conditions are
satisfied:

(1) Z → Y is dominant and generically geometrically irreducible.

(2) ∆
(p)
Z/Y ⊂ ∆

(p)
Z/X .

Then the morphism f : Z → X admits a unique factorization Z → Y → X, where
the morphism Y → X is an S-morphism.

Proof. It follows from Lemma 2.23(ii) that the outer homomorphism ΠpY → ΠpX
over ΠpS (cf. condition (2)) determines an outer homomorphism ΠpY/S → ΠpX/S such

that the composite ΠpZ/S → ΠpY/S → ΠpX/S coincides with the outer homomorphism

ΠpZ/S → ΠpX/S induced by f . Thus, we obtain ∆p
Z→Y/S ⊂ ∆p

Z→X/S . This implies

that it follows from Lemma 2.32 that the morphism f : Z → X admits a unique
factorization Z → Y → X. This completes the proof of Corollary 2.33. □

Lemma 2.34. Let p be a prime number, S, Y normal varieties over k, Y → S a
morphism, X a hyperbolic polycurve over S satisfying condition (∗)p (resp. (∗∗)p),
and ϕ : ΠpY/S → ΠpX/S (resp. ϕ : ΠpY → ΠpX) a homomorphism. Write η → Y for

the generic point of Y . Then the following conditions are equivalent:

(1) The homomorphism ϕ arises from a morphism Y → X over S.
(2) There exists a morphism η → X over S such that the outer homomorphism

Πpη/S → ΠpX/S (resp. Πpη → ΠpX) induced by this morphism η → X coincides

with the composite of the outer surjection (cf. Lemma 1.2) Πpη/S ↠ ΠpY/S
(resp. Πpη ↠ ΠpY ) induced by η → Y and the outer homomorphism deter-
mined by ϕ.

Proof. (cf. [10] Lemma 2.10) The implication (1) ⇒ (2) is immediate. We verify
the implication (2) ⇒ (1). Suppose that condition (2) is satisfied. Let U ⊂ Y be
a nonempty open subscheme of Y such that the morphism η → X in condition
(2) extends to a morphism U → X over S. Then it follows from Lemma 1.2 that
the outer homomorphism Πη → ΠU , hence also Πpη/S → ΠpU/S (resp. Πpη → ΠpU ),

is surjective. Thus, it follows that the outer homomorphism ΠpU/S → ΠpX/S (resp.

ΠpU → ΠpX) coincides with the composite of the outer surjection ΠpU/S ↠ ΠpY/S
and the outer homomorphism determined by ϕ. By applying Lemma 2.32 (resp.
Corollary 2.33), where we take the data “(k, k′, S, Y, Z,X)” to be (k, k, S, Y, U,X),
we conclude that the homomorphism U → X factors through Y → X. This
completes the proof of Lemma 2.34. □
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Lemma 2.35. Let p be a prime number, X a hyperbolic curve over k, Y a normal
variety over k, and f : Y → X a morphism over k. Write ϕf : ΠY → ΠX , ϕ

p
f/k :

ΠpY/k → ΠpX/k, ϕ
p
f : ΠpY → ΠpX for the outer homomorphisms induced by f . Con-

sider the following conditions:

(1) f is surjective, smooth, and generically geometrically connected.
(2) ϕf is surjective, and the kernel ∆f of ϕf is topologically finitely generated.
(2)′ ϕpf/k is surjective, and the kernel ∆p

f/k of ϕpf/k is topologically finitely gen-

erated.
(2)′′ ϕpf is surjective, and the kernel ∆

(p)
f of ϕpf is topologically finitely generated.

(3) f is surjective and generically geometrically connected.
(4) Let C be a hyperbolic curve over k and C → X a morphism over k. Then

if f factors through C → X, then C → X is an isomorphism.

Then we have implications and an equivalence: (1) ⇒ (2) ⇒ (2)′ ⇒ (3) ⇔
(4), (2)′ ⇒ (2)′′. Moreover, if Πp

X×kk
→ ΠpX and Πp

Y×kk
→ ΠpY are injective,

then we have an equivalence (2)′ ⇔ (2)′′.

Proof. (cf. [10] Lemma 2.11) The implication (1)⇒ (2) and the equivalence (3)⇔
(4) are proved in [10] Lemma 2.11. First, we verify the implication (2) ⇒ (2)′.
Suppose that condition (2) is satisfied. Then, the surjectivity of ϕpf/k is immediate,

and, moreover, since there is a surjection ∆f → ∆p
f/k (cf. Lemma 1.18), ∆p

f/k

is topologically finitely generated. This completes the proof of the implication
(2) ⇒ (2)′. The implication (2)′ ⇒ (2)′′ is proved similarly. Next, we verify
the implication (2)′ ⇒ (4). Suppose that condition (2)′ is satisfied. Let C be a
hyperbolic curve over k and C → X a morphism over k. Then, if C×k k → X ×k k
is an isomorphism, then so is C → X (cf. [2] Corollary 1.8.4). On the other hand,
by considering the commutative diagram of profinite groups

1 // Πp
Y×kk

//

��

ΠpY/k
//

ϕp
f/k

����

Gk // 1

1 // Πp
X×kk

// ΠpX/k
// Gk // 1,

it follows that Πp
Y×kk/k

= Πp
Y×kk

→ Πp
X×kk

= Πp
Y×kk/k

is surjective, and, more-

over, ∆p
f/k = ker(Πp

Y×kk
→ Πp

X×kk
). Thus, to verify that condition (4) is satisfied,

we may assume without loss of generality that k = k. Suppose that f factors
through C → X. Then, since X is a hyperbolic curve over k, it follows from Propo-
sition 2.16(iii) that ∆p

X/k = ΠpX is infinite. Thus, since C is a hyperbolic curve

over k, the surjectivity of ϕpf/k implies that f , hence also Y → C, is dominant.

In particular, it follows from Lemma 1.3 that the induced outer homomorphism
ΠY → ΠC , hence also ΠpY → ΠpC , is open. Moreover, since ϕpf/k is surjective,

ΠpC → ΠpX is surjective. On the other hand, since the kernel of ϕpf/k is topologi-

cally finitely generated, it follows from the openness of ΠpY → ΠpC that ∆p
C→X/k

admits an open subgroup which is topologically finitely generated. Thus, ∆p
C→X/k

is topologically finitely generated. Now the surjectivity of ΠpC → ΠpX implies that
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ΠpC/∆
p
C→X/k

∼→ ΠpX . Thus, since ΠpX is infinite, ∆p
C→X/k ⊂ ΠpC = ∆p

C/k is not open

in ∆p
C/k. This implies that ∆p

C→X/k is trivial (cf. Proposition 2.16(iv)). Thus, we

conclude that ∆p
C/k = ΠpC → ΠpX = ∆p

X/k is an outer isomorphism. Write (gX , rX),

(gC , rC) for the type of X/k, C/k, respectively. Then, since ∆p
C/k
∼= ∆p

X/k, it fol-

lows from Proposition 2.16(v) that 2gX +max{rX − 1, 0} = 2gC +max{rC − 1, 0},
and, moreover, that rX = 0 if and only if rC = 0. On the other hand, since C → X
determines the surjection Ccpt → Xcpt, we have rC ≥ rX . Moreover, it follows
from Hurwitz’ formula (cf. e.g., [9] Chapter IV, Corollary 2.4) that gC ≥ gX . Thus,
it follows immediately that gC = gX , rC = rX . Moreover, since Ccpt → Xcpt de-
termines the bijection between the points of Ccpt \ C and the points of Xcpt \X,
Ccpt → Xcpt is totally ramified over Ccpt \ C. Thus, if we write n for the degree
of Ccpt → Xcpt and eP for the ramification index at P ∈ Ccpt, then it follows from
Hurwitz’ formula that

2gC − 2 = n(2gX − 2) +
∑

P∈Ccpt

(eP − 1) = n(2gX − 2) + rC(n− 1) +
∑
P∈C

(eP − 1).

This implies that n = 1, and that for any P ∈ C, eP = 1. Thus, we conclude that
C → X is an isomorphism. This completes the proof of the implication (2)′ ⇒ (4).

Finally, we verify (2)′′ ⇒ (2)′, assuming that Πp
X×kk

→ ΠpX and Πp
Y×kk

→ ΠpY
are injective. Suppose that condition (2)′′ is satisfied. Then, the two commutative
diagrams of profinite groups

1 // Πp
Y×kk

//

��

ΠpY
//

ϕp
f

����

Gpk
// 1

1 // Πp
X×kk

// ΠpX
// Gpk

// 1

and

1 // Πp
Y×kk

//

��

ΠpY/k
//

ϕp
f/k

��

Gk // 1

1 // Πp
X×kk

// ΠpX/k
// Gk // 1,

where the horizontal sequences are exact, implies that condition (2)′ is satisfied.
This completes the proof of (2)′′ ⇒ (2)′, hence also of Lemma 2.35. □
Lemma 2.36. In the notation of Lemma 2.35, suppose, moreover, that Y is of
p-LFG-type. Then the following hold:

(i) Consider the following conditions:
(1) f is an isomorphism.
(2) ϕf is an outer isomorphism.
(3) ϕf is surjective, and the kernel ∆f of ϕf is finite.
(4) ϕpf/k is an outer isomorphism.

(5) ϕpf/k is surjective, and the kernel ∆p
f/k of ϕpf/k is finite.

(6) ϕpf is an outer isomorphism.
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(7) ϕpf is surjective, and the kernel ∆
(p)
f of ϕpf is finite.

Then we have implications and equivalences: (1) ⇔ (2) ⇔ (3) ⇔ (4) ⇔
(5) ⇒ (6) ⇒ (7). Moreover, if Πp

X×kk
→ ΠpX and Πp

Y×kk
→ ΠpY are

injective, then the above conditions are all equivalent.
(ii) The following conditions are equivalent.

(1) f is a finite étale covering, and the degree of the Galois closure of
Y ×k k → X ×k k determined by f is a power of p.

(2) ϕpf/k is an outer open injection.

(3) ϕpf/k is open, and the kernel ∆p
f/k of ϕpf/k is finite.

(iii) Suppose that Πp
X×kk

→ ΠpX and Πp
Y×kk

→ ΠpY are injective. Then the

following conditions are equivalent:
(1) f is a finite étale covering, and the degree of the Galois closure of f

is a power of p.
(2) ϕpf is an outer open injection.

(3) ϕpf is open, and the kernel ∆
(p)
f of ϕpf is finite.

Proof. (cf. [10] Lemma 2.12) First, we verify assertion (i). The implication (3) ⇒
(5) follows from Lemma 1.18, and, moreover, the implications (1)⇒ (2)⇒ (3), (2)⇒
(4) ⇒ (5) and (2) ⇒ (6) ⇒ (7) are immediate. Now we verify the implication
(5) ⇒ (1). Suppose that condition (5) is satisfied. Then it follows from the impli-
cation (2)′ ⇒ (3) of Lemma 2.35 that f is surjective and generically geometrically
connected. On the other hand, it follows from Lemma 2.27(ii) that f is quasi-finite.
Thus, it follows from [4] Corollaire (4.4.9) that f is an open immersion, hence an
isomorphism. This completes the proof of the implication (5) ⇒ (1). Similarly,
the implication (7) ⇒ (1) (assuming that Πp

X×kk
→ ΠpX and Πp

Y×kk
→ ΠpY are

injective) follows from the implication (2)′′ ⇒ (3) of Lemma 2.35, together with
Lemma 2.27(iii).

Next, we verify assertion (ii). First, we verify the implication (1) ⇒ (2). Sup-
pose that condition (1) is satisfied. Then, since the open subgroup ΠY ⊂ ΠX
corresponding to f contains ker(∆X/k ↠ ∆p

X/k), it follows that ΠpY/k is the im-

age of ΠY ⊂ ΠX by the surjection ΠX ↠ ΠpX/k. This completes the implication

(1) ⇒ (2). The implication (2) ⇒ (3) is immediate. Thus, it remains to verify
the implication (3) ⇒ (1). To verify this implication, suppose that condition (3)
is satisfied. Write X ′ → X for the connected finite étale covering corresponding
to the open subgroup Im(ϕpf/k) ⊂ ΠpX/k of ΠpX/k. Then the degree of the Galois

closure of X ′ ×k k → X ×k k determined by X ′ → X is a power of p. Moreover,
since ΠX′ is the inverse image of Im(ϕpf/k) ⊂ ΠpX/k by the surjection ΠX ↠ ΠpX/k,

it follows that ϕf : ΠY → ΠX factors through ΠX′ ↪→ ΠX . Thus, Y → X fac-
tors through X ′ → X. On the other hand, it follows from our choice of X ′ → X
that ΠpY/k → ΠpX′/k is surjective, and, moreover, ∆p

Y→X′/k = ∆p
f/k. Thus, it

follows from the implication (5) ⇒ (1) of (i) that the morphism Y → X ′ is an
isomorphism. This completes the proof of the implication (3)⇒ (1), hence also of
assertion (ii). Similarly, assertion (iii) follows from the implication (7)⇒ (1) of (i).
This completes the proof of Lemma 2.36. □

Lemma 2.37. In the notation of Lemma 2.35, suppose, moreover, that Y is a
hyperbolic curve over k. Then the following hold:
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(i) Consider the following conditions:
(1) f is an isomorphism.
(2) ϕf is an outer isomorphism.
(3) ϕf is surjective, and the kernel ∆f of ϕf is topologically finitely gen-

erated.
(4) ϕpf/k is an outer isomorphism.

(5) ϕpf/k is surjective, and the kernel ∆p
f/k of ϕpf/k is topologically finitely

generated.
(6) ϕpf is an outer isomorphism.

