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GROTHENDIECK DUALITY AND Q-GORENSTEIN
MORPHISMS

YONGNAM LEE AND NOBORU NAKAYAMA

ABSTRACT. The notions of Q-Gorenstein scheme and Q-Gorenstein morphism
are introduced for locally Noetherian schemes by dualizing complexes and
(relative) canonical sheaves. By studying (relative) Sp-condition and base
change properties, expected properties are proved for Q-Gorenstein morphisms.
Various Theorems are presented on infinitesimal criterion, valuative criterion,
Q-Gorenstein refinement, and so forth.
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1. INTRODUCTION

The notion of Q-Gorenstein variety is important for the minimal model theory
of algebraic varieties in characteristic zero: A normal algebraic variety X defined
over a field of any characteristic is said to be Q-Gorenstein if rKx is Cartier for
some positive integer r, where K x stands for the canonical divisor of X. In some
papers, X is additionally required to be Cohen—Macaulay. M. Reid used this notion
essentially to define the canonical singularity in [47, Def. (1.1)], and he named the
notion “Q-Gorenstein” in [48, (0.12.e)], where the Cohen-Macaulay condition is
required. The notion without the Cohen—-Macaulay condition appears in [23] for
example. In the minimal model theory of algebraic varieties of dimension more than
two, we must deal with varieties with mild singularities such as terminal, canonical,
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log-terminal, and log-canonical (cf. [23, §0-2] for the definition). The notion of Q-
Gorenstein is hence frequently used in studying the higher dimensional birational
geometry.

The notion of Q-Gorenstein deformation is also popular in the study of degen-
erations of normal algebraic varieties in characteristic zero related to the minimal
model theory and the moduli theory since the paper [29] by Kolldr and Shepherd-
Barron. Roughly speaking, a Q-Gorenstein deformation X — C of a Q-Gorenstein
normal algebraic variety X is considered as a flat family of algebraic varieties over
a smooth curve C' with a closed fiber being isomorphic to X such that rKy ¢ is
Cartier and 7Ky c|x ~ rKx for some r > 0, where Ky /o stands for the relative
canonical divisor. We call such a deformation “naively Q-Gorenstein” (cf. Defini-
tion [1] below). This is said to be “weakly Q-Gorenstein” in [I4] §3], or satisfying
Viehweg’s condition (cf. Property VIV in [20/ §2]). We say that X — C is a
Q-Gorenstein deformation if

Ox(me/c) ®o, Ox ~ Ox(mKx)

for any integer m. This additional condition seems to be considered first by Kollar
[26, 2.1.2], and it is called the Kolldr condition; A similar condition is named as
Property K in [20] §2] for example. A typical example of Q-Gorenstein deforma-
tion appears as a deformation of the weighted projective plane P(1,1,4): Its versal
deformation space has two irreducible components, in which the one-dimensional
component corresponds to the Q-Gorenstein deformation and its general fibers are
P2 (cf. [44, §8]). The Q-Gorenstein deformation is also used in constructing some
simply connected surfaces of general type over C in [32]. The authors have suc-
ceeded in generalizing the construction to the positive characteristic case in [31],
where a special case of Q-Gorenstein deformation over a mixed characteristic case
is considered.

During the preparation of the joint paper [3I], the authors began generaliz-
ing the notion of Q-Gorenstein morphism to the case of morphisms between lo-
cally Noetherian schemes. The purpose of this article is to give good definitions
of Q-Gorenstein scheme and Q-Gorenstein morphism: We define the notion of
“Q-Gorenstein” for locally Noetherian schemes admitting dualizing complexes (cf.
Definition below) and define the notion of “Q-Gorenstein” for flat morphisms
locally of finite type between locally Noetherian schemes (cf. Definition [Tl below).
So, we try to define the notion of “Q-Gorenstein” as general as possible. We do
not require the Cohen—Macaulay condition, which is assumed in most articles on
Q-Gorenstein deformations. However, “Q-Gorenstein” is always “Gorenstein in
codimension one.”

The definition of Q-Gorenstein scheme in Definition below is interpreted as
follows (cf. Lemmal[G4i@3]) ): A locally Noetherian scheme is said to be Q-Gorenstein
if and only if

e it satisfies Serre’s condition So,
e it is Gorenstein in codimension one,
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e it admits an ordinary dualizing complex locally on X, and for the dualizing
sheaf £, the double dual of £®" is invertible for some integer r > 0 locally
on X.

Here, the ordinary dualizing complex and the dualizing sheaf are defined in Defi-
nition On the other hand, a flat morphism f:Y — T locally of finite type
between locally Noetherian schemes is said to be a Q-Gorenstein morphism (cf.
Definition [1]) if and only if

e every fiber is a Q-Gorenstein scheme, and
e for the relative canonical sheaf wy 7 of f, the double-dual of wf?/"% satisfies
relative Sy over T for any m € Z.

Here, the relative canonical sheaf is defined for So-morphisms in Definition [£.3]
and the relative So-condition is explained in Section The Kollar condition is
included as the relative Ss-condition for the double dual of w%’"; for all m. The
definition of naively Q-Gorenstein morphism is similar to that of Q-Gorenstein
morphism (cf. Definition [[I)): The difference is on the second condition, which is
weakened to:

e the double dual of wg}’% is invertible for some m locally on Y.
To giving the definitions of Q-Gorenstein, we need some basic properties related
with the (relative) dualizing complex and Serre’s So-condition. These are prepared
in Sections 2HE] below.

By our definition, we can consider Q-Gorenstein deformations of non-normal
schemes. This topic has already been considered by Hacking [14] and Tziolas [53]
for slc surfaces over the complex number field C. The work of Abramovich-Hassett
[1] covers also non-normal reduced Cohen-Macaulay algebraic schemes over a fixed
field. We can cover all of them and also non-reduced case, since our definition is
considered for any flat morphism locally of finite type between locally Noetherian
schemes.

We can prove some expected properties for Q-Gorenstein morphisms. For exam-
ple, Q-Gorenstein morphisms are stable under base change (cf. Proposition [Z2T)[H])).
Such elementary properties are presented in Section On the other hand, the
results listed below are serious, and show that our definition of Q-Gorenstein mor-
phism is reasonable:

(1) Theorem [ I7 giving a sufficient condition for a virtually Q-Gorenstein mor-
phism to be Q-Gorenstein;

(2) Theorems [[24] and of infinitesimal criterion and of valuative criterion,
respectively, for a morphism to be Q-Gorenstein;

(3) Theorem on Ss-conditions on fibers giving a sufficient condition for a
morphism to be Q-Gorenstein;

(4) Theorem on the existence of Q-Gorenstein refinement.

We shall explain these results briefly.

@): The virtually Q-Gorenstein morphism is introduced in Section as a
weak form of Q-Gorenstein morphism (cf. Definition [[T2]). This is inspired by the
definition [I4] Def. 3.1] by Hacking on Q-Gorenstein deformation of an slc surface
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in characteristic zero: His definition is generalized to the notion of Kollar family
of Q-line bundles in [I]. Hacking defines the Q-Gorenstein deformation by the
property that it locally lifts to an equivariant deformation of an index-one cover.
This definition essentially coincides with our definition of virtually Q-Gorenstein
morphism (cf. Lemma [7. 15 and Remark [7.16). A Q-Gorenstein morphism is always
a virtually Q-Gorenstein morphism. The converse holds if every fiber satisfies Ss;
This remarkable result is proved as a part of Theorem [[. 17l This theorem is derived
from Theorem B.10] on a base change property for certain Se-morphisms, and its
proof needs Theorem [3.17 on a criterion for a sheaf to be invertible and a study of
the relative canonical dualizing complex in Section 51l By Theorem [T.17 we can
study infinitesimal Q-Gorenstein deformations of a Q-Gorenstein algebraic scheme
over a field k satisfying S3 via the equivariant deformations of the index one cover.
The authors’ study of this deformation is now in progress.

@): The infinitesimal criterion says that, for a given flat morphism f: Y —
T locally of finite type between locally Noetherian schemes, it is a Q-Gorenstein
morphism if the base change fa: Y4 =Y X7 Spec A — Spec A is a Q-Gorenstein
morphism for any closed immersion Spec A — T for any Artinian local ring A. The
valuative criterion is similar but 7' is assumed to be reduced and Spec A — T is
replaced with any morphism for any discrete valuation ring A.

@): Theorem[[26limplies that a morphism f: Y — T as above is a Q-Gorenstein
morphism if Y; is Q-Gorenstein, Y; is Gorenstein in codimension two, and if the
double dual wgzb/]k(t) of the m-th power of the canonical sheaf wy, /(;) satisfies S3
for any m € Z.

@): The Q-Gorenstein refinement for a morphism f: Y — T above, is a mor-
phism S — T satisfying the following property: For a morphism 7" — T from an-
other locally Noetherian scheme, the base change Y x7 T’ — T" is a Q-Gorenstein
morphism if and only if 7" — T factors through S — T'. Theorem [[27shows the ex-
istence of Q-Gorenstein refinement, for example, when f is a projective morphism,
and in this case, S — T is a separated monomorphism of finite type and a local
isomorphism. A similar result is given as Theorem for naively Q-Gorenstein
morphisms. Both theorems are derived mainly from Theorem B.I8 on the relative
So-ification for the double dual, which is analogous to the flattening stratification
theorem by Mumford in [37), Lect. 8] and to the representability theorem of unram-
ified functors by Murre [39]. Similar results to Theorems 318 and are given
by Kollar in [28].

Organization of this article. In Section 2 we recall some basic notions and
properties related to Serre’s Sy-condition. Section 2] recalls basic properties on
dimension, depth, and the Sp-condition. The relative Si-condition is explained in
Section In Section [3, we study restriction homomorphisms of a coherent sheaf
to open subsets, and give several criteria for the restriction homomorphism on a
fiber to be an isomorphism. Section Bl is devoted to prove the key proposition
(Proposition B7) and its related properties, which are useful for the study of base
change homomorphisms and so on in the latter sections. The key proposition proves
under a suitable situation that the relative Ss-condition of a given reflexive sheaf is
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equivalent to the relative flatness of another sheaf (cf. LemmaB.T6l). In the course of
studying subjects related to Proposition B we find a counterexample of a result
of Kolldr on the flatness criteria [27, Th. 12]. This is written in Example
Section contains some applications of Proposition Bt Theorem B.I7 gives a
criterion for a sheaf to be invertible, which is used in the proof of Theorem
Theorem B.I8 on the relative Ss-ification for the double dual, which is applied to
Theorems and [Z.28)], is proved using the exact sequence in Proposition B.71

The theory of Grothendieck duality is explained briefly in Sectiondl Sections[4.1]
and recall some well-known properties on the dualizing complex based on ar-
guments in [I6] and [6]. The convenient notion of ordinary dualizing complex is
introduced in Section [£.2] since we treat locally equi-dimensional schemes in the
most case. The twisted inverse image functor is explained in Section with the
famous Grothendieck duality theorem for proper morphisms (cf. Theorem [F30]).
The base change theorem for the relative dualizing sheaf for a Cohen—Macaulay
morphism is mentioned in Section 4l In Section Bl we give some technical base
change results for the relative canonical sheaf of an So-morphism. As a generaliza-
tion of the relative dualizing sheaf for a Cohen—Macaulay morphism, we introduce
the notion of relative canonical sheaf for an arbitrary So-morphism in Section Bl
Here, we discuss the relative canonical sheaf and the conditions for the relative
canonical sheaf to be relative So. Section contains Theorem [E.10, which pro-
vides a criterion for a base change homomorphism of the relative canonical sheaf
to be an isomorphism. This theorem is applied to Theorem [[.I7 on the virtually
Q-Gorenstein morphism. In Section Bl we study Q-Gorenstein schemes. The no-
tion of Q-Gorenstein scheme is introduced in Section and its basic properties
are given. As an example of Q-Gorenstein schemes, in Section [6.2] we consider
the case of affine cones over polarized projective schemes over a field. In Sec-
tion [ we study Q-Gorenstein morphisms, and two variants: naively Q-Gorenstein
morphisms and virtually Q-Gorenstein morphisms. The Q-Gorenstein morphism
and the naively Q-Gorenstein morphism are defined in Section [l and their basic
properties are discussed. Especially, we give a new example of naively Q-Gorenstein
morphisms which are not Q-Gorenstein, by Lemma [Tl and Example [Z.8] inspired
by the work of Patakfalvi in [43]. The virtually Q-Gorenstein morphism is de-
fined in Section [7.2] which contains Theorem [I.T7 of a criterion of Q-Gorenstein
morphism (cf. (I} above). In Section [[3] several basic properties including base
change of Q-Gorenstein morphisms and of their variants are discussed. Theorems
mentioned in @)-) above are proved in Section [T-4l

Some elementary facts on local criterion of flatness and base change isomorphisms
are explained in Appendix [Al for the readers’ convenience. In this article, we try to
cite references kindly as much as possible for the readers’ convenience and for the
authors’ assurance. We also try to refer to the original article if possible.
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Notation and conventions.

(1)

For a complex K® = [--+ — K* LNy S IO -] in an abelian category and
for an integer ¢, we denote by 7<¢(K*®) (resp. 729(K®)) the “truncation”
of K*, which is defined as the complex

q—2
[ K972 2 g Ker(d9) — 0 — - -]

q+1
(resp. [--- — 0 — Coker(d?™t) — K7t LAY ' AR )
(cf. [9, Déf. 1.1.13]). The complex K*®[m] shifted by an integer m is defined
as the complex L® = [-- — L? oy pit1 --+] such that L? = Kitm™

and df = (—1)™d"™™ for any i € Z. It is known that the mapping cone
of the natural morphism 7=9(K*®) — K* is quasi-isomorphic to 729+ (K*)
for any q € Z.

For a complex K*® in an abelian category (resp. for an object K*® of the
derived category), the i-th cohomology of K* is denoted usually by Hi(K °).
For a complex IC® of sheaves on a scheme, the i-th cohomology is a sheaf
and is denoted by H(K*).

The derived category of an abelian category A is denoted by D(A). More-
over, we write DT (A) (resp. D™ (A), resp. D?(A)) for the full subcategory
consisting of bonded below (resp. bounded above, resp. bounded) com-
plexes.

An algebraic scheme over a field k means a k-scheme of finite type. An
algebraic variety over k is an integral separated algebraic scheme over k.
For a scheme X, a sheaf of Ox-modules is called an O x-module for simplic-
ity. A coherent (resp. quasi-coherent) sheaf on X means a coherent (resp.
quasi-coherent) Ox-module. The (abelian) category of Ox-modules (resp.
quasi-coherent Ox-modules) is denoted by Mod(Ox) (resp. QCoh(Ox)).
For a scheme X and a point € X, the maximal ideal (resp. the residue
field) of the local ring Ox , is denoted by mx , (resp. k(z)). The stalk of
a sheaf F on X at x is denoted by F,.

For a morphism f: Y — T of schemes and for a point ¢ € T, the fiber
f71(t) over t is defined as Y x7 Speck(t) and is denoted by Y;. For an
Oy-module F, the restriction F ®o, Oy, to the fiber Y; is denoted by F(4)
(cf. Notation 225]).

The derived category of a scheme X is defined as the derived category of
Mod(Ox), and is denoted by D(X). The full subcategory consisting of
complexes with quasi-coherent (resp. coherent) cohomology is denoted by
Dycon(X) (resp. Deon(X)). For « = +, —, b and for = gcoh, coh, we set

D*(X) = D*(Mod(Ox)) and Dj}(X)=D*(X)ND¢(X).

For a sheaf F on a scheme X and for a closed subset Z, the i-th local
cohomology sheaf of F with support in Z is denoted by H% (F) (cf. [17]).
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(10) For a morphism X — Y of schemes, 25 /y denotes the sheaf of relative
one-forms. When X — Y is smooth, Qf( Iy denotes the p-th exterior power
NF 2%y for integers p > 0.

2. SERRE’S S;-CONDITION

We shall recall several fundamental properties on locally Noetherian schemes,
which are indispensable for understanding the explanation of dualizing complex
and Grothendieck duality in Section [ as well as the discussion of relative canonical
sheaves and Q-Gorenstein morphisms in Sections Bl and Bl respectively. In Sec-
tion 211 we recall basic properties on dimension, depth, and Serre’s Si-condition
especially for £k = 1 and 2. The relative Sg-condition is discussed in Section

2.1. Basics on Serre’s condition. The Sj-condition is defined by “depth” and
“dimension.” We begin with recalling some elementary properties on dimension,
codimension, and on depth.

Property 2.1 (dimension, codimension). Let X be a scheme and let F be a quasi-
coherent Ox-module of finite type (cf. [I1, 0, (5.2.1)]), i.e., F is quasi-coherent and
locally finitely generated as an Ox-module. Then, Supp F is a closed subset (cf.
[11l, 01, (5.2.2)]).

(1) Y is a closed subscheme of X such that Y = Supp F as a set, then
dim F, = dim Oy ,, = codim({y},Y)

for any point y € Y, where dim F, is considered as the dimension of the
closed subset Supp F, of Spec Ox, (cf. [11} IV, (5.1.2), (5.1.12)]).

(2) The dimension of F, denoted by dim F, is defined as dim Supp F (cf. [I1],
IV, (5.1.12)]). Then,

dim F = sup{dim F, | z € X}
(cf. [T}, TV, (5.1.12.3)]). If X is locally Noetherian, then
dim F = sup{dim F, |  is a closed point of X}

by [1I, IV, (5.1.4.2), (5.1.12.1), and Cor. (5.1.11)]. Note that the local
dimension of F at a point z, denoted by dim, F, is just the infimum of
dim F|y for all the open neighborhoods U of z.

(3) For a closed subset Z C X, the equality

codim(Z,X) = inf{dimOx . | z € Z}
holds, and moreover, if X is locally Noetherian, then
codim,(Z, X) = inf{dim Ox_, | z € Z, = € {z}}

for any point x € X (cf. [II, TV, Cor. (5.1.3)]). Note that codim(f, X) =
+o00 and that codim,(Z, X) = +oo if © ¢ Z. Furthermore, if Z is locally
Noetherian, then the function z — codim,(Z, X) is lower semi-continuous
on X (cf. [II}, Ory, Cor. (14.2.6)(ii)]).
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Definition 2.2 (equi-dimensional). Let X be a scheme and F a quasi-coherent
Ox-module of finite type. Let A be a ring and M a finitely generated A-module.

(1) We call X (resp. F) equi-dimensional if all the irreducible components of
X (resp. Supp F) have the same dimension.

(2) We call A (resp. M) equi-dimensional if all the irreducible components
of Spec A (resp. Supp M) have the same dimension, where Supp M is the
closed subset of Spec A defined by the annihilator ideal Ann(M). Note
that Supp M equals Supp M~ for the associated quasi-coherent sheaf M™
on Spec A.

(3) We call X (resp. F) locally equi-dimensional if the local ring Ox .. (resp.
the stalk F, as an Ox z-module) is equi-dimensional for any point z € X.

Remark. For a locally Noetherian scheme X, it is locally equi-dimensional if and
only if every connected component of X is equi-dimensional. This follows from that
X is locally connected (cf. [T}, I, Cor. (6.1.9)]).

Property 2.3 (catenary). A scheme X is said to be catenary if

codim(Y, Z) + codim(Z,T) = codim(Y, T
for any irreducible closed subsets Y C Z C T of X (cf. [L1, Ory, Prop. (14.3.2)]). A
ring A is said to be catenary if Spec A is so. Then, for a scheme X, it is catenary

if and only if every local ring Ox , is catenary (cf. [II, IV, Cor. (5.1.5)]). If X is a
locally Noetherian scheme and if Ox , is catenary for a point € X, then

codimy (Y, X) = dim Ox ; — dim Oy
for any closed subscheme Y of X containing x (cf. [I1], IV, Prop. (5.1.9)]).

Property 2.4 (depth). Let A be a Noetherian ring, I an ideal of A, and let M be a
finitely generated A-module. The I-depth of M, denoted by depth; M, is defined
as the length of any maximal M-regular sequence contained in I when M # IM,
and as +o0o when M = IM. Here, an element a € [ is said to be M-regular if a is
not a zero divisor of M, i.e., the multiplication map = — ax induces an injection
M — M, and a sequence a1, as,-..,a, of elements of I is said to be M-regular if
a; is M;-regular for any i, where M; = M/(aq,...,a;—1)M. The following equality
holds (cf. [I7, Prop. 3.3], [13] III, Prop. 2.4], [35, Th. 16.6, 16.7]):

depth; M = inf{i € Z>q | Ext’,(A/I, M) # 0}.

If A is a local ring and if I is the maximal ideal m4, then depth; M is denoted
simply by depth M; In this case, we have depth M < dim M when M # 0 (cf. [I1],
Orv, (16.4.5.1)], [35, Exer. 16.1, Th. 17.2]).

Definition 2.5 (Z-depth). Let X be a locally Noetherian scheme and F a coherent
Ox-module. For a closed subset Z of X, the Z-depth of F is defined as

depth, F = inf{depth F, | z € Z}

(cf. [I7, p. 43, Def.], [I1, IV, (5.10.1.1)], [2| III, Def. (3.12)]), where the stalk F, of
F at z is regarded as an Ox -module. Note that depth, 0 = +o0.
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Property 2.6 (cf. [I7, Th. 3.8]). In the situation above, for a given integer k > 1,
one has the equivalence:

depth, F >k <<= HY(F)=0 foranyi<k.

Here, H,(F) stands for the i-th local cohomology sheaf of F with support in Z
(cf. [17], [13]). In particular, the condition: depth, F > 1 (resp. > 2) is equiva-
lent to that the restriction homomorphism F — j.(F|x\z) is an injection (resp.
isomorphism) for the open immersion j: X \ Z — X. Furthermore, the condition:
depthy, F > 3 is equivalent to: F =~ j,(F|x\z) and R'j.(F|x\z) = 0.

Remark (cf. [I'1, Cor. 3.6], [2, III, Cor. 3.14]). Let A be a Noetherian ring with an
ideal I and let M be a finitely generated A-module. Then,

depth; M = depth, M~

for the closed subscheme Z = Spec A/I of X = Spec A and for the coherent Ox-
module M~ associated with M.

Remark 2.7 (associated prime). Let F be a coherent O x-module on a locally Noe-
therian scheme X. A point x € X is called an associated point of F if the maximal
ideal m, is an associated prime of the stalk F, (cf. [II, IV, Déf. (3.1.1)]). This
condition is equivalent to: depth F,, = 0. We denote by Ass(F) the set of associ-
ated points. This is a discrete subset of Supp F. If an associated point x of F is
not a generic point of F, i.e., depth F, = 0 and dim F,, > 0, then z is called the
embedded point of F. If X = Spec A and F = M"™ for a Noetherian ring A and for
a finitely generated A-module M, then Ass(F) is just the set of associated primes
of M, and the embedded points of F are the embedded primes of M.

Remark 2.8. Let ¢: F — j.(F|x\z) be the homomorphism in Property 2.6l and set
U= X\ Z. Then, ¢ is an injection (resp. isomorphism) at a point « € Z, i.e., the
homomorphism

of stalks is an injection (resp. isomorphism), if and only if
depth Fr >1 (resp. >2)

for any =’ € Z such that z € m In fact, ¢, is identical to the inverse image
pi(¢) by a canonical morphism p;: SpecOx , — X, and it is regarded as the
restriction homomorphism of p*(F) to the open subset U, = p, 1 (U) via the base
change isomorphism
P (Flo)) = Jou (2 F)v,)

(cf. Lemma [A20] below), where j, stands for the open immersion U, < Spec Ox .
For the complement Z, = p;!(Z) of U, in Spec Ox ., by Property 28] we know
that p%(¢) is an injection (resp. isomorphism) if and only if

depth, pr(F) >1 (resp. > 2).

This implies the assertion, since Z, is identical to the set of points 2’ € Z such that
x e {a'}.
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We recall Serre’s condition Sy, (cf. [TI], IV, Déf. (5.7.2)], [2, VII, Def. (2.1)], [35]
p. 183)):

Definition 2.9. Let X be a locally Noetherian scheme, F a coherent Ox-module,
and k a positive integer. We say that F satisfies the condition Sy if the inequality

depth 7, > inf{k, dim F,}

holds for any point z € X, where the stalk F at  is considered as an Ox ;-module.
We say that F satisfies Si at a point v € X if

depth F,, > inf{k, dim F,}
for any point € X such that 2 € {y}. We say that X satisfies Sy, if Ox does so.

Remark. In the situation of Definition 2.9 assume that F = i.(F’) for a closed
immersion 7: X’ < X and for a coherent Ox,-module F’. Then, F satisfies Sy, if
and only if 7’ does so. In fact,

depth F, = +00 and dimJF, = —o0
for any = ¢ X', and
depth F, = depth F,, and dimF, = dim F,
for any x € X' (cf. [II], Ory, Prop. (16.4.8)]).

Remark 2.10. Let A be a Noetherian ring and M a finitely generated A-module.
For a positive integer k, we say that M satisfies Sy, if the associated coherent sheaf
M~ on Spec A satisfies S;. Then, for X, F, and x in Definition 2.9 F satisfies Sy,
at z if and only if the Ox ,-module F, satisfies S;. In fact, by considering Supp F,
as a closed subset of Spec Ox , and by the canonical morphism SpecOx , — X,
we can identify Supp F, with the set of points y € Supp F such that x € @

Definition 2.11 (Cohen-Macaulay). Let A be a Noetherian local ring and M a
finitely generated A-module. Then, M is said to be Cohen—Macaulay if depth M =
dim M unless M = 0 (cf. [II, Opy, Déf. (16.5.1)], [35, §17]). In particular, if
dim A = depth A, then A is called a Cohen—Macaulay local ring. Let X be a
locally Noetherian scheme and F a coherent Ox-module. If the Ox ,-module F,
is Cohen—Macaulay for any « € X, then F is said to be Cohen—Macaulay (cf. [IT],
IV, Déf. (5.7.1)]. If Ox is Cohen—Macaulay, then X is called a Cohen—-Macaulay

scheme.

Remark 2.12. For A and M above, it is known that if M is Cohen—Macaulay, then
the localization M, is also Cohen-Macaulay for any prime ideal p of A (cf. [1I]
Orv, Cor. (16.5.10)], [35] Th. 17.3]). Hence, M is Cohen—Macaulay if and only if M
satisfies Sy for any k > 1.

Definition 2.13 (Si(F), CM(F)). Let X be a locally Noetherian scheme and let
F be a coherent Ox-module. For an integer k& > 1, the Si-locus Si(F) of F is
defined to be the set of points € X at which F satisfies Sy, (cf. Definition[2Z9)). The
Cohen—Macaulay locus CM(F) of F is defined to be the set of points x € F such



GROTHENDIECK DUALITY AND Q-GORENSTEIN MORPHISMS 11

that F, is a Cohen—Macaulay Ox ,-module. By definition and by Remark 212 one
has: CM(F) = (51 Sk(F). We define S (X) := Si(Ox) and CM(X) = CM(Ox),
and call them the Sg-locus and the Cohen—Macaulay locus of X, respectively.

Remark. Tt is known that S;(F) and CM(F) are open subsets when X is locally a
subscheme of a regular scheme (cf. [T, IV, Prop. (6.11.2)(ii)]). In Proposition {11
below, we shall prove the openness when X admits a dualizing complex.

Remark. For a locally Noetherian scheme X, every generic point of X is contained
in the Cohen-Macaulay locus CM(X). For, dim A = depth A = 0 for any Artinian
local ring A.

Lemmas 2.14] and 2.T5] below are basic properties on the condition Sy.

Lemma 2.14. Let X be a locally Noetherian scheme and let G be a coherent Ox -
module. For a positive integer k, the following conditions are equivalent to each
other:

(i) The sheaf G satisfies Si.
(ii) The inequality

depth, G > inf{k, codim(Z, Supp G)}

holds for any closed (resp. irreducible and closed) subset Z C SuppG.

(iii) The sheaf G satisfies Sk—1 when k > 2, and depth, G > k for any closed
(resp. irreducible and closed) subset Z C Supp G such that codim(Z, Supp G)
> k.

(iv) There is a closed subset Z C SuppG such that depth, G > k and G|x\z
satisfies Sy.

Proof. We may assume that G is not zero. The equivalence ([ll) < (i) follows from
Definitions and and from the equality: dim G, = codim(@, Supp G) for z €
Supp G in Property 2JII). The equivalence (i) < () implies the equivalence: (i)
< (). We have ([l) = () by taking a closed subset Z with codim(Z, SuppG) > k
using the inequality in (). It is enough to show: () = (). More precisely, it is
enough to prove that, in the situation of (), the inequality

depth G, > inf{k,dimG,}

holds for any point x € X. If ¢ Z, then this holds, since G| x\ 7 satisfies Sy,. If x €
Z, then dim G, > depthG, > depth, G > k (cf. Property 2.4 and Definition [2.1]),
and it induces the inequality above. Thus, we are done. O

Lemma 2.15. Let X be a locally Noetherian scheme and G a coherent Ox -module.
Then, for any closed subset Z of X, the following hold:

(1) One has the inequality
depth, G < codim(Z N Supp G, Supp G).

(2) For aninteger k > 0, if G satisfies Sy, and if codim(ZNSupp G, Supp G) > k,
then depth, G > k.



12 YONGNAM LEE AND NOBORU NAKAYAMA

Proof. The inequality in () follows from the inequality depth G, < dim G, for any
r € Supp G, since

codim(Z N Supp G,Supp G) = inf{dim G, | x € ZNSuppG} and
depth, G = inf{depth G, |z € Z N Supp G}

when Z N SuppG # (), by Property Bl and Definition The assertion (2]) is
derived from the equivalence () < (i) of Lemma 214 O

For the conditions S; and S,, we have immediately the following corollary of
Lemma 2.14] by considering Property

Corollary 2.16. Let X be a locally Noetherian scheme and let G be a coherent
Ox -module. The following three conditions are equivalent to each other, where j
denotes the open immersion X \ Z — X:

(i) The sheaf G satisfies S1 (resp. Sa).

(ii) For any closed subset Z C Supp G with codim(Z,SuppG) > 1 (resp. > 2),
the canonical homomorphism G — j.(G|x\z) is injective (resp. an isomor-
phism, and G satisfies S1).

(iii) There is a closed subset Z C Supp§ such that G|x\z satisfies S1 (resp.
S2) and the canonical homomorphism G — j.(G|x\z) is injective (resp. an
isomorphism).

Remark 2.17. Let X be a locally Noetherian scheme and G a coherent O x-module.
Then, by definition, G satisfies S; if and only if G has no embedded points (cf.
Remark 277)). In particular, the following hold when G satisfies Sy:

(1) Every coherent Ox-submodule of G satisfies S; (cf. Lemma 2I8|(2]) below).

(2) The sheaf Homo, (F,G) satisfies S; for any coherent Ox-module F.

(3) Let T be the closed subscheme defined by the annihilator of G, i.e., Or is
the image of the natural homomorphism Ox — Homo,(G,G). Then, T
also satisfies S;.

Lemma 2.18. Let X be a locally Noetherian scheme and let G be the kernel of a
homomorphism £° — E' of coherent Ox-modules.
(1) Let Z a closed subset of X. If depth, EY > 1, then depth, G > 1. If
depth, £° > 2 and depth, £ > 1, then depth, G > 2.
(2) If E° satisfies Sy, then G satisfies Sy.
(3) Assume that SuppG C Supp EL. If E1 satisfies S1 and E° satisfies Sa, then
G satisfies So.

