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Abstract. — In the present paper, we discuss two categorical characterizations of local
fields. We first prove that a certain full subcategory of the category of finite flat coverings of
the spectrum of the ring of integers of a local field equipped with coherent modules completely
determines the isomorphism class of the local field. Next, we also prove that a certain full
subcategory of the category of irreducible schemes which are finite over the spectrum of the
ring of integers of a local field completely determines the isomorphism class of the local field.
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Introduction

Let K be a local field, i.e., a field which is isomorphic to a finite extension of either Qp

or Fp((t)) for some prime number p. Write OK for the ring of integers of K and

BK

for the category of irreducible normal schemes which are finite, flat, and generically étale
over OK [cf. Definition 1.2]. Then one may verify that the category BK is, by the functor
taking function fields, equivalent to the category of finite separable extensions of K [cf.
Lemma 1.4, (ii)]. Thus,

the category BK completely determines and is completely determined by
the absolute Galois group of K

[cf. Theorem 1.10]. In particular, one may conclude from the example discussed in [1],
§2, that

the equivalence class of the category BK does not determine the isomor-
phism class of the field K
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2 Yuichiro Hoshi

[cf. Corollary 1.12, (i)]. In the present paper, we introduce two categories which contain,
as a full subcategory, the above category BK and prove that these categories completely
determine the isomorphism class of the field K.

First, let us write

CK

for the category of pairs of objects of BK and coherent modules on the objects [cf. Defi-
nition 2.1] and take a full subcategory

CK
of CK which satisfies the condition (C) [cf. Definition 2.3], i.e., such that, roughly speaking,

(C-a) CK is closed under the operation of taking submodules, and

(C-b) CK contains every object of CK whose module is torsion and generated by a
single element.

Then, by the conditions (C-a) and (C-b), one may regard the category BK as a full
subcategory of CK [cf. Lemma 2.4, (iii)].

Next, let us write

FK

for the category of irreducible schemes which are finite over OK [cf. Definition 3.1] and
take a full subcategory

FK

of FK which satisfies the condition (F) [cf. Definition 3.4], i.e., such that, roughly speak-
ing,

(F-a) FK contains the object Spec(OK),

(F-b) FK is closed under the operation of taking normalizations of objects which are
the spectra of integral domains of dimension one,

(F-c) FK is closed under the operation of taking finite separable extensions and sub-
fields of the function fields of objects which are the spectra of integral domains of dimen-
sion one, and

(F-d) FK is closed under the operation of taking closed subschemes.

Then, by the conditions (F-a), (F-b), and (F-c), one may regard the category BK as a
full subcategory of FK [cf. Lemma 3.5, (v)].

The main result of the present paper is as follows [cf. Theorem 2.14; Theorem 3.20]:

THEOREM. — Let K◦, K• be local fields. Then the following hold:

(i) Let CK◦, CK• be full subcategories of CK◦, CK• as above, respectively. Suppose that
the category CK◦ is equivalent to the category CK•. Then the field K◦ is isomorphic to
the field K•.

(ii) Let FK◦, FK• be full subcategories of FK◦, FK• as above, respectively. Suppose that
the category FK◦ is equivalent to the category FK•. Then the field K◦ is isomorphic
to the field K•.
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1. Category of Finite Flat Coverings

In the present §1, let us discuss a category of certain finite flat coverings of the spectrum
of the ring of integers of a local field [cf. Definition 1.2].

DEFINITION 1.1. — If K is a local field, i.e., a field which is isomorphic to a finite
extension of either Qp or Fp((t)) for some prime number p, then we shall write

• OK ⊆ K for the ring of integers of K,

• mK ⊆ OK for the maximal ideal of OK , and

• K
def
= OK/mK for the residue field of OK .

In the remainder of the present §1, let K be a local field.

DEFINITION 1.2. — We shall write BK for the category defined as follows:

• An object of BK is a pair (S, φ) consisting of a(n) [nonempty] irreducible normal
scheme S and a morphism φ : S → Spec(OK) of schemes which is finite, flat, and generi-
cally étale. To simplify the exposition, we shall often refer to S [i.e., just the domain of
the morphism φ] as an “object of BK”.

• Let S, T be objects of BK . Then a morphism S → T in BK is defined as a morphism
of schemes from S to T lying over OK .

DEFINITION 1.3. — Let S be an object of BK . Then we shall write KS for the function
field of S.

LEMMA 1.4. — The following hold:

(i) A terminal object of BK is given by the pair (Spec(OK), idSpec(OK)).

(ii) The assignment “S 7→ KS” determines an equivalence of categories of BK with
the category defined as follows:

• An object of the category is a finite separable extension of K.

• A morphism in the category is a homomorphism of fields over K.

Proof. — These assertions follow immediately from the definition of the category BK .
�
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DEFINITION 1.5.

(i) We shall say that a morphism f : S → T in BK is Galois if the finite separable
extension KS/KT determined by f [cf. Lemma 1.4, (ii)] is Galois.

(ii) We shall say that an object S of BK is Galois if there exists a Galois morphism
from S to a terminal object of BK [cf. Lemma 1.4, (i)].

(iii) We shall say that a projective system (Sλ)λ∈Λ consisting of objects and morphisms
of BK is a basepoint of BK if Sλ is Galois for each λ ∈ Λ, and, moreover, for each object
T of BK , there exist an element λT ∈ Λ and a morphism SλT

→ T in BK .

(iv) Let S̃ = (Sλ)λ∈Λ be a basepoint of BK . Then we shall write

KeS def
= lim−→

λ∈Λ

KSλ

for the field obtained by forming the injective limit of the KSλ
’s and

ΠeS def
= lim←−

λ∈Λ

Aut(Sλ)

for the profinite [cf. Lemma 1.4, (ii)] group obtained by forming the projective limit of
the Aut(Sλ)’s.

LEMMA 1.6. — The following hold:

(i) There exists a basepoint of BK.

(ii) Let S be a Galois object of BK. Then Aut(S) is isomorphic to Gal(KS/K).

(iii) Let S̃ be a basepoint of BK. Then the field KeS is a separable closure of K.
Moreover, the profinite group ΠeS is isomorphic to the absolute Galois group Gal(KeS/K)
of K.

Proof. — These assertions follow, in light of Lemma 1.4, (ii), from elementary field
theory. �

LEMMA 1.7. — Let S, T be objects of BK; f : S → T a morphism in BK. Then it holds
that f is Galois if and only if, for each two morphisms g1, g2 : U → S in BK such that
f ◦ g1 = f ◦ g2, there exists an automorphism h of S over T such that g2 = h ◦ g1.

