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PRO-p GROTHENDIECK CONJECTURE FOR HYPERBOLIC
POLYCURVES

KOICHIRO SAWADA

ABSTRACT. In the present paper, we study the geometrically pro-p fundamen-
tal groups of hyperbolic polycurves, i.e., successive extensions of families of
hyperbolic curves. Among others, we show that the isomorphism class of a hy-
perbolic polycurve of dimension < 4 defined over a sub-p-adic field satisfying a
certain group-theoretic condition completely determined by its geometrically
pro-p fundamental group.

Introduction

Let k be a field of characteristic zero, k an algebraic closure of k, G}, := Gal(k/k)
the absolute Galois group of k, and X a variety over k (in this paper, a variety
over k is a scheme that is of finite type, separated, and geometrically connected
over k. cf. Definition 1.4). Write IIx for the étale fundamental group of X. Then
the structure morphism X — Speck induces a natural surjection IIx — Gj. Write
Axyy, for the kernel of the surjection IIy — Gy. A. Grothendieck proposed the
following philosophy (cf. [7],[8]):

For certain types of k, if X is “an anabelian variety” over k, then
the isomorphism class of X is completely determined by the funda-
mental group IIx as a profinite group equipped with the surjection
IIx — G.

We often call this philosophy “Grothendieck conjecture”. Although we do not
have any general definition of the notion of “an abelian variety”, successive exten-
sions of families of hyperbolic curves (hereinafter called “hyperbolic polycurves”
cf. Definition 2.1(ii)) have been regarded as typical examples of anabelian vari-
eties. The Grothendieck conjecture for hyperbolic polycurves of dimension < 2 was
proved in [11] (cf. [11] Theorems 16.5, a2.4), and thereafter, in [10], it is extended
to the case of hyperbolic polycurves of dimension < 4 (cf. [10] Corollary 3.18).

On the other hand, we can consider the pro-p version of the Grothendieck con-
jecture. Let p be a prime number and X — Y a morphism between connected
noetherian schemes. Write Ay,y for the kernel of the (outer) homomorphism
IIx — Ily induced by the morphism X — Y, A];( Iy for the maximal pro-p quo-
tient of Ax/y, and H];(/Y = Ox/ker(Ax/y — A’)’(/Y). Then let us consider the
following:

For certain types of k, if X is an “anabelian variety” over k, then is
the isomorphism class of X completely determined by the geomet-
rically pro-p fundamental group H’)’( g As 2 profinite group equipped

with the surjection Hl)j(/k — G?
In [11], a very strong form of the pro-p Grothendieck conjecture for hyperbolic

curves has been obtained (cf. [11] Theorem 16.5). In the present paper, we consider
1
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the pro-p Grothendieck conjecture for hyperbolic polycurves. However, we cannot
apply an argument similar to [10] without any assumptions. Indeed, let

X:Xn—>Xn_1—>---—>X2—>X1—>Speck=X0

be a sequence of parametrizing morphisms of a hyperbolic polycurve X over k (cf.
Definition 2.1(ii)). Then for any triplet of integers (4, j,1) such that 0 < i < j <
I < n, we have an exact sequence of profinite groups

1— AXL/XJ' — AX:/XI — AX;/Xz — 1

(cf. Remark 2.8), which plays important roles in [10]. Nevertheless, since the op-
eration of taking the maximal pro-p quotient of a profinite group is not exact, the
sequence
1— qu/xj — N;Q/qu — A];(j/x,- —1

is not exact in general. For this reason, we introduce a condition that the above
sequence is exact, which we call (x), (cf. Definition 2.10), and we consider the pro-p
Grothendieck conjecture for hyperbolic polycurves satisfying condition (x),. The
following is one of the main results of the present paper.

Theorem A (cf. Theorems 3.4, 3.17, Corollaries 3.19, 3.21). Let p be a prime
number, n a positive integer, k a sub-p-adic field (cf. Definition3.1), X a hyperbolic
polycurve of dimension n over k satisfying condition (x),, Y a normal variety over
k, and ¢ : H’;//k — H’;(/k an open homomorphism. Suppose that one of the following

conditions (1), (2),(3), (4) is satisfied:

(1) n=1.
(2) The following conditions are satisfied:
(24) n=2.

(2-ii) The kernel of ¢ is topologically finitely generated.
(3) The following conditions are satisfied:
(3-1) n=3.
(3-ii) The kernel of ¢ is finite.
(3-iii) Y s of p-LFG-type (cf. Definition 2.25)
(3-iv) 3 < dim(Y).
(4) The following conditions are satisfied:
(44) n = 4.
(4-i1) ¢ 1s injective.
(4-iii) Y is a hyperbolic polycurve over k satisfying condition (x)p.
(4-iv) 4 < dim(Y).
Then ¢ arises from a uniquely determined dominant morphisms Y — X over k.
The following result follows from Theorem A.

Theorem B (cf. Corollary 3.22). Let p be a prime number, k a sub-p-adic field,
and X, Y hyperbolic polycurves over k satisfying condition (*),. Suppose that either
X orY is of dimension < 4. Then the natural map

Isomy (Y, X) — Isomg, (Hf,/k, Hﬁ(/k)/ Inn(Aﬁ(/k)
1s bijective.
This implies that the isomorphism class of a hyperbolic polycurve of dimension

< 4 over a sub-p-adic field satistying condition (), is completely determined by
the geometrically pro-p fundamental group. Condition (%), is (at least, in order
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to perform the proofs in the present paper,) essential. Most part of the proof of
Theorem A is analogous to the proof of the Grothendieck conjecture for hyperbolic
polycurves in [10], together with Theorem A in the case where condition (1) is
satisfied, which was essentially proved in [11] (cf. [11] Theorem 16.5). However,
the difference between the pro-p version and the original (profinite) version is the
necessity of considering base schemes. In other words, H’)’( Iy depends on the base
scheme Y, although IIx does not depend on Y. It seems (to the author) that
choosing a suitable base scheme to complete the proof is very difficult. In the present
paper, to avoid this problem, first we assume a certain condition stronger than (),
and use the maximal pro-p quotient IT% of ITx (cf. Theorem 3.16, Corollaries 3.18,
3.20), which is independent of the base scheme. Then, by replacing the base field
k by a suitable Galois extension and then descending, we complete the proof of
Theorem A.

On the other hand, if X and Y are hyperbolic polycurves over a field k, it
follows that Isomy (Y, X) is finite (cf. Proposition 4.5). Thus, if the natural map
discussed in Theorem B is bijective without the assumption that “either X or Y is
of dimension < 4” holds, then Isomg, (H’;/k, Hg(/k)/ Inn(Ag(/k) is finite. In general,
it is not known that the map discussed in Theorem B is bijective. However, we can
prove the finiteness of Isomg, (Hg/w Hg(/k)/lnn(Ag(/k).

Theorem C (cf. Theorem 4.6). Let p be a prime number, k a sub-p-adic field,
X,Y hyperbolic polycurves over k. Suppose that at least one of X/k,Y/k satisfies
condition (x),. Then the set

Isomg, (H’;,/,C7 Hé’(/k)/ Inn(A’)’(/k)
is finite.

Remark . A morphism (resp. k-morphism) ¥ — X between connected noetherian
schemes (resp. k-schemes) induces an outer homomorphism Iy — IIx (resp. outer
homomorphism IIy — ITx over Gy), i.e., a Il x-conjugacy class of homomorphisms
Iy — Ix (resp. Ax/,-conjugacy class of homomorphisms Iy — IIx over Gy).
However, we sometimes choose one homomorphism belonging to the IIx- (resp.
Ax/i-) conjugacy class of homomorphisms Iy — IIx induced by Y — X, and we
call it the homomorphism induced by ¥ — X.

1. ETALE FUNDAMENTAL GROUPS OF VARIETIES

In the present §1, we study étale fundamental groups of algebraic varieties. Let
k be a field of characteristic zero, k an algebraic closure of k, G, := Gal(k/k), and
Primes the set of all prime numbers.

Definition 1.1. Let X be a connected noetherian scheme.
(i) We shall write
IIx
for the étale fundamental group of X (for some choice of basepoint).

(ii) Let Y be a connected noetherian scheme and f : X — Y a morphism.
Then we shall write

Af = Ax/y CcIIx
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for the kernel of the outer homomorphism IIxy — IIy induced by f. If
Y = Spec A, then by abuse of notation we sometimes write

Ax/a

instead of A x/y. (Similar notations will be used for II%, /5 AP N v/s

1/s
which are defined below.)

Lemma 1.2 ([10] Lemma 1.2). Let X be a connected noetherian normal scheme.
Write n — X for the generic point of X. Then the outer homomorphism 1L, — Ilx
induced by the morphism n — X is surjective.

Lemma 1.3 ([10] Lemma 1.3). Let X,Y be connected noetherian schemes and
f: X =Y a morphism. Suppose that'Y is normal, and that f is dominant and of
finite type. Then the outer homomorphism Ilx — Ily induced by f is open.

Definition 1.4. Let X be a scheme over k. Then we shall say that X is a variety
over k if X is of finite type, separated, and geometrically connected over k.

Lemma 1.5 ([10] Lemma 1.5). Let X be a variety over k. Then the sequence of
schemes X Xy k x oo Speck determines an exact sequence of profinite groups

1%HXXkE%HX%Gk%1.

In particular, we obtain an isomorphism HXxkE = Ax/k (which is well-defined up
to I x -conjugation).

Lemma 1.6 ([10] Lemma 1.6). Let X,Y be a connected noetherian schemes and
f: X =Y a morphism. Suppose that f is of finite type, separated, dominant and
generically geometrically connected. Suppose, moreover, that Y is normal. Then
the outer homomorphism Illx — Ily induced by f is surjective.

Lemma 1.7 ([10] Lemma 1.7). Let X be a variety over k. Suppose that Gy, is
topologically finitely generated (e.g., the case where k = k). Then the profinite
group Il x is topologically finitely generated.

Definition 1.8. Let X,Y be integral noetherian schemes and f : X — Y a domi-
nant morphism of finite type. Then we shall write

Nor(f) =Nor(X/Y) =Y

for the normalization of Y in the finite extension of the function field of Y obtained
by forming the algebraic closure of the function field of Y in the function field
of X. Note that Nor(f) = Nor(X/Y) is integral and normal, and the morphism
Nor(f) = Nor(X/Y) — Y is dominant and affine.

Lemma 1.9 ([10] Lemma 1.9). Let X,Y be integral noetherian schemes and f :
X = Y a dominant morphism of finite type. Suppose that X is normal. Then
f factors through the natural morphism Nor(f) — Y, and the resulting morphism
X — Nor(f) is dominant and generically geometrically irreducible. If, moreover, X
and Y are varieties over k and f is a morphism over k, then the natural morphism
Nor(f) = Y is finite and surjective, and Nor(f) is a normal variety over k.

Lemma 1.10 ([10] Proposition 1.10(i)). Let S, X, and Y be connected noetherian
normal schemes, Y — X — S morphisms of schemes, and's — S a geometric point
of S. Suppose that the following conditions are satisfied:

(p)
AX)ys
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(1) Y — X is dominant and induces an outer surjection Iy —» Ix.

(2) X — S is surjective, of finite type, separated, and generically geometrically
integral.

(3) Y — S is of finite type, separated, faithfully flat, geometrically normal, and
generically geometrically connected.

(4) For any connected finite étale covering X' — X and any geometric point
5" — Nor(X'/S) of Nor(X'/S) that lifts the geometric point 5 of S, the
geometric fiber X' Xnor(x7/s) 5 of X' — Nor(X'/S) at 3 — Nor(X'/S)
is connected. (Note that it follows from Lemma 1.9 that condition (4) is
satisfied if the image of the geometric point s — S is the generic point of
S).

Then the sequence of connected schemes X Xg's 2 X 5 S determines an ezact
sequence of profinite groups

HXng — Iy — g — 1.

Lemma 1.11 ([10] Corollary 1.11). Let S, X be connected noetherian normal
schemes and X — S a morphism of schemes that is surjective, of finite type, sep-
arated, and generically geometrically irreducible. Suppose that the function field of
S is of characteristic zero. Suppose, moreover, that one of the following conditions
is satisfied:
(1) There exists an open subscheme U C X of X such that the composite
U— X — S is surjective and smooth.
(2) There exist a connected normal scheme Y and a morphism Y — X that is
proper, surjective, and that induces an isomorphism between the respective
function fields, such that the composite Y — X — S is smooth.

Then Ax s is topologically finitely generated.

Definition 1.12. Let G be a profinite group, 3 a subset of Primes. Then we shall
write

GZ
for the maximal pro-X quotient of G. Let p be a prime number. Then we shall
write simply

GP
for the pro-p group G{P!.

Remark 1.13. The right exactness of G — G~ is well-known. Moreover, one verifies
easily that if U C G* is an open subgroup of G* and V the inverse image of U C G*
by the natural surjection G — G, then the natural isomorphism V> 5 U exists.

Definition 1.14. Let p be a prime number, S, X connected noetherian normal
schemes, and X — S a morphism of schemes. Then we shall write

/s

for the quotient of ITx by the kernel of the natural surjection A x/g — A% /s (which

is a characteristic subgroup of Ax/g).

Remark 1.15. We shall use not only HZ)’( /s but also the maximal pro-p quotient of
IIx, which we shall write II% (as Definition 1.12 above).
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Remark 1.16. It is well-known that an open subgroup of Ilx corresponds to a
connected finite étale covering of X. Let U be an open subgroup of H’)’( /s (resp.

I1%,). Then we can take the connected finite étale covering of X corresponding to
the inverse image of U by the natural surjection I[Ix —» H’)’( /s (resp. lIx — II%),
which we shall call simply the covering corresponding to U.

Definition 1.17. Let p be a prime number, S a connected noetherian scheme,
X,Y connected noetherian schemes over S, and f : X — Y a morphism over S.
Then we shall write

AP

ps = A

P AP ker(IT5, — IIY,).

= ker(Hg(/S — 1 ), Agc Xy

p .
X—Y/S - Y/S

Note that Aé)(—ﬂ’/s = ker(A';(/S — AZ;,/S), and ker(Ax/g — Ay — AI;,/S) C
Ax/g is the inverse image of Ai_w/s - A];(/s by the natural surjection Ay, g —

A% .

Lemma 1.18. Let p be a prime number, S, X, Y connected noetherian schemes and
X =Y — S morphisms of schemes. Suppose that the outer homomorphism Ilx —

IIy induced by X — Y is surjective. Then Al)’(ﬁy/s is the image of Ax/y C llx

by the natural surjection Illx —» H’;(/S.
Proof. Since IIx — Ily is surjective, the sequence of profinite groups
1— Ax/y — AX/S — Ay/s —1

is exact. Thus, the sequence of pro-p groups

N;(/y — A’)’{/S — Af,/s —1
is exact. This induces a surjection Ag(/y —» ker(Ai/S — Af,/s) = Aﬁ(ﬁy/s, hence
Axy — A?{—)Y/S is surjective. This completes the proof of Lemma 1.18. (]

Definition 1.19. Let G be a profinite group. Then we shall say that G is slim if
every open subgroup of G is center-free.

Lemma 1.20. Let G be a profinite group and 111,11y profinite groups over G. For
i =1,2, write A; = ker(Il; — G). Suppose that Ay is slim. Write Hom® ™" (114, I15)
for the set of open homomorphisms from Iy to Ily over G. Then the natural map

Hom(&pe“(ﬂl, Hz) — HOIH(A]_, Ag)

18 injective.

Proof. Let ¢,¢ € Hom@Z"(II;,II5) be elements of Hom{} " (111, II) that map to
the same element 8 € Hom(A1,As) by the above map. Note that 6 : Ay — As

is an open homomorphism. Let a € II; and b € A;. Then we have p(aba™!) =
O(aba=1) = ¢(aba=1) and (b) = O(b) = 1 (b), hence 1»(a) ~p(a)d(b) = O(b)(a) " o(a).
On the other hand, v (a)~t¢(a) € ker(Ils - G) = Ay. Thus, since b € A; is ar-
bitrary, ¥ (a)"t¢(a) € Za,(Im0). Now since Ay is slim and Im§ C A, is an open

subgroup of Ag, one verifies easily that Za,(Im ) = {1}, which implies that ¢ = 1.
This completes the proof of Lemma 1.20. (]
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2. PRO-p FUNDAMENTAL GROUPS OF HYPERBOLIC POLYCURVES

In the present §2, we study pro-p étale fundamental groups of hyperbolic poly-
curves. Let k be a field of characteristic zero, k an algebraic closure of k, G}, :=
Gal(k/k), and Primes the set of all prime numbers.

Definition 2.1 (cf. [10] Definition 2.1). Let S be a scheme and X a scheme over
S.

(i) We shall say that X is a hyperbolic curve (of type(g,r)) over S if there exist
e a pair of nonnegative integers (g, r);
e a scheme X°P' which is smooth, proper, geometrically connected, and
of relative dimension one over S;
e a (possibly empty) closed subscheme D C X P of X°P' which is finite
and étale over S
such that
e 29—2+1r>0;
e any geometric fiber of X°P* — S is (a necessarily smooth proper curve)
of genus g;
e the finite étale covering D — X°P* — S is of degree 7;
e X is isomorphic to X°P*\ D over S.
We shall refer to the above integer g as the genus of X over S.
(ii) We shall say that X is a hyperbolic polycurve (of relative dimension n)
over S if there exist a positive integer n and a (not necessarily unique)
factorization of the structure morphism X — S

X=X,- X, 1> =2X—->X;->5=X,

such that, for each i = 1,...,n, X; — X;_; is a hyperbolic curve. We
shall refer to the above morphism X — X,,_1 as a parametrizing morphism
for X and refer to the above factorization of X — S as a sequence of
parametrizing morphisms.

Remark 2.2. In the notation of Definition 2.1(ii), suppose that S is a normal (resp.
smooth) variety of dimension m over k. Then any hyperbolic polycurve of relative
dimension n over S is a normal (resp. smooth) variety of dimension n 4+ m over k.

Remark 2.3. A sequence of parametrizing morphisms of X — S
X=X,—-Xp.1—= 22X =2>X1 =2 5=X,

is not necessarily unique, but, when we call X/S a hyperbolic polycurve, we always
fix a sequence of parametrizing morphisms of X — S unless otherwise specified.

Definition 2.4 (cf. [10] Definition 2.2). In the notation of Definition 2.1(i), sup-
pose that S is normal. Then the pair “(X°P', D)” is uniquely determined up to
canonical isomorphism over S (cf. [12] §0). We shall refer to X°P* as the smooth
compactification of X over S and refer to D as the divisor of cusps of X over S.

Proposition 2.5 ([10] Proposition 2.3). Let n be a positive integer, S a connected
noetherian separated normal scheme over k, X a hyperbolic polycurve of relative
dimension n over S, and Y — X a connected finite étale covering of X. For each
i=0,...,n, write Y; :== Nor(Y/X;). Then the following hold:

(i) For each integer i such that 1 < i < n, Y; is a hyperbolic curve over

Y;_1. Moreover, if we write YiCpt for the smooth compactification of the
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hyperbolic curve Y; over Yi_1, then the composite Y™ — Y1 — X; 4
s proper and smooth. Furthermore, if we write YiCpt — Zi1 — X;_1 for
the Stein factorization of the proper morphism Yfpt — X,;_1, then Z;_1 is
isomorphic to Y;_1 over X;_1.

(ii) For each integer i such that 0 < i < n, the natural morphism Y; — X, is a
connected finite étale covering.

In particular, Y is a hyperbolic polycurve of relative dimension n over Nor(Y/S),
and the factorization
Y=Y,—-Y,1— =Y —=>Nor(Y/S) =Y,

s a sequence of parametrizing morphisms.

Remark 2.6. Hereafter, if X/S is a hyperbolic polycurve as in Proposition 2.5 and
Y — X is a connected finite étale covering of X, we regard Y as the hyperbolic
polycurve over Nor(Y/S) with the natural sequence of parametrizing morphisms as
in Proposition 2.5 unless otherwise specified.

Proposition 2.7 ([10] Proposition 2.4 (i),(ii)). Let (m,n) be a pair of integers such
that 0 < m < n, S a connected noetherian separated normal scheme over k, and X
a hyperbolic polycurve of relative dimension n over S. Then the following hold:

(i) For any geometric point Ty, — X, of X, the sequence of connected

—  pbr . .
schemes X xx, Tm — X — X,,, determines an exact sequence of profinite
groups

1= xxy, 7z, = Ux = x,, — 1.

m

In particular, we obtain an isomorphism x . 7. — Ax/x, (which is
well-defined up to I x -conjugation).
(ii) Let T be a connected noetherian separated normal scheme over S and T —
X, a morphism over S. Then the natural morphisms X xx , T M X and
X xx, T 22T determine an outer isomorphism
Ux sy, 7 — x X1y,
and an isomorphism
Axy 17 = Dx/x,0
(which is well-defined up to Ilx -conjugation).

Remark 2.8. Note that for any triplet of integers (4, j,{) such that 0 < i < j <1 < n,
by considering the commutative diagram of profinite groups

AXJ/X’i

~

1 — Axyx, — lx, —— Illx;, —— 1

| |

I — Axyx, — Iy, —— Iy, —— 1
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(cf. Proposition 2.7 (1)), we obtain the natural exact sequence of profinite groups
1— AX;/X]' — AXl/Xz — ij/xl — 1.

