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ABSTRACT. — In the present paper, we study the geometry of the stable models of proper
hyperbolic curves over p-adic local fields via the geometrically pro-p étale fundamental groups
of the curves. In particular, we establish functorial “group-theoretic” algorithms for recon-
structing various objects related to the geometry of stable models from the geometrically pro-p
étale fundamental groups. As an application, we also give a pro-p “group-theoretic” criterion
for good reduction of ordinary proper hyperbolic curves over p-adic local fields.
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INTRODUCTION

Let p be a prime number, k a p-adic local field [i.e., a finite extension of Q,], k an

algebraic closure of k, and X a proper hyperbolic curve over k [i.e., a proper smooth curve

over k of arithmetic genus > 2|. Write k for the residue field of k, Xz ©f x X1 k for the

proper hyperbolic curve over k obtained by base changing X from k to k, and
ITx

for the geometrically pro-p étale fundamental group of X [cf. Definition 2.2]. Then it is
well-known [cf. Theorem 1.3] that the hyperbolic curve X3 has stable reduction over the
ring of integers of k. We shall write X7 for the stable curve over k obtained by forming
the special fiber of the stable model of X7.

In the present paper, we study the geometry of the stable curve Xj via the profinite
group IIx. In particular, we center around the task of establishing functorial “group-
theoretic” algorithms whose input data consist of the abstract profinite group Ilx and
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whose output data consist of objects related to the geometry of the stable curve Xz
[cf. the main result of the present paper, i.e., Theorem 3.7|. By applying the functorial
“group-theoretic” algorithms of the present paper, one may reconstruct, from Ilx, for
instance, the following objects:

e The set of irreducible components of X7 whose normalizations are of positive p-rank

[cf. Theorem 3.7, (viii)], as well as the [necessarily positive] p-ranks of the normalizations
of elements of this set [cf. Theorem 3.7, (x)].

e The first Betti number of the [topological space determined by the] dual graph of
X% [cf. Theorem 3.7, (vii)].

We shall say that the proper hyperbolic curve X is ordinary if the arithmetic genus of X
is equal to the p-rank of X3 [cf. Definition 2.6, (i)]. Moreover, we shall say that a profinite
group II satisfies the condition () if there exist a prime number [ and an isomorphism of
IT with the geometrically pro-I étale fundamental group of a proper hyperbolic curve over
an [-adic local field [cf. Definition 3.6]. [So the profinite group Ily satisfies the condition
(1).] Some of consequences of the functorial “group-theoretic” algorithms of the present
paper may be summarized as follows [cf. Theorem 3.7, (xi), (xiii)]:

THEOREM. — The following hold:

(i) There exists a purely “group-theoretic” condition for profinite groups which
satisfy (1) such that the profinite group Ilx satisfies the condition if and only if the
hyperbolic curve X s ordinary.

(ii) There exists a purely “group-theoretic” condition for profinite groups which
satisfy (1) such that the profinite group Ilx satisfies the condition if and only if the
hyperbolic curve X is ordinary and has good reduction [i.e., over the ring of integers

of kl.
In particular, we obtain the following result [cf. Corollary 3.8, (iv), (vi)]:

COROLLARY. — For O € {o, e}, let pg be a prime number, ko a po-adic local field, and
Xg a proper hyperbolic curve over kg. Suppose that the geometrically pro-p, étale
fundamental group of X, is isomorphic to the geometrically pro-pe étale fundamental
group of Xo. Then the following hold:

(i) It holds that X, is ordinary if and only if X, is ordinary.

(ii) Suppose, moreover, that either X, or X, is ordinary. Then it holds that X, has
good reduction if and only if X, has good reduction.

Note that Theorem, as well as Corollary, may be regarded as a pro-p “group-theoretic”
criterion for good reduction of ordinary proper hyperbolic curves over p-adic local fields.
Here, let us recall [cf. Remark 3.8.1] that, for a nonempty set ¥ of prime numbers such
that p € 3, we have already a pro-X “group-theoretic” criterion for good reduction of [not
necessarily ordinary] hyperbolic curves over p-adic local fields proved by T. Oda [cf. [18],
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Theorem 3.2|, A. Tamagawa [cf. [20], Theorem 5.3], and S. Mochizuki [cf. [12], Corollary
2.8].

Finally, let us discuss [cf. Remark 3.8.2] the p-adic criterion for good reduction of curves
proved by F. Andreatta, A. lovita, and M. Kim in [1] from the point of view of the present
paper. The p-adic criterion of [1] asserts, roughly speaking, that X has good reduction

if and only if every member of a certain collection of finite-dimensional representations

of G o Gal(k/k) over Q, determined by the profinite group IIx and a splitting of the

natural surjection Iy — G}, arising from a k-rational point of X is crystalline [cf. [1],
Theorem 1.9]. Here, observe that this criterion [is interesting even in a certain point of
view of anabelian geometry but| should be considered to be not “group-theoretic” [i.e., to
be not useful in pro-p absolute anabelian geometry] by the following two reasons:

(1) The issue of whether or not a given finite-dimensional representation of Gy over
Qy is crystalline is not “group-theoretic”. Indeed, it follows immediately from the discus-
sion of [7], Remark 3.3.1, that there exist a prime number [/, an l-adic local field L, an
automorphism « of the absolute Galois group G, of L, and a crystalline representation

p: G — GL,(Q,) such that the composite G — G, LN GL,(Q,) is not crystalline.

(2) It is not clear that the issue of whether or not a given splitting of the natural
surjection Iy — Gy arises from a k-rational point of X is “group-theoretic”. Note that
it follows from [5], Theorem A, that there exist a prime number [, an [-adic local field
L, a proper hyperbolic curve C' over L, and a splitting of the natural surjection from the
geometrically pro-I étale fundamental group of C' onto the absolute Galois group of L
which does not arise from an L-rational point of C.

As a consequence of this discussion, one cannot, at least in the immediate literal sense,
drop the ordinary hypothesis in the statement of Corollary, (ii), even if one applies the
p-adic criterion of [1].
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1. STABLE MODELS

Throughout the present paper, let p be a prime number. In the present §1, we intro-
duce some notational conventions related to the geometry of the stable models of proper
hyperbolic curves over p-adic local fields. We also recall a theorem of P. Deligne and D.
Mumford [cf. Theorem 1.3 below| and a theorem of M. Raynaud [cf. Theorem 1.6 below]

DEFINITION 1.1. — Let V be a proper variety over a field F'. Then we shall write

def im
gy = (_1)d V). (XZar(OV) - 1)
for the arithmetic genus of V. If, moreover, F' is algebraically closed and of characteristic
p, then we shall write
w £ dimg, Hy (V. F,)
for the p-rank of V.
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In the remainder of the present §1, let k be a p-adic local field [i.e., a finite extension
of Q,], k an algebraic closure of k, and X a proper hyperbolic curve over k [i.e., a proper

smooth curve over k such that gx > 2|. Write k for the residue field of k and Xz X x Wk
for the proper hyperbolic curve over k£ obtained by base changing X from k to k.