Proof. — This follows, in light of Lemma 1.4, (ii), from elementary field theory. �

DEFINITION 1.8. — Let S be an object of BK and S̃ = (Sλ)λ∈Λ a basepoint of BK . Then
we shall write

S(S̃)
def
= lim−→

λ∈Λ

Hom(Sλ, S).



Two Categorical Characterizations of Local Fields 5

LEMMA 1.9. — Let S̃ = (Sλ)λ∈Λ be a basepoint of BK. Then the assignment “S 7→ S(S̃)”
determines an equivalence of categories of BK with the category defined as follows:

• An object of the category is a [nonempty] finite set equipped with a continuous tran-
sitive action of ΠeS.

• Let A, B be objects of the category. Then a morphism A → B in the category is
defined as a ΠeS-equivariant map from A to B.

Proof. — This follows from Lemma 1.4, (ii), and Lemma 1.6, (iii), together with ele-
mentary Galois theory. �

THEOREM 1.10. — Let K◦, K• be local fields. Then it holds that the category BK◦ [cf.
Definition 1.2] is equivalent to the category BK• if and only if the absolute Galois group
of the field K◦ is isomorphic, as a profinite group, to the absolute Galois group of the
field K•.

Proof. — The necessity follows, in light of Lemma 1.6, (i), from Lemma 1.6, (iii), and
Lemma 1.7. The sufficiency follows, in light of Lemma 1.6, (i), (iii), from Lemma 1.9. �

LEMMA 1.11. — Let G be a profinite group which is isomorphic to the absolute Galois
group of K. Then the following hold:

(i) It holds that K is of characteristic zero if and only if, for each prime number l,
there exists an open subgroup of G such that l divides the cardinality of the [necessarily
finite] module consisting of torsion elements of the abelianization of the open subgroup.

(ii) Suppose that K is of positive characteristic. Then it holds that ]K − 1 coin-
cides with the cardinality of the [necessarily finite] module consisting of torsion elements
of the abelianization of G.

Proof. — These assertions follow immediately from local class field theory. �

COROLLARY 1.12. — The following hold:

(i) There exist local fields K◦ and K• such that the category BK◦ is equivalent to the
category BK•, but the field K◦ is not isomorphic to the field K•.

(ii) Let K◦, K• be local fields. Suppose that the category BK◦ is equivalent to the
category BK•, and that either K◦ or K• is of positive characteristic. Then the field
K◦ is isomorphic to the field K•.

Proof. — Assertion (i) follows from Theorem 1.10, together with the example discussed
in [1], §2. Finally, we verify assertion (ii). Suppose that BK◦ is equivalent to BK• , and
that K◦ is of positive characteristic. Then it follows from Theorem 1.10 that the absolute
Galois group of K◦ is isomorphic to the absolute Galois group of K•. Thus, it follows
immediately from Lemma 1.11, (i), that K• is of positive characteristic. Moreover, it
follows from Lemma 1.11, (ii), that ]K◦ = ]K•, which thus implies that K◦ is isomorphic
to K•, as desired. This completes the proof of assertion (ii). �
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2. Category of Finite Flat Coverings with Coherent Modules

In the present §2, let us discuss a certain full subcategory of the category of finite flat
coverings of the spectrum of the ring of integers of a local field equipped with coherent
modules [cf. Definition 2.1; Definition 2.3]. In the present §2, let K be a local field, i.e.,
a field which is isomorphic to a finite extension of either Qp or Fp((t)) for some prime
number p.

DEFINITION 2.1. — We shall write CK for the category defined as follows:

• An object of CK is a pair X = (SX ,FX) consisting of an object SX of BK [cf.
Definition 1.2] and a coherent OSX

-module FX .

• Let X = (SX ,FX), Y = (SY ,FY ) be objects of CK . Then a morphism X → Y in
CK is defined as a pair f = (fS, fF) consisting of a morphism fS : SX → SY in BK and a
homomorphism fF : FX → f ∗SFY of OSX

-modules.

DEFINITION 2.2. — Let X, Y be objects of CK ; f : X → Y a morphism in CK .

(i) We shall say that X is scheme-like if FX(SX) = {0}.
(ii) We shall say that f is a scheme-isomorphism if fS is an isomorphism of schemes.

[Thus, a scheme-isomorphism is not necessarily an isomorphism in CK .]

(iii) Suppose that X = Y , and that f is an automorphism. Then we shall say that f
is a scheme-identity if fS is the identity automorphism of SX . We shall write

Autid(X)

for the group of scheme-identities of X.

(iv) We shall say that f is a rigidification [of Y ] if X is scheme-like, and f is a
scheme-isomorphism.

(v) We shall write KX for the function field of SX .

DEFINITION 2.3. — Let CK be a full subcategory of CK . Then we shall say that CK
satisfies the condition (C) if

(a) the full subcategory CK is closed under the operation of taking submodules, i.e., if
X is an object of CK , and G ⊆ FX is an OSX

-submodule of FX , then the object (SX ,G)
of CK is an object of CK , and

(b) the full subcategory CK contains every object of CK whose module is torsion and
generated by a single element, i.e., if an object X of CK satisfies the condition that the
OKX

-module [cf. Definition 1.1; Definition 2.2, (v)] FX(SX) is torsion and generated by
a single element, then X is an object of CK .

In the remainder of the present §2, let CK be a full subcategory of CK which satisfies
the condition (C).



Two Categorical Characterizations of Local Fields 7

LEMMA 2.4. — The following hold:

(i) Every scheme-like object of CK is an object of CK.

(ii) A terminal object of CK is given by the pair (Spec(OK), {0}). Moreover, every
terminal object of CK is scheme-like.

(iii) There exists a(n) [tautological] equivalence of categories of BK with the full
subcategory of CK consisting of scheme-like objects of CK.

Proof. — These assertions follow immediately from the definition of the category CK
[cf. Definition 2.3, (a), (b)]. �

LEMMA 2.5. — Let X, Y be objects of CK; f : X → Y a morphism in CK. Then the
following hold:

(i) It holds that f is a monomorphism [i.e., in CK ] if and only if f is a scheme-
isomorphism, and, moreover, the homomorphism fF(SX) : FX(SX) → f ∗SFY (SX) of
OKX

-modules is injective.

(ii) It holds that f is a rigidification if and only if f is a monomorphism, and,
moreover, f is an initial object among monomorphisms whose codomains are Y .

(iii) It holds that X is scheme-like if and only if there exists a rigidification in CK
whose domain is X.

(iv) It holds that f is a scheme-isomorphism if and only if there exist rigidifica-
tions g : Z → X, h : Z → Y in CK such that f ◦ g = h.

(v) Suppose that X = Y , and that f is an automorphism. Then it holds that f is a
scheme-identity if and only if there exists a rigidification g : Z → X in CK such that
g = f ◦ g.