Proof. Let B be the image of £2 — £!. Then, we have an exact sequence
0= HY(G) = HY(E®) = HY(B) = HL(G) — HL(E)

and an injection H%(B) — H%(EL) of local cohomology sheaves with support in
Z (cf. [I7, Prop. 1.1]). Thus, ) is derived from Property The remaining
assertions () and (3] are consequences of (Il) above and the equivalence: (i) < (i)
in Lemma 2.14] d
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Lemma 2.19. Let P = P} be the n-dimensional projective space over a field k and
let G be a coherent Op-module such that G satisfies S1 and that every irreducible
component of SuppG has positive dimension. Then, H°(P,G(m)) = 0 for any
m < 0, where we write G(m) = G ®o, Op(m).

Proof. We shall prove by contradiction. Assume that H(P,G(—m)) # 0 for in-
finitely many m > 0. There is a member D of |Op(k)| for some k > 0 such
that D N Ass(G) = 0 (cf. Remark [Z7)). Thus, the inclusion Op(—D) C Op in-
duces an injection G(—D) := G ®p, Op(—D) — G. Thus, we have an injection
G(—k) ~ G(—D) — G, and we may assume that H'(P,G(—m)) = H*(P,G) # 0 for
any m > 0 by replacing G with G(—I) for some [ > 0. Let £ be a non-zero element
of HO(P7 G), which corresponds to a non-zero homomorphism Op — G. Let T be
the closed subscheme of P such that Op is the image of Op — G. Then, T is non-
empty and is contained in the affine open subset P\ D, since ¢ € H(P,G(—D)).
Therefore, T is a finite set, and T' C Ass(G). Since G satisfies Sy, every point of T
is an irreducible component of Supp G. This contradicts the assumption. (]

Definition 2.20 (reflexive sheaf). For a scheme X and an Ox-module F, we
write FV for the dual Ox-module Homo, (F,Ox). The double-dual F¥V of F is
defined as (FV)V. The natural composition homomorphism F®FY — Ox defines a
canonical homomorphism cx: F — FVV. Note that crv is always an isomorphism.
If F is a quasi-coherent O x-module of finite type and if ¢ is an isomorphism, then
F is said to be reflexive.

Remark 2.21. Let m: Y — X be a flat morphism of locally Noetherian schemes.
Then, the dual operation ¥ commutes with 7*, i.e., there is a canonical isomorphism

™ Homo, (F,Ox) ~ Homo, (7*F, Oy)

for any coherent Ox-module F. In particular, if F is reflexive, then so is 7*F.
This isomorphism is derived from [I1} O, (6.7.6)], since every coherent Ox-module
has a finite presentation locally on X.

Lemma 2.22. Let X be a locally Noetherian scheme, Z a closed subset, and G a
coherent Ox -module.

(1) For an integer k = 1 or 2, assume that depth, Ox > k and that G is
reflevive. Then, depth, G > k.

(2) For aninteger k =1 or2, assume that X satisfies Sy, and that G is reflexive.
Then, G satisfies Sg.

(3) Assume that depth, Ox > 1 and that G|x\ z is reflexive. If depth, G > 2,
then G is reflexive.

Proof. For the proof of (), by localizing X, we may assume that there is an exact
sequence & — & — GV — 0 for some free Ox-modules & and &; of finite rank.
Taking the dual, we have an exact sequence 0 — G ~ GYV — & — & (cf.
the proof of [19, Proposition 1.1]). The condition: depth, Ox > k implies that
depth, & > k for i = 0, 1. Thus, depth, G > k by Lemma 2I8([)). This proves
(. The assertion (@) is a consequence of (1)) (cf. Definition [Z9]). We shall show (3)).



14 YONGNAM LEE AND NOBORU NAKAYAMA

Let j: X\ Z — X be the open immersion. Then, G ~ j.(Gx\z) by Property 2.6]
since depth, G > 2 by assumption. Hence, we have a splitting of the canonical
homomorphism G — GV into the double-dual by the commutative diagram

g — gV

| |

j*(g|X\Z) é j*(gvle\Z)‘

Hence, we have an injection C < GVV from C := GV /G, where SuppC C Z. The
injection corresponds to a homomorphism C ® G¥Y — Oy, but this is zero, since
depth, Ox > 1. Therefore, C = 0 and G is reflexive. This proves @), and we are
done. O

Corollary 2.23. Let X be a locally Noetherian scheme, Z a closed subset, and
G a coherent Ox-module. Assume that G|x\z is a reflevive Ox\z-module and
codim(Z, X) > 1. Let us consider the following three conditions:

(i) G satisfies So and codim(Z N Supp G, Supp G) > 2;
(ii) depth, G > 2;
(iii) G is reflexive.
Then, [l) = (@) holds true always. If depth, Ox > 1, then (@) = (@) holds, and
if depth, Ox > 2, then () < () holds. If X satisfies Sy and codim(Z, X) > 2,
then these three conditions are equivalent to each other.

Proof. The implication ({l) = (i) is shown in Lemma ZTI5|([2]). The next implication
(@) = (@) in case depth, Ox > 1 follows from Lemma 222/@3]), and the converse
implication (II) = (@) in case depth, Ox > 2 follows from Lemma Z22|(I). Assume
that X satisfies So and codim(Z, X) > 2. Then, depth, Ox > 2 by Lemma 2T5([2]),
and we have ([l) < () in this case. It remains to prove: () = (). Assume that
depth, G > 2. Then, codim(Z N Supp G,SuppG) > 2 by Lemma [ZTHI[). On the
other hand, the reflexive sheaf G|x\ 7 satisfies So by Lemma Z22J[2]), since X \ Z
satisfies So. Thus, G satisfies So by the equivalence () < () of Lemma 214
Thus, we are done. O

Remark. If X is a locally Noetherian scheme satisfying S, then the support of a
reflexive Ox-module is a union of irreducible components of X. In fact, if G is
reflexive, then depth, G > 1 for any closed subset Z with codim(Z, X) > 1, by
Lemma Z22([]), and we have codim(Z N Supp G, SuppG) > 1 by Lemma 2TH(I):
This means that Supp G is a union of irreducible components of X. In particular,
if X is irreducible and satisfies S;, then SuppG = X. However, SuppG # X in
general when X is reducible. For example, let R be a Noetherian ring with two
R-regular elements u and v, and set X := Spec R/uvR and G := (R/uR)™~. Then,
we have an isomorphism Homo, (G, Ox) ~ G by the natural exact sequence

0 — R/uR — R/uvR * R/uvR — R/uR — 0.
Thus, G is a reflexive O x-module, but Supp G # X when u € VuR.
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We have discussed properties S; and S, for general coherent sheaves. Finally in
Section 2T we note the following well-known facts on locally Noetherian schemes
satisfying So.

Fact 2.24. Let X be a locally Noetherian scheme satisfying So.

(1) If X is catenary (cf. Property 23)), then X is locally equi-dimensional (cf.
Definition E2@)) (cf. [II, IV, Cor. (5.1.5), (5.10.9)]).

(2) For any open subset X° with codim(X \ X°, X) > 2 and for any connected
component X, of X, the intersection X, N X° is connected. This is a
consequence of a result of Hartshorne (cf. [II, IV, Th. (5.10.7)], [13} III,
Th. 3.6]).

2.2. Relative S;-conditions. Here, we shall consider the relative Sj-condition
for morphisms of locally Noetherian schemes.

Notation 2.25. Let f: Y — T be a morphism of schemes. For a point ¢ € T, the
fiber f=1(t) of f over t is defined as Y xr Speck(t), and it is denoted by Y;. For an
Oy-module F, the restriction F ®o, Oy, ~ F Qo k(t) to the fiber Y; is denoted
by ‘F(t)

Remark. The restriction F;) is identified with the inverse image pj(F) for the
projection ps: Y; — Y, and Supp F) is identified with Y; NSupp F = p; 1 (Supp F).
If f is the identity morphism Y — Y, then F{, is a sheaf on Speck(y) corresponding
to the vector space F, @ k(y) for y € Y.

Definition 2.26. For a morphism f: Y — T of schemes and for an Oy-module
F, let FI(F/T) be the set of points y € Y such that F, is a flat Op f(,)-module.
If Y = FI(F/T), then F is said to be flat over T, or f-flat. If S is a subset of
F1(F/T), then F is said to be flat over T along S, or f-flat along S.

Fact 2.27. Let f: Y — T be a morphism of locally Noetherian schemes and k a
positive integer. For a coherent Oy-module F and a coherent Op-module G, the
following results are known, where in ([2), [B]), and {@)), we fix an arbitrary point
y €Y, and set t = f(y):

(1) If f is locally of finite type, then FI1(F/T) is open.

(2) If F, is flat over O7; and if (F(y)), is a free Oy, ,-module, then F, is a free
Oy,y-module. In particular, if F is flat over T" and if F{;) is locally free for
any t € T, then F is locally free.

(3) If F, is non-zero and flat over Or,, then the following equalities hold:

(II—].) dlm(f Koy f*g)y = dlm(f(t))y + dim G,
(I1-2) depth(F ®o, f*G), = depth(F), + depth G;.
(4) If F, is non-zero and flat over Op, and if F ®, f*G satisfies Sy, at y, then
G satisfies Sy, at t.
(5) Assume that F is flat over T along the fiber Y; over a point ¢ € f(Supp F).

If F(;) satisfies Sy and if G satisfies Sy at t, then F ®p, [*G also satisfies
S at any point of Y;.
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(6) Assume that f is flat and that every fiber Y; satisfies S. Then, f*§ satisfies
Sk at y if and only if G satisfies Sy, at f(y).

The assertion () is just [II, IV, Th. (11.1.1)]. The assertion (2]) is a consequence of
Proposition [AJ] and Lemma [AJ5] since Oy, , = Oy, /I for the ideal I = mp Oy,
and we have

Tor{"(Fy, Oy, /T) =0 and (Fp)y = Fy/IF,

under the assumption of ([@). Two equalities ([I=1)) and ([[I=2)) in (@) follow from [1T],
IV, Cor. (6.1.2), Prop. (6.3.1)], since

(F ®oy 7G)y = Fy®or, Gt and  (Fp))y = Fy ®or, k(t).

The assertions ) and () are shown in [II, IV, Prop. (6.4.1)] by the equalities
(1) and ([I=2)), and the assertion (@) is a consequence of @) and (&) (cf. [11] IV,
Cor. (6.4.2)]).

Corollary 2.28. Let f: Y — T be a flat morphism of locally Noetherian schemes.
Let W be a closed subset of T contained in f(Y). Then,

codim(f~H(W),Y) = codim(W,T) and depth -1y f*G = depthy, G

for any coherent Op-module G.
Proof. We may assume that G # 0. Then,

codim(f~H(W),Y) = inf{dim Oy, | y € f~ (W)},

depth ;1 (ypy f*G = inf{depth(f*G), |y € 1 (W)},
by Property 2] and Definition Thus, we can prove the assertion by applying
(=) to (F,G) = (Oy,O7) and ([I=2) to (F,G) = (Oy,§G), since
dim Or; = codim(W,T) and dim Oy, , =0
for a certain generic point ¢ of W and a generic point y of Y;, and since
depth G; = depthy, G and  depth((f*G)))y = depth Oy, , =0

for a certain point t € W N Supp G and for a generic point y of Y;. ([l

Definition 2.29. Let f: Y — T be a morphism of locally Noetherian schemes and
F a coherent Oy-module. As a relative version of Definition 2.I3] for a positive
integer k, we define

Sk (F/T) := FI(F/T) N UtET Sk(F)) and
CM(F/T) = FIF/T)n|,_, CM(F)),

and call them the relative Si-locus and the relative Cohen-Macaulay locus of F
over T, respectively. We also write

Sk(Y/T) = Sk(OY/T) and CM(Y/T) = CM(Oy/T),
and call them the relative Si-locus and the relative Cohen—Macaulay locus for f,

respectively. The relative Si-condition and the relative Cohen—Macaulay condition
are defined as follows:
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e For a point y € Y (resp. a subset S C Y), we say that F satisfies relative
Sk over T at y (resp. along S) if y € Sk, (F/T) (resp. S C S (F/T)). We
also say that F is relatively Cohen—Macaulay over T at y (resp. along S)
if y € CM(F/T) (resp. S € CM(F/T)).

o We say that F satisfies relative Sy, over T if Y = Sy (F/T). We also say
that F is relatively Cohen—Macaulay over T if Y = CM(F/T).

Fact 2.30. For f: Y — T and F in Definition 2:29] assume that f is locally of finite
type and F is flat over T'. Then, the following properties are known:
(1) The subset CM(F/T) is open (cf. [I1}, IV, Th. (12.1.1)(vi)]).
(2) If F(y) is locally equi-dimensional (cf. Definition Z2(3)) for any ¢ € T', then
Sk(F/T) is open for any k > 1 (cf. [11], IV, Th. (12.1.1)(iv)]).
(3) If Y — T is flat, then Si(Y/T) is open for any k > 1 (cf. [II, IV,
Th. (12.1.6)(1)]).

Definition 2.31 (Si-morphism and Cohen—-Macaulay morphism). Let f: Y — T
be a morphism of locally Noetherian schemes and k a positive integer. The f is
called an Sy-morphism (resp. a Cohen—Macaulay morphism) if f is a flat morphism
locally of finite type and Y = Sy(Y/T) (resp. Y = CM(Y/T)). For a subset S of
Y, f is called an Sg-morphism (resp. a Cohen—Macaulay morphism) along S if
flv:V — T is so for an open neighborhood V of S (cf. Fact 2Z30(3])).

Remark. The Si-morphisms and the Cohen—Macaulay morphisms defined in [T}
IV, Déf. (6.8.1)] are not necessarily locally of finite type. The definition of Cohen—
Macaulay morphism in [I6, V, Ex. 9.7] coincides with ours. The notion of “CM
map” in [0, p. 7] is the same as that of Cohen—-Macaulay morphism in our sense for
morphisms of locally Noetherian schemes.

Lemma 2.32. Let us given a Cartesian diagram
y, 2y
f /l lf
T 57T
of schemes consisting of locally Noetherian schemes. Let F be a coherent Oy -

module, Z a closed subset of Y, k a positive integer, and let t' € T" and t € T be
points such that t = q(t').

(1) If f is flat, then, for the fibers Y/, = f'=1(¢') and Y, = f~1(t), one has
codim(p~*(Z)NY},,Y)) = codim(ZNY;,Y;), and
depth,,—1(z)ny, Oy, = depthyny, Oy,.
(2) If F is flat over T, then
depthy,-1(z)nyy, (" F) @) = depthzay, Fe.

(3) If F is flat over T, then Si(p*F/T") C p~ Sk (F/T). If f is locally of finite
type in addition, then Si(p*F/T') = p~1Sk(F/T).



18 YONGNAM LEE AND NOBORU NAKAYAMA

(4) If f is locally of finite type and if F satisfies relative Sy, over T, then p*F
does so over T".
(5) If f is an Sg-morphism (resp. Cohen—Macaulay morphism), then so is f’.

Proof. The assertions ([Il) and () follow from Corollary applied to the flat
morphism Y}, = Y; and to G = Oy, or G = F(4). The first half of (@) follows from
Definition and Fact 2.27H) applied to Y}, — ¥} and to (F,G) = (Oyy,, Fz))-
The latter half of (@3] follows from Fact Z27(@), since the fiber p~1(y) over a point
y € Y, is isomorphic to Speck(y) ®x«) k(t') and since k(y) @y k(') is Cohen—
Macaulay (cf. [I1} IV, Lem. (6.7.1.1)]). The assertion () is a consequence of (),
and the assertion (B follows from (@) in the case: F = Oy, by Definition 2311 O

Lemma 2.33. Let Y — T be a morphism of locally Noetherian schemes and let Z
be a closed subset of Y. Let F be a coherent Oy -module and k a positive integer.

(1) If F is flat over T, then
depth, F > inf{depthny, Fy) | t € f(2)}.
(2) If F satisfies relative Sy over T and if
codim(Z N Supp Fy), Supp Fy)) > k

for any t € T, then depth, F > k.
(3) If Y — T is flat and if one of the two conditions below is satisfied, then
depth, Oy > k:
(a) depthy,, Oy, >k for anyt € T;
(b) Y; satisfies So and codim(Y; N Z,Y;) > k for anyt € T.

Proof. For the first assertion (IJ), we may assume that Z N Supp F # (). Then, by
Definition 25 we have the inequality in () from the equality ([I=2]) in Fact Z27([3)
in the case where G = Or, since depth Or; > 0 for any ¢ € T'. The assertion (2]
is a consequence of () and Lemma .T5I@) applied to (Y;, Z NY:, Fyy). The last
assertion ([B)) is derived from () and @) in the case where F = Oy. O

The following result gives some relations between the reflexive modules and the
relative So-condition. Similar results can be found in [20] §3].

Lemma 2.34. Let f: Y — T be a flat morphism of locally Noetherian schemes, F
a coherent Oy -module, and Z a closed subset of Y. Assume that

depth)ftmz OY} Z 1

for any fiber Y; = f=1(t). Then, the following hold for the open immersion j: Y \
Z <Y and for the restriction homomorphism F — j.(F|y\z):
(1) If Fly\z is reflexive and if F =~ j.(Fl|y\z), then F is reflexive.
(2) If F is reflexive and if depthy., Oy, > 2 for any t € T, then F =~
J«(Fly\z)-
(3) If F is flat over T and if depthy,~; Fyy > 2 for any t € T, then F ~
s (Fly\z)-
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(4) If Yy satisfies So and codim(Y; N Z,Y:) > 2 for any t € T, and if F is
reflexive, then F ~ j.(Fly\z)-
(5) If F satisfies relative Sy over T' and if codim(Z N Supp Fy), Supp Fz)) > 2
for any t € T, then F ~ j.(Fly\z)-
6) In the situation of or @), if Fiylv,\z is reflexive, then Fyy is reflexive;
() 1Y\ ()
if Fly\z is reflexive, then F is reflexive.

Proof. Note that F ~ j.(F|y\z) if and only if depth, F > 2 (cf. Property 2.6]).
We have depth, Oy > 1 by Lemma [Z33[B]). Hence, () is a consequence of

Lemma Z22@]). In case (@), we have depth, Oy > 2 by Lemma Z33|[3), and (@)
is a consequence of Lemma Z22)[). The assertion (B]) follows from Lemma Z33|[)
with k& = 2. The assertions @) and (B are special cases of (2) and (), respectively.
The first assertion of (@) follows from Corollary 2231 The second assertion of (@)
is derived from (1)) and (3. O

Remark. The assumption of Lemma 234 holds when Y; satisfies S; and codim(Y; N
Z,Y;) > 1 for any t € T (cf. Lemma 2T5\[2)).

Lemma 2.35. In the situation of Lemma 232, assume that f is flat, F|y\z is
locally free, and

depthytmz O)ft Z 2

for any t € T. Then, F¥V ~ j.(Fly\z) for the open immersion j: Y \ Z <= Y,
and moreover,

(0" F)Y = (" (F)TY.
Moreover, F and p*F are reflexive if F is flat over T and
depthy, 7 Fu) > 2
foranyteT.

Proof. Now, depth, Oy > 2 by Lemma 233B)). Hence, depth, FVV > 2 by
Lemma Z22|[]), and this implies the first isomorphism for FVV. We have

depthyt// Np—1(2) Oyt// Z 2

by Lemma [Z32|[]). Hence, by the previous argument applied to p*F and p*(FVV),
we have isomorphisms

(p*F)V ~ j.(0* Flynp-1(z)) =~ (" (F"V)VY

for the open immersion j': Y’ \ p~}(Z) < Y’. It remains to prove the last as-
sertion. In this case, F is reflexive by () and (@) of Lemma 234 Moreover, by

Lemma 232)@2]), we have
depthYt’,ﬂp*I(Z) (p*]:)(t/) Z 2

for any point ¢’ € T’. Thus, p*F is reflexive by the same argument as above. [
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Lemma 2.36. Let f: Y — T be a morphism of locally Noetherian schemes, and
let Z be a closed subset of Y. Assume that f is quasi-flat (cf. [II, IV, (2.3.3)]),
i.e., there is a coherent Oy -module F such that F is flat over T and Supp F =Y.
Then,

(I1-3) codimy (Z,Y") > codimy (Z N Yy(yy, Yi(y))

for any point y € Z. If codim(Z NY;,Y:) > k for a point t € T and for an integer
k, then there is an open neighborhood V' of Yy in'Y such that codim(ZNV,V) > k.

Proof. For the sheaf F above, we have Supp F;) =Y, forany t € T. If z € ZNY,
then

(11-4) dim F, = dimOy,. and dim(Fy). = dim Oy, .
by Property 2ZI(]), and moreover,
(11-5) dim ]:z = dlm(]:(t))z + dim OTJ, Z dlm(]:(t))z

by ([I1), since F is flat over T. Thus, we have ([IE3)) from ([I4) and ([I=5) by
Property 2I@3). The last assertion follows from ([I=3)) and the lower-semicontinuity

of the function z — codim,(Z,Y") (cf. [II], Ory, Cor. (14.2.6)]). In fact, the set of
points y € Y with codim,(Z,Y") > k is an open subset containing Y;. O

We introduce the following notion (cf. [11l IV, Déf. (17.10.1)] and [6] p. 6]).

Definition 2.37 (pure relative dimension). Let f: Y — T be a morphism locally
of finite type. The relative dimension of f at y is defined as dim, Yy(,), and it
is denoted by dim, f. We say that f has pure relative dimension d if d = dim,, f
for any y € Y. The condition is equivalent to that every non-empty fiber is equi-
dimensional and has dimension equal to d.

Remark 2.38. If a flat morphism f: Y — T is locally of finite type and it has pure
relative dimension, then it is an equi-dimensional morphism in the sense of [I1, TV,
Déf. (13.3.2), (Errry, 35)]. Because, a generic point of Y is mapped a generic point
of T by ([I=1)) applied to F = Oy and G = Op, and the condition a”) of [I1} IV,
Prop. 13.3.1] is satisfied.

Lemma 2.39. Let f: Y — T be a flat morphism locally of finite type between
locally Noetherian schemes. For a pointy € Y and its image t = f(y), assume that
the fiber Y; satisfies Sy at y for some k > 2. Let Y° be an open subset of Y with
y & Y°. Then, there exists an open neighborhood U of y in'Y such that

(1) flu: U —= T is an Sk-morphism having pure relative dimension, and

(2) the inequality

codim(Uyp \ Y°,Uyp) > codim, (Y; \ Y°,Y;)
holds for any t' € f(U), where Uy =U NYy.

Proof. By Fact Z30|B]), replacing Y with an open neighborhood of y, we may
assume that f is an Sp-morphism. For any point ¢y’ € Y and for the fiber Y
over t' = f(y'), the local ring Oy, . is equi-dimensional by Fact Z24|[l), since
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Y;: is catenary satisfying So. Moreover, the local ring has no embedded primes
by the condition S;. Hence, each associated prime p of Oy, , corresponds to a
generic point of an irreducible component T'y, of Y} containing ¢/, and here, dim I,
is independent of the choice of p. Thus, by [I1I IV, Th. (12.1.1)(ii)] (cf. [IIl IV,
Déf. (3.1.1)]), we may assume that f has pure relative dimension, by replacing YV
with an open neighborhood of y. Consequently, ¥ — T is an equi-dimensional
morphism (cf. Remark 2238]). Then, the function

Y > y’ = codimy/ (Yf(y/) \Yo, Yf(y/))

is lower semi-continuous by [IT, TV, Prop. (13.3.7)]. Hence, we can take an open
neighborhood U of y satisfying the inequality in (2). Thus, we are done. O

Corollary 2.40. Let f: Y — T be an Sa-morphism of locally Noetherian schemes.
Assume that every fiber Y; is connected.

(1) If T are connected, then f has pure relative dimension. In particular, [ is
an equi-dimensional morphism.

(2) If f is proper, then the function t — codim(Y; N Z,Y;) is lower semi-
continuous on T for any closed subset Z of Y.

Proof. We may assume that T is connected. We know that every fiber Y; is equi-
dimensional by the proof of Lemma [Z.39] since Y; is connected. Moreover, dim Y; is
independent of the choice of t € T' by Lemma 239(I]), since T is connected. Hence,
f has pure relative dimension, and () has been proved. In the case @), f(Y) =T,
since f(Y") is open and closed. Let us consider the set F}, of points y € Y such that

codimy (Z N Yy, Yiy)) <k

for an integer k. Then, f(F}) is the set of points ¢t € T' with codim(Y; N Z,Y;) < k.
Now, F}, is closed by () and by [II}, IV, Prop. (13.3.7)]. Since f is proper, f(F%)
is closed. This proves (@), and we are done. O

3. FLATNESS CRITERIA

We shall study restriction homomorphisms (cf. Definition [3.2] below) of coherent
sheaf to open subsets by applying the local criterion of flatness (cf. Section [AT]),
and give several criteria for the restriction homomorphism on a fiber to be an
isomorphism. Section Bl contains the key proposition (Proposition B7) and its
related properties. Results in Section [3.1] are original, but seem to be well known
essentially, and these are applied to the study of relative canonical sheaves, etc., in
the latter sections. Some applications of Proposition [3.7] are given in Section
Theorem [3.17 is a criterion for a sheaf to be invertible, which is used in the proof
of Theorem [5.10] below. Theorem on the relative Sp-ification for the double
dual is analogous to the flattening stratification theorem by Mumford in [37, Lect.
8] and to the representability theorem of unramified functors by Murre [39].
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3.1. Restriction homomorphisms. In Section Bl we work under Situation [31]
below unless otherwise stated:

Situation 3.1. We fix a morphism f: Y — T of locally Noetherian schemes, a closed
subset Z of Y, and a coherent Oy-module F. The complement of Z in Y is written
as U, and j: U — Y stands for the open immersion.

Definition 3.2. The restriction morphism of F to U is defined as the canonical
homomorphism

¢ = gu(F): F = ju(Flu).
Similarly, for a point ¢ € T, the restriction homomorphism of F; to U (or to
U NY,;) is defined as the canonical homomorphism

br = ou(Fry): Foy = Jx(Foluny,)-
Here, U NY; is identical to U xy Y;, and j stands also for the open immersion
uny, =Y.
Remark. The homomorphism ¢; is an isomorphism along U NY;. In particular, ¢;

is an isomorphism if t € f(Z).

Remark. By Remark 2.8 we see that ¢ is an injection (resp. isomorphism) along
Y; if and only if
depth 7y > 1 (resp. >2)

for any point y € Z such that Y; N {y} # 0.
We use the following notation only in Section B11

Notation 3.3. For simplicity, we write
.7:* = j*(]:|U) and ]:(t)* = j*(]:(t)|Ur‘wYt)-

When we fix a point ¢ of f(Z), we write A for the local ring O, and m for the
maximal ideal mp;, and for an integer n > 0, we set

A, = A/m" T T, :=SpecA,, Y,:=Y xrT,,
U,=Y,NU, F,:=F®o, Ov,, Fnu:=Jju(Fnlv,)-
In particular, Y; = Yo, F(y) = Fo, F(1)« = Fox, and Yy, is a closed subscheme of Y,

for any m > n. Furthermore, the restriction homomorphisms of 7, and (Fp«) ),
respectively, are written by

¢n: Fn = Fus = ]*(-Fn‘Un) and ©On - (-Fn*)(t) = Fus ®0Yn OYO — Fox-

Remark 3.4. The homomorphism ¢; in Definition equals ¢g, and the diagram
Pn®0y,

Fn Koy OYO (]:n*) oy OYO
:J/ Jf/’n
o
Fo — Fox

is commutative for any n > 0.
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Lemma 3.5. Assume that F|y is flat over T.
(1) For apointy € Z and t = f(y), if ¢¢ is injective at y, then F, is flat over
Ory.
(2) For a pointy € Z and t = f(y), if ¢¢ is an isomorphism at y, then the
restriction homomorphism ¢n: Fn, — Fnx 18 an isomorphism at y for any
n > 0.
(3) If ¢r is an isomorphism for any t € f(Z), then ¢ is also an isomorphism.

Proof. First, we shall prove ([B]) assuming ({l) and (). Since ¢; is an isomorphism
for any t € f(Z), F is flat over T by (), and we have
depthYmZ ‘F(t) Z 2
by @) (cf. Property 26)). Then, depth, F > 2 by Lemma 233|[), and ¢ is an
isomorphism (cf. Property 2.6)).
Next, we shall prove ([{l) and (2]). We may assume that ' = Spec A for a local
Noetherian ring A in which ¢ = f(y) corresponds to the maximal ideal m of A and

that ¥ = Spec Oy, for the given point y (cf. Remark 28]). We write k = A/m =
k(t) and use Notation B3l From the standard exact sequence

0—m"/m"™ - A, - A, 10
of A-modules, by taking tensor products with F over A, we have an exact sequence
(IT1-1) m”/m" T @ Fo 25 Fr = Fuo1 — 0

of Oy-modules. Here, the left homomorphism w,, is injective at y for any n > 0 if
and only if 7, is flat over O, by the local criterion of flatness (cf. Proposition [AJ]).
Now, u,, is injective on the open subset U, since F|y is flat over T, and ug is the
identity morphism. For each n > 0, there is a natural commutative diagram

m”/m" @, Fy ey Fn — Fn-1

id ®¢Ul ¢7LJ/ (bnfll

Jx (unlu,

b uFalv,) —— e Faalo, )

of exact sequences. By assumption, ¢y = ¢; is an injection (resp. isomorphism) at
y in case () (resp. @) (cf. Remark 28). Thus, u, is injective at y for any n by
the diagram. This shows (). In case (@), by induction on n, we see that ¢, is

0 —— m"/m" " @y j.(Folu,)

an isomorphism at y for any n, by the diagram. Thus, (2)) also holds, and we are
done. O

Applying Lemma [35 to F = Oy, we have:

Corollary 3.6. Suppose that U is flat over T. If the restriction homomorphism
$+(Oy): Oy, = 4.(Oy,nvu) is injective for a point t € f(Z), then f is flat along Y.
If $:(Oy) is an isomorphism for any t € f(Z), then Oy ~ j.(Oy).

Proposition 3.7 (key proposition). Suppose that there is an exact sequence
0F =& =& =G—0

of coherent Oy -modules such that
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(i) &° &', and G|y are flat over T, and
ii) the inequalities
(i)

depth -y, S(Ot) >2 and depthy.y, 5(1t) >1

hold for any t € f(Z).
Then, the following hold:

(1) The restriction homomorphism ¢: F — Fi = j.(Flu) is an isomorphism.
(2) For a fized point t € f(Z) and for any integer n > 0, Fnu = j«(Fnlv,) (cf.
Notation B3)) is isomorphic to the kernel F,, of the homomorphism

E=E%®0, Oy, = & =E' @0, Oy,

induced by £° — E'. In particular, F,, is coherent for any n > 0, and
Fye = J=(Fyluny,) is coherent for any t € f(Z).
(3) For any pointy € Y and t = f(y), the following conditions are equivalent
to each other, where we use Notation 3.3 in (&), (E), and (M):
(a) @2 Fy — Feyx is surjective at y;
(b) @ is an isomorphism at y;
c) Gy is flat over Opy;
(@) @n: (Fux)@) — Fox is surjective at y for any n > 0;
(b") n is an isomorphism at y for any n > 0;
(b") pn: Fn — Fns is an isomorphism at y for any n > 0.
Note that if [@) is satisfied, then F is also flat over Or.