Lemma 2.9. Letn be a positive integer, S a connected noetherian separated normal
scheme over k, and X a hyperbolic polycurve of relative dimension n over S. Then
the following hold:

(i) For any triplet of integers (i,7,1) such that 0 < i < j <l < n, the outer
homomorphism Ax,/x, — Ax,/x, induced by the outer surjection Ilx, —
Ix; (¢f. Proposition 2.7 (1)) is surjective, and Ax, /x, is the inverse image
of Ax,/x, Cllx, by the outer surjection llx, — Ilx,.

(ii) LetY — X be a connected finite étale covering of X. Let us fix a basepoint
of Y. Then, for any pair of integers (i,j) such that 0 <i < j <mn, Iy, (cf.
Proposition 2.5) naturally coincides with Im(Ily, — Ilx, — Ilx,), and this
determines an equality Ay, /y, = Ax, /x, N1ly;.

(iii) In the notation of (ii), suppose, moreover, given a pair of integers (i, ) such
that 0 <i < j < n and Ay, )y, = Ax,/x,. Then for any pair of integers
(I,m) such thati <1 <m < j, we obtain an equality Ay, vy, = Ax, /x,-

Proof. First, we verify assertion (i). It follows immediately that Ay, x, is the
inverse image of AXJ./XI. C Iy, by the outer surjection Ily, — Ix,, and it follows
from the surjectivity of Ilx, — Ilx, that the outer homomorphism Ax,  x, —
Ax,/x, is surjective. This completes the proof of assertion (i). Next, we verify
assertion (ii). The commutative diagram of connected schemes

determines a commutative diagram of profinite groups

My, — Ix,

S

Iy, —— lx,,

where the vertical arrows are surjective and the horizontal arrows are injective.
Thus, it holds that Iy, = Im(Ily, < Ilx, — Ilx,). Moreover, it follows immedi-
ately that Ay, /)y, C Ax,/x, Nlly;, and it follows from the injectivity of Ily, — Ilx,
that Ay )y, D Ax,/x, NIy,. This completes the proof of assertion (ii). Finally,
we verify assertion (iii). To verify assertion (iii), it suffices to verify that for each
integer [ such that ¢ <[ < j, equalities

Ay, /v, = Ax,/x Dviyy, = Bxy/x,
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hold. Now it holds from (i) and (ii) that

Ay,/vi = Ax,yx, Ny,
= Ax,/x NAXx/x;
=Ax,/x;»

Ay, y, = Im(Ay, jy, = Tly, - TIy,)
=Im(Ay, /vy, = Iy, — Ily, = Ilx,)
—Im(Ay, /x, = Iy, - Tly,)
=Ax,/x;-

This completes the proof of assertion (iii). d

Definition 2.10. Let p be a prime number, n a positive integer, S a connected
noetherian separated normal scheme over k, and X a hyperbolic polycurve of rela-
tive dimension n over S. We shall say that X/S satisfies condition (x), if for any
triplet of integers (4, 7,1) such that 0 < i < j < I < n, the sequence of profinite
groups

1— N)jq/xj — AI)’Q/XZ_ — AI))(j/x,i
is exact. We shall say that X /S satisfies condition (xx), if for any pair of integers
(i,7) such that 0 < i < j < n, the sequence of profinite groups

1_>A§(j/xi

—1

=I5 =105, =1
is exact.

Remark 2.11. The validity of conditions (), and (xx), depends on the sequence of
parametrizing morphisms (at least by definition). So, precisely, we should say that
X=X,—-Xp 1= =2Xo=>X1 =2 5=X,
satisfies condition (), (or (sx),), but we shall say as in Definition 2.10 for simplicity.

Moreover, if the base scheme S is clear from the context, then we sometimes say
more simply that X satisfies condition (x), (or (sx),).

Example 2.12. If X is a hyperbolic curve over S, i.e., n = 1, then X/S satisfies
condition (x),.

Example 2.13. It is well-known that if X/S is a configuration space of a hyperbolic
curve over S (cf. [14] Definition 2.1), then X/S satisfies condition (x), (cf. [14]
Proposition 2.2).

Remark 2.14. If X /S satisfies condition (x),, then Ay g admits various group-
theoretic properties (cf. e.g., Proposition 2.16(iii)). However, it is unknown whether
the validity of condition (%), for X/ only depends on the profinite group Ax,g or
not.

Lemma 2.15. In the notation of Definition 2.10, X/S satisfies condition (xx), if
and only if X/S satisfies condition (x),, and AI;(/S — 1% is injective.
Proof. Note that since the sequences of profinite groups

L= Axyx; = Axyyx, 7 Bx;yx, =1, 1= Axx, =y, = 1y, — 1

are exact, the two sequences in Definition 2.10 are always right exact. If X/S
satisfies condition (#x),, for any triplet of integers (¢, 7,{) such that 0 < ¢ < j <
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: P P P P P

I < n, the composite AXl/Xj — AX[/Xi — II,, hence also AXZ/XJ — AX[/Xi’
is injective. Thus, X/S satisfies condition (x),. The injectivity of A’)’(/S — II% is
trivial. Conversely, suppose that X/S satisfies condition (x),, and that A% /s
IT% is injective. Then for each integer ¢ such that 0 < i < n, A% /x, % is
injective. Thus, for any pair of integers (i, 7) such that 0 <1i < j < n, we have the
commutative diagram of profinite groups

I — Alyx, = Ayyx, — Axx, — 1

.

1 — A 4>H§(

P P
X/X; My, —— 1,

where the horizontal sequences are exact and A% Ix: IT% is injective. Then
AI)’(J_ /x, HS’Q is injective. Therefore, we conclude that X/S satisfies condition
(#%)p. This completes the proof of Lemma 2.15. O

Proposition 2.16. Let p be a prime number, (m,n) a pair of integers such that
0 <m < mn, S a connected noetherian separated normal scheme over k, and X a
hyperbolic polycurve of relative dimension n over S. Then the following hold:

(i) Suppose that X/S satisfies condition (x),. Then for any geometric point

_ _ pr
Tm — Xm of X, the sequence of connected schemes X X x, T, = X -
X, determines an exact sequence of profinite groups

1 =118

P 4
Xxpam 7 Hxys 7 Uy o= 1

In particular, we obtain an isomorphism Hg(meim = ker(Hg(/S — H};(m/s)

(which is well-defined up to Hg'(/s—conjugation),

(ii) Suppose that X/S satisfies condition (), (resp. (xx),). Let T be a con-
nected noetherian separated mnormal scheme over S. Then the hyperbolic
polycurve X xg T/T satisfies condition (%), (resp. (xx),). Moreover, the
natural morphisms X xgT "X and X xsgT — X,, xgT determine an
outer isomorphism

P ~ TP P P ~ TP P
Wy oryr = Wy X s Wy o/ (resp. M, .o — Xy, I «or)
and an isomorphism

p ~ p
AN oT/XmxsT — Bx/x,,

(which is well-defined up to Hf,’(/xm (resp. 1% )-conjugation).

(iii) Suppose that X/S satisfies condition (x),. Then Ai/xm is nontrivial, topo-
logically finitely generated, slim and torsion-free. In particular, A% I Xom 18
infinite.

(iv) Agme/Xm is elastic (cf. [13] Definition 1.1(ii)), i.e., the following holds:
Let N C Agfmﬂ/Xm be a topologically finitely generated closed subgroup

of A% . /x, that is normal in open subgroup of A% . . Then N is
P

nontrivial if and only if N is open in A% X
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(v) Suppose that the hyperbolic curve X,,+1 over X, is of type (g,7). Then the
abelianization of AI)’( /X is a free Zp-module of rank 2g+max{r—1,0};

Ag(mﬂ/xm is a free pro-p group if and only if r # 0.
p

(vi) For any positive integer N, there exists an open subgroup H C AXm+1/Xm
of AI;( X such that the abelianization of H is a free Z,-module of rank
>N

Proof. (cf. [10] Proposition 2.4) First, we verify assertion (i). Let us consider the
commutative diagram of profinite groups

) 1
| |
Ag{/xm ker(HI;(/S — Hﬁgm/s)
1 —— Ay ——— Iys s !
1 —— AL s — Ik s s !
) 1

Then, since the two horizontal sequences and the two vertical sequences of the above
diagram are exact (cf. Proposition 2.7(i)), it holds that A%\ == ker(Il  —

%, /s
verify assertion (ii). Suppose that X /S satisfies condition (*),. Let t — X xg T
be a geometric point of X xg 7. Then for any triplet of integers (4, j,{) such that

1 <i<j<l<mn,we obtain from Proposition 2.7(ii) that

). Thus, we verify from Proposition 2.7(i) that assertion (i) holds. Next, we

Axxs/XixsT ZWx sy x x e omt = Mg xox, 1 = AXG /x50

In particular, since X/S satisfies condition (x),, X xg T /T also satisfies condition
(*)p. On the other hand, we have the commutative diagram of profinite groups

1 — A — II — — s 1

p P HP
XXST/X"LXsT XXsT/T anXsT/T

i |

TP

Xy —— 1

1 —— Af g(/s
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where the horizontal sequences are exact (cf. assertion (i)). Thus, we obtain an
outer isomorphism

P ~ P , p
Wy s oryr = Hy /s XM s Wy «er/T

If X/S satisfies condition (#x),, then it follows from the commutative diagram of
profinite groups
— > TI®

AP
X_szT/XiXST X_7‘><5T

|

P P
A)(]‘ /X,, HXJ' )

together with the injectivity of AL o < TI% , that AL . = T | 7
is injective. Thus, it follows from Lemma 2.15 that X xg¢ T/T satisfies condition
(#%)p. On the other hand, we have the commutative diagram of profinite groups

R p R 14 N D N

1 A){XsT/)C,,L><sT HXXsT XmXxsT 1
p p P

1 AYx,, Iy Uy, —— 1L

where the horizontal sequences are exact. Thus, we obtain an outer isomorphism
P ~ TP P
Wy or = X Iy wor

This completes the proof of assertion (ii). Next, we verify assertion (iii). Let us
observe that it follows from assertion (i) that, to verify assertion (iii), we may
assume without loss of generality that m = n—1. On the other hand, if m = n—1,
i.e.,, X is a hyperbolic curve over X,,, assertion (iii) is well-known (cf. e.g., [16]
Proposition 1.1,1.6, [14] Proposition 1.4). This completes the proof of assertion
(iil). Assertion (iv) follows from [14] Proposition 1.5. Assertion (v) is well-known
(cf. e.g., [16] Corollary 1.2). Finally, we verify assertion (vi). Let T — X,, be a
geometric point of X,,. Since Ay, . /x, = Hg{m,HmeE is an infinite profinite
group, there exists an open subgroup H C Ay, ., /x, of Ax, ., /x, such that
d:= [H’)’(m+1 wx, 5 Hl = N. Then, if X, 1 /Xy, is of type (g,r) and H corresponds
to a hyperbolic curve of type (¢’,r'), it follows from Hurwitz’s formula (cf. e.g., [9]
Chapter IV, Corollary 2.4) that 29’ — 2 + ' = d(2g — 2 + r). Thus, it holds that
rank;, H* = 2¢’ + max{r’ — 1,0} > d(2g + 7 —2) > d > N. This completes the
proof of assertion (vi). O

Lemma 2.17.

(i) Let G be a profinite group, H C G a closed subgroup of G, and V C H an
open subgroup of H. Then there exists an open subgroup U C G of G such
that V.=HnNU.

(ii) Let G be a profinite group, H C G a closed subgroup of G, N C G a
normal closed subgroup of G, and V' C H an open subgroup of H such that
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V O HN N. Then there exists a normal open subgroup U C G of G such
that U DN andUNH CV.

Proof. Note that if G is a profinite group and H is a closed subgroup (resp. normal
closed subgroup) of G, then H is the intersection of all open subgroups (resp.
normal open subgroups) of G containing H (cf. [15] Proposition 2.1.4). First, we
verify assertion (i). We have V = (,, W = (), (W N H), where W runs over all
open subgroups of G containing V. Thus, since (W N H) \ V is a closed subset of
the compact set H \ V, there are open subgroups Wi, ..., W, of G containing V'
such that HN(]_, W; C V. Write U := (), W,. Then U is an open subgroup of
G. Moreover, since W; D V| we obtain H N U = V. This completes the proof of
assertion (i). Similarly, assertion (ii) follows from the fact that N = (1, W, where
W runs over all normal open subgroups of G containing N. ([l

Lemma 2.18 ([1] Proposition 3). Let ¥ C Primes be a set of prime numbers, G a
profinite group, and N C G a normal closed subgroup of G. If the composite G —
Aut(N) — Aut(N®) (where G — Aut(N) is the map defined by g — (h +— ghg™!)
and Aut(N) — Aut(N?®) is the natural map) factors through G=, then the kernel
of the map N* — G* is contained in the center of N*. In particular, if N> is
center-free, then the map N* — G* is injective. If for any positive integer n there
are only finitely many open subgroups of index n in N* (e.g., the case where N*
is topologically finitely generated), then the map G — Aut(N¥) factors through G*
if and only if the image of G in the profinite group Aut(N*) is a pro-X group.

Lemma 2.19 ([15] Lemma 4.5.5). Let p be a prime number and G a topologically
finitely generated pro-p group. Then Aut(G) has an open pro-p subgroup.

Proposition 2.20. Let X C PBrimes be a finite set of prime numbers, S a connected
noetherian separated normal scheme over k, X a hyperbolic polycurve over S, and
X' — X a connected finite étale covering of X. Then there exists a connected finite
étale Galois covering Y — X of X such that the morphism Y — X factors through
X' — X, and, moreover, for any p € X, Y satisfies condition (x),.

Proof. Write n for the relative dimension of X over S. Then, to verify Proposition
2.20, it follows from Remark 2.8, that it suffices to verify that there exists a con-
nected finite étale Galois covering Y — X of X such that the morphism ¥V — X
factors through X’ — X, and, moreover, for any p € ¥ and for any pair of in-
tegers (4,7) such that 0 < ¢ < j < n, the homomorphism AI;,J_/Yi — AZ;/J-/YO (cf.
Proposition 2.5) is injective. Now I claim that the following assertion holds:

Claim A: Fix an integer m such that 0 < m < n. Suppose given a
connected finite étale Galois covering Y — X of X such that for any
p € ¥ and any pair of integers (4, ) such that m < i < j <n, the
homomorphism A’;/j v, A’;/j /v, 18 injective. Then there exists a
connected finite étale Galois covering Z — X of X such that the
morphism Z — X factors through Y — X, and, moreover, for any
p € ¥ and any pair of integers (4, ) such that m <1i < j <mn, the
homomorphism A%j 1z, = A’éj /2, (cf. Proposition 2.5) is injective.
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Indeed, for each p € 3, we consider the commutative diagram

AYm+1/Y0 AYm/YO

Aut(Amerl/ym) —_— Out(Ay"L+1/1/7,L)

Aut(A? ) — Out(

p
1/'m#»l/}/?n AYr7L+I/Ym )’

which is obtained from the exact sequence
1— Aym+1/ym — AYerl/Yo — AYm,/YO — 1.

It follows from Proposition 2.16(iii) and Lemma 2.19 that Out(Af,mH/Ym) has
an open pro-p subgroup. Fix such an open subgroup H C Out(Af}mH/Ym) of
Out(A’;,m+1 /Ym)’ and write W), C Ay, /v, for the subgroup obtained by forming
the inverse image of H C Out(A’;,erl /Ym,) by the homomorphism Ay, /v, —

OUt(AI;/,,,H/Ym
and the image of the composite W, — Ay /v, — Aut(A’;,mH/Ym) is pro-p.
On the other hand, we have Ay, . /v, C Ax, ,,/x, C lx,,,,. Moreover, since
Ay, /v, = Axi1/x, Ny, ., (cf. Lemma 2.9(ii)), Ay, ., /v,, is a normal closed
subgroup of Iy, . ,. Thus, it follows from Lemma 2.17(ii) that there exists a normal
open subgroup V,, C Iy, ., of Iy, ., such that Ay /v, CV,NAy, /v, CW,.
Now let us write V' := ﬂpez Vp. Then V is a normal open subgroup of Ilx,, .,
containing Ay, /y,,. Write U C Ily for the subgroup obtained by forming the
inverse image of V' C Ily,,,, by the outer surjection Ily —» Ily, .. Then U is the
intersection of Iy and the subgroup of IIx obtained by forming the inverse image
of V C Ilx,,,, by the outer surjection IIx — Ilx, ,. Thus, U is a normal open
subgroup of IIx. Moreover, since U O Ay/y, ., U corresponds to a connected
finite étale Galois covering Z — X which factors through Y — X. To verify Claim
A, it suffices to verify that this covering Z — X of X satisfies the condition in the

statement of Claim A. Note that it follows from Lemma 2.9(ii) that

). Then W), is an open subgroup of Ay, /v, containing Ay, . /v, ,

1157
AZ7n,+—1/Zo = AYm+1/Yo N HZm+1 C Wy,

:Im<HZ:U‘—>Hy—»Hy

m—+41 )

=V,

m1
BZss /2 = DYir /Y, Mz, = By, /v
Azzp = Dyyv, Nz =Ayyy, -
Let p € X. It suffices to verify that for any pair of integers (i, j) such that m <
i < j < n, the homomorphism A%/Zi — A%/Zo is injective. If m < i, then, since
Az)z,in = Avyy,,.., it follows from Lemma 2.9(iii) that Az, /7, = Ay, /y,. Thus,
since the homomorphism A’;,j v A’;j /v, 18 injective, Agj 7 A%j /7, 18 also

injective. Now suppose that m = i. We verify the injectivity of A%_/Z_ — A%/ZO
J T J
by induction on j. If j = m+1, it follows from our choice of Z — X that the image
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of the composite

Ay — W, — Aut(AY

Yim+41/Ym

) = Aut(A?, )

m+1/Zo Zms1/Zm

is a pro-p subgroup. Thus, since AZWH 70 is topologically finitely generated and
center-free (cf. Proposition 2.16(iii)), it follows from Lemma 2.18 that A%mﬂ/zm —
A%mH/Zo is injective. Now suppose that m + 1 < 7 < n, and that the induction

hypothesis is in force. Then we have the commutative diagram of profinite groups

— s> AP

Zj|Zj-1 Zj/Zm Zj1/Zm
p p p
1 AZJ/Zj—l AZJ/ZO AZJ'*I/ZO L,

where, since j — 1 > m, the two horizontal sequences are exact. Moreover, it
follows from the induction hypothesis that A 1z AY /7, 18 injective. Thus,
j—1/%Zm j—1/%0

Aij )7, = Agj /7, 18 also injective. This completes the proof of Claim A.

Now we verify Proposition 2.20. First, let us write Y — X for the Galois closure
of X — X. Then, if n — 1 > 0, by applying Claim A, where we take the data
“(m,Y — X)” to be (n —1,Y — X), we obtain a covering Z — X. Next, let us
replace Y — X by Z — X. Then, again by applying Claim A, where we take the
data “(m,Y — X)” tobe (n —2,Y — X). If n — 2 > 0, by applying an argument
similar to the above argument repeatedly until m = 0. Then we obtain a covering
Z — X which satisfies the condition imposed on “Y — X” in the statement of
Proposition 2.20. This completes the proof of Proposition 2.20. (]

Proposition 2.21. Let ¥ C Brimes be a finite set of prime numbers, S a connected
noetherian separated normal scheme over k, and X a hyperbolic polycurve of relative
dimension n over S. Suppose that for anyp € X, X/S satisfies condition (x),. Then
there exists a connected finite étale Galois covering T — S of S such that for any
p€ X, X xgT/T satisfies condition (xx),.

Proof. For each p € X, let us consider the sequence IIg — Out(Ax/s) — Out(A_Z;(/S).

Then it follows from Proposition 2.16(iii) and Lemma 2.19 that Out(Af;(/S) has an

open pro-p subgroup. Fix such an open subgroup H C Out(Ag(/S) of Out(Af;(/S),

and write U, C Ilg for the subgroup obtained by forming the inverse image of
HC Out(Aﬁ(/S) by the homomorphism ITg — Out(Ag(/S). Let U C IIg be a nor-
mal open subgroup of IIg contained in ﬂpez U,. Write T'— S for the connected
finite étale Galois covering of S corresponding to U C IIg. Then X xgT — X cor-
responds to the inverse image of U C IIg by the outer homomorphism Iy — Ilg,
and, moreover, Ay ;7/7 = Ax/g. Thus, for any p € 3, the image of the homomor-
phism Ilx .7 — Aut(Ag(XST/T) = Aut(Af)’(/S) is a pro-p subgroup. Then, since
AF /s is topologically finitely generated and center-free (cf. Proposition 2.16(iii)),
it follows from Lemma 2.18 that A% s = %, . is injective. On the other hand,
X xgT/T satisfies condition (x), (cf. Proposition 2.16(ii)). Thus, it follows from
Lemma 2.15 that X x g T'/T satisfies condition (*#),. This completes the proof of
Proposition 2.21. [
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Lemma 2.22. Let p be a prime number, n a positive integer, S a connected noe-
therian separated normal scheme over k, and X a hyperbolic polycurve of relative
dimension n over S. Then the following hold:

(1) Suppose that X/S satisfies condition (x),. Let U C HI;(/S be an open sub-
group of H];(/S. Write Y — X for the connected finite étale covering of
X corresponding to U and S’ := Nor(Y/S). Then for each integer i such

that 0 < i < n, H]}DQ/S’ (¢f. Proposition 2.5) is canonically identified with

Im(U — H?{/S — Hg(i/s), and, moreover, for any pair of integers (i,j)
such that 0 < i < j < m, A%/Yi = H’;/j/s, N A?(j/xi' In particular, Y/ S’

satisfies condition (x),.