Proof. — First, we verify assertion (i). The sufficiency follows immediately from the
[easily verified] flatness of a morphism in BK . In the remainder of the proof of assertion
(i), we verify the necessity.

First, suppose that fS is not an isomorphism. Then since the finite extension KX/KY

determined by f is nontrivial and separable [cf. Lemma 1.4, (ii); Lemma 2.4, (iii)], it
follows from elementary field theory that there exist a finite separable extension L of
K and two inclusions i1, i2 : KX ↪→ L such that i1 6= i2 but i1|KY

= i2|KY
. Thus, by

considering the two morphisms from the object (Spec(OL), {0}) of CK [cf. Lemma 2.4,
(i)] to X determined by i1, i2, respectively, we conclude that f is not a monomorphism.

Next, suppose that fS is an isomorphism, but that the homomorphism fF(SX) of
OKX

-modules is not injective, i.e., that {0} 6= Ker(fF(SX)) ⊆ FX(SX). Then we
have the natural inclusion j1 : Ker(fF(SX)) ↪→ FX(SX) and the zero homomorphism
j2 : Ker(fF(SX)) → ({0} ↪→) FX(SX). Write Z for the object of CK determined by the
pair (SX , Ker(fF(SX))) [cf. Definition 2.3, (a)]. Then, by considering the natural two
scheme-isomorphisms from Z to X determined by j1, j2, respectively, we conclude that f
is not a monomorphism. This completes the proof of the necessity, hence also of assertion
(i).
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Assertion (ii) follows immediately, in light of Lemma 2.4, (i), from assertion (i). Asser-
tions (iii), (iv), and (v) follow immediately, in light of Lemma 2.4, (i), from the various
definitions involved. �

DEFINITION 2.6.

(i) Let X, Y be scheme-like objects of CK . Then we shall say that a morphism
f : X → Y in CK is Galois if the finite separable extension KX/KY determined by f [cf.
Lemma 1.4, (ii); Lemma 2.4, (iii)] is Galois.

(ii) Let X be a scheme-like object of CK . Then we shall say that X is Galois if there
exists a Galois morphism from X to a terminal object of CK [cf. Lemma 2.4, (ii)].

(iii) We shall say that a projective system (Xλ)λ∈Λ consisting of objects and morphisms
of CK is basepoint of CK if Xλ is Galois [hence also scheme-like] for each λ ∈ Λ, and,
moreover, for each scheme-like object Y of CK , there exist an element λY ∈ Λ and a
morphism XλY

→ Y in CK .

(iv) Let X̃ = (Xλ)λ∈Λ be a basepoint of CK . Then we shall write

K eX def
= lim−→

λ∈Λ

KXλ

for the field obtained by forming the injective limit of the KXλ
’s and

Π eX def
= lim←−

λ∈Λ

Aut(Xλ)

for the profinite [cf. Lemma 1.4, (ii); Lemma 2.4, (iii)] group obtained by forming the
projective limit of the Aut(Xλ)’s.

LEMMA 2.7. — The following hold:

(i) There exists a basepoint of CK.

(ii) Let X be a Galois object of CK. Then Aut(X) is isomorphic to Gal(KX/K).

(iii) Let X̃ be a basepoint of CK. Then the field K eX is a separable closure of K.
Moreover, the profinite group Π eX is isomorphic to the absolute Galois group Gal(K eX/K)
of K.

Proof. — These assertions follow, in light of Lemma 2.4, (iii), from Lemma 1.6. �

LEMMA 2.8. — Let X, Y be scheme-like objects of CK; f : X → Y a morphism in CK.
Then it holds that f is Galois if and only if, for each scheme-like object Z in CK and
each two morphisms g1, g2 : Z → X in CK such that f ◦ g1 = f ◦ g2, there exists an
automorphism h of X over Y such that g2 = h ◦ g1.

Proof. — This follows, in light of Lemma 2.4, (iii), from Lemma 1.7. �
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LEMMA 2.9. — Let X, Y be objects of CK; f : X → Y a rigidification in CK. Then the
following hold:

(i) For each automorphism g of Y , there exists a unique automorphism g̃ of X
such that f ◦ g̃ = g ◦ f .

(ii) The assignment “g 7→ g̃” of (i) determines an exact sequence of groups

1 −→ Autid(Y ) −→ Aut(Y ) −→ Aut(X) −→ 1.

Proof. — First, we verify assertion (i). Since X is scheme-like, the automorphism of
SX given by f−1

S ◦ gS ◦ fS determines an automorphism g̃ of X such that f ◦ g̃ = g ◦ f .
Moreover, the uniqueness of such a “g̃” follows from the fact that a rigidification is a
monomorphism [cf. Lemma 2.5, (ii)]. This completes the proof of assertion (i).

Finally, we verify assertion (ii). One verifies easily that, to verify assertion (ii), it
suffices to verify the following two assertions:

(1) For each g ∈ Aut(Y ), it holds that g̃ is the identity automorphism of X if and
only if g is a scheme-identity.

(2) For each h ∈ Aut(X), there exists g ∈ Aut(Y ) such that h = g̃.

On the other hand, assertion (1) follows from the description of “g̃” given in the proof of
assertion (i); assertion (2) is immediate. This completes the proof of Lemma 2.9. �

DEFINITION 2.10.

(i) Let X, Y be objects of CK ; f : X → Y a rigidification in CK . Then it follows from
Lemma 2.9, (ii), that we have an exact sequence of groups

1 −→ Autid(Y ) −→ Aut(Y ) −→ Aut(X) −→ 1,

which thus determines an outer action of Aut(X) on Autid(Y ):

Aut(X) −→ Out(Autid(Y )).

We shall write

Aut(X)f
def
= Ker

(
Aut(X)→ Out(Autid(Y ))

)
⊆ Aut(X)

for the kernel of this action.

(ii) Let X be an object of CK and n a nonnegative integer. Then we shall say that
X is n-simple if the OKX

-module FX(SX) is isomorphic to OKX
/mn

KX
[cf. Definition 1.1;

Definition 2.2, (v)].

LEMMA 2.11. — Let X be a scheme-like object of CK and n a nonnegative integer.
Then there exists a rigidification of an n-simple object whose domain is X.

Proof. — This is immediate [cf. Definition 2.3, (b)]. �
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LEMMA 2.12. — Let X be an object of CK. Then the following hold:

(i) It holds that X is 0-simple if and only if X is scheme-like.

(ii) Let n be a positive integer. Then it holds that X is n-simple if and only if there
exists a morphism f : Y → X in CK which satisfies the following conditions:

(1) The object Y is (n − 1)-simple.