DEFINITION 1.2. — Let K be a(n) [possibly infinite| algebraic extension of k. Then we
shall say that the hyperbolic curve X X, K over K has stable reduction (respectively,
good reduction) if the structure morphism X x; K — Spec(K) extends to a stable curve
(respectively, smooth stable curve) over the ring of integers of K [cf. [3], Definition 1.1].

THEOREM 1.3 (Deligne-Mumford). — In the notational conventions introduced in the
discussion preceding Definition 1.2, there exists a finite extension K of k such that the
hyperbolic curve X X, K over K has stable reduction [cf. Definition 1.2]. In particular,
the hyperbolic curve Xy over k has stable reduction.

PrOOF. — This follows from [3], Corollary 2.7. O

DEFINITION 1.4.
(i) We shall write
X5
for the stable curve over k [of arithmetic genus gx]| obtained by forming the special fiber
of the stable model of X over the ring of integers of k [cf. Theorem 1.3].

(ii) We shall write
Gx
for the dual graph of X,
Irr(X)
for the set of irreducible components of Xz — i.e., the set of vertices of Gx — and

bi(X) ¥ dimg Hy(Gx, Q)

for the first Betti number of [the topological space determined by| Gx.
(iii) Let v € Irr(X). Then we shall write

I,

for the proper smooth curve over k obtained by forming the normalization of the irre-
ducible component of Xz corresponding to v € Irr(X),

def
gv = d4i,

for the arithmetic genus of I,, and

def
Yo = VI,

for the p-rank of I,.
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(iv) We shall write
Irr(X)7=Y = {vehr(X)|y =0} C hr(X)

for the set of irreducible components of Xz [whose normalizations are] of p-rank zero and

Ir(X)70 < (X)) \ Irr(X)=0 = {velmr(X)|y >0} C Irr(X)

for the set of irreducible components of Xz [whose normalizations are| of positive p-rank.

REMARK 1.4.1.
(i) It is well-known that, for each v € Irr(X), it holds that g, > v, > 0.
(ii) One verifies easily that

gx = gx; = bi(X)+ Z 9o

velrr(X)

T = X))+ D = h(X)+ D)

velrr(X) velrr(X)r>0

[One may also find these equalities concerning 7y, in the final discussion of [16], §0.]

REMARK 14.2. — Let Y — X be a connected finite étale covering of X.

(i) One verifies easily that Y is a proper hyperbolic curve over a finite extension ky of k
[i.e., the algebraic closure of k in the function field of Y|. Moreover, one also verifies easily
that the covering Y — X determines a connected finite étale covering Yz “y x fy b — Xz
over k.

(ii) It follows, in light of Theorem 1.3, from [10], Lemma 8.3, that the covering Y;; — X%
of (i) extends to a uniquely determined proper [not necessarily finite] surjection from the
stable model of Y; over the ring of integers of k to the stable model of X7 over the ring of
integers of k. In particular, we obtain a proper [not necessarily finite] surjection Y. — X3

over k.

(iii) One verifies immediately from the existence of the morphism Yz — Xg of (ii) that
the inequalities
bi(Y) > bi(X), #lir(Y)=? > flr(X)"°
hold.

DEFINITION 1.5. — Let Y — X be a connected finite étale covering of X. Then we shall
say that the covering Y — X is a geometrically-p-covering if the Galois closure of the
connected finite étale covering Y; — X7 over k [cf. Remark 1.4.2, (i)] is of degree a power
of p [cf. Remark 2.2.1 below].
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REMARK 1.5.1. — One verifies easily that the composite of finitely many geometrically-
p-coverings is a geometrically-p-covering. Moreover, one also verifies easily that the con-
nected finite étale covering obtained by the “composition” [i.e., obtained by considering
the composite field of the function fields] of finitely many geometrically-p-coverings is a
geometrically-p-covering.

THEOREM 1.6 (Raynaud). — In the notational conventions introduced in the discussion
preceding Definition 1.2, suppose that X3 has good reduction [cf. Definition 1.2]. Then
it holds that b1(Y') = 0 [cf. Definition 1.4, (ii)] for every geometrically-p-covering Y — X
[cf. Definition 1.5] of X.

ProOOF. — Let Y — X be a geometrically-p-covering of X. Then it follows from Re-
mark 1.4.2, (iii), that, to verify that b;(Y") = 0, we may assume without loss of generality,
by replacing Y — X by the Galois closure, that the geometrically-p-covering ¥ — X is
Galois. Then since the Galois group of the Galois covering Yz — X5 [cf. Remark 1.4.2,
(1)] is a p-group, the equality by (Y) = 0 follows from [15], Théoreme 1, (ii). O

2. QUOTIENTS OF PRO-p FUNDAMENTAL GROUPS

In the present §2, we discuss certain quotients [cf. Definition 2.3 and Definition 2.4
below| of the pro-p geometric étale fundamental groups [cf. Definition 2.2 below] of proper
hyperbolic curves over p-adic local fields. In the present §2, we maintain the notational
conventions introduced in the discussion preceding Definition 1.2. Write m;(X) for the

étale fundamental group of X relative to some choice of basepoint such that the algebraic

closure of k determined by the basepoint coincides with &, Gy, o Gal(k/k) for the absolute

Galois group of k determined by the algebraic closure k, and I, C Gy for the inertia
subgroup of Gy.

DEFINITION 2.1. — We shall say that X is split if the natural action of G on the dual
graph Gy is trivial.

REMARK 2.1.1. — Since the graph Gy is finite, it is immediate that there exists a finite
extension K of k such that the hyperbolic curve X x, K over K is split.

DEFINITION 2.2. — We shall write
Ax
for the pro-p geometric étale fundamental group of X — i.e., the maximal pro-p quotient

of the étale fundamental group m; (X3) of X7 relative to the basepoint which defines 7 (X)
— and

I
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for the geometrically pro-p étale fundamental group of X — i.e., the quotient of m(X)
by the normal closed subgroup obtained by forming the kernel of the natural surjection
from 71 (X%) (C m1(X)) to Ax. Thus, we have an exact sequence of profinite groups

which thus determines an outer action of G}, on Ax.

REMARK 2.2.1. — Let Y — X be a connected finite étale covering of X. Then one
verifies easily that the covering Y — X [is isomorphic to the covering which| corresponds
to an open subgroup of Ilx if and only if the covering Y — X is a geometrically-p-covering.

DEFINITION 2.3.

(i) We shall write
I
for the pro-p étale fundamental group of Xz — i.e., the maximal pro-p quotient of the étale
fundamental group 7,(Xz) of X relative to the basepoint determined by the basepoint
which defines 7;(X). Thus, the natural open immersion from X7 into the stable model
of X7 over the ring of integers of k determines a surjection

AX - Agg—
(ii) Let v € Irr(X). Then we shall write
D, C AY

for the decomposition subgroup of A [well-defined up to conjugation] associated to the
irreducible component of X7 corresponding to v € Irr(X).

(iii) We shall write
ACme
for the quotient of At by the normal closed subgroup topologically normally generated by
the ©,’s, where v ranges over the elements of Irr(X). Thus, we have a natural surjection

ét cmb
A5 — AT

DEFINITION 2.4. — We shall write
Ag}o ’ A??_ét ’ Ag})—cmb

for the respective abelianizations of Ay, A%, AP, Thus, A%, AR As-cmb haye
natural structures of Z,-modules, respectively.

