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Morse homotopy for the SU(2)–Chern–Simons perturbation
theory

TATSURO SHIMIZU

In this article, we give an alternative description of the 2–loop term of the SU(2)–
Chern–Simons perturbation theory by using the technique developed in [11]. As
an application, we give a Morse theoretic description of the 2–loop term of the
SU(2)–Chern–Simons perturbation theory at a non-trivial connection.

1 Introduction

The G–Chern–Simons perturbation theory developed by M. Kontsevich in [5] and
S. Axelrod and M. I. Singer in [1] gives a topological invariant of a closed oriented
3–manifold with a flat connection of the flat G-bundle over given 3–manifold, where G
is an appropriate semi-simple Lie group. The Chern–Simons perturbation theory at the
trivial connection was well studied by G. Kuperberg and D. Thurston in [6], C. Lescop
in [7], D. Moussard in [10] and C. Taubes in [12]. In particular, Kuperberg and
Thurston in [6] and Lescop in [7] showed that the Chern–Simons perturbation theory
at the trivial connection gives a universal finite type invariant of integral homology
3–spheres. In 1999, R. Bott and A. S. Cattaneo gave a purely topological construction
of the Chern-Simons perturbation theory at a non-trivial connection in [2].

In 1996, K. Fukaya constructed the Morse homotpy invariant by using Morse functions
in [3]. The Morse homotopy invariant is an invariant of a closed oriented 3-manifold
with two different flat connections of the trivial G bundle on given 3-manifold. Fukaya
conjectured that the Morse homotopy invariant coincides with the 2–loop term of the
Chern–Simons perturbation theory in some sense. M. Futaki in [4] pointed out that
Fukaya’s invariant depends on the choice of Morse functions by giving an explicit
example.

In 2012, T. Watanabe constructed the Morse homotopy invariant for the trivial con-
nection in [13]. This is an invariant of rational homology 3-spheres. We showed
that Watanabe’s invariant coincides with the Chern–Simons perturbation theory at the
trivial connection in [11].

http://www.ams.org/mathscinet/search/mscdoc.html?code=\@secclass 
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In this article, we give a generalized description of the 2–loop term of the SU(2)–Chern–
Simons perturbation theory at a non-trivial flat connection by using the technique
developed in [11]. A flat conncection gives a local system on given 3–manifold via
the holonomy representation. The SU(2)–Chern–Simons perturbation theory gives
an invariant of given 3–manifold with the local system. As an application of our
generalized construction, we give the Morse homotopy for the 2–loop term of the
SU(2)–Chern–Simons perturbation theory at a non-trivial connection.

A propagator plays an important role in the construction of the Chern-Simons pertur-
bation theory. A propagator used in our construction is slightly different from that in
[2]. There is an obstruction to existence of a propagator. We show that this obstruction
is vanishing in SU(2)–Chern–Simons perturbation theory.

The invariant given by the Chern-Simons perturbation theory is the sum of the principal
term and the correction term. Both terms are invariants of a flat connection on a 3–
manifold with an extra information on the 3-manifold. In the Bott and Cattaneo’s
construction, they used a framing of given 3–manifold as an extra infromation. In
this article, we use three 3–cycles of the unit sphere bundle of the tangent bundle of
given 3-manifold. A framing gives a three linearly independent unit vector fields and
each vector field gives a 3-cycle of the unit sphere bundle of the tangent bundle of the
3-manifold. In this meaning, our construction is a generalization of Bott and Cattaneo’s
construction.

Lescop defined an invariant of 3-manifold with Betti number 1 in [8]. In the construction
of Lescop’s invariant, she used a similar technique in the construction of the Chern–
Simons perturbation theory. Watanabe constructed an invariant of 3-manifold with
Betti number 1 by using his Morse homotopy technique in [14]. It is expected that
the Chern-Simons perturbation theory at a non-trivial connection is related to Lescop’
invariant and Watanabe’s invariant in some sense.

The organization of this paper is as follows. In Section 2 we introduce some notations.
In Section 3 we give a generalized construction of the 2–loop term of the Bott and
Cattaneo’s Chern–Simons perturbation theory. In Section 4 we give a Morse homotopy
for the 2–loop term of the Chern–Simons perturbation theory as an application of the
construction given in Section 3. In Section 5 we prove Theorem 4.7 stated in Section
4.
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2 Homology with local coefficients

In this section, we prepare some notations about homology with local coefficients.

2.1 Chains with local coefficients

We first prepare the notation about the chains or cycles with local coefficients. Let X be
a manifold and E be a local system on M . Let f : (A, a)→ (M, f (a)) be a continuous
map from a contractible compact k–dimensional manifold A with a base point a ∈ A
to X . Since A is contractible, the map f with e ∈ Ef (a) gives a k–chain in Ck(X; E)
via an appropriate triangulation of A. We denote by 〈A, a; e〉 or 〈f : A→ M, a; e〉 this
chain.

More generally, a continuous map g : (B, b) → (M, g(b)) from a compact k di-
mensional manifold with a base point b ∈ B to X with e ∈ (Eg(b))g∗π1(B,b) gives a
k–chain 〈B, b; e〉. Here (Eg(b))g∗π1(B,b) is the invariant part of Eg(B) under the action of
g∗π1(B, b) < π1(M, g(b)).