(2) The morphism f is a monomorphism but not an isomorphism.

(3) Let g : Y → Z, h : Z → X be morphisms in CK such that f = h ◦ g. If both g
and h are monomorphisms, then either g or h is an isomorphism.

(4) The group Autid(X) is abelian.

Proof. — Assertion (i) is immediate. In the remainder of the proof, we verify assertion
(ii). The necessity follows immediately from Lemma 2.5, (i) [cf. Definition 2.3, (a)]. To
verify the sufficiency, suppose that there exists a morphism f : Y → X in CK which sat-
isfies conditions (1), (2), (3), and (4). Then it follows immediately, in light of Lemma 2.5,
(i), from conditions (1), (2), and (3) that the OKX

-module FX(SX) is isomorphic to either
OKX

/mn
KX

or (OKX
/mn−1

KX
) ⊕ (OKX

/mKX
). Thus, it follows from condition (4) that the

OKX
-module FX(SX) is isomorphic to OKX

/mn
KX

, as desired. This completes the proof
of the sufficiency. �

LEMMA 2.13. — Let X, Y be objects of CK; f : X → Y a morphism in CK; n a non-
negative integer. Suppose that X is Galois, that Y is n-simple, and that f is a rigid-
ification. Then the subgroup Aut(X)f ⊆ Aut(X) corresponds, relative to the natural
isomorphism of Aut(X) with Gal(KX/K) [cf. Lemma 2.7, (ii)], to the kernel

Ker
(
Gal(KX/K)→ Aut(OKX

/mn
KX

)
)

of the natural action of Gal(KX/K) on OKX
/mn

KX
.

Proof. — It follows immediately from the definition of an n-simple object that Autid(Y )
is naturally isomorphic to (OKY

/mn
KY

)×. Thus, the subgroup Aut(X)f ⊆ Aut(X) corre-
sponds, relative to the natural isomorphism of Aut(X) with Gal(KX/K), to the kernel

Ker
(
Gal(KX/K)→ Aut((OKX

/mn
KX

)×)
)
.

In particular, Lemma 2.13 follows immediately from the [easily verified] fact that

OKX
/mn

KX
= mKX

/mn
KX
∪ (OKX

/mn
KX

)×,

1 + (mKX
/mn

KX
) ⊆ (OKX

/mn
KX

)×.

This completes the proof of Lemma 2.13. �

THEOREM 2.14. — Let K◦, K• be local fields; CK◦, CK• full subcategories of CK◦, CK• [cf.
Definition 2.1] which satisfy the condition (C) [cf. Definition 2.3], respectively. Suppose
that the category CK◦ is equivalent to the category CK•. Then the field K◦ is isomorphic
to the field K•.
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Proof. — Suppose that there exists an equivalence of categories φ : CK◦
∼→ CK• . Let

X◦, Y◦ be objects of CK◦ ; f◦ : X◦ → Y◦ a morphism in CK◦ . Write X•, Y• for the objects
of CK• corresponding, via φ, to X◦, Y◦, respectively; f• : X• → Y• for the morphism in
CK• corresponding, via φ, to f◦. Then it follows from Lemma 2.5, (ii), that

(a) it holds that f◦ is a rigidification if and only if f• is a rigidification.

Thus, it follows from Lemma 2.5, (iii), that

(b) it holds that X◦ is scheme-like if and only if X• is scheme-like;

moreover, it follows from Lemma 2.5, (iv) (respectively, (v)), that

(c) it holds that f◦ is a scheme-isomorphism (respectively, scheme-identity) if and
only if f• is a scheme-isomorphism (respectively, scheme-identity).

In particular, it follows from Lemma 2.12 that, for each nonnegative integer n,

(d) it holds that X◦ is n-simple if and only if X• is n-simple.

Next, let X̃◦ = ((X◦)λ)λ∈Λ be a basepoint of CK◦ [cf. Lemma 2.7, (i)]. Then it follows

from Lemma 2.8, together with (b), that the projective system X̃• = ((X•)λ)λ∈Λ consist-

ing of objects and morphisms of CK• corresponding, via φ, to X̃◦ is a basepoint of CK• .
Thus, the equivalence φ determines an isomorphism of profinite groups

Πφ : Π eX◦
= lim←−

λ∈Λ

Aut((X◦)λ)
∼−→ Π eX•

= lim←−
λ∈Λ

Aut((X•)λ).

In particular, if either K◦ or K• is of positive characteristic, then it follows, in light of
Lemma 2.7, (iii), from Theorem 1.10 and Corollary 1.12, (ii), that K◦ is isomorphic to
K•, as desired. In the remainder of the proof,

suppose that both K◦ and K• are of characteristic zero.

Next, let λ be an element of Λ, n a nonnegative integer, and (f◦)λ : (X◦)λ → (Y◦)λ a

rigidification of an n-simple object (Y◦)λ whose domain is the member (X◦)λ of X̃◦ [cf.
Lemma 2.11]. Write

Πφ,λ : Aut((X◦)λ)
∼−→ Aut((X•)λ)

for the isomorphism induced by Πφ and (f•)λ : (X•)λ → (Y•)λ for the rigidification [cf. (a)]
of the n-simple object (Y•)λ [cf. (d)] corresponding, via φ, to (f◦)λ : (X◦)λ → (Y◦)λ. Then
it follows from (c) that the isomorphism Πφ,λ restricts to an isomorphism of subgroups

Aut((X◦)λ)(f◦)λ

∼−→ Aut((X•)λ)(f•)λ
.

Thus, it follows from Lemma 2.13 that the isomorphism Πφ,λ is compatible — rela-
tive to the natural identifications [cf. Lemma 2.7, (ii)] of Aut((X◦)λ), Aut((X•)λ) with
Gal(K(X◦)λ

/K◦), Gal(K(X•)λ
/K•), respectively — with the respective ramification filtra-

tions. In particular, the isomorphism Πφ is compatible — relative to the natural identifi-
cations [cf. Lemma 2.7, (iii)] of Π eX◦

, Π eX•
with Gal(K eX◦

/K◦), Gal(K eX•
/K•), respectively

— with the respective ramification filtrations. Thus, it follows from [2], Theorem, that
K◦ is isomorphic to K•, as desired. This completes the proof of Theorem 2.14. �
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3. Category of Finite Schemes

In the present §3, let us discuss a certain full subcategory of the category of irreducible
schemes which are finite over the spectrum of the ring of integers of a local field [cf.
Definition 3.1; Definition 3.4]. In the present §3, let K be a local field, i.e., a field which
is isomorphic to a finite extension of either Qp or Fp((t)) for some prime number p.