(ii) Suppose that X/S satisfies condition (xx),. Let U C II% be an open sub-
group of II%.. Write Y — X for the connected finite étale covering of X
corresponding to U and S’ := Nor(Y/S). Then for each integer i such
that 0 < i < n, H]}D,i (¢f. Proposition 2.5) is canonically identified with
Im(U — II%, — Hg(i), and, moreover, for any pair of integers (i,7) such
that 0 < i < j < mn, AI;,J_/Yi = H’;/j N A?{,-/Xi' In particular, Y/S' satisfies
condition (sx)p.

Proof. First, we verify assertion (i). For each integer i such that 0 < i < n, we
have the commutative diagram of profinite groups

I —— ker(Ax s — A?(/S)

i |

1 —— ker(AXi/S—»A’;(i/S) — Ax,;s — A];(i/s — 1
1 1

)

where the two horizontal sequences and the two vertical sequences are exact. Thus,
the homomorphism ker(Ax/g — A’;(/S) — ker(Ax, /s — A’)’Q/S) is surjective. On
the other hand, since the inverse image of U C HZ))(/S by the surjection IIx — H’;{/s
coincides with IIy C Ilx, it follows that ker(Ax, g — A’;(/S) is contained in IIy.
Thus, ker(Ax,/s — Af)’(i/s) is contained in Iy, = Im(Ily — IIx — IIx,), hence
also in Ay, /s = Ax, /s N1ly, (cf. Lemma 2.9(ii)). This implies that Ay, s can
be obtained by taking the inverse image of some open subgroup V C Af)’(i /s of
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AZ))Q /s by the surjection Ay, s — A’)’Q /- and, moreover, A% /s coincides with
Vc A&i/s. Thus, we have ker(Ay, s/ — A’;,i/s,) = ker(Ax, /s — Az))g/s)v which
implies that IT§, o, = Ily, / ker(Ay; /s — AY, ) coincides with Im(Ily, = Ly, —
I /), and, moreover, Ily, is the inverse image of I, /50 C I /5 by the surjection
Oy, —» HS’Q/S. In particular, we have U = Hf,/s, = Im(lly — Iy —» H’)”(/S).
Thus, since IIy — Ily, is surjective (cf. Proposition 2.7(i)), by considering the
commutative diagram of profinite groups

Iy “——s Iy —— HI;(/S

b

HY,- s HXi - HI))(,i/S’

it holds that HI;Q/S’ =Im(U — H?(/S —» H.Z;(i/s)'
Now let (4,7) be a pair of integers such that 0 <7 < j < n. Then, since it holds
that Ay, /y, = Iy, N Ax,/x, (cf. Lemma 2.9(ii)), by considering the commutative

diagram of profinite groups

Ay, /v, Oy, NAxyyxs < Bxyx, <
I s N x, © BAyx, < Miys

it follows that Ay, /y, is the inverse image of the open subgroup H’{,j /5N Af)’(j /x: C
Ag}j/xi by the surjection Ay, x, — Ag(_j/xi' Thus, it holds that Azi)’j/h = H’;,j/s, N
A’)’(j /X, In particular, if 0 < ¢ < j < n, by considering the commutative diagram
of profinite groups

AP

A Y; /Yo

P
Y;/Yi

p
n AXj/Xo’

HZ;G‘/S’ mAZ;(j/Xi Hf’j/s’

we conclude that Af’j/Yi — A%/Yo is injective, i.e., Y/S’ satisfies condition (x),.
This completes the proof of assertion (i). Assertion (ii) is proved similarly. O

Lemma 2.23. Let p be a prime number, (m,n) a pair of integers such that 0 <
m <n, S a connected noetherian separated normal scheme over k, and X a hyper-
bolic polycurve of relative dimension n over S satisfying condition (xx),. Then the

following hold:
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(i) The natural surjections H’)’(/S — 1%, H’)D(/S —» H?(m/s (cf- Proposition 2.16)
determine an isomorphism

P X TP P
HX/S — 1T X HX,,L/S'

(ii) Let Y be a connected noetherian scheme over X,,. Let us fizt a homomor-
phism Hf,/s — chm/s arising from'Y — X,,. Then there exists a natural
bijection

1:1
Hompy (g, 1I%) = Homyy (HI;,/S7 HI;(/S).
If, moreover, Hf//s — HS)(W/S is surjective and the image of ¢ € Homyr (115, 11%.)

Y/S
ural one-to-one correspondence between the left cosets of Im ¢ C II% in II%
and the left cosets of Im1y C H])D(/S mn H?(/S' In particular, ¢ is an open
(resp. a surjective) homomorphism if and only if so is 1.

by the above bijection is 1 € Homnim/s (112 HZ;{/S), then there is a nat-

Proof. Assertion (i) follows from the commutative diagram of profinite groups

— I — 1

1 ——= A% X, /8

X/Xm

S

P 14
— Iy — 15— 1,

— s

1 —— A?{/xm

where the horizontal arrows are exact. We verify assertion (ii). Suppose given
an element ¢ € Homypy (I}, 1I%). Then a homomorphism I}, /s 1% /5 Over

Hgf /s is obtained from the commutative diagram

)
L/s L5 I
../ .,

(cf. assertion (i)). Thus, we obtain a natural map
Homypy (I, 1% ) — Homnim/s(ﬂf,/s, I /)
Conversely, since
My = (I o)" 1y = (1y6)", U, = (% )",
we obtain a natural map
HomH’j(m/s(H?//b”Hg(/s) — Homypp (I, 1%, ).

It follows immediately that these maps are inverse to each other.
Now suppose that Iy, o — II% ¢ is surjective. Let ¢ € Hompz (I3, 1I%).
Write ¢ € Homnim/s(ﬂg/s,ﬂg’qs) for the image of ¢ € Homyy (I, 1I%.) by
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.. . 1:1
the bijection Homyyy - (I, 1%, ) = Homnim/s(ﬂf,/s,ﬂi/s). Then, we have the
commutative diagram of profinite groups

1 —— ker(Hf,/S —» Hl))(m/s) —_— H@/S — HI))(M/S — 1

1 AP I, m, 1
i ;

1 Ag}Xm HI;( H{;{m 17

where the horizontal sequences are exact, and, moreover, since the operation of
taking the maximal pro-p quotient of a profinite group is right exact, the homo-
morphism ker(Hf, /s H’;(m / 5) — Agf/)xm is surjective. Thus, the above diagram
induces a one-to-one correspondence between the left cosets of Im¢ C IT% in IT%

and the left cosets of Im(ker (T}, /s ™ s / g) — Ag?} x,.) C Ag?} x,, in Agf} X,
On the other hand, since X/S satisfies condition (*x),, we have Ag?}xm = A?(/Xm'

Thus, the commutative diagram of profinite groups

— 11"

1 —— ker(II X /S

) > Hf//s > H])D(m/s > 1

i i

— Iy

14
Y/S

— > TI?

] —— A X../8

P
X/ X = 1
where the horizontal sequences are exact, induces a one-to-one correspondence

between the left cosets of Im(ker(H’;//S —» H’))(m/s) — Agf}xm) C A()?}Xm in

A%}Xm = A’)’(/Xm and the left cosets of Im) C HI;(/S in HZ;(/S. This completes the
proof of assertion (ii). O

Remark 2.24. There are properties similar to Lemma 2.23 if X/S is a hyperbolic
polycurve satisfying condition (%), i.e., the following hold:

(i) For each integer [ such that 0 <! < m, the natural surjections H’;(/X] —»

I /50 1% x> 1 /x, determine an isomorphism

P ~ TP P
HX/XL — HX/S X, HX,,L/XL‘

(ii) Let [ be an integer such that 0 < I < m and Y a connected noetherian
scheme over X,,. Let us fix a homomorphism II}, x, 1 /x, arising
from Y — X,,. Then there exists a natural bijection

1:1
Homn;;(m/s(l_[@/s, ngs) = Homngm/xl (HZ;//XﬂHg(/Xl)'
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If, moreover, Hﬁ’,/Xl — H’)"(m/xl is surjective and the image of € Homnim/s (Hf,/s, H];(/s)
N » » X

by the above bijection is ¢ € Homnz):(m/xl (HY/XZ’HX/Xl)’ then there is a

natural one-to-one correspondence between the left cosets of Im ¢ C IT% /s

in H_I;(/S and the left cosets of Im1) C HZ)’(/XL in H,Z;(/Xl' In particular, ¢ is

an open (resp. a surjective) homomorphism if and only if so is 9.

Definition 2.25. Let p be a prime number and X a variety over k. Then we shall
say that X is of p-LFG-type if, for any normal variety Y over k and any morphism
Y — X xy k over k that is not constant, the image of the outer homomorphism
) — H’;(X 7 is infinite.

k

Remark 2.26. It follows from an argument similar to the argument in [10] Remark
2.5.1, that if k'/k is a field extension of k, then X is of p-LFG-type if and only
if X xp k' is of p-LFG-type. On the other hand, it follows immediately from the
definition, if X is of p-LFG-type, then X is of LFG-type (cf. [10] Definition 2.5).

Lemma 2.27. Let p be a prime number and X,Y warieties over k. Suppose that
X is of p-LFG-type. Then the following hold:
(i) Suppose that there exists a quasi-finite morphism'Y — X. Then Y is of
p-LFG-type.
(ii) Let f: X = Y be a morphism over k. Suppose that A?/k 18 finite. Then f
s quasi-finite. If, moreover, f is surjective, then Y is of p-LFG-type.

(i) Let f : X = Y be a morphism over k. Suppose that H?(xk? — II% s

injective and Agfp) is finite. Then f is quasi-finite. If, moreover, f is
surjective, then Y is of p-LFG-type.

Proof. (cf. [10] Lemma 2.6) First, we verify assertion (i). It follows from the fact
that if f is quasi-finite then so is the morphism Y x; k — X x} k determined by f,
that to verify assertion (i), we may assume without loss of generality that k = k.
Let Z be a normal variety over k£ and Z — Y a nonconstant morphism over k.
Then since Y is quasi-finite over X, it follows that the composite Z — Y — X is
nonconstant. In particular, since X is of p-LFG-type, the image of the composite
%, — 1Y, — II%, hence also I, — II., is infinite. This completes the proof of
assertion (i). Next, we verify assertion (ii). Note that we have the equality

AP

k= ker(A’)’(/k — A’}’,/k) = ker(H?{XkE — H];/X,j) =A

?(xkEHYxkE/E'
Thus, it follows from the fact that if the morphism Y x; k — X x;, k determined
by f is quasi-finite then so is f (cf. [2] Proposition 1.9.4), together with the fact
that if f is surjective then so is the morphism Y xj k — X xj k determined by f,
that to verify assertion (ii), we may assume without loss of generality that k = k.
Let § — Y be a k-valued geometric point of Y and F a connected component
(which is necessarily a normal variety over k) of the normalization of the geometric
fiber of f at . Then, since the composite of the outer homomorphism Iz — Iy
induced by natural morphism F' — X and II% — IIf. factors through II? = {1},
5. — II% factors through Az} e II%,. In particular, since A? Ik 18 finite, the
image of I, — II% is finite. Thus, since X is of p-LFG-type, it follows that F' is
finite over k. This implies that f is quasi-finite.

Now suppose that f is surjective. Let Z be a normal variety over k and Z — Y
a nonconstant morphism over k. Then since f is a quasi-finite surjection, and
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Z —'Y is nonconstant, there exists a connected component C' (which is necessarily
a normal variety over k) of the normalization of Z Xy X such that the natural
morphism C' — X over k is nonconstant. Thus, since X is of p-LFG-type, the
image of II7, — II%, hence also that of 117, — II%, — II},, is infinite. In particular,
since the composite C' — X — Y factors through Z — Y, it follows that the image
of 17, — II¥. is infinite, which implies that Y is of p-LFG-type. This completes the
proof of assertion (ii). Finally, we verify assertion (iii). Let us observe that, since

e TP —_ AP Dottt (p) P p ;

if HXxkE = A%, — I is injective then A” 5 ker(HXXkE — HYxkE)’ it follows
from an argument similar to the argument used at the beginning of the proof of
assertion (ii), that to verify assertion (iii), we may assume without loss of generality
that k = k. But then assertion (iii) is the same as assertion (ii), which has already

been verified. This completes the proof of assertion (iii). O

Proposition 2.28. Let p be a prime number. Then every hyperbolic polycurve over
k satisfying condition (x), is of p-LFG-type.

Proof. (cf. [10] Proposition 2.7) First, let us observe that it follows that, to verify
Proposition 2.28, we may assume without loss of generality that k¥ = k. Let X
be either Speck or a hyperbolic polycurve over k satisfying condition (x),. Write
n := dim(X). We verify that X is of p-LFG-type by induction on n. If n =0, i.e.,
X = Speck, then X is clearly of p-LFG-type. Now suppose that n > 1, and that
the induction hypothesis is in force. Let Y be a normal variety over k and Y — X a
nonconstant morphism over k. To verify Proposition 2.28, it suffices to verify that
the image of II§, — II% is infinite.

Now suppose that the composite ¥ — X — X,,_1 is nonconstant. It follows
from the induction hypothesis that X,,_; is of p-LFG-type. Thus, the image of the
composite ITy, — IT5 — II%  , hence also that of IIy, — IT%, is infinite.

Next, suppose that the composite Y — X — X,,_; is constant. Write T — X,
for the k-valued geometric point of X, _; through which the constant morphism
Y - X — X, factors. Then the composite Y — X — X, 1 determines a
nonconstant morphism ¥ — X xx  , T over k. Since X xx, , T is a hyperbolic
curve over 7, it follows that the morphism ¥ — X Xx, , @ is dominant. Thus,
it follows from Lemma 1.3 that the outer homomorphism IIy — ITx X, B hence

also 11§, — H’;(XX”AE, is open. Now let us observe that H’;(XXWIE = AI;(/XWI
(cf. Proposition 2.7(i)) is infinite (cf. Proposition 2.16). Thus, since X/S satisfies
condition (*),, the image of the composite II§, — H&XXW,*IE = AZ))(/Xn_l — 1% is

infinite. This completes the proof of Proposition 2.28 (Il

Lemma 2.29 (cf. [16] Lemma 1.10). Let p be a prime number, (go,70) a pair of
nonnegative integers, and X a hyperbolic curve (resp. a nonproper hyperbolic curve)
over k. Then there exists a normal open subgroup U C Il ¢ of Il ¢ such that
HXxkE/U is a p-group, and that if we write (g,r) for the type of the hyperbolic
curve corresponding to U C I ¢, then g > go (resp. g > go, T > T9).

Lemma 2.30. Let p be a prime number, (go,r0) a pair of nonnegative integers, S
a connected noetherian separated normal scheme over k, and X a hyperbolic curve
(resp. a nonproper hyperbolic curve) over S. Then there exists a connected finite
étale Galois coveringY — X of X such that if we write S’ := Nor(Y/S) and (g,r)
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for the type of the hyperbolic curve Y/S', then g > go (resp. g > go, T > r9), and
that Hf,/s, — H])”(/S is injective.

Proof. Let s — S be a geometric point of S. Then it follows from Lemma 2.29 that
there exists a normal open subgroup V' C Ax/g of Ax/g = x5 (cf. Proposition
2.7(i)) such that AX/S/V is a p—group, and that the pair of integers (¢’,r’) corre-
sponding to V satisfies ¢’ > go(,7' > rg). On the other hand, let us observe that
ker(Ax,g — AX/S) CV C Axys C IIx. Thus, since ker(AX/S — AX/S) CIlIx is
a normal closed subgroup of Iy, it follows from Lemma 2.17(ii) that there exists
a normal open subgroup U C IIx such that ker(Ax, g — A’;(/S) CUNAxsCV.
Write Y — X for the connected finite étale Galois covering of X, S’ := Nor(Y/S)
and (g,r) for the type of Y//S’. Then, since U N Ax,g = Ay/g C V, we obtain
g >9 > go(,r > 1" > rg). Moreover, since Ay/g D ker(Ayx/g — A?(/S)’ the
homomorphism Af, 5 = Af /s is injective. Thus, we have

keI'(Ay/S/ —» AY/S') keI‘(Ax/S — AX/S) n Ay/sr = keI‘(Ax/S — AX/S)

This implies that HY /s 1% X/s is injective. This completes the proof of Lemma
2.30. O

Lemma 2.31. Let p be a prime number, S a connected noetherian separated normal
scheme over k, X a hyperbolic curve over S, R a strictly henselian discrete valuation
ring over S, K the field of fractions of R, and Spec K — X a morphism over S.
Then it holds that the morphism Spec K — X factors through the open immersion
Spec K — Spec R if and only if the image of the outer homomorphism Ilgpec k —
H])D(/S induced by the morphism Spec K — X is trivial.

Proof. (cf. [10] Lemma 2.8) Since Ilgpec g = {1} (cf. e.g., [6] Théoreme (18.5.11)),
necessity is immediate. We verify sufficiency. Note that we have

P ~ P _ 4
Iy & sspec By spec R — Wx /g X115 Hspee B = ker(HX/s — 1Is)

(cf. Proposition 2.16(ii)). In particular, HXXSSpeCR/ SpecR H.I;(/S is injective.

Thus, the image of Hgpec x — HXXsSpec R/ Spec R is trivial. This implies that, to

verify sufficiency, we may assume without loss of generahty that S = Spec R.
Next, let us write R for the completion of R and K for the field of fractions of .

Then, since Hp BB H’;(/R X1y llp = Hﬁ(/R (cf. Proposition 2.16(ii)), it follows
XR
— II”

that if the image of llspec x — HX/R is trivial, then so is Hspccf( XxrB/B"
Thus, if we verify Lemma 2.31 in the case where R is complete, then the morphism
Spec K — X x g R factors through Spec K — Spec R. Then, it follows from the
commutative diagram of schemes

pry

Specﬁ — XXRJ/%\ X

| |

Spec R Xcpt

that the image of the morphism Spec R — X P! is contained in X. Thus, it follows
from the valuative criterion of properness (cf. e.g., [9] Chapter II, Theorem 4.7)
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applied to the morphism X°P* — S that the given morphism Spec K — X factors
through Spec K — Spec R. This implies that, to verify sufficiency, we may assume
without loss of generality that R is complete.

Now, to verify sufficiency, assume that the given morphism Spec K — X does
not factor through S = Spec R. Then it follows from Lemma 2.30 that there exists
a connected finite étale covering Y — X of X such that if we write (g, r) for the
type of the hyperbolic curve Y/S (note that it follows easily from the fact that IIg
is trivial, together with Proposition 2.5(ii), that Nor(Y/S) = S), then » > 2, and
that ITY, /s I /s is injective. For each cusp c of the hyperbolic curve X over
R, let ¢’ be a cusp of the hyperbolic curve Y over R which lies over ¢. Write X <Pt
(resp. Y.5**) for the spectrum of the ring obtained by completing X P! (resp. Y °Pt)
along ¢ (resp. ), and X, := X X yept XP' Vo := Y Xyept ch,pt. Let 5 — S be a
geometric point of S. Then we have the exact sequence

0—Z(1) = @PZA) - ()™

(cf. [16], (1-5)), where the homomorphism Z(1) — @Ti(l) is the diagonal em-
bedding, and Ily, is one of the direct summands Z(1) of D. Z(1). Thus, since
r > 2, the morphism H’;,C, — (Ily;)*>P, hence also H’;,C, — Hf,i = Af,/s — HI;,/S
is injective. Next, let g € ker(Il§, — H?{/s)' Then, since Hf,c, is an open sub-
group of H’;{(, there exists a positive integer n such that g™ € Hf,c,. Thus, since
H’;{C & Z, is torsion free, it follows from our choice of ¥ — X that g = 1. This
implies that I~ — T /s 18 injective. On the other hand, it follows from the
valuative criterion of properness applied to the morphism X°P* — S that the mor-
phism Spec K — X°P' factors through Spec K — S = Spec R. Thus, since the
given morphism Spec K — X does not factor through Spec K — S = SpecR,
Spec K — X factors through the natural morphism X, — X associated to a suit-
able cusp ¢ of X. Thus, since the image of the natural outer homomorphism
spec x — H’)’(/S is trivial, it follows that the image of Ilgpec k — lx, is contained
in ker(ITx, — TI% ). Note that ker(Ilx, — IT% ) is the intersection of all open
subgroups U C II Xc such that IIx_ /U is a p-group. Such an open subgroup of U
contains Im(Ilgpec x — IIx,) C U, and, moreover, the pull-back of the étale cov-
ering of X, corresponding to U on Spec K is a disjoint union of copies of Spec K.
Now let us consider the diagram of affine schemes

Spec K — X,

o

SpecR —— XS
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The diagram obtained by taking global sections of the above diagram is

R|Y| < )

T |

R R[[T]},

where 7 is a uniformizing parameter of R. Write a € R for the image of T' € R[[T]
by the ring homomorphism R[[T]] — R. Then a is contained in the maximal
ideal of R. On the other hand, the covering of X. corresponding to U is the
spectrum of R[[T'/P™]] for a suitable nonnegative integer m. Note that if U runs
over all open subgroups as above, then m runs over all nonnegative integers. Thus,
we conclude that for each nonnegative integer m there exists b € K* such that
a = b?" . However, by considering the valuation, it follows that there is no such an
element a € R. This completes the proof of sufficiency, hence also that of Lemma
2.31. (Il

Lemma 2.32. Let p be a prime number, k' a finite extension field of k, S a
normal variety over k, Y, Z normal varieties over k', X a hyperbolic polycurve over
S satisfying condition (x),, Z —Y a morphism over k', Y — S a morphism over
k, and f : Z — X a morphism over S. Suppose that the following conditions are
satisfied:

(1) Z = Y is dominant and generically geometrically irreducible. (Thus, it
follows from Lemma 1.6 that the natural outer homomorphism 1z — Iy,
hence also Hg/s — HZ;//S is surjective.)

