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§ 0. Introduction

The purpose of this article is to try to elucidate Sato’s postulates on the S-matrix
([S]) by the detailed study of concrete examples. The renaissance of the interest of
mathematical physicists in the resurgent theory enhances the value of studying the
detailed analysis of Feynman integrals, which appear as the coefficients of perturbation
series of the S-matrix in the power of the coupling constant, and at the same time
we try in this paper to call the attention of young specialists in microlocal analysis
to the pregnant and suggestive paper [S] of Sato. (We are most grateful to Professor
O. Costin and Professor D. Sauzin who have kindly called our attention to the conference
“Resurgence and Transseries in Quantum, Gauge and String Theories” held in 2014 at
CERN as an evidence of the “renaissance of the interests in resurgent functions of
physicists.”) The plan of this paper is as follows:

In Section 1, we recall some basic notions and notations we use in this paper.
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In Section 2, by using the simplest example of the sort, i.e., a triangle Feynman
graph, we concretely show how to use the Landau-Nakanishi (=LN) diagram to find
the concrete shape of the LN surface. Although the discussion in this section is an
elementary one we believe that it will convince the reader of the nice chemistry between
the LN diagram and microlocal analysis.

In Section 3, we recall Sato’s postulates focusing on the points to be polished up
in this paper and in our future studies. Together with them we briefly describe some of
our previous results which are immediately related to Sato’s postulates.

In Section 4, we show how a complemented graph ([HK3]) can be effectively used
in analyzing phase space integrals associated with non-external graph such as T3 (cf.
[HKS]). Here a non-external graph means a Feynman graph which contains a non-
external vertex, that is, a vertex upon which no external line is incident, and a comple-
mented graph G̃ of a non-external graph G is, by definition, the graph obtained by the
addition of an external line to each non-external vertex of G. We hope that introducing
complemented graphs into our study fits in with Sato’s philosophy to the effect that
the dynamical completeness should be attained through the analysis of non-observable
quantities. ([S, p.15])

In Section 5, we list up several problems which we hope to be useful for further
developing the research in micro-analytic S-matrix theory and related problems in mi-
crolocal analysis. At the end of this section we briefly describe what are bubble diagram
functions and how they are related to the results in this paper.

§ 1. Preliminaries

In order to make this paper a self-contained one for specialists in microlocal analysis,
we recall the definition of Feynman graph G, Feynman integral FG and phase space
integral IG associated with G, and the Landau-Nakanishi equations determined by G.
In what follows we normally abbreviate “Landau-Nakanishi” to LN, like LN equations,
LN diagrams, LN surfaces, LN varieties, etc.

Definition 1.1. (i) A Feynman graph G is a graph consisting of

(1.1) finitely many points V1, V2, · · · , Vn′ , which are called vertices,

(1.2) finitely many line segments, L1, L2, · · · , LN , which are called internal lines,

and

(1.3) finitely many half-lines Le
1, L

e
2, · · · , Le

n, which are called external lines,
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which satisfy the following conditions (1.4), (1.5) and (1.6):

(1.4) each end point W+
l and W−

l of Ll (l = 1, 2, · · · , N) coincides with some of
Vj (j = 1, · · · , n′),

(1.5) W+
l 6= W−

l (l = 1, 2, · · · , N),

(1.6) the (unique) end point of Le
r (r = 1, 2, · · · , n) coincides with some of Vj

(j = 1, · · · , n′).

We further assume

(1.7) a ν-dimensional vector pr = (pr,0, pr,1, · · · , pr,ν−1) is attached to each ex-
ternal line Le

r,

(1.8) a strictly positive constant ml is attached to each internal line Ll,

and

(1.9) each internal line and each external line is oriented, and the orientation is
designated by an arrow like →−. (To simplify the figures we often omit
the arrow.)

(ii) The incidence number [j : l] for a pair of a vertex Vj and an internal line Ll is given
by the following:

(1.10) [j : l] =


+1 when Ll ends at Vj

−1 when Ll starts from Vj

0 otherwise.

The incidence number [j : r] for a pair of a vertex Vj and an external line Le
r is defined

in the same manner.

(iii) It follows from (1.4) and (1.5) that, for each internal line Ll there uniquely exists a
vertex Vj0 such that [j0 : l] = +1, and such j0 shall be denoted by j+(l). Similarly we
define j−(l) and j(r).



4 Naofumi Honda and Takahiro Kawai

Example 1.1. Triangle Feynman graph T1 is given by the following:

(1.11)

p1

p2

p3 p4

p5

p6

V1

V2

V3

m1 m2

m3

Definition 1.2. (i) The Feynman integral FG(p) associated with a Feynman graph G

is formally (i.e., being set aside its well-definedness as a hyperfunction) given by the
following:

FG(p) = FG(p1, p2, · · · , pn)(1.12)

=
∫

· · ·
∫ n′∏

j=1

δν
( n∑

r=1

[j : r]pr +
N∑

l=1

[j : l]kl

)
N∏

l=1

(
k2

l − m2
l + i0

)
N∏

l=1

dνkl.

Here, and in what follows, δν stands for the ν-dimensional δ-function, and, for a ν-
dimensional vector k = (k0, k1, · · · , kν−1) its square k2 always means

(1.13) k2 = k2
0 −

ν−1∑
µ=1

k2
µ.

(ii) The Feynman amplitude fG(p) associated with a Feynman graph G is the function
obtained by factorizing out the over-all conservation δ-function δν

(∑
j,r

[j : r]pr

)
from

FG(p); that is,

(1.14) FG(p) = δν
(∑

j,r

[j : r]pr

)
fG(p).

(iii) The phase space integral IG(p) associated with a Feynman graph G is formally
given by the following:

(1.15) IG(p) =
∫

· · ·
∫ n′∏

j=1

δν
( n∑

r=1

[j : r]pr +
N∑

l=1

[j : l]kl

) N∏
l=1

δ+
(
k2

l − m2
l

) N∏
l=1

dνkl,
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where δ+(k2
l − m2

l ) stands for δ(k2
l − m2

l ) multiplied by the Heaviside function Y (kl,0)
of the 0-th component of kl, i.e.,

(1.16) δ(k2
l − m2

l )Y (kl,0).

We also denote by IG(p) the function obtained by factorizing out the over-all δ-
function δν(

∑
j,r

[j : r]pr) from IG(p), if there is no fear of confusion.

Remark 1.1. In what follows, we use the definition (1.13) of k2 to identify gradkk2 with
k; for example, the vector kl in the right-hand side of (1.19) below is gradkl

k2
l if we

think over its origin.