DEFINITION 3.1. — We shall write FK for the category defined as follows:

• An object of FK is a pair (S, φ) consisting of a(n) [nonempty] irreducible scheme S
and a finite morphism φ : S → Spec(OK) of schemes. To simplify the exposition, we shall
often refer to S [i.e., just the domain of the morphism φ] as an “object of FK”.

• Let S, T be objects of FK . Then a morphism S → T in FK is defined as a morphism
of schemes from S to T lying over OK .

LEMMA 3.2. — The following hold:

(i) Every object of FK is isomorphic to the spectrum of a noetherian complete
local ring of dimension zero or one.

(ii) Every object of FK is of cardinality one or two.

(iii) Every morphism in FK is injective. In particular, if the domain (respectively,
codomain) of a morphism in FK is of cardinality two (respectively, one), then the mor-
phism is bijective.

Proof. — Assertion (i) follows immediately, in light of the fact that OK is complete,
hence also henselian, from the definition of the category FK . Assertion (ii) follows im-
mediately from assertion (i). Assertion (iii) follows immediately from assertion (ii). �

DEFINITION 3.3. — Let S be an object of FK .

(i) We shall say that S is point-like if S is of cardinality one, or, alternatively, is of
dimension zero; we shall say that S is non-point-like if S is not of cardinality one [i.e., is
of cardinality two, or, alternatively, is of dimension one — cf. Lemma 3.2, (i), (ii)].

(ii) We shall say that S is a trait (respectively, quasi-trait) if S is normal (respectively,
integral) and non-point-like.

(iii) Suppose that S is a quasi-trait. Then we shall write KS for the function field of
S.

REMARK 3.3.1. — One verifies easily from Lemma 3.2, (i), that it holds that an object of
FK is a trait if and only if the object is isomorphic to the spectrum of a complete discrete
valuation ring.
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DEFINITION 3.4. — Let FK be a full subcategory of FK . Then we shall say that FK

satisfies the condition (F) if

(a) the full subcategory FK contains the object (Spec(OK), idSpec(OK)),

(b) the full subcategory FK is closed under the operation of taking normalizations of
quasi-traits, i.e., if S is a quasi-trait of FK , then the trait of FK obtained by forming the
normalization of S is an object of FK ,

(c) the full subcategory FK is closed under the operation of taking finite separable
extensions and subfields of the function fields of quasi-traits, i.e., if S is a quasi-trait of
FK , and L is a finite separable extension of KS (respectively, an intermediate extension
of KS/K), then there exist a quasi-trait T of FK and a morphism T → S (respectively,
S → T ) in FK such that KT is isomorphic, over KS (respectively, as an intermediate
extension of KS/K), to L, and

(d) the full subcategory FK is closed under the operation of taking closed subschemes,
i.e., if S is an object of FK , then every closed immersion in FK whose codomain is S is
a morphism in FK .

In the remainder of the present §3, let FK be a full subcategory of FK which satisfies
the condition (F).

LEMMA 3.5. — The following hold:

(i) A terminal object of FK is given by the pair (Spec(OK), idSpec(OK)). Moreover,
every terminal object of FK is a trait.

(ii) The assignment “S 7→ KS” determines a faithful functor from the full subcategory
of FK consisting of quasi-traits of FK to the category defined as follows:

• An object of the category is a finite extension of K.

• A morphism in the category is a homomorphism of fields over K.

(iii) Let S be a trait of FK, T a quasi-trait of FK, and i : KT ↪→ KS a homo-
morphism of fields over K. Then there exists a unique morphism S → T in FK which
induces, via the functor of (ii), the homomorphism i.

(iv) The restriction of the functor of (ii) to the full subcategory of FK consisting of
traits of FK is full.

(v) There exists a(n) [tautological] equivalence of categories of BK [cf. Definition 1.2]
with the full subcategory of FK consisting of traits of FK which are generically étale
over OK.

Proof. — Assertions (i), (ii), and (iii) follow immediately from the definition of the
category FK [cf. Definition 3.4, (a)]. Assertion (iv) follows from assertion (iii). Assertion
(v) follows from the definition of the category FK [cf. Definition 3.4, (a), (b), (c)]. �

DEFINITION 3.6. — We shall say that FK is separable if the essential image of the functor
of Lemma 3.5, (ii), consists of finite separable extensions of K.
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DEFINITION 3.7.

(i) Let S, T be traits of FK . Then we shall say that a morphism f : S → T in FK is
Galois if the finite extension KS/KT determined by f [cf. Lemma 3.5, (ii)] is Galois.

(ii) Let S be a trait of FK . Then we shall say that S is Galois if there exists a Galois
morphism from S to a terminal object of FK [cf. Lemma 3.5, (i)].

(iii) We shall say that a projective system (Sλ)λ∈Λ consisting of objects and morphisms
of FK is basepoint of FK if Sλ is Galois [hence also a trait which is generically étale over
OK ] for each λ ∈ Λ, and, moreover, for each trait T of FK which is generically étale over
OK , there exist an element λT ∈ Λ and a morphism SλT

→ T in FK .

(iv) Let S̃ = (Sλ)λ∈Λ be a basepoint of FK . Then we shall write

KeS def
= lim−→

λ∈Λ

KSλ

for the field obtained by forming the injective limit of the KSλ
’s and

ΠeS def
= lim←−

λ∈Λ

Aut(Sλ)

for the profinite [cf. Lemma 1.4, (ii); Lemma 3.5, (v)] group obtained by forming the
projective limit of the Aut(Sλ)’s.

LEMMA 3.8. — The following hold:

(i) There exists a basepoint of FK.

(ii) Let S be a Galois object of FK. Then Aut(S) is isomorphic to Gal(KS/K).

(iii) Let S̃ be a basepoint of FK. Then the field KeS is a separable closure of K.
Moreover, the profinite group ΠeS is isomorphic to the absolute Galois group Gal(KeS/K)
of K.

Proof. — These assertions follow, in light of Lemma 3.5, (v), from Lemma 1.6. �

LEMMA 3.9. — Let S, T be objects of FK; f : S → T a morphism in FK. Then the
following hold:

(i) It holds that f is a monomorphism [i.e., in FK ] if and only if f is a closed
immersion.

(ii) It holds that S is point-like if and only if there exists a morphism S → O, where
O is a terminal object of FK [cf. Lemma 3.5, (i)], which satisfies the following condition:
The morphism S → O factors through a closed immersion U → O in FK which is
not an isomorphism.

(iii) It holds that S is non-point-like if and only if S is not point-like.

(iv) It holds that S is integral and point-like if and only if there exists a closed
immersion S → U in FK which is an initial object among closed immersions whose
codomains are U .
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(v) Suppose that S is non-point-like. Then it holds that S is a quasi-trait if and
only if there exists a closed immersion S → U in FK which is an initial object among
closed immersions whose codomains are U and whose domains are non-point-like.