(2) AZ—W/S C A%_}X/S. (Thus, it follows from the surjectivity of Hg/s —
HZ;//S that the natural outer homomorphism H%/S — HZ))(/S induced by f
determines an outer homomorphism H’;//S — H?{/S')

Then the morphism f : Z — X admits a unique factorization Z — Y — X such
that the morphism Y — X is an S-morphism.

Proof. (cf. [10] Lemma 2.9) First, let us observe that the asserted uniqueness of the
factorization under consideration follows from the fact that the morphism Z — Y is
dominant. Next, we verify that, to verify Lemma 2.32, it suffices to verify Lemma
2.32 in the case where X is a hyperbolic curve over S. To verify this, assume
that Lemma 2.32 holds if X is a hyperbolic curve over S. We verify Lemma 2.32
by induction on the relative dimension n of the hyperbolic polycurve X/S. The

case n = 1 is the assumption above. Now suppose that n > 2, and that the
induction hypothesis is in force. Then since A%_)WS C A%—»{/s C A%—»(l/s’
it follows from the case n = 1, that the morphism Z — X; admits a unique

factorization Z — Y — X; such that ¥ — X; is an S-morphism. On the other
hand, since X/ satisfies condition (x)p, it follows that A% — A% ¢ is injective.

X/ X1
Thus, since ker(Az x, — A’;//Xl) C ker(Agz/x, — Af//xl — Ag(/s), we obtain
A%—w/xl C AZ—>X/X1' By the induction hypothesis, since X/ X satisfies condition

(%)p, the morphism f : Z — X admits a unique factorization Z — Y — X such
that Y — X is an X;-morphism (hence an S-morphism).
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Now let us assume that X/S is a hyperbolic curve. Moreover, let us assume
that k& = k' until Claim F below. Write I'y C X xg Y for the scheme-theoretic
image of the natural morphism Z — X xgY over S and I' := Nor(Z/T'y). Then
T’y is an integral variety over k, and the natural morphism Z — Iy is dominant.
Moreover, it follows from Lemma 1.9 that I is a normal variety over k, the resulting
morphism Z — I' is dominant and generically geometrically irreducible, and the
natural morphism I' — T’y is finite and surjective.

Next, I claim that the following assertion holds:

Claim A: Let § — Y be a geometric point of Y. Then the image
of the morphism Z xy ¥ — X Xg vy determined by f consists of
finitely many closed points of X xg 7.

Indeed, let F' — Z Xy g be a connected component (which is necessarily a normal
variety over ) of the normalization of the reduced scheme associated to Z Xy .
Then, since the composite of natural morphisms F' — Z xy 7 — Z — Y factors
through the geometric point § — Y, we obtain Im(II}. — H%/S) c A%HY/S’
Thus, it follows from condition (2) that the image of the outer homomorphism
Iy, — II% /s is trivial. On the other hand, the composite of natural morphisms

F—Zxy7y P4 7 — X factors through the projection X xg ¥ 'S Thus, since
Nxsy = HI;(/S induced by X xg§ =+ X is injective
(cf. Proposition 2.16(i)), it follows that the image of the outer homomorphism
I} — TI%,, 5 induced by the morphism F' — X x g7 is trivial. In particular, since
X X 7 is a hyperbolic curve over 7, hence of p-LFG-type (cf. Proposition 2.28),
and the morphism F' — X X g % is a morphism between varieties over g, it follows
that the image of FF — X X g ¥ consists of a closed point of X xg 7. Thus, the
image of the morphism Z xy 3§ — X X g ¥ consists of finitely many closed points of
X Xg7g. This completes the proof of Claim A.
Next, I claim that the following holds:

the outer homomorphism II

Claim B: The composite I' — I'y — X xg Y Ple Y, hence also
the composite I'g — X xg Y 2 Y, is dominant and induces an
isomorphism between the respective function fields.

Indeed, since Z — Y is dominant and generically geometrically irreducible (cf.
condition (1)) and factors through I' — Y, it follows from [5] Proposition (4.5.9)
that I' — Y is dominant and generically geometrically irreducible. Since k, hence
also the function fields of I', Y, is of characteristic zero, to verify Claim B, it suffices
to verify that I' — Y is generically quasi-finite. To verify that I' — Y is generically
quasi-finite, let 77y, — Y be a geometric point of Y whose image is the generic point
of Y. Then since the operation of forming the scheme-theoretic image commutes
with base-change by a flat morphism, 'y Xy 7y is naturally isomorphic to the
scheme-theoretic image of the natural morphism Z xy 7y — X X g7y. Thus, since
the image of the morphism Z xy 7y — X X g 7y consists of finitely many closed
points of X x g7y (cf. Claim A), it follows that the composite I'g — X xgY %y,
hence (by the finiteness of I' — Ty) also the morphism I' — Y, is generically
quasi-finite. This completes the proof of Claim B.

Next, I claim that the following assertion holds:

Claim C: A’F’_W/S C A{Z_)X/S.
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Indeed, it follows from Lemma 1.6 that II; — IIp, hence also I, s = 117, /5
is surjective. Thus, since A7, /s (resp. ALy /) is the image of the subgroup
A%_W/S (resp. Ag—m/s) of HZ/S by the surjection H%/S —» H?/S, it follows from
condition (2) that AY . /s C AP /5 This completes the proof of Claim C.
Next, I claim that the following assertion holds:
Claim D: Let ¥ — Y be a geometric point of Y. Then the image
of the morphism I' xy ¥ — X Xg ¥ determined by I' — I'y —
X xg Y 2} X consists of finitely many closed points of X xg7¥.
Indeed, we obtain a proof of Claim D by replacing “Z” in the proof of Claim A by
I' (cf. Claim C). This completes the proof of Claim D.
Next, I claim that the following assertion holds:

Claim E: The composite I'g <— X xgY 22 yisan open immersion.

Indeed, let ¥ — Y be a geometric point of Y. Then it follows from Claim D that
the image of the composite I' Xy 7 — I'g Xy 7 < X Xg ¥ consists of finitely many
closed points of X xg 7. Thus, since I' — T’y is surjective, and the morphism
Ty Xy ¥ — X Xg7is a closed immersion, we conclude that I'y Xy ¥ is quasi-finite
over §. In particular, I'g <= X xgY 22y s quasi-finite. Thus, it follows from Claim
B, together with [4] Corollaire (4.4.9), that the composite Ty < X xgY 2% Y is
an open immersion. This completes the proof of Claim E.
Next, I claim that the following assertion holds:

Claim F: If X is proper over S, then f: Z — X admits a factor-

ization Z — Y — X such that Y — X is an S-morphism.
Indeed, if X is proper over S, then the composite I'y — X xg Y 22y is proper.
Thus, it follows from Claim E that the composite 'y — X xg Y 2 Y is an
isomorphism over S. In particular, f : Z — X admits a factorization Z — Y — X
such that Y — X is an S-morphism. This completes the proof of Claim F.

Next, I claim that the following assertion holds (note that in Claim G and Claim

H below, we do not assume that k& = k'):

Claim G: If the genus of the hyperbolic curve X over S is > 2
then f admits a factorization Z — Y — X such that Y — X is an
S-morphism.

Indeed, let us consider the commutative diagram of schemes

ZHXxkk'L

|

Y ——= Sxpkl — 8

pry

Speck’ ——— Speck,

where X xy, k" is a hyperbolic curve of genus > 2 over S X k’. Since gy, — Ig
is injective, it follows that Az/s = Az gy, ks Ay/s = Ay)sx,k- Thus, we obtain
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P _ TP P _ TP i i lieg P _ AP
HZ/S = HZ/Sxkk”HY/S = HY/Sxkk" This implies that AZ—>Y/s = AZ—>Y/S><kk"
Moreover, since H’)’(Xlc K /S x k! is the inverse image of the open subgroup Gy C Gy,

by the composite HI)’(/S — IIg — G, Hg/s = HZ/Ska/ — H’)’(/S factors through
H’)’(ka//Ska,. Thus, we conclude that A’é_»{/s = AgﬁXka//Sxkk,.
to verify Claim G, we may assume without loss of generality that k = £’

Now, since the genus of X/S is > 2, X°P! is a proper hyperbolic curve over S.
Thus, since A’éﬁy/s C A%ax/s C A%axcpt/& by applying Claim F, where we
take the data “(S,Y,Z, X)” to be (S,Y, Z, X°*"), we conclude that the morphism
Z — X°Pt over S factors as a composite Z — Y — X°Pt, where Y — X°P! is an S-
morphism. This implies that, to verify Claim G, it suffices to verify that Y — X°Pt
factors through X C X°P*. Note that since Z — Y is dominant by condition (1),
it follows that the image of the generic point of Y by the morphism Y — X°Pt ig
contained in X C Xt Let y € Y be a point of Y that is not the generic point
of Y and Ry a discrete valuation ring dominating Oy, (cf. e.g., [3] Proposition
(7.1.7)). Write R for the strict henselization of Ry. Then R is a strict henselian
discrete valuation ring, and, moreover, the image of the closed point of Spec R by
the composite Spec R — Spec Ry — SpecOy,y — Y is y. On the other hand,
since the composite np — Spec R — Y, where we write np for the spectrum of the
quotient field of R, factors through I' — Y (cf. Claim B), together with the fact
that lspec r = {1}, that the image of the composite I, . — [gpec r — HI;,/S, hence

also the composite 1T, — H’li/s — H?(/S (cf. Claim C), is trivial. Thus, it follows
from Lemma 2.31 that n, — I' = X factors through 7, — Spec R. In particular,
the composite Spec R — Y — X°Pt factors through X C X°P'. This implies that
the image of y € Y by the morphism Y — X°Pt is contained in X C X°P*. Thus,
the morphism Y — X°P! factors through X C X°P'. This completes the proof of
Claim G.

Finally, I claim that the following assertion holds:

Claim H: f admits a factorization Z — Y — X such that ¥ — X
is an S-morphism.

In particular,

Indeed, it follows from an argument similar to the argument used at the beginning
of the proof of Claim G, that to verify Claim H, we may assume without loss of gen-
erality that k = k’. Then, it follows from Lemma 2.30 that there exists a connected
finite étale Galois covering X’ — X of X such that if we write S’ := Nor(X'/S),
then the genus of X'/S’ is > 2, and, moreover, Hz)’(,/s, — H’)’(/S is injective.
Write Y/ — Y for the connected finite étale Galois covering of Y corresponding
to the inverse image of H’)’(,/S, - H’;(/S by H];,/S — H’))(/S (cf. condition (2)), and

Z' = ZxyY' %3 Z for the connected (cf. condition (1)) finite étale Galois covering
of Z corresponding to Y’ — Y. Then, since the image of A%/a)ﬂ/s’ C H%//S/ by the
composite HZ,/S, — Hf,,/s, — Hf,/s — H])D(/S is trivial, it follows from the injectiv-
ity of H&,/S, — HI))(/S that the image of Ag'ay'/s' C H%,/S, by HZ,/S, — H&,/S,
is trivial. Thus, we conclude that AZ,H},,/S, C AZ,HX,/S,. On the other hand,
the image of IIg: C IIg (resp. IIy» C Ily) by the surjection IIg — Gy (resp.
IIy — GYy) is an open subgroup of Gy, which corresponds to some finite field exten-
sion k' (resp. k). Then, (5", Y', Z' X' k', k") satisfies the conditions (1), (2) for
“(S,Y,Z, X, k,k')” in the statement of Lemma 2.32. Thus, since X’ is a hyperbolic
curve over S’ of genus > 2, it follows from Claim G that the natural morphism
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Z' — X' over S’ factors as a composite Z' — Y’ — X', where Y/ — X’ is an
S’-morphism. In particular, the natural morphism Z’ — X over S admits a unique
factorization Z’ — Y’ — X, where Y’ — X is an S-morphism. Moreover, in light
of this uniqueness, the factorization Z’ — Y’ — X’ is compatible with the nat-
ural actions of Gal(Z’/Z) = Gal(Y’'/Y’). This compatibility with Galois actions
thus implies that we obtain a factorization Z — Y — X such that Y — X is an
S-morphism. This completes the proof of Claim H, hence also of Lemma 2.32. [

Corollary 2.33. Let p be a prime number, k' a finite extension field of k, S a
normal variety over k, Y, Z normal varieties over k', X a hyperbolic polycurve over
S satisfying condition (xx),, Z —Y a morphism over k', Y — S a morphism over
k, and f : Z — X a morphism over S. Suppose that the following conditions are
satisfied:

(1) Z =Y is dominant and generically geometrically irreducible.

() ()
(2) Ag)y CAZ -

Then the morphism f : Z — X admits a unique factorization Z — Y — X, where
the morphism Y — X is an S-morphism.

Proof. Tt follows from Lemma 2.23(ii) that the outer homomorphism IIj, — II%
over ITY (cf. condition (2)) determines an outer homomorphism IT}, /s I /5 such
that the composite I}, s = I3, 15— I /5 coincides with the outer homomorphism
HZ/S — H';(/S induced by f. Thus, we obtain AZ_W/S C A%—»{/S' This implies
that it follows from Lemma 2.32 that the morphism f : Z — X admits a unique
factorization Z — Y — X. This completes the proof of Corollary 2.33. O

Lemma 2.34. Let p be a prime number, S,Y normal varieties over k, Y — S a
morphism, X a hyperbolic polycurve over S satisfying condition (x), (resp. (%)),
and ¢ : Hf,/s — H};(/S (resp. ¢ : I}, — II%.) a homomorphism. Write n — Y for
the generic point of Y. Then the following conditions are equivalent:

(1) The homomorphism ¢ arises from a morphism'Y — X over S.

(2) There exists a morphism n — X over S such that the outer homomorphism
Hf);/s — HI)]{/S (resp. TIh — TI%.) induced by this morphism 1 — X coincides
with the composite of the outer surjection (cf. Lemma 1.2) HZ/S —» H’;/S
(resp. TIh — TIy) induced by 1 — Y and the outer homomorphism deter-
mined by ¢.

Proof. (cf. [10] Lemma 2.10) The implication (1) = (2) is immediate. We verify
the implication (2) = (1). Suppose that condition (2) is satisfied. Let U C Y be
a nonempty open subscheme of Y such that the morphism n — X in condition
(2) extends to a morphism U — X over S. Then it follows from Lemma 1.2 that
the outer homomorphism II, — IIy, hence also HZ/S — HZ/S (resp. ITh — TI7,),
is surjective. Thus, it follows that the outer homomorphism H’I} /s H’;{ /s (resp.
II7, — M%) coincides with the composite of the outer surjection IIf, /s ™ HI;,/S
and the outer homomorphism determined by ¢. By applying Lemma 2.32 (resp.
Corollary 2.33), where we take the data “(k, k', S,Y, Z, X)” to be (k, k,S,Y,U, X),
we conclude that the homomorphism U — X factors through ¥ — X. This
completes the proof of Lemma 2.34. ]
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Lemma 2.35. Let p be a prime number, X a hyperbolic curve over k, Y a normal
variety over k, and f : Y — X a morphism over k. Write ¢y : lly — Hx,gb];/k :
Hf,/k — Hg(/k,qﬁfc 1Y, — II%, for the outer homomorphisms induced by f. Con-
sider the following conditions:

(1) f is surjective, smooth, and generically geometrically connected.
(2) ¢y is surjective, and the kernel Ay of ¢y is topologically finitely generated.
(2) gb?/k is surjective, and the kernel A’;/k of ¢f‘/k is topologically finitely gen-
erated.
(2)” ’; 1s surjective, and the kernel A}p) of (blji 1s topologically finitely generated.
3) f is surjective and generically geometrically connected.
4) Let C be a hyperbolic curve over k and C — X a morphism over k. Then
if f factors through C — X, then C' — X is an isomorphism.

—~~

Then we have implications and an equivalence: (1) = (2) = (2)) = (3) &

(4), (2)) = (2)". Moreover, if H’;(ng — II% and 115, - — 11§, are injective,
1

kE
then we have an equivalence (2)' < (2)

Proof. (cf. [10] Lemma 2.11) The implication (1) = (2) and the equivalence (3) <
(4) are proved in [10] Lemma 2.11. First, we verify the implication (2) = (2)'.
Suppose that condition (2) is satisfied. Then, the surjectivity of (,251; /k is immediate,
and, moreover, since there is a surjection Ay — A?/k (cf. Lemma 1.18), A’}/k
is topologically finitely generated. This completes the proof of the implication
(2) = (2). The implication (2)) = (2)” is proved similarly. Next, we verify
the implication (2)’ = (4). Suppose that condition (2)’ is satisfied. Let C be a
hyperbolic curve over k and C' — X a morphism over k. Then, if C' xp k — X X, k
is an isomorphism, then so is C — X (cf. [2] Corollary 1.8.4). On the other hand,
by considering the commutative diagram of profinite groups

1 —— HZ;/ g Hz;,/k Gy 1
l [
1 —— Hl))(xkE — I, Gk 1,
it follows that H];/x,c%/% = Hf/x,j — H])D(x,j = H@ng/g is surjective, and, more-
over, A’;/k = ker(H’;XkE — H’;XJ). Thus, to verify that condition (4) is satisfied,

we may assume without loss of generality that & = k. Suppose that f factors
through C' — X. Then, since X is a hyperbolic curve over k, it follows from Propo-
sition 2.16(iii) that Al)’(/k = II% is infinite. Thus, since C is a hyperbolic curve
over k, the surjectivity of (b? Jk implies that f, hence also Y — C, is dominant.
In particular, it follows from Lemma 1.3 that the induced outer homomorphism
IIy — Ilc, hence also IIy, — IIZ,, is open. Moreover, since (;5’} /i Is surjective,

117, — II% is surjective. On the other hand, since the kernel of d)’} /. 18 topologi-
cally finitely generated, it follows from the openness of II§, — II¢, that AP, | Ik
admits an open subgroup which is topologically finitely generated. Thus, A’é Xk
is topologically finitely generated. Now the surjectivity of I, — II%, implies that
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H’C’Y/Ag_w/k 5 TI%,. Thus, since IT% is infinite, AC—>X/k ch?, = AC . is not open
in A7, Ik
conclude that A, , = II¢, — II% = A%, is an outer isomorphism. Write (gx,7y),
(9¢y7¢) for the type of X/k, C/k, respectively. Then, since AC o = A?{/kv it fol-
lows from Proposition 2.16(v) that 29y + max{r, —1,0} = 29, + max{r, — 1,0},
and, moreover, that ry = 0 if and only if 7, = 0. On the other hand, since C — X
determines the surjection C°P* — X°P'_ we have r, > ry. Moreover, it follows
from Hurwitz’ formula (cf. e.g., [9] Chapter IV, Corollary 2.4) that g~ > ¢gy. Thus,
it follows immediately that g = gy,ro = ry. Moreover, since CP* — X Pt de-
termines the bijection between the points of CP* \ C' and the points of XPt\ X
C°PY — X°P is totally ramified over CP' \ C. Thus, if we write n for the degree
of C°P* — X°P* and e, for the ramification index at P € C°P', then it follows from
Hurwitz’ formula that

29c —2=n(29x —2) + Z (ep—1)=n(29x —2) +rc(n—1)+ Z(ep—
PeCept PeC
This implies that n = 1, and that for any P € C, ep = 1. Thus, we conclude that
C' — X is an isomorphism. This completes the proof of the implication (2)" = (4).
Finally, we verify (2)” = (2)’, assuming that H?{x,j — IT% and Hf/xkﬁ — I,

This implies that AP, | /i 18 trivial (cf. Proposition 2. 16(1v)) Thus, we

are injective. Suppose that condition (2)” is satisfied. Then, the two commutative
diagrams of profinite groups

p p P
1 —— HYka IT5 Gy, 1
i K
p p P
1 —— HXxkE ITy Gy, 1
and
1 —— ngkk e Hf,/k Gy 1
i o
p p
1 —— HXxkE HX/k Gy, 1,

where the horizontal sequences are exact, implies that condition (2)' is satisfied.
This completes the proof of (2)” = (2)’, hence also of Lemma 2.35. O

Lemma 2.36. In the notation of Lemma 2.35, suppose, moreover, that Y is of
p-LEG-type. Then the following hold:
(i) Consider the following conditions:

(1) f is an isomorphism.

(2) &5 is an outer isomorphism.
(3) ¢y is surjective, and the kernel Ay of ¢y is finite.
(4) (Z)f/k is an outer isomorphism.
55; ¢>f/k is surjective, and the kernel Af/k of (b’;/k is finite.

6 is an outer isomorphism.



32 KOICHIRO SAWADA

(7) }]’c is surjective, and the kernel A(fp) of (,25}]3 18 finite.
Then we have implications and equivalences: (1) & (2) & (3) & 4) &
(5) = (6) = (7). Moreover, if H])](x,j — II% and H’;,le — IIY. are
injective, then the above conditions are all equivalent. '
(ii) The following conditions are equivalent.
(1) f is a finite étale covering, and the degree of the Galois closure of
Y xi k — X xp k determined by f is a power of p.
(2) (Z)’;/k is an outer open injection.
(3) ¢?/k is open, and the kernel A?/k of ¢1}/k is finite.
(iii) Suppose that H?{x@ — II% and H’;,X)I — II{ are injective. Then the
following conditions are equivalent: '
(1) f is a finite étale covering, and the degree of the Galois closure of f
is a power of p.

(2) ¢ is an outer open injection.
(3) ’;c is open, and the kernel Agcp) of ¢I; is finite.