Definition 1.3. (i) Landau-Nakanishi (=LN) equations for (p; u) = (p1, · · · , pn; u1, · · · , un)
(∈ R2νn) determined by a Feynman graph G are given by the following set of equations
(1.17)∼(1.20), where kl (l = 1, 2, · · · , N), Vj (j = 1, 2, · · · , n′) and a are in Rν and

αl (l = 1, 2, · · · , N) is a real number (called a LN constant) with
N∑

l=1

|αl| > 0:

(1.17)
n∑

r=1

[j : r]pr +
N∑

l=1

[j : l]kl = 0 for j = 1, 2, · · · , n′,

(1.18) αl(k2
l − m2

l ) = 0 with kl,0 > 0 for l = 1, 2, · · · , N,

(1.19) Vj+(l) − Vj−(l) = αlkl for l = 1, 2, · · · , N,

(1.20) ur = [j(r) : r](Vj(r) + a) for r = 1, 2, · · · , n.

(ii) Landau-Nakanishi (=LN) diagram is, by definition, a Feynman graph whose internal
line Ll is equipped with (αl, kl)(∈ R1+ν)

Example 1.2. Triangle LN diagram T1 is given by the following:

(1.21)

p1

p2

p3 p4

p5

p6

V1

V2

V3

(α1, k1) (α2, k2)

(α3, k3)
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Here, and in what follows, we omit ml attached to Ll in a Feynman graph, as we
assume in this paper that all ml’s are supposed to be equal to 1 unless otherwise stated.
(However we sometimes use the redundant expression such as “ m2

l = 1” to emphasize
that the number 1 is actually a special value of m2

l .) In this paper we usually omit αl

for the technical simplicity in preparing figures which are needed in our reasoning.

Remark 1.2. The existence of a free vector a in (1.20) implies that an LN diagram
may be translated arbitrarily as a whole in Rν . As a specialist in microlocal analysis
will imagine, this fact is a counterpart of the fact that FG(p) contains the over-all
conservation δ-function as its factor, i.e., FG(p) = δν

(∑
j,r

[j : r]pr

)
fG(p). In view of

these facts we normally consider the problem on Rν(n−1) =
{
p ∈ Rνn;

∑
j,r

[j : r]pr = 0
}

or T ∗Rν(n−1) without so mentioning explicitly.

Remark 1.3. The vector kl attached to the internal line Ll in an LN diagram has a dual
meaning; kl in (1.19) is gradkl

k2
l , which is a dual (with respect to the Minkowski metric)

vector of kl in (1.17) and (1.18). Hence LN equations define a subvariety L (G) of T ∗Rνn
p

which is conical, that is, homogeneous with respect to the cotangential component u.
We call the variety as the LN variety associated with G, and we call its projection to
the base manifold Rνn as the LN surface with some slight abuse of the language. (We
note that some component of an LN “surface” is actually of higher codimension as is
pointed out in [HK1].) In what follows we let L(G) denote the LN surface associated
with G. We introduce the subsets of L (G) and L(G) by Definition 1.4 below, where π

denotes the canonical projection from T ∗Rνn
p or T ∗Rν(n−1)

p to Rνn
p or Rν(n−1)

p .

Definition 1.4. (i) The leading part L ×(G) of L (G) is, by definition, the totality of
solutions (p; u) of LN equations with αl 6= 0 (l = 1, · · · , N).

(ii) The positive-α part L +(G) of L (G) is, by definition, the totality of solutions (p; u)
of LN equations with αl ≥ 0 (l = 1, · · · , N) (and αl0 > 0 for some l0).

(iii) The leading positive-α part L ⊕(G) of L (G) is, by definition, the totality of solu-
tions of (p; u) of LN equations with αl > 0 (l = 1, · · · , N).

(iv) The leading part L×(G), the positive-α part L+(G) and the leading positive-α part
L⊕(G) of L(G) are respectively defined by π(L ×(G)), π(L +(G)) and π(L ⊕(G)).

Remark 1.4. In what follows we often use the abbreviated wording “a leading positive-α
LN surface” etc. instead of “the leading positive-α part of a LN surface” etc.

Remark 1.5. The relevance of LN equations to the cotangent bundle was first recognized
by H. P. Stapp and his collaborators ([CS], [IS]) through the Fourier transformation of
the macroscopic causality condition.
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Remark 1.6. In this paper we restrict our consideration to the case where ν = 2 unless
otherwise stated, so that we may make full use of figures prepared with the help of a
computer. We believe the core part of our reasoning below should be also validated
when ν = 4, although we have not yet tried seriously to think over this point. In
what follows we also assume that all ml’s are equal to the same positive number m (in
most cases 1). Concerning this restriction we imagine that it would be an interesting
problem to study the situation where ml’s are not necessarily mutually equal, or rather
the situation where ml’s are regarded as independent variables.

§ 2. An example of how-tos for locating singular points
of a Landau-Nakanishi surface with the help
of the relevant Landau-Nakanishi diagram

In this section we concretely show how an LN diagram is effectively used in finding
singular points of an LN surface. Although computer-assisted study is much more
powerful and far-reaching (e.g. [HK2]), we hope the reasoning in this section will be
helpful for a specialist in microlocal analysis (hereafter abbreviated as a microlocal
analyst) to become familiar with LN diagrams and LN surfaces, which are essential
languages in explaining Sato’s postulates.

In what follows we consider the following simplest example of the sort: we consider
the LN surface associated with triangle LN diagram T1 given in Example 1.2. In order
to simplify the figures and explanations in our discussion below we introduce following
notations:

(2.1) A = V1, B = V2, C = V3,

(2.2) pA = p1 + p2, pB = p4 − p3, pC = p5 + p6,

(2.3) uA = −V1 = −A, uB = V2 = B, uC = V3 = C.

As the over-all energy-momentum conservation entails that pB is equal to pA − pC ,
the LN surface L(T1) is described in R4

(pA,pC).
Our main concern in this section is [L×(T1)], the (topological) closure of L×(T1),

and hence we may assume

(2.4) k2
l = m2

l = 1, kl,0 > 0 (l = 1, 2, 3)

in what follows. Then by using an appropriate Lorentz transformation we may assume
without loss of generality the following:

(2.5) pA = (x, x), pC = (y, z)
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(2.6) k3 = (s, s−1), k1 = (s−1, s), k2 = (t, t−1) (s, t > 0).

In particular, we have

(2.7) x = s + s−1, y = s + t, z = s−1 + t−1.