(7) ϕpf is surjective, and the kernel ∆
(p)
f of ϕpf is topologically finitely gen-

erated.
Then we have implications and equivalences: (1) ⇔ (2) ⇔ (3) ⇔ (4) ⇔
(5) ⇒ (6) ⇒ (7). Moreover, if Πp

X×kk
→ ΠpX and Πp

Y×kk
→ ΠpY are

injective, then the above conditions are all equivalent.
(ii) The following conditions are equivalent.

(1) f is a finite étale covering, and the degree of the Galois closure of
Y ×k k → X ×k k determined by f is a power of p.

(2) ϕpf/k is an outer open injection.

(3) ϕpf/k is open, and the kernel ∆p
f/k of ϕpf/k is topologically finitely gen-

erated.
(iii) Suppose that Πp

X×kk
→ ΠpX and Πp

Y×kk
→ ΠpY are injective. Then the

following conditions are equivalent:
(1) f is a finite étale covering, and the degree of the Galois closure of f

is a power of p.
(2) ϕpf is an outer open injection.

(3) ϕpf is open, and the kernel ∆
(p)
f of ϕpf is topologically finitely generated.

Proof. (cf. [10] Lemma 2.13) If we verify assertion (i), then assertion (ii) and as-
sertion (iii) follow from an argument similar to the argument used in the proof of
Lemma 2.36. Thus, it remains to verify assertion (i). Since Y is of p-LFG-type
(cf. Proposition 2.28), the implications (1) ⇔ (2) ⇔ (4) follow from Lemma 2.36.
The implications (2) ⇒ (3) ⇒ (5) follows from Lemma 1.18. The implications
(2)⇒ (6)⇒ (7) are immediate. Now we verify the implication (5)⇒ (4). Suppose
that condition (5) is satisfied. Let us observe that it follows from the commutative
diagram of profinite groups

1 // Πp
Y×kk

//

��

ΠpY/k
//

ϕp
f/k

����

Gk // 1

1 // Πp
X×kk

// ΠpX/k
// Gk // 1

that, to verify that condition (4) is satisfied, we may assume without loss of gen-
erality that k = k. Then, it follows from Proposition 2.16(iii), together with the
surjectivity of ϕpf/k, that the image of ϕpf/k is infinite, i.e., ∆p

f/k is not open in

ΠpY = ∆p
Y/k. Thus, it follows from Proposition 2.16(iv) that ∆p

f/k is trivial. This

completes the proof of the implication (5)⇒ (4). Finally, we verify the implication
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(7)⇒ (5), assuming that Πp
X×kk

→ ΠpX and Πp
Y×kk

→ ΠpY are injective. It follows

from an argument similar to the argument used in the proof of the implication
(2)′′ ⇒ (2)′ of Lemma 2.35, that, to verify the implication (7) ⇒ (5), we may
assume without loss of generality that k = k. But then condition (7) is the same
as assertion (5). This completes the proof of the implication (7)⇒ (5), hence also
of Lemma 2.37. □

Lemma 2.38. Suppose that k = k. Let p be a prime number, n a positive integer,
X a hyperbolic polycurve over k satisfying condition (∗)p, F a normal variety over
k of dimension ≥ n, and F → X a quasi-finite morphism over k. (Thus, it holds
that n ≤ dim(F ) ≤ dim(X).) Write ΠpF→X/k := ΠpF/k/∆

p
F→X/k. (ΠpF→X/k is

canonically identified with the image of ΠpF/k → ΠpX/k. Note that since k = k, it

holds that ΠpF/k = ΠpF ,Π
p
X/k = ΠpX .) Then there exists a sequence of normal closed

subgroups of ΠpF→X/k

1 = H0 ⊂ H1 ⊂ · · · ⊂ Hn−1 ⊂ Hn = ΠpF→X/k

such that, for each integer i such that 0 < i ≤ n, the closed subgroup Hi is topolog-
ically finitely generated, and the quotient Hi/Hi−1 is infinite.

Proof. (cf. [10] Lemma 2.14) Write d := dim(X). For each integer j such that
0 ≤ j ≤ d, write F [j] → Xj for the normalization in F of the scheme-theoretic
image of the composite F → X → Xj . Then we obtain the commutative diagram
of normal varieties over k

F //

��

F [d] //

��

· · · // F [1] //

��

Spec k = F [0]

X Xd
// · · · // X1

// Spec k = X0,

where the horizontal arrows are dominant and generically geometrically connected,
and the vertical arrows (except for the morphism F → X) are finite (cf. Lemma
1.9), which implies that dimF [i] ≤ i, 0 ≤ dim(F [i + 1]) − dim(F [i]) ≤ 1. Now
since dim(F ) ≥ n, there exists a uniquely determined subset {D0, . . . , Dn−1} ⊂
{0, . . . , d − 1} of cardinality n such that, for each integer i such that 0 ≤ i < n,
the normal variety F [Di + 1] is of dimension i + 1, but the normal variety F [Di]
is of dimension i. Write F [Dn] := F . Next, since k is of characteristic zero,
and the horizontal arrows in the above commutative diagram are dominant and
generically geometrically connected, one verifies easily that, for each integer i such
that 0 ≤ i ≤ n, there exists a nonempty open subscheme U [Di] ⊂ F [Di] of F [Di]
such that, for each integer i such that 1 ≤ i ≤ n, the image of the open subscheme
U [Di] ⊂ F [Di] by the morphism F [Di−1] → F [Di−1] is contained in U [Di−1] ⊂
F [Di−1], and, moreover, the resulting morphism U [Di] → U [Di−1] is surjective,
smooth, and geometrically connected. Thus, we obtain a commutative diagram of
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normal varieties over k

U [Dn] //

��

U [Dn−1] //

��

· · · // U [D1] //

��

Spec k = U [D0]

F [Dn] // F [Dn−1] // · · · // F [D1] // Spec k = F [D0],

where the vertical arrows are open immersions, and the upper horizontal arrows
are surjective, smooth, and geometrically connected.

Now, for each integer i such that 0 ≤ i ≤ n, let us write

Hi := Im(∆p
U [Dn]→U [Dn−i]/k

↪→ ΠpU [Dn]
↠ ΠpF ↠ ΠpF→X/k).

Let us observe that since ∆p
U [Dn]→U [Dn−i]/k

is a normal subgroup of ΠpU [Dn]
, Hi is

a normal subgroup of ΠpF→X/k. We verify that the sequence of normal subgroups

of ΠpF→X/k

1 = H0 ⊂ H1 ⊂ · · · ⊂ Hn−1 ⊂ Hn = ΠpF→X/k

satisfies the condition in the statement of Lemma 2.38. Fix an integer i such that
0 < i ≤ n. First, by applying Lemma 1.11, where we take the data “(X,S, U)” to be
(U [Dn], U [Dn−1], U [Dn]), it follows that ∆U [Dn]/U [Dn−1] ⊂ ΠU [Dn] is topologically
finitely generated. On the other hand, since ΠU [Dn] → ΠU [Dn−i] is surjective (cf.
Lemma 1.6), it follows from Lemma 1.18 that ∆p

U [Dn]→U [Dn−i]/k
⊂ ΠpU [Dn]

is the

image of ∆U [Dn]/U [Dn−i] ⊂ ΠU [Dn] by ΠU [Dn] ↠ ΠpU [Dn]
. Thus, Hi is the image of

∆U [Dn]/U [Dn−i] ⊂ ΠU [Dn] by the composite ΠU [Dn] ↠ ΠpU [Dn]
↠ ΠpF ↠ ΠpF→X/k.

In particular, Hi is topologically finitely generated. Thus, it remains to verify that
the quotient Hi/Hi−1 is infinite. Write Ω for an algebraic closure of the function
field of U [Dn−i], a = SpecΩ→ U [Dn−i] for the generic geometric point of U [Dn−i]
determined by Ω, and UDn−i+1/Dn−i

:= U [Dn−i+1] ×U [Dn−i] a, which is a smooth
variety over Ω of dimension 1 (resp. dim(F )− n+ 1) if i ̸= 1 (resp. i = 1). Then,
since the morphism U [Dn−i+1] → U [Dn−i] is surjective, smooth, geometrically
connected (hence geometrically integral), it follows from our choice of the geometric
point a → U [Dn−i] that (U [Dn−i], U [Dn−i+1], U [Dn−i+1], a → U [Dn−i]) satisfies
the conditions (1), (2), (3), (4) for “(S,X, Y, s → S)” of Lemma 1.10. Thus, the
sequence of profinite groups

ΠUDn−i+1/Dn−i

// ΠU [Dn−i+1]
// ΠU [Dn−i]

// 1

is exact, which determines a surjection ΠUDn−i+1/Dn−i
↠ ∆U [Dn−i+1]/U [Dn−i]. On

the other hand, the exact sequence of profinite groups

1→ ∆U [Dn]/U [Dn−i+1] → ∆U [Dn]/U [Dn−i] → ∆U [Dn−i+1]/U [Dn−i] → 1

determines an isomorphism

∆U [Dn]/U [Dn−i]/∆U [Dn]/U [Dn−i+1]
∼→ ∆U [Dn−i+1]/U [Dn−i].

Thus, we obtain a sequence of profinite groups

ΠUDn−i+1/Dn−i
↠ ∆U [Dn]/U [Dn−i]/∆U [Dn]/U [Dn−i+1] ↠ Hi/Hi−1.
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On the other hand, since Hi (resp. Hi−1) is the image of ∆p
U [Dn]→U [Dn−i]/k

(resp.

∆p
U [Dn]→U [Dn−i+1]/k

) ⊂ ΠpU [Dn]
by the composite ΠpU [Dn]

↠ ΠpF ↠ ΠpF→X/k =

ΠpF /∆
p
F→X/k, and, moreover, the subgroups ∆p

U [Dn]→X/k and ∆p
U [Dn]→U [Dn−i+1]/k

of ΠpU [Dn]
is contained in the kernel of the composite ΠpU [Dn]

↠ ΠpF → ΠpX ↠
ΠpXDn−i+1

(where we write XDn
:= X), it follows that there is a natural homomor-

phism Hi/Hi−1 → ΠpXDn−i+1
. Thus, the composite of natural morphisms

UDn−i+1/Dn−i
= U [Dn−i+1]×U [Dn−i] a

pr1→ U [Dn−i+1]→ XDn−i+1

determines a sequence of profinite groups

ΠpUDn−i+1/Dn−i
→ Hi/Hi−1 → ΠpXDn−i+1

On the other hand, since the natural morphism F [Dn−i+1]→ XDn−i+1
, hence also

U [Dn−i+1] ↪→ F [Dn−i+1]→ XDn−i+1
, is quasi-finite, it follows that

UDn−i+1/Dn−i
= U [Dn−i+1]×U [Dn−i]a = (U [Dn−i+1]×kΩ)×(U [Dn−i]×kΩ)a→ XDn−i+1

×kΩ
is quasi-finite, hence nonconstant. Moreover, since XDn−i+1 ×k Ω is a hyperbolic
polycurve over Ω satisfying condition (∗)p, it follows from Proposition 2.28 that
XDn−i+1

×k Ω is of p-LFG-type. This implies that the image of the composite

ΠpUDn−i+1/Dn−i
→ ΠpXDn−i+1

×kΩ
∼→ ΠpXDn−i+1

, hence also the image of Hi/Hi−1 →
ΠpXDn−i+1

, is infinite. Thus, we conclude that Hi/Hi−1 is infinite. This completes

the proof of Lemma 2.38. □

3. Pro-p Grothendieck Conjecture for Hyperbolic Polycurves

In the present §3, we consider the pro-p version of the Grothendieck conjecture
for hyperbolic polycurves. Let k be a field of characteristic zero, k an algebraic
closure of k, and Gk := Gal(k/k).

Definition 3.1 (cf. [11] Definition 15.4(i)). Let p be a prime number. Then we
shall say that k is sub-p-adic if k is isomorphic to a subfield of a finitely generated
extension of Qp.

Proposition 3.2. Let p be a prime number, X a hyperbolic polycurve over k sat-
isfying condition (∗)p, and Y an geometrically integral variety over k. Then the
following hold:

(i) Write Homdom
k (Y,X) ⊂ Homk(Y,X) for the subset of dominant morphisms

from Y to X over k and Homopen
Gk

(ΠpY/k,Π
p
X/k) ⊂ HomGk

(ΠpY/k,Π
p
X/k) for

the subset of open homomorphisms from ΠpY/k to ΠpX/k over Gk. Then the

natural map

Homdom
k (Y,X)→ Homopen

Gk
(ΠpY/k,Π

p
X/k)/ Inn(∆

p
X/k)

(cf. Lemma 1.3) is injective.
(ii) Suppose that k is sub-p-adic. Then the natural map

Homk(Y,X)→ HomGk
(ΠpY/k,Π

p
X/k)/ Inn(∆

p
X/k)

is injective.

Proof. (cf. [10] Proposition 3.2) Write n := dim(X). First, we verify assertion (i).
I claim that the following assertion holds:
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Claim A: If n = 1, then assertion (i) holds.

Indeed, since k is of characteristic zero, it follows that Y contains a dense open
subscheme which is smooth over k. Thus, by replacing Y by such an open sub-
scheme, we may assume without loss of generality that Y is smooth over k. Then,
if k is sub-p-adic, then Claim A follows from [11] Theorem A. Now we verify Claim

A for arbitrary k. Let f, g ∈ Homdom
k (Y,X) be elements of Homdom

k (Y,X) that
map to the same element by the above map. Then there exist a subfield k′ of k
which is finitely generated over Q, a hyperbolic curve X ′ over k′, a smooth variety
Y ′ over k′, and f ′, g′ ∈ Homdom

k′ (Y ′, X ′) such that the base-change of f, g, respec-
tively, to k is f, g, respectively. Then, since k′ is finitely generated over Q (hence

sub-p-adic), the map Homdom
k′ (Y ′, X ′) → Homopen

Gk′ (ΠpY ′/k′ ,Π
p
X′/k′)/ Inn(∆

p
X′/k′) is

injective. Moreover, since ∆p
X′/k′ is slim (cf. Proposition 2.16(iii)), it follows from

Lemma 1.20 that

Homopen
Gk′ (ΠpY ′/k′ ,Π

p
X′/k′)/ Inn(∆

p
X′/k′)→ Hom(∆p

Y ′/k′ ,∆
p
X′/k′)/ Inn(∆

p
X′/k′)

is injective. Then, since f ′, g′ ∈ Homdom
k′ (Y ′, X ′) map to the same element in

Hom(∆p
Y ′/k′ ,∆

p
X′/k′)/ Inn(∆

p
X′/k′) = Hom(∆p

Y/k,∆
p
X/k)/ Inn(∆

p
X/k),

it follows that f ′ = g′, which implies that f = g. This completes the proof of Claim
A.