(vi) Suppose that S is a quasi-trait. Then it holds that S is a trait if and only
if there exists a birational morphism S → U in FK which is an initial object among
birational morphisms whose codomains are U and whose domains are quasi-traits of
FK.

Proof. — First, we verify assertion (i). The sufficiency is immediate. To verify the ne-

cessity, suppose that f is a monomorphism. Write AS
def
= OS(S) and AT

def
= OT (T ). Then

since [one verifies easily that] the homomorphism AT → AS determined by f is finite,
to verify that f is a closed immersion, we may assume without loss of generalities, by
replacing AT by the residue field [cf. Lemma 3.2, (i)], that AT is a field [cf. Definition 3.4,
(d)].

Next, let us observe that one verifies easily that the residue field of AS is a finite field,
hence also a perfect field. Thus, it follows immediately from a similar argument to the
argument applied in the proof of the implication

“fS is not an isomorphism” =⇒ “f is not a monomorphism”

given in the proof of Lemma 2.5, (i), that the homomorphism from AT to the residue field
of AS determined by f is an isomorphism [cf. Definition 3.4, (b), (c), (d)]. In particular,
the morphism f : S → T has a splitting, i.e., a morphism s : T → S such that f ◦ s = idT .

Now we have the identity automorphism idS of S and the composite S
f→ T

s→ S. Then
since f is a monomorphism, we conclude that idS = s◦f , i.e., that f is a closed immersion.
This completes the proof of the necessity, hence also of assertion (i).

Assertion (ii) follows immediately from Lemma 3.2, (iii); Lemma 3.5, (i) [cf. Defini-
tion 3.4, (d)]. Assertions (iii) and (iv) are immediate [cf. Definition 3.4, (d)]. Assertion
(v) follows immediately from Lemma 3.2, (iii) [cf. Definition 3.4, (d)]. Assertion (vi) fol-
lows immediately from the Zariski main theorem [cf. Definition 3.4, (b)]. This completes
the proof of Lemma 3.9. �

DEFINITION 3.10. — Let S, T be quasi-traits of FK ; f : S → T a morphism in FK .

(i) We shall say that f is purely inseparable (respectively, quasi-Galois) if the finite
extension KS/KT determined by f [cf. Lemma 3.5, (ii)] is purely inseparable (respectively,
quasi-Galois, or, alternatively, normal, i.e., KS is Galois over the purely inseparable
closure of KT in KS).

(ii) Suppose that f is quasi-Galois. Then we shall write qGal(f)
def
= Gal(KS/L)

(= AutKT
(KS)), where we write L ⊆ KS for the purely inseparable closure of KT in KS

[which thus implies that the finite extension KS/L is Galois].

LEMMA 3.11. — Let S, T be quasi-traits of FK; f : S → T a morphism in FK. Then
the following hold:
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(i) It holds that f is either birational or purely inseparable if and only if the
following condition is satisfied: For each quasi-trait U of FK and each two morphisms
g1, g2 : U → S in FK, if f ◦ g1 = f ◦ g2, then g1 = g2.

(ii) Consider the following conditions:

(1) For each quasi-trait U of FK and each two morphisms g : S → U , h : U → T
such that f = h◦g, if every automorphism of S over T is an automorphism over U [i.e.,
relative to g], then h is either birational or purely inseparable.

(2) The morphism f is quasi-Galois.

Then (1) implies (2). If, moreover, S is a trait, then (1) is equivalent to (2).

Proof. — First, we verify assertion (i). The necessity follows, in light of Lemma 3.5, (ii),
from elementary field theory. The sufficiency follows immediately, in light of Lemma 3.5,
(ii), from a similar argument to the argument applied in the proof of the implication

“fS is not an isomorphism” =⇒ “f is not a monomorphism”

given in the proof of Lemma 2.5, (i) [cf. Definition 3.4, (c)]. This completes the proof of
assertion (i).

Finally, we verify assertion (ii). Let us first observe that if condition (1) is satisfied,
then it follows immediately from Lemma 3.5, (ii), that the intermediate extension of
KS/KT consisting of AutT (S)-invariants in KS is [either the trivial extension or] a purely
inseparable extension of KT [cf. Definition 3.4, (c)]. Thus, the implication (1) ⇒ (2)
follows from Lemma 3.5, (ii), together with elementary field theory. The implication (2)
⇒ (1) in the case where S is a trait follows immediately, in light of Lemma 3.5, (ii), (iv),
from elementary field theory. This completes the proof of assertion (ii). �

LEMMA 3.12. — Let S, T be quasi-traits of FK; f : S → T a quasi-Galois morphism
in FK. Then the following hold:

(i) For each quasi-trait U of FK and each morphism g : U → S in FK which is either
birational or purely inseparable, it holds that AutT (U) is isomorphic to a subgroup
of qGal(f).

(ii) There exist a quasi-trait U of FK and a birational morphism g : U → S in FK

such that AutT (U) is isomorphic to qGal(f).

Proof. — Assertion (i) follows from Lemma 3.5, (ii), together with elementary field
theory. Assertion (ii) follows from Lemma 3.5, (ii), (iv) [cf. Definition 3.4, (b)]. �

LEMMA 3.13. — Let O be a terminal object of FK [cf. Lemma 3.5, (i)]. Then the
following hold:

(i) Consider the following conditions:

(i-1) The category FK is separable.

(i-2) For each quasi-trait S of FK, there exists a morphism in FK whose codomain
is S and whose domain is Galois.
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(i-3) For each quasi-trait S of FK, there exist a morphism from a quasi-trait T
to S and a quasi-Galois morphism T → O in FK.

(i-4) For each quasi-trait S of FK and each morphism f : S → O in FK, if f is
either birational or purely inseparable, then f is an isomorphism.

Then the following equivalences hold:

(i-1) ⇐⇒ (i-2) + (i-4) ⇐⇒ (i-3) + (i-4).

(ii) Let p be a prime number. Then the following conditions are equivalent:

(ii-1) It holds that K is of characteristic p.

(ii-2) There exists a finite subquotient of the absolute Galois group of K which is
isomorphic to Z/pZ× Z/pZ× Z/pZ.

(ii-3) There exist traits S, T of FK and a Galois morphism S → T in FK such
that AutT (S) is isomorphic to Z/pZ× Z/pZ× Z/pZ.

(ii-4) There exist quasi-traits S, T of FK and a quasi-Galois morphism f : S →
T in FK such that qGal(f) is isomorphic to Z/pZ× Z/pZ× Z/pZ.

(iii) Let q× be a positive integer. Then the following conditions are equivalent:

(iii-1) It holds that ]K× = q×, i.e., that ]K = q× + 1.