Here we emphasize that the assumption ν = 2 is essential in giving the parametrization
(2.6), which is substantially useful in our computer-assisted works ([HK1], [HK2]). In
order to simplify the figures we label k1, k2 and k3 respectively by s−1, t, s (i.e., the first
component in the parametrization (2.6)). Thus the LN diagram is labelled as follows:

(2.8)

(x, x)

(y, z)

(x − y, x − z)

A

B

C
s

s−1
t

We now change (s, t) and trace the point (pA, pC) determined by the LN diagram by
(2.8), and in our discussion we use the following reduced symbol as a simplified form of
(2.8):

(2.9)

A

B

Cs

s−1

t

that is, we often omit the external lines if there is no fear of confusions. Here we call
the attention of the reader to the relation (2.7). We also note that, when we use the
reduced symbol (2.9), we normally let αAB , αBC and αAC respectively denote the LN
constant attached to internal lines L1, L2 and L3. In accordance with this notation, we
use kAB , kBC and kAC to denote k1, k2 and k3 respectively.

As a microlocal analyst readily finds, [L×(T1)] describes the location of singular
points of IT1 , the phase space integral associated with T1, and, with the notations
given by (2.2) and (2.3), the u-vector (uA, uB , uC) describes the cotangential component
of S.S.IT1(p), the singularity spectrum of IT1(pA, pB , pC). It will be also easy for a
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microlocal analyst to observe the following:

(2.10) L+(T1) describes the location of singular points of fT1 , the Feynman am-
plitude associated with T1;

(2.11) in particular, fT1 may be singular on the LN surface associated with the
so-called contracted diagram of T1, that is, the diagram with some LN

constant being 0 like
A

B

C
with αBC = 0.

In order to visualize (2.10) and (2.11) rather symbolically, physicists normally use
the following figure:

(2.12)

2PT

2PT

C1

C2

γ0

γ1

γ2

Among several (possibly symbolic) messages we find in figure (2.12), we emphasize the
following:

(2.13) L⊕(T1) is given by a smooth surface γ0;

(2.14) At C1 (resp., C2) in [γ0], the closure of γ0, LN constant αBC (resp., αAB)
vanishes;

(2.15) [γ0]∪γ1 (resp., [γ0]∪γ2) is a smooth surface near C1 (resp., C2) and touches

with 2PT (=2 particle threshold) given by L⊕

A
B

C
s

s−1



(resp., L⊕

A
B

Cs

t

) at C1 (resp., C2);

(2.16) LN constant αBC (resp., αAB) is negative in γ1 near C1 (resp., in γ2 near
C2) and fT1 is not singular there,
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(2.17) Although γ1 and γ2 are drawn by dotted lines in conjunction with the
non-singular property of fT1 there, IT1 may be singular on γ1 and γ2; the
singularities originate from some of (k2

l − m2
l − i0)−1Y (kl,0) (l = 1, 2, 3)

contained in δ+(k2
l − m2

l ) in the integrand of IT1 .

Now having in mind these messages from (2.12), a symbolic figure of a 2-dimensional
slice of L+(T1), we raise the following questions:

(2.18) Is there any interaction of γ1 and γ2 if we consider the problem in the
3-dimensional space R3

(x,y,z)?

(2.19) Are there any singular points in [L×(T1)] outside γ0?

In what follows we answer these questions by “playing with LN diagram
A

B

C
s

s−1 t .

We begin our discussion by noting the following fact, which can be readily confirmed:

(2.20) γ0 consists of two parts γ1<
0 and γ<1

0 ,

where

(2.21) γ1<
0 consists of points in L⊕(T1) with 1 < s < t,

and

(2.22) γ<1
0 consists of points in L⊕(T1) with t < s < 1.

We note that (2.7) entails

(2.23) y > z on γ1<
0 ,

and

(2.24) y < z on γ<1
0 .

Let us begin our journey in [L×(T1)] starting from a point σ0,+ in γ1<
0 which is

determined by the following LN diagram Σ0,+:

(2.25) Σ0,+ :

A

B

Cs

s−1
t with 1 < s < t.
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We first decrease s to reach 1 so that we encounter C1, where [γ0] touches with {p2
A = 4};

the LN diagram corresponding to C1 is

(2.26) A
B

C
s = 1

s−1 = 1

with αBC = 0.

In order to continue our journey to γ1 we further decrease s to find the following
LN diagram C+

1 :

(2.27) C+
1 :

A

B

C
s

s−1

t with s < 1 < s−1 < t,

where

(2.28) αAB , αAC > 0, αBC < 0.

Here, to realize the LN diagram we have to assume (2.28) as the relative location of B

and C in (2.27) is different from that in (2.25). As a microlocal analyst readily sees,
the relation (2.28) indicates that the singularity of IT1 there comes from (k2

BC − 1 −
i0)−1Y (kBC,0) in δ+(k2

BC − 1) in the integrand of IT1 .
We next fix s (< 1) and let t decrease in (2.27) to realize the following diagram D1:

(2.29) D1 :
A

B

C
t

s−1

with

(2.30) t = s−1 > 1,

(2.31) αAB > 0, αAC = 0, αBC < 0.

We also denote by D−
1 (resp., D+

1 ) the configuration which we encounter just before
(resp., after) finding D1, that is,

(2.32) D−
1 :

A

B

C
s

s−1

t
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with

(2.33) 1 < s−1 < t,

(2.34) αAB > 0, αAC > 0, αBC < 0,

and

(2.35) D+
1 :

A

B

C

s

s−1

t

with

(2.36) 1 < t < s−1,

(2.37) αAB > 0, αAC < 0, αBC < 0.

Although the diagrammatic structure of D1 and those of D±
1 might look quite

different, the associated LN geometry smoothly changes. Since this fact is a starting
point of our study below, we summarize the situation as follows:

Lemma 2.1. Let L ×(T1)|Ω+
1 (ε) (0 < ε � 1) denote the set of solutions (p, u)

associated with T1 and which satisfy the following conditions:

(2.38) αAB > 0, αBC < 0, αAC 6= 0,

(2.39) |st − 1| < ε,

(2.40) 0 < s < 1.

Then its closure [L ×(T1)|Ω+
1 (ε)] is smooth. Furthermore its projection to the base man-

ifold R3
(x,y,z) is also non-singular.