Next, we verify assertion (i) by induction on n. If n = 1, then assertion (i) is
the same as Claim A. Now suppose that n ≥ 2, and that the induction hypothesis
is in force. Let f, g ∈ Homdom

k (Y,X) be elements of Homdom
k (Y,X) that map

to the same element by the above map. Write fn−1, gn−1 for the composites of
X → Xn−1 and f, g, respectively. Then fn−1, gn−1 induce the same ∆p

Xn−1/k
-

conjugacy class of homomorphisms ΠpY/k → ΠpXn−1
. Thus, it follows from the

induction hypothesis that fn−1 = gn−1. Let η → Xn−1 be a generic geometric point
of Xn−1. Write C ⊂ Y ×Xn−1

η (where we take Y → Xn−1 to be fn−1 = gn−1) for
an irreducible component of Y ×Xn−1

η with the reduced induced structure, and
f ′, g′ : Y×Xn−1η → X×Xn−1η for the base-change of f, g, respectively. Now let us
fix a basepoint of C and consider the diagram of profinite groups

ΠpC/η
////

��

ΠpX×Xn−1
η/η

//

��

Πη = {1}

��

ΠpY/k
// // ΠpX/k

// ΠpXn−1/k

induced by the diagram of schemes

C � � //

##F
FF

FF
FF

FF
FF

Y×Xn−1η

f ′
//

g′
//

��

X ×Xn−1
η

pr1 //

��

η

��

Y
f //
g

// X // Xn−1.
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Then, since X ×Xn−1
η is a hyperbolic curve over η, it follows from Proposition

2.16(ii) that

ΠpX×Xn−1
η/η

∼→ ΠpX/Xn−1
×ΠXn−1

Πη = ∆p
X/Xn−1

⊂ ∆p
X/k ⊂ ΠpX/k.

Thus, ϕf ′ , ϕg′ : ΠpC/η → ΠpX×Xn−1
η/η induced by the dominant morphisms f ′, g′,

respectively, are determined by ϕf , ϕg : ΠpY/k → ΠpX/k induced by f, g, respec-

tively. On the other hand, since ϕf and ϕg are ∆p
X/k-conjugate, we can choose

an element a ∈ ∆p
X/k such that ϕg = aϕfa

−1. Write ψ : ΠpX/k → ΠpXn−1/k
.

Then the composites ψ ◦ ϕf and ψ ◦ ϕg = ψ(a) · (ψ ◦ ϕf ) · ψ(a)−1 are induced by
fn−1 = gn−1, hence ψ ◦ ϕf = ψ ◦ ϕg. Thus, since ψ(a) ∈ ∆p

Xn−1/k
, it follows that

ψ(a) ∈ Z∆p
Xn−1/k

(Im(ψ ◦ ϕf ) ∩∆p
Xn−1/k

). On the other hand, since ϕf is open and

ψ is surjective (cf. Proposition 2.7(i)), Im(ψ ◦ϕf )∩∆p
Xn−1/k

⊂ ∆p
Xn−1/k

is an open

subgroup of ∆p
Xn−1/k

, which implies that Z∆p
Xn−1/k

(Im(ψ ◦ ϕf ) ∩∆p
Xn−1/k

) = {1}
(cf. Proposition 2.16(iii)). Thus, it follows that a ∈ kerψ = ∆p

X/Xn−1
, i.e., ϕf

and ϕg, hence also ϕf ′ and ϕg′ , are ∆p
X/Xn−1

-conjugate. In particular, by applying

Claim A, where we take the data “(Spec k,X, Y )” to be (η,X ×Xn−1 η, C), we ob-
tain that f ′ = g′. Since the morphism C → Y is schematically dense, we conclude
that f = g. This completes the proof of assertion (i).

Next, we verify assertion (ii). Write η → Y for the generic point of Y . Note that
the hyperbolic polycurve X×k η/η satisfies condition (∗)p (cf. Proposition 2.16(ii)).
Fix a homomorphism Πη → ΠpY/k arising from the natural morphism η → Y . Then

we have a natural ΠpX/k-conjugacy class of isomorphisms ∆p
X×kη/η

∼→ ∆p
X/k (cf.

Proposition 2.16(ii)), natural outer isomorphism ΠpX×kη/η

∼→ ΠpX/k ×Gk
Πη (cf.

Proposition 2.16(ii)), and a commutative diagram

Homk(Y,X) //

��

HomGk
(ΠpY/k,Π

p
X/k)/ Inn(∆

p
X/k)

��

Homη(η,X ×k η) // HomΠη
(Πη,Π

p
X×kη/η

)/ Inn(∆p
X×kη/η

).

Now, since η → Y is schematically dense, the left-hand vertical arrow of the above
diagram is injective. Thus, since the function field of Y is finitely generated over
a sub-p-adic field k (hence the function field of Y itself is sub-p-adic), by replacing
k by the function field of Y and Y by Spec k, to verify assertion (ii), we may
assume without loss of generality that Y = Spec k. Now we verify assertion (ii)
by induction on n. If n = 1, then assertion (ii) follows from [11] Theorem C.
Now suppose that n ≥ 2, and that the induction hypothesis is in force. Let f, g ∈
Homk(Spec k,X) be elements of Homk(Spec k,X) that determines the same element
of HomGk

(Gk,Π
p
X/k)/ Inn(∆

p
X/k). Then, it follows from the induction hypothesis

that the composite of X → Xn−1 and f coincides with that of g. Write x ∈ Xn−1

for the image of Spec k → Xn−1, and ϕf , ϕg : Gk → ΠpX/k for the homomorphism

induced by f, g, respectively. Choose an element a ∈ ∆p
X/k such that ϕg = aϕfa

−1.

Then it follows immediately that k(x) = k. Moreover, sinceXx is a hyperbolic curve
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over Spec k(x), it follows from Proposition 2.16(ii) that ∆p
Xx/k(x)

∼→ ∆p
X/Xn−1

⊂
∆p
X/k, which implies that ΠpXx/k(x)

→ ΠpX/k is injective. Thus, if we write ψ :

ΠpX/k → ΠpXn−1/k
, then it follows from an argument similar to the argument used

in the proof of assertion (i), that it suffices to show that ψ(a) = 1. Now, the
section ψ ◦ ϕf = ψ ◦ ϕg induced by Spec k → Xn−1, together with the conjugation
of ΠpXn−1/k

on ∆p
Xn−1/k

, determines an action of Gk on ∆p
Xn−1/k

. Then, it follows

from the easily verified fact that ψ(a) ∈ (∆p
Xn−1/k

)Gk , that to verify assertion (ii),

it suffices to verify that the following assertion holds:

Claim B: Suppose that k is sub-p-adic. Let X be a hyperbolic
polycurve over k satisfying condition (∗)p and Spec k → X a k-
rational point. Then, on the group action of Gk on ∆p

X/k which

determined by the section ΠpX/k ↠ Gk induced by Spec k → X, we

have (∆p
X/k)

Gk = {1}.
Indeed, let us observe that it follows from induction on the dimension of X, that,
to verify Claim B, we may assume without loss of generality that X is a hyperbolic
curve over k. Now assume that (∆p

X/k)
Gk ̸= {1}. Let us choose an element a ∈

(∆p
X/k)

Gk \{1}. Then there exists a normal open subgroup V ⊂ ∆p
X/k of ∆

p
X/k such

that a /∈ V . Write U := V · ⟨a⟩. Then U is an open subgroup of ∆p
X/k. Moreover,

since V ⊂ ∆p
X/k is normal, it follows that [U,U ] ⊂ V . In particular, a ∈ U \ [U,U ],

which implies that (Uab)Gk ̸= {1}. Thus, to verify Claim B, it suffices to verify

that (∆p,ab
X/k)

Gk is trivial. Moreover, replacing k by its finite extension if necessary,

we may assume that S(k) = S(k), where we write S := Xcpt \X. Write (g, r) for
the type of the hyperbolic curve X/k, J for the Jacobian variety of Xcpt, and TpJ
for the p-adic Tate module of J . Then, if r = 0, we have a canonical isomorphism

∆p,ab
X/k
∼= TpJ (cf. [16] (1-3)). If r > 0, then we have the exact sequence

0→ Zp(1)→
⊕

x∈S(k)

Zp(1)→ ∆p,ab
X/k → TpJ → 0

(cf. [16] (1-5)). Thus, to verify Claim B, it suffices to verify that (Zp(1))Gk and
(TpJ)

Gk are trivial. First, we verify that (Zp(1))Gk is trivial. Since k is sub-p-adic,
there exists an injection k ↪→ K, where K is a finitely generated field extension of
Qp. Then, the action of Gk on Zp(1) determines a character χ : Gk → Z×

p . Now
let us consider the commutative diagram of profinite groups

GK //

��

GQp

��

Gk χ
// Z×

p .

Then, sinceGQp → Z×
p is surjective andGK → GQp is open, the image ofGK → Z×

p ,

hence also that of χ, is nontrivial. Thus, we conclude that (Zp(1))Gk is trivial.
Next, we verify that (TpJ)

Gk is trivial. It follows from the sequence GK → Gk →
Aut(TpJ) that, to verify that (TpJ)

Gk is trivial, we may assume without loss of
generality that k is finitely generated over Qp. Then there exist a normal domain
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R with quotient field k which is finitely generated over Qp, and an abelian scheme
A over R such that J → Spec k is the base-change of A → SpecR by the morphism
Spec k → SpecR. Let x be a closed point of SpecR. Then, by considering the action
Gk(x) → Aut(TpAx)

∼← Aut(TpJ), to verify that (TpJ)
Gk is trivial, it suffices to

verify that (TpA)
Gk is trivial, where k is a finite extension of Qp and A is an abelian

variety over k. Now let us observe that

(TpA)
Gk = lim←−

n

A[pn](k)Gk = lim←−
n

A[pn](k) = lim←−
n

A(k)[pn].

On the other hand, since A(k) is a compact abelian p-adic Lie group, it follows
that A(k) is isomorphic, as a topological group, to the direct sum of Zmp for a
suitable nonnegative integer m and a finite abelian group. Thus, we conclude
that lim←−nA(k)[p

n] is trivial. This completes the proof of Claim B, hence also of

Proposition 3.2. □

Corollary 3.3. Let p be a prime number, X a hyperbolic polycurve over k satisfying
condition (∗∗)p, and Y an geometrically integral variety over k. Then the following
hold:

(i) Write Homdom
k (Y,X) ⊂ Homk(Y,X) for the subset of dominant morphisms

from Y to X over k and Homopen
Gp

k
(ΠpY ,Π

p
X) ⊂ HomGp

k
(ΠpY ,Π

p
X) for the

subset of open homomorphisms from ΠpY to ΠpX over Gpk. Then the natural
map

Homdom
k (Y,X)→ Homopen

Gp
k

(ΠpY ,Π
p
X)/ Inn(∆p

X/k)

(cf. Lemma 1.3) is injective.
(ii) Suppose that k is sub-p-adic. Then the natural map

Homk(Y,X)→ HomGp
k
(ΠpY ,Π

p
X)/ Inn(∆p

X/k)

is injective.

Proof. This follows from Proposition 3.2, together with Lemma 2.23(ii). □

Theorem 3.4. Let p be a prime number, k a sub-p-adic field, X a hyperbolic curve
over k (resp. a hyperbolic curve over k satisfying condition (∗∗)p), Y a normal
variety over k, and ϕ : ΠpY/k → ΠpX/k (resp. ϕ : ΠpY → ΠpX) an open homomorphism

over Gk (resp. Gpk). Then ϕ arises from a uniquely determined dominant morphism
Y → X over k.

Proof. (cf. [10] Theorem 3.3) First, let us observe that, if X/k satisfies condition
(∗∗)p, then it follows from Lemma 2.23(ii) that the homomorphism ΠpY → ΠpX
canonically determines ΠpY/k → ΠpX/k. Thus, in light of Proposition 3.2(i) and

Corollary 3.3(i), to verify Theorem 3.4, it suffices to verify that an open homo-
morphism ϕ : ΠpY/k → ΠpX/k over Gk arises from a dominant morphism Y → X

over k. Now, let us observe that there exists a dense open subscheme U of Y
which is smooth over k. Then, it follows from [11] Theorem A that the composite

ΠpU/k → ΠpY/k
ϕ→ ΠpX/k arises from a uniquely determined morphism U → X over k.

Write η → U for the generic point of U . Then, since Πpη/k → ΠpU/k → ΠpY/k
ϕ→ ΠpX/k

is induced by η → U → X, it follows from Lemma 2.34 that ϕ arises from a mor-
phism Y → X over k. Moreover, since ϕ is open, it follows that the morphism
Y → X is dominant. This completes the proof of Theorem 3.4. □
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Lemma 3.5. Let p be a prime number, n a positive integer, S, Y normal varieties
over k, X a hyperbolic polycurve of relative dimension n over S, and ϕ : ΠpY → ΠpX

an open homomorphism over Gpk. Suppose that the composite ΠpY
ϕ→ ΠpX ↠ ΠpS

arises from a morphism Y → S over k. Write S′ ⊂ S for the scheme-theoretic
image of the morphism Y → S, Z := Nor(Y/S′), and η → Z for the generic point
of Z. Then the following hold:

(i) The morphism Y → Z over k is dominant and generically geometrically
connected. In particular, Yη := Y ×Z η is a (nonempty) normal variety
over η.