(iii-2) The positive integer q× is the maximum positive integer such that q× is not
divisible by the characteristic of K, and, moreover, there exists a finite quotient of the
absolute Galois group which is isomorphic to Z/q×Z× Z/q×Z.

(iii-3) The positive integer q× is the maximum positive integer such that q× is not
divisible by the characteristic of K, and, moreover, there exists a Galois object of FK

whose automorphism group is isomorphic to Z/q×Z× Z/q×Z.

(iii-4) The positive integer q× is the maximum positive integer such that q× is not
divisible by the characteristic of K, and, moreover, there exist a quasi-trait S of FK

and a quasi-Galois morphism f : S → O in FK such that qGal(f) is isomorphic to
Z/q×Z× Z/q×Z.

Proof. — First, we verify assertion (i). The implication (i-1) ⇒ (i-2) follows immedi-
ately from the definition of the category FK [cf. Definition 3.4, (b), (c)]. The implication
(i-2) ⇒ (i-3) is immediate. The implication (i-1) ⇒ (i-4) follows from Lemma 3.5, (i);
Lemma 3.9, (vi). Thus, to complete the verification of assertion (i), it suffices to verify
that if FK satisfies condition (i-3) but does not satisfy condition (i-1), then FK does not
satisfy condition (i-4). On the other hand, this follows immediately from the definition
of the category FK , together with elementary field theory [cf. Definition 3.4, (c)]. This
completes the proof of assertion (i).

Next, we verify assertion (ii) (respectively, (iii)). The equivalence (ii-1) ⇔ (ii-2)
(respectively, (iii-1) ⇔ (iii-2)) follows immediately from local class field theory. The
equivalences (ii-2)⇔ (ii-3)⇔ (ii-4) (respectively, (iii-2)⇔ (iii-3)⇔ (iii-4)) follow imme-
diately from Lemma 3.5, (iv), together with elementary field theory [cf. Definition 3.4,
(b), (c)]. This completes the proof of assertion (ii) (respectively, (iii)). �
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DEFINITION 3.14. — Let S, T be objects of FK ; f : S → T a morphism in FK ; n a positive
integer. Then we shall say that f is n-simple if T is Galois [hence also a trait which is
generically étale over OK ], f is a closed immersion, and, moreover, the object (T, f∗OS)
of CK [cf. Definition 2.1; Lemma 3.5, (v)] is n-simple in the sense of Definition 2.10, (ii),
i.e., and, moreover, the OKT

-module OS(S) is isomorphic to OKT
/mn

KT
[cf. Definition 1.1;

Definition 3.3, (iii)].

LEMMA 3.15. — Let S, T be objects of FK; f : S → T a morphism in FK; n a positive
integer. Suppose that f is n-simple. Then, for each automorphism g of T , there exists
a unique automorphism g̃ of S such that f ◦ g̃ = g ◦ f . Moreover, the assignment
“g 7→ g̃” determines a homomorphism of groups

Aut(T ) −→ Aut(S).

Proof. — The existence of such a “g̃” is immediate from the definition of an n-simple
morphism. Moreover, the uniqueness of such a “g̃” follows from the fact that an n-
simple morphism is a monomorphism [cf. Lemma 3.9, (i)]. Finally, the final assertion is
immediate. This completes the proof of Lemma 3.15. �

DEFINITION 3.16. — Let S, T be objects of FK ; f : S → T a morphism in FK ; n a
positive integer. Suppose that f is n-simple. Then it follows from Lemma 3.15 that we
have a homomorphism of groups

Aut(T ) −→ Aut(S).

We shall write

Aut(T )f
def
= Ker

(
Aut(T )→ Aut(S)

)
⊆ Aut(T )

for the kernel of this homomorphism.

LEMMA 3.17. — Let S be a Galois object of FK and n a positive integer. Then there
exists an n-simple morphism in FK whose codomain is S.

Proof. — This is immediate [cf. Definition 3.4, (d)]. �

LEMMA 3.18. — Let S, T be objects of FK; f : S → T a morphism in FK. Suppose that
T is Galois, and that f is a closed immersion. Then the following hold:

(i) It holds that f is 1-simple if and only if S is integral and point-like.

(ii) Let n ≥ 2 be an integer. Then it holds that f is n-simple if and only if there
exists a closed immersion g : U → S in FK which satisfies the following conditions:

(1) The composite f ◦ g : U → T is (n − 1)-simple.

(2) The morphism g is not an isomorphism.

(3) Let h : U → V , i : V → S be morphisms in FK such that g = i ◦ h. If both h
and i are closed immersions, then either h or i is an isomorphism.
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Proof. — This is immediate [cf. Definition 3.4, (d)]. �

LEMMA 3.19. — Let S, T be objects of FK; f : S → T a morphism in FK; n a positive
integer. Suppose that f is n-simple. Then the subgroup Aut(T )f ⊆ Aut(T ) corresponds,
relative to the natural isomorphism of Aut(T ) with Gal(KT /K) [cf. Lemma 3.8, (ii)], to
the kernel

Ker
(
Gal(KT /K)→ Aut(OKT

/mn
KT

)
)

of the natural action of Gal(KT /K) on OKT
/mn

KT
.

Proof. — This is immediate. �

THEOREM 3.20. — Let K◦, K• be local fields; FK◦, FK• full subcategories of FK◦, FK•

[cf. Definition 3.1] which satisfy the condition (F) [cf. Definition 3.4], respectively. Sup-
pose that the category FK◦ is equivalent to the category FK•. Then the field K◦ is
isomorphic to the field K•.

Proof. — Suppose that there exists an equivalence of categories φ : FK◦
∼→ FK• . Let

S◦, T◦ be objects of FK◦ ; f◦ : S◦ → T◦ a morphism in FK◦ . Write S•, T• for the objects of
FK• corresponding, via φ, to S◦, T◦, respectively; f• : S• → T• for the morphism in FK•

corresponding, via φ, to f◦. Then it follows from Lemma 3.9, (i), (ii), (iii), (v), that

(a) it holds that S◦ is a quasi-trait if and only if S• is a quasi-trait.

In particular, it follows from Lemma 3.11, (i), that

(b) if both S◦ and T◦ [hence also both S• and T• — cf. (a)] are quasi-trait, then it
holds that f◦ is either birational or purely inseparable if and only if f• is either birational
or purely inseparable.

Now I claim that

(c) if both S◦ and T◦ are traits [which thus implies that both S• and T• are quasi-trait
— cf. (a)], and f◦ is Galois, then f• is quasi-Galois.