Proof. Let (P0, U0) denote the solution of LN configuration D1. Then it follows from
(2.7) and (2.30) that

(2.41) x = y = z 	 2
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holds at P0. Hence

(2.42) s = s−(x) =
def

(
x −

√
x2 − 4

)
/2

is biholomorphic between s and x. We note that s−(x) is a solution of

(2.43) s2 − xs + 1 = 0,

which is smaller than 1 near P0. Then it is clear that

(2.44) ϕ1(x, y, z) = z −
(
s−(x)−1 + (y − s−(x))−1

)
is holomorphic near P0 with grad(x,y,z)ϕ1 being different from 0. Since the projection
of [L ×(T1)|Ω+

1 (ε)] is given by {ϕ1 = 0} for sufficiently small ε, the non-singularity
of this set is clear. To confirm the non-singularity of [L ×(T1)|Ω+

1 (ε)] we construct
holomorphic functions αAC(s, t) and αBC(s, t) for (s, t) satisfying (2.39) and (2.40) so
that the following closed loop condition may be satisfied:

(2.45) αAC

(
s

s−1

)
= αAB

(
s−1

s

)
+ αBC

(
t

t−1

)
with the normalization

(2.46) αAB = 1.

One can then easily find

(2.47) αAC =
t2s2 − 1
t2 − s2

,

(2.48) αBC =
ts−1(s4 − 1)

t2 − s2
.

Using these results we find

(2.49) uB =
(

s−1

s

)
,

(2.50) uC =
( t2s2 − 1

t2 − s2

)( s

s−1

)
by setting uA = 0, which realize configuration D1 and D±

1 , together with (2.7). Thus
we find [L ×(T1)|Ω+

1 (ε)] is non-singular. This completes the proof of the lemma.
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We now try to find the counterpart of the above journey when we start from a
point σ0,− in γ<1

0 , that is, when we start from a point where the following configuration
is realized:

(2.51) Σ0,− : A

B

C
s

s−1

t with t < s < 1.

Here we choose s close to the value of s in (2.27) to fix the situation. This time we let
t increase to attain

(2.52)
A

B

Cs

t

with

(2.53) t = s < 1,

(2.54) αAB = 0.

Then we encounter C2, where [γ0] touches with {p2
C = 4}. After reaching C2 we continue

our journey to enter γ2 by letting t increase, and we find

(2.55) C+
2 : B

A

C
t

s−1

s
, s < t.

with

(2.56) αAB < 0, αAC , αBC > 0.

By keeping s intact, we further increase t in (2.55) to realize the following diagram D2:

(2.57) D2 :

A

B

C

t

s−1

with

(2.58) 1 < s−1 = t,
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(2.59) αAB < 0, αAC = 0, αBC > 0.

Just after (resp., before) meeting the point determined by D2, we find D+
2 (resp., D−

2 )
given below:

(2.60) D+
2 :

A

B

C

s

s−1

t

with

(2.61) 1 < s−1 < t,

(2.62) αAB , αAC < 0, αBC > 0,

and

(2.63) D−
2 :

C

B

A

s

t

s−1

with

(2.64) 1 < t < s−1,

(2.65) αAB < 0, αAC , αBC > 0.

As the constraint (2.61) is the same as (2.33), we may assume that D−
1 and D+

2 are
realized by the same set of parameters (s, t); actually it suffices to choose the value of
s at the starting point σ0,− of the current journey to be the same as the value s in
(2.27). We note that in the current journey we change only t, with s being fixed. Then
it follows from (2.7) that the solution (p, u) of LN equations for D−

1 and that for D+
2

share the same value p; in order to compare the u-component of the solution (p, u) of LN
equation for D−

1 and that for D+
2 , let us present the following figure (2.66) combining

figure (2.32) and figure (2.60): in figure (2.66) we set the vertex A at the origin both for
D−

1 and D+
2 , and we let (B(D−

1 ), C(D−
1 )) (resp., (B(D+

2 ), C(D+
2 ))) denote the location
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of vertices (B,C) in D−
1 (resp., D+

2 ).

(2.66) A

B(D−
1 )

C(D−
1 )

B(D+
2 )

C(D+
2 )

t
t

s

s

s−1

s−1

One immediately sees that (B(D−
1 ), C(D−

1 )) and (B(D+
2 ), C(D+

2 )) are located symmet-
rically with respect to the origin. Otherwise stated, the u-component for D−

1 and that
for D+

2 are of the opposite sign. The situation is exactly the same for the pair (D1, D2)
and the pair (D+

1 , D−
2 ), as the following figures indicate:

(2.67)

B(D1)

B(D2)

C(D1) = C(D2)
t

t

s−1

s−1 (Cf. (2.29) and (2.57)),

(2.68) A

B(D+
1 )

C(D+
1 )

B(D−
2 )

C(D−
2 )

t

t

s

s

s−1

s−1

(Cf. (2.35) and (2.63)).

We have thus found two paths in [L×(T1)]; one that starts from a point σ0,+

in γ1<
0 and ends at a point p1 which is determined by LN diagram D+

1 and lies in
{ϕ1(p) = 0}, and one that starts from a point σ0,− in γ<1

0 and ends at the same point
p1 which is determined also by LN diagram D−

2 . An important observation is that the
u-component of the solution of LN equations associated with D+

1 is of the opposite sign
of that associated with D−

2 . In order to visualize our argument we put the following
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rather symbolic labels to these paths. In what follows we call the path from σ0,+ (resp.,
σ0,−) as the route R1 (resp., R2).

(2.69) R1 : Σ0,+
s↓−→ C+

1

t↓−→ D−
1

t↓−→ D1,

(2.70) R2 : Σ0,−
t↑−→ C+

2

t↑−→ D2
t↑−→ D+

2 .

Here the mark “s ↓” etc. indicate that “we let s decrease” etc. For the convenience
of the reader here we recall some characteristic features of LN diagrams in the above
labelling:

(2.71) 1 < s < t in Σ0,+,

(2.72) s < 1 < s−1 < t in C+
1 ,

(2.73) 1 < s−1 < t and αAB , αAC > 0 in D−
1 ,

(2.74) 1 < s−1 = t, αAB > 0 and αAC = 0 in D1;

(2.75) in Σ0,− we assume t < s < 1 with s close to the value of s in (2.72),

(2.76) s < t and αAB < 0 in C+
2 ,

(2.77) 1 < s−1 = t and αAB < 0 and αAC = 0 in D2,

(2.78) 1 < s−1 < t and αAB , αAC < 0 in D+
2 .