For a chain C = 〈f : A→ M, a; e〉, the support Supp(C) of C is defined by Supp(C) =

f (A).

Let π : X → M be a fiber bundle such that the typical fiber F is a compact oriented
manifold. Let c = 〈f : A→ M, a; e〉 ∈ Ck(M; E) be a k–chain of M . Then

π!c = 〈̃f : f ∗X → X, va; e〉 ∈ Ck+dim F(X;π∗E)

is a (k+dim F)–chain of X , where f̃ : f ∗X → X is a bundle map induced by f : A→ M
and va ∈ π−1(a) is any point.

2.2 Intersection of chains

Let X be a compact n dimensional manifold with a boundary and E is an oriented
local system on X . Let c1, . . . , ck be singular chains of X such that:

(A) The degree of ci is ni : ci ∈ Cni(X; E) for each i,
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(B) Supp(∂ci) ⊂ ∂X and there are open submanifolds U1, . . . ,Uk of ∂X satisfying
Supp(∂ci) ⊂ Ui and

⋂
i Ui = ∅.

Here U is an open submanifold of ∂X if U is a (dim X− 1)–dimensional submanifold
and the boundary ∂U is a submanifold of ∂X , where U is a closure of U . Each ci gives
a homology class [ci] ∈ Hni(X,Ui; E). We denote by [ci]P.D. ∈ Hn−ni(X, ∂X − Ui; E)
the Poincaré dual of [ci]. The cup product [c1]P.D. ∪ . . . ∪ [ck]P.D. is in

H
∑

i(n−ni)(X,
⋃

i

(∂X − Ui); E⊗k).

Thanks to the assumption (B),
⋃

i(∂X − Ui) = ∂X . Then [c1]P.D. ∪ . . . ∪ [ck]P.D. ∈
H

∑
i(n−ni)(X, ∂X; E⊗k).

Definition 2.1 The intersection
⋂

i ci of c1, . . . , ck is the homology class of degree
n−

∑
i(n− ni) of X given by⋂

i

ci = ([c1]P.D. ∪ . . . ∪ [ck]P.D.)P.D. ∈ Hn−
∑

i(n−ni)(X; E⊗k).

More generally, the intersection
⋂

i ci is also defined for ci with ∂ci 6⊂ ∂X . Let
c1, . . . , ck be the chains satisfying the following conditions:

(A) The degree of ci is ni : ci ∈ Cni(X; E) for any i,

(B) There are open submanifold V1, . . . ,Vn ⊂ X and open submanifold U1, . . . ,Un ⊂
∂X such that Supp(∂ci) ⊂ Ci t Ui and

⋂
i Vi =

⋂
i Ui = ∅.

In this case, each ci gives a homology class in Hni(M \ (
⋃

i Vi),Ui ∪ ∂Vi; E). Then we
define

⋂
i ci = ([c1]P.D. ∪ . . . ∪ [ck]P.D.)P.D. ∈ Hn−

∑
i(n−ni)(X \ (∪iVi); E⊗k).

Remark 2.2 We remark that if c1, . . . , ck transversally intersect, the homology class⋃
i ci is represented by the geometric intersection of c1, . . . , ck .

3 An alternative description of the SU(2)–Chern–Simons per-
turbation theory

In this section we give a generalized construction of the 2–loop term of the Chern–
Simons perturbation theory. This construction is a generalization of the construction
given by Bott and Cattaneo in [2]. Let M be an oriented closed 3–manifold and G
be a simply connected Lie group (After Theorem 3.13, we only consider the case of
G = SU(2)). Let ρ : π1(M) → G be a representation of π1(M). We consider a local
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system on M as a covariant functor from the fundamental groupoid to a category of
finite dimensional vector spaces. Let E be the local system on M corresponding to
the representation Ad ◦ ρ : π1(M) → Aut(g), where g is the Lie algebra of G and
Ad : G → Aut(g) is the adjoint representation of G. We denote by Ex the object
corresponding to x ∈ M , γ∗ the morphism corresponding to a path γ in M via the
functor E . We assume that E is acyclic, namely Hk(M; E) = 0 for any k ∈ Z.

We denote by R the local system corresponding to the rank one trivial representation.
The natural transformation map

c : R→ E ⊗ E

is given by the following: Since E is corresponding to an orthonormal representation,
there is a natural isomorphism Ex⊗Ex ∼= Ex⊗E∗x for any x ∈ M where E∗x is the dual
space of Ex . The evaluation map ev is in Ex ⊗ E∗x . Then we set c(1) = ev.

Let us denote by B`(M2,∆) the manifold with corner obtained by the real blowing
up of M2 along ∆ = {(x, x) | x ∈ M}. We denote by q : B`(M2,∆) → M2

the blow down map. Then F = q∗(p∗1E ⊗ p∗2E) is a local system on B`(M2,∆),
where p1 : M2 → M and p2 : M2 → M are the projections. We remark that
F|q−1(∆) = q∗(E ⊗ E). Let T : B`(M2,∆) → B`(M2,∆) be an involution induced
by T0 : M2 → M2, (x, y) 7→ (y, x). We denote by H+

3 (M2; F),H−3 (M2; F) the +1
eigen space and −1 eigen space of the induced map T∗ : H3(M2; F) → H3(M2; F)
respectively.