Proof. (cf. [10] Lemma 2.12) First, we verify assertion (i). The implication (3) =
(5) follows from Lemma 1.18, and, moreover, the implications (1) = (2) = (3), (2) =
(4) = (5) and (2) = (6) = (7) are immediate. Now we verify the implication
(5) = (1). Suppose that condition (5) is satisfied. Then it follows from the impli-
cation (2)’ = (3) of Lemma 2.35 that f is surjective and generically geometrically
connected. On the other hand, it follows from Lemma 2.27(ii) that f is quasi-finite.
Thus, it follows from [4] Corollaire (4.4.9) that f is an open immersion, hence an
isomorphism. This completes the proof of the implication (5) = (1). Similarly,
the implication (7) = (1) (assuming that H’)"(ng — II% and Hfkaﬁ — II}, are
injective) follows from the implication (2)” = (3) of Lemma 2.35, together with
Lemma 2.27(iii).

Next, we verify assertion (ii). First, we verify the implication (1) = (2). Sup-
pose that condition (1) is satisfied. Then, since the open subgroup IIy C IIx
corresponding to f contains ker(Ax/, — A’;(/k), it follows that H’;,/k is the im-
age of Iy C Ilx by the surjection IIx — Hg( Ik This completes the implication
(1) = (2). The implication (2) = (3) is immediate. Thus, it remains to verify
the implication (3) = (1). To verify this implication, suppose that condition (3)
is satisfied. Write X’ — X for the connected finite étale covering corresponding
to the open subgroup Im(qﬁ’;/k) c H’;(/k of H};(/k. Then the degree of the Galois

closure of X’ x;, k — X x;, k determined by X’ — X is a power of p. Moreover,
since ITy/ is the inverse image of Im(qbz;/k) c Hi/k by the surjection ITx —» Hl))(/k’
it follows that ¢ : IIy — llx factors through Ilx/ < IIx. Thus, ¥ — X fac-
tors through X’ — X. On the other hand, it follows from our choice of X' — X
that Hif//k — H’)’(,/k is surjective, and, moreover, AI;,_)X,/,C = A?/k. Thus, it
follows from the implication (5) = (1) of (i) that the morphism ¥ — X' is an
isomorphism. This completes the proof of the implication (3) = (1), hence also of
assertion (ii). Similarly, assertion (iii) follows from the implication (7) = (1) of (i).
This completes the proof of Lemma 2.36. O

Lemma 2.37. In the notation of Lemma 2.35, suppose, moreover, that Y is a
hyperbolic curve over k. Then the following hold:
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i) Consider the following conditions:
i) Consider the followi diti
(1) f is an isomorphism.
(2) @5 is an outer isomorphism.
(3) @5 is surjective, and the kernel Ay of ¢5 is topologically finitely gen-
erated.
(4) qﬁ?/k is an outer isomorphism.
(5) (;S?/k is surjective, and the kernel A?/k of d)?/k is topologically finitely
generated.
(6) ¢ is an outer isomorphism.

(7) ? is surjective, and the kernel Agcp) of (;51} is topologically finitely gen-
erated.
Then we have implications and equivalences: (1) < (2) & (3) & (4) &
(5) = (6) = (7). Moreover, if Hixkk — II% and H@XJ — IIY, are
injective, then the above conditions are all equivalent.
(ii) The following conditions are equivalent.
(1) f is a finite étale covering, and the degree of the Galois closure of
Y xi k — X %y k determined by f is a power of p.
(2) cb?/k is an outer open injection.

(3) cb?/k is open, and the kernel A?/k of d)’}/k is topologically finitely gen-
erated.
(iii) Suppose that Hixﬁ — 1% and IIY
following conditions are equivalent:
(1) f is a finite étale covering, and the degree of the Galois closure of f
s a power of p.
(2) ’} 18 an outer open injection.

- = Iy, are injective. Then the
k

(3) ? is open, and the kernel Agcp) of qb? is topologically finitely generated.

Proof. (cf. [10] Lemma 2.13) If we verify assertion (i), then assertion (ii) and as-
sertion (iii) follow from an argument similar to the argument used in the proof of
Lemma 2.36. Thus, it remains to verify assertion (i). Since Y is of p-LFG-type
(cf. Proposition 2.28), the implications (1) < (2) < (4) follow from Lemma 2.36.
The implications (2) = (3) = (5) follows from Lemma 1.18. The implications
(2) = (6) = (7) are immediate. Now we verify the implication (5) = (4). Suppose
that condition (5) is satisfied. Let us observe that it follows from the commutative
diagram of profinite groups

1 —— H’;, N e Hli)f/k — G —— 1
! e
1 —— H’;(sz —_— H?(/k — G —— 1

that, to verify that condition (4) is satisfied, we may assume without loss of gen-
erality that k = k. Then, it follows from Proposition 2.16(iii), together with the
surjectivity of d)?/k, that the image of qu?/k is infinite, i.e., A?/k is not open in
I = A%’,/k. Thus, it follows from Proposition 2.16(iv) that A?/k is trivial. This
completes the proof of the implication (5) = (4). Finally, we verify the implication
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(7) = (5), assuming that H_I;(xkﬁ — II% and H’;XJ — IIY, are injective. It follows
from an argument similar to the argument used in the proof of the implication
(2)" = (2) of Lemma 2.35, that, to verify the implication (7) = (5), we may
assume without loss of generality that & = k. But then condition (7) is the same
as assertion (5). This completes the proof of the implication (7) = (5), hence also
of Lemma 2.37. U

Lemma 2.38. Suppose that k = k. Let p be a prime number, n a positive integer,
X a hyperbolic polycurve over k satisfying condition (x),, F' a normal variety over
k of dimension > n, and F' — X a quasi-finite morphism over k. (Thus, it holds
that n < dim(F) < dim(X).) Write H%HX/,C = H;‘/k/A%HX/k' (HI;HXL,C is
canonically identified with the image of H%/k — H’)’(/k. Note that since k = k, it

holds that szjr/k

subgroups of HII)?—>X/k

=114, H?{/k =1II%..) Then there exists a sequence of normal closed

].:H()CHlC"'CHn71CHn:H%*>X/k

such that, for each integer i such that 0 < i <mn, the closed subgroup H; is topolog-
ically finitely generated, and the quotient H;/H;_1 is infinite.

Proof. (cf. [10] Lemma 2.14) Write d := dim(X). For each integer j such that
0 < j < d, write F[j] — X, for the normalization in F' of the scheme-theoretic
image of the composite F' — X — X;. Then we obtain the commutative diagram
of normal varieties over k

_

[d] F[1] — Speck = F[0]
| |
X,

X Speck = Xy,

Mo~

where the horizontal arrows are dominant and generically geometrically connected,
and the vertical arrows (except for the morphism F — X) are finite (cf. Lemma
1.9), which implies that dim F[i] < i,0 < dim(F[i + 1]) — dim(F[i]) < 1. Now
since dim(F') > n, there exists a uniquely determined subset {Dy,...,D,_1} C
{0,...,d — 1} of cardinality n such that, for each integer ¢ such that 0 < i < n,
the normal variety F[D; + 1] is of dimension 7 + 1, but the normal variety F[D;]
is of dimension ¢. Write F[D,] := F. Next, since k is of characteristic zero,
and the horizontal arrows in the above commutative diagram are dominant and
generically geometrically connected, one verifies easily that, for each integer ¢ such
that 0 < ¢ < n, there exists a nonempty open subscheme U[D;] C F[D;] of F[D;]
such that, for each integer i such that 1 < i < n, the image of the open subscheme
U[D,] C F[D;] by the morphism F[D;_1] — F[D;_4] is contained in U[D;_1] C
F[D;_4], and, moreover, the resulting morphism U[D;] — U[D;_1] is surjective,
smooth, and geometrically connected. Thus, we obtain a commutative diagram of
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normal varieties over k

UDy] —> U[Dp1] UlD\] — Speck = U[Dy)
| l |
F[D,] —— F[Dyn_1] FID\] — Speck = F[Dy,

where the vertical arrows are open immersions, and the upper horizontal arrows
are surjective, smooth, and geometrically connected.
Now, for each integer i such that 0 < i < n, let us write
H; :=Im(A — I} — 114 ).

Z[Dn]—)U[Dn,i]/k = HII]][Dn] FoX/k

Let us observe that since A’&[DH]HU[DTHWC is a normal subgroup of HpU[Dn], H; is

a normal subgroup of II7, SXJk We verify that the sequence of normal subgroups
of HI;"—>X/k

].:H()CHlC"'CHn71CHn:H%*>X/k

satisfies the condition in the statement of Lemma 2.38. Fix an integer ¢ such that
0 < ¢ < n. First, by applying Lemma 1.11, where we take the data “(X,S,U)” to be
(U[Dy],U[Dy—1],U[Dy)]), it follows that Ay(p,1/vip,_.] € llyp,] is topologically
finitely generated. On the other hand, since Iy p,;] — Ilyp, _, is surjective (cf.
Lemma 1.6), it follows from Lemma 1.18 that A%[D U Dn_l/k © HZ[Dn] is the

image of Ay(p,1/vp._.] € Hup,) by Hyp,] = H’(}[Dn]. Thus, H; is the image of
AU[DH]/U[DTL_,;] C HU[Dn] by the composite HU[Dn] —» H?][Dn] — H% — H%%X/k’
In particular, H; is topologically finitely generated. Thus, it remains to verify that
the quotient H;/H;_; is infinite. Write Q for an algebraic closure of the function
field of U[D,,—;], @ = Spec Q — U[D,,_;] for the generic geometric point of U[D,,_;]
determined by Q, and Up,_,.,/p,_, := U[Dn_it1] Xu(p,,_,] @, which is a smooth
variety over € of dimension 1 (resp. dim(F) —n+1) if ¢ # 1 (resp. ¢ = 1). Then,
since the morphism U[D,,_;y1] — U[D,_;] is surjective, smooth, geometrically
connected (hence geometrically integral), it follows from our choice of the geometric
point @ — U[D,—;] that (U[Dp—;], U[Dn—it1], U[Dp—it1],@ — U[D,—;]) satisfies
the conditions (1), (2), (3), (4) for “(S,X,Y,5 — S)” of Lemma 1.10. Thus, the
sequence of profinite groups

Iy

— Ilyp — llyp, j — 1

Dp_it1/Dn—i n—it1]

is exact, which determines a surjection HUDW,—i+1/Dn—i = AU[Dy_i41)/U[Dn_i]- ON

the other hand, the exact sequence of profinite groups
1= Auip,)/U[Dn-i41] = AUDW)/UDn-i] = AUDn-s41]/UDn—i] — 1

determines an isomorphism

AU(D, ] UID ) [ AUID D, 1] = AU, 2] UID, ]
Thus, we obtain a sequence of profinite groups

Ty — AUDL/UDn—i]/ DUDW]JUIDn—i41) — Hi/Hi1.

Dy —it1/Dn—i
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On the other hand, since H; (resp. H;_1) is the image of A@[Dn]_)U[DW 1/k (resp.

i

A%{Dn]eU[DnﬁH]/k) C HpU[D"] by the composite H[p][Dn] - 5 — H%_)X/k =
H%/A%ax/k’ and, moreover, the subgroups ApU[Dn]%X/k and Azl)J[Dn]ﬁU[Dn_iH]/k

of IIf; p, | is contained in the kernel of the composite IIf; , , — I, — II% —
I . (where we write Xp, := X), it follows that there is a natural homomor-
n—i4+1

phism H;/H; 1 — H’)’(D . Thus, the composite of natural morphisms
1

n—i4
_pr
UDn—q‘,+1/Dn—i = U[Dn,iJrl] XU[Dp_y] @ = U[ani%»l] — Xp
determines a sequence of profinite groups

HI[)]D — Hi/Hifl — H{;(D

n—i+1/Pn—i

n—i+1

n—i41

On the other hand, since the natural morphism F[D,,_;+1] = Xp hence also

UlDp—it1] = F[Dn—it1] = Xp,_.\1)

Uani+1/ani = U[Dn—i-i'l] ><U[13nﬂ']a = (U[Dn—i-i'l] XkQ) X(U[Dnﬂ']xkﬂ)a - XDn—H»l X {2

n—i4+17
is quasi-finite, it follows that

is quasi-finite, hence nonconstant. Moreover, since Xp,_, , X € is a hyperbolic
polycurve over Q) satisfying condition (*),, it follows from Proposition 2.28 that
Xp Xk Q is of p-LFG-type. This implies that the image of the composite
D P
HUDn—'H»l/Dn—i - HXDn7i+1
4 , is infinite. Thus, we conclude that H;/H; 1 is infinite. This completes

Dp—it1
the proof of Lemma 2.38. O

n—it1
~ T .
o HXDTHH’ hence also the image of H;/H;_1 —

3. PRO-p GROTHENDIECK CONJECTURE FOR HYPERBOLIC POLYCURVES

In the present §3, we consider the pro-p version of the Grothendieck conjecture
for hyperbolic polycurves. Let k be a field of characteristic zero, k an algebraic
closure of k, and Gy, := Gal(k/k).

Definition 3.1 (cf. [11] Definition 15.4(i)). Let p be a prime number. Then we
shall say that k is sub-p-adic if k is isomorphic to a subfield of a finitely generated
extension of Q.

Proposition 3.2. Let p be a prime number, X a hyperbolic polycurve over k sat-

isfying condition (x),, and Y an geometrically integral variety over k. Then the
following hold:

(i) Write Hom{°™ (Y, X) € Homy(Y, X) for the subset of dominant morphisms

from'Y to X over k and Homgp:n(ﬂf//k,ﬂg(/k) C Homg,, (H’;//k,Hg(/k) for

the subset of open homomorphisms from Hf,/k to H];(/k over Gy. Then the

natural map
Hom{,™™ (Y, X) — Homgl™ (I}, 1% )/ Tnn(A% )

(¢f. Lemma 1.3) is injective.
(ii) Suppose that k is sub-p-adic. Then the natural map

Homy,(Y, X) — Homg, (ITy, ;.. 11 )/ Tnn(A% )
18 1njective.
Proof. (cf. [10] Proposition 3.2) Write n := dim(X). First, we verify assertion (i).
I claim that the following assertion holds:
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Claim A: If n = 1, then assertion (i) holds.

Indeed, since k is of characteristic zero, it follows that Y contains a dense open
subscheme which is smooth over k. Thus, by replacing Y by such an open sub-
scheme, we may assume without loss of generality that Y is smooth over k. Then,
if k is sub-p-adic, then Claim A follows from [11] Theorem A. Now we verify Claim
A for arbitrary k. Let f,g € Hom{°™(Y,X) be elements of Hom{*™ (Y, X) that
map to the same element by the above map. Then there exist a subfield k¥’ of k
which is finitely generated over QQ, a hyperbolic curve X’ over k’, a smooth variety
Y’ over k/, and f’,¢" € Hom{*™(Y’, X') such that the base-change of f, g, respec-
tively, to k is f, g, respectively. Then, since &’ is finitely generated over Q (hence
sub-p-adic), the map Hom{™(Y’, X') — HomOpcn(H’;,/k,, X,/k,)/lnn( X,/k,) is
injective. Moreover, since AX,/k, is slim (cf. Proposition 2.16(iii)), it follows from
Lemma 1.20 that

HomOloen (Ir?

Y/ /K X’/k’)/lnn(

— Hom(AP?

Y//k/) X’/k/)/lnn(

X’/k') x//k/)

is injective. Then, since f/, ¢’ € Hom{?™(Y’, X’) map to the same element in
Hom(Af,,/k/, X,/k,)/lnn( X,/k,) Hom(AI;,/k, X/k)/Inn( X/k),

it follows that f/ = ¢/, which implies that f = g. This completes the proof of Claim
A.

Next, we verify assertion (i) by induction on n. If n = 1, then assertion (i) is
the same as Claim A. Now suppose that n > 2, and that the induction hypothesis
is in force. Let f,g € Hom{*™(Y,X) be elements of Hom{*™ (Y, X) that map
to the same element by the above map. Write f,_1,¢g,-1 for the composites of
X — X,_1 and f,g, respectively. Then f,_1,gn_1 induce the same Agﬂhl/k'
conjugacy class of homomorphisms H’;//k — H})’(n_l. Thus, it follows from the
induction hypothesis that f,_1 = g,—1. Let 7 — X,,_1 be a generic geometric point
of X,,—1. Write C CY xx,_, J (where we take Y — X,,_1 to be f,_1 = gn_1) for
an irreducible component of Y X x, _, 77 with the reduced induced structure, and
¢ :Yxx, .7 = Xxx, ,5 for the base-change of f, g, respectively. Now let us
fix a basepoint of C' and consider the diagram of profinite groups

HP

e HP
c/m T S Xxx,_ /7

l | |

L —= Uy, —— Uy x4

— Iy ={1}

induced by the diagram of schemes

’

C Cﬁ YXX'nflﬁ —— XXanlﬁ - ﬁ

SO |

Y X
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Then, since X xx, , 7 is a hyperbolic curve over 7, it follows from Proposition
2.16(ii) that

P ~ _ AP P P
HXxXn_lﬁ/ﬁ - HI)J(/Xn,1 Xy, Uz = AX/Xn,1 - AX/k - Hx/k'
Thus, ¢/, ¢y : Hg/ﬁ — HIP)(Xxn,lﬁ/ﬁ induced by the dominant morphisms f’,¢’,

respectively, are determined by ¢, ¢, : Hf,/k — H’;( Jk induced by f,g, respec-
tively. On the other hand, since ¢y and ¢, are Ai/k—conjugate, we can choose

an element a € A’)’(/k such that ¢, = agra=t. Write v : Hg(/k — Hgfn_l/k‘

Then the composites 1) o ¢y and ¢ o ¢, = p(a) - (Y o ¢f) - (a)~! are induced by
Jn—1 = gn—1, hence ¢ o ¢y = 1 o p4. Thus, since 1(a) € Agcn,l/lw it follows that
Y(a) € ZAI;{W,—l/k (Im(pogpyp) N A&nil/k). On the other hand, since ¢ is open and
1 is surjective (cf. Proposition 2.7(1)), Im(¢ o ¢5) N Al))(nfl/k - Agfnq/k is an open
subgroup of Agfnfl/k’ which implies that ZAz;(n_l/k (Im(xp 0 pp) N A’)’(nil/k) = {1}

(cf. Proposition 2.16(iii)). Thus, it follows that a € kery = A?(/Xn,l’ ie., ¢y

and ¢4, hence also ¢ and ¢4, are Ag(/Xnil—conjugate. In particular, by applying
Claim A, where we take the data “(Speck, X,Y)” to be (7, X xx,_, 77,C), we ob-
tain that f’ = ¢’. Since the morphism C' — Y is schematically dense, we conclude
that f = g. This completes the proof of assertion (i).

Next, we verify assertion (ii). Write n — Y for the generic point of Y. Note that
the hyperbolic polycurve X xjn/n satisfies condition (%), (cf. Proposition 2.16(ii)).
Fix a homomorphism II,, — H};, Ik arising from the natural morphism 7 — Y. Then

we have a natural IT%. /k—conjugacy class of isomorphisms AI;(XM /n = Af Ik (cf.
Proposition 2.16(ii)), natural outer isomorphism H’;(an/n = Hi/k X, 1L, (cf.

Proposition 2.16(ii)), and a commutative diagram

Homy (Y, X)

Homg, (1Y, , I /) / Tnn (A% )

|

Hom,, (n, X xpn) — HomHn(HmH&an/n)/lnn(Af)’(Xw/n).

Now, since  — Y is schematically dense, the left-hand vertical arrow of the above
diagram is injective. Thus, since the function field of Y is finitely generated over
a sub-p-adic field k (hence the function field of Y itself is sub-p-adic), by replacing
k by the function field of Y and Y by Speck, to verify assertion (ii), we may
assume without loss of generality that Y = Speck. Now we verify assertion (ii)
by induction on n. If n = 1, then assertion (ii) follows from [11] Theorem C.
Now suppose that n > 2, and that the induction hypothesis is in force. Let f,g €
Homy, (Spec k, X)) be elements of Homy, (Spec k, X) that determines the same element
of Homg, (Gk7H§(/k)/Inn(A§(/k). Then, it follows from the induction hypothesis
that the composite of X — X,,_; and f coincides with that of g. Write z € X,
for the image of Speck — X,,_1, and ¢5, ¢4 : G, — pr/k for the homomorphism

induced by f, g, respectively. Choose an element a € A% Ik such that ¢, = agra™'.
Then it follows immediately that k(z) = k. Moreover, since X, is a hyperbolic curve
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over Speck(x), it follows from Proposition 2.16(ii) that A% = A% o C
Al)}/k, which implies that H&m/k(w) — H?{/k
1% e H.Z;(,,L,l /5> then it follows from an argument similar to the argument used
in the proof of assertion (i), that it suffices to show that (a) = 1. Now, the
section 9 o ¢y =1 o ¢4 induced by Speck — X,,_1, together with the conjugation
of I | /p On A% /> determines an action of G, on A% /i~ Then, it follows
from the easily verified fact that v (a) € (A’)}n_l/k)ck, that to verify assertion (ii),
it suffices to verify that the following assertion holds:

is injective. Thus, if we write ¢ :

Claim B: Suppose that k is sub-p-adic. Let X be a hyperbolic
polycurve over k satisfying condition (x), and Speck — X a k-
rational point. Then, on the group action of G} on A% Jk which
determined by the section H’)’(/,c — (G} induced by Speck — X, we
have (Ag’(/k)Gk ={1}.