Proof. By (i), (@) and by Lemma E33|[), we have depth, £° > 2 and depth, £ >
1. Thus, depth, F > 2 by Lemma T8, this implies () (cf. Property 2.6). For
each n > 0, the exact sequence

0= F, =& =& -G, -0

on Y,, satisfies the conditions ([l) and (i) for the induced morphism Y,, — T;,, where
Gn =G ® Oy,. Thus, by (), the restriction homomorphism

O(F): Fr = (F)s = u(Fplv,)

of F, is an isomorphism. On the other hand, there is a canonical homomorphism
Yn: Fn = F @ Oy, — F,. Note that ¢, is an isomorphism at a point y € ¥; =Y
if G, is flat over Op,. In particular, 1),, is an isomorphism on U,, by the condition
@). Hence, (F))« ~ Fn«, and we have an isomorphism F,, ~ F,. by which ¢, is
isomorphic to v,,. This proves (2]). For the proof of [B]), we may assume that y € Z.
We shall show that there is an exact sequence

(1/)0)11

(II1-2)  Tord (Gy, k) = (Fr))y = Fy ®0y., Oviy ——2 (Fb)y — Tort (G, k) — 0

of Oy,,-modules, where A = Or; and k = k(t): For the image B of £% — &',
we have two short exact sequences 0 — F — % - B - 0and 0 - B — &' —
G — 0 on Y. Then, the kernel of By = B® Oy, — & = &' ® Oy, is isomor-
phic to Tor{7(G,k), and the kernel of Fy — & is isomorphic to TorS" (B,k) ~
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Tor$™ (G, k). Then, we have the exact sequence (ITI=2) by applying the snake lemma
to the commutative diagram

Fo &9 Bo 0
w - |
0 7 £ £t

of exact sequences. Note that ¥y ~ ¢y by the argument above. We shall prove
@) using (I=2). If @) holds, then Tor{ (G,,k) = 0 by ([II=2), and it implies (@)
by the local criterion of flatness (cf. Proposition [Adl), since G, ® Oy, , ~ G, @ k
is flat over k. If (@) holds, then Torf(gy,]k) = 0 for j = 1 and 2, and it implies
(B) by [[I2). Thus, we have shown the equivalence of the three conditions (@),
(B), and (@). By applying the equivalence of three conditions to F/ ~ F,. and
Y,, — T, instead of F and Y — T, we see that (a/) and (IE) are both equivalent
to that (G,), is flat over Or, ; for any n > 0; This is also equivalent to (@) by
the local criterion of flatness (cf. () < () in Proposition [AJ]). If (@) holds, then
Yn: Fp — F) is an isomorphism as we have noted before, and the isomorphism
F! ~ Fp. in @) implies [@”). Conversely, if ([”) holds, then ¢, is isomorphic to
the canonical isomorphism (Fy) ) =~ F) for any n (cf. Remark B.4)), and it implies
[@). Thus, we are done. O

Remark. The exact sequence ([II=2)) is obtained as the “edge sequence” of the
spectral sequence

EDY = TorPT (HU(E®), k(t)) = EPTT = HPTI(E,)
of Oy,-modules (cf. [T}, 111, (6.3.2.2)]) arising from the quasi-isomorphism
g(.t) ~gis £° ®%T k(t),
where £* and £, denote the complexes 0— &%= &= 0land [0 — S(Ot) — S(lt) —
0], respectively.
Remark 3.8. In the situation of Proposition B7|[2), the canonical homomorphism
is an isomorphism, where the projective limit lim is taken in the category of Oy-

n
modules. This is shown as follows. Since F), ~ F,., it is enough to show that the
homomorphism

Yoo (V) i=1im H(V,4h): lim HO(V,F,) — lim H(V,F)
is an isomorphism for any open affine subset V of Y, where we note that the
global section functor H’(V, ) commutes with lim. For R = H°(V,Oy) and R, =
R/m" 1R ~ HY(V, Oy, ), we have two exact sequences
0— H'(V,F) = H(V,£% — H°(V, &),
0— H(V,F)) - H'(V,£°) @r Ry, — H*(V,E") @R R,
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Since the mR-adic completion R= @Rn is flat over R and since &in is left exact,
we have an isomorphism

HO(V,F) ®r R =~ Ker(H(V,£°) @ R — H(V, ") @p R) = lim HO(V, F},).
Then, 1o (V) is an isomorphism, since
lim HO(V,F,) = lim (H'(V,F)®g R,) =~ H(V,F) @r R,

Corollary 3.9. In the situation of Proposition B, assume that f is locally of finite
type. Then, the condition @) of Proposition BXAB) for a point y € Y is equivalent
to:
(d) there is an open neighborhood V' of y in 'Y such that F|y is flat over T,
and ¢ is an isomorphism on V. NY; for any t € f(V).
Furthermore, if F|uny, satisfies Sy for the point t = f(y) and if Fyy is equi-
dimensional and

(I11-3) codim(Z N Yy N Supp F, Yy N Supp F) > 2

for any t' € T, then () is equivalent to:

(e) there is an open neighborhood V' of y in'Y such that F|y satisfies relative
Sy over T, i.e., V =8So(F|v/T).

Proof. For the first assertion, by Proposition B7)@]), it is enough to show (@) = (d)
assuming that f is locally of finite type and y € Z. When (@) holds, G|y is flat over
T for an open neighborhood V of y in Y, by Fact R27([). Thus, F|y is flat over
T by Proposition B.7[), and moreover, by Proposition BZ([3) applied to any point
in V, we see that ¢; is an isomorphism on Y; NV for any ¢ € f(V N Z). Since ¢, is
an isomorphism for any ¢ € f(Z), we have proved: @) = (d).

We shall show (d) < (@) in the situation of the second assertion. In this case, if
¢ is an isomorphism, then F;) satisfies S by Corollary Hence, we have (d)
= (@) by Fact Z330(2). Conversely, if (@) holds with V' =Y, then

depthyt,mz f(t/) Z 2

for any ¢ € f(Z) by Lemma ZI52]), since F(; satisfies Sy and the inequality
(IIT=3) holds. Hence, ¢y is an isomorphism for any ¢’ € f(Z), and (d) holds. Thus,
we are done. O

Corollary 3.10. In the situation of Proposition B, for a pointt € f(Z), assume
that the coherent Oy,-module F1y. = j.«(F)lvinu) satisfies

(I11-4) depthy, 7 Foy. > 3.

Then, the sheaves F and G are flat over T along Y, and the restriction homomor-

phism ¢i: Fey — Fyx 18 an isomorphism.

Proof. By Proposition B[], it is enough to prove that ¢; is an isomorphism. By

([IT=)), we have
le*(]:(t)|UﬂY¢) = le*(]:O|Uo) =0
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(cf. Property 2.6). Hence, the exact sequence ([II-I)) in the proof of Lemma
induces an exact sequence

0 = m"/m" ™ @y 4. (Folve) = Ju(Fulu,) = js(Fa-tlu,_,) — 0.

Since Fpx = j«(Fnlu, ), the homomorphism ¢, is surjective for any n > 0. There-
fore, ¢ is an isomorphism by (b)) = (@) of Proposition BZ®). O

Remark 3.11. Corollary B0l is similar to a special case of [27, Th. 12], where the
sheaf corresponding to F above may not have an exact sequence of Proposition 3.7
However, [27, Th. 12] is not true. Example B.I2 below provides a counterexample.

Ezample 3.12. Let Y be an affine space A$ of dimension 8 over a field k with a
coordinate system (y1,y2,...,ys). Let T' be a 3-dimensional affine space A? and
let f: Y — T be the projection defined by (yi,...,ys) — (y1,¥2,y3). The fiber
Yo = f71(0) over the origin 0 = (0,0,0) of T is of dimension 5. We define closed
subschemes Z and V of Y by

Z:={ys=y5=y6 =0} and
Vi={y1+y2y7r +ysys =ya —y1 =¥5 —y2 =y¢ — y3 = 0}.
Then, we can show the following properties:
(1) VAL and VNYy=VNZ=YyNZ~A%
(2) codim(Z,Y) = codim(Z NYy,Yp) = 3, and codim(Z NV, V) = 2;
(3) V\Yy, — T is a smooth morphism of relative dimension one, but the fiber
VNYyof V— T over 0 is two-dimensional.

Let j: U — Y be the open immersion from the complement U := Y \ Z, and we
set F := Oy @ Oy and Fy := F Qp, Oy,. By () and (@), we have isomorphisms
(I11-5) J«(Flv) = j«Ou @ j.Ovny ~ Oy ® Oy and

(I11-6) J«(Folvny,) = 3xOvny, = Oy,

since UNV NYy =0, depthy Oy > 2, depthy Oy > 2, and depth -y, Oy, > 2.
Thus, we have:

(4) Flv = Oy @ Opynv is flat over T by @));

(5) j4«(F|v) is not flat over T by [B) and ([IL5);

(6) j«(Foluny,) satisfies Sg by ([II=6);
(7)

7) the canonical homomorphism
J+(Flv) ®oy Oy, = ju(Folunyy)

is not an isomorphism by ([II-5) and (III-@).
Thus, f: Y — T, F, and U give a counterexample to [27, Th. 12]: The required
assumptions are satisfied by @), ), and (@), but the conclusion is denied by (&)
and ().
The kernel J of Oy — Oy has also an interesting infinitesimal property. Let
A =K[y1,y2,y3] be the coordinate ring of T, m = (y1,y2,y3) the maximal ideal at
the origin 0 € T', and set

A, =A/m" ™ T, =Spec A, Yo=Y x7 Ty, Vi =V x0Ty, Jn=J @0, Oy,
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for each n > 0 as in Notation 3.3l Then, we can prove:
(III-7) T #£0y, Jluv#20u, J~T=75(Tlv), and Tulvny, = Ovny,

for any n > 0. In fact, the first two of ([II-7) are consequences of that the ideal
sheaf 7|y of VNU is not an invertible Oy-module, and it is derived from codim(V N
U,U) = 4 > 1. The third isomorphism of ([II=7) follows from depth, Oy > 2 and
depth, Oy > 2 (cf. [@)), and the last one from that the kernel of J, — Oy, is
isomorphic to TorSY (Oy, Oy, ), which is supported on VNY, C YV \ U.

Remark 3.13. In the situation of Notation [3.3] not a few people may fail to believe
the following wrong assertion:

(x) If o: F — j«(Flv) is an isomorphism, then the morphism
¢g§oh: rglgcoh fn N ]glzcoh ]* (]*]:n)
induced by ¢p: Fr = Fne = Ju(J*Fn) is also an isomorphism.
Here, l'glqc‘)h stands for the projective limit in the category QCoh(Qy) of quasi-
coherent Oy-modules. We shall show that the ideal sheaf 7 in Example
provides a counterexample of (@), and explain why a usual projective limit argument
does not work for the “proof” of ().

For simplicity, assume that Y is an affine Noetherian scheme Spec R, and set
M = H°(Y, F), which is a finitely generated R-module. We set R, = R/m"*'R
and M, = M ®gr R, for integers n > 0. Then F ~ M~ and F, ~ M. Let
R be the mR-adic completion @n R,, and let 7: Spec]% — Spec R = Y be the
associated morphism of schemes. Then, we have isomorphisms

@:COh Fn~ (M ®p R)™ ~ m, (7" F).

Note that the projective limit lim F, in the category Mod(Qy ) of Oy-modules is
not quasi-coherent in general.

We shall show that the ideal sheaf 7 in Example provides a counterexample
of (@). In this case, the left hand side of $3<°" is isomorphic to 7. (7*7) and the right
hand side is to 7, m*Oy by the last isomorphisms of ([II-7)). Now, 7 is faithfully
flat if we replace Y = A® with Spec Oy for the origin 0 = (0,0,...,0) € Y. Then,
$9<°N is never an isomorphism, since J ¢ Oy. On the other hand, ¢: J — 7.(J|v)
is an isomorphism as the third isomorphism of ([II=7).

We remark here on the commutativity of lim with functors j, and j*. The
direct image functor j.: QCoh(Oy) — QCoh(Oy) is right adjoint to the restriction
functor j*: QCoh(Oy) — QCoh(Oy). Thus, lim commutes with j,, and we have
an isomorphism

a: g (@?Lcohj*./—_-n) E_> l-glzcoh s (]*fn)
On the other hand, j* does not have a left adjoint functor. Because, the left adjoint
functor j: Mod(Opy) — Mod(Oy) of j*: Mod(QOy) — Mod(Oy) does not preserve
quasi-coherent sheaves. Thus, @ does not commute with j* in general, and hence,
the canonical morphism

6: ]* (@:l;()h fn) N I-ancohj*fn
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in QCoh(Oy ) is not necessarily an isomorphism.
It is necessary to check the morphism § to be an isomorphism, for the “proof”
of @) by the projective limit argument. In fact, we can prove:

(xx) When ¢ is an isomorphism, ¢ is an isomorphism if and only if B is so.

This is a point to which many people probably do not pay attention.

Proof of (#H). Now, we have a commutative diagram

qcoh

Tt F = r&n:coh Fo ¢_> LQcohj ]*(-Fn)

dl | e
Gud* (mem* F) ——— j.j (#qwh]—‘) EELICHN s (choh *}-)

in QCoh(Oy ), where c;AS is the restriction homomorphism of m,7*F. Thus, it suffices
to show that if ¢ is an isomorphism, then ¢ is so. Let us consider an isomorphism

v (g  F) iJ*J*(W*W*f)
defined as the composite

( -k . S * ‘*(5”)71 L ek *
mer” (33" (F)) —>7T*J*(7TU( F)) = jumy " (" F) S o mn F

of canonical isomorphisms; Here j is the open immersion 7= *(U) — Specﬁ and
7y is the restriction of m to #~1(U), and the morphisms

8 5. F) = umpy (5*F) and 6" jm (n*F) = wpagt (77 F)

are flat base change isomorphisms (cf. Lemma [A9)). Then, we can write ¢ =
v o (mem*(¢)) for the induced morphism

(D) M F — ™ (JuJ* F),
and this shows that if ¢ is an isomorphism, then 6 is so. Thus, we are done. O

In the rest of Section Bl in Lemmas B.14] and 315 below, we shall give sufficient
conditions for F to admit an exact sequence of Proposition 3.7

Lemma 3.14. Suppose that foj: U — T is flat and
(16})t1133(723 C))Q Ei 2

for any t € f(Z). If F is a reflexive Oy -module and if F|y is locally free, then
there exists an exact sequence 0 — F — £9 — &1 — G — 0 locally on Y which
satisfies the conditions [) and () of Proposition B.1]

Proof. The morphism f is flat by Corollary Since F is coherent, locally on Y,
we have a finite presentation

(’);‘?mg(’)@"%]ﬂao
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of the dual Oy-module 7V = Homoe, (F,Oy). Let K be the kernel of the left
homomorphism h. Then, K|y is locally free, since so is F|y. We have an exact
sequence

0= F o FYY o 020 Iy o
by taking the dual. Let G be the cokernel of hY. Then, G|y is isomorphic to the
locally free sheaf KV|y. Thus, the exact sequence

0= F— 0P 25 08m g0
satisfies the conditions () and (i) of Proposition 3.7l O

Lemma 3.15. Suppose that f: Y — T is a flat morphism and
(III—8) depththZ OYt 2 2
for any t € f(Z). Moreover, suppose that there is a bounded complex
E=[--= & & 5]
of locally free Oy -modules of finite rank satisfying the following four conditions:
(i) HY(E®)|y\z =0 for any i > 0;
(i) F~HOE®);
(iii) ’Hi(é'('t)) =0 foranyi <0 and anyt € T, where E('t) stands for the complex
[ Ely = ES =] i €0 @5, Oy,
(iv) the local cohomology group H; (M?®) at the mazimal ideal my,, for the com-
plex
o <lge
M® = (T_ g(t))y
of Oy, -modules is zero for any i <1 and any y € Z, where t = f(y).

Then, H'(E®) = 0 for any i < 0, and F admits an exact sequence satisfying the
conditions [{l) and [@) of Proposition Bl

Proof. For an integer k, the truncated complex 72%(£°®) is expressed as
[+ —=0—=CF— g 5 ght2

where C* is the cokernel of E¥~1 — £F. First, we shall show that £* >~ 72°(£*)
and C° is flat over T. Note that it implies that H(E®) = 0 for any i < 0. Since £*
is bounded, we have an integer k < 0 such that £* ~¢;s 72F(€*) and C* is flat over
T. Then, by (i), one has

MM (EL)) = Ker(Cly = E471) =0

for any ¢ € T. Hence, C* — £**1 is injective and C*+! ~ £F+1/CF is flat over T by
a version of local criterion of flatness (cf. Corollary [A2). Thus, £® >~ 72FF1(E®),
and we can increase k by one. Therefore, we can take k = 0, and consequently,
E® ~yis 720(E*), and CY is flat over T. We write C := C°. Then,

Ely ais [+ = 0= Ciy > Ely = Efy = -]

for any t € T, since C and £° are all flat over 7.
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Second, we shall prove that
(III—Q) depthytmz C(t) Z 2

for any t € f(Z). We define K; to be the kernel of S(lt) — S(Qt).

depth}/fmz 5(Zt) Z 2 and depthy}mz ICt Z 2

for i =0, 1, and for any ¢ € f(Z), by ([II-8) and by Lemma ZI8(). In particular,
for any y € Z NY;, we have the vanishing

(I11-10) HE(K2),) = 0

Then,

of the local cohomology group at y for any ¢ < 1 (cf. Property 2.6]). By construction,
we have a quasi-isomorphism

T=HEL) s [+ = 0= Cpy = K= 00— -]
In view of the induced exact sequence

s = H (M®) = HL,((Cry)y) — HL((K)y) = -+
of local cohomology groups, we have

Hy, ((Cy)y) =0

for any 7+ < 1 by () and ([II=10). Thus, we have ([II=9)) (cf. Property 2.6]).

Finally, we consider the cokernel G of C — £'. Then, G|y is flat over T by (f).
Therefore, the exact sequence 0 — F — C — &' — G — 0 satisfies the conditions

@) and (@) of Proposition B.1 O

3.2. Applications of the key proposition. The following lemma is a direct
application of Proposition 3.7l

Lemma 3.16. Let f: Y — T be a flat morphism of locally Noetherian schemes
and let Z be a closed subset of Y such that

depthy,~, Oy, > 2

for any fiber Y;. For a morphism q: T' — T from another locally Noetherian
scheme, let f':Y' — T and p: Y' — Y be the induced morphisms for the fiber
product Y =Y xpT'. Let 0 — F — % = &1 — G — 0 be an ezact sequence
of coherent Oy -modules such that Fly, £°, €, and G|y are locally free, where
U=Y\Z. Then, F is a reflexive Oy -module, and

(p*F)"Y = Ker(p*€® — p*€") = jL(p* Flvr)

for the open immersion j': U' = f~1(U) < Y'. Moreover, (p*F)"V satisfies rela-
tive So over T if and only if p*G is flat over T'.

Proof. The exact sequence satisfies the assumptions of Proposition 3.7 for Y — T.
Hence, F ~ j.(F|vu), i-e., depth, F > 2, by Proposition B7([). Moreover, F is
reflexive by Lemma 222|[3]), since we have depth, Oy > 2 by Lemma 2.33IB]). Let
F' be the kernel of p*£° — p*E'. Then, the exact sequence

0= F —p & —pe—=pG—0
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on Y’ satisfies the assumptions of Proposition B.7] for f': Y/ — T”, since

depthY{, Np—1(2) Oyt// = depthymz Oyt >2
for any t/ € T and ¢ = ¢(t'), by Lemma Z32(). Hence, F' ~ j.(F'|y/) by
Proposition BZ[). Since F'|yr ~ p*F|y+, we have F' ~ (p*F)VV by Lemma 235
Furthermore, by Proposition B[], we see that F’ satisfies relative Sy over T if
and only if p*G is flat over T. O

Theorem 3.17. Let f: Y — T be a morphism of locally Noetherian schemes, Z
a closed subset of Y, F a coherent Oy -module, and t a point of f(Z). We set
U=Y\Z, and write j: U <Y for the open immersion. Assume that:
(i) depthy Oy > 1,
(ii) Flu is flat over T, F|y is invertible, depth, F > 2, and
(iii) the direct image sheaf
Fioye = 7+ ((F @0y Ov,)|uny,)
(¢f. Definition B2) is an invertible Oy, -module.
Assume furthermore that one of the conditions @) and (b)) below is satisfied:
(a) depthyny, Oy, > 3;
(b) the double-dual FUrl of FO is invertible along Y; for a positive integer
coprime to the characteristic of the residue field k(t).

Then, f is flat along Yy, and F is invertible along Y;.

Proof. We may replace Y with its open subset, since the assertions are local on Y.
By (), U is flat over T'. Moreover,

(ITI-11) depthyny, Oy, > 2

by (), since the isomorphism F;). =~ j.(F(;)«) implies that depth(F(;.), =
depth Oy, , > 2 for any y € ZNY;. Hence, f: Y — T is flat along Y; by Corol-
lary (cf. Property Z6). Then, F is a reflexive Oy-module by Lemma 222][3)),
since we have assumed depth, Oy > 1 and depth, F > 2 in () and (). Therefore,
by ([II=I1)) and Lemma 3.4, we may assume that F admits an exact sequence of
Proposition 3.7
By Fact Z27[), we see that F is invertible along Y; if the two conditions below

are both satisfied:

(1) F is flat over T along Yy;

(2) é¢: Fpy — Ft)« is an isomorphism.
Here, () is a consequence of () by Proposition B@). When (@) holds, we have

depththZ ]:(t)* >3

by (i), and hence, the condition (2)) is satisfied by Corollary BI0} Thus, it remains
to prove (2) assuming the condition (B).

We use Notation for t. By replacing Y with its open subset, we may assume
that Y is affine, and there exist isomorphisms

OYt = OYO = f(t)* = Fos and ]:[T] ~ Oy
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in () and in (D)), respectively. Note that we have
depthYan OYn Z 2

for any n > 0: This follows from ([II-1I) by Lemma 233|@3) applied to the flat
morphism Y,, — T,,. As a consequence,

HO(Y,,,Oy,) ~ H° (U, Oy,,)
and for any n, and the restriction homomorphism
(I11-12) H(U,,Ov,) — H°(Uy-1,0p, ,)

is surjective for any n > 0, since we have assumed that Y is affine.
We set N, := Fp|u, . It is enough to show that A, ~ Oy, for all n. In fact, if
this is true, then we have an isomorphism

Frx :]*(Nn) 2j*(OUn) = Oan

and, as a consequence, the restriction homomorphism ¢, : (]-'n*)(t) — Fo« IS an
isomorphism for any n > 0. Hence, in this case, ¢;: F(;) — F(4)x is an isomorphism
by (b)) = (@) of Proposition BZ7([3).

We shall prove N,, ~ Oy, by induction on n. When n = 0, we have the
isomorphism from the isomorphism Fo, =~ Oy, above. Assume that V,,_1 ~ Oy, _,
for an integer n > 0. Let J be the kernel of Oy, — Oy, _,. Then, J? = 0 as an
ideal of Oy, , and

J ~ m"/m"“ Rk OYO-
We have an exact sequence
0=-J =05 =0y  —1

of sheaves on |Y;,| = |Yp| with respect to the Zariski topology, where * stands for the
subsheaf of invertible sections of a sheaf of rings, and where a local section ¢ of J
is mapped to the invertible section 1 4 ¢ of Oy, . It induces a long exact sequence:

HO(U,, O ) 25 HO(Up_y, OF. ) = H(Up, J) = Pic(Uy,) =5 Pic(Up_1),

where res and res! are restriction homomorphisms to U,_;. Note that res® is sur-
jective, since so is ([II=12). Hence, the kernel of res! is a k-vector space isomorphic
to H' (Up, J). Now, the isomorphism class of A, in Pic(U,,) belongs to the kernel
by M,—1 =~ Oyp,_,, and its multiple by 7 is zero by (b)), where r is coprime to
char(k). Thus, NV,, ~ Oy, , and we are done. O

The following is analogous to the flattening stratification theorem by Mumford
in [37, Lect. 8]: A similar result in the case (i) is stated by Kolldr in [28, Th. 2]
without assuming the So-condition for f, etc.

Theorem 3.18. Let f: Y — T be an Sao-morphism of locally Noetherian schemes.
Let F be a reflexive Oy -module such that F|y is locally free for an open subset
U C Y such that codim(Y; \ U,Y;) > 2 for any fiber Y; = f~1(t). Assume either
that

(i) f is a projective morphism locally over T, or
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(ii) Fly\x satisfies relative Sy over T for a closed subset ¥ C Y such that
> — T is proper.

Then, there is a separated surjective morphism S — T locally of finite type satisfying
the following conditions:

(1) S — T is a monomorphism in the category of schemes (cf. Fact BI9 below);

(2) S — T is a local immersion of finite type (cf. Remark below) in the
case ([);

(3) for a morphism T' — T from a locally Noetherian scheme T’ and for the
pullback F' = F x7 T of F to the fiber product Y x7 T', the double dual
(FVV satisfies relative So over T' if and only if T' — T factors through
S—T.

Definition. A morphism S — T satisfying the condition (B]) above is unique up
to isomorphism, and it is called the relative So-ification for the double dual for F
with respect to Y — T.

Proof of Theorem [BI8. For any locally Noetherian T-scheme T”, we set

F(T'/T) = {*, if (F x¢ T")VV satisfies relative So over 17,

(), otherwise,

where x denotes a one-point set. Then, F' gives rise to a functor (LNSch/T")°P — Set
for the category LNSch/T of locally Noetherian T-schemes. In fact, if F(T"/T) = *,
then F(T”/T) = x for any morphism T” — T of T-schemes, since we have an
isomorphism

(‘F X TII)VV ~ (]_- X TI)VV X T//

by Lemma [2.35] and it satisfies relative So over 7" by Lemma [232[3]). The functor
F is represented by a locally Noetherian T-scheme S if and only if the morphism
S — T satisfies the conditions () and (@) above. Since (@) is a local condition
for S and since S — T is determined uniquely up to isomorphism over T, we can
localize Y freely. Thus, we assume that 7" is an affine Noetherian scheme and that,
in the case (@), Y is a closed subscheme of PV x T for some N > 0.

We first consider the case ({l): Let A be the f-ample invertible Oy -module defined
as the inverse image of O(1) on PY¥. Then, we can construct an exact sequence

(A®fl’)éBm’ - (A®—l)@m S FY

on Y for positive some integers m, m’, [, and I’, where the kernel of the left homo-
morphism is locally free on U, since F" is so. Taking the dual, we have an exact
sequence 0 = F — €9 — &1 — G — 0 of coherent Oy-modules such that £°, £,
and G|y are locally free (cf. the proof of Lemma[B.I4)). Let 7" — T be an arbitrary
morphism from another locally Noetherian scheme. Then, F(T"/T) = x if and only
if G xp T" is flat over T”, by Lemma [B.16l Hence, the functor F' is nothing but the
“universal flattening functor” G: (Sch/T)°P — Set for G (cf. Remark B221] below)
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restricted to the category LNSch/T'. Here,

, if G xp T is flat over T",

(), otherwise,

*

G(T'/T) = {

for any T-scheme 7. By the Theorem of [37, Lect. 8], it is represented by a
separated morphism S — T of finite type which is a local immersion. Thus, we
have proved the assertion in the case (1.

Next, we consider the case ([l): We cover the closed subset ¥ by a finite number
of affine open subsets Yy of Y. By Lemma [3.14] we may assume that, for each A,
there exists an exact sequence

0= Fly, 2 &Y =& =Gy —0

on Y, such that Eg and c‘,’)l\ are free Oy,-modules of finite rank, and that G, is
locally free on Uy = U NY,. Let T" — T be an arbitrary morphism from a locally
Noetherian scheme T”. By Lemmas 232/, 235 and BI6], we see that F(T7/T) =
if and only if G\ x T is flat over T” for any \. Let G : (Sch/T)°P — Set be the
universal flattening functor for Gy, which is defined by

, if G\ x7 T" is flat over T";

0, otherwise.

*

GA\(T'/T) = {

Let G: (Sch/T)°? — Set be the “intersection” functor of all Gy, i.e., G(T"/T) =
N GA(T'/T) for any T/'T. By the argument above, F is the restriction of G to
LNSch/T. The functors Gy satisfy the conditions (Fy)—(Fg) of [39] except (F3)
by the proof of [39, Th. 2]. Hence, the intersection functor G satisfies the same
conditions except possibly (F3) and (Fg). By [39, Th. 1], we are reduced to check
these two conditions for G. Since the two conditions concern only Noetherian
schemes, we may take F' = G.

We shall show that F satisfies (F3) (cf. [39] (F3), p. 244]). Let A be a Noetherian
complete local ring with maximal ideal m4 and let Spec A — T be a morphism.
What we have to prove is the bijectivity of the canonical map

F(Spec A) — lim F(Spec A/m%),

or equivalently that F(Spec A) = * if F'(Spec A/m") = x for all n > 0. Assume the
latter condition. By Corollary applied to Y\ X7 Spec A — Spec A for each A, we
have an open neighborhood W), of the closed fiber Yy x7Spec A/m 4 in Yy X1 Spec A
such that (F x7 Spec A)VY |y, satisfies relative Sy over Spec A. On the other hand,
the restriction of (F x1 Spec A)VY to (Y \ ) x7 Spec A also satisfies relative S,
over Spec A. Then, the union [JW, U ((Y \ ) X7 Spec A) equals Spec A, since
its complement is proper over Spec A but does not contain the closed point m4.
Therefore, F'(Spec A) = *.

Next, we shall show that F satisfies (Fg) (cf. [39, (Fs), p. 246]). Let A be a
Noetherian ring containing a unique minimal prime ideal p and let I be a nilpotent
ideal of A such that Ip = 0. Note that p = /0. Let Spec A — T be a morphism
and assume that F(Spec A/I) = x but F(Spec A,/I') = () for any ideal I’ of A,
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such that I’ C I,. What we have to prove is the existence of an element a € A\ p
having the following property:

(0) For any element b € A\p and for any ideal J of A, = A[(ab) 7], if J C T Ay
and if F(Spec Agp/J) = *, then J = T Ay

For each A, we set B) to be an A-algebra such that Spec By ~ Y, X7 Spec A over
Spec A and let M) be a finitely generated By-module such that the quasi-coherent
sheaf M3’ on Spec B, is isomorphic to the pullback Gy X7 Spec A of G5. Note that

My ®, AP/IAP

is a free A,/IA,-module, since it is is flat over A, /I A, by Gx(Spec A,/TA,) =
and since A, is an Artinian local ring. Hence,

(M)\ XA A/I) ®A Aa - M)\ XA Aa/IAa

is a free A,/IA,-module for an element a € A\ p. For each A, let Sy be the set
of ideals J of A, such that G (Spec A,/J) = *, or equivalently, that My ®4 A,/J
is a flat A,/J-module. By [II, IV, Cor. (11.4.4)], there exists a unique minimal
element Iy = I (,) in Sy, and

(1) for any A,-algebra A’, if M) ®4 A’ is a flat A’-module, then A’ is an
A/ Ix-algebra.
Note that I is nilpotent, since the nilpotent ideal I A, belongs to S). We define
I(q) := > I, (q) as an ideal of A,. Then, it has the following property:
(f) For any A,-algebra A’, it is an A,/I(4-algebra if and only if My @4 A’ is
flat over A’ for any A, i.e., F(Spec A’) = *.
By the assumption of I,, we have (I(4))p = I(q)Ap = I A,. Thus, there is an element
a’ € A\ p such that I(q)Aser = [Agar. Here, Iy (qary = Ix (a)Aaar for any A by the
property (]ﬂ) of In. Thus, I(4q) = I(q)Aaar = [Aaar- Therefore, aa’ satisfies the
condition (@) by the property (f). Thus, we have checked the conditions (F3) and
(Fg), and we are done. O

Fact 3.19. Let h: S — T be a morphism locally of finite type between locally
Noetherian schemes. Then, h is a morphism locally of finite presentation (cf. [I1],
IV, §1.4]), and we have the following properties:

(1) The morphism h is a monomorphism in the category of schemes if and only
if h is radicial and unramified, by [IT], IV, Prop. (17.2.6)].