REMARK 2.4.1.

(i) One verifies easily that if X has stable reduction, then the quotients A3 — A€t
Azbemb of A2 are Gy,-stable.
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(ii) One also verifies easily from the various definitions involved that the following
hold:

e If X has stable reduction, then the action of I on the Gy-stable [cf. (i)] quotient
A s trivial.

e If X is split, then the action of G} on the Gy-stable [cf. (i)] quotient AZ™P is
trivial.

PROPOSITION 2.5. — The following hold:
(i) The profinite groups AS, AP are free pro-p of rank Vx» 01(X), respectively.

In particular, the Z,-modules AP, A®=<™" qre free of rank Y, b1(X), respectively.

(i) Let v € Irr(X). Then the profinite group ®, is free pro-p of rank ~,. In
particular, the abelianization D of ®,, is a free Z,-module of rank 7,.

(iii) The natural inclusions ®, — A — where v ranges over the elements of Irr(X) —
and the natural surjection A — AP determine an exact sequence of finitely generated
free Z,-modules

0 — P D — AP* — AP — 0.

velrr(X)

) Letv, w € Irr(X)>°. Then the following conditions are equivalent:
(1) It holds that v = w.
(2) The conjugacy class of ©, coincides with the conjugacy class of D, .

(iv

(3) The intersection ©, ND,, is nontrivial for some choices of D, and D, [i.e.,
among their conjugates).

(v) Let v € TIrr(X)">%  Then the closed subgroup ®, C A% is commensurably
terminal, i.c., for 6 € A, it holds that § € D, if and only if the intersection ®, N
(0D,071) is of finite index in both D, and §D,6'.

(vi) Suppose that X has stable reduction [which thus implies that the quotients
AP — A3ty Aabemb £ Nab gre G-stable — cf. Remark 2.4.1, (i)]. Then, for every
open subgroup J C Gy of Gy, there is no nontrivial torsion-free J-stable quotient
of

Ker(AP — Atbemb)
on which J acts trivially.

PROOF. — First, we verify assertion (i). Let us first observe that it follows immediately
from the definition of AS"™ that AP is naturally isomorphic to the pro-p completion
of the topological fundamental group of the [topological space determined by the] graph
Gx. Next, let us recall the well-known fact that the topological fundamental group of the
[topological space determined by the| graph Gy is free of rank by(X). Thus, the profinite
group A is free pro-p of rank by (X), as desired.

Next, to verify the assertion for AS in assertion (i), let us recall the well-known fact
that HZ (X%, Z/pZ) = {0} [cf., e.g., [9], Chapter VI, Remark 1.5, (b)]. Thus, it follows
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from [19], Corollary A.1.4, that H*(AS,Z/pZ) = {0}. In particular, it follows from [17],
Theorem 7.7.4, that A is free pro-p [of rank ~z — cf. Definition 1.1]. This completes
the proof of assertion (i).

Next, we verify assertions (ii), (iii). For each v € Irr(X), write A, for the maximal
pro-p quotient of the étale fundamental group of the proper smooth curve I, over k. Then
it follows from a similar argument to the argument applied in the proof of the assertion
for A in assertion (i) that

(a) the profinite group A, is free pro-p of rank -y, [which thus implies that the abelian-
ization A" of A, is a free Z,-module of rank 7,)].

Next, let us observe that since D, is a closed subgroup of a free pro-p [cf. assertion (i)]
group A%, it follows from [17], Corollary 7.7.5, that

(b) the profinite group D, is free pro-p [which thus implies that the Z,-module D2
is freel.

Moreover, it follows from the definition of 2, that

(c) the natural finite morphism [, — X, over k determines a surjection A\, — D,
[well-defined up to Npe (D, )-conjugation — where we write N« (D) for the normalizer
of ®, in AY].

Thus, it follows from (a), (b), (c¢) that, to verify assertion (ii), it suffices to verify the
following assertion:

(A) The surjection A2 — D> determined by the surjection of (c) is injective.

Next, let us observe that one verifies easily that the various homomorphisms appearing
in the statement of assertion (iii) determine an ezact sequence of Z,-modules

ab ab-ét ab-cmb
@ D — A% — A% — 0.
velrr(X)

In particular, to verify assertion (iii), it suffices to verify the following assertion:

(B) The natural homomorphism €D, .,y Db — A3 is ingective.

Thus, we conclude [cf. (A), (B)] that, to complete the verification of assertions (ii),
(iii), it suffices to verify the following assertion:

(C) The homomorphism B,y (x) AP — A€ determined by the natural finite
morphisms I, — Xz — where v ranges over the elements of Irr(X) — is injective.

On the other hand, (C) follows immediately from a similar argument to the argument
applied in the proof of [6], Lemma 1.4 [cf. also Remark 2.5.1, (ii), below]. This completes
the proofs of assertions (ii), (iii).

Assertion (iv) follows immediately from assertions (ii), (iii), together with the fact that
every nontrivial closed subgroup of a free pro-p group is infinite [cf. [17], Corollary 7.7.5].
Assertion (v) is a formal consequence of assertion (iv). Assertion (vi) follows immediately
from assertion (iii) [cf. also (A)] and [20], Proposition 3.3, (ii). This completes the proof
of Proposition 2.5. O
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REMARK 2.5.1.
(i) Onme can also verify the equalities concerning 7y, of Remark 1.4.1, (ii), from
Proposition 2.5, (i), (ii), (iii). B

(ii) The assertion (C) in the proof of Proposition 2.5 also follows, in light of the exact
sequence in the discussion preceding the assertion (B), from the equalities concerning b

of Remark 1.4.1, (ii), together with Proposition 2.5, (i), and the assertions (a), (c) in the
proof of Proposition 2.5.

DEFINITION 2.6.

(i) We shall say that X is ordinary if gx [i.e., gx; — cf. Remark 1.4.1, (ii)] is equal
to g
(ii) We shall say that X is rationally degenerate if g, = 0 for every v € Irr(X).

LEMMA 2.7. — The following hold:
(i) 1t holds that X is ordinary if and only if g, = v, for every v € Irr(X).

(ii) 1t holds that X is rationally degenerate if and only if the following condition
is satisfied: The hyperbolic curve X is ordinary, and Irr(X)7>° = (.

(iii) If X is ordinary, then it holds that either bi(X) # 0, Irr(X)"=° = 0, or
#Irr(X)7>0 > 3.

PROOF. — Assertion (i) follows from Remark 1.4.1, (i), (ii). Assertion (ii) follows from
assertion (i), together with Remark 1.4.1, (i). Assertion (iii) follows immediately from
assertion (i), together with the definition of a stable curve. U

DEFINITION 2.8. — Let C be a hyperbolic curve over k. Then we shall say that Xz
is p-isogenous to C' if there exist a hyperbolic curve Z over k and finite étale coverings
Z — X3, Z — C over k such that the respective Galois closures of Z — Xz, Z — C are
of degree a power of p.