There is a unique homology class d(E) ∈ H+
3 (q−1(∆); F) corresponding to c∗([∆]) ∈

H3(∆; F) under the following diagram, where [∆] ∈ H3(∆;R) is the fundamental
homology class.

H+
4 (B`(M2,∆), ∂B`(M2∆); F)

∼= //

∂
��

	

H+
4 (M2,∆; E ⊗ E)

∂∼=
��

H+
3 (q−1(∆); F) // H+

3 (∆; E ⊗ E)

The left vertical line is a part of the long exact sequence of the pair (B`(M2,∆), ∂B`(M2,∆))
and the right vertical line is a part of the long exact sequence of the pair (M2,∆). The
top horizontal isomorphism is the excision isomorphism.

Let s : ∆ → q−1(∆) be a section. Then [s(∆) ∪ T(s(∆))] is a homology class in
H+

3 (q−1(∆);R).

Lemma 3.1 The homology class [s(∆) ∪ T(s(∆))] is independent of the choice of a
section s.
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Proof We show that [s(∆) ∪ T(s(∆))] ∩ α ∈ H0(q−1(∆);R) is independent of the
choice of s for any α ∈ H2(q−1(∆);R). Thanks to the Poincaré duality, this implies
that the homology class [s(∆) ∪ T(s(∆))] is independent of the choice of s.

Since T : q−1(∆)→ q−1(∆) reverses the orientation, for any a ∈ H+
3 (q−1(∆);R) and

b ∈ H+
2 (q−1(∆);R), a ∩ b = (aP.D. ∪ bP.D.)P.D. ∈ H−0 (q−1(∆);R) = 0.

Since H−2 (∆;R) = H−0 (∆;R) = 0 and H−0 (S2;R) = 0, we have H−2 (q−1(∆);R) ∼=
H+

0 (∆;R) × H−2 (S2;R). Then H−2 (q−1(∆);R) is generated by [q−1(x)] for a point
x ∈ ∆. It is clear that [s(∆) ∪ T(s(∆))] ∩ [q−1(x)] = [{s(x),T(s(x))}] = 2 ∈ R ∼=
H0(q−1(∆);R). This is obviously independent of the choice of s.

Definition 3.2 o(E) = q∗(d(E) ∩ [s(∆) ∪ T(s(∆))]) ∈ H1(∆; E ⊗ E).

Remark 3.3 We will show that o(E) is an obstruction to the exsistence of a propagator
in Lemma 3.7.

Lemma 3.4 If G = SU(2), then H−1 (∆; E ⊗ E) = 0. In particular o(E) = 0.

Proof Since T0|∆ = id, H−1 (∆; E ⊗ E) = H1(∆; (E ⊗ E)−). The Lie bracket [·, ·]
of su2 induces a natural transformation map b : E ⊗ E → E, f (x ⊗ y) = [x, y].
For each (x, x) ∈ ∆, b : Ex ⊗ Ex → Ex is subjective because su2 is semi-simple.
Then dim(kerb) = 6. Since b(T(x ⊗ y)) = −b(x ⊗ y), (Ex ⊗ Ex)− is a subspace of
kerb. On the other hand dim((Ex ⊗ Ex)−) = 6. Therefore (E ⊗ E)− ∼= E . Then
H1(∆; (E ⊗ E)−) = H1(∆; E) = 0.

We now define a propagator which plays an important role in the construction of the
invariant.

Definition 3.5 (propagator) A 4−cycle Σ ∈ C4(B`(M2,∆), ∂B`(M2,∆); F) is said
to be a propagator if there is a cycle Σ∂

R ∈ C+
3 (q−1(∆);R) such that the following

conditons hold:

(1) T∗Σ = Σ,

(2) q∗[Σ∂
R] = [∆] ∈ H+

3 (∆;R) and

(3) ∂Σ = c∗(Σ∂
R).

Remark 3.6 Since H+
1 (∆;R) = 0, we have H+

3 (q−1(∆);R) ∼= H3(∆;R)×H0(S2;R) ∼=
H3(∆;R). From the condition (2) of Definition 3.5, the homology class [Σ∂

R] ∈
H3(q−1(∆);R) is independent from Σ∂

R and Σ.
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Lemma 3.7 If o(E) = 0, there exist propagators.

Proof Let s : ∆→ q−1(∆) be a section. The cycle 1
2{s(∆),T(s(∆))} ∈ C+

3 (q−1(∆);R)
satisfies the condition (2) of Definition 3.5. Set Σ∂

R = 1
2{s(∆),T(s(∆))}. By the defi-

nition of d(E),

d(E)− c∗[Σ∂
R] ∈ ker(q∗ : H+

3 (∂B`(M2,∆); F)→ H+
3 (∆; E ⊗ E)).

We fix a trivialization q−1(∆) ∼= ∆× S2 . Under the trivialization q−1(∆) ∼= ∆× S2 ,

kerq∗ ∼= H−1 (∆; E ⊗ E)× H2(S2;R)
ϕ∼= H−1 (∆; E ⊗ E).