(2) If h is an unramified morphism, then it is étale locally a closed immersion,
i.e., for any point s € S, there exists an open neighborhood V' of s such
that the induced morphism V' — T is written as the composite of a closed
immersion V. — W and an étale morphism W — T (cf. [II, IV, Cor.
(18.4.7)], [12, 1, Cor. 7.8]).

Remark 3.20. A morphism S — T of schemes is called a local immersion if, for any
point s € S, there is an open neighborhood V' of s such that the induced morphism
V — T is a closed immersion into an open subset of T' (cf. [II], I, Déf. (4.5.1)]).
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Remark 3.21. The (universal) flattening functor is introduced by Murre in [39], but
its origin seems to go back to Grothendieck as the subtitle says. Murre gives a cri-
terion of the representability of the functor in [39, §3, (A)], whose prototype seems
to be [IIl IV, Prop. (11.4.5)]. Mumford considers the case of projective morphism
in [37, Lect. 8], and proves the representability by using Hilbert polynomials, where
the representing scheme is called the “flattening stratification.” He also mentioned
that Grothendieck has proved a weaker result by much deeper method. Raynaud
[45, Ch. 3] and Raynaud—Gruson [46], Part 1, §4] give further criteria of the repre-
sentability of the universal flattening functor by another method.

4. GROTHENDIECK DUALITY

We shall explain the theory of Grothendieck duality with some base change
theorems referring to [16], [6], [33], etc. We do not prove the main part of the
duality theory but show several consequences. Some of them are useful for studying
Q-Gorenstein schemes and Q-Gorenstein morphisms in Sections [6] and [71

Some well-known properties on the dualizing complex are mentioned in Sec-
tions E] and based on arguments in [16] and [6]. Section Bl explains some
basic properties and results on a locally Noetherian scheme admitting a dualizing
complex, mainly on the codimension function associated with the dualizing com-
plex and on interpretation of Si-conditions for a coherent sheaf via the dualizing
complex. In Section 2] we introduce a useful notion “ordinary dualizing complex”
for a class of locally Noetherian schemes whose local rings are all equi-dimensional,
and study cohomology sheaves of ordinary dualizing complexes. Section ex-
plains the notion of twisted inverse image and the relative duality theory referring
mainly to [16], [6], [33]. Additionally, a base change result for the relative dualizing
complex to the fiber is proved in Corollary In Section 4] we explain the
relative dualizing sheaf for a Cohen—Macaulay morphism (cf. Definition 23T]) and
its base change property referring to [6], [49], etc.

4.1. Dualizing complex. We shall begin with recalling the notion of dualizing
complex, which is introduced in [I6] V].

Definition 4.1. A dualizing complex R® of a locally Noetherian scheme X is
defined to be a complex of Ox-modules bounded below such that

e it has coherent cohomology and has finite injective dimension, i.e., R® €
D}, (X)ga in the sense of [16], and
e the natural morphism

Ox - RHomo, (R*,R®)
is a quasi-isomorphism (cf. [16] V, Prop. 2.1]).

+

Remark. Every complex in D7 | (X)gq is quasi-isomorphic to a bounded complex

of quasi-coherent injective O x-modules when X is quasi-compact (cf. [16] II, Prop.
7.20]). The derived functor RHome, of the bi-functor Home, is considered as a
functor

D(X)® x D(X) 3 (F*,G°*) — RHomo, (F*,G*) € D(X)
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(ct. [16, 1, §6], [52, Th. A(ii)]).

Ezxample. A Noetherian local ring A is said to be Gorenstein if there is a finite
injective resolution of A. In particular, Ox is a dualizing complex for X = Spec A.
There are known several conditions for a local ring A to be Gorenstein (e.g. [16] V,
Th. 9.1], [B5, Th. 18.1]): For example, A is Gorenstein if and only if A is Cohen—
Macaulay and Ext"(A/ma, A) ~ A/m4 for the maximal ideal m4 and n = dim A.
A locally Noetherian scheme Y is said to be Gorenstein if every local ring Oy,
is Gorenstein. For a locally Noetherian scheme Y, it is Gorenstein of finite Krull
dimension if and only if Oy is a dualizing complex (cf. [16] IT, Prop. 7.20]).

Ezample (cf. [16, V, Prop. 3.4], [35, Th. 18.6]). For an Artinian local ring A, let I
be an injective hull of the residue field A/m 4. Then, the associated quasi-coherent
sheaf I™ on Spec A is a dualizing complex.

Remark 4.2 ([16, V, §10]). Let X be a locally Noetherian scheme. If there is
a morphism X — Y of finite type to a locally Noetherian scheme Y admitting a
dualizing complex in which the dimensions of fibers are bounded, then X also admits
a dualizing complex [16, VI, Cor. 3.5]. In particular, any scheme of finite type over a
Noetherian Gorenstein scheme of finite Krull dimension admits a dualizing complex.
When X is connected, the dualizing complex is unique up to quasi-isomorphism,
shift, and up to tensor product with invertible sheaves (cf. [16, V, Th. 3.1], [6,
(3.1.30)]).

Fact. For a Noetherian ring A, the affine scheme Spec A admits a dualizing complex
if and only if there is a surjection B — A from a Gorenstein ring B of finite Krull
dimension. This is conjectured by Sharp [51, Conj. (4.4)] and has been proved by
Kawasaki [24], Cor. 1.4].

We shall explain the notion of codimension function.

Definition 4.3 (cf. [16, V, p. 283]). Let X be a scheme such that every local ring
Ox , has finite Krull dimension. A function d: X — Z is called a codimension
function if

d(x) = d(y) + codim({z}, {y})
for any points = and y such that = € {y}.

Remark. Let X be a scheme whose local rings Ox , all have finite Krull dimension.
If X admits a codimension function, then X is catenary (cf. Property [Z3]). In fact,

codim({z}, {z}) = codim({z}, {y}) + codim({y}, {=})
holds for any z, y, z € X satisfying =z € @ and y € @ Moreover, if the
codimension function is bounded, then X has finite Krull dimension.

Lemma 4.4. Let X be a scheme such that every local ring Ox , has finite Krull
dimension, and let d: X — 7Z be a codimension function. Then,

d(y) —dim Ox, > d(z) — dim Ox

holds for any points x, y € X withx € @ Moreover, the following three conditions
are equivalent to each other:
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(i) the equality
d(y) —dimOx,, =d(z) —dim Ox ,

holds for any points x, y € X with x € @;
(ii) the function X 3 x — d(z) —dim Ox , € Z is locally constant;
(iil) X s locally equi-dimensional (cf. Definition 223])).

Proof. The first inequality is derived from the well-known inequality
dim Oy, > dim Oy, + codim({z}, {y})

(cf. Property ZII[), [1I, Oryv, Prop. (14.2.2)]). To show the equivalence of three
conditions (I) (), we may assume that X is connected. Let S be the set of generic
points of irreducible components of X and, for a point x € X, let S(x) be the
subset consisting of y € S with = € {37} Note that Ox , is equi-dimensional if and
only if

(IV-1) codim({z}, {y}) = codim({z}, X)

for any y € S(x). In fact, a point y € S(z) corresponds to a minimal prime ideal p
of Ox , via the natural morphism Spec Ox , — X, and ([V=I)) is written as

dim OX,x/p = dim OX,a:

(cf. Property 2II[)). The implication (@) = (i) is trivial, and ({) = (@) is shown
by the equality dim Ox, = codim({z}, {y}) for any y € S(z), which holds by
@). It suffices to prove: () = (@). In the situation of (@), by (IV-1l), we have
d(z) — dimOx , = d(y) = d(y) — dim Ox, for any « € X and y € S(z). This
implies that z + d(z) — dim Oy, is a constant function with value d(y) on {y}
for any y € S, and d(y) = d(y’) for any points y, v/ € S with {y} N {y'} # 0.
Consequently, z — d(z) — dim Ox , is constant on X, since X is connected. Thus,
we are done. d

The importance of the codimension function comes from the following:

Fact 4.5. Let X be a locally Noetherian scheme with a dualizing complex R°.
Then, we can define a function d: X — Z by

0, for i # d(x);

Exto,  (k(z),R3) = H'(RHomo, , (k(z), R3)) = {]k(x) for i = d(z)

where k(z) denotes the residue field at = and R? denotes the stalk at x (cf. [16], V,
Prop. 3.4]). The function d is a bounded codimension function (cf. [I6, V, Cor. 7.2]),
and we call d the codimension function associated with R*®. In particular, X is
catenary and has finite Krull dimension.

The following result and Lemma 8 below are useful for checking Sg-conditions
for coherent sheaves.
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Proposition 4.6. Let X be a locally Noetherian scheme admitting a dualizing
complex R® with codimension function d: X — Z. Let F be a coherent Ox-module.
For an integer j, we set

GV = Eat), (F,R*) :=H (RHomo, (F,R")).
Then, GY) is a coherent Ox -module and

ga@ ~ Extéx,w(fw,R;)

for the stalk ggﬁj) = (GY)), at any point x € X. Moreover, the following hold for a
point x € X:

(1) If j —d(z) < —dim F,, or j —d(z) > 0, then g =o.

(2) For an integer k, depth F,, > k if and only if ¥ =0 for any j > d(x)—k.

(3) For an integer k, F satisfies Sy at x if and only if g@(ﬂ) = 0 for any point

y € X with x € {y} and for any j > d(y) — inf{k, dim Fy }.
(4) Fy is a Cohen-Macaulay Ox z-module if and only if Qf(xj) = 0 for any
j # d(z) — dim F,.

(5) If x € Supp F, then GY) £ 0 for i = d(z) — dim F.
Proof. The first assertion is derived from: R® € DI | (X)gq. The assertions () and
@) are essentially proved in [I6, V]; (@) is shown in the proof of [16, V, Prop. 3.4],
and (Z) follows from the local duality theorem [I6, V, Cor. 6.3]. The assertion (3]
follows from (2)) and Definition The assertion (@) is a consequence of (IJ) and
@), since F, is Cohen—Macaulay if and only if depth 7, = dim F, unless F, = 0.
The assertion (B) is shown as follows. For the given point z € Supp F, we can find
a point y € Supp F such that {y} is an irreducible component of Supp F containing
z and dim F, = codim({z}, {y}). Then, d(z) — dim F, = d(y). If G"“) = 0, then
gg(jd(y)) = 0, since = € {y}. But, in this case, Q?Sj) = 0 for any j € Z by (), i.e.,
RHomo (F,R*)y ~qis 0. This is a contradiction, since F, # 0 and

F ~gis RHomo, (RHomo (F,R*),R*)
by [16, V, Prop. 2.1]. Therefore, gt # 0 for i = d(z) — dim F, = d(y). O
Corollary 4.7. Let X be a locally Noetherian scheme admitting a dualizing complex
R® and let F be a coherent Ox-module.
(1) Assume that Supp F is connected. Then, F is a Cohen—Macaulay Ox -
module if and only if
RHomo, (F,R*) ~qis G[—¢]

for a coherent Ox-module G and a constant ¢ € Z. In this case, G is also
a Cohen—Macaulay O x-module and Supp G = Supp F.

(2) Assume that X is connected. Then, X is Cohen—-Macaulay if and only if
R® ~gs L]—c] for a coherent Ox-module L and a constant ¢ € Z. In this
case, L is also a Cohen—Macaulay Ox-module and Supp L = X.



GROTHENDIECK DUALITY AND Q-GORENSTEIN MORPHISMS 41

(3) Assume that F be a Cohen—-Macaulay Ox-module and let S be a closed
subscheme of X such that S = Supp F as a set. Then, S is locally equi-
dimensional.

Proof. Tt suffices to prove () and (l), since ([2]) is a special case of (Il). Let d: X — Z
be the codimension function associated with R®. First, we shall prove the “if” part
of (). The quasi-isomorphism in (I) implies that G) := Eaxt, (F,R*) = 0 for
any j # cand G ~ G(9). Then, F is Cohen-Macaulay and ¢ = d(x) —dim F,, for any
xz € X by @) and (@) of Proposition Second, we shall prove the remaining part
of (@) and (@B)). For the proof of [B]), we may also assume that Supp F is connected.
Suppose that F is Cohen-Macaulay. Then, d(z) — dim F, = d(y) — dim F,, holds
for any points =, y € S with = € {y} by @) and (@) of Proposition B8, where
we use the property that gg(gj) = 0 implies géj) = 0. As a consequence, ¢ :=
d(z) — dim F, is constant on S = Supp F. We have dim F, = dim Og, for any
x € S by Property 2II[I). Thus, S is locally equi-dimensional by Lemma [£4] and
this proves [@). Furthermore, RHomeo, (F,R*) =~ G[—¢] for the cohomology sheaf
G = G©). We have also
F ~RHomo, (G[—c],R*®)

by [16, V, Prop. 2.1]. Thus, SuppG = Supp F, and G is also a Cohen—-Macaulay
Ox-module by the “if” part of ([Il). Thus, we are done. O

Lemma 4.8. Let X, R*, F, and G\Y) be as in Proposition BBl Then, GY) =0
except for finitely many j. For a positive integer k, the following hold:

(1) F satisfies S at a point x € Supp F if and only if
codim, (Supp G N Supp GV, Supp F) > k +i — j

for any i > j.
(2) F satisfies Sk if and only if

codim(Supp G N SuppGY), Supp F)>k+i—j
for any i > j.

Proof. The first assertion follows from Proposition LG, since d: X — Z is
bounded and dim X < co by Fact For integers ¢, j with ¢ > j, we set

Z®3) .= Supp ¢ N Supp GV

Note that codim(Z(), Supp F) = +oc if Z(»7)) = (. The assertion () is derived
from (2] applied to the coherent sheaf (F,)~ on Spec Ox , associated with F, (cf.
Remark 2T0]), since

codim, (Z®) | Supp F) = codim(Supp GV N Supp G4, Supp F,.)

(cf. Property 2TI[3)). Hence, it is enough to prove (2)). Assume first that F satisfies
Si. For integers i > j with Z(%3) #£ (), we can find a generic point z of Z(7) such
that

codim(Z%) | Supp F) = codim({z}, Supp F) = dim F,.
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If dim F, < k, then i = j = d(z) — dim F,, by () and (B8] of Proposition This
is a contradiction, since 4 > j. Thus, dim F, > k, and

d(z) —dimF, <j<i<d(z)—k

also by () and (@) of Proposition Hence, i — j < dimF, — k, and this is
equivalent to the inequality in (2I).

Conversely, assume that the inequality in () holds for any ¢ > j. For a point
x € Supp F, we set ¢(x) := d(z) — dim F,. By (@) and (@) of Proposition .Gl we
know that z € Supp G(°(*)) and = ¢ Supp G for any i < c(z). If g = 0 for some
i # c(x), then i > ¢(x) and

dim F, > codim(Z@¢@) Supp F) > k +i — ¢(x) = k + i — d(x) + dim F,.

Hence, ¢ < d(z) — k and dim F,, > k. Thus, F satisfies S, by Proposition ELGI[3]).
Therefore, (@) has been proved, and we are done. ([l

Corollary 4.9. Let X, R*, F, and GY) be as in Proposition EB. Let k be a
positive integer.

(1) Assume that Supp F is connected and equi-dimensional. Then, there is a
positive integer ¢ such that ¢ = d(x) — dim F,, for any © € X. For the
integer ¢, one has Supp G\ = Supp F. Moreover, F satisfies Sy, if and
only if

codim(Supp G, SuppF)>k+j—c

for any j > c.

(2) Assume that Supp F is connected, equi-dimensional, and equi-codimen-
sional (¢f. [IIl Opy, Déf. (14.2.1)]). Furthermore, assume that Supp F is
Noetherian. Let ¢ be the integer in ([{). Then, F satisfies Sk if and only if

dim SuppGY) < dimSupp F +¢—j — k

for any j > c.

(3) Assume that F, # 0 and F, is equi-dimensional (cf. Definition 22]). Then,
F satisfies Sy at x if and only if dimgg(cj) < d(x)—j—k for any j #
d(xz) — dim F,.

Proof. ([): For a closed subscheme S with S = Supp F, we have the integer ¢ such

that ¢ = d(z) —dim Og , = d(x) —dim F,, for any x € Supp F by Lemma[Z£4] Then,

Supp G(¢) = Supp F by Proposition EB[E). Assume that F satisfies S. Then,
codim(Supp GY), Supp F) = codim(Supp GY N SuppG?, Supp F)y>k+j—c

for any j > ¢ by Lemma L8 Conversely, assume that the inequality in () holds

for any j > c. If gg(f) # 0 for some j > ¢, then

dim F, > codim(Suppg(j),Supp]—') >k+j—c=k+j—d(z)+dimF,

as in the proof of Lemma EL§2]). Hence, gy # 0 implies that dim F, > k and
j < d(z) — k. This means that F satisfies Sy by Proposition FLGIB]).
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@): This is a consequence of ([{]). For, dim Supp F < dim X < oo by Fact
and dim Z + codim(Z, Supp F) = dim Supp F for any closed subset Z of Supp F by
[11, OIV7 Cor. (1435)]

@): We can apply () to the coherent sheaf F,  on Spec Ox , associated with

x

Fy (cf. Remark 210). Hence, F satisfies Sy, at z if and only if

codim, (Supp G, Supp F) > k + j — ¢(x)
for any j > ¢(x), where ¢(x) := d(z) — dim F,. Here,

codim,, (Supp G, Supp F) = codim({z}, Supp F) — codim({z}, Supp )
= dim F, — dim G,
since Supp F, is equi-dimensional and catenary (cf. Property ZII[)). Therefore,
the S; condition at x is equivalent to that
dimGY) < c(x) —k —j+dimF, = d(z) —k — j

for any j > c¢(z) = d(z) — dim F,,. Thus, we have () by Proposition [LO|[)), and we
are done. 0

Definition 4.10 (Gor(X)). The Gorenstein locus Gor(X) of a locally Noetherian
scheme X is defined to be the set of points z € X such that Ox , is Gorenstein.

Note that X is Gorenstein if and only if X = Gor(X). The following is a general-
ization of [I1, IV, Prop. (6.11.2)(ii)] (cf. [50, Prop. (3.2)] for Gor(X)).

Proposition 4.11. Let X be a locally Noetherian scheme admitting a dualizing
complez locally on X and let F be a coherent Ox-module. Then, Si(F) for all
k> 1 and CM(F) are open subsets of X. In particular, CM(X) is open. Moreover,
Gor(X) is also open.

Proof. Localizing X, we may assume that X is an affine Noetherian scheme with
a dualizing complex R°®. The openness of Gor(X) follows from that of CM(X). In
fact, if X is Cohen-Macaulay, then we may assume that R® ~s £ for a coherent
Ox-module £ by Corollary [£7[2]), and Gor(X) is the maximal open subset on which
L is invertible. The openness of CM(F) is derived from Corollary EL7|I). This
follows also from the openness of Sy (F) for all &k > 1. In fact, CM(F) = S (F) for
k> 0, since dim F < dim X < oo (cf. Fact and Remark Z.T2)). The openness
of Si(F) is derived from Lemma ([, since z — codim,(Z,Supp F) is lower
semi-continuous for any closed subset Z C Supp F (cf. Property 2.II[3])). O

Remark. In the situation of Proposition 11l all Sy (F) are open if and only if the
map
Supp F 3 x — codepth F, := dim F,, — depth F, € Z>¢

is upper semi-continuous (cf. [II, IV, Rem. (6.11.4)]).
The following analogy of Fact [Z27[@]) for G = Oy is known:

Fact 4.12 (cf. [35, Th. 23.4], [16, V, Prop. 9.6]). Let Y — T be a flat morphism of
locally Noetherian schemes. Then, Y is Gorenstein if and only if T and every fiber
are Gorenstein.
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4.2. Ordinary dualizing complex. We introduce the notion of ordinary dualiz-
ing complex R*® and that of dualizing sheaf as the cohomology sheaf H°(R*®) for lo-
cally Noetherian schemes which are locally equi-dimensional (cf. Definition 22J@])),
especially for locally Noetherian schemes satisfying So. In many articles, the dual-
izing sheaf is usually defined for a Cohen—Macaulay scheme, and it coincides with
the dualizing sheaf in our sense (cf. Remark below).

Definition 4.13. Let X be a locally Noetherian scheme.

(1) A dualizing complex R® of X is said to be ordinary if the codimension
function d associated with R*® satisfies d(x) = dim Ox ,, for any = € X.

(2) A coherent sheaf £ on X is called a dualizing sheaf of X if £L ~ H(R®)
for an ordinary dualizing complex R® of X.

As a corollary to Lemma (4] above, we have:

Lemma 4.14. Let X be a locally Noetherian scheme admitting o dualizing complex.
Then, X admits an ordinary dualizing complex if and only if X is locally equi-
dimensional. In particular, X admits an ordinary dualizing complex if X satisfies

So.

Proof. We may assume that X is connected. Let R*® be a dualizing complex of
X with codimension function d: X — Z. If it is ordinary, then X is locally equi-
dimensional by LemmalZdl Conversely, if X is locally equi-dimensional, then d(x)—
dim Ox , is a constant ¢ by Lemma [£4] and hence, the shift R*[c] is an ordinary
dualizing complex. The last assertion follows from Facts [0 and 224Y(]). O

Remark. For a locally Noetherian scheme, the ordinary dualizing complex is unique
up to quasi-isomorphism and tensor product with an invertible sheaf (cf. Re-
mark 2]). Similarly, the dualizing sheaf is unique up to isomorphism and tensor
product with an invertible sheaf.

Remark 4.15. Let X be a locally Noetherian Cohen-Macaulay scheme admitting a
dualizing complex. Then, X has an ordinary dualizing complex R*® which is quasi-
isomorphic to the dualizing sheaf £ = H°(R®). Here, L is also a Cohen-Macaulay
Ox-module. These are derived from Proposition FLOI[E) and Corollary EET([2]). In
many articles, £ is called a “dualizing sheaf” for a locally Noetherian Cohen—
Macaulay scheme.

Lemma 4.16. Let X be a locally Noetherian scheme admitting an ordinary dual-
izing complex R®. Let Z) be the support of the cohomology sheaf H'(R®) for any
i€ Z. Then, ZW =0 for any i < 0, Z©) = X, and the following hold for any
e X:

(1) x € ZD for any i > dim Ox .;

(2) depthOx, = dim Ox , —sup{j |z € ZW};

(3) for an integer k > 1, X satisfies S at x if and only if

codimg (Z9), X) > k+j
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for any j > 0. This is also equivalent to:
dim, 29 <dimOx, —k —j

for any 5 > 0;
(4) Ox., is Cohen—Macaulay if and only if x ¢ Z9) for any j > 0.

Proof. Now, d(xz) = dim Ox , for the codimension function d: X — Z associated
with R®, and X is locally equi-dimensional by Lemmal£4l Thus, applying Proposi-
tion Gl to F = Ox, we have the assertions except [B]). The assertion (B]) is obtained
by Corollary LIIB]) (cf. Property 21). O

Remark. Let X be a connected locally Noetherian scheme with a dualizing complex
R*® such that H(R®) = 0 for i < 0 and H°(R®) # 0. The sheaf H°(R*®) is called the
“canonical module” in many articles. But as in Example .17 below, the support
of the sheaf H°(R®) is not always X. This is one of the reasons why we do not
consider H°(R*®) as the dualizing sheaf for arbitrary locally Noetherian schemes.

Ezample 4.17. Let P be a polynomial ring k[x,y, z] of three variables over a field
k. For the ideals I = (x,y) and J = (z) of P, we set A := P/IJ and R® :=
RHomp(A, P[1]). Then, we have a Noetherian affine scheme X = Spec A and a
dualizing complex R*® on X associated with R® (cf. Example £.23] below). The
X is a union of a plane Spec P/J and a line Spec P/I in the three-dimensional
affine space Spec P ~ A2, where the plane and the line intersect at the origin O
corresponding to the maximal ideal (x,y,z). Note that the local ring Ox o is not
equi-dimensional. We can calculate the cohomology modules of R® as

0, for any ¢ < 0 and i > 1;
H'(R®) ~ Ext' (A, P) ~{ P/J, fori=0;
P/I, fori=1,

by the free resolution
0>PL P2l pyas,
where f and g are defined by
f(a,b) =xza+yzb and g(c) = (yc, —xc)

for any a, b, and ¢ € P. Consequently, Supp H°(R*) = Spec R/J is a proper subset
of X.

Lemma 4.18. Let X be a locally Noetherian scheme admitting an ordinary dual-
izing complex R*. We set

GY) = Eatly (r=°(R*),R*) and GY):= Eat), (r7"(R*),R")

for integers b > 0 and j, where 7= and 7= stand for the truncations of a complex
(¢f. Notation and conventions, ([{l)). Then, the following hold:

(1) One has: 9(203 ~ Ox and gg% =0 for any i # 0.
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(2) There exist an exact sequence
0— g(g_bl) - g(zob)+1 —Ox — g(SOb) - g(zlzfﬂ —0
and an isomorphism
G4 = 92
for any j # {0,—1}. Moreover, ggg =0 foranyj<o.
(3) For any integers b >0, i # 0, and j, one has:
e codim(Supp Q(ng,X) >j+b foranyj€z,
e codim(Supp Q(Sjb),X) >j+b+2 forany j#0, and
e codim(Supp gg’g,X) =0.
(4) If X satisfies Sy, for some k > 1, then
. Q(ng:()foranyb>0 and j <k, and
° gg:()forany()<i<k—l.

Proof. We have a quasi-isomorphism R® o 729(R*®) by Lemma 16l Hence, the
first assertion ([Il) interprets the quasi-isomorphism

RHomop, (R®,R®) ~gis Ox.

For the second assertion (2)), the exact sequence and the next isomorphism are
derived from the canonical distinguished triangle

e TSURE) 5 R = 2R = (R[] = -

The last vanishing in (2) is expressed as 83:1%}( (L,R*) =0 for any j < 0, where
L :=H°(R*), and this is a consequence of Proposition EL6I() applied to F = £ with
the property X = Supp £ shown in Lemma [£T6 For the remaining assertions (3)
(4)
>b

and (@), it is enough to consider only the sheaves G3;. In fact, by (), we have an

injection gg — ggbﬂ for any ¢ # 0, and an exact sequence Q(ZOZH —- Ox — Q(Sob)’

where codim(Supp g(2013+1v X) > 0 by the assertion for Q(ZOgH. Hence,
codim(Supp gg}), X) > codim(Supp gg,ﬂ, X)

for any ¢ # 0 and codim(Supp g(gob), X) = 0. In order to prove [3) and (@) for g(ZJ'b)7
let us consider the spectral sequence

(IV-2) 07 = Eath, (HI(r>*(R")),R") = PF4 = G

of Ox-modules (cf. Remark below). Assume that (€)'?), # 0 for a point
xz € X. Then, —q > b, and

(IV-3) dimOx, >p>dimOx, — dimH " 9(R*), = codim, (SuppH 4(R*), X)

by Proposition EL6I[I)), since d(x) = dim Ox , for the codimension function d of
R*. In particular, p 4+ ¢ < dimOx ; — b. Therefore, if j +b > dim Ox ,, then
x & Supp g‘;g, since (€0'?), = 0 for any integers p, ¢ with p + ¢ = j. Thus, we
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have ([B]). Assume that X satisfies Sy. If (£57), # 0 and ¢ < 0, then p+ ¢ > k by
(IV=3)), since

codim, (SuppH~4(R*),X) >k —q
for any ¢ < 0 by Lemma [ZT6|[3). Hence, g(jg =0 for any b > 0 and j < k, since

EPT = 0 for any integers p, ¢ with p+q = j. This proves ), and we are done. [J

Remark 4.19. The spectral sequence ([[V=2)) is obtained by the same method as
follows. Let A be a commutative ring and let M*® and N°® be complexes of A-
modules such that N*® is bounded below. We shall construct a spectral sequence

P = Ext?y (H-9(M*), N*) = V"1 = ExtF1(M*, N*),

where Ext?; denotes the p-th hyper-ext group. Since there is a quasi-isomorphism
from N°® into a complex of injective A-modules bounded below, we may assume
that N* itself is a complex of injective A-modules bounded below. We consider
a double complex K** defined by KP9 = Hom4(M P, N?) for p, ¢ € Z with the
differentials d;: K79 — KPth4 and dyp: KP9 — KP9t! which are induced from the
differentials M~P~1 — M~P and N? — N9t1  respectively. Then, Ext*(M*®, N*®)
is isomorphic to the k-th cohomology group of the total complex K*® defined by
K" =11, 4=n K77 (cf. [16} I, Th. 6.4]). Moreover, we have

HI(K*P) ~ Hom 4 (H™%(M*), N?)

for any p and ¢, since N? is now assumed to be injective. Thus, we have the spectral
sequence above as the well-known spectral sequence Hf H(K**) = HPT(K*)
associated with the double complex K*°.

Corollary 4.20. Let X be a locally Noetherian scheme admitting an ordinary
dualizing complex R®. For a point x € X and for an integer b > 0, the vanishing

H (r<'(R*),) = 0

holds for any i < b+ 2 except i = dim Ox ,, where H..(M?®) stands for the local
cohomology group at the mazimal ideal my for a complex M*® of Ox ,-modules
bounded below.

Proof. By the local duality theorem [16, V, Th. 6.2], we have
H (r="(R®);) ~ Homo, , (Exty'  (T="(R*)., Re[d(2)]), L)
d

for the injective Ox ,-module I, = Hm(x)(R;), where d(z) = dim Ox .. In partic-
ular,

H (75P(R®),) #0 if and only if = € Supp g(gdb(“f)*i).

If d(x) — i # 0, then the non-vanishing above implies that

d(z) = dim Ox, > codim(Supp G5 ™, X) > d(w) — i +b+2

by Lemma . I8|[@). Thus, we have the vanishing for ¢ < b+ 2 except i = d(z). O
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Proposition 4.21. Let X be a locally Noetherian scheme admitting an ordinary
dualizing complex R®. Then, the dualizing sheaf L = H°(R®) satisfies S and
Supp £ = X. If X satisfies So, then Homo (L, L) ~ Ox. If X satisfies S3, then
Eatp (L, L) = 0.

Proof. We have Supp £ = X by Lemma Hence,

dim £, = codim({z}, Supp £) = dim Ox
for any = € X. Applying Corollary () to £, where ¢ = d(z) — dim £, = 0, we
see that L satisfies Sy by Lemma [ I8|@]), since codim(Supp (](SZ()), X) > i+2 for any

1 > 0, where Q(<i()) = 5wt§9X (L£,R*). For the remaining assertions, we assume that

X satisfies Sy or S3. Note that we have an isomorphism
Homo, (L, L) ~ Eatd (L, R*) = G

and an injection
Eath (L, L) — Eaty (L,R*) = G4

by £ ~gs 7S°(R®). If X satisfies Sa, then Q(ZOI) = Q(le) = 0 by Lemma [LI8]), and
hence, Ox ~ Q(Sog by Lemma AI82); thus, Ox ~ Home, (L, L). If X satisfies S3,
then g(<13 = 0 by Lemma {I8i), and consequently, Exty (£, L) = 0. O

Remark (So-ification). For a locally Noetherian scheme X admitting an ordinary
dualizing complex R*® and for the dualizing sheaf £ = H°(R®), we consider the
coherent Ox-module A := Homp, (L, L). Then, we can show:

e A has a structure of Ox-algebra,

e Ox — A is an isomorphism on the Ss-locus S2(X) (cf. Definition 2I3)),

and

e A satisfies So.
Therefore, the finite morphism Specy A — X is regarded as the so-called “So-
ification” of X (cf. [I1} IV, (5.10.11), Prop. (5.11.1)], [3} Prop. 2], [4, Th. 3.2], [21]
Prop. 2.7]). Three properties above are shown as follows: We know that £ satisfies
So, U := S3(X) is an open subset by Proposition .11l and that Ox — A is an
isomorphism on U by Proposition 21l In particular, A ~ j.(A|y) for the open
immersion j: U — X, since it is expressed as

A=Homo, (L, L) = ju(Aly) = Homo, (L, j«(L]|v)).