THEOREM 2.9. — In the notational conventions introduced at the beginning of §2, con-
sider the following conditions:

(1) The hyperbolic curve Xz has good reduction [cf. Definition 1.2].

(2) The hyperbolic curve Xy is p-isogenous [cf. Definition 2.8] to a hyperbolic curve
over k which has good reduction.

(3) It holds that by(Y) = 0 [¢f. Definition 1.4, (ii)] for every geometrically-p-covering
Y — X [c¢f. Definition 1.5] of X.

(4) It holds that $Irr(Y)?>° < 1 [c¢f. Definition 1.4, (iv)] for every geometrically-p-
covering Y — X of X.
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Then the following hold:
(i) The implications
1) = (2) = B) = (¢4
hold.

(ii)  Suppose that there exists a geometrically-p-covering Y — X of X such that
Irr(Y)7>° £ (). Then the equivalence

3) = (4)
holds.
(i) Suppose that X is ordinary [cf. Definition 2.6, (i)]. Then the equivalence
(1) = @)
holds.
PROOF. — First, we verify assertion (i). The implication (1) = (2) is immediate. The

implication (2) = (3) follows, in light of Remark 1.4.2, (iii), and Remark 1.5.1, from
Theorem 1.6. Finally, we verify the implication (3) = (4). Suppose that condition (4)
is not satisfied, i.e., that there exist a geometrically-p-covering ¥ — X and distinct
elements vy, vy € Irr(Y)7>°. Then it follows from Proposition 2.5, (ii), (iii), that there
exists a Galois geometrically-p-covering Z — Y of Y such that

e the surjection Ay — Ay /Ay [cf. Remark 2.2.1] factors through Ay — A$,
o Ay /Ay = 7/pZ, and, moreover,

e for each w € Irr(Y), it holds that the image of the composite D,, — A — Ay /Ay
is nontrivial if and only if w € {vy,v9}.

Then, by considering liftings in Gz — relative to the finite étale covering Zy — Y7 [cf.
Remark 1.4.2, (ii)] — of a “simple path” in Gy from v, to s, one verifies easily that
b1(Z) # 0, which thus implies [cf. Remark 1.5.1] that condition (3) is not satisfied. This
completes the proof of the implication (3) = (4), hence also of assertion (i).

Next, we verify assertion (ii). Suppose that there exists a geometrically-p-covering
Y — X of X such that Irr(Y)7>? # (), and that condition (3) is not satisfied. Thus, it
follows from Remark 1.4.2, (iii), and Remark 1.5.1 that there exists a geometrically-p-
covering Z — Y of Y such that b1 (Z) # 0, which thus implies that AP ®y Z/pZ # {0}
[cf. Proposition 2.5, (i)]. Let W — Z be a geometrically-p-covering of Z such that the
open subgroup Ay C Ay [cf. Remark 2.2.1] coincides with the kernel of the natural
surjection Ay — AYP"P @, 7 /pZ. Then it is immediate that

0 < flir(Y)™° < tIir(2)7° < 4(AY ™ ®g, Z/pZ) - tlir(Z)7°0 = thr(W)7>°

[cf. Remark 1.4.2, (iii)]. Thus, condition (4) is not satisfied [cf. Remark 1.5.1]. This
completes the proof of assertion (ii).

Finally, we verify assertion (iii). Suppose that X is ordinary, and that condition (3) is
satisfied [which thus implies that condition (4) is satisfied — cf. assertion (i)]. Then it
follows from Lemma 2.7, (iii), together with the fact that by(X) = 0 [cf. condition (3)],
that it holds that either Irr(X)"=" = @) or fIrr(X)?>" > 3. In particular, it follows from
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the fact that flrr(X)7>" < 1 [cf. condition (4)] that Irr(X)*=" = (. Thus, again by the
fact that fIrr(X)?>% <1 [cf. condition (4)], it follows that

1 > #hr(X)”° = fIre(X) — #lr(X)=° = #lrr(X).
In particular, again by the fact that b;(X) = 0 [cf. condition (3)], it follows that X7 is

smooth over k, as desired. This completes the proof of assertion (iii). Il

REMARK 2.9.1. — Suppose that we are in the situation of Theorem 2.9:

(i) In general, the implication (2) = (1) does not hold as follows: Let us recall the well-
known fact that the Z,-module A% is free of rank 2gx (= 29x, > 7Yx;)- Thus, it follows
from Proposition 2.5, (i), that the natural surjection Ax — A$ is not an isomorphism.
Now suppose that Xi has good reduction. Thus, it follows from [20], Lemma 5.5, that
there exists a geometrically-p-covering ¥ — X of X such that Yz does not have good
reduction. Then the hyperbolic curve Y wviolates the implication (2) = (1).

(ii)) It follows from (i) that, in general, the implication (3) = (1), hence also the
implication (4) = (1), does not hold.

COROLLARY 2.10. — In the notational conventions introduced at the beginning of §2, let
Y be an ordinary [cf. Definition 2.6, (1)] proper hyperbolic curve over k such that Yy has
good reduction [cf. Definition 1.2]. Consider the following conditions:

(1) The hyperbolic curve X is ordinary.
(2) The hyperbolic curve Xz has good reduction.
Then the following hold:
(i) If Xy is p-isogenous [cf. Definition 2.8] to Yz, then the implication
1) = (2)
holds.

(ii) If there exists a geometrically-p-covering X — Y [cf. Definition 1.5] over k such
that the connected finite étale covering Xy — Yi over k [cf. Remark 1.4.2, (i)] is Galois,
then the equivalence

(1) <= (2)
holds.

PrROOF. — First, we verify assertion (i). Suppose that X is ordinary, and that Xj
is p-isogenous to Yz. Since X satisfies condition (2) of Theorem 2.9, it follows from
Theorem 2.9, (i), that X satisfies condition (3) of Theorem 2.9. Thus, since [we have
assumed that] X is ordinary, it follows from Theorem 2.9, (iii), that the hyperbolic curve
X7 has good reduction, as desired. This completes the proof of assertion (i).

The implication (2) = (1) in the case where there exists a geometrically-p-covering
X — Y over k such that the connected finite étale covering Xz — Y; over k is Galois
follows immediately from [20], Lemma 5.5, together with the Riemann-Roch formula [for
genus| and the Deuring-Shafarevich formula [for p-rank]. This completes the proof of
Corollary 2.10. O
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REMARK 2.10.2. — Note that Corollary 2.10, (ii), may be regarded as a special case of
[16], Proposition 3.

3. PRO-p GROUP-THEORETIC ALGORITHMS

In the present §3, we establish functorial “group-theoretic” algorithms for reconstruct-
ing various objects related to the geometry of the stable models of proper hyperbolic
curves over p-adic local fields from the geometrically pro-p étale fundamental groups
of the curves [cf. Theorem 3.7 below]|. In the present §3, we maintain the notational
conventions introduced at the beginning of §2.

DEFINITION 3.1. — We shall write

Ax ¥ Homy (H*(Ax,Z,),7Z,)

for the pro-p cyclotome associated to X.