(ii) There exist nonempty open subschemes UY ⊂ Y, UZ ⊂ Z of Y, Z, respec-
tively, such that the image of UY ⊂ Y by the natural morphism Y → Z is
contained in UZ ⊂ Z, and, moreover, the resulting morphism UY → UZ is
surjective, smooth, and geometrically connected.

(iii) Write N ⊂ ΠpY for the normal closed subgroup of ΠpY obtained by forming

the image of the normal closed subgroup ∆
(p)
UY /UZ

⊂ ΠpUY
of ΠpUY

by ΠpUY
→

ΠpY . Then the image of the composite ∆
(p)
Yη/η

↪→ ΠpYη
→ ΠpY , hence also the

composite ΠYη

∼→ ∆Yη/η ↠ ∆
(p)
Yη/η

↪→ ΠpYη
→ ΠpY , coincides with N ⊂ ΠpY .

(iv) The image of N ⊂ ΠpY by the composite ΠpY → ΠpX → ΠpS is trivial. In
particular, we obtain a natural ΠpX-conjugacy class of homomorphisms N →
∆

(p)
X/S.

(v) If, moreover, dim(Y ) > dim(S), Y is of p-LFG-type, and Πp
Y×kk

→ ΠpY is

injective, then N is infinite.
(vi) If moreover, dim(Y ) > dim(S) and Y is a hyperbolic polycurve over k

satisfying condition (∗∗)p, then there exists a sequence of normal closed
subgroups of N

{1} = H0 ⊂ H1 ⊂ · · · ⊂ Hdim(Y )−dim(S)−1 ⊂ Hdim(Y )−dim(S) = N

such that, for each integer i such that 1 ≤ i ≤ dim(Y )− dim(S), the closed
subgroup Hi is topologically finitely generated, and the quotient Hi/Hi−1 is
infinite.

(vii) If, moreover, n = 1, k is sub-p-adic, X/S satisfies condition (∗∗)p, and the

image of N → ∆
(p)
X/S of (iv) is nontrivial, then ϕ arises from a morphism

Y → X over S.

Proof. (cf. [10] Lemmas 3.4, 3.5) Assertion (i) follows from Lemma 1.9. Assertion
(ii) follows from the fact that k is of characteristic zero. Next, we verify assertion
(iii). Let η → UZ be a generic geometric point of UZ . Write Yη := Y ×Z η
and (UY )η := UY ×UZ

η. Then it follows from Lemma 1.10, together with the
right exactness of the operation of taking the maximal pro-p quotient, that we

obtain a surjection Π(UY )η → ∆
(p)
UY /UZ

. Thus, N is the image of the composite

Π(UY )η ↠ ∆
(p)
UY /UZ

↪→ ΠpUY
→ ΠpY , which coincides the composite Π(UY )η → ΠYη

∼→
∆Yη/η → ∆

(p)
Yη/η

↪→ ΠpYη
→ ΠpY . On the other hand, it follows from Lemma 1.2 that

the homomorphism Π(UY )η → ΠYη
is surjective. Moreover, it follows from the

surjectivity of ΠYη ↠ Πη, together with the right exactness of the operation of

taking the maximal pro-p quotient, that ∆Yη/η → ∆
(p)
Yη/η

is surjective. Thus, N
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is the image of the composite ∆
(p)
Yη/η

↪→ ΠpYη
→ ΠpY . This completes the proof of

assertion (iii). Assertion (iv) follows from assertion (iii), together with the fact
that the composite Yη ↪→ Y → S factors through η → S. Next, we verify assertion
(v). It follows from our choice of (UY , UZ) that the geometric fiber F of UY →
UZ at a k-valued geometric point of UZ is a smooth variety over k of dimension
≥ dim(Y ) − dim(S) > 0. In particular, the natural morphism F → Y ×k k over
k is nonconstant. Thus, since Y is of p-LFG-type, the image of ΠpF → Πp

Y×kk
,

hence also that of ΠpF → ΠpY , is infinite. On the other hand, it follows from our

choice of F that ΠpF → ΠpY factors through the composite ∆
(p)
UY /UZ

↪→ ΠpUY
→ ΠpY .

Thus, we conclude that N is infinite. This completes the proof of assertion (v).

Next, we verify assertion (vi). The morphism Yη = Y ×Z η
pr1→ Y factors through a

natural closed immersion Yη ↪→ Y ×k η. Then, since Yη is a normal variety over η
of dimension ≥ dim(Y )− dim(S), and, moreover, Y ×k η is a hyperbolic polycurve
over η satisfying condition (∗)p (cf. Proposition 2.16(ii)), it follows from Lemma 2.38
that the image of ΠpYη

→ ΠpY×kη
admits a sequence of closed subgroups as in the

statement of assertion (vi). On the other hand, any homomorphism ΠpY×kη
→ ΠpY

induced by Y ×k η → Y determines an isomorphism ΠpY×kη
∼→ ∆p

Y/k (cf. Lemma

1.5, Proposition 2.16(ii)). Thus, the image of ΠpYη
→ ΠpY×kη

is isomorphic to that

of ΠpYη
→ ΠpY , which coincides with N (cf. assertion (iii)). This completes the

proof of assertion (vi). Finally, we verify assertion (vii). Note that since X/S

satisfies condition (∗∗)p, we have ∆
(p)
X/S = ∆p

X/S . It follows from assertion (iii)

that the image of ∆
(p)
Yη/η

⊂ ΠpYη
by the composite ΠpYη

→ ΠpY
ϕ→ ΠpX coincides

with the image of N → ∆p
X/S , which is nontrivial. On the other hand, it follows

from Lemma 1.2 that ΠYη → ΠY , hence also ΠpYη
→ ΠpY , is surjective. Thus,

since ∆
(p)
Yη/η

⊂ ΠpYη
is a normal subgroup of ΠpYη

, in light of openness of ϕ, it

follows that Im(ΠpYη
→ ΠpX) ∩∆p

X/S is an open subgroup of ∆p
X/S , and, moreover,

Im(∆
(p)
Yη/η

→ ∆p
X/S) is a normal subgroup of Im(ΠpYη

→ ΠpX)∩∆p
X/S . On the other

hand, it follows from Lemmas 1.5, 1.7 that ∆Yη/η, hence also ∆
(p)
Yη/η

, is topologically

finitely generated. Thus, we conclude that Im(∆
(p)
Yη/η

→ ∆p
X/S) is an open subgroup

of ∆p
X/S (cf. Proposition 2.16(iv)). Write Xη := X×S η. Let us fix an isomorphism

ΠpXη

∼→ ΠpX ×Πp
S
Πpη (cf. Proposition 2.16(ii)) over Πpη arising from morphisms

Xη
pr1→ X,Xη

pr2→ η over S, and a homomorphism ΠpYη
→ ΠpY ×Πp

Z
Πpη over Πpη arising

from morphisms Yη
pr1→ Y, Yη

pr2→ η over Z. Then ϕ determines a homomorphism

ϕη : ΠpYη
→ ΠpY ×Πp

Z
Πpη → ΠpX ×Πp

S
Πpη

∼← ΠpXη

over Πpη. On the other hand, we have ∆
(p)
Xη/η

= ∆p
Xη/η

∼→ ∆p
X/S (cf. Proposition

2.16(ii)). Thus, it follows from the openness of ∆
(p)
Yη/η

→ ∆p
X/S , together with the
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commutative diagram of profinite groups

1 // ∆
(p)
Yη/η

//

��

ΠpYη

//

ϕη

��

Πpη // 1

1 // ∆
(p)
Xη/η

// ΠpXη

// Πpη // 1,

that the image of ϕη is a closed subgroup of ΠpXη
of finite index, hence open. Thus,

since Xη is a hyperbolic curve over η satisfying condition (∗∗)p, and, moreover, η is
a spectrum of a sub-p-adic field, it follows from Theorem 3.4 that ϕη arises from a
morphism Yη → Xη over η. Let ξ → Yη for the generic point of Yη = Y ×Z η ⊂ Y .
Let us consider Πpξ → ΠpX induced by the morphism ξ → Xη → X over S. Then
we obtain the commutative diagram of profinite groups

Πpξ
// ΠpY ×Πp

Z
Πpη //

��

ΠpX ×Πp
S
Πpη

��

ΠpY ϕ
// ΠpX .

Thus, Πpξ → ΠpX coincides with the composite of ϕ and Πpξ → ΠpY arising from

ξ → Y , which implies that ϕ arises from a morphism Y → X over S (cf. Lemma
2.34) This completes the proof of assertion (vii). □

Definition 3.6. Let p be a prime number, X,Y normal varieties over k, and
ϕ : ΠpY → ΠpX a homomorphism over Gpk.

(i) We shall say that ϕ is nondegenerate if ϕ is open, and, moreover, for any
open subscheme U ⊂ Y of Y , any normal variety Z over k such that
dim(Z) < dim(X), and any smooth, geometrically connected, surjective
morphism U → Z over k, the composite ΠpU → ΠpY → ΠpX does not factor
through ΠpU → ΠpZ .

(ii) Suppose that X is a hyperbolic polycurve of relative dimension n over k
satisfying condition (∗∗)p. Then we shall say that the homomorphism ϕ is
poly-nondegenerate if there exists a sequence of parametrizing morphisms

X = Xn → Xn−1 → · · · → X1 → Spec k = X0

such that X/k satisfies condition (∗∗)p with respect to this sequence, and
that for each integer i such that 0 ≤ i ≤ n, the composite ΠpY → ΠpX ↠ ΠpXi

is nondegenerate.

Theorem 3.7. Let p be a prime number, k a sub-p-adic field, X a hyperbolic poly-
curve over k satisfying condition (∗∗)p, and Y a normal variety over k. Write

Homdom
k (Y,X) ⊂ Homk(Y,X) for the subset of dominant morphisms from Y to X

over k and HomPND
Gp

k
(ΠpY ,Π

p
X) ⊂ HomGp

k
(ΠpY ,Π

p
X) for the subset of poly-nondegenerate

homomorphisms from ΠpY to ΠpX over Gpk. Then the natural map

Homdom
k (Y,X)→ HomGp

k
(ΠpY ,Π

p
X)/ Inn(∆p

X/k)
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determines a bijection

Homdom
k (Y,X)

1:1→ HomPND
Gp

k
(ΠpY ,Π

p
X)/ Inn(∆p

X/k).

Proof. (cf. [10] Theorem 3.7) First, I claim that the following assertion holds:

Claim A: Any homomorphism ϕf : ΠpY → ΠpX over Gpk that arises
from a dominant morphism f : Y → X over k is poly-nondegenerate.

Indeed, suppose that there exist an integer i, an open subscheme U ⊂ Y of Y a
normal variety Z over k, a smooth, geometrically connected, surjective morphism
U → Z over k, and a sequence of parametrizing morphisms

X = Xn → Xn−1 → · · · → X1 → Spec k = X0,

such that 0 ≤ i ≤ n, X/k satisfies condition (∗∗)p with respect to this sequence,

and, moreover, the composite ΠpU → ΠpY
ϕf→ ΠpX ↠ ΠpXi

factors through ΠpU → ΠpZ .
Then, by applying Lemma 2.33, where we take the data “(k, k′, S, Y, Z,X, f)” to

be (k, k, Spec k, Z, U,Xi, U ↪→ Y
f→ X → Xi), we conclude that the composite

U ↪→ Y
f→ X → Xi factors through U → Z. In particular, since f is dominant, it

holds that dim(Z) ≥ dim(Xi). This completes the proof of Claim A.
It follows from Claim A that we have a natural map

Homdom
k (Y,X)→ HomPND

Gp
k

(ΠpY ,Π
p
X)/ Inn(∆p

X/k),

and, moreover, it follows from Corollary 3.3(i) that this natural map is injective.
Thus, to verify Theorem 3.7, it suffices to verify the surjectivity of the above map.
Let ϕ ∈ HomPND

Gp
k

(ΠpY ,Π
p
X) be a poly-nondegenerate homomorphism over Gpk and

X = Xn → Xn−1 → · · · → X1 → Spec k = X0,

a sequence of parametrizing morphisms as in Definition 3.6(ii). Now I claim that
the following assertion holds:

Claim B: Suppose that there exists a morphism f : Y → X over k
from which ϕ arises. Then f is dominant.

Indeed, assume that f is not dominant. Write X ′ ⊂ X for the scheme-theoretic
image of f and S := Nor(Y/X ′). Then since the natural morphism Y → S is
dominant and generically geometrically irreducible (cf. Lemma 1.9), and k is of
characteristic zero, there exist open subschemes UY ⊂ Y, US ⊂ S of Y, S, respec-
tively, such that the image of UY ⊂ Y by the morphism Y → S is contained in
US ⊂ S, and, moreover, the resulting morphism UY → US is surjective, smooth,
and geometrically connected. On the other hand, since f is not dominant, it follows
that X ′, hence also US , is of dimension < dim(X). However, since ΠpUY

→ ΠpX fac-

tors through ΠpUY
→ ΠpUS

, and ϕ is poly-nondegenerate, we obtain a contradiction.
This completes the proof of Claim B.

It follows from the discussion preceding Claim B that, to verify Theorem 3.7, it
suffices to verify that the following assertion holds:

Claim C: For each integer i such that 0 ≤ i < n, if the composite
ΠpY → ΠpX ↠ ΠpXi

arises from a dominant morphism Y → Xi over

k, then the composite ΠpY → ΠpX ↠ ΠpXi+1
arises from a dominant

morphism Y → Xi+1 over k.

To verify Claim C, let us write Z := Nor(Y/Xi), η → Z for the generic point of Z,
and Yη := Y ×Z η. Now I claim that the following assertion holds:
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Claim C.1: The image of any homomorphism that belongs to the

ΠpXi+1
-conjugacy class of homomorphismsN → ∆

(p)
Xi+1/Xi

of Lemma

3.5 (iv), where we take the data “(S, Y,X)” to be (Xi, Y,Xi+1), is
nontrivial.