Thus, A satisfies So by Corollary .16 and consequently, A ~ 5,0y has an Ox-
algebra structure.

Corollary 4.22. Let X be a locally Noetherian scheme admitting a dualizing com-
plex R®, and set L := H°(R®). Let X° C X be an open subset such that

codim(X \ X°, X)>1 and R®|xo ~gis L|xo.

Then, R® is ordinary and L satisfies So. In particular, if codim(X \ X°, X) > 2,
then £ ~ j,.(L|xo) for the open immersion j: X° < X.
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Proof. Tt is enough to prove that R® is ordinary. In fact, if so, then the dualizing
sheaf £ satisfies Sy by Proposition[L.21] and we have the isomorphism £ ~ j, (L] x-)
by Corollary when codim(X \ X°, X) > 2. Let d: X — Z be the codimension
function associated with R®. Then, d(z) = dimOx , for any z € X° by Proposi-
tion [L.6([H) applied to F = Ox.. For a point z € X \ X°, we have a generic point
y of X such that 2 € {y} and codim({z}, {y}) = dim Ox . Then, d(y) = 0, since
y € X°, and we have

d(z) = d(y) + codim({z}, {y}) = dim Ox .
Thus, R*® is ordinary. |

4.3. Twisted inverse image. We shall explain the twisted inverse image functor,
the relative duality theorem, and some base change theorems referring to [16],
[6], [33]. Let f: Y — T be a morphism of locally Noetherian schemes which is
locally of finite type. In the theory of Grothendieck duality, the “twisted inverse
image functor” f' plays an essential role, which is unfortunately defined only when
some suitable conditions are satisfied (cf. [I6] IIT, Th. 8.7], [16, VII, Cor. 3.4], [16,
Appendix, no. 4], [#2], [6], [33]). However, f'Or has a unique meaning at least
locally on Y, where f'Or is expressed as a complex of Oy-modules with coherent
cohomology which vanish in sufficiently negative degree, i.e., f'Or € D:roh(Y). We

write wy, T = 'O whenever f'Op is defined, and call it the relative dualizing
complex for Y/T (or, with respect to f). When T = Spec A, we write wy, 4 for

L]
wY/ Spec A*

Example 4.23. For a scheme S, an S-morphism f: Y — T of locally Noether-
ian schemes over S is called an S-embeddable morphism if f = poi for a finite
morphism i: Y — P Xxg T and the second projection p: P xg T — T for a lo-
cally Noetherian S-scheme P such that P — S is a smooth separated morphism
of pure relative dimension (cf. [6 (2.8.1)], [16, III, p. 189]). When S = T, an S-
embeddable morphism is called simply an embeddable morphism. There is a theory
of f1: Df L (T) = DE L (Y) (resp. f': DY, (T) — D (Y)) for the S-embeddable
morphisms f: Y — T of locally Noetherian S-schemes as in [16], III, Th. 8.7] (cf.
[6, Th. 2.8.1]). For a complex G* € D (T), if f is separated and smooth of pure

qcoh
relative dimension d (cf. Definition [Z37]), then

F1(G%) = 25 rld @5, Lf*(G*),
and if f is a finite morphism, then f'(G*) is defined by
R/.(f(G*)) = RHomo, (f.0v,G*).
In the both cases of f above, f'(G*) € DL (Y)if G* € DL (T). If f = goh for two

coh

S-embeddable morphisms h: Y — Z and g: Z — T, then f' ~ h'o ¢' as functors
D:COh(T) — D} () (resp. DL, (T) — DI (V).

qcoh coh

Example 4.24. Let f: Y — T be a morphism of finite type between Noetherian
schemes. Then, the dimensions of fibers are bounded. Assume that T admits a
dualizing complex RY.. In this situation, we have the twisted inverse image functor
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f: D (T) - DI

coh coh

(V) as follows (cf. [I6, VI], [0, §3]). For the dualizing complex
R%. of T, we have the corresponding residual complex E(RY) on T (cf. [16, VI,
Prop. 1.1], [6, Lem. 3.2.1]) and the “twisted inverse image” f~(E(R%)) on Y as a
residual complex on Y (cf. [16, VI, Th. 3.1, Cor. 3.5], [6, §3.2]), which corresponds
to a dualizing complex

Y= F(RY) = QU (E(RY)))
of Y (cf. [T6, VI, Prop. 1.1, Remarks in p. 306], [6, §3.3]). Then, one can define
f'+ DEL(T) = DL, (Y) by
F1(G%) =Dy (Lf*(D1(G%))),
where ©y and D are the dualizing functors defined by:
Dy (F*) :=RHompo, (F*,RYy) and D7(G*) :=RHomo,(G*, RY).

The definition of f' does not depend on the choice of RY (cf. [6, §3.3]), and f*
satisfies expected compatible properties in [16, VII, Cor. 3.4] (cf. [6, Th. 3.3.1]).
Moreover, when f is an embeddable morphism, then this f' is isomorphic to the
functor f' defined in Example @23 (cf. [16, VI, Th. 3.1, VII, Cor. 3.4], [6, §3.3]).

The following is shown in [I6l V, Cor. 8.4, VI, Prop. 3.4] but with an error
concerning £ (cf. [6, (3.1.25), (3.2.4)]).

Lemma 4.25. Let f: Y — T be a morphism of finite type between Noetherian
schemes such that T admits a dualizing compler RY.. Let Ry, be the induced du-
alizing complex f'(RY) of Y. Let dp: T — Z and dy: Y — Z be the codimension
functions associated with Ry and RS, respectively. Then,

dy (y) = dp(t) — tr.degk(y) /k(?)
for anyy € Y with t = f(y), where k(t) and k(y) denote the residue fields of Or

and Oy, respectively.

Proof. Since the assertion is local on Y, we may assume that ¥ — T is an embed-
dable morphism. Hence, it is enough to prove assuming that f is a finite morphism
or a smooth and separated morphism. Assume first that f is finite. Then,

Rf.RHomo, (F,RYy) ~ RHomo, (f«F, RT)

for any coherent Oy-module F by [16, III, Th. 6.7] (cf. Theorem below).
Applying this to F = O for the closed subscheme Z = {y} with reduced structure,
and localizing Y, we have

RHomo, , (k(y), (RY)y) ~qis RHomo,., (k(y), (R7):)-

Since k(y) is a finite-dimensional k(t)-vector space, we have tr.degk(y)/k(t) = 0
and dy (y) = dr(t). Thus, we are done in the case where f is finite. Assume next
that f is smooth and separated. We may assume furthermore that f has pure
relative dimension d by localizing Y. Then,

RS ~ais 125 7[d) ®6, Lf*(RY)
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as in Example [£.23] and it implies that
H(RY)y = HH(RE): ®or., Oviy,
since f is flat. Here, H'(R$,), # 0 if and only if HF4(RS.), # 0, since f is faithfully
flat. We know that
dr(t) — dim Op; = inf{i | H'(R%): # 0}

by (@) and (@) of Proposition .6l The similar formula holds also for (Y, y) and RS
Thus,
dy (y) — dim Oyyy = dT(t) — dim OT,t —d.

Since f is flat, we have
dim Oy y = dim Or¢ + dim Oy,
for the fiber Y; = f~1(¢) by ([I=1). Furthermore, we have
d = dim, Y; = dim Oy, ,, + tr. degk(y) /k(¢),
since Y; is algebraic over k(t) (cf. [II, IV, Cor. (5.2.3)]). Therefore,
dy (y) = dr(t) —d + dim Oy,y — dim Op; = dp(t) — tr. degk(y) /k(t).
Thus, we are done. ([l

Definition 4.26 (canonical dualizing complex). Let X be an algebraic scheme
over a field k, i.e., a k-scheme of finite type. We define the canonical dualizing
complex w$ Jk of X to be the twisted inverse image f'(k) for the structure morphism
f: X — Speck.

The dualizing complex w$, /k has the following property related to Serre’s condi-
tions Sy.

Lemma 4.27. Let X be an n-dimensional algebraic scheme over a field k. For an
integer i, let Z; be the support ofH_i(w;(/k). Then, Z; = 0 for anyi > n, and Z,, is
the union of irreducible components of X of dimension n. If X is equi-dimensional,
then w;(/k[—n] s an ordinary dualizing complex, and the following hold for integers

k > 1: X satisfies S, if and only if dim Z; < i — k for any i # n.

Proof. By Lemma [d25] d(z) = — tr. degk(x)/k for the codimension function d: X
— Z associated with the dualizing complex w¥ (cf. Example [£24)). Moreover,

(IV-4) n > dim, X = dim Ox , + tr. degk(z) /k

by [11], IV, Cor. (5.2.3)]. Thus, d(z) —dim Ox , = —dim, X > —n, and H‘i(w;(/k)
= 0 for any ¢ > n by Proposition LG applied to the case where (R®, F) =
(WS /x> Ox). Thus, Z; = 0 for any i > n. If dim, X = n, then H™"(w% )z # 0 by
Proposition E6(H). If dim, X < n, then H*"(w;(/k)z = 0 by Proposition [0I(]).
Therefore, Z,, is just the union of irreducible components of X of dimension n.
Assume that X is equi-dimensional, i.e., dim, X = n for any x € X. Then,
wk /k[—n] is an ordinary dualizing complex, since the associated codimension func-
tion is z + d(z) + n = dimOx,. Moreover, X is equi-codimensional, since
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n = dim, X = dimOx . for any closed point z of X by ([V=4). Thus, the as-
sertion on Sy, is a consequence of Corollary L9I2)), since d(x) — dim Ox , = —n for
any z € X. Thus, we are done. O

Definition 4.28 (canonical sheaf). Let X be an algebraic scheme over a field k.
Assume that X is locally equi-dimensional. This is satisfied for example when X
satisfies So (cf. Fact Z24([))). Then, we define the canonical sheaf wx by

= H dimXa(

wx/klx, WS{/kNXQ

for any connected component X, of X.

Remark. The canonical sheaf wy y is a dualizing sheaf of X in the sense of Defini-
tion 413l In fact,

wg(a/k[— dim X,] = w;(/k[— dim X, ]|x,

is an ordinary dualizing complex of the connected component X, by Lemma [A.27]
In particular, if X is connected and Cohen-Macaulay, then w$ /x ~ais WX /k [dim X].

By Corollary .22 we have:

Corollary 4.29. For an algebraic scheme X overk, if it is locally equi-dimensional,
then wx i satisfies So.

For a proper morphism f:Y — T of Noetherian schemes, we have the following
general result on the twisted inverse image functor f', which is derived from [33]
Th. 4.1.1]:

Theorem 4.30 (Grothendieck duality for a proper morphism). Let f: Y — T be
a proper morphism of Noetherian schemes. Then, there is a triangulated functor
f't Dyeon(T) — Dgeon(Y) which induces DY, (T) — DX, (Y) and which is right
adjoint to the derived functor Rf.: Dqcon(Y) = Dgeon(T) in the sense that there
is a functorial isomorphism

RHOIHOT (Rf* (]:.), g.) :qis RHOI’HOY (]:.a f'(g.))
for F* € Dgcon(Y) and G* € Dyeon(T).

Remark. In [33] Th. 4.1.1], the existence of a similar right adjoint f* is proved for
a quasi-compact and quasi-separated morphism f: Y — T of quasi-compact and
quasi-separated schemes Y and T. When f is proper, it is written as f' (cf. the
paragraph just before [33, Cor. 4.2.2]). By [52, Th. A], the total derived functor
RHomg, of Homp, exists for any scheme X as a bi-functor D(X)°P x D(X) —
D(Z), and there exists also the total right derived functor Rf.: D(Y) — D(T') of
the direct image functor f.. When f: Y — T is a proper morphism of Noetherian
schemes, we have:

e Rf.(Dycon(Y)) C Dgcon(T) by [33, Prop. 3.9.1],
e Rf.(D (Y)) c DI (T) by [16} II, Prop. 2.2], and
)

coh coh
e Rf.(D_,(Y)) c D_, (T) by the explanation just before [33] Cor. 4.2.2].

coh coh
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The functor f' is bounded below (cf. [33, Def. 11.1.1]). Thus, f!(D;rcoh(T)) C
D;rcoh(Y). The inclusion f'(D, (7)) € DI, (Y) is proved firstly by reducing to
the case where T is the spectrum of a Noetherian local ring by the base change

isomorphism (cf. [33 Cor. 4.4.3]), and secondly by applying [54, Lem. 1].

Remark. When T admits a dualizing complex (or a residual complex), Theorem E.30]
for G* € DT, (T) is a consequence of [I6, VII, Cor. 3.4]. In [8, Th. 2], Deligne has

coh

proved Theorem @30 for F* € DY | (V) without assuming the existence of dualizing
complex of T. These results are summarized by Verdier as [64, Th. 1], which is
almost the same as Theorem in the case where T has finite Krull dimension.
Neeman [42] gives a new idea toward the proof of Theorem by using Brown
representability. He generalizes Theorem to the case where Y and T are only
quasi-compact and separated schemes but Dqcon(T") and Dgcon(Y') are replaced with
D(QCoh(Or)) and D(QCoh(Oy)), respectively (cf. [42, Exam. 4.2]). Neeman’s idea
is used in Lipman’s article [33], which contains generalizations of Theorem to

non-proper and non-Noetherian case.
The sheafified form of the duality theorem is as follows (cf. [33, Th. 4.2]):

Corollary 4.31. In the situation of Theorem 430, there exists a canonical quasi-
isomorphism

Rf.RHomo, (F*, f'G®) ~qs RHomo, (Rf.F*,G*)
for any F* € Dqcon(Y) and G* € Dyeon(T).

As a special case of Theorem 30l we have the following, which is called the
Serre duality theorem for coherent sheaves.

Corollary 4.32. Let X be a projective scheme over a field k. Then, there is a
canonical quasi-isomorphism

RHomo, (F*, w% /i) ~aqis RHomy (RT(X, F*), k)

for any F* € DT (X). In particular,

coh

Ext, (F*,wk ) ~ Homy (H' (X, F*), k)

for any i, where Ext® and H stands for the i-th hyper-Ext group and i-th hyper
cohomology group, respectively.

Example 4.33. Let f: Y — T be a separated morphism of finite type between Noe-
therian schemes. By the Nagata compactification theorem (cf. [40], [41], [34], [7],
[10]), f is expressed as the composite 7 o j of an open immersion j: Y — Z and a

proper morphism 7: Z — T. Using the functor 7*: D;fcoh (T) — D;fcoh(Z) in Theo-
rem 30, we define the twisted inverse image functor f': Dé‘coh(T) — D:COh(Y) as

Lj* on'. This is well-defined up to functorial isomorphism, i.e., it is independent of
the choice of factorization f = 7o j, by [8, Th. 2], [54, Cor. 1]. Deligne []] defines
a functor Rfi: proD? (V) — proD? , (T) and shows in [8, Th. 2] that f' above

is a right adjoint of R f.



54 YONGNAM LEE AND NOBORU NAKAYAMA

Fact 4.34. The twisted inverse image functors in Example 33| have the follow-
ing properties. Let f: Y — T be a separated morphism of finite type between
Noetherian schemes.
(1) Leth: X —'Y be a separated morphism of finite type from another Noether-
ian scheme X. Then, there is a functorial isomorphism (f o h)' ~ h'o f'.
(2) If f: Y — T is a smooth morphism of pure relative dimension d, then
f!(g.) Zqis Qﬁ/ﬂd} ®%y Lf*(G*).
(3) If T admits a dualizing complex, then f' is functorially isomorphic to the
twisted inverse image functor ®y o Lf* o D7 in Example
(4) For a flat morphism g: T' — T from a Noetherian scheme T", let Y’ be the
fiber product Y xp T' and let f':Y' — T and g': Y' — Y be the induced
morphisms. Then, g o f' ~ f" o g*.
The property (D)) is derived from the isomorphism R(f o h); ~ R fi o Rh shown
in [8, no. 3]. This is also proved in [33, Th. 4.8.1]. The properties (@) and (@) are
proved in [54) Th. 3, Cor. 3] and [33, (4.9.4.2), Prop. 4.10.1]. In order to prove
the property (@), we may assume that f is proper, and in this case, this is shown
in [33] Cor. 4.4.3] (cf. [54, Th. 2]). As a refinement of the property (I) above,
f ~— f' can be regarded as a pseudo-functor, and Lipman proves in [33, Th.4.8.1]
the uniqueness of f — f' under three conditions corresponding to:
e f'is a right adjoint of Rf, when f is proper (Theorem E30).
e The property (2) above for étale f.
e The property () above for proper f and étale g.

Fact 4.35. The following are also known for a flat separated morphism f: Y — T
of finite type between Noetherian schemes:

(1) The twisted inverse image f'Or is an f-perfect complex in Do (Y) (cf. [22)
ITI, Prop. 4.9], [33, Th. 4.9.4]). For the definition of “f-perfect,” see [22
III, Déf. 4.1] (cf. Remark below). Note that a coherent Oy-module
flat over T is f-perfect.

(2) For an f-perfect complex £°,

Dy (%) := RHomo, (E°, ' Or)
is also f-perfect and the canonical morphism
E* = Dyr(Dy/r(E%))
is a quasi-isomorphism (cf. [22] III, Cor. 4.9.2]). In particular,
(IV-5) Oy — RHomo, (f'Or, f'Or)

is a quasi-isomorphism (cf. [33] p. 234]).
(3) There is a quasi-isomorphism
F(F®) @8, LF(G%) ~qs ['(F* @5, G°)
for any F*, G* € D/ (T) with F*®%_G* € D} (T) (cf. [33, Th. 4.9.4]).

qcoh qcoh
In particular,

(IV-6) 107 @8, Lf*(G*) ~aqs f'(G*)
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for any G® € DOTCOh(T). Similar results are proved in [I6, V, Cor. 8.6], [54}

Cor. 2], and [42] Th. 5.4].

Remark 4.36 (cf. |22 1T, Prop. 4.4]). Let f: Y — T be a morphism of finite type
between Noetherian schemes and let F* be an object of Dyeon(Y). Assume that
f is the composite g o ¢ of a closed immersion i: ¥ — P and a smooth separated
morphism g: P — T. Then, F* is f-perfect if and only if Ri,.(F*®) is perfect (cf.
[22, 1, Déf. 4.7]), i.e., locally on P, it is quasi-isomorphic to a bounded complex of
free Op-modules.

Lemma 4.37. Let f:Y — T be a flat separated morphism of finite type between
Noetherian schemes in which T admits a dualizing complex. Let g: T' — T be a
finite morphism from another Noetherian scheme T'. For the fiber product Y' =
Y xp T/, let f:Y' — T and g': Y' — Y be the projections. Thus, we have a
Cartesian diagram:

yr 9,y

f 'l lf
T 2 T
In this situation, there is a natural quasi-isomorphism

Lgl*(f!OT) gqis f”OT"

Proof. Let O, Dy, D7/, and Dy, respectively, be the dualizing functors on T', Y,

T', and Y’ defined by a dualizing complex on T and their transforms by f', ¢, and

(fog) ~(gof) (cf. Fact E34()) as in Example 24 For any G* € DL, (1),

we have

f!(Rg*(g')) ~4is Dy o Lf* 0 D7 (Rg.(G%)) ~qis Dy o Lf* o Ry (D1 (G*))

qis QY o Rg; © Lf/* (QT’ (g.)) qis Rg; © QY' (Lf/* (QT’(g.)))
~qis RL("1(G%)),

where we use the flat base change isomorphism: Lf* o Rg. ~s Rg} o Lf"™ (cf.

Proposition [A10]), and the duality isomorphisms: ©1 o Rg, ~gis Rg. 0 D1/ and

Dy oRyg), ~4is Ryl 0Dy for the finite morphisms g and ¢’ (cf. Corollary E31]). On
the other hand, we have

f'(Rg.(G%)) ~qis ['Or @6, Lf*(Rg.G*) ~qis ['Or 8, Rg.(Lf*(G*))
by the quasi-isomorphism ([V=6)) in Fact and by the flat base change isomor-
phism. Substituting G®* = Op/, we have a quasi-isomorphism
fO0r @, Rg.Oy ~qis Ryl (f''Op).
It is associated with a morphism Lg"*(f'Or) — f"'Or in DT, (Y”) which induces

coh
a quasi-isomorphism by taking Rg’.. Hence, Lg"* (f'Or) ~qs f"'O7. |
Corollary 4.38. Let f: Y — T be a flat separated morphism of finite type between
Noetherian schemes. For a point t € T, let ¢;: Speck(t) — T be the canonical
morphism for the residue field k(t), and let 1y: Yy = f=1(t) — Y be the base
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change of ¢¢ by f: Y — T. Then, the canonical dualizing complex w;,t/k(t) defined
in Definition is quasi-isomorphic to Lo} (f'Or).

Proof. Let Spec O — T be the canonical morphism from the spectrum of the local
ring Op . Considering the completion Op 4 of Or; and the surjection Op ¢ — k()
to the residue field, we have a flat morphism

T = Spec (5T,t — Spec Oy — T

and a closed immersion ¢: Speck(t) < T°. Let Y’ be the fiber product Y xp T”
and let f°: Y> — T” and 7/: Y — Y be projections, which make a Cartesian
diagram:
A T
fbl lf
T —— T
By Fact [134l{d]), we have a quasi-isomorphism

L (f'Or) ~qis [ Ops.

Hence, we may assume from the beginning that 7 = 7”. Then, ¢; is the closed
immersion ¢. Now, T admits a dualizing complex, since we have a surjection to
@T7t from a complete regular local ring by Cohen’s structure theorem. Thus, we
are done by Lemma 37l |

4.4. Cohen—Macaulay morphisms and Gorenstein morphisms. The notions
of Cohen—Macaulay morphism and Gorenstein morphism are introduced in [I1}, TV,
Déf. (6.8.1)] and [I16] V, Ex. 9.7]. By [0 Sect. 3.5] or [49, Th. 2.2.3], one can define
the relative dualizing sheaf for a Cohen-Macaulay morphism (cf. Definition 43
below), and prove a base change property (cf. Theorem below). We shall
explain these facts.

We have defined the notion of Cohen—-Macaulay morphism in Definition 2311
The notion of Gorenstein morphism is defined as follows.

Definition 4.39 (Gor(Y/T)). Let Y and T be locally Noetherian schemes and
f:Y — T a flat morphism locally of finite type. We define

Gor(Y/T) := UteT Gor(Y3),

and call it the relative Gorenstein locus for f. The flat morphism f is called a
Gorenstein morphism if Gor(Y/T) =Y.

Remark. The Gorenstein locus Gor(Y/T) is open. In fact, this is characterized as
the maximal open subset of the relative Cohen-Macaulay locus Y” = CM(Y/T)
on which the relative dualizing sheaf wy- r is invertible (cf. Lemma EA0 below),
where Y” is open by Fact Z30(T).

The following characterizations of Cohen—Macaulay morphism and Gorenstein
morphism are known:
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Lemma 4.40 ([I6, V, Exer. 9.7], [6l Th. 3.5.1)). Let f: Y — T be a flat mor-
phism locally of finite type between locally Noetherian schemes. Then, f is Cohen—
Macaulay if and only if, locally on'Y, the twisted inverse image f'Or is quasi-
isomorphic to a T-flat coherent Oy -module wy 7 up to shift. Here, f is Gorenstein
if and only if wyr is invertible.

Proof. We may assume that f is a separated morphism of finite type between affine
Noetherian schemes by localizing Y and T'. For a point ¢t € T, let Y; denote the
fiber f~1(t) and let 1;: Y; — Y be the base change of Speck(t) — T by f. Assume
first that f'Or ~qis Wy r[d] for a coherent Oy-module wy 7 flat over T" and for
an integer d. For an arbitrary fiber Y;, the dualizing complex wy, Jk(t) is quasi-
isomorphic to wy,r ®o, Oy,[d] by Corollary Hence, Y; is Cohen-Macaulay
by Corollary [ 7([2) or Lemma [LT6|H]).

Conversely, assume that every fiber Y; is Cohen-Macaulay. Then, we may assume
that f has pure relative dimension d by Lemma We shall show that

FOr ~=gis wy7ld]

for the cohomology sheaf wy /7 := H~(f'Or) and that wy 7 is flat over T'. For a
point t € T, we have a quasi-isomorphism

(IV-7) Lo} (f'Or) ~ais wy, ji(y)[d]

for the canonical sheaf wy, /¢y by Corollary .38 Now, f 'O belongs to D_ . (Oy).
In fact, f'Or is f-perfect by Fact E35|([). For the stalk (f'O7), at a point y € Y3,
we have

(f'Or)y[=d) ®8, , k(t) ~qis Wy, /k(t) )y
by (IV=7). By applying Lemma HA1] below to (f'Or),[—d] and Or; — Oy, we
see that H'(f'Or), = 0 for any i # —d and H~¢(f'Or), is a flat Or-module with
an isomorphism

HUf'Or)y @or, k(t) = (Wy, /k(t))y-
Since these hold for arbitrary point y € Y, there is a quasi-isomorphism f'Orp ~gis
wy/rld] and wy,p is flat over T. Therefore, we have proved the first assertion
on a characterization of Cohen—Macaulay morphism. For the second assertion, we
assume that f is a Cohen-Macaulay morphism. Then, wy 7 is flat over T'. Thus,
wyyr is invertible along a fiber Y; if and only if wy,r ®e, Oy, is invertible (cf.
Fact Z27)). By the isomorphism wy /7 ®0, Oy, ~ wy, k), we see that Y; is
Gorenstein if and only if wy,r is invertible along Y;. Thus, the second assertion
follows, and we are done. ([l

The following is used in the proof of Lemma 40 above:

Lemma 4.41. Let A be a Noetherian local ring with residue field k and let A — B
be a local ring homomorphism to another Noetherian local ring B. Let L® be a
complex of B-modules such that H'(L®) = 0 for | > 0 and H'(L®) is a finitely
generated B-modules for any i € Z, i.e., L* € D_, (B). Assume that

H (L* 2% k) =0
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for any i > 0. Then, Hi(L') =0 for any i > 0, and there exist an isomorphism
HY(L*) @4 k ~ H(L®* ®% k)
and an exact sequence
Torl (H°(L*),k) — H ' (L*) @4 k 2 H ' (L* @% k) — Tor{ (H(L®), k) — 0.
Consequently, the following hold:

(1) H° (L*®) is flat over A if and only if the homomorphism h above is surjective.
(2) If HY(L® ®@% k) = 0 for any i # 0, then L® is quasi-isomorphic to a flat
A-module.

Proof. There is a standard spectral sequence
EY? = Tor? (HY(L*),k) = E*™ = HP"9(L* @' k)

(cf. [111 ITL, (6.3.2.2)]), where EY"? = 0 for any p > 0. Let a be an integer such that
H'(L*) = 0 for any [ > a. Then, EY? = 0 for any ¢ > a, and we have E% ~ Eg’a
and an exact sequence

E;* 5 BN 5 gt 5 By 0.

Hence, if a > 0, then H*(L®*) = 0 by Eg’a = 0, and we may decrease a by 1. Thus,
we can choose a = 0, and we have the required isomorphism and exact sequence.
The assertion (I]) is derived from the local criterion of flatness (cf. Proposition [AT]),
since H(L®) is flat over A if and only if Tor{ (H°(L*),k) = 0. The assertion (2)
follows from () and 7=71(L®) ~;s 0, the latter of which is obtained by applying
the result above to the complex 7<~1(L*) instead of L®. (]

Fact 4.42. Let f: Y — T be a Cohen—Macaulay morphism having pure relative
dimension d (cf. Definition [Z37). In [6 Sect. 3.5], Conrad defines a sheaf wy, called
the dualizing sheaf for f, on Y such that

wrlv ~ H(flv)'Or)

for any open subset U C Y such that the restriction f|y: U — T factors as a
closed immersion U < P followed by a smooth separated morphism P — T with
pure relative dimension. Here, the sheaf w; is obtained by gluing the sheaves
H=4((f|v)'Or) along natural isomorphisms, where the compatibility of gluing is
checked by explicit calculation of Ext groups. In [49, Th. 2.3.3, 2.3.5], Sastry defines
the same sheaf wy by another method: This is obtained by gluing H=((f|v)'Or)

for open subsets V' C Y such that f|y factors as an open immersion V <« V
followed by an d-proper morphism V — T in the sense of [49, Def. 2.2.1].

Definition 4.43 (relative dualizing sheaf). Let f: Y — T be a Cohen—Macaulay
morphism. For any connected component Y, of Y, it is shown in Lemma that
the restriction morphism f, = fly,: Yo — T has pure relative dimension. Thus,
one can consider the dualizing sheaf wy_ in Fact for f,. We define the relative
dualizing sheaf wy ;7 of Y over T' by

wy/rly, = Wy,
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for any connected component Y,. The wy,r is also called the relative dualizing
sheaf for f or the relative canonical sheaf of Y over T (cf. Definition (3] below).
We sometimes write wy for wy 7.

By Corollary T[] and Lemma 40} we have:

Corollary 4.44. For a Cohen—Macaulay morphism f:Y — T, the relative du-
alizing sheaf wy 7 is relatively Cohen—Macaulay over T (cf. Definition 229) and
Suppwy,r =Y.

By Lemma 234|[#]), we have also:

Corollary 4.45. For a Cohen—Macaulay morphism f: Y — T, let Y° be an open
subset of Y such that codim(Y; \ Y°,Y;) > 2 for any fiber Yy = f~1(t). Then,
wy T = jx(wyo 1) for the open immersion j: Y° — Y.

The following base change property is known for the relative dualizing sheaves
(cf. [6, Th. 3.6.1], 25, Prop. (9)], [49, Th. 2.3.5]):

Theorem 4.46. Let f: Y — T be a Cohen-Macaulay morphism. For an arbitrary
morphism T' — T from a locally Noetherian scheme T", let Y’ be the fiber product
Y xp T" and let p: Y' =Y be the projection. Then, p*(wy ) =~ Wy 7.

Remark. Conrad [6, Th. 3.6.1] and Sastry [49, Th. 2.3.5] prove Theorem as-
suming that f has pure relative dimension, but it is enough for the proof, since
the restriction of f to any connected component of Y has pure relative dimension
(cf. Lemma [239). When f is proper, Theorem is shown by Kleiman [25]
Prop. (9)(iii)], whose proof uses another version of twisted inverse image functor
f'. The proof of [6, Th. 3.6.1] is based on arguments in [I6, V], while the proof of
[49, Th. 2.3.5] is based on arguments in [8], [54], [25], and [33].