REMARK 3.1.1. — One verifies easily that the natural outer action of G on Ax de-
termines an action of Gy on the cyclotome Ax. Moreover, one also verifies easily [cf.,
e.g., [9], Chapter V, Theorem 2.1, (a)] that the resulting Gy-module is isomorphic to the

Gj-module “Z,(1)” obtained by forming the projective limit im g (k) — where the

—nl'P _ -
projective limit is taken over the positive integers n — of the groups p,.(k) C &* of
p"-th roots of unity in k.

Let us first recall the following well-known fact:

LEMMA 3.2. — Suppose that X has stable reduction. Then there exists a sequence of
Gy-stable Z,-submodules of A%

b ={0 CFH CFKCFCF CFEF=AY
which satisfies the following conditions:
(1) For each 0 < i <4, the quotient Fi11/F; is a free Z,-module.

(2) The submodule F3 (respectively, Fy) coincides with the kernel of the natural
surjection AR — AP (respectively, AR — AR™). In particular, we obtain G-
equivariant isomorphisms

~ ~

Fy/Fy = AR, F/F = AR

(3) There exist Gx-equivariant isomorphisms

Fl = HOmZP(Ag?_Cmb,Ax), FQ = HomZP(A“}})'ét,AX).

(4)  For every open subgroup J C Iy of Iy, there is no nontrivial torsion-free
J-stable quotient of F3/F; on which J acts trivially.



14 Y UICHIRO HOSHI

ProoOF. — This follows immediately, in light of Remark 3.1.1, from, for instance, the
discussion preceding [10], Lemma 8.1, together with [10], Lemma 8.1. O

LEMMA 3.3. — The following hold:

(i) Let V be a finite-dimensional representation of Gy over Q,. Suppose that the
restriction of V' to Iy is isomorphic to an extension of the direct product of finitely many
copies of the trivial representation Q, by the direct product of finitely many copies of the
representation Ax ®z, Q,. Then the representation V' of Gy is semistable.

(ii) Suppose that X is ordinary. Then it holds that X has stable reduction if and
only if the finite-dimensional representation A% ®z, Qp of Iy over Q, is isomorphic to an
extension of the direct product of gx copies of the trivial representation Q, by the direct
product of gx copies of the representation Ax ®z, Q.

PROOF. — First, we verify assertion (i). Let us first observe that it follows from [4],
Proposition of §5.1.5, that the representation V' of Gy is semustable if and only if the
restriction of V' to I is semistable. Thus, to verify assertion (i), we may assume with-
out loss of generality that the representation V' of Gy is isomorphic to an extension of
the direct product of finitely many copies of the trivial representation QQ, by the direct
product of finitely many copies of the representation Ay ®z, Q,. Then the assertion that
the representation V' of G}, is semistable follows immediately from the second comment
following the table in the final discussion of [2], §16. This completes the proof of assertion
(i).

Next, we verify assertion (ii). First, we verify the necessity. Suppose that X has stable
reduction. Then since [we have assumed that] X is ordinary, it follows from Proposi-
tion 2.5, (i), that the Z,-module A% is free of rank gx. Thus, since [it is well-known
that] the Z,-module A% is free of rank 2gx, the necessity follows immediately, in light of
Remark 2.4.1, (ii), from Lemma 3.2. This completes the proof of the necessity.

Finally, we verify the sufficiency. Suppose that the representation A% ®z, Qp of I is
isomorphic to an extension of the direct product of gx copies of the trivial representation
Q, by the direct product of gx copies of the representation Ay ®z, Q,. Then it follows
from assertion (i) that the representation A% ®z, Qp of Gy is semistable. In particular, it
follows from [2], Theorem 14.1, that the Jacobian variety of X has semistable reduction
[i.e., over the ring of integers of k|. Thus, it follows from [3], Theorem 2.4, that X has
stable reduction. This completes the proof of assertion (ii), hence also of Lemma 3.3. O

LEMMA 3.4. — The following hold:

(i)  The closed subgroup Ax C Ilx of llx may be characterized as the uniquely
determined mazimal nontrivial pro-l — for some prime number | — topologically
finitely generated normal closed subgroup of I1x.

(i) The quotient A3 — AR (respectively, AR — AMP) of A% may be charac-
terized as the uniquely determined mazimal torsion-free quotient of A% which satisfies
the following condition: There exists an open subgroup J C Gy of Gy such that the quo-
tient is J-stable, and, moreover, the resulting action of J N Iy, (respectively, J) on the
quotient is trivial.
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PROOF. — First, we verify assertion (i) [cf. Remark 3.4.1 below]. Let [ be a prime
number and N C Ilx a maximal nontrivial pro-l topologically finitely generated normal
closed subgroup of IIx. Then it is immediate that the image N C Gj of N in G is a
pro-l topologically finitely generated normal closed subgroup of Gy. In particular, since
Gy, is elastic [cf. [13], Definition 1.1, (ii); [13], Theorem 1.7, (ii)], the closed subgroup
N is either trivial or open in Gy. Thus, since [one verifies easily — by considering, for
instance, the quotient determined by the maximal unramified extension — that| every
open subgroup of G, is not pro-l, we conclude that N = {1}, i.e., that N C Ay. Thus,
since Ay is pro-p, and [we have assumed that] N is nontrivial and pro-l, it holds that
[ = p. Moreover, since Ax is a nontrivial pro-p topologically finitely generated mormal
closed subgroup of Ily, it follows from the mazimality of N that N = Ay, as desired.
This completes the proof of assertion (i).

Next, we verify assertion (ii). Let us first observe that, to verify assertion (ii), we
may assume without loss of generality, by replaing & by a suitable finite extension of k
contained in k, that X has stable reduction [cf. Theorem 1.3] and is split [cf. Remark 2.1.1],
which thus implies that [the quotients A3 —» A& — Asb-emb are Gy -stable — cf.
Remark 2.4.1, (i) — and, moreover|

(a) the action of I, (respectively, G) on A%t (respectively, A3mP) is trivial [cf.
Remark 2.4.1, (ii)].

Thus, in light of Proposition 2.5, (i), to complete the verification of assertion (ii), it
suffices to verify the following assertion:

If A3 — Q is a torsion-free Gy-stable quotient of A% on which I}, (respectively,
Gy) acts trivially, then the surjection A% — @ factors through the sur-
jection A% — A3 (respectively, AP — Adb-emb),

To this end, let A® — @ be a torsion-free Gj-stable quotient of A%, Now let us recall
the sequence of Gj-stable Z,-submodules of A%

Fb={0} CFH CFKCFCF CF =AY

of Lemma 3.2.

To verify the non-resp’d portion of assertion (ii), suppose that the action of I on @ is
trivial. Then it follows from (a), together with condition (3) of Lemma 3.2, that we have
an [j-equivariant isomorphism of Fy with the direct product of finitely many copies of
Ax. Thus, since [one verifies easily from Remark 3.1.1 that| the image of the character
Iy — Z; determined by the action of I}, on Ax is open in Z), the image of the composite
Fy — A% — @Q is zero. Moreover, it follows from condition (4) of Lemma 3.2 that the
image of F3/Fy, C A%®/F, via the resulting surjection A% /F, — Q is zero. Thus, the
surjection A% — @ factors through the surjection A% — AP /F3 = A% [cf. condition
(2) of Lemma 3.2]. This completes the proof of the non-resp’d portion of assertion (ii).