Indeed, assume that the image of N → ∆
(p)
Xi+1/Xi

is trivial. Let UY ⊂ Y, UZ ⊂ Z

be open subschemes of Y, Z, respectively, as in Lemma 3.5(ii). Then it follows from

Lemma 3.5(iii) that the image of ∆
(p)
UY /UZ

⊂ ΠpUY
by the composite ΠpUY

ϕ→ ΠpX ↠
ΠpXi+1

is trivial. Thus, it follows that the composite ΠpUY
→ ΠpY

ϕ→ ΠpX ↠ ΠpXi+1

factors through ΠpUY
→ ΠpUZ

. On the other hand, since dim(UZ) = dim(Z) = i <
i + 1 = dim(Xi+1), and ϕ is poly-nondegenerate, we obtain a contradiction. This
completes the proof of Claim C.1.

It follows from Claim C.1, together with Lemma 3.5(vii), that the composite
ΠpY → ΠpX ↠ ΠpXi+1

arises from a morphism Y → Xi+1 over k. Moreover, it

follows from Claim B that this morphism is dominant. This completes the proof of
Claim C, hence also of Theorem 3.7. □

Remark 3.8. It follows from Theorem 3.7, together with the proof of Claim A in
Theorem 3.7, that a poly-nondegenerate homomorphism satisfies the condition in
Definition 3.6(ii) with respect to any sequence of parametrizing morphisms of X/S
which satisfies condition (∗∗)p.

Theorem 3.9. Let p be a prime number, k a sub-p-adic field, Y, S normal varieties
over k, X a hyperbolic curve over S satisfying condition (∗∗)p, and ϕ : ΠpY → ΠpX
a homomorphism over Gpk. Suppose that the following conditions are satisfied:

(1) The composite ΠpY
ϕ→ ΠpX → ΠpS arises from a morphism Y → S over k.

(2) ϕ is open, and its kernel is finite.
(3) Y is of p-LFG-type, and, moreover, Πp

Y×kk
→ ΠpY is injective.

(4) dim(X) (= dim(S) + 1) ≤ dim(Y ).

Then ϕ arises from a quasi-finite dominant morphism Y → X over S. In particular,
dim(X) = dim(Y ).

Proof. (cf. [10] Theorem 3.8) It follows from conditions (3),(4), together with
Lemma 3.5(v), the closed subgroup N ⊂ ΠpY defined in Lemma 3.5(iii) is infinite.
Thus, it follows from condition (2) that the image of N ⊂ ΠpY by ϕ is nontrivial.
This implies that ϕ arises from a morphism Y → X over S (cf. Lemma 3.5(vii)).
Moreover, it follows from conditions (2),(3), together with Lemma 2.27(iii), that
Y → X is quasi-finite, hence dominant (cf. condition (4)). This completes the proof
of Theorem 3.9. □

Definition 3.10. Let p be a prime number, n a positive integer, and C a condition
on a connected noetherian separated normal scheme S over k, hyperbolic polycurve
X over S, and a sequence of parametrizing morphisms

X = Xm → Xm−1 → · · · → X1 → S = X0,

which satisfies the following conditions:

(1) If X/S satisfies the condition C, and, moreover, m ≥ 2, then X/X1 satisfies
the condition C.
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(2) If X/S satisfies the condition C, then, for any connected noetherian sep-
arated normal scheme T over k and any morphism T → S, X ×S T/T
satisfies the condition C.

(3) If X/S satisfies the condition C, then, for any open subgroup U ⊂ ΠpX of
ΠpX , the hyperbolic polycurve corresponding to U satisfies the condition C.

Then we shall say that the assertion (†n)Cp holds if, for any hyperbolic polycurve X

of relative dimension n over k satisfying the conditions (∗∗)p and C, ΠpX does not
admit a sequence of closed subgroups of ΠpX

{1} = H0 ⊂ H1 ⊂ · · · ⊂ Hn ⊂ Hn+1 = ΠpX

such that, for each integer i such that 0 ≤ i ≤ n, the closed subgroup Hi is
topologically finitely generated and normal in Hi+1, and the quotient Hi+1/Hi is
infinite.

Example 3.11. Suppose that C is one of the following:

• X/S is an arbitrary hyperbolic polycurve.
• X/S is a hyperbolic polycurve such that X → S is proper.
• X/S is a hyperbolic polycurve such that, for each integer i such that 1 ≤
i ≤ m, if we write (gi, ri) for the type of the hyperbolic curve Xi/Xi−1,
then ri > 0.

Then C satisfies the conditions (1), (2), (3) in Definition 3.10.

Lemma 3.12. For an arbitrary condition C as in Definition 3.10, the assertion
(†1)Cp holds.

Proof. (cf. [10] Lemma 3.10) This follows from Proposition 2.16(iv). □

Theorem 3.13. Let p be a prime number, n a positive integer, k a sub-p-adic field,
C a condition as in Definition 3.10, S a normal variety over k, X a hyperbolic
polycurve of relative dimension n over S satisfying condition (∗∗)p, Y a hyperbolic
polycurve over k satisfying condition (∗∗)p, and ϕ : ΠpY → ΠpX a homomorphism
over Gpk. Suppose that the following conditions are satisfied:

(1) The composite ΠpY
ϕ→ ΠpX → ΠpS arises from a morphism Y → S over k.

(2) ϕ is an open injection.
(3) dim(X) (= dim(S) + n) ≤ dim(Y ).
(4) If n ≥ 2, then X/X1 satisfies the condition C.
(5) For each integer i such that 0 < i < n, the assertion (†i)Cp holds.

Then ϕ arises from a quasi-finite dominant morphism Y → X over S. In particular,
dim(X) = dim(Y ).

Proof. (cf. [10] Theorem 3.11) Fix a surjection ΠpX ↠ ΠpX1
over Gpk arising from

the morphism X → X1 over k. First, I claim that the following assertion holds:

Claim A: If n ≥ 2, then the composite ΠpY
ϕ→ ΠpX → ΠpX1

arises
from a morphism Y → X1 over S.

Indeed, write S′ ⊂ S for the scheme-theoretic image of the morphism Y → S, Z :=
Nor(Y/S′), η → Z for the generic point of Z, and Yη := Y ×Z η. Then, by applying

Lemma 3.5(vii), where we take the data “(S, Y,X, ϕ)” to be (S, Y,X1,Π
p
Y

ϕ→ ΠpX ↠
ΠpX1

), it suffices to verify that the image of the closed subgroup N ⊂ ΠpY defined

in Lemma 3.5(iii) by the homomorphism ΠpY → ΠpX1
is nontrivial. To verify this,
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assume that the image of N ⊂ ΠpY by ΠpY → ΠpX1
is trivial, i.e., that the image

of N ⊂ ΠpY by ϕ is contained in ∆
(p)
X/X1

= ∆p
X/X1

⊂ ΠpX . Then, since N ⊂ ΠpY is

normal in ΠpY , and ϕ is open, it follows that the image ϕ(N) is normal in the open
subgroup Imϕ ⊂ ΠpX of ΠpX . On the other hand, it follows from Lemma 3.5(vi)
that there exists a sequence of normal closed subgroups of N

{1} = H0 ⊂ H1 ⊂ · · · ⊂ Hdim(Y )−dim(S) = N

such that, for each integer i such that 1 ≤ i ≤ dim(Y ) − dim(S), the closed
subgroup Hi is topologically finitely generated, and that the quotient Hi/Hi−1 is
infinite. Write U := Imϕ ∩ ∆p

X/X1
⊂ ∆p

X/X1
, and, for each integer i such that

0 ≤ i ≤ dim(Y ) − dim(S), HU
i := ϕ(Hi) ⊂ ∆p

X/X1
. Then, since Imϕ ⊂ ΠpX is

open in ΠpX , U is an open subgroup of ∆p
X/X1

. Moreover, since ϕ is injective, the

following hold:

• HU
dim(Y )−dim(S) is a normal closed subgroup of U =: HU

dim(Y )−dim(S)+1.

• For each integer i such that 1 ≤ i ≤ dim(Y )−dim(S)+1,HU
i is topologically

finitely generated.
• For each integer i such that 1 ≤ i ≤ dim(Y ) − dim(S), HU

i is normal in
HU

dim(Y )−dim(S), and, moreover, the quotient HU
i /H

U
i−1 is infinite.

Now suppose thatHU
dim(Y )−dim(S)+1/H

U
dim(Y )−dim(S) is finite. Then sinceHU

dim(Y )−dim(S)

is an open subgroup of ∆p
X/X1

, it follows from Proposition 2.16(ii), Lemma 2.22(ii),

together with conditions (2),(3) in Definition 3.10, that HU
dim(Y )−dim(S) may be re-

garded as the maximal pro-p quotient of the fundamental group of a hyperbolic
polycurve of dimension n − 1 over k satisfying the conditions (∗∗)p and C. Thus,
since we have assumed that the assertion (†n−1)

C
p holds, for each integer i such that

1 ≤ i ≤ n, by taking the “Hi” in Definition 3.10 to be HU
dim(Y )−dim(S)−n+i, we

obtain a contradiction. Next, supose that HU
dim(Y )−dim(S)+1/H

U
dim(Y )−dim(S) is infi-

nite. Then, for each integer i such that 1 ≤ i ≤ n, by taking the “Hi” in Definition
3.10 to be HU

dim(Y )−dim(S)−n+1+i, we obtain a contradiction. This completes the

proof of Claim A.
By applying Claim A and using condition (1) in Definition 3.10 inductively,

to verify Theorem 3.13, we may assume without loss of generality that X is a
hyperbolic curve over S. Then it follows from Proposition 2.28 and Theorem 3.9
that ϕ arises from a quasi-finite dominant morphism Y → X over S. □

Corollary 3.14. Let p be a prime number, k a sub-p-adic field, S a normal variety
over k, X a hyperbolic polycurve of relative dimension 2 over S satisfying condition
(∗∗)p, Y a hyperbolic polycurve over k satisfying condition (∗∗)p, and ϕ : ΠpY → ΠpX
a homomorphism over Gpk. Suppose that the following conditions are satisfied:

(1) The composite ΠpY
ϕ→ ΠpX → ΠpS arises from a morphism Y → S over k.

(2) ϕ is an open injection.
(3) dim(X) (= dim(S) + 2) ≤ dim(Y ).

Then ϕ arises from a quasi-finite dominant morphism Y → X over S. In particular,
dim(X) = dim(Y ).

Proof. (cf. [10] Corollary 3.12) This follows from Theorem 3.13, together with
Lemma 3.12. □
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Lemma 3.15 ([10] Lemma 3.13). Let G1, G2 be profinite groups, H1 ⊂ G1,H2 ⊂
G2 closed subgroups of G1, G2, respectively, and ϕ : G1 → G2 a homomorphism.
Suppose that ϕ(H1) ⊂ H2. Then the homomorphism H1 → H2 induced by ϕ is
surjective if and only if the following condition is satisfied: For any open subgroup
U ⊂ G2 of G2 and any normal open subgroup N ⊂ U of U , if the composite

H2 ∩ U ↪→ U ↠ U/N is surjective, then the composite H1 ∩ ϕ−1(U) ↪→ ϕ−1(U)
ϕ→

U ↠ U/N is surjective.

Theorem 3.16. Let p be a prime number, k a sub-p-adic field, X a hyperbolic
polycurve of dimension 2 over k satisfying condition (∗∗)p, Y a normal variety over
k, and ϕ : ΠpY → ΠpX an open homomorphism over Gpk. Suppose that Πp

Y×kk
→ ΠpY

is injective, and, moreover, that the kernel of ϕ is topologically finitely generated.
Then ϕ arises from a uniquely determined dominant morphism Y → X over k. In
particular, dim(Y ) ≥ 2.

Proof. (cf. [10] Theorem 3.14) First, by replacing X by the connected finite étale
covering of X corresponding to ϕ(ΠpY ) ⊂ ΠpX , to verify Theorem 3.16, we may
assume without loss of generality that ϕ is surjective. (Note that it follows from
Lemma 2.22(ii) that X satisfies condition (∗∗)p even if we replace X as above.)
Then since ϕ and ΠpX → ΠpX1

are surjective (cf. Proposition 2.16(i)), and their
kernels are topologically finitely generated (cf. Proposition 2.16(iii)), the composite

ΠpY
ϕ→ ΠpX ↠ ΠpX1

is surjective, and its kernel is topologically finitely generated.
Thus, since X1 is a hyperbolic curve over k satisfying condition (∗∗)p, it follows
from Theorem 3.4, together with the implication (2)′′ ⇒ (3) of Lemma 2.35, that
ΠpY → ΠpX1

arises from a uniquely determined morphism Y → X1 over k which is
surjective and generically geometrically connected. Write η → X1 for the generic
point of X1, Yη := Y ×X1

η, and Xη := X ×X1
η. (Thus, Yη is a normal variety

over η.) Now I claim that the following assertion holds:

Claim A: Any homomorphism that belongs to the ΠpX -conjugacy
class of homomorphisms N → ∆p

X/X1
of Lemma 3.5 (iv), where we

take the data “(S, Y,X)” to be (X1, Y,X), is surjective.