Using a similar labelling, we now consider another pair of routes R̃1 and R̃2:

(2.79) R̃1 : Σ0,−
s↑−→ C̃+

1

t↑−→ D̃−
1

t↑−→ D̃1
t↑−→ D̃+

1 ,

(2.80) R̃2 : Σ0,+
t↓−→ C̃+

2

t↓−→ D̃−
2

t↓−→ D̃2
t↓−→ D̃+

2 ,

where

(2.81) C̃+
1 :

A

B

C
s

s−1

t
with 1 < s, αBC < 0,
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(2.82) D̃−
1 :

A

B

C
s

s−1

t
with αAC > 0, αBC < 0,

(2.83) D̃1 :
A

C

Bs−1

t

with t = s−1 < 1, αAC = 0,

(2.84) D̃+
1 :

C

B

A
s

t

s−1

with αAC , αBC < 0,

(2.85) C̃+
2 :

A

C

B

s−1

s

t

with s−1 < t < s, αAB < 0, αAC , αBC > 0,

(2.86) D̃−
2 :

A

B

C
s

s−1

t

with s−1 < t, αAB < 0, αAC , αBC > 0,

(2.87) D̃2 :

A

B

Cs−1

t

with t = s−1 < 1, αAB < 0, αAC = 0,
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(2.88) D̃+
2 :

C

B

A

s

t

s−1

with t < s−1 < 1, αAB , αAC < 0.

The LN geometry determined by the triplet (D̃1, D̃
±
1 ) (resp., (D̃2, D̃

±
2 )) resembles to that

determined by the triplet (D1, D
±
1 ) (resp., (D2, D

±
2 )); actually, if we define Ω+

2 (ε) by
the conditions (2.89), (2.90) and (2.91) to be given below and use Ω+

2 (ε) as a substitute
for Ω+

1 (ε) in Lemma 2.1, then we find that the projection of [L ×(T1)|Ω+
2 (ε)] to the base

manifold defines a non-singular hypersurface {ϕ2(p) = 0} which passes P0 for (s, t)
= (s, s−1):

(2.89) αAB > 0,

(2.90) |st − 1| < ε,

(2.91) 1 < s.

Furthermore the location of the vertex B of D1, D2, D̃1 and D̃2 is as follows:

(2.92)

B(D1)

B(D2) B(D̃1)

B(D̃2)

A C

t

t

t

t

s−1

s−1

s−1

s−1

Here B(D1) etc. denote the location of the vertex B in D1 etc., and αAB > 0 (resp.,
αAB < 0) for the labelling in the right (resp., left) half part of (2.92). This figure
indicates

(2.93) {ϕ1 = 0} and {ϕ2 = 0}

intersect transversally along

(2.94) ∆ = {(x, y, z) ∈ R3; x = y = z > 2}.



20 Naofumi Honda and Takahiro Kawai

Thus, by following up on the movement of LN diagrams, we have concretely confirmed
that [L×(T1)] has self-intersection points along ∆. Our argument also shows that each
point P0 in ∆ is relevant to both γ1 and γ2. Actually paths R1 and R̃2 both start from
σ0,+ and pass through a point P0 in ∆; the former passes C1, then moves in the region
γ1, satisfying

(2.95) αBC < 0, αAB , αAC > 0,

and reaches P0, which is realized by the configuration D1; whereas the latter passes C2,
then moves in the region γ2, satisfying

(2.96) αAB < 0, αAC , αBC > 0,

and reaches P0, which is realized by the configuration D̃2 with an appropriately chosen
set of values (s, t). A similar situation is also observed for the pair R2 and R̃1.

Thus we have answered questions (2.18) and (2.19) in a positive way by following
up on the movement of LN diagrams.

By the reasoning given so far, we have demonstrated how manipulation of LN
diagrams is helpful in understanding LN geometry. After such a study the reader will be
able to better appreciate the precise figure of L×(T1) ([HK2, Section 1]), which is drawn
with the help of a computer. Actually the reader will notice Whitney’s umbrella near
∆ in the concrete visualization of [L×(T1)]. Furthermore the appearance of Whitney’s
umbrella in LN surfaces is, interestingly enough, a rather universal phenomenon, as
our computer-assisted study ([HK2]) indicates. Still more important is the fact that
Whitney’s umbrella plays an important role in understanding the mechanism how an
acnode appears in [L×(T2)], as is shown in [HK3, Section 4].

§ 3. Sato’s postulates

In this section we first recall Sato’s postulates on the S-matrix, and then we add
some comments to the original statement of Sato, which will be helpful to polish them
up. In this section we do not assume ν = 2. (What we have in mind is basically the
situation in ν = 4.)

Sato’s postulates ([S]):
Postulate I. (i) S.S.(S), the singularity spectrum of the S-matrix S, is contained

(3.1)
∪
G

L +(G),

where G ranges over all possible Feynman graphs.
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(ii) At each point (p0, u0) of the singularity spectrum of S, excepting those points to be
specified by (3.5) below, S satisfies a holonomic system which has

(3.2)
∪
G

L C(G)

as its characteristic variety, where

(3.3) L C(G) denotes the complexification of L (G),

and furthermore

(3.4) This holonomic system is of the same nature as the one satisfied by the
corresponding Feynman integral. (The last part of the statement is not
satisfactory and need further clarification —– this is a future problem.)

(3.5) In the above Postulate I(ii) one has to exclude those points where an infinite
number of L C(G) clusters.

Postulate II. The S-matrix S satisfies the generalized unitarity relation in the sense of
Nishijima ([N]).

The above postulates, particularly Postulate I is a challenging and substantially
novel proposal to shed a new light on the analytic S-matrix theory from the viewpoint
of microlocal analysis, that is, a proposal of

Micro-analytic S-matrix Theory.
Actually, in response to Sato’s proposal, [KS] validates that the S-matrix S satisfies a
simple holonomic system at an invertible point ([KS, Definition 6]). But, at the same
time, it is evident that at m-particle (m ≥ 3) threshold points (= m-PT), for example

at L⊕

( )
(3PT (=m-PT with m = 3)), the holonomicity

fails because of the arbitrarily higher powers of the logarithmic function contained in
the Feynman integrals having their singularity at m-PT. Thus it is necessary for us
to polish up the above postulates, including the clarification of the proviso (3.5). The
comments we give below are the starting point of our study in this direction.

[I] Comments on Postulate I.(i).
(I.a) If we could confirm the Borel summability of the perturbation series expansion of
S in the coupling constants (in the energy-momentum space), then Postulate I.(i) would
become a “theorem” that could be established through microlocal analysis of Feynman
integrals which appear in the coefficients of the perturbation series. In conjunction with
the Borel summability, we note that even if the Borel transform of the formal series
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contains singularities on the real (positive) axis, there is a big hope to be able to find
the path of integration defining an appropriate resummation so that the resulting sum
may satisfy the unitarity relation. Probably this is one of the important lessons we have
learned from the resurgent function theory.
(I.b) As we touched upon in Remark 1.5, the importance of the cotangent vectors in
describing the singularity structure of the S-matrix was first recognized by H. P. Stapp
and his collaborators ([CS], [IS]), independently of the advent of the theory of micro-
functions. The starting point of their study is the macroscopic causality conditions on
the S-matrix.