Next, to verify the resp’d portion of assertion (ii), suppose that the action of [not only
I;, but also] Gy, on the quotient @ is trivial. Thus, it follows from the above proof of the
non-resp’d portion of assertion (ii) that, to verify the resp’d portion of assertion (ii), it
suffices to verify that the image of F;/F3 via the resulting surjection A% /Fy — Q is zero
[cf. condition (2) of Lemma 3.2]. On the other hand, this follows from Proposition 2.5,
(vi), together with condition (2) of Lemma 3.2. This completes the proof of the resp’d
portion of assertion (ii), hence also of assertion (ii). d
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REMARK 3.4.1. — Note that Lemma 3.4, (i), is a special case of [13], Theorem 2.6, (iv).
Note, moreover, that the assertion for A3¢* in Lemma 3.4, (ii), may be considered to be
essentially the same as [10], Lemma 8.2.

LEMMA 3.5. — The following hold:

(i) Let N C A$ be a normal open subgroup of AS. Write Z — Xy, for the finite étale
Galois covering corresponding to N C At and by(Z) for the first Betti number of the
[topological space determined by the| dual graph of Z. Then the following conditions are
equivalent:

(1) There exists an element v € Irr(X) such that Z X x_1I, is connected, and,

moreover, for eachw € Trr(X)\{v}, the restriction of the covering Z — Xz to the generic
point of the irreducible component corresponding to w is trivial.

(2) It holds that
b(Z) = [ASL: N]-by(X).

(ii) Consider the following set Tx and the following equivalence relation ~z, :

o The set Ix of minimal normal open subgroups N C A of A such that AS/N
is abelian and annihilated by p, and, moreover, the subgroup N satisfies conditions
(1), (2) of (i).

o For two elements Ny, Ny of Ix, we write Ny ~z,, Ny if there exist two splittings
s1, o0 AP — AS of the natural surjection AS — AP such that, for each i € {1,2},
it holds that N; = (N1 N Na) - Im(s;).

Then there exists a bijection

~

II‘I‘(X)’Y>O — IX/ ~NTx

which satisfies the following condition: Let N be an element of Zx. Write v € Irr(X)
for the element corresponding, via the bijection, to [the class determined by] N. Then it
holds that Ker(AS — ASP) C N - D,.

PROOF. — First, we verify assertion (i). Write Irr(Z) for the set of irreducible compo-
nents of Z. Write, moreover, Nd(X), Nd(Z) for the sets of nodes of the stable curves X,
Z, respectively. Then let us first observe that since the covering Z — Xt is Galois and

of degree a power of p, one verifies easily that condition (1) is equivalent to the following
condition (1'):

(1) The equality
irr(Z) = [AS: N - (fIrr(X) — 1) + 1
holds.

Next, let us observe that it follows from a well-known fact concerning the first Betti
numbers of [the topological spaces determined by] connected graphs that condition (2) is
equivalent to the following condition (2'):

(2') The equality
1 —tIrr(2) +4Nd(Z2) = [AF : N]- (1 — fIrr(X) + 8Nd(X))
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holds.
On the other hand, since the covering Z — Xy is finite étale, it holds that

INd(Z) = [AS : N]-#Nd(X).

Thus, assertion (i) holds. This completes the proof of assertion (i).
Assertion (ii) follows immediately from assertion (i), together with Proposition 2.5, (i),
(i), (iii). This completes the proof of Lemma 3.5. O

REMARK 3.5.1. — Note that Lemma 3.5, (i), may be regarded as a “pro-p variant” of
the discussion of [14], Remark 1.2.3, (iii), related to the term “verticially purely totally
ramified”. Note, moreover, that Lemma 3.5, (ii), may be regarded as a “pro-p variant’
of the discussion of [14], Remark 1.2.3, (iv), related to the “functorial characterization of
the set of vertices of G”.

DEFINITION 3.6. — We shall say that a profinite group I satisfies the condition () if
there exist a prime number [ and an isomorphism of II with the geometrically pro-/ étale
fundamental group of a proper hyperbolic curve over an [-adic local field.

REMARK 3.6.1. — One verifies easily [cf. Remark 1.4.2, (i)] that if a profinite group
satisfies the condition (1), then every open subgroup of the profinite group satisfies the
condition ().

THEOREM 3.7. — In the notational conventions introduced at the beginning of §3, let
I1

be a profinite group which satisfies the condition (1) [cf. Definition 3.6]. Suppose that 11
is isomorphic to the geometrically pro-p étale fundamental group Tlx of X [cf. Defini-
tion 2.2|. Let

a: I = Ty
be an isomorphism of profinite groups. Then the following hold:
(i) We shall write
Ap C 1II

for the [uniquely determined] mazimal nontrivial pro-l — for some prime number | —
topologically finitely generated normal closed subgroup of II. Then « restricts to
an isomorphism of profinite groups

QA . AH ; AX
[cf. Definition 2.2].
(i) We shall write

Gn ¥ 1/Ap
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for the quotient of 11 by Ap. Then o determines an isomorphism of profinite groups

(67eW GH AN Gk

(i) The profinite group Gy is of MLF-type [cf. [8], Definition 1.1; also [8], Proposi-
tion 1.2, (1)]. Thus, by applying the functorial “group-theoretic” algorithm of [8], Theorem
1.4, (3), to Gy, we obtain a normal closed subgroup

I € I(Gy) C G

Then the isomorphism ag of (ii) restricts to an isomorphism of profinite groups

Qg [H — Ik

(iv) We shall write
P
for the [uniquely determined| prime number such that Ay is pro-pr. Then it holds that

pn = D-
(v) We shall write
A o An/JS  (respectively, AF™ o Ar/JEmP)
for the quotient of A by the normal closed subgroup
J& C Ap  (respectively, JE™ C Ap)

obtained by forming the intersection of the normal open subgroups N C Ap of An which
satisfy the following condition: Let

No=NCN C -+ CN.y CN, = Ag

be a finite sequence of normal open subgroups of Ay such that N;.1/N; is abelian for
each 0 < i < r—1 [note that since Ay is pro-pm, one verifies easily that such a sequence
always exists| and

h <P CcC---CPyCP =1

a finite sequence of open subgroups of Il such that P; N Ag = N; [which thus implies
that P;/N; may be regarded as an open subgroup of G| for each 0 < i < r. Then, for
each 0 < i < r — 1, the surjection N;11 — N1 /N; factors through the surjection onto
the [uniquely determined| mazimal abelian torsion-free quotient of N; 1 which satisfies
the following condition: There exists an open subgroup Jiy1 C Pii1/Nit1 of Piy1/Nisa
such that the quotient is J;11-stable, and, moreover, the resulting action of Ji1 N Iy
(respectively, Jii1) on the quotient is trivial. Then the isomorphism aa of (1) determines
a commutative diagram of profinite groups

Aq A Agmb
C!Alz a%ll acAmblZ
Ax A AN
[cf. Definition 2.3, (i), (iii)] — where the horizontal arrows are the natural surjections,

and the vertical arrows are isomorphisms of profinite groups.
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(vi) We shall write
Aaﬁb — A%b-ét s Aia_[b-cmb
for the respective abelianizations of An, A, AS™P. Then the diagram of (v) determines
a commutative diagram of profinite groups

ab ab-ét ab-cmb
AI'I A1'[ A1'[

azb J/z Oczb_ét ll Oéezb-cmb J/z

ab ab-ét ab-cmb
AY —— AYT —— A

[cf. Definition 2.4] — where the horizontal arrows are the natural surjections, and the
vertical arrows are isomorphisms of profinite groups.