For any a ∈ H−1 (∆; E ⊗ E), q∗((a × [S2]) ∩ Σ∂
R) = a. Then the last isomorphism ϕ

is given by ϕ(·) = q∗(· ∩ Σ∂
R). On the other hand q∗(c∗[Σ∂

R] ∩ [Σ∂
R]) = 0. Therefore

0 = o(E)− q∗(c∗[Σ∂
R]∩ [Σ∂

R]) = ϕ−1(d(E)− c∗[Σ∂
R]). Thus we have d(E) = c∗[Σ∂

R].
This implies that

c∗[Σ∂
R] ∈ Im(H4(B`(M2,∆), ∂B`(M2,∆); F)→ H3(∂B`(M2,∆); F)).

So we can take Σ0 ∈ C4(B`(M2,∆); F) satisfying ∂Σ0 = c∗Σ∂
R . Then Σ = 1

2 (Σ0 +

T(Σ0)) ∈ C+
4 (B`(M2,∆), ∂B`(M2,∆); F) is a propagator.

We take a triple of propagators (Σ1,Σ2,Σ3) satisfying the following conditions:

• There are submanifolds N1,N2 and N3 of q−1(∆) such that Ni ⊃ Supp(∂Σi)
for i = 1, 2, 3,

• N1 ∩ N2 ∩ N3 = ∅.

We will call such a triple an admissible triple of propagators. Under these conditions,
we can apply the intersection theory to Σ1,Σ2,Σ3 as in the usual homology theory.
(More precisely, we consider the Poincaré dual of each propagator. See Section 2.2)

Lemma 3.8 Let (Σ1,Σ2,Σ3) and (Σ′1,Σ
′
2,Σ

′
3) be admissible triples of propagators

such that ∂Σi = ∂Σ′i for any i = 1, 2, 3 and [Σ1 − Σ′1] = 0 ∈ H+
4 (B`(M2,∆); F).

Then Tr⊗2(Σ1 ∩ Σ2 ∩ Σ3) = Tr⊗2(Σ′1 ∩ Σ′2 ∩ Σ′3) ∈ R ∼= H0(B`(M2,∆),R).

Proof It is enough to show that Tr⊗2(Σ1 ∩ Σ2 ∩ Σ3 − Σ′1 ∩ Σ2 ∩ Σ3) = 0. Since
[Σ2 ∩Σ3] ∈ H2(B`(M2,∆), ∂B`(M2,∆); F) and [Σ1 −Σ′1] = 0 ∈ H4(B`(M2,∆); F),
we have

(Σ1 ∩ Σ2 ∩ Σ3)− (Σ′1 ∩ Σ2 ∩ Σ3)

= [Σ1 − Σ′1] ∩ [Σ2 ∩ Σ3]

= 0 ∩ [Σ2 ∩ Σ3] = 0.
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Lemma 3.9 If G = SU(2), then H+
4 (B`(M2,∆); F) = 0.

Proof By the Poincaré duality and the excision isomorphism, H+
4 (B`(M2,∆); F) ∼=

H2
−(B`(M2,∆), ∂B`(M2,∆); F) ∼= H2

−(M2,∆; p∗1E ⊗ p∗2E). Since H∗(M; E) = 0, the
Künneth formula shows that H∗(M2; p∗1E⊗p∗2E) = 0. The cohomology exact sequence
of pair (M2,∆) implies that H2

−(M2,∆; p∗1E ⊗ p∗2E) ∼= H1
−(∆; E ⊗ E). By the same

reason as in Lemma 3.4, H1
−(∆; E ⊗ E) = H1(∆; (E ⊗ E)−) = 0.

Corollary 3.10 If G = SU(2), Tr⊗2(Σ1,Σ2,Σ3) ∈ R is independent of the choice of
an admissible triple of propagators (Σ1,Σ2,Σ3).

Let STM is the unit sphere bundle of TM . Let FTM → STM be the tangent bundle
along the fiber of STM → M . We denote by e(FTM) ∈ H2(STM;R) the Euler class of
FTM → M . Then e(FTM)P.D. ∈ H3(STM;R).

Let c1, c2, c3 ∈ C3(STM;R) be 3−cycles such that
⋂

i Supp(ci) = ∅ and [c1] = [c2] =

[c3] = 1
2 e(FTM)P.D. . Let W be a compact oriented 4–manifold with ∂W = M and

χ(W) = 0, where χ(W) is the Euler characteristic of W . Let TvW ⊂ TW be an
oriented R3 bundle satisfying TvW|M = TM . The total space of the unit sphere bundle
STvW is an oriented 6-dimensional manifold with ∂STvW = STM . Let FTvW → STvW
be the tangent bundle along the fiber of STvW → W and let e(FTvW) ∈ H2(STvW;R)
be the Euler class. Then e(FTvW)P.D. ∈ H4(STvW, ∂STvW;R). Take 4–cycles
C1,C2,C3 ∈ C4(STvW, ∂STvW;R) such that ∂Ci = ci and [Ci, ci] = 1

2 e(FTvW)P.D.

for i = 1, 2, 3. By the assumption of c1, c2, c3 , the intersection (C1 ∩C2 ∩C3) ∈ R =

H0(STvW, ∂STvW;R) is well-defined.

Lemma 3.11 (Theorem4.1 in [11], see also Appendix of [11]) (C1 ∩ C2 ∩ C3) −
3
4 SignW ∈ R is independent of the choice of C1,C2,C3 and W .

Definition 3.12 I(c1, c2, c3) = (C1 ∩ C2 ∩ C3)− 3
4 SignW ∈ R.