To this end, let us first observe that since S◦ is a trait, it follows from Lemma 3.11, (ii),
that f◦ satisfies condition (1) of Lemma 3.11, (ii). Thus, it follows from (a), (b) that f•
satisfies condition (1) of Lemma 3.11, (ii). In particular, it follows from Lemma 3.11, (ii),
that the morphism f• is quasi-Galois, as desired. This completes the proof of (c).

Next, I claim that

(d) in the situation of (c), the four finite groups AutT◦(S◦), qGal(f◦), AutT•(S•), and
qGal(f•) are isomorphic.

To this end, let us first observe that since S◦ is a trait, it is immediate [cf. Lemma 3.5,
(iv)] that the three finite groups AutT◦(S◦), qGal(f◦), and AutT•(S•) are isomorphic. In
particular, it follows from Lemma 3.12, (i), that, for each quasi-trait U◦ of FK◦ and each
morphism g◦ : U◦ → S◦ in FK◦ which is either birational or purely inseparable, it holds
that AutT◦(U◦) is isomorphic to a subgroup of AutT◦(S◦). Thus, it follows from (a), (b)
that, for each quasi-trait U• of FK• and each morphism g• : U• → S• in FK• which is either
birational or purely inseparable, it holds that AutT•(U•) is isomorphic to a subgroup of
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AutT•(S•). In particular, it follows from Lemma 3.12, (ii), that qGal(f•) is isomorphic
to a subgroup of AutT•(S•), which thus implies [cf. Lemma 3.5, (ii)] that qGal(f•) is
isomorphic to AutT•(S•). This completes the proof of (d).

Next, I claim that

(e) it holds that (char(K◦), ]K
×
◦ ) = (char(K•), ]K

×
• ).

To verify the equality char(K◦) = char(K•), let us first observe that it follows from
the implication (ii-1) ⇒ (ii-3) of Lemma 3.13, (ii), that there exists a Galois morphism
between traits of FK◦ whose automorphism group is isomorphic to the direct product
of three copies of Z/char(K◦)Z. Thus, it follows from the implication (ii-4) ⇒ (ii-1) of
Lemma 3.13, (ii), together with (d), that the equality char(K◦) = char(K•) holds. Next,
to verify the equality ]K×

◦ = ]K×
• , observe that it follows from the implication (iii-1) ⇒

(iii-3) of Lemma 3.13, (iii), that there exists a Galois object of FK◦ whose automorphism
group is isomorphic to the direct product of two copies of Z/]K×

◦ Z. Thus, it follows,
in light of the equality char(K◦) = char(K•), from the implication (iii-4) ⇒ (iii-1) of
Lemma 3.13, (iii), together with (d), that the inequality ]K×

◦ ≤ ]K×
• holds. Thus, by

applying, to φ−1, a similar argument to the argument applied in the proof of the inequality
]K×

◦ ≤ ]K×
• , we conclude that ]K×

◦ = ]K×
• . This completes the proof of (e).

Next, I claim that

(f) it holds that FK◦ is separable if and only if FK• is separable.

To this end, suppose that FK◦ is separable. Then it follows from the implication (i-1)
⇒ (i-4) of Lemma 3.13, (i), together with (a), (b), that FK• satisfies condition (i-4) of
Lemma 3.13, (i). Moreover, it follows from the implication (i-1) ⇒ (i-2) of Lemma 3.13,
(i), that FK◦ satisfies condition (i-2) of Lemma 3.13, (i). Thus, it follows from (a),
(c) that FK• satisfies condition (i-3) of Lemma 3.13, (i). In particular, it follows from
Lemma 3.13, (i), that FK• satisfies condition (i-1) of Lemma 3.13, (i), i.e., that FK• is
separable, as desired. This completes the proof of (f).

Now suppose that either FK◦ or FK• is not separable. Then it follows from (f) that
both K◦ and K• are of positive characteristic. Thus, it follows immediately from (e) that
K◦ is isomorphic to K•, as desired. In the remainder of the proof,

suppose that both FK◦ and FK• are separable.

Then it follows from Lemma 3.9, (vi), together with (a), (b), that

(g) it holds that S◦ is a trait if and only if S• is a trait.

Thus, it follows, in light of (c), from Lemma 3.18, together with Lemma 3.9, (i), (iv),
that, for each positive integer n,

(h) it holds that f◦ is n-simple if and only if f• is n-simple.

Next, let S̃◦ = ((S◦)λ)λ∈Λ be a basepoint of FK◦ [cf. Lemma 3.8, (i)]. Then it follows

from (c), (g), that the projective system S̃• = ((S•)λ)λ∈Λ consisting of objects and mor-

phisms of FK• corresponding, via φ, to S̃◦ is a basepoint of FK• . Thus, the equivalence φ
determines an isomorphism of profinite groups

Πφ : ΠeS◦ = lim←−
λ∈Λ

Aut((S◦)λ)
∼−→ ΠeS• = lim←−

λ∈Λ

Aut((S•)λ).
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In particular, if either K◦ or K• is of positive characteristic, then it follows, in light of
Lemma 3.8, (iii), from Theorem 1.10 and Corollary 1.12, (ii), that K◦ is isomorphic to
K•, as desired. In the remainder of the proof,

suppose that both K◦ and K• are of characteristic zero.

Let λ be an element of Λ, n a positive integer, and (f◦)λ : (T◦)λ → (S◦)λ an n-simple

morphism whose codomain is the member (S◦)λ of S̃◦ [cf. Lemma 3.17]. Write

Πφ,λ : Aut((S◦)λ)
∼−→ Aut((S•)λ)

for the isomorphism induced by Πφ and (f•)λ : (T•)λ → (S•)λ for the n-simple [cf. (h)]
morphism corresponding, via φ, to (f◦)λ : (T◦)λ → (S◦)λ. Then one verifies easily that
the isomorphism Πφ,λ restricts to an isomorphism of subgroups

Aut((S◦)λ)(f◦)λ

∼−→ Aut((S•)λ)(f•)λ
.

Thus, it follows from Lemma 3.19 that the isomorphism Πφ,λ is compatible — rela-
tive to the natural identifications [cf. Lemma 3.8, (ii)] of Aut((S◦)λ), Aut((S•)λ) with
Gal(K(S◦)λ

/K◦), Gal(K(S•)λ
/K•), respectively — with the respective ramification filtra-

tions. In particular, the isomorphism Πφ is compatible — relative to the natural identifi-
cations [cf. Lemma 3.8, (iii)] of ΠeS◦ , ΠeS• with Gal(KeS◦/K◦), Gal(KeS•/K•), respectively
— with the respective ramification filtrations. Thus, it follows from [2], Theorem, that
K◦ is isomorphic to K•, as desired. This completes the proof of Theorem 3.20. �
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