5. RELATIVE CANONICAL SHEAVES

As a generalization of the relative dualizing sheaf for a Cohen—Macaulay mor-
phism, we introduce the notion of relative canonical sheaf for an arbitrary So-
morphism (cf. Definition Z3T]). We give some base change properties of the relative
canonical sheaf and its “multiple.” These are used for studying Q-Gorenstein mor-
phisms in Section [l In Section Il we shall study the relative canonical sheaf
and the conditions for when it satisfies relative Sy. Section is devoted to prove
Theorem [5.10, which provides a criterion for a base change homomorphism of the
relative canonical sheaf to be an isomorphism.

5.1. Relative canonical sheaf for an So-morphism. First of all, we shall give
a partial generalization of the notion of canonical sheaf in Definition [1.2§8] as follows.

Definition 5.1. Let X be a k-scheme locally of finite type for a field k. Assume
that

e X is locally equi-dimensional, and
e codim(X \ X?, X) > 2 for the Cohen-Macaulay locus X* = CM(X).
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Note that this assumption is verified when X satisfies S;. For the relative dualizing
sheaf wy» , over Speck in Definition [1.43] and for the open immersion X X,
we set

Wx /K = 2 (wxo /i)

and call it the canonical sheaf of X.

Remark. By Corollaries £.22] and .29 we have the following properties in the
situation of Definition BTk

(1) Let U be an arbitrary open subset of X which is of finite type over Speck.
Then, wx /k|y is isomorphic to the canonical sheaf wy /. defined in Defini-
tion Thus, the use of the same symbol wx/y for the canonical sheaf
causes no confusion.

(2) The canonical sheaf wx y is coherent and satisfies Ss.

Lemma 5.2. Let X be a scheme locally of finite type over a field k. Assume that
X is Gorenstein in codimension one and salisfies Sa. Then, wx i is reflezive, and
every reflexive Ox -module satisfies So. In particular, the double-dual WEZ}]II« of w?}%{
satisfies So for any m € 7Z.

Proof. Let Z be the complement of the Gorenstein locus of X (cf. Definition 10]).
Then, codim(Z,X) > 2 and wx/k|x\z is invertible. Hence, wy/y is reflexive by
Corollary 23] since wx i satisfies Sy and Suppwy,x = X. Every reflexive Ox-
module satisfies So by Lemma 222|2]). O

The definition of the canonical sheaf above is partially extended to the relative
situation as follows.

Definition 5.3 (relative canonical sheaf). Let f: Y — T be an Sp-morphism
of locally Noetherian schemes. Let j: Y” < Y be the open immersion from the
relative Cohen-Macaulay locus Y” = CM(Y/T). Note that codim(Y; \ Y?,V;) > 2
for any fiber Y; = f~1(¢), since Y; satisfies So. In this situation, we define

Wy, = Jx(Wys 1)

for the relative dualizing sheaf wy- ,p for f|y» in the sense of Definition H.43 We
call wy,r also the relative canonical sheaf of Y over T

Lemma 5.4. Let f: Y — T be an So-morphism of locally Noetherian schemes and
let
v L2 Y

sl
7 —— T
be a Cartesian diagram such that T’ is a locally Noetherian scheme flat over T.
Then, wy ~ p*(wy,r).

Proof. Let Y? (resp. Y”) be the relative Cohen-Macaulay locus for f (resp. f’) and
let j: Y <5 Y (rvesp. j': Y < Y”) be the open immersion. Then, Y = p~1(Y?),
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and j’ is induced from j. Let p”: Y”” — Y be the restriction of p. Then, Wy o =
p’*(wy 7) by Theorem Thus, we have

Wy 1 L (pb*(wyb/T)) ~ p*(ju(wys /7)) = P wy)T

by the flat base change isomorphism (cf. Lemma [A29) for the Cartesian diagram
composed of p, p°, j, and j'. O

Proposition 5.5. Let f: Y — T be an Sa-morphism of locally Noetherian schemes.
Then, the relative canonical sheaf wy p defined in Definition 53] is coherent, and

moreover, if  is a separated morphism of pure relative dimension d, then
0, if 1 < —d;
Wy /T, ZfZ = _d7

H(f'Or) ~ {

for the twisted inverse image f'Or. Let Y° be an open subset of CM(Y/T) such
that codim(Y; \ Y°,Y;) > 2 for any fiber Y, = f~1(t). For a pointt € T, let

b1 : Wy T oy Oy, = Wy, k@) = Jex(Wyony; k()
be the homomorphism induced from the base change isomorphism
(V-1) Wyo ;1 ®0y. Oveny, = Wyony, /k(t)
(¢f. Theorem EAGl), where ji: Y° NY;: — Y;: denotes the open immersion. Then,
for any point y € Y, the following three conditions are equivalent to each other:
(a) The homomorphism ¢y, is surjective at y.
(b) The homomorphism ¢y, is an isomorphism at y.

c) There is an open neighborhood U of y in'Y such that wy |y satisfies rel-
g Y /
ative Sy over T' (cf. Definition [2.29)).

Proof. The coherence of wy /7 and the conditions (@)-(@) are local on Y. Hence,
we may assume that f is a separated morphism of pure relative dimension d by
Lemma EZ39(). Then, we have the twisted inverse image f'Or with a quasi-
isomorphism

(f!OT)|Y" Sdqis WW/T[d]
for Y* = CM(Y/T) by Lemma FE40, and we have a canonical homomorphism

¢: H U (f'Or) — ji(wY"/T) = Wy/T

for the open immersion j”: Y” < Y. In order to prove that ¢ is an isomorphism,
since it is a local condition, we may replace Y with an open subset freely. Thus,
we may assume that

e f is the composite pot of a closed immersion ¢: Y < P and a smooth affine
morphism p: P — T.
By Fact EE35([) and Remark 36, we know that Ru.(f'Or) is perfect. Hence,
by localizing Y, we may assume that

e R..(f'Or) is quasi-isomorphic to a bounded complex £* = [--- — & —
EFL — ...] of free Op-modules of finite rank.
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Then, we have an isomorphism H*(£®) ~ 1, H!(f'Or) for any i € Z. Moreover,
there exist quasi-isomorphisms

£ ®6, Op, ~qis Riu(f'Or @6, Li*Op,) ~qs R (f'Or ©%, L k(1))

~qis Rt (f'Or ®8, Oy,) ~qis Rup (WY, jie))
for any t € T and for the induced closed immersion v;: Y; < P, = p~1(¢). In fact,
the first quasi-isomorphism is known as the projection formula (cf. [16] II, Prop.
5.6]), the quasi-isomorphisms

Op, ~qgis Lp*k(t) and Lf*k(t) ~qs Oy,
are derived from the flatness of p and f, and the quasi-isomorphism
flor @%Y Oy, ~qis W;Q/k(t)
is obtained by Corollary We shall show that the three data:
E-d), Z:=uY\Y°), F:=H'E[-d])~uH U fOr),
satisfy the conditions of Lemma for the morphism P — T. The required
inequality (III-8)) of Lemma is derived from
depthp, 7z Op, = codim(P; N Z, P;) = codim(Y; N Z, P;) > codim(Y; N Z,Y;) > 2

(cf. Lemma[2T4]). The condition () of Lemma[3.IHis derived from (cf. Lemma40):
0, if i £ —d;
Lawyo p, ifi=—d,

HU(E) Pz = t(H'(f'Or)) P\ 2 =~ {

and the next condition () has no meaning now. The condition () follows from
H'(E @6, Op,) ~ Lt*(Hi(w;’t/k(t))) =0

for any ¢ < —d (cf. Lemma [{27). The last condition () of Lemma BT is a
consequence of Corollary L2201 applied to the ordinary dualizing complex w3, Jk(t) [—d]
(cf. Lemma 27)) and to b = 1, since

e the complex M*® in Lemma BI5([v)) is quasi-isomorphic to the stalk of
TSl(RL*w;/t/k(t)[_d]) s RL*(Tgl(W;Q/]k(t) [—d])), and
o dimOp, , > codim(Z NY;,Y;) > 2 for any z € Z with ¢ = f(2).

Therefore, all the conditions of Lemma [B.15] are satisfied, and consequently,
HI(E®) ~ . HI(f'Or) =0

for any ¢« < —d, and we can apply Proposition 3.7 to F via Lemma BI85l Then,

F =~ j.(F|p\z) for the open immersion j: P\ Z < P by Proposition B.7(I]), and it

implies that the morphism ¢ above is an isomorphism. Moreover, the three condi-

tions ([@)—(@) are equivalent to each other by Proposition B7([3) and Corollary
Thus, we are done. O

Proposition 5.6. Let f: Y — T be an So-morphism of locally Noetherian schemes
and let j: Y° < Y be the open immersion from an open subset Y° of the relative
Gorenstein locus Gor(Y/T) for f. Assume that



GROTHENDIECK DUALITY AND Q-GORENSTEIN MORPHISMS 63

e codim(Y; \ Y°,Y;) > 2 for any fiber Y; = f=1(t).

For an integer m and for the relative canonical sheaf wy 7, let WW]T denote the

double-dual of w?ﬁ% Then,

W = G WET )

for any m. In particular, wy 7 is reflevive. For an integer m and a pointt € T,
let

fml. w{i’;]T ®o0y Oy, — ng}k(t) = (WP )

be the homomorphism induced from the base change isomorphism ([N=1)), where

jt: Y°NY; — Y; denotes the open immersion. Then, for any integer m and any
point y € Y, the following three conditions are equivalent to each other:

(a) ¢57(L£/) is surjective at y.

(b) (;55:@) is an isomorphism at .

(c) There is an open neighborhood V' of y in' Y such that wgfr;]Th/ satisfies
relative So over T.

Proof. We apply some results in Section [3.I]to the reflexive sheaf F = wgf;]T and the
closed subset Z := Y'\Y°. By assumption, F|y\ 7 is invertible and depthy, -, Oy, >
2 (cf. Lemma 2T4|[)). Thus, we can apply Lemma 314 and consequently, we can
assume that F has an exact sequence of Proposition .7 by replacing Y with its
open subset. Then, wg;n]T ~ j*(wfﬁ)T/T) by Proposition BZ[). In case m = 1,
we have wg}/T ~ wy;r =~ jx(wyo ) by Corollary and Definition B3] and as
a consequence, wy,p is reflexive. The equivalence of three conditions (@)-(@) is
derived from Proposition B[] and Corollary B9 O

Corollary 5.7. Let us consider a Cartesian diagram

y —2 v

f/J, lf
T 2T
of locally Noetherian schemes in which f is a flat morphism locally of finite type.
Then, p~1 CM(Y/T) = CM(Y'/T") and p~* Gor(Y/T) = Gor(Y'/T"). Assume that
f is an So-morphism. Then:
(1) If wy,r satisfies relative Sy over T, then p*wy p ~ Wy .
(2) If every fiber Y; = f~1(t) is Gorenstein in codimension one, then, for any

m € Z, there is a canonical isomorphism

(p*wg,"/L]T)vv ~ wg;rf]/T,.

Here, if wyf;]T satisfies relative So over T', then p*wW]T o~ "JET]/T/'

Proof. The equality for CM is derived from Lemma 232 for F = Oy. If f is a
Cohen-Macaulay morphism, then p*wyp =~ wy p, by Theorem 46l This implies
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the equality for Gor by the Remark of Definition Assume that f is an Ss-
morphism. Then, f’ is so by Lemma Z32(). For open subsets Y := CM(Y/T)
and Y := p~1(Y"), we have

codim(Y;, \ Y”,Y}) = codim(Y; \ Y”,Y;) > 3
for any t' € T" and t = ¢(t) by Lemma [232[) and by the Ss-condition of Y;. If
wy 7 satisfies relative Sy over T', then the canonical base change isomorphism

(V—Q) p*wa/T ~ (JJY/b/T/
in Theorem [4.46] induces an isomorphism
prwyyr = JL(ptwyrlyr) = jiwys e = Wy
for the open immersion j': Y” < Y’ by Lemma Z33I(@) applied to (F,Z) =
(p*wy,r, Y’ \ Y"). This proves (I). In the situation of (@), codim(Y; \ Y°,Y;) > 2
for any t € T, where Y° = Gor(Y/T). In particular,
depthy,\yo F ®0, Oy, > 2

for any coherent Oy-module F satisfying relative Sy over T, by Lemma 2T5([2).
Thus, (@) is a consequence of Lemma [235 via the isomorphism (V=2]). O

Proposition 5.8. Let f: Y — T be an So-morphism of locally Noetherian schemes.
Then,

Homo, (wy)r,wy,r) =~ Oy
for the relative canonical sheaf wy,;r in the sense of Definition B3l If every fiber
satisfies S3, then

Eat, (wyyr,wyr) = 0.

Proof. Let j: Y? < Y be the open immersion from the relative Cohen-Macaulay
locus Y? = CM(Y/T). Now, we have a quasi-isomorphism

Oy» ~ RHomo_, (Wys 1, Wys /1)
by ([V=5)) in Fact EL35i[2). This induces another quasi-isomorphism
RHomo, (wyr, Rjs(wys /1)) ~gis Rjx RHomo_, (wys jp,wys /7)) = Rj Oy
and the spectral sequence
£yt = Extl (wyr, R%ju(wys 7)) = EPFT = RPT15,.0y.

Since wy ;1 = j«(wy» 1), the isomorphism 83’0 ~ £° and the injection 521’0 — &L
respectively, correspond to an isomorphism Home, (wy/T,wy/T) ~ j,Oy+ and an
injection Sa:t%gy (wy)r, wyyT) = R'j,Oy. Therefore, it suffices to prove that

(1) Oy =~ j.Oy», and

(2) if every fiber satisfies Sg, then R'j,Oy» = 0.
Here, (@) (resp. @) is equivalent to: depth, Oy > 2 (resp. > 3) for Z :== YV \ Y”
(cf. Property 2.6). If a fiber Y; satisfies Sy, then codim(Z NY;,Y;) > k, and
depthyny, Oy, > k by Lemma ZT52). Hence, we have depthy Oy > 2 (resp.
> 3) by Lemma [Z33I[B]) when every fiber Y; satisfies So (resp. S3). Thus, we are
done. |
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5.2. Some base change theorems for the relative canonical sheaf. For an
So-morphism f: Y — T of locally Noetherian schemes and for a fiber Y; = f~1(#),
let

bi(wyT): wy/r @0y Oy, = Wy, k) = jz(wa/]k(t))
be the canonical homomorphism induced from the base change isomorphism

wys /1 @0, Oyp = Wy k)

(cf. Theorem EAB), where Y’ = CM(Y/T), Y = Y* NY;, and j° is the open im-
mersion Y” < Y. The homomorphism ¢ (wy,r) is not necessarily an isomorphism
(e.g. Fact below). We shall give a sufficient condition for ¢;(wy,/r) to be an
isomorphism in Theorem (.10 below.

Lemma 5.9. Let f: Y — T be a Cohen—Macaulay morphism of locally Noetherian
schemes. Let L be a coherent Oy -module flat over T with an isomorphism
(V-3) L ®oy Oy, = wy, k)

for the fiber Y; = f=1(t) over a given point t € T. Then, for the sheaf M :=
Homo,, (L, wy,T), the canonical homomorphism L& M — wy 7 is an isomorphism
along Yy, and M is an invertible sheaf along Y; with an isomorphism M®o, Oy, ~
Oy,.
Proof. Since the assertions are local on Y;, we may assume that

(1) f has pure relative dimension d (cf. Lemma [239]), and
(2) f is the composite pot of a closed immersion ¢: Y < P and a smooth affine
morphism p: P — T of pure relative dimension e.

Then, f'Or ~ wyrld] and wy,p is flat over T' by Lemma E40. The complex
RHomo, (L, f'Or) is f-perfect by Fact E35([E), and there is a quasi-isomorphism
R, RHomo, (L, f'Or) ~qis RHomo, (1L, wp,r[e])
by Corollary E31, where p'Or = wp,re] by @) above. Localizing Y, by Re-

mark F36] we may assume furthermore that

(3) Re. RHomo, (L, f'Or) is quasi-isomorphic to a bounded complex £* =
[+ — & — &L — ...] of free Op-modules of finite rank.

Note that we have an isomorphism
HUE®) = v Homo, (L,wy)7) = .M.
For the closed immersion ¢: Y < P and the induced closed immersion ¢;: Y; <
P; = p~1(t), we have quasi-isomorphisms
E* @%P Op, ~qis RHomo,, ((t:L) ®%P Op,,wprle] ®5P Op,)
~qis RHomo,, (1t+(L ®oy Oy,),wp, jk)lel)

by [22] I, Prop. 7.1.2], since L is flat over T, ¢, L is perfect (cf. Fact 35 and
Remark A.36), and since P — T is smooth. ;jFrom the isomorphism (V=3 and the
base change isomorphism

bt(wy ) wy T @0y Oy, ~ Wy, /(1)
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(cf. Theorem [46), by duality for ¢4 (cf. Corollary A3T]), we have quasi-isomorphisms
E* @8, k(t) ~qis £° @5, Op, ~qis Rips RHomo,, (£ @0, Oy,,wy, /kwd])
qis Ru. RH 0MOy, (wYt Jk(t)) WYy /k(t) [d]) qis Lt OYt [d]a
where the last quasi-isomorphism follows from that wy, /() [d] is a dualizing complex
of Y;. Then, by Lemma [£.47] we see that
(4) £°[—d] is quasi-isomorphic to H~4(£®) ~ 1, M along Y3,
(5) txM is flat over T along Y;, and
(6) there is an isomorphism
LM ®o, Op, = H™UE* @6, k(t)) = 1.Oy,.
Hence, M is flat over T along Y; with an isomorphism M ®¢p, Oy, ~ Oy, by (@)

and (@). As a consequence, M is an invertible Oy-module along Y; by Fact Z27([2).
Now, we have a quasi-isomorphism

RHomo, (L, wyr) ~qis M
along Y; by @) and (4)). By the duality quasi-isomorphism
L ~qis RHomo, (RHomoe, (L,wy/7),wy/T)
(cf. Fact £.35i[2)), we have an isomorphism
L~ Homo, (M,wy,r) ~ wy;r Qo M1
along Y;, since M is invertible along Y;. Thus, we are done. O

Theorem 5.10. For an Sy-morphism f: Y — T of locally Noetherian schemes, let
L be a coherent Oy -module and set M = Homo, (L,wy 7). For an open subset
U of Y and for the fiber Y; = f~1(t) over a given point t € T, assume that
(i) codim(Y: \ U,Y;) > 2,
(ii) £ is flat over T with an isomorphism L ®@o, Oy, ~ Wy, /ky), and
(iii) one of the following two conditions is satisfied:
(a) Y: satisfies Sz and codim(Y; \ U,Y;) > 3;
(b) there is a positive integer r coprime to the characteristic of k(t) such
that L' = (L2")VY and wgf]/T = (w%TT)VV are invertible Oy -module
along Y;.
Then, M is an invertible Oy -module along Y; with an isomorphism M ®¢o, Oy, ~
Oy, , and the canonical homomorphism L®o, M — wy 7 is an isomorphism along
Y:. Moreover, the “base change homomorphism”

di(wy/r): wyT @0y Oy, = Wy, /k(t)
is an isomorphism.
Proof. Since the assertions are local on Y;, we may replace Y with an open subset
freely. Let Y? be the relative Cohen-Macaulay locus CM(Y/T'), which is an open

subset by Fact Z30(). Then, codim(Y; \ Y?,Y;) > 3 (resp. > 4 in the case (@)),
since Y; satisfies Sy (resp. S3). We set U := U NY”. Then,

(V-4)  codim(Y; \ U”,Y;) = codim((Y; \U) U (Y; \ Y*),Y;) >2  (resp. > 3).
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By Lemma applied to the Cohen-Macaulay morphism U’ — T, there is an
isomorphism

(1) Mlp» ®0,, Ovony, = Ovray, s
and there is an open neighborhood U’ of U’ NY; in U® such that

(2) M|y is an invertible sheaf, and

(3) the canonical homomorphism £ ®o, M — wy/r is an isomorphism on U’.
We set Z = Y\U'. Then, codim(¥;NZ,Y;) = codim(Y;\U”,Y;) > 2 by (V=4). Since
f is an So-morphism, by Lemma [Z39] we may assume that codim(Yy NZ, Yy ) > 2
for any ¢’ € T by replacing Y with an open subset. Then, depth, Oy > 2 by
Lemma 2:33|3]), and

wy T = Ju(wyr) =~ oW T)

for the open immersion j': U’ < Y by Corollary[4458l In particular, depth, M > 2,
ie., M~ jl.(M|ys), by the isomorphism

Homo, (L,wy/r) ~ Homo, (L, j.(wyr /7)) = ji Homo,, (Llur,wyr /7).

By (), £ satisfies relative So over T along Y3, since wy, /k(t) satisfies So by Corol-
lary Hence, we have also an isomorphism £ =~ j/ (L|y/) by Lemma 2Z34([).

We shall show that M is invertible along Y; by applying TheoremBI7to Y — T,
the closed subset Z = Y\ U’, and to the sheaf M as F. By the previous argument,
we have checked the conditions ({l) and () of Theorem BI7l The condition (i) is
derived from ()): In fact, we have

(V-5) Mpye = ji(M @0y Ov,)lvav,) = 32 (Oviny,) = Oy,

since we have depthy.~; Oy, > 2 by the S,-condition on Y; and by codim(Y; N
Z,Y:) > 2 (cf. Lemma 2T4]). Similarly, in the case of (@) above, we have the
condition (@) of Theorem B.I7 by the Ss-condition on Y; and by codim(Y;NZ,Y;) =
codim(Y; \ U?,Y;) > 3 (cf. (V=4)). In the case of () above, M) is an invertible
Oy-module along Y;. In fact, the restriction homomorphisms

MU 5E (M) and w@T — j;(wgJ/T)

are isomorphisms by Lemma Z34), since M["] and w@T are reflexive, and the
isomorphism
LMy ©o,, My, ~ wI[JTl/T

obtained by (2) and (@) induces an isomorphism
M[7] ~ ],/k (M[T] |U’) ~ ]; HomoU, (E[r] |U,7ng/T)
~ Homo, (E[r],j;(wgl/T)) ~ Homoe, (E[T],wgf]/T).

Thus, the condition (b)) of Theorem 317 is also satisfied in the case of (B)). Hence,
we can apply Theorem [B.17 and as a result, we see that M is an invertible sheaf
along Y;.
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Then, we have an isomorphism M ®e, Oy, ~ Oy, by ([V=5)), and the canonical
homomorphism £ ®o, M — wy/7 is an isomorphism along Y; by @)): In fact, it is
expressed as the composite

L 2oy, M ~j.(Lly) @0y M = ji(Llyr @ M|yr) =~ jiwyrr) = wy/r,

where the middle arrow is an isomorphism along Y; by the projection formula,
since M is invertible along Y;. In particular, wy,r ®o, Oy, satisfies S, and as a
consequence, ¢¢(wy ) is an isomorphism by (V=4)). Thus, we are done. O

6. Q-GORENSTEIN SCHEMES

A normal algebraic variety defined over a field is said to be Q-Gorenstein if some
positive multiple of the canonical divisor is Cartier. We shall generalize the notion
of Q-Gorenstein to locally Noetherian schemes. In Section [6.1] the notion of Q-
Gorenstein scheme is defined and its basic properties are given. In Section [6.2, we
consider the case of affine cones over polarized projective schemes over a field, and
determine when it is a Q-Gorenstein scheme.

6.1. Basic properties of Q-Gorenstein schemes. We begin with defining the
notion of Q-Gorenstein scheme in a general form.

Definition 6.1 (Q-Gorenstein scheme). Let X be a locally Noetherian scheme
admitting a dualizing complex locally on X and assume that X is Gorenstein in
codimension one, i.e., codim(X \ X°) > 2 for the Gorenstein locus X° = Gor(X)
(cf. Definition FTI0).

(1) The scheme X is said to be quasi-Gorenstein (or 1-Gorenstein) at a point
P if there exist an open neighborhood U of P and a dualizing complex R*®
of U such that H°(R®) is invertible at P. If X is quasi-Gorenstein at every
point, then X is said to be quasi-Gorenstein (or 1-Gorenstein).

(2) The scheme X is said to be Q-Gorenstein at P if there exist an open
neighborhood U of P, a dualizing complex R*® of U, and an integer r > 0
such that £ = H°(R*®) is invertible on the Gorenstein locus U° = U N X°
and

Jx (‘C®T‘U°)
is invertible at P, where j: U° — U denotes the open immersion. If X is
Q-Gorenstein at every point, then X is said to be Q-Gorenstein.

Definition 6.2 (Gorenstein index). For a Q-Gorenstein scheme X, the Gorenstein
index of X at P € X is defined to be the smallest positive integer r satisfying the
condition (@) of Definition for an open neighborhood of P. The least common
multiple of Gorenstein indices of X at all the points is called the Gorenstein index
of X, which might be 4o0.

Remark. The conditions () and (2)) of Definition do not depend on the choice
of R* by the essential uniqueness of the dualizing complex (cf. Remark [2]).

Lemma 6.3. (1) A quasi-Gorenstein (1-Gorenstein) scheme is nothing but a
Q-Gorenstein scheme of Gorenstein index one.
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(2) Every Q-Gorenstein scheme satisfies Ss.

Proof. ([{): Let X be alocally Noetherian scheme admitting a dualizing complex R*®
such that it is Gorenstein in codimension one and that £ := H°(R®) is invertible on
the Gorenstein locus X°. Then, £ satisfies Sg and £ — j.(L|x-) is an isomorphism
by Corollary £221 Hence, X is Q-Gorenstein with Gorenstein index one if and only
if £ is invertible, equivalently, X is quasi-Gorenstein.

@): We may assume that X admits a dualizing complex R® such that £ =
HO(R®) is invertible on the Gorenstein locus X°, since the condition Sy is local.
Then, M, := j.(L®"|x-) is invertible for some r by Definition E.I(2). Hence, M,
satisfies S5 by Corollary Therefore, X satisfies So. O

Lemma 6.4. Let X be a locally Noetherian scheme admitting a dualizing com-
plex R®. For the cohomology sheaf L := H°(R®) and for an open subset U with
codim(X \ U, X) > 2, assume that L]y is invertible and R®|y ~qis L|v. Then, the
following hold:
(1) If X satisfies Sy, then R® is an ordinary dualizing complex of X and the
dualizing sheaf L is a reflexive Ox-module satisfying Ss.
(2) If X satisfies Sy, then the double-dual L™ of L®™ satisfies Sy for any
integer m, and in particular,

£ = . (£]y)

for the open immersion j: U — X.
(3) The scheme X is Q-Gorenstein if and only if X satisfies So and, locally on
X, there is a positive integer r such that L") is invertible.

Proof. ([{)): This follows from Corollary with Lemmas 214 and 2Z22|(3).

@): Since depthy\;; Ox > 2 by the Ss-condition, we have the isomorphism
LM~ 5 (£2™|;) by Lemma EZ[). Hence, £I™ satisfies Sy by Corollary 216}
since L|y is invertible.

@): This is a consequence of ([2)) above and Lemma [63|2]) by the uniqueness of
dualizing complex explained in Remark (Il

Example 6.5. Let X be a k-scheme locally of finite type for a field k. Assume that
X satisfies Sy and codim(X \ X°, X) > 2 for the Gorenstein locus X° = Gor(X).
[m]

Let wx i be the canonical sheaf defined in Definition BTl and let wy; /i denote the
double-dual of w;@;%{ for any k € Z (cf. Proposition B.8). Then, X is Q-Gorenstein

at a point z if and only if wg]/k is invertible at = for some 7 > 0.

Example 6.6. Let X be a normal algebraic k-variety for a field k, i.e., a normal
integral separated scheme of finite type over k. Then, X is Q-Gorenstein if and
only if the multiple rKx of the canonical divisor Kx is Cartier for some r > 0.
In fact, X satisfies S, wxo/x =~ Oxo(Kx) for the Gorenstein locus X° = Gor(X),

where codim(X \ X°, X) > 2, and hence wg(%( ~ Ox(mKx) for any m € Z.

Lemma 6.7. Let X be a locally Noetherian scheme and let m:' Y — X be a smooth
surjective morphism. Then, for any integer k > 1, Y satisfies Sy if and only if X
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satisfies Si. In particular, Y is Cohen—Macaulay if and only if X is so. Moreover,
Y is Gorenstein if and only if X is so. Assume that X admits a dualizing complex
locally on X. Then, Y is quasi-Gorenstein (resp. Q-Gorenstein of index r) if and
only if X is so.

Proof. The first assertion follows from Fact ZZ27([@). In particular, we have the
equivalence for the Cohen—-Macaulay property (cf. Remark [Z12]). The Gorenstein
case follows from Fact It remains to prove the case of Q-Gorenstein prop-
erty, since “quasi-Gorenstein” is nothing but “Q-Gorenstein of index one” (cf.
Lemma [63|(I])). Since the Q-Gorenstein property is local and it implies So, we
may assume that

e X has a dualizing complex R%,

e X and Y are affine schemes satisfying S, and

e ™ = po ) for an étale morphism \: Y — X x A? and the first projection
p: X xA? — X for the “d-dimensional affine space” A? = Spec Z[x1, .. ., x4]
for some integer d > 0 (cf. [I1] IV, Cor. (17.11.4)]).

In particular, 7 has pure relative dimension d. We may assume also that R% is an
ordinary dualizing complex by Lemma T4 We set Lx to be the dualizing sheaf
HO(RS,).

By Examples 23] and 224, we see that R} := 7'(R%) is a dualizing complex
of Y, and we have an isomorphism

wy/x = ) = AN (wx xatyx) = Oy
for the relative dualizing sheaf wy,x. Thus, m'(Ox) ~qis Oy[d], and
RY ~qis 7' (Ox) ®, Lr*(R%) ~qis Lr" (R)1d]

(cf. Example £.23] Fact A34[2)). Since Y satisfies Sy, the shift R [—d] is an
ordinary dualizing complex on Y by the proof of Lemma [£T4l Here, the associated
dualizing sheaf Ly := H(R$[—d]) is isomorphic to 7*(Lx). Since 7 is faithfully
flat, we see that Ly is invertible if and only if Lx is so (cf. Lemma [A7). For an
integer m, let E[;("] (resp. /:[;” ]) be the double-dual of L™ (resp. £3™). Then,
[,g;"] ~ * (ﬁ[;(n}) for any m € Z by Remark[2.21]1 Hence, for a given integer r, Egt] is
invertible if and only if E[Q is invertible by the same argument as above. Therefore,
by Lemma [64[@]), Y is Q-Gorenstein of index r if and only if X is so. Thus, we are
done. O

Remark 6.8. By Lemma [6.7] we see that the Q-Gorenstein property is local even
in the étale topology. More precisely, for an étale morphism X’ — X, for a point
P € X, and for a point P’ € X’ lying over P, X is Q-Gorenstein of index r at P if
and only if X’ is so at P’.

6.2. Affine cones of polarized projective schemes over a field. For an affine
cone over a projective scheme over a field k, we shall determine when it is Cohen—
Macaulay, Gorenstein, Q-Gorenstein, etc., under suitable conditions. We fix a field
k which is not necessarily algebraically closed.
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Definition 6.9 (affine cone). A polarized projective scheme over k is a pair (S,.A)
consisting of a projective scheme S over k and an ample invertible sheaf A on S.
The polarized projective scheme (S, .A) is said to be connected if S is connected. For
a connected polarized projective scheme (.5, .A), the affine cone of (S,.A) defined to
be Spec R for the graded k-algebra

R=R(S,A) := @mzo HO(S, A®™).

We denote the affine cone by Cone(S,.A). Note that the closed subscheme of
Cone(S, . A) = Spec R defined by the ideal

Ry =@D _ H(s.4%m)

of R is isomorphic to Spec H(S, Og), and the support of the closed subscheme is a
point, since the finite-dimensional k-algebra H°(S, Og) is an Artinian local ring by
the connectedness of S. The point is called the vertex of Cone(S,.A).

