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Abstract

We prove the Etingof conjecture stated that the quotient Cact
(0)
n of the Cactus

group Cactn [2],[5],[9] by the relation (s12s13)
6 = 1 is isomorphic to the Gelfand–

Tsetlin group, known also as the BKn group, which has been introduced and studied
in [1]. In particular, a subtraction free birational (as well as piece-wise linear one) action

of the (reduced) Cactus group Cact
(0)
n on the projective space Pn2

is described. This
action is geometric/tropical lift of the combinatorial action of the local Schützenberger
transformation on the set of semistandard Young tableaux, cf [1], [6].

2000 Mathematics Subject Classifications: 05E05, 05E10, 05A19.
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1 Introduction

The cactus group Cactn := π1(M0,n+1(R)) is the fundamental group of the real locus of the
Deligne–Mumford compactification M0,n+1 of the moduli space of genus zero stable curves
with n + 1 marked points, see e.g., [2]. The action of (reduced) cactus group on the set of
standard Young tableaux has been described in [5],[4]. On the other hand, a combinatorial
action of the Gelfand–Tsetlin/Berenstein–Kirillov group GTn/BKn on the set of semistan-
dard Young tableaux had been introduced by A. Lascoux and M.-P. Schützenberger, see e.g.,
[7]; see also [3], [6].

Based on results obtained in [1],[6], we construct birational/geometric representation of

the (reduced) cactus group Cact
(0)
n , and identify it with the Gelfand–Tsetlin group GTn.

In fact, in [1] the affine extension of the Gelfand–Tsetlin group has been introduced and
studied, as well as presented an action of the (affine) group GTn on the set of semistandard
Young tableaux and that of transportation matrices, cf [8]. It will be interesting task to
find a geometric interpretations of affine Cactus and affine Gelfand–Tsetlin groups. Another
interesting problem we are looking for, is to study of combinatorial and algebraic properties
of the higher genus cactus group Cactg,n := π1(Mg,n+1(R)), work in progress.

2 Cactus group Cactn, [2],[5], [4], [9]

Definition 2.1 The Cactus group Cactn is a group (with a unit) generated by elements
σij, 1 ≤ i < j ≤ n, subject to the set of relations
• σ2

ij = 1, if 1 ≤ i < j ≤ n,
• σij σkl = σkl σij, if j < k,
• σij σkl σij = σi+j−l,i+j−k, if i ≤ k < l ≤ j.

Let us set σi := σ1,i+1, 1 ≤ i ≤ n− 1. It is clear that σ2
i = 1, and the elements σ1, . . . , σn−1

generate the Cactus group Cactn. We denote by Cact
(0)
n the quotient of the cactus group

Cactn by the normal subgroup generated by the element ((σ1σ2)
6 − 1).

3 Gelfand–Tsetlin group, [1], [6]

Definition 3.1 ([1],[6]) The Gelfand–Tsetlin group GTn, known also as the Berenstein–
Kirillov group and denoted by BKn, is a group (with a unit) generated by the elements
t1, . . . , tn−1 subject to the set of relations
• (t1 t2)

6 = 1,
• ti tj = tj ti, if |i− j| ≥ 2,
• (ti qj)

4 = 1 if j − i ≥ 2, where

qi = t1 t2 t1︸︷︷︸ · · · titi−1 . . . t1︸ ︷︷ ︸, 1 ≤ i < n.
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Proposition 3.2 ([1],[6]) The following relations in the group BKn are satisfied

• [ti, qk tj qk] = 0, if k ≥ i+ j + 1,

• [qi, qk qj qk] = 0, if k ≥ i+ j + 1,

where [a, b] := a b− b a denotes the commutator of elements a and b.

Theorem 3.3 ([1]) The elements of the Gelfand–Tsetlin group GTn listed below

si := qi t1 qi, 1 ≤ i < n

satisfy the following relations
• s2i = 1,
• (Coxeter relations) (si si+1)

3 = 1, if 1 ≤ i < n,
(commutativity) (si sj)

2 = 1, if |i − j| ≥ 2. We expect that the group generated by
the elements s1, . . . , sn−1 is isomorphic to the symmetric group Sn.

Theorem 3.4 The maps σi ←→ qi can be extended to the isomorphism of groups

Cact(0)n
∼= GTn.

Indeed, it is clear that under the above correspondence one has

qk qj qk = σk+1−j,k+1.

Therefore, if k ≥ i+ j + 1, then k − j + 1 ≥ i+ 2, and therefore

[σ1,i+1, σk+1−j,k+1] = [qi, qk qj qk] = 0.

Now let us check that the image of relations

σin σjk = σi+n−k,i+n−j σin, 1 ≤ j < k ≤ n

are satisfied in the Gelfand–Tsetlin group. Indeed, we have to show that the relations

qn−1 qn−i qn−1 qk−1 qk−j qk−1 = qn+i−j−1 qk−j qn+i−j−1 qn−1 qn−i qn−1

are valid in the group GTn. By definition, qr = qr−1 pr, where pr := tr tr−1 · · · t2 t1︸ ︷︷ ︸.
Therefore,

qn−1 = qi+n−j−1 u
(n−1)
n+i−j,

where we set u
(a)
b := pa . . . pb, if a > b. Therefore one can rewrite relations we have to prove,

in the following form

u
(n−1)
i+n−j qn−i qn−1qk−1 qk−juqk−1 = qk−j u

(n−1
n+i−j qn−i qn−1.
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Now we use the following deletion un−1 = qn−i u
(n−1)
ni+1 ,so that we can rewrite the above

relations in the form

u
(n−1)
n+i−j u

(n−1)
n−i+1 qk−1 = qk−j u

(n−1)
n+i−j u

(n−1)
n−i+1 qk−1.

Note that the number of terms in the product u
(n−1)
n+i−j u

(n−1)
n−i+1 is equal to j − 1. Therefore,

u
(n−1)
n+i−j u

(n−1)
n−i+1 qk−1 = qk−j × Aj+2,

where Aj+2 is a certain product of generators tn, . . . , tj+2 only. This statement is clearly
seen from the relations

pa qb = ta ta−1 · · · tb+1 qb−1, if a > b.

The relations sij skl = skl sij, if j < k, can be proved in the same fashion.

Clearly, one has the maps GTn ←→ Cact
(0)
n given by

qi ←→ s1,i+1

. Therefore we came to conclusion that the groups GTn and Cact
(0)
n are isomorphic.
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Remark After this note was written, we was informed about a preprint arXive:1609.2046 “
The Berenstein-Kirillov group and cactus groups” by M. Chmutov, M. Glick, P. Pylyavskyy,
which also contains another approach to identify the cactus group Cactus)n(0) and that BKn.
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