[II] Comments on (3.3) and (3.5).
(II.a) As we have discussed in [HK3, Section 4], the meaning of L C(G) should be un-
derstood as a local complexification at the present stage. If we consider the algebraic
complexification of LN varieties, the geometric situation becomes much more compli-
cated. Hence we currently restrict our consideration to the local complexification of LN
varieties, although we wish the global complexification should be studied in some fu-
ture. An important comment to be added here is that, as the reasoning in [HK3] shows,
noticing Whitney’s umbrella in LN surfaces is an important step in our consideration
of problems related to their complexification.
(II.b) Even if we restrict our consideration to the local complexification of LN varieties
and further ignore their multiplicity issues, the concrete content of the proviso (3.5)
is not clear. Hence, as the first trial, we have studied in [HKS] assuming ν = 2, the
concrete structure near 3PT of locally complexified LN surface LC(hq) for a Feynman
graph hq in some particular class of graphs called hooked 3-lines, which is designed to
study the perturbation series expansion of the 3 to 3 S-matrix element. And, we have
found that, outside a tiny exceptional set N given by (3.6) below, in a small complex
neighborhood of P0 in (3PT)\N , finitely many LC(hq) are relevant; otherwise stated, we
have proposed N as the concrete exceptional set in the particular situation considered
in [HKS].

(3.6) N = N+ ∪ N− ⊂ {(p1, p2, · · · , p6) ∈ R12},

where

(3.7) N+ =
∪

k2=m2

{
(p1, p2, p3) ∈ R6; pσ(1) = k and pσ(2) + pσ(3) = 2k for a

permutation σ of {1, 2, 3}
}
,

(3.8) N− =
∪

k2=m2

{
(p4, p5, p6) ∈ R6; pτ(4) = k and pτ(5) + pτ(6) = 2k for a

permutation τ of {4, 5, 6}
}
.
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We also need

N0 = N+ ∩ N− ⊂ R10(3.9)

=
{
(p1, p2, · · · , p6) ∈ R12; p1 + p2 + p3 = p4 + p5 + p6

}
in our discussion. Actually in our proof of the finiteness of relevant LN surfaces, a
crucial step was to show

(3.10) L⊕(Tn) ⊂ N0 for n ≥ 4,

where Tn is a truss-bridge diagram with n trusses given below:
(3.11)

Tn :

p1

p2

p3

p4

p5

p6︸ ︷︷ ︸
n-trusses

Remark 3.1. It is clear that T1 is the triangle Feynman graph (with equal mass) given
in (1.11).

Remark 3.2. To illustrate the role of N± we note the following:

(3.12) L⊕



p1

p2

p3

p4

p5

p6

m m

m

m

m

m


⊂ N+,

(3.13) L⊕


p1

p2

p3

p4

p5

p6

m m

m

m

m

m


⊂ N−.
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Remark 3.3. One noteworthy feature of the set N is that at least one external line, i.e.,
pσ(1) or pτ(4), is automatically confined to the mass-shell manifold.

[III] Comments on (3.4).
(III.a) (3.4) is a faithful copy of the original statement in [S], and it is encouraging to
find that Sato was highly interested in the analysis of Feynman integrals in the study
of micro-analytic S-matrix theory. We believe what Sato wanted to propose here is to
study the hierarchical principle for the S-matrix (cf. [E] for example) in the framework
of microlocal analysis. Here the “hierarchical principle” means, in its most primitive
form, to relate the Feynman integral FG with Fτ1(G) for the simple contraction τ1(G) of
a Feynman graph G near [L⊕(G)]∩L⊕(τ1(G)), where τ1(G) is, by definition, a Feynman
graph obtained from G by deleting exactly one internal line Ll (and re-labelling in τ1(G)
the remaining internal line if necessary) and identifying vertices W+

l and W−
l to define

a new vertex Ṽ in τ1(G), as is illustrated by the following example:

(3.14) The simple contraction τ1(T1) of T1 at the third internal line L3 is as
follows:

τ1(T1) :

L1

L2

V1 Ṽ

p2

p3

,

with T1 labelled as below:

T1 :

p1

p2

p3

V1

V2

V3L1

L2

L3

,

where W+
3 = V3 and W−

3 = V2.

We also note that [L⊕(G)]∩L⊕(τ1(G)) with G = T1 corresponds to C1 in (2.12) in this
case.

We want to further add the following two comments, which we hope to give us
some clues for our better understanding of the hierarchical principle in micro-analytic
S-matrix theory.
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(III.b) Let us consider the following simple contraction τ1(T2) of T2:

(3.15) T2 :

pB

pC

A

B

C

D

,

(3.16) τ1(T2) :

pB

pC

A

D

.

In this situation we find that

(3.17) codimL⊕(τ1(T2)) is 2,

and that

(3.18) a pinch point of [L×(T2)] is contained in [L⊕(T2)] ∩ L⊕(τ1(T2)).

We refer the reader to [HK3, Section 3] for the definition of a “pinch point” used
here. The pinch point referred to in (3.18) is (P3) in the notation of [HK3, Section
3.2]. We note that the appearance of a pinch point in a simple contraction is observed
rather universally where the LN surface associated with the simple contraction is of
codimension 2. For example the pinch point (II.c) in [L⊕(T̃3)] (cf. [HK3, Section 5.2])
is contained in

(3.19) [L⊕(T̃3)] ∩ L⊕(τ1(T̃3)),
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where

(3.20) τ1(T̃3) :

and

(3.21) codimL⊕(τ1(T̃3)) is 2.

A similar situation is observed for pinch point (III.a); this time τ1(T̃3) is given by

(3.22)

.

As far as we know, the relevance of a pinch point to the simple contraction has not
been realized before; we believe that the existence of such a pinch point should be the
main reason for the difficulty in analyzing the hierarchical relation when the leading
positive-α LN “surface” associated with the simple contraction is of codimension 2.
More detailed discussions will be given in our forthcoming paper ([HK4]).
(III.c) The geometric situation that is presented by the pair of T1 and its simple con-
traction D1 given in (2.29) seems to be very intriguing. In this case we find that

(3.23) codimL×(D1) is 2,
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and that

(3.24) L ×(D1) \ (L ×(D1) ∩ [L ×(T1)]) is not contained in S.S.IT1 , i.e., the sin-
gularity spectrum of IT1 .