(vii) We shall write

def 1 a def abé def ab-cm
gn = é-rankZPH(AHb), mo= rankZpH(AHb Y, () = rankZPH(AHb D).

Then it holds that
gn = gx. M = Yxp bi(ll) = bi(X)
[cf. Definition 1.1; Definition 1.4, (ii)].
(viil) We shall write

In
for the set of minimal normal open subgroups N C Ay of Ap such that N contains JS,
Ax /N is abelian and annihilated by pp, and, moreover, there exists an open subgroup
P C1I of IT such that PN Apg = N and by(P) = [An : N] - bi(I1), where we write by(P)
for the integer obtained by applying the “group-theoretic” algorithm “by(—)” of (vii) to
the profinite group P [which satisfies the condition (1) — cf. Remark 3.6.1];

NIH

for the equivalence relation on the set Iy defined as follows: For two elements N1, No of
In, we write Ny ~z,; No if there exist two splittings si, so: A‘ﬁmb — Aq of the natural
surjection Ay — AS™ such that, for each i € {1,2}, it holds that N; = (N1 N Ny)-Im(s;);

Ier(I1)>° = Iy ~g, .
Then the isomorphism oS of (v) determines — relative to the bijection of Lemma 3.5,
(ii) — a bijection
o Trr(I1)770 =5 Tor(X)7™0
[¢f. Definition 1.4, (iv)].
(ix) Let vy € Irr(11)7>°. Then we shall write
D,y C AY

for the [uniquely determined, up to conjugation] mazimal closed subgroup of At such that

s

e for each normal open subgroup P C 11 of I1 such that J& C P, the closed subgroup
Dy C AY is contained in the stabilizer [with respect to the action induced by the
action by conjugation] of an element of the set Irr(P)7>° obtained by applying the “group-
theoretic” algorithm “Irr(—)7>°" of (viii) to the profinite group P [which satisfies the
condition () — c¢f. Remark 3.6.1], and, moreover,
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o if N C Ay is an element of Iy which determines the class vy € Irr(I1)7>°, then it

holds that Ker(A$ — AS™) C Im(N — Ay — A) - D

Then the isomorphism o% of (v) determines a bijection between the set of conjugates of
Doy C A and the set of conjugates of D iy € AY [cf. Definition 2.3, (ii)].

(x) Let vy € Irr(I1)7>°. Then we shall write

U171

def ab
Yoy = rankyg, (D)

— where we write CD?}E for the abelianization of ®,,. Then it holds that

Yon = Vol (vg)
[cf. Definition 1.4, (iii)].

(xi) We shall say that the profinite group 11 is ordinary if the equality g = ~yn holds.
We shall say that the profinite group 11 is rationally degenerate if I is ordinary, and,
moreover, Irr(I1)7>° = (). Then it holds that 11 is ordinary (respectively, rationally
degenerate) if and only if X is ordinary [cf. Definition 2.6, (i)] (respectively, ratio-
nally degenerate [cf. Definition 2.6, (ii)]).

(xii) Suppose that I1 is ordinary [which thus implies that X is ordinary — cf. (xi)].
Then we shall say that the profinite group I1 has stable reduction if the representation
Azb @z, Qpn of In is isomorphic to an extension of the direct product of gn copies of the
trivial representation Q,, by the direct product of gni copies of the representation

HOHIZPH (Hz(AHa Lpyy), Qpn)‘

Then it holds that 11 has stable reduction if and only if X has stable reduction [cf.
Definition 1.2].

(xiii) Suppose that 11 is ordinary [which thus implies that X is ordinary — cf.
(xi)]. Then we shall say that the profinite group 11 has good reduction if I has stable
reduction, and, moreover, by(P) = 0 for every open subgroup P C II of II, where we
write by (P) for the integer obtained by applying the “group-theoretic” algorithm “by(—)”
of (vii) to the profinite group P [which satisfies the condition (1) — cf. Remark 3.6.1].
Then it holds that TI has good reduction if and only if X has good reduction [cf.
Definition 1.2].

PROOF. — Assertions (i), (ii) follow from Lemma 3.4, (i). Assertion (iii) follows from
[8], Theorem 1.4, (ii), together with assertion (ii). Assertion (iv) follows from assertion
(i). Assertions (v), (vi) follow from Lemma 3.4, (ii), together with assertions (i), (ii), (iii).
The assertion for gp in assertion (vii) follows from assertions (iv), (vi), together with the
well-known fact that the Z,-module A% is free of rank 2gx. The assertion for v and
b1 (IT) in assertion (vii) follows from Proposition 2.5, (i), together with assertion (iv), (vi).
Assertions (viii), (ix) follow, in light of the finiteness of Irr(—)?>°, from Lemma 3.5, (ii),
together with assertions (i), (iv), (v), (vil). Assertion (x) follows from Proposition 2.5,
(ii), together with assertions (iv), (ix). Assertion (xi) follows from Lemma 2.7, (ii),
together with assertions (vii), (viii). Assertion (xii) follows, in light of Definition 3.1,
from Lemma 3.3, (ii), together with assertions (i), (iii), (iv), (vi), (vii), (xi). Assertion
(xiii) follows from Theorem 2.9, (iii), together with assertions (vii), (xi), (xii). This
completes the proof of Theorem 3.7.
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COROLLARY 3.8. — For J € {o, e}, let pg be a prime number, kg a po-adic local field,
and Xp a proper hyperbolic curve over ko, write Ilx_ for the geometrically pro-pg
étale fundamental group of Xg [cf. Definition 2.2]. Let

L HXO — HX.

be an isomorphism of profinite groups. Then the following hold:

(i) 1t holds that po = pe, gx, = gx. [cf. Definition 1.1}, and by(X,) = b1(Xs) [cf.
Definition 1.4, (ii)].

(ii) The isomorphism a determines a commutative diagram of profinite groups

ét cmb
Ay, — Ay, —— AX

OlAJ/Z ozéAtll aCAmblZ

ét cmb
Ay, — A%, — A¥,

[cf. Definition 2.3, (i), (iii)] — where the horizontal arrows are the natural surjections,
and the vertical arrows are isomorphisms of profinite groups.

(iii) There ezists a bijection

~

o™ (X)) 5 Iir(X,)°
[cf. Definition 1.4, (iv)] such that, for each v € Irr(X,)7”°,

(1) the isomorphism o< [cf. (ii)] determines a bijection between the set of conjugates
of ®, € AS [¢f. Definition 2.3, (ii)] and the set of conjugates of D i,y € AY,, and

(2) it holds that v, = Yaur(vy [cf. Definition 1.4, (iii)].