Let us observe that N → ∆p
X/X1

is surjective if and only if ∆Yη/η → ∆p
X/X1

is

surjective (cf. Lemma 3.5(iii)). Thus, it follows from Lemma 3.15 that, to verify
Claim A, it suffices to verify that the following assertion holds:

Claim A.1: Let U ⊂ ΠpX be an open subgroup of ΠpX and V ⊂ U
a normal open subgroup of U . Write X ′ → X for the connected
finite étale covering of X corresponding to U ⊂ ΠpX , X ′′ → X ′ for
the connected finite étale Galois covering of X ′ corresponding to
V ⊂ U = ΠpX′ , Y ′ → Y for the connected finite étale covering of Y
corresponding to ϕ−1(U) ⊂ ΠpY , Y

′′ → Y ′ for the connected finite
étale Galois covering of Y ′ corresponding to ϕ−1(V ) ⊂ ϕ−1(U) =
ΠpY ′ , Y ′

η := Y ′×X1η (= Y ′×Y Yη), and Y ′′
η := Y ′′×X1η (= Y ′′×Y Yη)

(Note that it follows from Lemma 1.2 that Yη → Y induces an outer
surjection ΠYη

→ ΠY , which implies that Y ′
η and Y

′′
η are connected).

Suppose that the composite ∆p
X/X1

∩ ΠpX′ ↪→ ΠpX′ ↠ ΠpX′/Π
p
X′′ =

U/V is surjective. Then the composite ∆Yη/η ∩ ΠY ′
η
↪→ ΠY ′

η
↠

ΠY ′
η
/ΠY ′′

η
is surjective.
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Indeed, it follows from Proposition 2.5, and Lemma 2.22(ii), that the sequence of
schemes X ′ → X ′

1 := Nor(X ′/X1) → X ′
0 := Nor(X ′/ Spec k) determines a struc-

ture of hyperbolic polycurve of dimension 2 on X ′ which satisfies condition (∗∗)p,
and, moreover, the natural morphisms X ′

1 → X1, η
′ → η, where we write η′ → X ′

1

for the generic point of X ′
1, are connected finite étale coverings. In particular, it

follows from Lemma 2.9(ii) that the natural inclusions ΠpX′ ↪→ ΠpX ,ΠY ′
η
↪→ ΠYη

determine equalities

∆p
X/X1

∩ΠpX′ = ∆p
X′/X′

1
, ∆Yη/η ∩ΠY ′

η
= ∆Y ′

η/η
′ .

Thus, to verify Claim A.1, by replacing X by X ′, it suffices to verify that for any
covering X ′′ → X corresponding to a normal open subgroup of ΠpX , if ∆p

X/X1
→

ΠpX/Π
p
X′′ is surjective, then ∆Yη/η → ΠYη/ΠY ′′

η
is surjective. Moreover, since ΠX′′

is the inverse image of ΠpX′′ ⊂ ΠpX by the surjection ΠX ↠ ΠpX , it follows that
the natural homomorphism ΠX/ΠX′′ → ΠpX/Π

p
X′′ is an isomorphism. Thus, to

verify Claim A.1, it suffices to verify that if ∆X/X1
→ ΠX/ΠX′′ is surjective, then

∆Yη/η → ΠYη/ΠY ′′
η

is surjective. On the other hand, it follows from the natural

isomorphisms ΠX×X1
η

∼→ ∆X/X1
,ΠYη×ηη = ΠY×X1

η
∼→ ∆Yη/η that ΠX×X1

η →
ΠX/ΠX′′ is surjective if and only if X ′′ ×X (X ×X1

η) = X ′′ ×X1
η is connected,

and ΠY×X1
η → ΠYη

/ΠY ′′
η

is surjective if and only if Y ′′
η ×Yη

(Y ×X1
η) = Y ′′ ×X1

η
is connected. Thus, we conclude that to verify Claim A.1, it suffices to verify that
if X ′′ ×X1 η is connected, then Y ′′

η ×η η is connected. To verify this, assume that
X ′′×X1 η is connected, i.e., X ′′ → X1 is generically geometrically connected. Then,
since the composite X ′′ → X → X1 is smooth and surjective, it follows from the
implication (1) ⇒ (2)′′ of Lemma 2.35 that the composite ΠpX′′ ↪→ ΠpX ↠ ΠpX1

is
surjective, and its kernel is topologically finitely generated. On the other hand, we
have assumed that ϕ is surjective, and kerϕ is topologically finitely generated. Thus,
it holds that the composite ΠpY ′′ ↠ ΠpX′′ ↪→ ΠpX ↠ ΠpX1

is surjective, and its kernel
is topologically finitely generated. In particular, it follows from the implication
(2)′′ ⇒ (3) of Lemma 2.35 that the morphism Y ′′ → X1 is generically geometrically
connected, which implies that Y ′′ ×X1

η is connected. This completes the proof of
Claim A.1, hence also of Claim A.

It follows from Claim A, together with Proposition 2.16(iii) and Lemma 3.5(vii),
that ϕ arises from a morphism Y → X over k. Moreover, it follows from Corollary
3.3(i) that Y → X is unique. On the other hand, it follows from Claim A, together
with Lemma 3.5(iii), that ΠY×Zη → ΠpX×X1

η (where Z = Nor(Y/X1), and η → Z

is a generic geometric point of Z) is surjective. Thus, since X×X1
η is a hyperbolic

curve over η, it follows from Proposition 2.16(iii) that the morphism Y ×Z η →
X ×X1 η, hence also Y ×X1 η → X ×X1 η, is dominant. This implies that Y → X
is dominant. This completes the proof of Theorem 3.16. □
Theorem 3.17. Let p be a prime number, k a sub-p-adic field, X a hyperbolic
polycurve of dimension 2 over k satisfying condition (∗)p, Y a normal variety over
k, and ϕ : ΠpY/k → ΠpX/k an open homomorphism over Gk. Suppose that the kernel

of ϕ is topologically finitely generated. Then ϕ arises from a uniquely determined
dominant morphism Y → X over k. In particular, dim(Y ) ≥ 2.

Proof. There exists a finite Galois extension k1 of k such that X ×k k1/k1 satisfies
condition (∗∗)p (cf. Proposition 2.21). We can choose a finite extension k2 of k1
such that Y ×k k2 has a k2-rational point. Then the section of ΠY×kk2 ↠ Gk2
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induced by a k2-rational point determines a homomorphism Gk2 → Aut(Πp
Y×kk

).

On the other hand, it follows from Lemma 1.7 that ΠY×kk
, hence also Πp

Y×kk
, is

topologically finitely generated. Thus, Aut(Πp
Y×kk

) has an open pro-p subgroup U

(cf. Lemma 2.19). Let us choose a finite Galois extension k′ of k such that Gk′ ⊂ Gk
is contained in the inverse image of U ⊂ Aut(Πp

Y×kk
) by Gk2 → Aut(Πp

Y×kk
). Then

k′ is a finite extension of k2. Moreover, since the image of the composite Gk′ ↪→
Gk2 → Aut(Πp

Y×kk
) is pro-p, Gk′ ↪→ Gk2 → Aut(Πp

Y×kk
) factors through the

surjection Gk′ ↠ Gpk′ . Thus we obtain a homomorphism Gpk′ → Aut(Πp
Y×kk

), which

determines a semidirect product Πp
Y×kk

⋊Gpk′ . Then by construction, we obtain a

surjection ΠY×kk
⋊Gk′ ↠ Πp

Y×kk
⋊Gpk′ . Now ΠY×kk

⋊Gk′ ∼= ΠY×kk′ (cf. Lemma

1.5), and, moreover, the image of ΠY×kk
⊂ ΠY×kk′ by ΠY×kk′ ↠ Πp

Y×kk
⋊ Gpk′ is

Πp
Y×kk

. Since Πp
Y×kk

⋊Gpk′ is pro-p, the composite ΠY×kk
⊂ ΠY×kk′ ↠ Πp

Y×kk
⋊Gpk′

determines a sequence Πp
Y×kk

→ ΠpY×kk′
↠ Πp

Y×kk
⋊ Gpk′ . In particular, since

Πp
Y×kk

→ Πp
Y×kk

⋊Gpk′ is injective, we conclude that Π
p

Y×kk
→ ΠpY×kk′

is injective.

Now ΠpX×kk′/k′
,ΠpY×kk′/k′

are the inverse image of the normal open subgroup

Gk′ ⊂ Gk by the surjections ΠpX/k ↠ Gk,Π
p
Y/k ↠ Gk, respectively. Thus, if we

write ϕ′ : ΠpY×kk′/k′
→ ΠpX×kk′/k′

for the open homomorphism over Gk′ determined

by ϕ, then kerϕ′ = kerϕ. Write ϕ̃′ : ΠpY×kk′
→ ΠpX×kk′

for the open homomorphism

over Gpk′ determined by ϕ′. Then since Πp
Y×kk

→ ΠpY×kk′
is injective, we have

kerϕ′ = ker ϕ̃′. On the other hand, since X ×k k1/k1 satisfies condition (∗∗)p, it
follows from Proposition 2.16(ii) that X×k k′/k′ satisfies condition (∗∗)p. Thus, ϕ̃′
arises from a dominant morphism Y ×k k′ → X ×k k′ over k′ (cf. Theorem 3.16).

Since the image of ϕ̃′ by the map of Lemma 2.23(ii) is ϕ′, this implies that ϕ′ arises
from the above dominant morphism Y ×k k′ → X ×k k′, which is compatible with
the natural actions of Gal(k′/k) (cf. Proposition 3.2(i)). Thus, by descending the
morphism, we obtain a dominant morphism Y → X over k. Since ∆p

X/k is slim (cf.

Proposition 2.16(iii)), it follows from Lemma 1.20 that ΠpY/k → ΠpX/k induced by

the morphism Y → X belongs to the same ∆p
X/k-conjugacy class determined by

ϕ, which implies that ϕ arises from a dominant morphism Y → X. Moreover, it
follows from Proposition 3.2(i) that Y → X is unique. This completes the proof of
Theorem 3.17. □

Corollary 3.18. Let p be a prime number, k a sub-p-adic field, X a hyperbolic
polycurve of dimension 3 over k satisfying condition (∗∗)p, Y a normal variety
over k, and ϕ : ΠpY → ΠpX a homomorphism over Gpk. Suppose that the following
conditions are satisfied:

(1) ϕ is open, and its kernel is finite.
(2) Y is of p-LFG-type, and, moreover, Πp

Y×kk
→ ΠpY is injective.

(3) 3 ≤ dim(Y ).

Then ϕ arises from a uniquely determined quasi-finite dominant morphism Y → X
over k. In particular, dim(Y ) = 3.
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Proof. (cf. [10] Corollary 3.15) It follows from condition (1), together with Propo-

sition 2.16(iii), that the kernel of the composite ΠpY
ϕ→ ΠpX ↠ ΠpX2

is topologi-
cally finitely generated. Thus, it follows from Theorem 3.16 that the composite

ΠpY
ϕ→ ΠpX ↠ ΠpX2

arises from a dominant morphism Y → X2 over k. In particular,
it follows from Theorem 3.9 that ϕ arises from a quasi-finite dominant morphism
Y → X over k. Moreover, it follows from Corollary 3.3(i) that Y → X is unique.
This completes the proof of Corollary 3.18. □

Corollary 3.19. Let p be a prime number, k a sub-p-adic field, X a hyperbolic
polycurve of dimension 3 over k satisfying condition (∗)p, Y a normal variety over
k, and ϕ : ΠpY/k → ΠpX/k a homomorphism over Gk. Suppose that the following

conditions are satisfied:

(1) ϕ is open, and its kernel is finite.
(2) Y is of p-LFG-type.
(3) 3 ≤ dim(Y ).

Then ϕ arises from a uniquely determined quasi-finite dominant morphism Y → X
over k. In particular, dim(Y ) = 3.

Proof. This follows from Corollary 3.18, together with an argument similar to the
argument used in the proof of Theorem 3.17. □

Corollary 3.20. Let p be a prime number, k a sub-p-adic field, X a hyperbolic
polycurve of dimension 4 over k satisfying condition (∗∗)p, Y a hyperbolic polycurve
over k satisfying condition (∗∗)p, and ϕ : ΠpY → ΠpX a homomorphism over Gpk.
Suppose that the following conditions are satisfied:

(1) ϕ is an open injection (resp. isomorphism).
(2) 4 ≤ dim(Y ).

Then ϕ arises from a uniquely determined finite étale covering (resp. isomorphism)
Y → X over k. In particular, dim(Y ) = 4.

Proof. (cf. [10] Corollary 3.16) First, by replacing X by the connected finite étale
covering of X corresponding to ϕ(ΠpY ) ⊂ ΠpX , to verify Theorem 3.20, we may
assume without loss of generality that ϕ is an isomorphism. Then it follows from

Proposition 2.16(iii) that the kernel of the composite ΠpY
ϕ→ ΠpX ↠ ΠpX2

is topo-
logically finitely generated. Thus, it follows from Theorem 3.16 that the composite

ΠpY
ϕ→ ΠpX ↠ ΠpX2

arises from a dominant morphism Y → X2 over k. In par-
ticular, it follows from Corollary 3.14 that ϕ arises from a quasi-finite dominant
morphism Y → X over k, which implies that 4 = dim(X) = dim(Y ). By apply-
ing an argument similar to the above argument to ϕ−1, we obtain a quasi-finite
dominant morphism X → Y over k. Then it follows from Corollary 3.3(i) that the
two morphisms Y → X and X → Y are inverse to each other. This Y → X is
an isomorphism. Moreover, it follows from Corollary 3.3(i) that Y → X is unique.
This completes the proof of Corollary 3.20. □

Corollary 3.21. Let p be a prime number, k a sub-p-adic field, X a hyperbolic
polycurve of dimension 4 over k satisfying condition (∗)p, Y a hyperbolic polycurve
over k satisfying condition (∗)p, and ϕ : ΠpY/k → ΠpX/k a homomorphism over Gk.

Suppose that the following conditions are satisfied:

(1) ϕ is an open injection (resp. isomorphism).
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(2) 4 ≤ dim(Y ).

Then ϕ arises from a uniquely determined finite étale covering (resp. isomorphism)
Y → X over k. In particular, dim(Y ) = 4.