In particular (3.24) implies that the singularities of IT1 along {ϕ1 = 0} and those along
{ϕ2 = 0} in the notation of (2.94) are microlocally disjoint near π−1(P0) for P0 in ∆,
where π stands for the projection from S∗R3 to R3. Here we note that ∆ is the simplest
example of a cusp in Whitney’s umbrella. (Cf. [HK3, Section 3])

§ 4. Applications of complemented graphs

In studying LN geometry associated with a Feynman graph G which contains a
non-external vertex, we have encountered several unexpected but interesting phenom-
ena even in L+(G); one important example is the relation (3.10) (cf. Remark 3.3),
and another important example is the existence of higher codimensional component in
L⊕(T3) for the truss bridge diagram T3:

(4.1) T3 :

(x, x)

(y, a)

(z, b)

s

t

A

B

C

D

E

.

Here, and in the rest of this section, we assume ν = 2, and use the symbols as in Section
2. For example, the symbol s put on the internal line AC means the vector associated
with the internal line is (s, s−1) (s > 0). The symbols (y, a) and (z, b) indicate that, as
is explained in [HK2], we use the slices with parameters (a, b) of [L×(T3)] to visualize it.
A non-external vertex is, by definition, a vertex upon which no external line is incident;
the vertex C in T3 is one typical example. In order to understand pathological situations
relevant to the existence of non-external vertices, we have introduced the notion of a
complemented graph G̃ in [HK3]. Here a complemented graph G̃ is obtained by adding
an external vector to each non-external vertex of a graph G containing non-external
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vertices. For example, the complemented graph T̃3 of T3 is given as follows:

(4.2)

(x, x)

(y, a)

(z, b)

s

t

v

τ

A

B

C

D

E

pC = (w, c)

.

We refer the reader to [HK3, Section 5] concerning the detailed information about the
relation of L×(T3) and L×(T̃3); the most interesting result among them is the following:

(4.3) The higher codimensional component of L⊕(T3) is given by the restriction
to {pC = 0} of a particular pinch points set called (I.a) in [HK3].

Now besides the geometric problems discussed in [HK3], we note that the so-called
u = 0 points ([KS]) are relevant to Feynman graphs with non-external vertices. Let us
recall that a point p is, by definition, a u = 0 point if (p, u) = (p, 0) is a non-trivial (i.e.,
some αl 6= 0) solution of LN equations associated with a Feynman graph G. A typical
example of such a graph G is given by the following:

(4.4) G : A

B

C

+
+ −

−
.

Here the symbol + (resp., −) attached to an internal line indicates that the LN constant
associated with the internal line is strictly positive (resp., negative). We note that the
vertex B of G in (4.4) is non-external. We also note that we encounter u = 0 points in
a natural manner when we deal with the unitarity relation for the S-matrix.

We now try to shed a new light upon the u = 0 point problem by using com-
plemented graphs. To be more specific, we first show that IT3 is locally expressed as
IT̃3

|{pC=0} under some geometric assumptions.
Let us consider a generic point p̃ = (p, pC) of L×(T̃3), where L×(T̃3) is locally given

by {ϕ̃(p̃) = 0}. Then by using the theory of holonomic (= maximally over-determined)
systems ([SKK]), we find that, near the point in question, say p̃0 = (p0, pC,0), the phase
space integral IT̃3

(p̃) has the form

(4.5) ã(p̃)δ(ϕ̃(p)),
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where ã(p̃) is a real-valued real analytic function defined near p̃0. Here we note that
we have used the fact that T̃3 is free from non-external vertices in confirming that
IT̃3

(p̃) satisfies a simple holonomic system of order 1/2. We also note that IT̃3
(p̃) is a

real-valued hyperfunction. As p̃0 is in L×(T̃3), we find

(4.6) αAB 6= 0, αDE 6= 0.

Then it follows from (4.6) that

(4.7) gradpϕ̃(p, 0)|p=p0 6= 0.

Therefore the restriction of IT̃3
(p̃) to {pC = 0} is well-defined and we obtain

(4.8) IT3(p) = ã(p, 0)δ(ϕ̃(p, 0))

near p = p0.
The reasoning given above shows how effectively we can use a complemented graph

G̃ of G in analyzing the phase space integral IG when G contains non-external vertices.
But one might raise the following question:

(4.9) By the successive contraction of internal lines AB and DE in T3 we find
the graph G in (4.4). Doesn’t this cause a problem in restricting IT̃3

(p̃) to
{pC = 0}?

It is true that the totality of u = 0 points for the graph G covers an open set.
Actually the set of u = 0 points for the graph G in (4.4) is the cusp for the triangle
graph T̂1 with non-equal masses:

(4.10) T̂1 :

pA

pB

pC

A

B

Cm = 1

m = 2 m = 2

.

The cusp (together with its endpoint, i.e., a pinch point) for T̂1 is given by

(4.11) x = y = z ≥ 3,

if we use a coordinate system (x, y, z) such that

(4.12) pA = (x, x), pC = (y, z).
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On the other hand a u = 0 point for G in (4.4) is given by the following configuration:

(4.13)
A

C
B with uA 6= uB ;

hence it is contained in the cusp of T̂1.
Thus question (4.9) seems to be reasonable. However, concerning IT̃3

we know

(4.14) singular points of IT̃3
are contained in [L×(T̃3)].

This means, in particular, even if

(4.15) αAB = 0 in [L×(T̃3)]

we still find τ in (4.2) is given by

(4.16) (s + a − t−1)−1 with s = t,

i.e.,

(4.17) t/[(t + a)t − 1].

As we are considering the restriction of IT̃3
(p̃) to {pC = 0} on a neighborhood of L×(T̃3),

where τ is

(4.18) t/[(s + a)t − 1] with s 6= t

the restriction procedure is legitimate. At the same time, if we consider the following
integral F̂ (p̃) given by (4.19), the situation is completely different.

F̂ (p̃) =
1

(2π)6

∫
· · ·
∫ ( 5∏

j=1

δ2
(∑

r

[j : r]pr +
∑

l

[j : l]kr

))
δ+(k2

4 − 1)(4.19)

×
( 3∏

l=1

1
(k2

l − 1 + i0)

7∏
l=5

1
(k2

l − 1 − i0)

) 7∏
l=1

d2kl,
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where the suffix l corresponds to the labelling the internal lines of T̃3 shown below:

(4.20)

L1

L2 L3

L4

L5

L6
L7

V1

V2

V3

V4

V5

.