Remark. The k-algebra R(S,.A) above is finitely generated, since S is projective
and A is ample. Moreover, S ~ Proj R(S,.A). In some articles, the affine cone of
(S, A) is defined to be Spec R’ for the graded subring R’ of R such that R, = R,
for n > 0 and R{, =

Similar results to the following are well-known on the structure of affine cones
(cf. [111 11, Prop. (8.6.2), (8.8.2)]).

Lemma 6.10. For a connected polarized projective scheme (S, A) overk, let X be
the affine cone Cone(S, A). Let m: Y — S be the geometric line bundle associated
with A, i.e., Y = V(A) = Specg R, where R = @,,5¢ A®™. Let E be the zero-
section of m corresponding to the projection R — Og to the component of degree
zero. Then, E is a relative Cartier divisor over S (cf. [I1l IV, Déf. (21.15.2)]) with
an isomorphism Oy (—FE) ~ 7* A. Moreover, there exists a projective k-morphism
w:Y — X such that

(1) Ox — Oy is an isomorphism,

(2) 7*A is u-ample,

(3) u=Y(P) =E as a closed subset of Y for the vertex P of X, and

(4) p induces an isomorphism Y \ E ~ X \ P.

Proof. For an open subset U = Spec B of S with an isomorphism ¢: A|y ~ Oy, we
have an isomorphism ¢: 7=1(U) =~ Spec B[t] for the polynomial B-algebra Blt] of
one variable such that ¢ induces an isomorphism

HO(’]Til(U),Oy) _ @mzo HO(U, A®m) ~ B[t] = ®m20 Bt™

of graded B-algebras. Then, E|.-1(yy is a Cartier divisor corresponding to div(t)
on Spec B(t], which is relatively Cartier over Spec B (cf. [I1} IV, (21.15.3.3)]). Thus,
E is a relative Cartier divisor over S, since such open subsets U cover S. The exact
sequence 0 — Oy (—E) — Oy — O — 0 induces an isomorphism

W*OY(—E> >~ @mzl A®7n ~ A®OS R(—l)
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of graded R-modules, where R(—1) denotes the twisted graded module. In partic-
ular, Oy (—F) ~ 7*A.

The canonical homomorphisms H%(S, A®™) ®, Og — A®™ induce a graded
homomorphism ®: Ry Og — R of graded Og-algebras, where R := R(S,.A). The
cokernel of ® is a finitely generated Og-module, since A®™ is generated by global
sections for m > 0. Hence, R is a finitely generated R ® Og-module. Therefore,
® defines a finite morphism

v:Y =Specg R — Specg(R Rk Og) ~ X Xgpeck S

over S. Let p1: X Xgpeck S — X and pa: X Xgpeck S — S be the first and
second projections. Then, u := p;ov:Y — X is a projective morphism, since
S is projective over k. Here, Ox =~ u.Oy, since HO(Y7 Oy) =~ HO(S7 R) ~ R.
Moreover 7*A is p-ample, since p3.A is relatively ample over X and 7*A is the
pullback by the finite morphism ». Thus, p satisfies the conditions () and (2]).
Since the projection R — Og defining E induces the projection R = HO(S, R) —
H°(S,Og) to the component of degree zero, the scheme-theoretic image p(E) is
the zero-dimensional closed subscheme Spec H(S, Og) of X defined by the ideal
Ry = @D,,-0 H°(S, A®™) of R. Hence, the image u(E) is set-theoretically the
vertex P. We shall show that the morphism

WY =Y \p N (P) = X' :=X\P

induced by p is an isomorphism. Since p is proper, so is y’. Moreover, the structure
sheaf Oy is p/-ample, since 7* A ~ Oy (—F) is p-ample by (2). Hence, p’ is a
finite morphism. Thus, p’ is an isomorphism by (), since Ox: ~ p,Oy/,. As a
consequence, () is derived from (3]), and it remains to prove @) for p and P.

For a global section f of A®™ for some m > 0, we set V(f) to be the closed
subscheme Spec(R/fR) of X = Spec R by regarding f as a homogeneous element
of R of degree m. We also set a closed subscheme W(f) of S to be the “zero-
subscheme” of f, i.e., it is defined by the exact sequence

A®—m ®—f> Ogs — OW(f) — 0.

The condition (@) is derived from the following (@) for any f and for any affine open
subsets U = Spec B with an isomorphism ¢: Aly ~ Oy:
() p V()N Y U) = (7' W(f)UE) N7 1(U) as a subset of 7~ 1(U).

In fact, if (@) holds for all U and f, then =V (f) = 7~1W(f) U E for any f, and
we have p~'(P) = E by N, V(f) = P and (", W(f) = 0. Here, N, V(f) = P
and (; W(f) = 0 hold, since all of such f € R generate the ideal R and since
A is ample. We shall prove (&) as follows. Let ¢: 7~ 1(U) ~ Spec B[t] be the
isomorphism above defined by €. We set

b=e®"(flv) € H(U,Oy) = B

for the induced isomorphism e®™: A®™|; ~ O. Then, W(f) N U = Spec B/bB,
and ¢ induces isomorphisms p =V (f)N7~1(U) ~ Spec B[t]/(bt™) and EN7~1(U)
~ Spec B[t]/(t). This implies (&), and we are done. O
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Corollary 6.11. In the situation of Lemma [6.10Q, for an integer k > 1, S satis-
fies Sk if and only if X \ P satisfies Si,. Moreover, S is Cohen—Macaulay (resp.

Gorenstein, resp. quasi-Gorenstein, resp. Q-Gorenstein of Gorenstein index r) if
and only if X \ P is so.

Proof. This is a consequence of Lemmas [6.7] and [6.10], since X \ P ~ Y\ E is smooth
and surjective over S. (]

The following result is essentially well-known (cf. [36, Prop. 1.7], [43] Lem. 4.3]).

Proposition 6.12. Let X be the affine cone of a connected polarized projective
scheme (S, A) over k and let P be the vertex of X. For a coherent Og-module G,
we set F = . (7*G) for the morphisms p: Y — X and w:' Y — S in Lemma
for the geometric line bundle Y = Vg(A) over S. We define also F := J«(Flx\p)
for the open immersion j: X \ P — X, and for simplicity, we define
H'(G(m)) == H'(S,G ®@0, A®™)
form € Z and i > 0. Then, the following hold:
(0) If G = Og, then F ~ Ox.
(1) The inequality depth Fp > 1 holds; Equivalently, F — F is injective.
(2) The inequality depth Fp > 2 holds if and only if H°(G(m)) = 0 for any
m < 0. This condition is also equivalent to that F ~ F.
(3) The quasi-coherent Ox -module F is coherent if and only if H(G(m)) =
0 for m < 0. In particular, F is coherent if G satisfies Sy and every
irreducible component of Supp G has positive dimension.
(4) Assume that F is coherent. Then, for an integer k > 3, depthfp >k
holds if and only if H'(G(m)) = 0 for anym € Z and 0 < i < k — 1.
(5) The F satisfies Sy if and only if G satisfies S.
(6) The F satisfies So if and only if G satisfies So and H*(G(m)) = 0 for any
m < 0.
(7) Assume that F is coherent. Then, for an integer k > 3, F satisfies S, if and
only if G satisfies Sy, and H'(G(m)) =0 for any m € Z and 0 < i < k — 1.
(8) Assume that F is coherent. Then, F is a Cohen—Macaulay Ox-module if
and only G is a Cohen-Macaulay Og-module and H'(G(m)) = 0 for any
m € Z and 0 < i < dim Supp G.

Proof. The assertion () is a consequence of Lemma [E.I0(T). We consider the local
cohomology sheaves H%(F') with support in P for 7/ = F or F’ = F. These are
quasi-coherent sheaves on X supported on P (cf. [I7, Prop. 2.1]). Thus,

Hp (X, F') = HY (X, Hp(F'))

and it is also isomorphic to the stalk (H%(F'))p at P. Note that, for a positive
integer k, when F’ is coherent, depth Fj > k if and only if (H%(F’))p = 0 for any
i < k (cf. Property [Z6]). There exist an exact sequence

0— HY(X,F) - H (X, F) - H (X \P,F) = Hp(X,F) =0
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and isomorphisms H* (X \ P, F') ~ HS (X, F') for all i > 1 (cf. [I7, Prop. 2.2]).
Hence, if 7’ is a coherent O x-module, then depth Fp > k if and only if
(i) H(X, F') — H°(X \ P, F') is injective, when k = 1,
(i) H°(X,F') — HY(X \ P,F’) is an isomorphism, when k = 2, and
(iit) H°(X,F') — H°(X \ P,F’) is an isomorphism and H (X \ P, F') = 0 for
any 0 < i< k—1, when k > 3.
By construction and by Lemma [GI0(H]), we have isomorphisms

HO(X, F) ~ H(Y,7%G) ~ @mzo H°(G(m)), and
HY(X\ P,F)~H (Y \ E,7*G) ~ @mez H(G(m))

for any i > 0, where the homomorphism H°(Y, 7*G) — H°(Y\ E, 7*G) is an injection
and is the identity on each component H(G(m)) of degree m > 0. We have (I,
(@), and (@) by considering the conditions ({)-(ii) above. Moreover, () holds, since
F is coherent if and only if F p/Fp has a finite-dimensional k-vector space, and
since we have an isomorphism

Fo/Fo~@ _ B(Gm))

by the argument above: This implies the first half of (@], and the second half follows
from Lemma 2.9

For an integer k > 0, F|x\ p satisfies Sy if and only if G satisfies Sy, by [11} IV,
Cor. (6.4.2)], since Y\ E ~ X \ P. Thus, the assertion (&) (resp. (@), resp. ()
follows from () (resp. @), resp. @)) by the equivalence: (i) < () in Lemma 214
applied to Z = P. The last assertion (B) is a consequence of (@), since dim F p =
dim Supp G + 1. O

Proposition 6.13. Let (S,.A) be a connected polarized projective scheme over k
and let X be the affine cone Cone(S,A). Let m: Y — S and p:' Y — X be the
morphisms in Lemma GI0. Assume that X satisfies So and n := dim S > 0.
Then,

(0) S and Y also satisfy Sa, and the schemes S, Y, and X are all equi-

dimensional.

Let wx i (resp. wy i, resp. ws/k) be the canom’cal sheaf of X (resp. Y, resp. S) in
the sense of Definition A28, and let wX/k (resp. ws/k) denote the double-dual of
w?;;k (resp. ws/k) for an mteger .

(1) There exist isomorphisms
(VI-1) Wy = 1 (ws/k ®ogs A)  and
(V1-2) W)y = 7 (W), Bog A®T)
for any integer r. Moreover, wgz]/k 18 isomorphic to the double-dual of

[ (wgf]/k) for any integer r.

(2) For any integer r and for any integer k > 3,
depth(wg(]/k) >k
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holds for the vertex P of X if and only if
Hi(s, wg}k ®os A®™) =0

[r]

for anym € Z and any 0 < i < k — 1. Moreover, Wik satisfies Sy for the

same r and k if and only if wg}k satisfies Sy and
Hi(S, wg}k @05 A®™) =0

foranym € Z and any 0 <i < k — 1.
(3) For any positive integer r, the following three conditions are equivalent to

each other:

(i) wif), ~ Ox.

(ii) wgz]/k is invertible.

(iii) wg/]k ~ A®! for an integer l.
Proof. The assertion () is a consequence of Proposition B.I2[@) for G = Og,
Lemma 6.7 and Fact Z24(T). Let wg,, (resp. wy . resp. wg ) be the canoni-
cal dualizing complex of S (resp. Y, resp. X) in the sense of Definition 4261 Note
that wg [—n] (resp. wy ;[-n — 1], resp. w ;[-n — 1]) is an ordinary dualizing
complex by Lemma [£.27] for n = dim .S. Then,

w;’/lk qis Qslf/sm ®éy LW*(W:G/IK) ~gis L™ (A ®és W:‘;/k)[l]a

since 7 is separated and smooth (cf. Example [£23]) and since there is an isomor-
phism 2y ¢ ~ 7*A (cf. [II, IV, Cor. 16.4.9]). Thus, we have the isomorphism
(VI=I). By taking double-dual of tensor powers of both sides of (VI=1)), we have
the isomorphism (VI=2) for any integer r by Remark 2211 Since X satisfies Sa, any
reflexive Ox-module F satisfies Sy by Corollary 2.:23] and moreover, depthp F > 2,
since codim(P, X) = dim X = n + 1 > 2. Thus, we have isomorphisms

[r] ~ [r] [r] ))\/\/

Wity 2 G (@S p i) = G (s (@) [0 P)) 22 (e (i)

for any integer r and for the open immersion j: X \ P < X. This proves ().

By (), we see that (@) is a consequence of (@) and (7)) of Proposition [G.12]applied
to the case: G = wg/]k ® A®" where F ~ wgz]/k. It remains to prove the equivalence
of the conditions ([{)—@) of @)). Since [) = () is trivial, it is enough to prove ()
= (@) and @) = @.

Proof of () = (@): Assume that wg}k ~ A®! for some r > 0 and | € Z. Since
Oy (—E) ~ 7* A for the zero-section E of Lemma [6.10 we have

“ i Boy Oy ((r +1B) = 1" (W], © A% 8o, A% (1) = Oy

from the isomorphism in (). By taking p., we have: w[;]/]k ~ 1,0y ~ Ox.

Proof of () = (il): Assume that wg?/k is invertible. Then, w@k is invertible on

Y\ E, since Y\ E ~ X \ P. Moreover, wg/]k is invertible by (VI=2)), since Y\ E — S
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is faithfully flat (cf. Lemma [A7)). Thus, wgf]/k is also invertible again by (VI=2)).
There is an injection

6: Wy, ®oy Oy (—bE) = p(wh),)

for some integer b such that the cokernel of ¢ is supported on E. In fact, for any
integer b, we have a canonical homomorphism

[r]

e (Wil @0y Oy (<bE)) = ju(pe (@), ®0y Oy (=bE))|x\p)

~ (e (@i [x\p) = Wiy

whose cokernel is supported on P, and if b is sufficiently large, then
1 e (W), @0y Oy (—bE)) = wil), @0, Oy (~bE)
is surjective, since Oy (—F) ~ 7*A is relatively ample over X. Thus,

1 (W), @0y Oy (=bE)) = i (wi),)

induces the injection ¢, since the invertible sheaf p1* (w;}/k) does not contain non-zero

coherent Oy -submodule whose support is contained in E by the S;-condition on Y.
Let b be a minimal integer with an injection ¢ above. Then, ¢ is an isomorphism.
This is shown as follows. The homomorphism

8lp: (W), ®oy Oy (-bE)) ®o, Op — i (wi),) ®oy Op

is not zero by the minimality of b. Here, ¢|g corresponds to a non-zero homomor-
phism
wg/]k Rog .A®(r+b) — Og
by the isomorphism 7|g: E ~ S and by (VI=2)). In particular, there is an non-
empty open subset U C S such that ¢ is an isomorphism on 7=*(U). On the other
hand, since ¢ is an injection between invertible sheaves, there is an effective Cartier
divisor D on Y such that the cokernel of ¢ is isomorphic to Op ®oe, ﬂ*(w[;]/k)
and that Supp D C E. Then, D is a relative Cartier divisor over S, since every
fiber of 7 is Al (cf. [11} IV, (21.15.3.3)]). Thus, 7|p: D — S is a flat and finite
morphism. If D # 0, then m(D) = S by the connectedness of S, and it contradicts
Supp D N7~ Y(U) = 0. Thus, D = 0, and consequently, ¢ is an isomorphism.
Therefore, we have an isomorphism

W[sf/]lk ®og AP ~ O

corresponding to the isomorphism ¢|g, and the condition (i) is satisfied for I =
—(r +b). Thus, we have proved the equivalence of [{)—(), and we are done. [

Corollary 6.14. Let X be the affine cone of a connected polarized scheme (S,.A)
over k. Assume that n = dim S > 0 and H°(S, A®™) = 0 for any m < 0. Then,
the following hold:
(1) The scheme X is Gorenstein if and only if
e S is Gorenstein,
. H"(S’7 A®™) =0 for any 0 <i < n and any m € Z, and
® Wy A% for some integer I.
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(2) The scheme X is quasi-Gorenstein if and only if S is quasi-Gorenstein and
Ws/k = A% for some integer 1.

(3) The scheme X is Q-Gorenstein if and only if S is Q-Gorenstein and wg/]k ~
A% for some integers r > 0 and .

Proof. The assertion (IJ) follows from (2) and Proposition EI2([®). The “only if”
parts of ([2) and (B) are shown as follows. Assume that X is Q-Gorenstein of
Gorenstein index r. Note that X is quasi-Gorenstein if and only if r = 1 by
Lemma B3|[). Then, S is Q-Gorenstein by Corollary G111 Moreover, wg/]k ~ A®!
for some [ € Z by the implication () = (@) of Proposition EI3|B). Thus, the
“only if” parts are proved. The “if” parts of () and () are shown as follows.
Assume that S is Q-Gorenstein. Then, X \ P is Q-Gorenstein by Corollary In
particular, codim(X\ X°, X) > 2 for the Gorenstein locus X° = Gor(X). Moreover,
X satisfies Sy by Proposition B2, since S satisfies Sy and HY(S, A®™) = 0 for
any m < 0 by assumption. If wg/]k ~ A®! for integers r > 0 and I, then wgzl/]k
is invertible by the implication (@) = () of Proposition EI3|[@]). Thus, X is Q-
Gorenstein. This proves the “if” part of [B]). The “if” part of (2] follows also from
the argument above by setting » = 1. Thus, we are done. (I

Corollary 6.15. Let X be the affine cone of a connected polarized scheme (.S,.A)
over k. Assume that S is Cohen—Macaulay, n := dim .S > 0, and

H'(S, A®™) = H'(S, ws/k ® A®™) =0
for any i > 0 and m > 0. Then, the following hold:

(1) The affine cone X satisfies So. In particular, S is reduced (resp. normal)
if and only if X is so.

(2) The following conditions are equivalent to each other for an integer k > 3:
(a) depth OXJD > k;
(b) X satisfies Sg;
(c) H'(S,05) =0 for any 0 <i < k — 1.

(3) The affine cone X is Cohen—Macaulay if and only if H'(S,Og) = 0 for any
0<i<n.

(4) The following conditions are equivalent to each other for an integer k > 3:
(a) depth(wx/x)p = k;
(b) wx/k satisfies Sg;
(c) H'(S,05) =0 for anyn —k+1<i<n.

(5) When S is Gorenstein, X is Q-Gorenstein if and only if w?/’"k ~ A% for
some integers v > 0 and [.

(6) When S is Gorenstein, X is Gorenstein if and only if wg ~ A% for some
1 € Z and if H'(S,0g) =0 for any 0 < i < n.

Proof. By duality (cf. Corollary E32]), we have
Hi(S, A®m) ~ Hn—i(S7 Wk R0 A®—m)v

for any integers m and ¢, and by assumption, this is zero either if m > 0 and i > 0
orif m < 0 and ¢ < n. Thus, X satisfies Sy by considering the case: m < 0
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and i = 0 and by Proposition GI2([) applied to G = Og. This proves (). The
assertion (2) (resp. @) is a consequence of [{@l) and (@) of Proposition [6.12] applied
to G = Og (resp. § = wgyx ® A). Similarly, the assertion (B) is a consequence of
Proposition [EI2(®) applied to G = Og. Moreover, the assertion (@) (resp. (@) is
derived from (@) (resp. () of Corollary Thus, we are done. O

7. Q-GORENSTEIN MORPHISMS

Section [ introduces the notion of “Q-Gorenstein morphism” and its weak forms:
“naively Q-Gorenstein morphism” and “virtually Q-Gorenstein morphism.” We
inspect relations between these three notions, and prove some expected properties
for Q-Gorenstein morphisms.

In Sections[Z.I]and [[.2] we define the notions of Q-Gorenstein morphism, naively
Q-Gorenstein morphism, and virtually Q-Gorenstein morphism, and we discuss
their properties giving some criteria for a morphism to be Q-Gorenstein. A Q-
Gorenstein morphism is always naively and virtually Q-Gorenstein. In Section [I]
we provide a new example of naively Q-Gorenstein morphisms which are not Q-
Gorenstein, by Lemma [Z.7] and Example [[.8 and discuss the relative Gorenstein
index for a naively Q-Gorenstein morphism in Proposition [[.LTOl Theorem [.17] in
Section shows that a virtually Q-Gorenstein morphism is a Q-Gorenstein mor-
phism under some mild conditions. In Section[7.3] several basic properties including
base change of Q-Gorenstein morphisms and of their variants are discussed.

Finally, in Section [[.4] we shall prove several important theorems. We prove
three criteria for a morphism to be Q-Gorenstein: an infinitesimal criterion (Theo-
rem [(.24)), a valuative criterion (Theorem [[.25]), and a criterion by Ss-conditions on
fibers (Theorem [(.26). Moreover, we prove the existence theorem of Q-Gorenstein
refinement (Theorem [T.27]).

7.1. Q-Gorenstein morphisms and naively Q-Gorenstein morphisms.

Definition 7.1. Let f: Y — T be an Sy-morphism of locally Noetherian schemes
such that every fiber is Q-Gorenstein. Let wy /7 denote the relative canonical sheaf
in the sense of Definition and let wy]}]T denote the double-dual of wfi’/"% for
m € Z.

(1) The morphism f is said to be naively Q-Gorenstein at a point y € Y if
[r]
Y/T
at every point of Y, then it is called a naively Q-Gorenstein morphism.

(2) If wg]T satisfies relative Sq over T' (cf. Definition 2:29) for any m € Z, then
f is called a Q-Gorenstein morphism. If f|y: U — T is a Q-Gorenstein
morphism for an open neighborhood U of a point y € Y, then f is said to

w is invertible at y for some integer r > 0. If f is naively Q-Gorenstein

be Q-Gorenstein at y.

Remark 7.2. For an So-morphism f: Y — T of locally Noetherian schemes, if every

fiber is Gorenstein in codimension one and if wy 7 is an invertible Oy-module, then

[m] ®m

f is a Q-Gorenstein morphism. In fact, w;'}T ~ Wy satisfies relative So over T
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for any m € Z and every fiber Y; = f~1(¢) is Q-Gorenstein of Gorenstein index
one, since wy /7 ®o, Oy, ~ Wy, k) (cf. Proposition B.5]).

The Q-Gorenstein morphisms and the naively Q-Gorenstein morphisms are char-
acterized as follows.

Lemma 7.3. Let Y and T be locally Noetherian schemes and f: Y — T a flat
morphism locally of finite type. Let j: Y° — Y be the open immersion from an
open subset Y° of the relative Gorenstein locus Gor(Y/T). For a point y €Y, the
fibers Y, = f7Y(t) and Y2 =Y°NY; overt= f(y), and for a positive integer r, let
us consider the following conditions:

(i) The fiber Y; satisfies So at y and codim, (Y; \ Y°,Y;) > 2.

(ii) The direct image sheaf j. (wgz/T) is invertible at y.

(iii) The fiber Yy is Q-Gorenstein at y, and r is divisible by the Gorenstein index

of Yy at y.
(iv) For any 0 < k <, the base change homomorphism

K], . k k . k
@) @0, Oy, = @yl = 5 (T8 )
induced from the base change isomorphism wy.,r @ Oy, =~ Wy, /k(t) (cf.
Proposition B.8)) is surjective at y.
(v) There is an open neighborhood U of y such that fly: U — T is a naively
Q-Gorenstein morphism and wg]/T 1$ invertible.

(vi) There is an open neighborhood U of y such that fly: U — T is a Q-
[r]
U/T

Then, one has the following equivalences and implication on these conditions:
e @+ @ < ®@:;
o @ + @ = (@;
o (@ + ) < &)

Proof. First, we shall prove: @) + (@) = (). We set M, := j.(wy% ;). Then,
M, ®o, Oy, is invertible at y by (i), and

Gorenstein morphism and w 18 tnvertible.

M, @0, Oy, = J« (M, R0y OY,:)|Y°) = j*(w?j’;/k(t)) = w@/k(t)

is an isomorphism at y by (). In particular, wy,;] k(1) is invertible at y. Thus, (i)
holds (cf. Definitions G.I([2) and 6.2]).

Second, we shall prove [@) = (@) + (@) and () = (@) + ). We may assume
that f is naively Q-Gorenstein. Since every fiber Y; is a Q-Gorenstein scheme, we
have () (cf. Definition [6.1]). Moreover,

k :
ng}T = Jx (ng/T)

for any k € Z by Proposition[5.6l Hence, () is also satisfied, since w@T is invertible
(k]

for an integer r > 0. If f is Q-Gorenstein, then wy /T is flat over T" and wgf}T@)oY Oy,

satisfies the So-condition for any ¢ € T (cf. Definition [TII[2])); thus, ¢£k] is an
isomorphism for any ¢ € T and k € Z, and in particular, () and () are satisfied.
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Finally, we shall prove ([{) + (@) = @) and @) + () = (). Assume that (i)
holds. By Lemma[2:39] there is an open neighborhood U of y such that f|y: U — T
is an So-morphism having pure relative dimension and codim(Uy \ Y°, Uy ) > 2 for
any t' € f(U), where Uy = U N Yy; Thus,

BC}T > Jx (wl(z})]r’cho/T)

for any k € Z by Lemma [Z34(@). Therefore, if () also holds, then wg} /7 18
invertible for an open neighborhood U’ of y in U, and f|y.: U' — T is a naively Q-
Gorenstein morphism. This proves () + () = ([@). Next, assume that (i) and ()
hold. Note that () implies (). Thus, we have the same open neighborhood U of
y as above. For any integer 0 < k < r, there is an open neighborhood Uj, of y in U’

above such that wr[f,] /T satisfies relative Sy over T, by () and by Proposition
k

w

[r

In particular, wY]/T is invertible at y by Fact ZZ27[2). In fact, it is flat over T at y

and its restriction to the fiber Y; is invertible at y. Then, w[YT}T is invertible on an

open neighborhood U;’ of y in U].. We set U” to be the intersection of Uj, for all
0 <k <rand U/. Then, wg},, /T satisfies relative So over T for any [ € Z, since

M, yem (%]
WU///T — (wU”/T) ® UJU///T

for integers m and k such that [ = mr + k and 0 < k < r. This means that
fluw: U” — T is a Q-Gorenstein morphism, and it proves () + ) = .

Thus, we are done. ([l

Remark. For f: Y — T and j: Y° < Y in Lemma [.3] we have:

(1) The set of points y € Y satisfying the condition (i) of Lemma [T.3 is open.

(2) If every fiber of f satisfies Sy and is Gorenstein in codimension one, then
Oy ~ j.Oyo and codim(Y'\Y°,Y) > 2. Here, if Y is connected in addition,
then f has pure relative dimension.

(3) The set of points y € Y at which f is naively Q-Gorenstein is open.

(4) The set of points y € Y at which f is Q-Gorenstein is open.

In fact, the property () is mentioned in the proof of Lemma[(3] and The property

@) is derived from Lemmas 234, [Z36] and The properties @) and [ are
deduced from Definition [T1]

Ezample 7.4. For an So-morphism f: Y — T of locally Noetherian schemes, even
if every fiber is Q-Gorenstein, f need not to be a naively Q-Gorenstein morphism.
We shall give an example of f. Let Fy = P(O @ O(4)) — P! be the ruling of the
Hirzebruch surface of degree 4. The contraction of the unique (—4)-curve o is a
birational morphism to the weighted projective space P(1,1,4). ;From an exact
sequence 0 — Op1 — O(2) ® O(2) — O(4) — 0 on P!, we have a family F — Al
of Hirzebruch surfaces such that the fiber over 0 is isomorphic to F4 and the other
fibers are isomorphic to P(O(2) ©O(2)) ~ P! x P!. Furthermore, we can extend the
contraction morphism of o to a birational morphism F — P over A! to a normal
projective variety P which contracts o only. For the flat morphism P — Al every
fiber is Q-Gorenstein, since
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e the fiber over 0 is isomorphic to P(1,1,4),
e the other fibers are isomorphic to P' x P!,

However, P is not Q-Gorenstein, i.e., the canonical divisor Kp is not Q-Cartier.
This follows from Krpo = Ky,0 = 2 for the canonical divisor K of F'. Since F' — P
is an isomorphism in codimension one, we see that wl[g]/ Al = wg}/k = Op(rKp) is

not invertible for any r > 0. Thus, f is not naively Q-Gorenstein.

Remark 7.5. Let f: Y — T be an Sg-morphism of locally Noetherian schemes whose
fibers are all Gorenstein in codimension one. We define the Kolldr condition for f
along a fiber Y; = f~1(t) to be the condition that the base change homomorphism

Em] : wgfr;]T ®oy Oy, — W[an}k(t)

is an isomorphism for any m € Z. By Lemma [Z.3] we can prove:

e if a fiber Y; is Q-Gorenstein, then the Kolldr condition for f is satisfied
along Y; if and only if f is Q-Gorenstein along Y;.
The Kollar condition has been considered for deformations of Q-Gorenstein alge-
braic varieties of characteristic zero in [26, 2.1.2], [20, §2, Property K], etc.

Fact 7.6. Some naively Q-Gorenstein morphisms are not Q-Gorenstein. Kollar
gives an example of a naively Q-Gorenstein morphism which is not Q-Gorenstein
in the positive characteristic case (cf. [I5, 14.7], [30, Exam. 7.6]). Patakfalvi has
constructed an example of characteristic zero in [43] Th. 1.2] using some example
of projective cones (cf. [43] Prop. 5.4]): This is a projective flat morphism H — B
of normal algebraic varieties over a field k of characteristic zero such that

e B is an open subset of Pj,

e a closed fiber H has a unique singular point, but other fibers are all smooth

of dimension > 3,

° wgz]/ g is invertible for some r > 0, but

wWi/B B0y Ony # Wiy k-

We can construct another example by the following lemma, which is inspired by
Patakfalvi’s work [43].

Lemma 7.7. Let S be a non-singular projective variety of dimension > 2 over
an algebraically closed field k of characteristic zero, and let L be an invertible Og-
module of order | > 1, i.e., | is the smallest positive integer such that L% ~ Og.
Assume that Hl(S, Og) =0, Hl(S, L) # 0, and that Kg is ample. For an integer
r > 2, we set
A= Os(TKs) QL= w?/rk (9 ﬁ_l,

and let X be the affine cone Cone(S, A) with a vertex P. Then,

(1) X is normal Q-Gorenstein variety with one isolated singularity P of Goren-

stein indezx lr,

and the following hold for any non-constant function f: X — A} =: T

(2) f is a naively Q-Gorenstein morphism along the fiber F = f~1(f(P));
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(3) w[;]/T ~ w[;]/k does not satisfy relative So over T at P. In particular, f is
not Q-Gorenstein at P.

Proof. [)): The affine cone X is Q-Gorenstein by Corollary [6.14IB]). Here, X \ P
is a non-singular variety by Lemma [EI0I@]). Therefore, X is a normal variety. We
have wgl{/]k ~ Ox by Proposition [6.I3[B]). If w[;g;]k is invertible for some m > 0, then
wg’/’ﬁ ~ A®! for some integer I’ by Proposition G.I3I@), but it implies that m = I'r,
and L& ~ Og. Hence, the Gorenstein index of X is Ir.