Proof. This follows from Corollary 3.20, together with an argument similar to the
argument used in the proof of Theorem 3.17. □

Corollary 3.22. Let p be a prime number, nX , nY positive integers, k a sub-p-adic
field, X,Y hyperbolic polycurves of dimension nX , nY over k satisfying condition
(∗)p, respectively. Suppose that either nX ≤ 4 or nY ≤ 4. Then the natural maps

Isomk(Y,X)→ IsomGk
(ΠY ,ΠX)/ Inn(∆X/k)→ IsomGk

(ΠpY/k,Π
p
X/k)/ Inn(∆

p
X/k)

are bijective.

Proof. The bijectivity of the map

Isomk(Y,X)→ IsomGk
(ΠY ,ΠX)/ Inn(∆X/k)

is proved in [10] Corollary 3.18, and the injectivity of the map

Isomk(Y,X)→ IsomGk
(ΠpY/k,Π

p
X/k)/ Inn(∆

p
X/k)

follows from Proposition 3.2(i). Thus, it remains to verify the surjectivity of the

latter map. Let ϕ : ΠpY/k
∼→ ΠpX/k be an isomorphism over Gk. Then, by replacing

(X,Y, ϕ) by (Y,X, ϕ−1) if necessary, we may assume without loss of generality that
nX ≤ nY . In particular, nX ≤ 4. Thus, it follows from Proposition 2.28, Theorems
3.4, 3.17, Corollaries 3.19, 3.21 that ϕ arises from a uniquely determined quasi-finite
dominant morphism Y → X over k. In particular, we obtain that nX = nY ≤ 4.
Thus, by applying an argument similar to the above argument to ϕ−1, we obtain
a quasi-finite dominant morphism X → Y over k. Then it follows from Corollary
3.3(i) that the two morphisms Y → X and X → Y are inverse to each other. Thus,
Y → X is an isomorphism. Moreover, it follows from Corollary 3.3(i) that Y → X
is unique. This completes the proof of Corollary 3.22. □

Remark 3.23. It seems that the assertion (†n)Cp holds for every positive integer n.
However, it is unknown that there exists an integer n > 1 (with an enough general
condition C) such that the assertion (†n)Cp can be proven. If one proves that the

assertion (†n)Cp holds for every positive integer n, then, by applying an argument
similar to the argument applied in the proof of Corollary 3.22, except that instead of
applying Theorems 3.4, 3.17, Corollaries 3.19, 3.21, one applies Theorem 3.13, that
we can prove the assertion obtained by replacing the assumption “either nX ≤ 4
or nY ≤ 4” of Corollary 3.22 by “X,Y satisfy the condition C”.

Proposition 3.24 ([10] Proposition 3.19). Let kX , kY be finitely generated exten-
sion fields of Q. Then the following hold:

(i) Let H ⊂ GkX be a closed subgroup of GkX . Suppose that H is topologically
finitely generated and normal in an open subgroup of GkX . Then H is
trivial.

(ii) The natural map Isom(kX/kX , kY /kY )→ Isom(GkY , GkX ) is bijective.

Corollary 3.25. Let p be a prime number, kX , kY fields of characteristic zero,
n a positive integer, X a hyperbolic polycurve of dimension n over kX satisfying
condition (∗)p, Y a normal variety over kY , and ϕ : ΠpY/kY → ΠpX/kX an open
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homomorphism. Suppose that one of the following conditions (1), (2), (3), (4) is
satisfied:

(1) n = 1.
(2) The following conditions are satisfied:

(2-i) n = 2.
(2-ii) The kernel of ϕ is topologically finitely generated.

(3) The following conditions are satisfied:
(3-i) n = 3.
(3-ii) The kernel of ϕ is finite.
(3-iii) Y is of p-LFG-type.
(3-iv) 3 ≤ dim(Y ).

(4) The following conditions are satisfied:
(4-i) n = 4.
(4-ii) ϕ is injective.
(4-iii) Y is a hyperbolic polycurve over kY satisfying condition (∗)p.
(4-iv) 4 ≤ dim(Y ).

Then the following hold:

(i) Suppose that both kX , kY are finitely generated over Q. Then the open
homomorphism ϕ lies over an open homomorphism GkY → GkX .

(ii) In the situation (i), suppose that the homomorphism GkY → GkX obtained
in (i) is injective. Then ϕ arises from a dominant morphism Y → X.

(iii) Suppose that both kX , kY are sub-p-adic, and, moreover, that the open ho-
momorphism ϕ lies over an open homomorphism GkY → GkX that arises
from a homomorphisms kX ↪→ kY of fields. Then ϕ arises from a dominant
morphism Y → X.

Proof. (cf. [10] Corollary 3.20) First, we verify assertion (i). It follows from Lemma

1.7 and Proposition 2.7(i) that ΠYkY

∼→ ∆Y/kY , hence also the image of the com-

posite ∆Y/kY ↠ ∆p
Y/kY

→ GkX , is topologically finitely generated. Moreover,

the image of the composite ∆Y/kY ↠ ∆p
Y/kY

→ GkX is normal in the image of

ΠpY/kY
ϕ→ ΠpX/kX ↠ GkX , which is an open subgroup of GkX . Thus it follows

from Proposition 3.24(i) that the image of the composite ∆Y/kY ↠ ∆p
Y/kY

→ GkX

is trivial. In particular, the composite ΠpY/kY
ϕ→ ΠpX/kX ↠ GkX factors through

ΠpY/kY ↠ GkY . Then ϕ lies over a resulting homomorphism GkY → GkX . More-

over, since ϕ is open and the composite ΠpY/kY ↠ GkY ,Π
p
X/kX

↠ GkX is surjective,

we conclude that GkY → GkX is open. This completes the proof of assertion (i).
Next, we verify assertion (ii). Let us observe that, by replacing X by the con-
nected finite étale covering of X corresponding to ϕ(ΠpY/kY ) ⊂ ΠpX/kX , to verify

assertion (ii), we may assume without loss of generality that ϕ, hence also the in-
jection GkY → GkX , is surjective. Then it follows from Proposition 3.24(ii) that

the isomorphism GkY
∼→ GkX arises from an isomorphism kX

∼→ kY that deter-

mines an isomorphism kX
∼→ kY . In particular, by replacing (X×kX kY , kY , kY ) by

(X, kX , kX), we may assume without loss of generality that (kX , kX) = (kY , kY ),
and that the homomorphism GkY → GkX of (i) is the identity homomorphism of
GkX . Then it follows from Theorems 3.4, 3.17, Corollaries 3.19, 3.21 that ϕ arises
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from a dominant morphism Y → X. This completes the proof of assertion (ii). Fi-

nally, we verify assertion (iii). Since ΠpX×k
X
kY /kY

∼→ ΠpX/kX×Gk
X
GkY (cf. Proposi-

tion 2.16(ii)), it follows that ϕ determines a homomorphism ΠpY/kY → ΠpX×k
X
kY /kY

,

which arises from a dominant morphism Y → X ×kX kY (cf. Theorems 3.4, 3.17,

Corollaries 3.19, 3.21). Thus, ϕ arises from the composite Y → X ×kX kY
pr1→ X.

This completes the proof of assertion (iii). □

4. Finiteness of the Set of Outer Isomorphisms between
Geometrically Pro-p Étale Fundamental Groups of Hyperbolic

Polycurves

In the present §4, we discuss the finiteness of a certain set of outer isomorphisms
between the pro-p étale fundamental groups of hyperbolic polycurves. Let k be a
field of characteristic zero, k an algebraic closure of k, and Gk := Gal(k/k).

Lemma 4.1 ([10] Lemma 4.1). Let G be a profinite group, H ⊂ G an open subgroup
of G, A a group, and A → Aut(G) a homomorphism. Write AH ⊂ A for the
subgroup of A consisting of a ∈ A such that the automorphism of G obtained by
forming the image of a in Aut(G) preserves H ⊂ G. Suppose that G is topologically
finitely generated. Then AH is of finite index in A.

Lemma 4.2. Let p be a prime number, n a positive integer, S a connected noe-
therian separated normal scheme over k, and X a hyperbolic polycurve of relative
dimension n over S satisfying condition (∗)p. Then there exists an open subgroup
H ⊂ ∆p

X/S of ∆p
X/S such that, if we write Hi := H ∩∆p

X/Xi
for each integer i such

that 0 ≤ i ≤ n, then, for each integer i such that 0 < i < n, it holds that

rankZp
((Hi/Hi+1)

ab) < rankZp
((Hi−1/Hi)

ab).

Proof. (cf. [10] Lemma 4.2(i)) We verify Lemma 4.2 by induction on n. If n = 1,
then Lemma 4.2 is immediate. Now suppose that n ≥ 2, and that the induction
hypothesis is in force. Then it follows from induction hypothesis that there exists
an open subgroup U ⊂ ∆p

X/X1
of ∆p

X/X1
such that, if we write Ui := U ∩ ∆p

X/Xi

for each integer i such that 1 ≤ i ≤ n, then, for each integer i such that 1 < i < n,
it holds that

rankZp
((Ui/Ui+1)

ab) < rankZp
((Ui−1/Ui)

ab).

Now it follows from Lemma 2.17(i) that there exists an open subgroup V ⊂ ∆p
X/k

of ∆p
X/k such that U = V ∩∆p

X/X1
. Write W for the image of V ⊂ ∆p

X/k by the

surjection ∆p
X/k ↠ ∆p

X1/k
. Then since W is an open subgroup of ∆p

X1/k
, there

exists an open subgroup Q ⊂W of W such that

rankZp
(Qab) > rankZp

((U1/U2)
ab)

(cf. Proposition 2.16(vi)). WriteH for the inverse image of Q ⊂W by the surjection
V ↠ W . Then H is an open subgroup of V , hence also of ∆p

X/k, and, moreover,

since U = V ∩ ∆p
X/X1

⊂ H ⊂ V , we have H ∩ ∆p
X/X1

= U . Thus, if we write

Hi := H ∩ ∆p
X/Xi

for each integer i such that 0 ≤ i ≤ n, then, for each integer

i such that 1 ≤ i ≤ n, it holds that Hi = Ui. Moreover, since H0 = H and
H1 = U , it follows from the exact sequence 1→ U → H → Q→ 1 that we have an
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isomorphism H0/H1
∼→ Q. In particular, for each integer i such that 1 ≤ i ≤ n− 1,

it holds that

rankZp((Hi/Hi+1)
ab) < rankZp((Hi−1/Hi)

ab).

This completes the proof of Lemma 4.2. □

Lemma 4.3. Let p be a prime number, n a positive integer, and X,Y hyperbolic
polycurves of dimension n over k satisfying condition (∗)p. Then the following hold:

(i) Let ϕ : ∆p
Y/k

∼→ ∆p
X/k be an isomorphism from ∆p

Y/k to ∆p
X/k. Suppose

that there exists an open subgroup H ⊂ ∆p
Y/k of ∆p

Y/k such that, if we

write Hi := H ∩ ∆p
Y/Yi

,H ′
i := ϕ(H) ∩ ∆p

X/Xi
for each integer i such that

0 ≤ i ≤ n, then, for any integers i, j such that 0 ≤ i < j < n, it holds that

rankZp
((Hi/Hi+1)

ab) > rankZp
((H ′

j/H
′
j+1)

ab),

rankZp
((H ′

i/H
′
i+1)

ab) > rankZp
((Hj/Hj+1)

ab).

Then, for each integer i such that 0 ≤ i ≤ n, it holds that ϕ(∆p
Y/Yi

) =

∆p
X/Xi

.

(ii) Let ψ : ΠpY/k
∼→ ΠpX/k be an isomorphism from ΠpY/k to ΠpX/k over Gk.

Suppose that k is sub-p-adic, and that for each integer i such that 0 ≤ i ≤ n,
it holds that ψ(∆p

Y/Yi
) = ∆p

X/Xi
(e.g., the case where ψ|∆p

Y/k
satisfies the

condition appearing in the statement of assertion (i)). Then ψ arises from

an isomorphism Y
∼→ X over k.

Proof. (cf. [10] Lemma 4.2(ii),(iii)) First, we verify assertion (i) by induction on n.
If n = 1, then assertion (i) is immediate. Now suppose that n ≥ 2, and that the
induction hypothesis is in force. To verify assertion (i), I claim that the following
assertion holds:

Claim A: ϕ(Hn−1) = H ′
n−1.

Indeed, there exists a unique integer m such that 0 ≤ m < n, and the image of

the composite Hn−1 ↪→ H
ϕ→ ϕ(H) ↠ ϕ(H)/H ′

m+1 is nontrivial, but the image

of the composite Hn−1 ↪→ H
ϕ→ ϕ(H) ↠ ϕ(H)/H ′

m is trivial. Then the compos-

ite Hn−1 ↪→ H
ϕ→ ϕ(H) ↠ ϕ(H)/H ′

m+1 determines a nontrivial homomorphism

Hn−1 → H ′
m/H

′
m+1. Now since H

ϕ→ ϕ(H) ↠ ϕ(H)/H ′
m+1 is surjective, and

Hn−1 ⊂ H is normal in H, it follows that the image of Hn−1 → H ′
m/H

′
m+1 is nor-

mal in H ′
m/H

′
m+1. On the other hand, it follows from the commutative diagram of

profinite groups

1 // H ′
m+1

//

��

H ′
m

//

��

H ′
m/H

′
m+1

//

��

1

1 // ∆p
X/Xm+1

// ∆p
X/Xm

// ∆p
Xm+1/Xm

// 1

that the image of H ′
m/H

′
m+1 ↪→ ∆p

Xm+1/Xm
is open. Thus, H ′

m/H
′
m+1 may be

regarded as the maximal pro-p quotient of the fundamental group of a hyperbolic
curve over an algebraically closed field, which implies that H ′

m/H
′
m+1 is elastic.
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In particular, since Hn−1 is topologically finitely generated, the image of Hn−1 →
H ′
m/H

′
m+1 is open, which implies that rankZp((H

′
m/H

′
m+1)

ab) ≤ rankZp(H
ab
n−1).