There is a natural bundle isomorphism ψ : TM
∼=→ T(M2)/T∆ given by ψ(x, v) =

((x, x), (v,−v)), where x ∈ M and v ∈ TxM . ψ gives an bundle isomorphism between
STM and q−1(∆). We identify STM with q−1(∆) via this bundle isomorphism. Under
this identification, ∂Σ is a 3–cycle in C3(STM; E ⊗ E) for any propagator Σ. By the
definition of propagator, there is a cycle Σ∂

R ∈ C3(STM;R) such that c∗(Σ∂
R) = ∂Σ.

We recall that the homology class [Σ∂
R] ∈ H3(STM;R) is independent of the choice

of a propagator Σ (See Remark 3.6). Since e(FTM)P.D. ∈ H+
3 (STM;R) ∼= R, we have

[Σ∂
R] = 1

2 e(FTM)P.D. .

From now we assume that G = SU(2).
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Theorem 3.13 Let (Σ1,Σ2,Σ3) be an admissible triple of propagators. Let Σ∂
R,i ∈

C3(STM;R) be the cycle such that c∗(Σ∂
R,i) = ∂Σi for i = 1, 2, 3. Then

ZSU(2)(M,E; Σ1,Σ2,Σ3) = Tr⊗2(Σ1 ∩ Σ2 ∩ Σ3)− 6I(Σ∂
R,1,Σ

∂
R,2,Σ

∂
R,3) ∈ R

is independent of the choice of (Σ1,Σ2,Σ3).

Proof Let Σ?
i be an alternative choice of Σi . Let Σ?,∂

R,i ∈ C3(STM;R) be the cycle

satisfying c∗(Σ
?,∂
R,i ) = ∂Σ?

i for i = 1, 2, 3. Let C?i ,Ci be 4-cycles in C4(STvW;R)

satisfying ∂Σ?
i = Σ?,∂

R,i , ∂Σi = Σ∂
R,i for i = 1, 2, 3. Let STM× [0, 1] ⊂ STvW, STM×

{0} = ∂STvX be a collar of STM in STvW . We identify STvW \ (STM × [0, 1]) with
STvW by stretching the collar. Thanks to Lemma 3.11, without loss of generality, we
may assume that C?i |STvW\(STM×[0,1]) = Ci . Then

I(Σ?,∂
R,1,Σ

?,∂
R,2,Σ

?,∂
R,3)− I(Σ∂

R,1,Σ
∂
R,2,Σ

∂
R,3)

= C?1 ∩ C?2 ∩ C?3 ∩ (STM × [0, 1])

= C1 ∩ C2 ∩ C3 ∩ (STM × [0, 1]).

Let q−1(∆)× [0, 1] ⊂ B`(M2,∆), q−1(∆)×{0} = ∂B`(M2,∆) be a collar of q−1(∆)
in B`(M2,∆). Thanks to Lemma 3.9, without loss of generality, we may assume that

Σi|B`(M2,∆)\q−1(∆)×[0,1] = Σ′i and Σi|q−1(∆)×[0,1] = Ci|STM×[0,1] . Then

Tr⊗2(Σ1,Σ2,Σ3)− Tr⊗2(Σ?
1,Σ

?
2,Σ

?
3)

= Tr⊗2(Σ1 ∩ Σ2 ∩ Σ3 ∩ (q−1(∆)× [0, 1])

= Tr⊗2(c∗(1)⊗ c∗(1)⊗ c∗(1))(C1 ∩ C2 ∩ C3 ∩ (STM × [0, 1]))

= 6(C1 ∩ C2 ∩ C3 ∩ (STM × [0, 1])).

Therefore Tr⊗2(Σ1 ∩ Σ2 ∩ Σ3) − 6I(Σ∂
R,1,Σ

∂
R,2,Σ

∂
R,3) = Tr⊗2(Σ?

1 ∩ Σ?
2 ∩ Σ?

3) −
6I(Σ?,∂

R,1,Σ
?,∂
R,2,Σ

?,∂
R,3).

Definition 3.14 ZSU(2)(M,E) = ZSU(2)(M,E; Σ1,Σ2,Σ3).

4 Morse homotopy for the SU(2)–Chern–Simons perturba-
tion theory

In [11] we introduced the Morse theoretic description (Morse homotopy) of a propaga-
tor for the Chern–Simons perturbation theory at the trivial connection. This description
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is deeply inspired by [3] and [13] and related to [9]. In this section, we give a Morse
theoretic description of a propagator for ZSU(2)(M,E).

Let f : M → R be a Morse function. We denote by Critj(f ) the set of critical points
of index j of f and set Crit(f ) = tj=0,1,2,3Critj(f ). We denote by ind(p) the index of
p ∈ Crit(f ). Let

(C∗(f ; E), ∂) = · · · 0 ∂4→ C3(f ; E) ∂3→ C2(f ; E) ∂2→ C1(f ; E) ∂1→ C0(f ; E) ∂0→ 0

be the Morse-Smale complex of the Morse function f with an acyclic local system E ,
namely Cj(f ; E) = ⊕p∈Critj(f )Ep .

Let (Φt
f : M

∼=→ M)t∈R be the one–parameter family of diffeomorphisms associated to
gradf . Let Ap and Dp be the ascending manifold of p and descending manifold of p
respectively for p ∈ Crit(f ):

Ap = {x ∈ Y | lim
t→−∞

Φt
f (x) = p},

Dp = {x ∈ Y | lim
t→∞

Φt
f (x) = p}.