We note that by the decomposition of δ(k2
l −1) into − 1

2πi

( 1
k2

l − 1 + i0
− 1

k2
l − 1 − i0

)
in

the integrand of IT̃3
(p̃) we find F̂ among several terms appearing after the decomposition

(except for the factor
∏

l 6=4 Y (kl,0)).
In describing the singularities of F̂ , we have to take into account the LN surface

associated with the contracted graph G̃ given in (4.21) below, as the “propagator”
(k2

l − 1± i0)−1 does not vanish even when k2
l 6= 1, making a clear contrast to δ(k2

l − 1).

(4.21) G̃ :
V1

V2

V3

V4

V5

+

+

−

−

.

Furthermore it follows from the hierarchical principle for Feynman integrals ([SW], [S,
p.23]) F̂ contains a factor FG̃ (with ±i0 in the “propagator” being chosen according as
the ± label in G̃ and with δ+(k2

4 − 1) being assigned to L4). Thus the u = 0 points for
G in (4.4) may cause the divergence of the integral when pC approaches to 0, although
it might be cancelled by the background analytic functions in F̂ . We also note that the
(logarithmic) divergence observed above is due to our assumption ν = 2. Actually we
can confirm by the theory of holonomic systems that the singularity of FG̃ has the form
ϕ3 log ϕ with ϕ(p, pC)|pC=0 being 0, if we consider the same problem assuming ν = 4.
This means that we should be careful about the singularity of F̂ in manipulating the
unitarity relation for the S-matrix when ν = 2; we have not yet seriously thought over
this point, but we believe it should be worth being recorded.
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§ 5. Future problems and concluding remarks

By studying some basic examples in micro-analytic S-matrix theory we have so far
shown how the trials toward the better understanding of Sato’s postulates lead us to
find novel and intriguing problems in microlocal analysis. In this section we present
some concrete problems which we hope to be useful for developing the research in this
direction further.

[A] It should be an interesting problem to try to find the concrete form of solutions
of a simple holonomic system when the projection of its characteristic variety to the
base manifold contains Whitney’s umbrella. Actually we have not yet known even the
concrete form of IT1 (other than the integral representation, i.e., its definition) near the
pinch point of L⊕(T1).

[B] It is an interesting problem to find the concrete form of IT̃3
near the pinch point

(I.a) (in the notation of [HK3]) and then apply the result to find the explicit form of
IT3 near the higher codimensional component of L⊕(T3). We believe that its holonomic
structure is different from that of Ih, where h stands for the hinged graph
(5.1)

A

B

C

D

E
with αAB , αDE 6= 0.

Here we note that L⊕(h) geometrically coincides with the higher codimensional compo-
nent of L⊕(T3).

[C] In parallel with trying to answer these questions, we should try to use a computer
to write down the explicit form of the simple holonomic system that IT̃n

satisfies.

[D] In the analysis with the help of a computer, the study of the holonomic structure of
Feynman integrals is more difficult than that of phase space integrals. At the same time,
the analytic renormalization of Speer ([Sp]) is an excellent procedure which nicely fits
in with microlocal analysis fortified with a computer. In this direction of the research,
the study of the holonomic structure of FTn near 3PT is the first trial to be done in



An invitation to Sato’s postulates in micro-analytic S-matrix theory 33

conjunction with Postulate I (ii); clarifying the holonomic structure of FTn will help
to clarify what kind of holonomic systems Sato had in mind there. Here we note that,
despite the inclusion relation (3.10), L+(Tn) is, unlike L⊕(Tn), a rather large set worth
studying. For example

(5.2) L⊕(h) ⊂ L+(T4)

holds for h given by (5.1), and furthermore, we find

(5.3) (3PT ) ⊂ [L⊕(h)].

[E] Although the study of the (holonomic) structure of the S-matrix near the exceptional
set N is a formidable task because of the failure of the finiteness of the number of the
relevant LN surfaces there, the study of individual Feynman integrals near N is, in
principle, within reach of us, microlocal analysts. Actually in view of the exceptional
geometric features of LN surfaces near N (versus “outside N”) ([HKS, Appendix B],
[HK2, Section 3.3]) we believe the study of holonomic structure of FG near N should
be a mathematically important and challenging problem.

In this paper we have put our emphasis on the study of phase space integrals
rather than Feynman integrals, particularly in the computation of integrals associated
with complemented graphs, as the phase space integrals are often more suited for the
concrete computation. However, particularly in studying the hierarchical principle for
the S-matrix, Feynman integrals are more suited for our purpose. Actually in the
analytic S-matrix theory we are forced to analyze “bubble diagram functions” ([KS])
in manipulating the unitarity relation; if we regard the S-matrix as the Borel sum of
a formal series with Feynman integrals as its coefficients, a bubble diagram function
is, in a rough description, a phase space integral whose vertex δ-function (i.e., the δ-
function δν

(∑
r[j; r]pr +

∑
l[j; l]kl

)
at the vertex Vj) is replaced by a Feynman integral

or its complex conjugate. Thus the integral F̂ (p̃) given in (4.19) is one of the simplest
examples of bubble diagram functions. As we touched upon there, such integrals are,
in principle, coupled with the u = 0 problem. We believe that the employment of
complemented graphs should be useful in analyzing integrals suffering from the u = 0
trouble, and that it nicely fits in with Sato’s intention in emphasizing the generalized
unitarity, rather than the unitarity, in stating Postulate II.
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Kyôritsu, Tokyo. (In press; in Japanese)

[KS] T. Kawai and H. P. Stapp: Microlocal study of S-matrix singularity structure, Lect.

Notes in Phys., 39(1975), Springer, 38–48.

[N] K. Nishijima: Asymptotic conditions and perturbation theory, Phys. Rev., 119(1960),

485–498.

[S] M. Sato: Recent development in hyperfunction theory and its applications to physics

(Microlocal analysis of S-matrix and related quantities), Lect. Notes in Phys.,

39(1975), Springer, 13–29.

[SKK] M. Sato, T. Kawai and M. Kashiwara: Microfunctions and pseudo-differential equa-

tions, Lect. Notes in Math., 287(1973), Springer, 265–529.

[Sp] E. R. Speer: Generalized Feynman Amplitudes, Princeton Univ. Press, 1969.

[SW] E. R. Speer and M. J. Westwater: Generic Feynman amplitudes, Ann. Inst. H.
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