(iv) It holds that X, is ordinary [cf. Definition 2.6, (i)] (respectively, rationally de-
generate [cf. Definition 2.6, (ii)]) if and only if X. is ordinary (respectively, rationally
degenerate).

(v) Suppose, moreover, that either X, or X, is ordinary. Then it holds that X, has
stable reduction [cf. Definition 1.2] if and only if X has stable reduction.

(vi) Suppose, moreover, that either X, or X, is ordinary. Then it holds that X, has
good reduction [cf. Definition 1.2] if and only if X, has good reduction.

PROOF. — Assertion (i) follows from Theorem 3.7, (iv), (vii). Assertion (ii) follows from
Theorem 3.7, (v). Assertion (iii) follows from Theorem 3.7, (viii), (ix), (x). Assertion
(iv) follows from Theorem 3.7, (xi). Assertion (v) follows, in light of assertion (iv), from
Theorem 3.7, (xii). Assertion (vi) follows, in light of assertion (iv), from Theorem 3.7,
(xiii). This completes the proof of Corollary 3.8. O

REMARK 3.8.1.

(i) Note that Theorem 3.7, (xiii), may be regarded as a pro-p “group-theoretic” crite-
rion for good reduction of ordinary proper hyperbolic curves over p-adic local fields. As a
consequence of the “group-theoreticity”, Theorem 3.7, (xiii), implies in fact Corollary 3.8,

(vi).
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(ii) Let ¥ be a nonempty set of prime numbers such that p ¢ ¥. Then we have a pro-
Y “group-theoretic” criterion for good reduction of [not necessarily ordinary| hyperbolic
curves over p-adic local fields in the following sense: Let C' be a [not necessarily proper]
hyperbolic curve over k and II a profinite group which is isomorphic to the geometrically
pro-Y étale fundamental group of C' [i.e., the quotient of the étale fundamental group
of C' obtained by replacing “pro-p” in the definition of the “geometrically pro-p étale
fundamental group ITx” in Definition 2.2 by pro-X|. Then it follows from [13], Theorem
2.6, (iv), that one may define a normal closed subgroup Ay C IT of IT which corresponds
to the pro-X geometric étale fundamental group of C' [i.e., the quotient of the étale
fundamental group of C' X, k obtained by replacing “pro-p” in the definition of the “pro-
p geometric étale fundamental group Ax” in Definition 2.2 by pro-X]. Thus, one may
also define a normal closed subgroup Iy C II/Ap of II/Ap which corresponds to the
inertia subgroup Iy of Gy, [cf., e.g., Theorem 3.7, (iii)]. Then [18], Theorem 3.2, and [20],
Theorem 5.3, assert that

it holds that C' has good reduction [cf. [20], Definition 5.1] if and only if
the image of the restriction of the action IT — Aut(Ay) by conjugation to
the closed subgroup II Xp/a, 1 € II is contained in the subgroup of inner
automorphisms of Ar.

(iii) Note that, by [the proof of] [12], Corollary 2.8, in the situation of (ii), one may
establish a functorial “group-theoretic” algorithm for reconstructing, from II, the dual
semi-graph of the special fiber of the stable model of C' X}, k over the ring of integers of
k.

REMARK 3.8.2. — Let us discuss the p-adic criterion for good reduction of curves proved
by F. Andreatta, A. Iovita, and M. Kim in [1] from the point of view of the present paper:

(i) In [1], F. Andreatta, A. lovita, and M. Kim proved a p-adic criterion for good
reduction of curves. Here, let us recall [1], Theorem 1.9, briefly from the point of view of
the present paper:

In the notational conventions introduced at the beginning of §3 of the
present paper, by considering [neutral tannakian] categories of certain
finite-dimensional unipotent representations of the profinite group A x over
Qp, one may define, for each positive integer n, a finite-dimensional rep-
resentation £ of IIx over Q,. Let b € X (k) be a k-rational point of X.
Then, by restricting the representation £ to the splitting [well-defined up
to Ax-conjugation] of the natural surjection I1y — Gy induced by b, one
obtains, for each positive integer n, a finite-dimensional representation Sﬁfb
of Gy over Q,. Then [1], Theorem 1.9, asserts that X has good reduction
if and only if the representation Snéfb of Gy is crystalline for every positive
integer n.

(ii) The p-adic criterion of (i) [is interesting even in a certain point of view of anabelian
geometry but] should be considered to be not “group-theoretic” [i.e., to be not useful in
pro-p absolute anabelian geometry| by the following two reasons:
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(1) The issue of whether or not a given finite-dimensional representation of Gy
over Q, is crystalline is not “group-theoretic”. Indeed, it follows immediately from the
discussion of [7], Remark 3.3.1, that there exist a prime number [, an l-adic local field L,
an automorphism « of the absolute Galois group G, of L, and a crystalline representation

p: G — GL,(Q,) such that the composite G = G, LN GL,(Q) is not crystalline.

(2) Tt is not clear that the issue of whether or not a given splitting of the natural
surjection Iy — G arises from a k-rational point of X is “group-theoretic”. Note that
it follows from [5], Theorem A, that there exist a prime number [, an l-adic local field
L, a proper hyperbolic curve C' over L, and a splitting of the natural surjection from the
geometrically pro-l étale fundamental group of C' onto the absolute Galois group of L
which does not arise from an L-rational point of C.

(iii) As a consequence of the discussion of (ii), the p-adic criterion of (i) does not, at
least in the immediate literal sense, imply the following assertion:

(3) In the situation of Corollary 3.8, it holds that X, has good reduction if and only
if X, has good reduction.

Note that it is not clear to the author at the time of writing whether or not the above
assertion (3) is valid [without ordinary assumption].

(iv) In an attempt to apply the p-adic criterion of (i) to the study of assertion (3), in
order to avoid the problem arising from the fact that the issue of whether or not a given
finite-dimensional representation of Gy, over Q, is crystalline is not “group-theoretic” [i.e.,
(1) of the discussion of (ii)], one may consider the following assumption:

(4) In the situation of Corollary 3.8, if we write p o Po = P |cf. Corollary 3.8, (i)]
and ag: Gal(ko/k,) — Gal(ks/ks) — where ko, ko are respective appropriate algebraic
closures of k,, ks — for the isomorphism induced by « [cf. Theorem 3.7, (ii)], then, for

every finite extension k/, of k, in k, and every crystalline representation p: Gal(k,/k.) —
_ _ ag _

CL,(Q,) of Gal(k,/k.), the composite Gal(ko/k") = Gal(ko/k.) %> GL,(Q,) — where we

write k! for the finite extension of k, in ko corresponding, via ag, to k, — is a crystalline

representation of Gal(ko/k.).

On the other hand, it follows immediately from a similar argument to the argument
applied in the proof of [7], Theorem, that assumption (4) implies that the isomorphism
o arises from an isomorphism of fields ky — k, which restricts to an isomorphism of
fields ke — ko. In particular, it follows immediately from [11], Theorem A, that o arises
from an isomorphism of schemes X, — X,, which thus implies the equivalence discussed
in assertion (3). That is to say, assertion (3) under assumption (4) may be verified without
the p-adic criterion of (i).
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