Let M(p, q) be the set of all trajectories connecting q ∈ Crit(f ) and p ∈ Crit(f ):

M(p, q) = {γ : R→ M | dγ/dt = gradf , lim
t→−∞

γ(t) = q, lim
t→∞

γ(t) = p}.

The additive group R acts on M(p, q) as shifting the parameter. We set

M′(p, q) =M(p, q)/R.

We consider each γ ∈M′(p, q) as a path from q to p. When ind(q) = ind(p) + 1, we
assign ε(γ) ∈ {+,−} to each γ ∈ M′(p, q) as follows: ε(γ) = + if and only if the
orientation of γ is from q to p.

The orientation convention follows [11].

Definition 4.1 ([3],[13]) A family of homomorphisms g = (gk : Ck(f ; E) →
Ck+1(f ; E))k∈Z is said to be a combinatorial propagator if

gk−1 ◦ ∂k + ∂k+1 ◦ gk = idCk(f ;E)

for all k ∈ Z.

A combinatorial propagator g gives a morphism gp,q : Ep → Eq for p ∈ Critk(f ), q ∈
Critk+1(f ).

Let f 0
∆ : M × [0,∞) → M2, f∆(x, t) = (x,Φf

t (x)). LetM→(f ) be the closure of
f 0
∆(M × [0,∞)) in M2 . M→(f ) is obtained from f∆(M × [0,∞)) by adding all the
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broken trajectories (See [9, Lemma 4.3] or [13, Proposition 3.4] for more details). The
map f 0

∆ can be extended to the closure. We denote by f∆ : M→(f )→ M2 the extended
map. Then we get a 4–chain of M2 :

M→(f ) = 〈M→(f ), (x, x); c(1)〉 ∈ C4(M2; p∗1E ⊗ p∗2E).

The closure of q−1(M0
→(f ) \∆) in B`(M2,∆) gives a 4–chain in B`(M2,∆). We will

denote by
MB`
→(f ) ∈ C4(B`(M2; ∆); F)

this chain.

We denote by Ap → M the extension of the embedding Ap → M to the closure of
Ap . Ap is obtained by adding all the broken trajectories (See [13, Proposition 3.17]
for more detail). For p ∈ Critk(f ) and q ∈ Critk+1(f ), (1 ⊗ gp,q) is a morphism from
Ep ⊗ Ep to Ep ⊗ Eq . Therefore

Ap ×Dq = 〈Ap ×Dq, (p, q); (1⊗ gp,q)c(1)〉
is a 4-chain in C4(M2, p∗1E ⊗ p∗2E). We denote by

(Ap ×Dq)B` ∈ C4(B`(M2,∆); F)

the 4–chain given from the closure of q−1(Ap ×Dq \∆) in B`(M2,∆). Let

M0(f ) = MB`
→(f ) +

∑
p,q∈Crit(f ),indp=indq−1

(Ap ×Dq)B`,

M(f ) =
1
2

(M0(f ) + T(M0(f ))) ∈ C4(B`(M2,∆); F).

Lemma 4.2 M(f ) is a 4–cycle of C4(B`(M2,∆), ∂B`(M2,∆); F).

Proof M→(f ) +
∑

p,qAp ×Dq is a 4–chain of M2 . It is sufficient to show that

Supp(∂(M→(f ) +
∑
p,q

Ap ×Dq)) ⊂ ∆.

By Lemma 4.3 in [9] or Propositon 3.4 in [13] and Proposition 3.14 in [13],

∂M→(f ) \∆ =
∑

p∈Crit(f )

〈Ap ×Dp, (p, p); c(1)〉,

∂(Ap ×Dq)

=
∑

p′∈Crit(f )

⋃
γp′,q∈M′(p′,q)

〈Ap ×Dp′ , (p, p′); (1⊗ (γp′,q)∗ ◦ gp,q)c(1)〉

+
∑

q′∈Crit(f )

⋃
γp,q′∈M′(p,q′)

〈Aq′ ×Dq, (q′, q); ((γp,q′)−1
∗ ◦ gp,q ⊗ 1)c(1)〉.
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If ind(p′) > ind(p), then the image of
⋃
γp′,q∈M′(p′,q)〈Ap ×Dp′ , (p, p′); (1⊗ (γp′,q)∗ ◦

gp,q)c(1)〉 is in at most 2–dimensional manifold Ap × Dp′ . Then we can omit⋃
γp′,q∈M′(p′,q)〈Ap×Dp′ , (p, p′); (1⊗(γp′,q)∗◦gp,q)c(1)〉 from the boundary of Ap×Dq .