Indeed, let us observe that it follows from induction on the dimension of X, that,
to verify Claim B, we may assume without loss of generality that X is a hyperbolic
curve over k. Now assume that (A% /k)Gk # {1}. Let us choose an element a €
(A’)’(/k)c’“ \{1}. Then there exists a normal open subgroup V' C A];(/k of Ag(/k such
that a ¢ V. Write U := V - {(a). Then U is an open subgroup of AI))(/k' Moreover,
since V C A?{/k is normal, it follows that [U, U] C V. In particular, a € U \ [U, U],

which implies that (U2P) #£ {1}. Thus, to verify Claim B, it suffices to verify
that (Agg/’Z)Gk is trivial. Moreover, replacing k by its finite extension if necessary,
we may assume that S(k) = S(k), where we write S := X'\ X. Write (g,r) for
the type of the hyperbolic curve X /k, J for the Jacobian variety of X°P*, and T,.J
for the p-adic Tate module of J. Then, if r = 0, we have a canonical isomorphism
A’)’(’;‘Z =~ T,J (cf. [16] (1-3)). If > 0, then we have the exact sequence
0—Z,(1) > P z,(1) — Ag’;jz —T,J =0
zeS(k)

(cf. [16] (1-5)). Thus, to verify Claim B, it suffices to verify that (Z,(1))%* and
(T, J)%* are trivial. First, we verify that (Z,(1))%* is trivial. Since k is sub-p-adic,
there exists an injection k < K, where K is a finitely generated field extension of

Qp. Then, the action of Gy on Z,(1) determines a character x : Gy — Z). Now
let us consider the commutative diagram of profinite groups

GK E—— GQp

L

Gk ? Z;.
Then, since Gg, — Z, is surjective and G — G, is open, the image of G — Z,;,
hence also that of x, is nontrivial. Thus, we conclude that (Z,(1))%* is trivial.
Next, we verify that (7,,J)%* is trivial. It follows from the sequence G — G, —
Aut(T,J) that, to verify that (7,J)%* is trivial, we may assume without loss of
generality that k is finitely generated over Q. Then there exist a normal domain
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R with quotient field £ which is finitely generated over Q,, and an abelian scheme
A over R such that J — Speck is the base-change of A — Spec R by the morphism
Spec k — Spec R. Let x be a closed point of Spec R. Then, by considering the action
Grz) = Aut(TpA;) € Aut(T,J), to verify that (7,J)%* is trivial, it suffices to
verify that (7, A)®* is trivial, where k is a finite extension of Q, and A is an abelian
variety over k. Now let us observe that

(T, A)% = lim A" (B) = lim A[p"](k) = lim A(k)[p"].

On the other hand, since A(k) is a compact abelian p-adic Lie group, it follows
that A(k) is isomorphic, as a topological group, to the direct sum of Ly for a
suitable nonnegative integer m and a finite abelian group. Thus, we conclude
that lﬁnn A(k)[p"] is trivial. This completes the proof of Claim B, hence also of
Proposition 3.2. [l

Corollary 3.3. Let p be a prime number, X a hyperbolic polycurve over k satisfying
condition (xx),, andY an geometrically integral variety over k. Then the following
hold:

(i) Write Hom{°™ (Y, X) € Homy(Y, X) for the subset of dominant morphisms
from'Y to X over k and Homg%e“(ﬂf,,l'[’;() C Homgpr (IIy,, II%) for the
subset of open homomorphisms from IIy, to 115 over G%. Then the natural
map

Hom},™™ (Y, X) — Homgp™ (I, 1T )/ Tnn(A% )

(¢f. Lemma 1.3) is injective.
(ii) Suppose that k is sub-p-adic. Then the natural map

Homy (Y, X) — Homgp (113, H%)/Inn(Aé’(/k)
18 1njective.
Proof. This follows from Proposition 3.2, together with Lemma 2.23(ii). |

Theorem 3.4. Let p be a prime number, k a sub-p-adic field, X a hyperbolic curve
over k (resp. a hyperbolic curve over k satisfying condition (xx),), Y a normal
variety over k, and ¢ : Hf,/k — Hé’(/k (resp. ¢ : Iy, — II%.) an open homomorphism
over Gy, (resp. G). Then ¢ arises from a uniquely determined dominant morphism

Y — X over k.

Proof. (cf. [10] Theorem 3.3) First, let us observe that, if X/k satisfies condition
(#%),, then it follows from Lemma 2.23(ii) that the homomorphism II§, — II%
canonically determines II, e I sk~ Thus, in light of Proposition 3.2(i) and
Corollary 3.3(i), to verify Theorem 3.4, it suffices to verify that an open homo-
morphism ¢ : H})’, s H’;( /K over Gy, arises from a dominant morphism ¥ — X
over k. Now, let us observe that there exists a dense open subscheme U of Y

which is smooth over k. Then, it follows from [11] Theorem A that the composite

117, e 115, Ik LA 1% / rises from a uniquely determined morphism U — X over k.

Write n — U for the generic point of U. Then, since Hz/k — HpU/k — Hf,/k A H?{/k
is induced by n — U — X, it follows from Lemma 2.34 that ¢ arises from a mor-
phism Y — X over k. Moreover, since ¢ is open, it follows that the morphism

Y — X is dominant. This completes the proof of Theorem 3.4. (]
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Lemma 3.5. Let p be a prime number, n a positive integer, S, Y normal varieties
over k, X a hyperbolic polycurve of relative dimension n over S, and ¢ : 11§, — TI%

an open homomorphism over GY.. Suppose that the composite 1%, 2 5 — IIY
arises from a morphism Y — S over k. Write S’ C S for the scheme-theoretic
image of the morphism'Y — S, Z := Nor(Y/S’), and n — Z for the generic point
of Z. Then the following hold:

(i) The morphism Y — Z over k is dominant and generically geometrically
connected. In particular, Y, :=Y Xz n is a (nonempty) normal variety
over 1.

(ii) There exist nonempty open subschemes Uy C Y, Uy C Z of Y, Z, respec-
tively, such that the image of Uy C Y by the natural morphism Y — Z is
contained in Uz C Z, and, moreover, the resulting morphism Uy — Uy is
surjective, smooth, and geometrically connected.

(iii) Write N C II§, for the normal closed subgroup of 11§, obtained by forming

the image of the normal closed subgroup A;})‘),/UZ C I, of I, by 117, —

ITY.. Then the image of the composite A%)/n — Hf,n — I}, hence also the

composite Ily, = Ay, /,, — A%)/n — H’{,n — I, coincides with N C 1LY,

(iv) The image of N C II§, by the composite 11§, — TI5, — II% is trivial. In
particular, we obtain a natural IT% -conjugacy class of homomorphisms N —
N

(v) If, moreover, dim(Y') > dim(S), Y is of p-LFG-type, and Hf/x,j — 1Y is
injective, then N 1is infinite.

(vi) If moreover, dim(Y) > dim(S) and Y is a hyperbolic polycurve over k
satisfying condition (xx),, then there exists a sequence of normal closed
subgroups of N

{1} = Ho C Hy C -+ C Haim(v)—dim($)—1 C Haim(v)—dim(s) = N

such that, for each integer i such that 1 < i < dim(Y) — dim(S), the closed
subgroup H; is topologically finitely generated, and the quotient H;/H;_1 is
infinite.

(vii) If, moreover, n =1, k is sub-p-adic, X/S satisfies condition (xx),, and the
image of N — AP

X/s of (iv) is nontrivial, then ¢ arises from a morphism
Y — X over S.

Proof. (cf. [10] Lemmas 3.4, 3.5) Assertion (i) follows from Lemma 1.9. Assertion
(ii) follows from the fact that k is of characteristic zero. Next, we verify assertion
(ii). Let 7 — Uz be a generic geometric point of Uz. Write Yz :== Y Xz 7
and (Uy)s; := Uy Xy, . Then it follows from Lemma 1.10, together with the
right exactness of the operation of taking the maximal pro-p quotient, that we
obtain a surjection Iy, — Ag’iwz. Thus, N is the image of the composite

7
Oy, = Agz s, < My, — T, which coincides the composite Iy, ), — Iy, 5
Ay, jy — Ag)/n — H’;,n — II{,. On the other hand, it follows from Lemma 1.2 that
the homomorphism Il(y, ). — Ily, is surjective. Moreover, it follows from the
surjectivity of Ily, —» 1I,, together with the right exactness of the operation of

taking the maximal pro-p quotient, that Ay, ,, — Agf?/n is surjective. Thus, N
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is the image of the composite Agf; ) Iy H’{/n — II},. This completes the proof of
assertion (iii). Assertion (iv) follows from assertion (iii), together with the fact
that the composite Y;, — Y — § factors through n — S. Next, we verify assertion
(v). Tt follows from our choice of (Uy,Uy) that the geometric fiber F of Uy —
Uz at a k-valued geometric point of Uz is a smooth variety over k of dimension
> dim(Y) — dim(S) > 0. In particular, the natural morphism F — Y xj k over
k is nonconstant. Thus, since Y is of p-LFG-type, the image of . — H?/xkE’
hence also that of I}, — II}., is infinite. On the other hand, it follows from our
choice of F that II%, — II}. factors through the composite A(Upi U, Iz, — 115
Thus, we conclude that N is infinite. This completes the proof of assertion (v).

Next, we verify assertion (vi). The morphism Y7 =Y xz 7 2 Y factors through a
natural closed immersion Yz < Y x; 7. Then, since Y5 is a normal variety over 7
of dimension > dim(Y) — dim(.S), and, moreover, Y X 77 is a hyperbolic polycurve
over 7] satisfying condition (x), (cf. Proposition 2.16(ii)), it follows from Lemma 2.38
that the image of Hf,ﬁ — H’)’/Xﬁ admits a sequence of closed subgroups as in the
statement of assertion (vi). On the other hand, any homomorphism I1y. - — II§,
induced by Y x; 7 — Y determines an isomorphism IIY, = A /i (cf. Lemma
1.5, Proposition 2.16(ii)). Thus, the image of H’{% — H’;Xm is isomorphic to that
of H{’% — IIY,, which coincides with N (cf. assertion (iii)). This completes the
proof of assertion (vi). Finally, we verify assertion (vii). Note that since X/S

satisfies condition (#x),, we have A()’(D}S = A% /s 1t follows from assertion (iii)

that the image of Agf;) /1y C IIy, by the composite IIy, — IIF, 4 % coincides
with the image of N — A’)’( /80 which is nontrivial. On the other hand, it follows
from Lemma 1.2 that ITy, — Ily, hence also H’;/n — I}, is surjective. Thus,

since Ag)/n C H%’,n is a normal subgroup of H’{/n, in light of openness of ¢, it
follows that Im(Hf,n — II%) N AL, /s is an open subgroup of A /5» and, moreover,

Im(Agf;)/n — A’)’(/S) is a normal subgroup of Im(H’{,ﬁ —I5)N A?(/S. On the other

hand, it follows from Lemmas 1.5, 1.7 that Ay, /,, hence also Ag,)/n’

finitely generated. Thus, we conclude that Im(A(p ) A% / ) is an open subgroup

Yn/’fl
of Ag(/s (cf. Proposition 2.16(iv)). Write X, := X X g7. Let us fix an isomorphism

Hg(" 5 105 xpe, Hf) (cf. Proposition 2.16(ii)) over IIf arising from morphisms

pr pr . ..
X, = X, X, =¥ nover S, and a homomorphism HZ;,” — I, X, 115 over 1Y arising

is topologically

from morphisms Y, s Y)Y, e 1 over Z. Then ¢ determines a homomorphism

- TTP, 14 14 P P TP
On My, — Iy xqp I = I xqp I < 1T

over II». On the other hand, we have Ag?z/n =A%, = A% (cf. Proposition
2.16(ii)). Thus, it follows from the openness of Agf:])/n — A?(/S’ together with the
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commutative diagram of profinite groups

(p)
1 —— AYn/n D Hf,n Hf] 1
1 —— Ag?Z/n — Hz)){n 17 1,

that the image of ¢, is a closed subgroup of H’)’(U of finite index, hence open. Thus,
since X, is a hyperbolic curve over 7 satisfying condition (*x),, and, moreover, 1 is
a spectrum of a sub-p-adic field, it follows from Theorem 3.4 that ¢,, arises from a
morphism Y, — X, over . Let { — Y, for the generic point of ¥;, =Y xzn CY.
Let us consider Iy — IT% induced by the morphism { — X, — X over S. Then
we obtain the commutative diagram of profinite groups

14 P 14 P P
0 — I xp [ —— I xpp I

l l

o I

Thus, II{ — II% coincides with the composite of ¢ and II{ — II§, arising from
¢ — Y, which implies that ¢ arises from a morphism ¥ — X over S (cf. Lemma
2.34) This completes the proof of assertion (vii). O

Definition 3.6. Let p be a prime number, X,Y normal varieties over k, and
¢ : 1§, — II% a homomorphism over G}.

(i) We shall say that ¢ is nondegenerate if ¢ is open, and, moreover, for any
open subscheme U C Y of Y, any normal variety Z over k such that
dim(Z) < dim(X), and any smooth, geometrically connected, surjective
morphism U — Z over k, the composite II}, — II§, — II% does not factor
through IIf, — II7,.

(ii) Suppose that X is a hyperbolic polycurve of relative dimension n over k
satisfying condition (*%),. Then we shall say that the homomorphism ¢ is
poly-nondegenerate if there exists a sequence of parametrizing morphisms

X=X,—->X,.1—-— X1 = Speck =X

such that X/k satisfies condition (*), with respect to this sequence, and
that for each integer ¢ such that 0 < ¢ < n, the composite ITj, — II§, — H’)’(i
is nondegenerate.

Theorem 3.7. Let p be a prime number, k a sub-p-adic field, X a hyperbolic poly-

curve over k satisfying condition (xx),, and Y a normal variety over k. Write
Hom{*™(Y, X) € Homy(Y, X) for the subset of dominant morphisms from'Y to X
over k and HomglgD(Hf,, %) Homgr (115, TI%. ) for the subset of poly-nondegenerate

homomorphisms from 11y, to II% over GY.. Then the natural map

Hom;*™ (Y, X) — Homge (I15,, T ) / Inn(A%, )
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determines a bijection

Hom{*™ (v, x) 14 HomPND(H§7 1% )/ Tan(A% ).

Proof. (cf. [10] Theorem 3.7) First, I claim that the following assertion holds:
Claim A: Any homomorphism ¢y : I}, — II%. over G} that arises
from a dominant morphism f : Y — X over & is poly-nondegenerate.
Indeed, suppose that there exist an integer i, an open subscheme U C Y of Y a

normal variety Z over k, a smooth, geometrically connected, surjective morphism
U — Z over k, and a sequence of parametrizing morphisms

X=X,—-X,_1— - — X1 = Speck = Xy,
such that 0 < i < n, X/k satisfies condition (#*), with respect to this sequence,

and, moreover, the composite II}, — II}, % %, — II%  factors through II7, — IT7,.
Then, by applying Lemma 2.33, Where we take the data “(k,K',S,Y, Z, X f)” to

be (k,k,Speck,Z, U, X;, U — Y EN g X;), we conclude that the composite

U—=Y i> X — X, factors through U — Z. In particular, since f is dominant, it
holds that dim(Z) > dim(X;). This completes the proof of Claim A.
It follows from Claim A that we have a natural map

Ho dom(Y X) — HomPND(Hg7 H&)/Inn(Aé’(/k),

and, moreover, it follows from Corollary 3.3(i) that this natural map is injective.

Thus, to verify Theorem 3.7, it suffices to verify the surjectivity of the above map.
Let ¢ € HomPND (IT§,, TI%, ) be a poly-nondegenerate homomorphism over G¥ and

X=X,— Xp-1— - — X1 — Speck = Xy,

a sequence of parametrizing morphisms as in Definition 3.6(ii). Now I claim that
the following assertion holds:

Claim B: Suppose that there exists a morphism f :Y — X over k
from which ¢ arises. Then f is dominant.

Indeed, assume that f is not dominant. Write X’ C X for the scheme-theoretic
image of f and S := Nor(Y/X’). Then since the natural morphism ¥ — S is
dominant and generically geometrically irreducible (cf. Lemma 1.9), and & is of
characteristic zero, there exist open subschemes Uy C Y,Ug C S of Y, S, respec-
tively, such that the image of Uy C Y by the morphism Y — S is contained in
Us C S, and, moreover, the resulting morphism Uy — Ug is surjective, smooth,
and geometrically connected. On the other hand, since f is not dominant, it follows
that X', hence also Ug, is of dimension < dim(X). However, since HpUY — 1% fac-
tors through HZ[}Y — HpUS, and ¢ is poly-nondegenerate, we obtain a contradiction.
This completes the proof of Claim B.
It follows from the discussion preceding Claim B that, to verify Theorem 3.7, it

suffices to verify that the following assertion holds:

Claim C: For each integer ¢ such that 0 < i < n, if the composite

I§, — I — [T arises from a dominant morphism Y — X; over

k, then the composite II§, — II%, — H’;(Hl arises from a dominant

morphism Y — X, over k.
To verify Claim C, let us write Z := Nor(Y/X,), n — Z for the generic point of Z,
and Y;, :=Y xzn. Now I claim that the following assertion holds:
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Claim C.1: The image of any homomorphism that belongs to the
Hz)’(iﬂ—conjugacy class of homomorphisms N — Ag?i)ﬂ e of Lemma
3.5 (iv), where we take the data “(S,Y, X)” to be (X;,Y, X;t1), is
nontrivial.

Indeed, assume that the image of N — Ag?i)ﬂ/&- is trivial. Let Uy C Y,Uz C Z

be open subschemes of Y, Z, respectively, as in Lemma 3.5(ii). Then it follows from

Lemma 3.5(iii) that the image of Ag’i /v, C 117, by the composite ITf; 4 5 —

HI))QH is trivial. Thus, it follows that the composite Iy, — TIj, 4 %, — Hz)}iﬂ
factors through II7, — II; . On the other hand, since dim(Uz) = dim(Z) =i <
i+ 1 =dim(X;4+1), and ¢ is poly-nondegenerate, we obtain a contradiction. This
completes the proof of Claim C.1.

It follows from Claim C.1, together with Lemma 3.5(vii), that the composite
Iy, — 1% — II%. arises from a morphism ¥V — X;y1 over k. Moreover, it
follows from Claim B that this morphism is dominant. This completes the proof of
Claim C, hence also of Theorem 3.7. O

Remark 3.8. Tt follows from Theorem 3.7, together with the proof of Claim A in
Theorem 3.7, that a poly-nondegenerate homomorphism satisfies the condition in
Definition 3.6(ii) with respect to any sequence of parametrizing morphisms of X/S
which satisfies condition ().

Theorem 3.9. Let p be a prime number, k a sub-p-adic field, Y, S normal varieties
over k, X a hyperbolic curve over S satisfying condition (xx),, and ¢ : 11§, — II%
a homomorphism over G¥. Suppose that the following conditions are satisfied:

(1) The composite 11, LA % — II% arises from a morphism'Y — S over k.
(2) ¢ is open, and its kernel is finite.
(3) Y is of p-LFG-type, and, moreover, H’;X 7 1Y, is injective.
k
(4) dim(X) (=dim(S) + 1) < dim(Y).
Then ¢ arises from a quasi-finite dominant morphismY — X over S. In particular,
dim(X) = dim(Y).

Proof. (cf. [10] Theorem 3.8) It follows from conditions (3),(4), together with
Lemma 3.5(v), the closed subgroup N C II{, defined in Lemma 3.5(iii) is infinite.
Thus, it follows from condition (2) that the image of N C I}, by ¢ is nontrivial.
This implies that ¢ arises from a morphism ¥ — X over S (cf. Lemma 3.5(vii)).
Moreover, it follows from conditions (2),(3), together with Lemma 2.27(iii), that
Y — X is quasi-finite, hence dominant (cf. condition (4)). This completes the proof
of Theorem 3.9. g

Definition 3.10. Let p be a prime number, n a positive integer, and C a condition
on a connected noetherian separated normal scheme S over k, hyperbolic polycurve
X over S, and a sequence of parametrizing morphisms

X=X,—->Xn.1——>X1—>8=X,

which satisfies the following conditions:

(1) If X/S satisfies the condition C, and, moreover, m > 2, then X/X; satisfies
the condition C.
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(2) If X/S satisfies the condition C, then, for any connected noetherian sep-
arated normal scheme T over k and any morphism T — S, X xg T/T
satisfies the condition C.

(3) If X/S satisfies the condition C, then, for any open subgroup U C II% of

£+ the hyperbolic polycurve corresponding to U satisfies the condition C.

Then we shall say that the assertion (Tn)g holds if, for any hyperbolic polycurve X

of relative dimension n over k satisfying the conditions (xx), and C, IT% does not
admit a sequence of closed subgroups of IT%

{1}=HyCH,C- CH,CHps1 =1I%

such that, for each integer ¢ such that 0 < ¢ < n, the closed subgroup H; is
topologically finitely generated and normal in H;,1, and the quotient H;11/H; is
infinite.

Example 3.11. Suppose that C is one of the following:

e X/S is an arbitrary hyperbolic polycurve.

e X/S is a hyperbolic polycurve such that X — S is proper.

e X/S is a hyperbolic polycurve such that, for each integer 7 such that 1 <
1 < m, if we write (g;,r;) for the type of the hyperbolic curve X;/X; 1,
then r; > 0.

Then C satisfies the conditions (1), (2), (3) in Definition 3.10.

Lemma 3.12. For an arbitrary condition C as in Definition 3.10, the assertion
(Tl)g holds.