Thus, it follows from our assumption that m = n − 1, i.e., ϕ(Hn−1) ⊂ H ′
n−1.

Moreover, by applying an argument similar to the above argument to ϕ−1, we
conclude that ϕ(Hn−1) = H ′

n−1. This completes the proof of Claim A. Next, I
claim that the following assertion holds:

Claim B: ϕ(∆p
Y/Yn−1

) = ∆p
X/Xn−1

.

Indeed, if we write N for the intersection of all ∆p
Y/k-conjugates of Hn−1, then N

is a normal subgroup of ∆p
Y/k. Moreover, since ∆p

Y/Yn−1
is topologically finitely

generated (cf. Proposition 2.16(iii)) and normal in ∆p
Y/k, and Hn−1 ⊂ ∆p

Y/Yn−1
is

open in ∆p
Y/Yn−1

, N is a finite intersection of open subgroups of ∆p
Y/Yn−1

of the

form gHn−1g
−1 (where g ∈ ∆p

Y/k), hence N is also open. Thus, ∆p
Y/Yn−1

/N ⊂
∆p
Y/k/N is a finite subgroup of ∆p

Y/k/N . In particular, since ∆p
Yn−1/k

is torsion-

free (cf. Proposition 2.16(iii)), ∆p
Y/Yn−1

/N ⊂ ∆p
Y/k/N is the unique maximal tor-

sion subgroup of ∆p
Y/k/N . On the other hand, it follows from Claim A that

the image of N ⊂ ∆p
Y/k by the isomorphism ϕ is the intersection of all ∆p

X/k-

conjugates of H ′
n−1. Thus, it follows from an argument similar to the above argu-

ment that ∆p
X/Xn−1

/ϕ(N) ⊂ ∆p
X/k/ϕ(N) is the unique maximal torsion subgroup

of ∆p
X/k/ϕ(N). In particular, the image of ∆p

Y/Yn−1
/N ⊂ ∆p

Y/k/N by the isomor-

phism ∆p
Y/k/N

∼→ ∆p
X/k/ϕ(N) determined by ϕ is ∆p

X/Xn−1
/ϕ(N) ⊂ ∆p

X/k/ϕ(N).

Thus, we conclude that ϕ(∆p
Y/Yn−1

) = ∆p
X/Xn−1

. This completes the proof of Claim

B.
It follows from Claim B that ϕ determines an isomorphism ∆p

Yn−1/k

∼→ ∆p
Xn−1/k

(write ϕ for this isomorphism). Write H for the image of H ⊂ ∆p
Y/k by the surjec-

tion ∆p
Y/k ↠ ∆p

Yn−1/k
. For each integer i such that 0 ≤ i < n, write, moreover,

Hi := H ∩∆p
Yn−1/Yi

, H
′
i := ϕ(H) ∩∆p

Xn−1/Xi
.

Then, since the inverse image of Hi ⊂ ∆p
Yn−1/k

by the surjection ∆p
Y/k ↠ ∆p

Yn−1/k

is Hi∆
p
Y/Yn−1

, for each integer i such that 0 ≤ i < n− 1, it holds that Hi/Hi+1
∼=

Hi/Hi+1. Similarly, for each integer i such that 0 ≤ i < n − 1, it holds that

H ′
i/H

′
i+1
∼= H

′
i/H

′
i+1. Thus, it follows from induction hypothesis that for each

integer i such that 0 ≤ i < n, ϕ(∆p
Yn−1/Yi

) = ∆p
Xn−1/Xi

. On the other hand,

for each integer i such that 0 ≤ i ≤ n − 1, the image of ∆p
Y/Yi

⊂ ∆p
Y/k by the

surjection ∆p
Y/k ↠ ∆p

Yn−1/k
is ∆p

Yn−1/Yi
. Thus, since ϕ(∆p

Yn−1/Yi
) = ∆p

Xn−1/Xi
, the

image of ϕ(∆p
Y/Yi

) ⊂ ∆p
X/k by the surjection ∆p

X/k ↠ ∆p
Xn−1/k

is ∆p
Xn−1/Xi

. In

particular, ϕ(∆p
Y/Yi

) is contained in the inverse image of ∆p
Xn−1/Xi

by the surjection

∆p
X/k ↠ ∆p

Xn−1/k
, which coincides with ∆p

X/Xi
. Now, by applying an argument

similar to the above argument to ϕ−1, we conclude that ϕ(∆p
Y/Yi

) = ∆p
X/Xi

. This

completes the proof of assertion (i).
Finally, we verify assertion (ii). It follows from Proposition 2.16(i) that, for each

integer i such that 0 ≤ i ≤ n, ψ induces an isomorphism ψi : Π
p
Yi/k

∼→ ΠpXi/k
over

Gk. By induction on i, to verify assertion (ii), it suffices to verify that the following
assertion holds:
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Claim C: For each integer i such that 0 ≤ i < n, if the isomorphism
ψi arises from an isomorphism fi : Yi

∼→ Xi over k, then ψi+1 arises

from an isomorphism Yi+1
∼→ Xi+1 over k.

Indeed, write η → Yi for the generic point of Yi, (Yi+1)η := Yi+1 ×Yi
η, and

(Xi+1)η := Xi+1 ×Xi η (where η → Xi is the composite η → Yi
fi→ Xi). Then it

follows from Proposition 2.16(ii) that

Πp(Yi+1)η/η

∼→ ΠpYi+1/Yi
×Πp

Yi/Yi

ΠpYi×Yi
η/η = ΠpYi+1/Yi

×ΠYi
Πη.

Moreover, it follows from Remark 2.24 (i) that ΠpYi+1/Yi

∼→ ΠpYi+1/k
×Πp

Yi/k
ΠYi

,

which implies that Πp(Yi+1)η/η

∼→ ΠpYi+1/k
×Πp

Yi/k
Πη. Similarly, it holds that Πp(Xi+1)η/η

∼→
ΠpXi+1/k

×Πp
Xi/k

Πη. Thus, ψi+1 determines an isomorphism Πp(Yi+1)η/η

∼→ Πp(Xi+1)η/η

over Πη. Now it follows from Theorem 3.4 that the isomorphism Πp(Yi+1)η/η

∼→
Πp(Xi+1)η/η

arises from an dominant morphism (Yi+1)η → (Xi+1)η over η, which is

actually an isomorphism (cf. Lemma 2.37(i)). Write ξ → (Yi+1)η for the generic
point of (Yi+1)η ⊂ Yi+1. Then it follows from the commutative diagram of profinite
groups

Πξ //

��

Πp(Yi+1)η/η

∼ //

��

Πp(Xi+1)η/η

��

Πpξ/k
// ΠpYi+1/k ψi+1

// ΠpXi+1/k
,

together with Lemma 2.34, that ψi+1 arises from a morphism Yi+1 → Xi+1 over
k. Moreover, by applying an argument similar to the above argument to ψ−1

i+1, we

conclude that ψ−1
i+1 arises from a morphism Xi+1 → Yi+1 over k. Then it follows

from Proposition 3.2(i) that the two morphisms Yi+1 → Xi+1 and Xi+1 → Yi+1

are inverse to each other. Thus, Yi+1
∼→ Xi+1 is an isomorphism. This completes

the proof of Claim C, hence also of assertion (ii). □

Theorem 4.4. Let p be a prime number, n a positive integer, k a sub-p-adic field,
and X,Y hyperbolic polycurves of dimension n over k satisfying condition (∗)p. For
each integer i such that 1 ≤ i ≤ n, write (gi, ri) for the type of the hyperbolic curve
Xi/Xi−1, and (g′i, r

′
i) for the type of the hyperbolic curve Yi/Yi−1. Suppose that,

for any integers i, j such that 0 ≤ i < j < n,

2gi+max{ri−1, 0} > 2g′j+max{r′j−1, 0}, 2g′i+max{r′i−1, 0} > 2gj+max{rj−1, 0}.

Then the natural map

Isomk(Y,X)→ IsomGk
(ΠpY/k,Π

p
X/k)/ Inn(∆

p
X/k)

is bijective, i.e., every isomorphism ΠpY/k
∼→ ΠpX/k over Gk arises from a uniquely

determined isomorphism Y → X over k.

Proof. (cf. [10] Theorem 4.3) The injectivity of the map in question holds from
Proposition 3.2(i). The surjectivity of the map in question follows from Lemma 4.3
(where we take “H” to be ∆p

Y/k), together with Proposition 2.16(v). □



58 KOICHIRO SAWADA

Proposition 4.5 ([10] Proposition 4.5). Let S, Y be integral varieties over k, Y →
S a dominant morphism over k, and X a hyperbolic polycurve over S. Then the
set Homdom

S (Y,X) of dominant morphisms from Y to X over S is finite.

Theorem 4.6. Let p be a prime number, k a sub-p-adic field, X,Y hyperbolic
polycurves over k. Suppose that at least one of X/k, Y/k satisfies condition (∗)p.
Then the set

IsomGk
(ΠpY/k,Π

p
X/k)/ Inn(∆

p
X/k)

is finite.

Proof. (cf. [10] Theorem 4.4) If IsomGk
(ΠpY/k,Π

p
X/k) = ∅, then Theorem 4.6 is im-

mediate. Thus, to verify Theorem 4.6, we may assume without loss of generality
that IsomGk

(ΠpY/k,Π
p
X/k) ̸= ∅. Then any element of IsomGk

(ΠpY/k,Π
p
X/k) deter-

mines a bijection between IsomGk
(ΠpY/k,Π

p
X/k)/ Inn(∆

p
X/k) and AutGk

(ΠpX/k)/ Inn(∆
p
X/k).

Thus, to verify Theorem 4.6, we may assume without loss of generality that X = Y ,
andX/k satisfies condition (∗)p. LetH ⊂ ∆p

X/k be an open subgroup of ∆p
X/k which

satisfies the condition appearing in the statement of Lemma 4.2. Then, by apply-
ing Lemma 4.1, where we take the data “(G,H,A)” to be (∆p

X/k,H,AutGk
(ΠpX/k))

(note that there exists a natural homomorphism AutGk
(ΠpX/k)→ Aut(∆p

X/k)), we

conclude that there exists a subgroup A ⊂ AutGk
(ΠpX/k) of AutGk

(ΠpX/k) of finite

index such that, for each ϕ ∈ A, ϕ preserves H ⊂ ∆p
X/k. Then it follows from

Lemma 4.3 that every element of A arises from an automorphism of X over k, i.e.,
the image of the composite

A ↪→ AutGk
(ΠpX/k) ↠ AutGk

(ΠpX/k)/ Inn(∆
p
X/k)

is contained in the image of the natural injection Autk(X) ↪→ AutGk
(ΠpX/k)/ Inn(∆

p
X/k)

(cf. Proposition 3.2 (i)). On the other hand, Autk(X), hence also the image of the
composite

A ↪→ AutGk
(ΠpX/k) ↠ AutGk

(ΠpX/k)/ Inn(∆
p
X/k)

is finite (cf. Proposition 4.5). Thus, it follows from our choice ofA that AutGk
(ΠpX/k)/ Inn(∆

p
X/k)

is finite. This completes the proof of Theorem 4.6. □

Corollary 4.7. Let p be a prime number, kX , kY finite extensions of Q, and
X,Y hyperbolic polycurves over kX , kY , respectively. Suppose that at least one
of X/kX , Y/kY satisfies condition (∗)p. Then the set

Isom(ΠpY/kY ,Π
p
X/kX

)/ Inn(ΠpX/kX )

is finite.

Proof. (cf. [10] Corollary 4.6) It follows from an argument similar to the argument
used at the beginning of the proof of Theorem 4.6, that to verify Corollary 4.7, we
may assume without loss of generality that X = Y , and X satisfies condition (∗)p.
Then, for each ϕ ∈ Aut(ΠpX/kX ), the image of the composite ∆p

X/kX
↪→ ΠpX/kX

ϕ→
ΠpX/kX ↠ GkX is a topologically finitely generated closed normal subgroup of GkX ,

hence trivial (cf. Proposition 3.24(i)). Thus, since ΠpX/kX/∆
p
X/kX

∼→ GkX , there
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exists a unique homomorphism GkX → GkX such that

ΠpX/kX
ϕ //

��

ΠpX/kX

��

GkX
// GkX

is commutative. Moreover, by applying an argument similar to the above argument
to ϕ−1, we conclude that the homomorphism GkX → GkX is an isomorphism. Thus,
we have a natural exact sequence

1→ AutGk
X
(ΠpX/kX )→ Aut(ΠpX/kX )→ Aut(GkX ).

Write N ⊂ Out(ΠpX/kX ) for the image of AutGk
X
(ΠpX/kX ) ⊂ Aut(ΠpX/kX ) by

Aut(ΠpX/kX ) ↠ Out(ΠpX/kX ). Then since ΠpX/kX → GkX is surjective, the sequence

1→ N → Out(ΠpX/kX )→ Out(GkX )

induced by the above exact sequence is exact. Thus, to verify Corollary 4.7, it suf-
fices to verify thatN and Out(GkX ) are finite. Now since AutGk

X
(ΠpX/kX )/ Inn(∆p

X/kX
)

is finite (cf. Theorem 4.6), it follows that N is finite. Finally, we verify the finiteness
of Out(GkX ). It follows from Proposition 3.24(ii) that the natural map

Isom(kX/kX , kX/kX) ∋ φ 7→ (GkX ∋ σ 7→ φσφ−1 ∈ GkX ) ∈ Aut(GkX )

is bijective. Let f, g ∈ Aut(GkX ). Then, if we write φf , φg ∈ Isom(kX/kX , kX/kX)

for the element of Isom(kX/kX , kX/kX) corresponding to f, g, respectively, then
one verifies easily that f and g are GkX -conjugate if and only if φf |kX = φg|kX .
Thus, it holds that Out(GkX ) ∼= Aut(kX), which implies that Out(GkX ) is finite.
This completes the proof of Corollary 4.7. □
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