Therefore, we have

∂(Ap ×Dq)

=
∑

p′∈Critind(p)(f )

〈
∑

γp′,q∈M′(p′,q)

ε(γp′,q)Ap ×Dp′ , (p, p′); (1⊗ (γp′,q)∗ ◦ gp,q)c(1)〉

+
∑

q′∈Critind(q)(f )

〈
∑

γp,q′∈M′(p,q′)
ε(γp,q′)Aq′ ×Dq, (q′, q); ((γp,q′)−1

∗ ◦ gp,q ⊗ 1)c(1)〉

=
∑

p′∈Critind(p)(f )

〈
∑

γp′,q∈M′(p′,q)

Ap ×Dp′ , (p, p′); (1⊗ ε(γp′,q)(γp′,q)∗ ◦ gp,q)c(1)〉

+
∑

q′∈Critind(q)(f )

〈
∑

γp,q′∈M′(p,q′)
Aq′ ×Dq, (q′, q); (1⊗ gp,q ◦ ε(γp,q′)(γp,q′)∗)c(1)〉

=
∑

p′∈Critind(p)(f )

〈
∑

γp′,q∈M′(p′,q)

Ap ×Dp′ , (p, p′); (1⊗ (∂p′,q)◦gp,q)c(1)〉

+
∑

q′∈Critind(q)(f )

〈
∑

γp,q′∈M′(p,q′)
Aq′ ×Dq, (q′, q), (1⊗ gp,q ◦ (∂p,q′))c(1)〉.

Here ∂p′,q : Ep′ → Eq is the boundary map. Thus

∂(
∑
p,q

Ap ×Dq)

=
∑

k

∑
p,p′∈Critk(f )

(Ap ×Dp′ , (p, p′), (1⊗
∑

q∈Critk+1(f )

∂p′,q ◦ gp,q +
∑

r∈Critk−1(f )

∂r,p′ ◦ gr,p ⊗ 1)c(1))

=
∑

p∈Crit(f )

(Ap ×Dp, (p, p), c∗(1))

= ∂M→(f ) \∆.

Therefore
Supp(∂(M→(f ) +

∑
p,q

Ap ×Dq)) ⊂ ∆.

We set
c(f ) = ∂M(f ) ∈ C3(q−1(∆); F).
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By the definition of M(f ), ∂M(f ) ∈ C3(q−1(∆); q∗(E ⊗ E)) = C3(STM; q∗(E ⊗ E))
is described as follows: For v ∈ TxM \ {0}, we denote by [v] ∈ STxM the image of v
under the projection TxM \ {0} → STM .

∂M(f ) = 〈∆(f ), (x, [gradx f ]); c(1)〉+q!

∑
p,q

〈M(p, q), (p, p); (id⊗ (gp,q ◦
∑

γ∈M′(p,q)

γ∗))c(1)〉

 .

Here ∆(f ) = {[gradyf ],−[gradyf ] ∈ STyM | y ∈ M \ Crit(f )} ↪→ STM and x ∈ M \
Crit(f ) is any point. We remark that ∆(f ) is a 3–cycle of C3(STM;R) (See [11,
Lemma] for details). Let us denote

c(f ) =
∑
p,q

〈M(p, q), (p, p); (id⊗ (gp,q ◦
∑

γ∈M′(p,q)

γ∗))c(1)〉.

We next introduce the linking number of 1–chains with local coefficients. Let c1, c2 ∈
C−1 (M,E⊗E) be 1-cycles such that Supp(c1)∩Supp(c2) = ∅. Since H−1 (M,E⊗E) = 0,
there is a 2–chain C1 ∈ C−2 (M; E ⊗ E) such that ∂C1 = c1 . Then we have a 0–cycle
C1 ∩ c2 ∈ C0(M; (E ⊗ E)⊗2). Let R : (E ⊗ E)⊗2 → R,R((x1 ⊗ x2) ⊗ (y1 ⊗ y2)) =

〈[x1, y1], [x2, y2]〉 = Tr⊗2((x1 ⊗ x2)⊗ (y1 ⊗ y2)⊗ c∗(1)).

Lemma 4.3 R∗(C1 ∩ c2) ∈ R = H0(M;R) is independent of the choice of C1 .

Proof Let C′1 be the alternative choice of C1 . C1−C′1 is a 2–cycles of C−2 (M; E⊗E).
Since H−2 (M; E⊗E) = 0, C1∩c2−C′1∩c2 = [C1−C′1]∩[c2] = 0 ∈ H−0 (M; (E⊗E)2).
Therefore R∗(C1 ∩ c2)− R∗(C′1 ∩ c2) = R∗(0) = 0.

Definition 4.4 lk(M,E)(c1, c2) = R(C1 ∩ c2).

Definition 4.5 A triple of Morse functions (f1, f2, f3) is said to be generic when the
following conditions hold:

• Supp(c(fi)) ∩ Supp(c(fj)) = ∅ for any i 6= j and

•
⋂

i ∆(fi) = ∅.

Remark 4.6 A triple of Morse functions which is generic in the products space
C∞(M,R)3 of a map space C∞(M,R) is generic in the above sence.

Theorem 4.7 For any generic triple of Morse functions (f1, f2, f3),

ZSU(2)(M,E) = Tr2(M(f1)∩M(f2)∩M(f3))−6I(∆(f1),∆(f2),∆(f3))−
∑

i<j∈{1,2,3}

lk(M,E)(c(fi), c(fj)).
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5 Proof of Theorem 4.7

Since H−1 (∆; E ⊗ E) = 0, there are 2–chains C(f1),C(f2),C(f3) ∈ C−2 (∆; E ⊗ E)
satisfying ∂C(fi) = c(fi) for i = 1, 2, 3. Let ∂B`(M2,∆) × [0, 1] be a collar of
∂B`(M2,∆) ⊂ B`(M2,∆) with ∂B`(M2,∆)× {0} = ∂B`(M2,∆). For t ∈ [0, 1] ,we
denote by qt : ∂B`(M2,∆)× {t} → ∆ the projection. We may assume that

• M(fi) ∩ ∂B`(M2,∆)× [0, 1] = ∂M(fi)× [0, 1] for any i = 1, 2, 3.