Proof. (cf. [10] Lemma 3.10) This follows from Proposition 2.16(iv). O

Theorem 3.13. Let p be a prime number, n a positive integer, k a sub-p-adic field,
C a condition as in Definition 3.10, S a normal variety over k, X a hyperbolic
polycurve of relative dimension n over S satisfying condition (xx),, Y a hyperbolic
polycurve over k satisfying condition (xx),, and ¢ : IIY, — II5 a homomorphism
over GY.. Suppose that the following conditions are satisfied:

(1) The composite 11, LA %, — IIY arises from a morphism'Y — S over k.
(2) ¢ is an open mjectzon

(3) dim(X) (= dim(S) +n) < dim(Y).

(4) If n > 2, then X/X, satisfies the condition C.

(5) For each integer i such that 0 < i < n, the assertion (Tl)g holds.

Then ¢ arises from a quasi-finite dominant morphismY — X over S. In particular,
dim(X) = dim(Y).
Proof. (cf. [10] Theorem 3.11) Fix a surjection II§ — II% over G} arising from
the morphism X — X, over k. First, I claim that the following assertion holds:
Claim A: If n > 2, then the composite II}, A % — TI% arises
from a morphism Y — X7 over S.
Indeed, write S’ C S for the scheme-theoretic image of the morphism Y — S, 7 :=
Nor(Y/S"), n — Z for the generic point of Z, and Y;, := Y xz 7. Then, by applying
Lemma 3.5(vii), where we take the data “(S,Y, X, ¢)” to be (S,Y, Xy, I}, 4 5 —
H];(l), it suffices to verify that the image of the closed subgroup N C I}, defined
in Lemma 3.5(iii) by the homomorphism ITy, — TI% is nontrivial. To verify this,
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assume that the image of N C IT{, by II{, — II% is trivial, i.e., that the image

of N C II§, by ¢ is contained in Ag?}xl = Aé’(/xl C II%. Then, since N C I, is
normal in I}, and ¢ is open, it follows that the image ¢(NV) is normal in the open
subgroup Im¢ C II% of IT5. On the other hand, it follows from Lemma 3.5(vi)

that there exists a sequence of normal closed subgroups of N
{1} = Hy C Hy C -+ C Haim(v)—dim(s) = NV

such that, for each integer ¢ such that 1 < ¢ < dim(Y) — dim(S), the closed
subgroup H; is topologically finitely generated, and that the quotient H;/H;_; is
infinite. Write U := Im¢ N AI;(/XI C A’;(/Xl, and, for each integer i such that
0 < i < dim(Y) — dim(S), HY = ¢(H;) C Aﬁ(/xl. Then, since Im¢ C II% is
open in IT%, U is an open subgroup of A’)’(/Xl. Moreover, since ¢ is injective, the
following hold:

° Hgim(y)—dim(S) is a normal closed subgroup of U =: Hé{m(y)_dim(s)ﬂ.

e For each integer i such that 1 < i < dim(Y)—dim(S)+1, HY is topologically

finitely generated.
e For each integer i such that 1 < i < dim(Y) — dim(S), HY is normal in

Hé]im(y)fdim(sy and, moreover, the quotient HZU/HzU_1 is infinite.

U U . . . U

Now suppose that Hdim(y)fdim(s)ﬂ/Hdim(y)idim(s) is finite. Then since Hdim(y)idim(s)
is an open subgroup of A?(/Xl’ it follows from Proposition 2.16(ii), Lemma 2.22(ii),
together with conditions (2),(3) in Definition 3.10, that Hﬁ’im(y)_dim(s) may be re-
garded as the maximal pro-p quotient of the fundamental group of a hyperbolic
polycurve of dimension n — 1 over k satisfying the conditions (xx), and C. Thus,
since we have assumed that the assertion (Tn,l)g holds, for each integer ¢ such that

1 < i < n, by taking the “H;” in Definition 3.10 to be Hc(i]im(Y)fdim(S)fnJri’
obtain a contradiction. Next, supose that Htg]im(Y)—dim(S)—i-l/Hgim(Y)—dim(S) is infi-
nite. Then, for each integer ¢ such that 1 < ¢ < n, by taking the “H;” in Definition
3.10 to be Hc[i{m(Y)fdim(S)fnJrlJri’ we obtain a contradiction. This completes the
proof of Claim A.

By applying Claim A and using condition (1) in Definition 3.10 inductively,
to verify Theorem 3.13, we may assume without loss of generality that X is a
hyperbolic curve over S. Then it follows from Proposition 2.28 and Theorem 3.9
that ¢ arises from a quasi-finite dominant morphism ¥ — X over S. O

we

Corollary 3.14. Let p be a prime number, k a sub-p-adic field, S a normal variety
over k, X a hyperbolic polycurve of relative dimension 2 over S satisfying condition
(xx)p, Y a hyperbolic polycurve over k satisfying condition (xx),, and ¢ : 11§, — TI%
a homomorphism over GY. Suppose that the following conditions are satisfied:

(1) The composite 11, % 1%, — IIY arises from a morphism'Y — S over k.
(2) ¢ is an open injection.
(3) dim(X) (= dim(S) +2) < dim(Y).
Then ¢ arises from a quasi-finite dominant morphismY — X over S. In particular,
dim(X) = dim(Y).

Proof. (cf. [10] Corollary 3.12) This follows from Theorem 3.13, together with
Lemma 3.12. g
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Lemma 3.15 ([10] Lemma 3.13). Let Gy, Gy be profinite groups, Hy C Gy, Hs C
G2 closed subgroups of G1,G4, respectively, and ¢ : G1 — Go a homomorphism.
Suppose that ¢(H1) C Hy. Then the homomorphism Hy — Hs induced by ¢ is
surjective if and only if the following condition is satisfied: For any open subgroup

U C Gy of Gy and any normal open subgroup N C U of U, if the composite

HyNU < U — U/N is surjective, then the composite Hy N ¢~ (U) — ¢~1(U) 2

U — U/N is surjective.

Theorem 3.16. Let p be a prime number, k a sub-p-adic field, X a hyperbolic
polycurve of dimension 2 over k satisfying condition (xx),, Y a normal variety over
k, and ¢ : 11y, — 11X an open homomorphism over GY.. Suppose that Hf’XkE — I,
is injective, and, moreover, that the kernel of ¢ is topologically finitely generated.
Then ¢ arises from a uniquely determined dominant morphism Y — X over k. In
particular, dim(Y") > 2.

Proof. (cf. [10] Theorem 3.14) First, by replacing X by the connected finite étale
covering of X corresponding to ¢(II§,) C II%, to verify Theorem 3.16, we may
assume without loss of generality that ¢ is surjective. (Note that it follows from
Lemma 2.22(ii) that X satisfies condition (¥x), even if we replace X as above.)
Then since ¢ and II% — TI% are surjective (cf. Proposition 2.16(i)), and their
kernels are topologically finitely generated (cf. Proposition 2.16(iii)), the composite

juce R % — TI% is surjective, and its kernel is topologically finitely generated.
Thus, since X, is a hyperbolic curve over k satisfying condition (xx),, it follows
from Theorem 3.4, together with the implication (2)” = (3) of Lemma 2.35, that
I1§, — II% arises from a uniquely determined morphism Y — X; over k which is
surjective and generically geometrically connected. Write n — X3 for the generic
point of X1, Y, :=Y xx, n, and X,, :== X xx, n. (Thus, Y,, is a normal variety
over 7.) Now I claim that the following assertion holds:

Claim A: Any homomorphism that belongs to the II% -conjugacy
class of homomorphisms N — A% of Lemma 3.5 (iv), where we

take the data “(S,Y, X)” to be (X1,Y, X), is surjective.

Let us observe that N — A?(/Xl is surjective if and only if Ay, ,, — Aﬁ(/xl is

surjective (cf. Lemma 3.5(iii)). Thus, it follows from Lemma 3.15 that, to verify
Claim A, it suffices to verify that the following assertion holds:

Claim A.1: Let U C II% be an open subgroup of II5. and V C U
a normal open subgroup of U. Write X’ — X for the connected
finite étale covering of X corresponding to U C II%,, X" — X' for
the connected finite étale Galois covering of X’ corresponding to
VcU=1%,, Y =Y for the connected finite étale covering of ¥’
corresponding to ¢~ 1(U) C I}, Y — Y for the connected finite
étale Galois covering of Y’ corresponding to ¢~ 1(V) C ¢~ 1(U) =
HZ;/,, Yﬂ/ = Y/Xxln (: Y/XyYn), and Yﬂ/l = Y//XX1?7 (: Y//XYYU)
(Note that it follows from Lemma 1.2 that ¥;, — Y induces an outer
surjection Iy, — Iy, which implies that Y, and Y, are connected).
Suppose that the composite Ag(/xl NI, — 1%, — 105, /115, =
U/V is surjective. Then the composite Ayn/n N Hyy; — HYé —»
Hyn/ /Hynn is surjective.
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Indeed, it follows from Proposition 2.5, and Lemma 2.22(ii), that the sequence of
schemes X’ — X7 := Nor(X’/X;) — X{ := Nor(X'/ Speck) determines a struc-
ture of hyperbolic polycurve of dimension 2 on X’ which satisfies condition (xx)p,
and, moreover, the natural morphisms X — X;,n’ — 7, where we write ' — X}
for the generic point of X/, are connected finite étale coverings. In particular, it
follows from Lemma 2.9(ii) that the natural inclusions IT%, — II%,IIys < Ily,
determine equalities

AZ))(/Xl ﬂHI;(/ = AI;(’/X{’ Ayn/n ﬂHYT; = Ayé/n/.

Thus, to verify Claim A.1, by replacing X by X', it suffices to verify that for any
covering X" — X corresponding to a normal open subgroup of H’)}, if AI)’( X,
IT% /1%, is surjective, then Ay, /, — Ily, /Iy, is surjective. Moreover, since ITx~
is the inverse image of II%,, C II% by the surjection IIx — II%, it follows that
the natural homomorphism IIx /IIx» — II5 /II%,, is an isomorphism. Thus, to
verify Claim A.1, it suffices to verify that if Ay, x, — IIx/Ilx~ is surjective, then
Ay, /y — ly,/ HYT/,/ is surjective. On the other hand, it follows from the natural
isomorphisms Hxx 7 = Ax/x Wy, x,7 = Oy sy, 7 = Ay, /, that Hxxy 7 =
IIx /TIx is surjective if and only if X" xx (X xx, 7) = X" xx, 77 is connected,
and Iy 7 — Iy, /Hyél is surjective if and only if YT;’ Xy, Y xx, ) =Y"xx, 7
is connected. Thus, we conclude that to verify Claim A.1, it suffices to verify that
if X" xx, 7 is connected, then Y, x,, 7 is connected. To verify this, assume that
X" x x, M is connected, i.e., X" — X is generically geometrically connected. Then,
since the composite X” — X — X; is smooth and surjective, it follows from the
implication (1) = (2)" of Lemma 2.35 that the composite TI%,, — I — IT% s
surjective, and its kernel is topologically finitely generated. On the other hand, we
have assumed that ¢ is surjective, and ker ¢ is topologically finitely generated. Thus,
it holds that the composite I1Y,,, — 1%, < 1% — TI% is surjective, and its kernel
is topologically finitely generated. In particular, it follows from the implication
(2)"” = (3) of Lemma 2.35 that the morphism Y — X is generically geometrically
connected, which implies that Y X x, 77 is connected. This completes the proof of
Claim A.1, hence also of Claim A.

It follows from Claim A, together with Proposition 2.16(iii) and Lemma 3.5(vii),
that ¢ arises from a morphism Y — X over k. Moreover, it follows from Corollary
3.3(i) that Y — X is unique. On the other hand, it follows from Claim A, together
with Lemma 3.5(iii), that IIy y ,5 — HI;(XXIE (where Z = Nor(Y/X1), and 7 — Z
is a generic geometric point of Z) is surjective. Thus, since X X x, 77 is a hyperbolic
curve over 7], it follows from Proposition 2.16(iii) that the morphism Y xz 77 —
X Xx, 7, hence also Y xx, 7 = X Xx, 7, is dominant. This implies that ¥ — X
is dominant. This completes the proof of Theorem 3.16. (]

Theorem 3.17. Let p be a prime number, k a sub-p-adic field, X a hyperbolic
polycurve of dimension 2 over k satisfying condition (x),, Y a normal variety over
k, and ¢ : Hf,/k — H?{/k an open homomorphism over Gy. Suppose that the kernel
of ¢ is topologically finitely generated. Then ¢ arises from a uniquely determined
dominant morphism'Y — X over k. In particular, dim(Y") > 2.

Proof. There exists a finite Galois extension k; of k such that X xj ki /k; satisfies
condition (*x), (cf. Proposition 2.21). We can choose a finite extension ko of kq
such that Y xj ko has a ko-rational point. Then the section of Ilyx,x, — Gk,
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induced by a ko-rational point determines a homomorphism Gy, — Aut(Il?, ).

YX]CE
On the other hand, it follows from Lemma 1.7 that Iy 7 hence also H@X B is
k
topologically finitely generated. Thus, Aut(H’;,X E) has an open pro-p subgroup U
k

cif. Lemma 2. . Let us choose a finite Galois extension of k such that G C Gy
f.L 2.19). L h finite Galoi k' of k h that G G

is contained in the inverse image of U C AUt(HZ))/xkE) by G, — AUt(HZ;/xkE)' Then
k' is a finite extension of ks. Moreover, since the image of the composite Gy —
G, — Aut(HI;/XkE) is pro-p, Gir — Gp, — AUt(HZ;/xkE) factors through the
surjection G — G7,. Thus we obtain a homomorphism G}, — Aut(Hf/XkE), which
determines a semidirect product HfkaE x GY,. Then by construction, we obtain a

surjection Il 7 % Gy — HixkE x GY,. Now Iy 7% G =y, (cf. Lemma

1.5), and, moreover, the image of Oy % C Wy s by Wy — H’;X 7 X GY, is
k

P : P P s ; _ P P

Y Since HYxkEX]Gk’ is pro-p, the composite Iy, z C Iy, pr — HYXkENGk’

ines a s P P P P i i
determines a sequence I 5 = My = T o G,. In particular, since

» » o R » " C
HYxkE — HYxk% x G, is injective, we conclude that HYxkE — Iy 4 18 injective.
7

Now HXka,/k,,

Gy C Gy by the surjections Hg’(/k — Gk,HT;//k — G, respectively. Thus, if we
g

write ¢’ : H?’xkk’/k’ — HZ))(xkk’/kN'

by ¢, then ker ¢’ = ker ¢. Write ¢’ : TIy,_,, — I, for the open homomorphism

over G¥, determined by ¢’. Then since II¥, _ — II}, ,, is injective, we have
Y Xk Xk

ker ¢’ = ker’. On the other hand, since X xj ki /k1 satisfies condition (kx),, it

follows from Proposition 2.16(ii) that X x, k'/k" satisfies condition (sx),. Thus, ¢’
arises from a dominant morphism Y X k' — X xj k" over k' (cf. Theorem 3.16).

H@Xk J /g ATe the inverse image of the normal open subgroup

for the open homomorphism over G determined

Since the image of ¢ by the map of Lemma 2.23(ii) is ¢’, this implies that ¢’ arises
from the above dominant morphism Y xj k" — X xj k/, which is compatible with
the natural actions of Gal(k’/k) (cf. Proposition 3.2(i)). Thus, by descending the
morphism, we obtain a dominant morphism Y — X over k. Since Aé’( Ik is slim (cf.
Proposition 2.16(iii)), it follows from Lemma 1.20 that IIY, , — II% , induced by
the morphism ¥ — X belongs to the same A% /k—conjugacy class determined by
¢, which implies that ¢ arises from a dominant morphism ¥ — X. Moreover, it
follows from Proposition 3.2(i) that ¥ — X is unique. This completes the proof of
Theorem 3.17. U

Corollary 3.18. Let p be a prime number, k a sub-p-adic field, X a hyperbolic
polycurve of dimension 3 over k satisfying condition (xx),, Y a normal variety
over k, and ¢ : 11§, — II5, a homomorphism over GY.. Suppose that the following
conditions are satisfied:

(1) ¢ is open, and its kernel is finite.

(2) Y is of p-LFG-type, and, moreover, H’;X P 1Y, is injective.
k

(3) 3 < dim(Y).

Then ¢ arises from a uniquely determined quasi-finite dominant morphismY — X
over k. In particular, dim(Y') = 3.
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Proof. (cf. [10] Corollary 3.15) It follows from condition (1), together with Propo-

sition 2.16(iii), that the kernel of the composite II}, LA % — TI% is topologi-

cally finitely generated. Thus, it follows from Theorem 3.16 that the composite

juge 3) HI))c — H’;(Z arises from a dominant morphism Y — X5 over k. In particular,

it follows from Theorem 3.9 that ¢ arises from a quasi-finite dominant morphism
Y — X over k. Moreover, it follows from Corollary 3.3(i) that Y — X is unique.
This completes the proof of Corollary 3.18. (]

Corollary 3.19. Let p be a prime number, k a sub-p-adic field, X a hyperbolic
polycurve of dimension 3 over k satisfying condition (x),, Y a normal variety over
k, and ¢ : Hf,/k — Hi/k a homomorphism over Gy. Suppose that the following
conditions are satisfied:

(1) & is open, and its kernel is finite.

(2) Y is of p-LFG-type.

(3) 3 <dim(Y).
Then ¢ arises from a uniquely determined quasi-finite dominant morphism Y — X
over k. In particular, dim(Y') = 3.

Proof. This follows from Corollary 3.18, together with an argument similar to the
argument used in the proof of Theorem 3.17. O

Corollary 3.20. Let p be a prime number, k a sub-p-adic field, X a hyperbolic
polycurve of dimension 4 over k satisfying condition (x%),, Y a hyperbolic polycurve
over k satisfying condition (xx),, and ¢ : Iy, — II% a homomorphism over GY.
Suppose that the following conditions are satisfied:

(1) ¢ is an open injection (resp. isomorphism).

(2) 4 <dim(Y).
Then ¢ arises from a uniquely determined finite étale covering (resp. isomorphism)
Y — X over k. In particular, dim(Y") = 4.

Proof. (cf. [10] Corollary 3.16) First, by replacing X by the connected finite étale
covering of X corresponding to ¢(I1},) C II%, to verify Theorem 3.20, we may
assume without loss of generality that ¢ is an isomorphism. Then it follows from

Proposition 2.16(iii) that the kernel of the composite I, 4 % — II% is topo-
logically finitely generated. Thus, it follows from Theorem 3.16 that the composite

jiCe LA % — TI% arises from a dominant morphism Y — X, over k. In par-
ticular, it follows from Corollary 3.14 that ¢ arises from a quasi-finite dominant
morphism Y — X over k, which implies that 4 = dim(X) = dim(Y’). By apply-
ing an argument similar to the above argument to ¢!, we obtain a quasi-finite
dominant morphism X — Y over k. Then it follows from Corollary 3.3(i) that the
two morphisms ¥ — X and X — Y are inverse to each other. This Y — X is
an isomorphism. Moreover, it follows from Corollary 3.3(i) that Y — X is unique.
This completes the proof of Corollary 3.20. O

Corollary 3.21. Let p be a prime number, k a sub-p-adic field, X a hyperbolic
polycurve of dimension 4 over k satisfying condition (x),, Y a hyperbolic polycurve
over k satisfying condition (x),, and ¢ : Hf,/k — H?{/k a homomorphism over Gy,.
Suppose that the following conditions are satisfied:

(1) ¢ is an open injection (resp. isomorphism).
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(2) 4 <dim(Y).
Then ¢ arises from a uniquely determined finite étale covering (resp. isomorphism)
Y — X over k. In particular, dim(Y") = 4.

Proof. This follows from Corollary 3.20, together with an argument similar to the
argument used in the proof of Theorem 3.17. a

Corollary 3.22. Let p be a prime number, ny,ny positive integers, k a sub-p-adic
field, X,Y hyperbolic polycurves of dimension ny,ny over k satisfying condition
(%)p, respectively. Suppose that either ny <4 or ny <4. Then the natural maps

Isomy (Y, X) — Isomg, (Iy, IIx )/ Inn(A x /1) — Isomg, (Hﬁ’,/k, H’)’(/k)/lnn(Ag(/k)
are bijective.

Proof. The bijectivity of the map
Isomy (Y, X') — Isomg, (Ily, IIx )/ Inn(A x ;)
is proved in [10] Corollary 3.18, and the injectivity of the map
Isomg (Y, X) — Isomg, (H’;,/k, Hg(/k)/Inn(Ag(/k)

follows from Proposition 3.2(i). Thus, it remains to verify the surjectivity of the
latter map. Let ¢ : IT}, n = I n be an isomorphism over Gy. Then, by replacing
(X,Y, ¢) by (Y, X, ¢~ 1) if necessary, we may assume without loss of generality that
ny < ny. In particular, ny < 4. Thus, it follows from Proposition 2.28, Theorems
3.4, 3.17, Corollaries 3.19, 3.21 that ¢ arises from a uniquely determined quasi-finite
dominant morphism Y — X over k. In particular, we obtain that ny = ny < 4.
Thus, by applying an argument similar to the above argument to ¢!, we obtain
a quasi-finite dominant morphism X — Y over k. Then it follows from Corollary
3.3(1) that the two morphisms ¥ — X and X — Y are inverse to each other. Thus,
Y — X is an isomorphism. Moreover, it follows from Corollary 3.3(i) that ¥ — X
is unique. This completes the proof of Corollary 3.22. O

Remark 3.23. It seems that the assertion (Tn)g holds for every positive integer n.
However, it is unknown that there exists an integer n > 1 (with an enough general
condition C) such that the assertion (Tn)g can be proven. If one proves that the
assertion (Tn)g holds for every positive integer n, then, by applying an argument
similar to the argument applied in the proof of Corollary 3.22, except that instead of
applying Theorems 3.4, 3.17, Corollaries 3.19, 3.21, one applies Theorem 3.13, that
we can prove the assertion obtained by replacing the assumption “either ny < 4
or ny < 4” of Corollary 3.22 by “X,Y satisfy the condition C”.