We set

• C(f1)′ = ((q1/4)!C(f1) + c(f1)× [0, 1/4]) ∈ C4(M2,∆; E ⊗ E),

• C(f2)′ = ((q2/4)!C(f2) + c(f2)× [0, 2/4]) ∈ C4(M2,∆; E ⊗ E),

• C(f3)′ = ((q3/4)!C(f3) + c(f3)× [0, 3/4]) ∈ C4(M2,∆; E ⊗ E),

• M(f1)′ =M(f1)− C(f1)′ ,

• M(f2)′ =M(f2)− C(f2)′ and

• M(f3)′ =M(f3)− C(f3)′ .

Here c(fi) × [0, t] = (πt)!c(fi) for t ∈ [0, 1] and the projection πt : ∂B`(M2,∆) ×
[0, t]→ B`(M2,∆). Then the triple (M(f1)′,M(f2)′,M(f3)′) is a triple of admissible
propagators with ∂M(fi)′ = 〈∆(fi), (x, [gradxf ]); c(1)〉 = c∗(∆(fi)). Then we have

ZSU(2)
1 (M,E) = Tr⊗2(M(f1)′ ∩M(f2)′ ∩M(f3)′)− 6I(∆(f1),∆(f2),∆(f3)).

Lemma 5.1 For any a+, b+, c+ ∈ (E ⊗ E)+ , a−, b−, c− ∈ (E ⊗ E)− and any
σ1, σ2, σ3 ∈ {+,−} ∼= Z/2 with σ1σ2σ3 = −, Tr⊗2(aσ1 ⊗ bσ2 ⊗ cσ3) = 0.

Proof Since σ1σ2σ3 = −,

T⊗3
0 (aσ1 ⊗ bσ2 ⊗ cσ3) = σ1aσ1 ⊗ σ2bσ2 ⊗ σ3cσ3 = −aσ1 ⊗ bσ2 ⊗ cσ3 .

On the other hand, Tr⊗2 ◦ T⊗3
0 = Tr⊗2 . Then Tr⊗2(aσ1 ⊗ bσ2 ⊗ cσ3) = 0.

Lemma 5.2 (1) Tr⊗2(C(f1)′ ∩ C(f2)′ ∩ (∂M(f3)× [0, 1])) = lk(M,E)(c(f1), c(f2)),

(2) Tr⊗2(C(f1)′ ∩ (∂M(f2)× [0, 1]) ∩ C(f3)′) = lk(M,E)(c(f1), c(f3)),

(3) Tr⊗2((∂M(f1)× [0, 1]) ∩ C(f2)′ ∩ C(f3)′) = lk(M,E)(c(f2), c(f3)).
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Proof We prove (1). For generic f1, f2 , Supp(c(f1)) ∩ Supp(c(f2)) = ∅. Therefore

Tr⊗2(C(f1)′ ∩ C(f2)′ ∩ ∂M(f3)× [0, 1])

= Tr⊗2((q1/4)!C(f1) ∩ (q1/4)!c(f2) ∩ ∂M(f3)× {1/4})
= Tr⊗2((q1/4)!C(f1) ∩ (q1/4)!c(f2) ∩ 〈∆(f3), (x, x), c∗(1))〉

+ Tr⊗2((q1/4)!C(f1) ∩ (q1/4)!c(f2) ∩ (q1/4)!c(f3)).

Since Supp(c(f2))∩Supp(c(f3)) = ∅, the second term of the last equation is zero. Then

Tr⊗2(C(f1)′ ∩ C(f2)′ ∩ ∂M(f3)× [0, 1])

= Tr⊗2((q1/4)!C(f1) ∩ (q1/4)!c(f2) ∩ 〈∆(f3), (x, x), c∗(1))〉
= Tr⊗2((C(f1) ∩ c(f2))⊗ c∗(1))

= lk(M,E)(c(f1), c(f2)).

Proof of Theorem 4.7 For each i = 1, 2, 3, ∂M(fi) ∈ C3(q−1(∆); q∗((E⊗E)+)) and
C(fi) ∈ C2(∆; (E ⊗ E)−). Then, thanks to Lemma 5.1,

Tr⊗2(M(f1)′ ∩M(f2)′ ∩M(f3)′)

= Tr⊗2((M(f1)− C(f1)′) ∩ (M(f2)− C(f2)′) ∩ (M(f3)− C(f3)′))

= Tr⊗2(M(f1) ∩M(f2) ∩M(f3))

−Tr⊗2(C(f1)′ ∩ C(f2)′ ∩ (∂M(f3)× [0, 1]))

−Tr⊗2(C(f1)′ ∩ (∂M(f2)× [0, 1]) ∩ C(f3)′)

−Tr⊗2((∂M(f1)× [0, 1]) ∩ C(f2)′ ∩ C(f3)′)

= Tr⊗2(M(f1) ∩M(f2) ∩M(f3))−
∑
i<j

lk(M,E)(c(fi), c(fj)).
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