Proposition 3.24 ([10] Proposition 3.19). Let kx,ky be finitely generated exten-
sion fields of Q. Then the following hold:

(i) Let H C Gy, be a closed subgroup of Gy, . Suppose that H is topologically
finitely generated and normal in an open subgroup of Gi,. Then H is
trivial.

(ii) The natural map Isom(kx /kx, ky /ky) — Isom(Gy, , Gy, ) is bijective.

Corollary 3.25. Let p be a prime number, kx,ky fields of characteristic zero,
n a positive integer, X a hyperbolic polycurve of dimension n over kx satisfying
condition (x),, Y a normal variety over ky, and ¢ : Hf,/ky — Hi/kx an open
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homomorphism. Suppose that one of the following conditions (1), (2), (3), (4) is
satisfied:

(1) n=1.
(2) The following conditions are satisfied:
(2-) n=2.

(2-ii) The kernel of ¢ is topologically finitely generated.
(3) The following conditions are satisfied:
(34) n = 3.
(3-ii) The kernel of ¢ is finite.
(3-iii) Y s of p-LFG-type.
(3-iv) 3 < dim(Y).
(4) The following conditions are satisfied:
(4-1) n=4.
(4-ii) ¢ is injective.
(4-iil) Y s a hyperbolic polycurve over ky satisfying condition (x)p.
(4-iv) 4 < dim(Y).

Then the following hold:

(i) Suppose that both kx,ky are finitely generated over Q. Then the open
homomorphism ¢ lies over an open homomorphism Gi, — G .

(ii) In the situation (i), suppose that the homomorphism Gr, — G, obtained
in (i) is injective. Then ¢ arises from a dominant morphismY — X.

(iii) Suppose that both kx,ky are sub-p-adic, and, moreover, that the open ho-
momorphism ¢ lies over an open homomorphism G, — Gr, that arises
from a homomorphisms kx — ky of fields. Then ¢ arises from a dominant
morphism'Y — X.

Proof. (cf. [10] Corollary 3.20) First, we verify assertion (i). It follows from Lemma
1.7 and Proposition 2.7(i) that HyW = Ay /iy, hence also the image of the com-
posite Ay, — Af,/ky — Gy, is topologically finitely generated. Moreover,
the image of the composite Ay, — A’;//ky — Gy is normal in the image of
¢

Hf,/ky Rt Hl;(/kx — Gy, which is an open subgroup of Gj,. Thus it follows
from Proposition 3.24(i) that the image of the composite Ay /i, — A’;/ky — Gy

is trivial. In particular, the composite H’;,/ky A Hg( Jhx 7 G, factors through

115, Ihy 7 Gy . Then ¢ lies over a resulting homomorphism Gy, — Gk, . More-
over, since ¢ is open and the composite Hf,/ky — Gy, H?{/kx — G, 1s surjective,
we conclude that Gy, — Gy, is open. This completes the proof of assertion (i).
Next, we verify assertion (ii). Let us observe that, by replacing X by the con-
nected finite étale covering of X corresponding to ¢(II. /ky) C I, Jkyo O verify
assertion (ii), we may assume without loss of generality that ¢, hence also the in-
jection G, — Gy, is surjective. Then it follows from Proposition 3.24(ii) that
the isomorphism Gy, — Gy, arises from an isomorphism kx — ky that deter-
mines an isomorphism kx ~ ky. In particular, by replacing (X x ky, ky, ky ) by
(X, kx,kx), we may assume without loss of generality that (kx,kx) = (ky,ky),
and that the homomorphism Gj, — Gj, of (i) is the identity homomorphism of
Gi, - Then it follows from Theorems 3.4, 3.17, Corollaries 3.19, 3.21 that ¢ arises
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from a dominant morphism ¥ — X. This completes the proof of assertion (ii). Fi-

nally, we verify assertion (iii). Since HXX v /ky = HX/k Xa Gy, (cf. Proposi-

tion 2.16(ii)), it follows that ¢ determines a homomorphlsm HY/k — HXXk by [y

which arises from a dominant morphism Y — X X, ky (cf. Theorems 3. 4 3.17,
Corollaries 3.19, 3.21). Thus, ¢ arises from the composite Y — X xj, ky Fi% X.
This completes the proof of assertion (iii). d

4. FINITENESS OF THE SET OF OUTER ISOMORPHISMS BETWEEN
GEOMETRICALLY PRO-p ETALE FUNDAMENTAL GROUPS OF HYPERBOLIC
POLYCURVES

In the present §4, we discuss the finiteness of a certain set of outer isomorphisms
between the pro-p étale fundamental groups of hyperbolic polycurves. Let k be a
field of characteristic zero, k an algebraic closure of k, and G}, := Gal(k/k).

Lemma 4.1 ([10] Lemma 4.1). Let G be a profinite group, H C G an open subgroup
of G, A a group, and A — Aut(G) a homomorphism. Write Ay C A for the
subgroup of A consisting of a € A such that the automorphism of G obtained by
forming the image of a in Aut(G) preserves H C G. Suppose that G is topologically
finitely generated. Then Ap is of finite index in A.

Lemma 4.2. Let p be a prime number, n a positive integer, S a connected noe-
therian separated normal scheme over k, and X a hyperbolic polycurve of relative
dimension n over S satisfying condition (x),. Then there exists an open subgroup
H C AX s of AX/S such that, if we write H; := HOAX/X for each integer i such
that 0 < i < n, then, for each integer i such that 0 <1i < mn, it holds that

rankzp((Hi/HHl)ab) < rankz, ((H;—1/H;)™).

Proof. (cf. [10] Lemma 4.2(i)) We verify Lemma 4.2 by induction on n. If n =1,
then Lemma 4.2 is immediate. Now suppose that n > 2, and that the induction
hypothesis is in force. Then it follows from induction hypothesis that there exists
an open subgroup U C Aé’(/xl of A?{/xl such that, if we write U; := U N A?(/X,ﬂ,
for each integer i such that 1 < i < n, then, for each integer ¢ such that 1 < i < n,
it holds that

rankzp((Ui/UHl)ab) < rankzp((Ui_l/U')ab).
Now it follows from Lemma 2.17(i) that there exists an open subgroup V C A% Xk
of AX/k such that U =V N AX/X Write W for the image of V' C AL, by the

Xk AP X1 k- Then since W is an open subgroup of A% there
exists an open subgroup Q C W of W such that

rankz, Q) > rankz,, (U, /U2)*P)

X/k

surjection Af X1k

(cf. Proposition 2.16(vi)). Write H for the inverse image of ) C W by the surjection
V — W. Then H is an open subgroup of V, hence also of A% Ik and, moreover,

since U = VﬂAg(/X C H C V, we have HﬂAX/X = U. Thus, if we write

H;, .= HnN AX/X, for each integer 7 such that 0 < i < n, then, for each integer
i such that 1 < ¢ < n, it holds that H; = U;. Moreover, since Hy = H and
H, = U, it follows from the exact sequence 1 - U — H — @ — 1 that we have an
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isomorphism Hy/H; — Q. In particular, for each integer i such that 1 <i <n—1,
it holds that
rankZp ((Hi/HiJrl)ab) < rankzp ((Hifl/HZ')ab).

This completes the proof of Lemma 4.2. |

Lemma 4.3. Let p be a prime number, n a positive integer, and X,Y hyperbolic
polycurves of dimension n over k satisfying condition (x),. Then the following hold:
(i) Let ¢ : Af,/k = Ag(/k be an isomorphism from Af,/k to A?{/k' Suppose
that there exists an open subgroup H C Af,/k of Af,/k such that, if we

write H; == H N Af’/}quz{ = ¢(H) N AZ))(/Xi for each integer i such that
0 <i < n, then, for any integers i,j such that 0 <i < j < n, it holds that

rankzp((Hi/HiH)ab) > Tankzp((Hj/'/Hj/'ﬂ)ab)v
ranky, ((H]/H{y,)*") > ranky, ((H;/H;1)™).

Then, for each integer i such that 0 < i < n, it holds that qS(Af,/Yi) =

A?(/Xi‘

(ii) Let v : H’;//k = H})?(/k be an isomorphism from H};,/k to H?{/k over Gy.
Suppose that k is sub-p-adic, and that for each integer i such that 0 <1i < n,
it holds that w(Af,/Yi) = A?(/X,-, (e.g., the case where 1/)|A5/k satisfies the
condition appearing in the statement of assertion (i)). Then ¢ arises from
an isomorphism Y = X over k.

Proof. (cf. [10] Lemma 4.2(ii),(iii)) First, we verify assertion (i) by induction on n.
If n = 1, then assertion (i) is immediate. Now suppose that n > 2, and that the
induction hypothesis is in force. To verify assertion (i), I claim that the following
assertion holds:

Claim A: ¢(H,—1) = H],_;.
Indeed, there exists a unique integer m such that 0 < m < n, and the image of
the composite H,_; < H 5 ¢(H) — ¢(H)/H], , is nontrivial, but the image
of the composite H,_1 — H A ¢(H) — ¢(H)/H], is trivial. Then the compos-
ite H,_ 1 — H R ¢(H) - ¢(H)/H), | determines a nontrivial homomorphism
H,, — H;,/H], . Now since H LA ¢(H) - ¢(H)/H,,,, is surjective, and
H, 1 C H is normal in H, it follows that the image of H, 1 — H), /H,, , is nor-
mal in H),/H,, ;. On the other hand, it follows from the commutative diagram of
profinite groups

I —— H, H, ——— H,/H, . —— 1
1 AI)](/XWrFl AI;(/XM AI))(TIL+1 /X'm 1

that the image of H), /H,, ,, — AI))(mH/Xm
regarded as the maximal pro-p quotient of the fundamental group of a hyperbolic

curve over an algebraically closed field, which implies that H),/H], ; is elastic.

is open. Thus, H), /H) ., may be
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In particular, since H,,_; is topologically finitely generated, the image of H,_; —
H, /H, ., is open, which implies that ranky, ((H,/H}, 1)) < rankz (H2",).
Thus, it follows from our assumption that m = n — 1, ie., ¢(H,—1) C H}_;.
Moreover, by applying an argument similar to the above argument to ¢!, we
conclude that ¢(H,—1) = H},_,. This completes the proof of Claim A. Next, I
claim that the following assertion holds:

Claim B: ¢(A} . )= AR .

Indeed, if we write N for the intersection of all Af,/k—conjugates of H,_ 1, then N
is a normal subgroup of Af,/k. Moreover, since A’;,/Ynﬂ is topologically finitely

generated (cf. Proposition 2.16(iii)) and normal in A}, ;. and H,_1 C Ay s

open in Af,/y »Nisa finite intersection of open subgroups of Af,/y » of the
form gH, _19~' (where g € A’;//k.), hence N is also open. Thus, AIl)//Ynfl/N C
Af,/k/N is a finite subgroup of Af//k/N. In particular, since Af/nil/k is torsion-
free (cf. Proposition 2.16(iii)), Af,/yn_l/N C Af,/k/N is the unique maximal tor-
sion subgroup of A@/k/N. On the other hand, it follows from Claim A that
the image of N C A}, n by the isomorphism ¢ is the intersection of all A% e
conjugates of H/ . Thus, it follows from an argument similar to the above argu-
ment that A% X [o(N) C A% Ik /(N is the unique maximal torsion subgroup
of Ag(/k/qﬁ(N). In particular, the image of A;/Yn,l/N C A’)’,/k/N by the isomor-

phism A’;/k/N = Af;{/k/¢(N) determined by ¢ is A?(/X,,L,l/(b(N) C Ag(/k/qb(N).
Ehus, we conclude that gf)(Af,/Yn_l) = AZ))(/Xn_l' This completes the proof of Claim

It follows from Claim B that ¢ determines an isomorphism Af, Ak = A})’( Ak
(write ¢ for this isomorphism). Write H for the image of H C Af, n by the surjec-

tion A’}’,/k —» Af,n_l/k. For each integer 7 such that 0 <14 < n, write, moreover,

_ _ .,
H; := HOAZ})’”_l/Y,;’Hi = o(H) ﬂAg(n_l/Xi.

Then, since the inverse image of H; C A}, s by the surjection Ay — Ap

is HiAZ;//Y o for each integer ¢ such that 0 <i < n — 1, it holds that H;/H; 1 =

H;/H;y,. Similarly, for each integer i such that 0 < i < n — 1, it holds that
H}/H],, = H,/H,,,. Thus, it follows from induction hypothesis that for each
integer ¢ such that 0 < i < n, ¢(A€In71/}/i) = Ag(nfl/xi. On the other hand,
for each integer ¢ such that 0 < ¢ < n — 1, the image of AI;//Yi - Af,/k by the
surjection Af,/k —» Ai”nfl/k is Az{fn—l/}/i. Thus, since ¢(A€/n71/Yi) = A’;(nil/xi, the
image of qS(A’;//Yi) - Aﬁ(/k by the surjection A’)’(/k —» A’)’(n_l/k is Ain_l/xi. In

particular, ¢(AY, /Yi) is contained in the inverse image of A% by the surjection

n—1/X;
AR e A /> Which coincides with AR /x,- Now, by a;)/plying an argument
similar to the above argument to ¢!, we conclude that (b(Ai),/Yi) = A?(/Xi' This
completes the proof of assertion (i).

Finally, we verify assertion (ii). It follows from Proposition 2.16(i) that, for each
integer ¢ such that 0 < i < n, ¥ induces an isomorphism ; : HZ;Q Jk = Hg’(i /i Over
Gk. By induction on 4, to verify assertion (ii), it suffices to verify that the following

assertion holds:
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Claim C: For each integer ¢ such that 0 < i < n, if the isomorphism

W, arises from an isomorphism f; : Y; = X; over k, then 1; arises

from an isomorphism Y; 4 it Xy over k.
Indeed, write n — Y; for the generic point of Y;, (Yiy1), = Yit1 Xy, 1, and
(Xit1)n == Xit1 xx, n (where n — X, is the composite n — Y; Y X;). Then it
follows from Proposition 2.16(ii) that

P ~ TP p _ TP
Wiy, m = Wy v Xty Wy = Wy s Xy, Ty
Moreover, it follows from Remark 2.24 (i) that II?

Yig1/
which implies that HZ()YHl)n/n = Hf,i“/k anfi/kH”' Similarly, it holds that IT

~ 7P
v, HYi-H/k anfi/k Iy,
» ~
=
(Xit1)n/n
P < b nes an is o TIP ~ TP
HXi+1/k xnii/kﬂn. Thus, ;41 determines an isomorphism H(Yi+1)n/n — H(Xi+1)n/n

over 1I,,. Now it follows from Theorem 3.4 that the isomorphism Hz(’y_ﬂ) /n =
H:EinJrl)n/n arises from an dominant morphism (Y;y1), = (X;41), over , which is
actually an isomorphism (cf. Lemma 2.37(i)). Write £ — (Yj41), for the generic
point of (Y;11), C Yi+1. Then it follows from the commutative diagram of profinite
groups

14 ~ R P
(Yig1)n/n H(Xz:+1)n/7]

| i |

P P P
H§/k HYi+1/k Yig1 HXi+1/k’

M —— II

together with Lemma 2.34, that ;1 arises from a morphism Y;;; — X;,1 over
k. Moreover, by applying an argument similar to the above argument to 1/);_11, we
conclude that 1/)2-;11 arises from a morphism X;,; — Y11 over k. Then it follows
from Proposition 3.2(i) that the two morphisms Y;4+1 — X411 and X;41 — Y41
are inverse to each other. Thus, Y;;1 — X;;1 is an isomorphism. This completes
the proof of Claim C, hence also of assertion (ii). O

Theorem 4.4. Let p be a prime number, n a positive integer, k a sub-p-adic field,
and X,Y hyperbolic polycurves of dimension n over k satisfying condition (x),. For
each integer i such that 1 <1i <n, write (g;,7;) for the type of the hyperbolic curve
Xi/Xi—1, and (g, ) for the type of the hyperbolic curve Y;/Y;_1. Suppose that,
for any integers i,j such that 0 <i < j < n,

2g;+max{r;—1,0} > 2g}+max{r;—1,0}, 2g;+max{r;—1,0} > 2g;+max{r;—1,0}.
Then the natural map

Isomg (Y, X) — Isomg, (H’;//k, Hg(/k)/lnn(Ag(/k)
is bijective, i.e., every isomorphism Hf,/k = Hg(/k over Gy, arises from a uniquely
determined isomorphism Y — X over k.

Proof. (cf. [10] Theorem 4.3) The injectivity of the map in question holds from
Proposition 3.2(i). The surjectivity of the map in question follows from Lemma 4.3
(where we take “H” to be A’;//k), together with Proposition 2.16(v). O
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Proposition 4.5 ([10] Proposition 4.5). Let S, Y be integral varieties over k, Y —
S a dominant morphism over k, and X a hyperbolic polycurve over S. Then the
set Hom$™ (Y, X) of dominant morphisms from Y to X over S is finite.

Theorem 4.6. Let p be a prime number, k a sub-p-adic field, X,Y hyperbolic
polycurves over k. Suppose that at least one of X/k,Y/k satisfies condition (x),.
Then the set

IsomGk(Hf,/ky X/k)/Inn( X/k)
is finite.

Proof. (cf. [10] Theorem 4.4) If Isomg, (I}, TI% ;) = 0, then Theorem 4.6 is im-

mediate. Thus, to verify Theorem 4.6, we may assume without loss of generality
that Isomg, (Hf,/wﬂg(/k) # (. Then any element of Isomg, (H’)’,/k,ﬂp/ ) deter-
mines a bijection between Isomg, (H’;,/k, X/k)/ Inn(A X/k) and Autg, (I X/k)/ Inn(A X/k).
Thus, to verify Theorem 4.6, we may assume without loss of generality that X =Y,
and X/k satisfies condition (x),. Let H C A% /& be an open subgroup of AR /5 Which
satisfies the condition appearing in the statement of Lemma 4.2. Then, by apply-
ing Lemma 4.1, where we take the data “(G, H, A)” to be (Al)’(/k, H, Autg, (H’)D(/k))
(note that there exists a natural homomorphism Autg, (1I% /k) — Aut(A% /k)), we
conclude that there exists a subgroup A C Autg, (IT% /i) of Aute, (I /i) of finite
index such that, for each ¢ € A, ¢ preserves H C A% Ik Then it follows from
Lemma 4.3 that every element of A arises from an automorphism of X over k, i.e.,
the image of the composite

A = Autg, (I ;) - Autg, (IT% )/ Inn (A% )

is contained in the image of the natural injection Auty(X) < Autg, (I X/k)/ Inn(A X/k)
(cf. Proposition 3.2 (i)). On the other hand, Auty(X), hence also the image of the
composite

A — Autg, (Hé’(/k) — Autg, (IT X/k)/lnn( X/k)

is finite (cf. Proposition 4.5). Thus, it follows from our choice of A that Autg,, ( X/k)/ Inn(A X/k>
is finite. This completes the proof of Theorem 4.6.

Corollary 4.7. Let p be a prime number, kx,ky finite extensions of Q, and
X, Y hyperbolic polycurves over kx,ky, respectively. Suppose that at least one
of X/kx,Y/ky satisfies condition (x),. Then the set

Isom(HI;,/k , X/k )/ Inn(IT X/kx)
s finite.

Proof. (cf. [10] Corollary 4.6) It follows from an argument similar to the argument
used at the beginning of the proof of Theorem 4.6, that to verify Corollary 4.7, we
may assume without loss of generality that X =Y, and X satisfies condition (x),.

Then, for each ¢ € Aut(IT Nk ), the image of the composite A’;(/k - H’;(/k A
1% Jex 7 G, is a topologically finitely generated closed normal subgroup of Gy,

hence trivial (cf. Proposition 3.24(i)). Thus, since HX/k /AX/k 5 Gy, there
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exists a unique homomorphism Gy, — Gy, such that

¢
Hl))(/kx HI))(/ICX
Gy Gy

is commutative. Moreover, by applying an argument similar to the above argument
to ¢!, we conclude that the homomorphism G, — G is an isomorphism. Thus,
we have a natural exact sequence

1 — Autg, (Hg(/kx) — Aut(H’)’(/kx) — Aut(Gpy ).

Write N C Out(Il ;) for the image of Autg, (II%, ) C Aut(I%, ) by

Aut(I% ;) — Out(II ;). Then since I ),  — G is surjective, the sequence

1> N— Out(H’)’(/kX) — Out(Gy)

induced by the above exact sequence is exact. Thus, to verify Corollary 4.7, it suf-

fices to verify that N and Out(Gy,, ) are finite. Now since Autg, (Hf)’(/kx )/ Inn(Af)’(/kx)

is finite (cf. Theorem 4.6), it follows that N is finite. Finally, we verify the finiteness
of Out(Gj, ). It follows from Proposition 3.24(ii) that the natural map

Isom(kx /kx,kx/kx) 3 ¢+ (Gry 3 0+ pop ' € Giy) € Aut(Gry)

is bijective. Let f,g € Aut(Gy ). Then, if we write ¢, p, € Isom(kx /kx,kx/kx)
for the element of Isom(kx /kx,kx/kx) corresponding to f,g, respectively, then
one verifies easily that f and g are Gy, -conjugate if and only if @¢|r, = @glkx-
Thus, it holds that Out(Gy, ) = Aut(kx), which implies that Out(Gy, ) is finite.
This completes the proof of Corollary 4.7. O
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