@): For any ¢ > 0 and m > 0, we have

H'(S, A®™) = H' (S, ws/x ®0y A®™) =0
by the Kodaira vanishing theorem, since
AP @0 wg, = AB T Qg wlt @ L7

is ample. Then, we can apply Corollary GI5I2). As a consequence, X satisfies
S3, since H'(S,0g) = 0. Now, f is a flat morphism, since X is irreducible and
dominates T'. Hence, F satisfies Sy by the equality

depth Op, = depth Ox , — depth O f(,) = depthOx , — 1

for any closed point x € F (cf. (I2) in Fact Z27). Thus, f is an Sp-morphism
along F', and f is a naively Q-Gorenstein morphism along F' (cf. Definition [Z.TI[)),
since wgl{/]T ~ wglg’/]k is invertible by ().

@): By assumption, we have

H(S,w), ® A7) = HY(S, £) #0.

Then, depth(wg]/k)p = 2 by Proposition [6.I3I[2)). Since w[;]/]k is flat over T, we have

depth(wg]/k Royx OF)p = depth(wg’é]/k)P —depthOr ¢(p) =1

by ([I=2) in Fact This implies that w?/k ~ wgz]/T does not satisfy relative S,
over T' at P. Therefore, f is not Q-Gorenstein at P (cf. Definition [TI([2])). O

We have the following example of non-singular projective varieties S with invert-
ible Og-module £ of order | = 2 in Lemma [T. 7

Ezample 7.8. Let V be an abelian variety of dimension d > 3 and let ¢: V' — V be
the involution defined by ¢(v) = —v with respect to the group structure on V. Let
W be the quotient variety V/{t). Then, W is a normal projective variety with only
isolated singular points, and

(VIL-1) HL (W, Oy) = 0,
since it is isomorphic to the invariant part of Hl(V, Oy) by the induced action of
¢, which is just the multiplication map by —1. The quotient morphism 7: V. — W

is a double-cover étale outside the singular locus of W, and we have isomorphisms
m.0v =~ Ow @ wyi and w[;,]/k ~ Oy . In particular,

(VIL-2) H' (W, ww i) = H'(V, Oy) =~ k®
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by (VIIEI). We can take a smooth ample divisor S on W away from the singular
locus of W. Then, dimS = d — 1 > 2. By the Kodaira vanishing theorem applied
to the ample divisor 7*S on V, we have H (V, 7* Oy (—=S)) = 0 for any 0 < i < d =
dim W. Hence,

(VII-3) H (W, Ow (—S)) = H (W, ww ik ®oy, Ow(—S)) =0

for i = 1 and 2. The canonical divisor Kg is ample by
wER ~ (Wi Bow Ow(29)) ®oy, Os ~ O(29).
We define £ := wyyjx ®o,, Og. This is invertible and L&? ~ Og. We have
H'(S,05) =0 and H'(S, L)~ k%

by applying (VIIE), (VII=2), and (VII=3) to the cohomology long exact sequences
derived from two short exact sequences:

0— Ow(=S) = Ow — Os — 0,

0 = ww/k ®oy Ow (—S) = wwy — L — 0.

The order of £ equals two by H'(S, £) % H'(S,Og). Therefore, S and L satisfy
the conditions of Lemma [(.7]

Definition 7.9 (relative Gorenstein index). For a naively Q-Gorenstein morphism
f:Y — T and for a point y € Y, the relative Gorenstein index of f at y is the
smallest positive integer r such that w@T is invertible at y. The least common mul-
tiple of relative Gorenstein indices at all the points is called the relative Gorenstein

index of f, which might be +oco.

Proposition 7.10. Let f: Y — T be a naively Q-Gorenstein morphism. For
a point y € Y, let m be the relative Gorenstein index of f at y and let r be the
Gorenstein index of Y; = f~1(t) aty, wheret = f(y). Then, m = r in the following
three cases:

(i) f is Q-Gorenstein at y;
(ii) Y; is Gorenstein in codimension two and satisfies Sg at y;
(iii) m is coprime to the characteristic of k(t).

Proof. Note that m is divisible by r. In fact, the base change homomorphism
[m] [m]
Wy @0y Oy, — Wy, k()

is an isomorphism at y, since the left hand side is invertible at y and since Y;
satisfies So. We set M = w@T. It is enough to prove that M is invertible at
y. Let Z be the complement of the relative Gorenstein locus Gor(Y/T) and let
j: Y\ Z < Y be the open immersion. Note that codim(Z NY;,Y;) > 2 (> 3 in
case () and codim(Z,Y) > 2. If f is Q-Gorenstein, then M satisfies relative S,
over T'; in particular,

M@0, Oy, ~ j. (M ®o, Oy,)lyvi\z) ~ w;]/]k(t)
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and hence, M is invertible at y by Fact Z27([2). Thus, it is enough to consider the
cases () and (). By replacing Y with an open neighborhood of y, we may assume
the following:

(1) depthy Oy > 2 (cf. Lemma 233|[));
(2) My z is invertible and depth, M > 2 (cf. Proposition G.6]);
(3) j«(M ®0y Oy,ly\z) =~ w@/k(t) is invertible;
(4) one of the following holds:
(a) depthyny, Oy, > 3;
(b) MM/l ~ WW]T is invertible, where m/r is coprime to the character-
istic of k(t).

Then, M is invertible by Theorem BI7] and we are done. O

Remark 7.11. A special case of Proposition [[.I0 for naively Q-Gorenstein mor-
phisms is stated in [29, Lem. 3.16], where T is the spectrum of a complete Noether-
ian local C-algebra and the closed fiber Y; is a normal complex algebraic surface.
However, the proof of |29, Lem. 3.16] has two problems. We explain them using
the notation there, where (X — S,0 € S) corresponds to (Y — T.,t € T) in our
situation, and 0 is the closed point of S. The central fiber X is only a germ of
complex algebraic surface in [29] §3], but here, for simplicity, we consider X, as a
usual algebraic surface and hence consider X — S as a morphism of finite type.
The authors of [29] write X© for Gor(X/S) and write Y? — X0 for the cyclic étale
cover associated with an isomorphism w%]s ~ Ox. They want to prove that m is
equal to the Gorenstein index r of the fiber Xy of X — S over 0.

The first problem is in the proof in the case where S = Spec A is Artinian. This
is minor and is caused by omitting an explanation of the isomorphism WE?;]S ~ Oyx.
In this situation, they assert that it is enough to prove the fiber Y of Y? — §
over 0 to be connected. However, Y is connected even if r # m. In fact, for
isomorphisms u: wg]o ™ Ox, and v: w%]s ~ Ox, we have an invertible element
0 of Ox, such that

vlx, = OuE™"
as an isomorphism wg?}]s ®ox Ox, ~ Ox,. Here, we can take v so that § can not
have k-th root in O, for any integer k dividing r. Then, Y is connected for such
v. Of course, this problem is resolved by replacing the isomorphism v with v(é)’1
for a function 6 € Ox which is a lift of 6 € Ox,.

The second problem is in the reduction to the Artinian case. They set A, =
A/m" S, = Spec A, and X? = X" xg S, for n > 1 and for the maximal ideal m
of A, and they obtain an isomorphism

P, : w;@;g/sn ~ Oxo
for any n by applying the assertion: m = r, to the Artinian case. However, just
after the isomorphism ®,,, they deduce an isomorphism w;@;g /s = Oxo without
mentioning any reason. This is thought of as a lack of the proof, by Remark .13
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For, their isomorphism above induces isomorphisms
w;]/s ® Ox, ~ j*(w?}g/sn)

for all n, while we always have an isomorphism

Witys = I Fas);

where j: X% < X denotes the open immersion.
7.2. Virtually Q-Gorenstein morphisms.

Definition 7.12. Let f: Y — T be a morphism locally of finite type between
locally Noetherian schemes. For a given point y € Y and the image o = f(y), the
morphism f is said to be virtually Q-Gorenstein at y if

e fis flat at y,
e the fiber Y, = f~!(0) is Q-Gorenstein at y,
and if there exist an open neighborhood U of y in Y and a reflexive Oy-module £
satisfying the following conditions:
(i) £L®o, Ov, ~ wy, /k(o), Where U, = U NYy;
(ii) for any integer m, the double-dual L™ of £L&™ satisfies relative Sy over T
at y.
If f is virtually Q-Gorenstein at every point of Y, then it is called a wvirtually
Q- Gorenstein morphism.

Remark 7.13. If the morphism f above is virtually Q-Gorenstein at y, then there
exist an open neighborhood U of y in Y and a reflexive Op-module £ such that

(1) flu: U — T is an Sg-morphism of pure relative dimension,
(2) every non-empty fiber U; = UNY; of f|y is Gorenstein in codimension one,
i.e., codim(U; \ Y°,U;) > 2 for any ¢ € f(U), where Y° = Gor(Y/T),

(3) L®oy Ovu, ~ wu, k(o)

(4) Llynyo is invertible,

(5) £ is invertible for some integer » > 0, and

(6) L™ satisfies relative Sy over T for any integer m.
In fact, we have an open neighborhood U satisfying (Il) and (@) by Lemma
By shrinking U and by Fact Z27[2]), we may assume the existence of £ satisfying
@), @), and (@), where r is a multiple the Gorenstein index of Y, at y. Then,
for any point t € f(U), the coherent sheaf EE:;L] = LM @ Oy, is locally equi-

dimensional by Fact Z24]), since Supp L™ = U, SuppEEZ)L] = U, and since
U, is catenary satisfying S,. Hence, the relative So-locus So(£I™ /T') is an open
subset of U by Fact EZ30(E), and now, y € So(L™ /T) for any m € Z. We have
So(LMH1/TY = So(LI™ /T for any m by L™+ ~ £IT @ £l and hence the
intersection of Sy(LI™ /T) for all m is still an open neighborhood of y. Thus, we
can also assume ([B)). As a consequence of (Il)—(@), we see that

(7) U, =UNY, is Q-Gorenstein, and
(8) LM ®p, Oy, ~ wgi]/k(o) for any m € Z.
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In fact, £I™ ®0, Oy, satisfies Sy by (@) and its depth along U, \ Y° is > 2 by ()
and @) (cf. Lemma ZTI5I2])); this implies ). The condition () follows from (Bl
and (8).

Remark. The set of points y € T at which f is virtually Q-Gorenstein, is not open
in general. Even if a morphism f:Y — T is virtually Q-Gorenstein at any point
of a fiber Y,, the other fibers Y; are not necessarily Q-Gorenstein even if t € T is
sufficiently close to the point 0. The following gives such an example.

Ezxample 7.14. Let X be a non-singular projective variety over an algebraically
closed field k of characteristic zero such that the dualizing sheaf wy /i is ample,
H'(X,0x) # 0, and Hl(X,wX/k) = 0. Then, n := dim X > 3. As an example
of X, we can take the product C' x S of a non-singular projective curve C of
genus > 2 and a non-singular projective surface S such that wg/ is ample and
H'(S,05) = H*(S,05) = 0. Let us take a positive-dimensional nonsingular affine
subvariety T = Spec A of the Picard scheme Pic’(X) which contains the origin 0 of
Pic’(X). Then, there is an invertible sheaf N on X := X Xspeck 1 such that

° /\/'(t) is algebraically equivalent to zero for any t € T, and
o N ~ Ox, if and only if t = 0,
where X; = X Xspeck Speck(t) and Ny = N @0y, Ox, (cf. Notation 2.25). We
define a Z>o-graded A-algebra R = GamZO R,, by
Ry = H(X4, (p* (wx/x) ®ox, N)E™)

for the projection p: X4 — X, and let f: Y := Spec R — T = Spec A be the
induced affine morphism. We shall prove the following by replacing T with a
suitable open neighborhood of 0:

(1) f is a flat morphism;

(2) for any t € T, the fiber Y; = f~1(t) is isomorphic to the affine cone of the

polarized scheme (X¢,wx, k() @ Np));
(3) the set of points t € T such that Yy is Q-Gorenstein, is a countable set;
(4) f is virtually Q-Gorenstein at any point of the fiber Y.

For the proof, we consider a graded k(t)-algebra R* = @, - Ry, defined by
Rl =H(Xy, (wx, k() ®ox, Nip) ™)
Then, Spec R! is the affine cone associated with (X;,wx, ® J\f(t)). On the other
hand, Y; = Spec(R ®4 k(t)), and we have a natural homomorphism
o' R4 k(t) = R
of graded k(t)-algebras, since (p*wx /i) ®ox, Ox, =~ wx,/kt)- Let ol be the
homomorphism R,, ®4 k(t) — R!, of m-th graded piece of ¢'. Note that
H' (X4, (wx, k() ®0x, Ni) ™) =0

for any m > 2 by the Kodaira vanishing theorem, since wx i is ample and Ny is
algebraically equivalent to zero. Moreover, there is an open neighborhood U of 0
in T such that

HY (X, wx, k() ®ox, Nipy) =0
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for any ¢t € U by the upper semi-continuity theorem (cf. [T1 III, Th. (7.7.5) 1], [38]
§5, Cor., p. 50]), since we have assumed that H*(X, wx/k) = 0. We may replace T
with U. Then, ¢!, is an isomorphism for any m > 1 and for any ¢t € T by [11}, III,
Th. (7.7.5) 0] (cf. |38, §5, Cor. 3, p. 53]). Since ¢} is obviously an isomorphism, ¢
is an isomorphism and Y; ~ Spec R? for any t € T. Moreover R,, is a flat A-module
for any m > 0 by [I1}, 11T, Cor. (7.5.5)] (cf. [I8, III, Th. 12.11]), and it implies that
Y = Spec R is flat over T. This proves (1) and (I).

By Corollary G.I0I[H]), Y; is Q-Gorenstein if and only if ./\/(Q?)T ~ Oy, for some
r > 0. For an integer r > 0, let F. be the kernel of the r-th power map PiCO(X) —
Pic’(X) which sends an invertible sheaf £ to £®". Then, F, is a finite set, and
F,.NT is just the set of points ¢t € T such that /\/(%r ~ Ox,. Thus, Y; is Q-Gorenstein
if and only if ¢ is contained in the countable set  J, F- NT. This proves ().

Note that wy,x =~ Oy, by Proposition B.I3IB). Hence, f: Y — T is virtually
Q-Gorenstein at any point of Yy, since Oy plays the role of £ in Definition
This proves ().

Lemma 7.15. Let f:' Y — T be a flat morphism locally of finite type between
locally Noetherian schemes and let o € T be a point such that Y, = f~1(0) is Q-
Gorenstein. Let us given an isomorphism u: ng/k(o) — Oy, for a positive integer

r—1 .
R = @izo w&l/k(o)
to be the Z/rZ-graded Oy, -algebra defined by the isomorphism u. Then, the follow-
ing two conditions are equivalent to each other:
(1) Locally on'Y, there exists a Z/rZ-graded coherent Oy -algebra R™ flat over
T with an isomorphism

R~ @0, Oy, ~R

r, and we set

as a Z/rZ-graded Oy, -algebra.
(2) The morphism f is virtually Q-Gorenstein along Y.

Proof. We write X =Y, and k = k(o) for short. First, we shall show ({0) = ).
We may assume that R~ is defined on Y. Thus, there exist coherent Oy -modules
L; for 0 <i <r —1 such that
r—1
R =P _, L

as a Z/rZ-graded Oy-algebra. Hence, £; are all flat over T', and moreover,

o Ei®oy(’)szg?/kforanylgigr—l,

e the multiplication map E?i — L; restricts to the canonical homomorphism
w?jk — wgl(]/k forany 1 <i¢<r—1, and

e the multiplication map £}" — Oy induces the isomorphism u: wgz]/k —

Ox.
We shall show that L[lﬂ ~ Oy and L£; ~ L[f] for any 1 < i < r along X =Y,. Now,
L; satisfies relative S, over T along X for any 0 < ¢ < r—1, since w[;(]/k satisfies So
(cf. Lemma [5.2). Thus, there is a closed subset Z of Y such that
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e Gor(X)C X\ Z,

o Li|y\z is invertible for any 0 <i <7 —1 (cf. Fact Z27([2),

e the multiplication maps L‘lg’i — L; and L — Oy are isomorphisms on

Y\ Z.

By replacing Y with its open subset, we may assume that codim(Y; N Z,Y;) > 2 for
any t € T by Lemma[2.39 since codim(Y,NZ,Y,) > codim(X \ Gor(X), X) > 2 and
may assume that £; satisfies relative So over T for all ¢ (cf. Fact Z30(2])). Then,
for any m > 1 and any 1 <4 <7 — 1, we have

5[1m] ~ (LY ™y z) and  L; ~ j.(Lily\z)

for the open immersion j: Y\ Z <— Y by {@) and (Bl of Lemma [Z34] respectively.
This argument shows that £; ~ E[li] and Oy ~ E[lr] along X =Y.

As a consequence, £ satisfies the conditions in Definition for any point of
Y,, and we have proved () = (@).

Next, we shall show: @) = ([@). We may assume the existence of a reflexive
Oy-module £ which satisfies the conditions of Remark [[.I3] for U = Y and for the
fiber Y, = X. By replacing Y with an open neighborhood of an arbitrary point of
Y,, we may assume that there is an isomorphism u™: £I") — Oy which restricts

to the composite of the isomorphism £['] ®oy Ox =~ w;]/k and the isomorphism

[r]

u: wyy — Ox. Then, u™ defines a Z/rZ-graded Oy-algebra
r—1 .
~ (4]
R @i:O E ’

which satisfies the condition ({J). Thus, we are done. O

Remark 7.16. The Q-Gorenstein deformation in the sense of Hacking [I4, Def.
3.1] is considered as a virtually Q-Gorenstein deformation by Lemma Hack-
ing’s notion is generalized to the notion of Kolldr family of Q-line bundles by
Abramovich-Hassett (cf. [I, Def. 5.2.1]). This is related to the notion of virtually
Q-Gorenstein morphism as follows. Let f: Y — T be an Ss-morphism between
Noetherian schemes such that every fiber is a connected, reduced, and Q-Gorenstein
scheme. Let £ be a reflexive Oy-module. Then, £ satisfies the conditions (i) and
(@) of Definition for U =Y and for any y € Y, if and only if (Y — T,L) is a
Kolldr family of Q-line bundles with £ ® Oy, ~ wy, /i) for all t € T. However, in

[m]

their study of Kollar families (Y — T, £) for £ = wy7, every fiber and every wy- /T

are assumed to be Cohen-Macaulay (cf. [1, Rem. 5.3.9, 5.3.10]).

A Q-Gorenstein morphism is always virtually Q-Gorenstein. The following the-
orem shows conversely that a virtually Q-Gorenstein morphism is a Q-Gorenstein
morphism under some mild conditions. In particular, we see that a virtually Q-
Gorenstein morphism is Q-Gorenstein if it is a Cohen—Macaulay morphism.

Theorem 7.17. Let Y and T be locally Noetherian schemes and f: Y — T a flat
morphism locally of finite type. For a point t € T, assume that f is virtually Q-
Gorenstein at any point of the fiber Yy = f=1(t) and that one of the following two
conditions is satisfied:
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(a) Y; satisfies Ss;
(b) there is a positive integer r coprime to the characteristic of k(t) such that
w@T is invertible along Y;.

Then, f is Q-Gorenstein along Y;.

Proof. Since the assertion is local, by Remark [[.13] we may assume that f is an
So-morphism and there is a reflexive Oy-module £ satisfying the following two
conditions:

(1) LM = (£L®™)VV satisfies relative Sy over T for any integer m;

(2) there is an isomorphism £ ®o, Oy, ~ wy, k)
We can prove the following for M := Homo, (L, wy,r) applying Theorem B.I0

(3) M is an invertible Oy -module along Y3;

(4) L~ wyr ®o, M1 along Y.
In fact, the condition () of Theorem holds by () and (@) above, and the
condition (i) of Theorem holds for U = CM(Y/T) (resp. U = Gor(Y/T)) in
case @) (resp. (B)). The remaining condition () of Theorem .10 is checked as
follows. In case (@), the condition () @) of Theorem (.10 is satisfied for U above.
In case (B), £ is invertible along Y; by () and (2)), since

rlr] ®oy Oy, =~ wg/r}]/k(t) o~ w@T ®oy Oy,

is invertible (cf. Fact Z227|2))); Thus, the condition ({l) (b)) of Theorem EI0lis sat-
isfied in this case. Therefore, we can apply Theorem 510l and obtain (B) and (@).
As a consequence, we have an isomorphism

UJE;T/L]T ~ £lm] Ro, ME™

[m]

for any m € Z along Y;. Therefore, wy, /T satisfies relative Sy over T along Y; by
@), and hence f: Y — T is Q-Gorenstein along Y;. (]

Corollary 7.18. Let Y and T be locally Noetherian schemes and f: Y — T a flat
morphism locally of finite type. For a pointt € T, assume that the fiber Y; = f~1(t)
is quasi-Gorenstein. If w@T is invertible for a positive integer r coprime to the

characteristic of k(t), then f is Q-Gorenstein along Y.

Proof. The morphism f is virtually Q-Gorenstein at any point of Yz, since Oy plays
the role of £ in Definition [[.T2 Thus, we are done by Theorem [.I7 in the case

@. 0

7.3. Basic properties of Q-Gorenstein morphism. We shall explain several
properties of Q-Gorenstein morphisms and its variants. The following is a criterion
for a morphism to be naively Q-Gorenstein.

Lemma 7.19. Let f: Y — T be an So-morphism of locally Noetherian schemes.
Assume that T is Q-Gorenstein and that every fiber of f is Gorenstein in codi-
mension one. Then, [ is a naively Q-Gorenstein morphism if and only if Y is
Q-Gorenstein.
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Proof. Since the Q-Gorenstein properties are local, we may assume that 7" and Y
are affine and that f is of finite type with pure relative dimension (cf. Lemma 2.39).
Since the Q-Gorenstein scheme T satisfies So (cf. Lemma [B3I2])), we may assume
the following (cf. Lemma [6.4):

e T admits an ordinary dualizing complex R® (cf. Lemma ET4)) with the
dualizing sheaf wr := HO(R®);
o the double-dual wgzn Vof w$™ satisfies Sy for any integer m;

) w[TT] is invertible for a positive integer r.

For the Gorenstein locus T° := Gor(T) and the relative Gorenstein locus Y° :=
Gor(Y/T), we set U := f~1(T°) and U° := UNY°. Then, codim(Y \ U,Y) > 2 by
(=) in Fact and Property ZI@3), since f is flat and codim(T \ T°,T) > 2.
Hence, codim(Y \ U°,Y) > 2 by codim(Y \ Y°,Y) > 2, since f is an Sp-morphism
(cf. Lemma [Z36)). The twisted inverse image R} := f'(R*®) is a dualizing complex
of Y (cf. Example 224)) with a quasi-isomorphism

RY ~qis ['Or ®%, Lf*(R®)
by ([[V=6)) in Fact .35, where
wYO/T[d] Zqis f!OT|Y°

for the relative dimension d of f. Note that Y satisfies Sy by Fact Z27([6]). Thus,
RY[—d] is an ordinary dualizing complex of Y, and wy := H~%4(R}) is a dualizing
sheaf of Y. In particular, U° is a Gorenstein scheme with the dualizing sheaf

wy|ve = H U RY)|ve ~ wyo rlve ®oye (flue)* (wro).
By Lemma [6.4] we have an isomorphism

(VII-4) Wi = W @0, fH(WiY)

for any integer m. For a point y € Y, Y is Q-Gorenstein at y if and only if wgfn ]
is invertible at y for some m > 0. On the other hand, f is naively Q-Gorenstein
at y if and only of wgf/l]T is invertible at y for some m > 0. Since w%ﬂ is invertible,
the isomorphism (VII4) implies that Y is Q-Gorenstein if and only if f is naively

Q-Gorenstein. 0

The following is a criterion for a morphism to be Q-Gorenstein.

Proposition 7.20. Let f: Y — T be a flat morphism locally of finite type between
locally Noetherian schemes. For a pointt € T, assume that the fiber Y; = f=1(t) is
a Q-Gorenstein scheme. If there exist coherent Oy -modules M, for m > 1 such
that

M, @0, Oy, =~ W;n/]k(t) and My, |yo =~ w;‘?f}T,

where Y° is the relative Gorenstein locus Gor(Y/T), then f is a Q-Gorenstein

morphism along Yz.
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Proof. We set My = Oy. Then, M,, ) = M, ®o, Oy, satisfies Sy along Y; for
any m > 0. For the complement Z =Y \ Y°, we have codim(Z NY;, Y;) > 2, since
Y; is Q-Gorenstein. Hence, M,, is flat over T along Y; by Lemma BI|[), since
M lye >~ w%@”/T is flat over T and

depthzny, Mo, 1) > 2

(cf. Lemma 2ZT5I2])). As a consequence, M, satisfies relative Sy over T along Y}
for any m > 0. In particular, f is an Sg-morphism along Y; by considering the
case m = 0. By replacing Y with an open neighborhood of Y;, we may assume
that f is an So-morphism and that codim(Z NY:,Yy) > 2 for any ¢ € f(Y), by
Lemma 2:39

Now, SuppM,, = Y, since it contains the dense open subset Y°. Hence,
Supp M, vy = Yy for any t' € T', and it is locally equi-dimensional by Fact ZZ24i(T]).
Thus, Uy, := Sa(M,,) is open by Fact Z30(2), and

depthyy, M|, > 2
by Lemma 233|[]). It implies that, for the open immersion j: Y° < Y,

[m]

My = ju(Muplye) ~ J*(W%T}T) = Wy/r

[m]
Y/T
along Y; for any m > 0. Therefore, f is a Q-Gorenstein morphism along Y;. O

is an isomorphism along Y;. As a consequence, w satisfies relative Sy over T

We have the following base change properties for Q-Gorenstein morphisms and
for their variants.

Proposition 7.21. Let f: Y — T be a flat morphism locally of finite type between
locally Noetherian schemes and let

y — 2y

f/l lf

T LT
be a Cartesian diagram of schemes such that T’ is also locally Noetherian.
(1) If f is a nawely Q-Gorenstein morphism, then so is f'. Here, if w@T 18

invertible, then w@/T, ~ p* (w@T)

(2) In case q: T' — T is a flat and surjective morphism, if ' is naively Q-
Gorenstein, then so is f.

(3) If every fiber of [ is Q-Gorenstein, then every fiber of f' is so. The converse
holds if q is surjective.

(4) If f is virtually Q-Gorenstein at a point y € Y, then f' is so at any point
of p~'(y)-

(5) If f is Q-Gorenstein, then f' is so and wgyf]/T, ~ p*(ng}]T) for any m € Z.

Proof. Note that Y’° = p~1(Y°) for Y'° := Gor(Y’'/T") (cf. Corollary 5.7)) and that
(VIL-5) codim(Y; \ Y°,Y;) = codim(Yy, \ Y'°, V")
for any ¢/ € T and t = ¢(t') (cf. Lemma Z32|[)).
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): The base change f’ is an Sg-morphism by Lemma 232|[), and we have an
isomorphism wgfl, =D (w@T) by Corollary E7[2). In particular, f’ is a naively
Q-Gorenstein morphism.

@): The morphism f is an Se-morphism by Lemma Z32(3) applied to F =
Oy, since p: Y’ — Y is surjective. Moreover, every fiber of f is Gorenstein in
codimension one by (VIL-5). Now, p* (wy,n ]T) is reflexive for any m by Remark 2211

since p is flat. Hence, p* (UJ@]T) ~ wgff]/T, for any m by Corollary B74[2). If p* (w@T)

is invertible, then so is wg]/T, since p is fully faithful (cf. Lemma [A7). Therefore,
f is naively Q-Gorenstein.

@): This is obtained by applying () and (@) to the case where T' = Speck(t)
and 7" = Speck(t') and by Lemma [7.T9l

[ @): We may assume that the conditions of Remark [[13] are satisfied for U =Y,
a certain reflexive Oy-module £, and for o = f(y). Then, the conditions () and
@) of Remark [.T3] imply

depthy,\yo Oy, > 2

for any t € f(Y), by LemmaZI5(Z). Hence, p*(LI"™) is a reflexive Oy -module and
(p*£)[™) ~ p* (L") for any m, by Lemma 35 applied to Z = Y \ Y° and to £,
Here, (p*£)l"™ satisfies relative Sy over 77 by Remark [ZI3|([6) and Lemma E32(H).
Furthermore, for any point ¢ € 77 and ¢t = ¢(¢'), we have isomorphisms

P L®o,, Oy, = (L B0y Ov,) @y k(t') = wy, /i) @k k(t') = wy, jirr),

by applying Lemma [54 to Speck(t’) — Speck(t). Therefore, f’ is virtually Q-
Gorenstein at any point of p~(y), since p* L plays the role of £ in Definition [.121

@): By (@), f’ is an Sy-morphism whose fibers are all Q-Gorenstein. If wgfr/L]T
[m]

satisfies relative Sy over T, then p*wy/,». does so over T" by Lemma 232(#), and
p*wg]T ~ wgrf]/T, by Corollary B.7[2). Therefore, f' is Q-Gorenstein (cf. Defini-
tion [ZTN[2)). O

We have the following properties for compositions of Q-Gorenstein morphisms
and of their variants.

Proposition 7.22. Let f:Y — T and g: X — Y be flat morphisms of locally
Noetherian schemes.

(1) If f and g are naively Q-Gorenstein, then f o g is so, and

L‘JEZ]/T = "J[);]/Y ®ox ff(w@T)

for an integer r > 0 such that wg?/y and wg]/T are wnvertible.

(2) Assume that g is a Q-Gorenstein morphism. If [ is virtually Q-Gorenstein
at a point y, then f o g virtually Q-Gorenstein at any point g~ *(y).
(3) If f and g are Q-Gorenstein morphisms, then f o g is so, and

w[;g;]T ~ w[;g}]y R0y 9*(w¥7]:r)

for any integer m.
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Proof. ([{l): Every fiber of the composite f o g is Q-Gorenstein by Lemma and
by Proposition [[ZI|[I). In particular, f o ¢g is an Sg-morphism. For the relative
Gorenstein loci Y° := Gor(Y/T) and X° := Gor(X/Y), let V be the intersection
X°ng ' (Y®). Then, V C Gor(X/T) and codim(X; \ V,X;) > 2 for any fiber
X; = (fog) t(t) of fog. We set

M, = WE?]/Y ® g*(ng)

7] [r]

for an integer r > 0 such that Wx/y and Wy ) are invertible. Then, M|y ~ wg;T

and
My = js (w{%;T) = CL’g]/T
for the open immersion j: V' — X since f o g is an Sy-morphism. Thus, fo g is
naively Q-Gorenstein.
[@): We may assume that the conditions of Remark [[.13 are satisfied for U =Y,

a certain reflexive Oy-module £, and for o = f(y). We set

N 1= w5y @0 g7 (L")

for an integer m. This is flat over T, since £I™ is so over T' and w&?}ly is so

over Y. Let g, = g|x,: X, — Y, be the induced Q-Gorenstein morphism (cf.
Proposition [[2T[H)). Then, X, = g~ *(Y,) is Q-Gorenstein by Remark [ZI3|[7) and
Lemma [Z.19], and we have isomorphisms

N ®ox Ox, =~ (WE?}]Y ®ox Ox,) Rox, 9o (ng}k(o))

~ ,Iml x(, [m] ~m]
~ Wiy, ®0x, 96 Wy, i) = WX, k(o)

where the first isomorphism is derived from Remark [[T3I[8]) and the last one from

(VII=4) in the proof of Lemma [T In particular, N, satisfies relative Sy over T
along X,. Then, for /' := N7, we have isomorphisms

Now 2 e WNinl) = i (55 B0, (6" L)1) = 5N ]y) = A

along X, by Lemma [Z34[H]), where j: V' < X is the open immersion in the proof of
(@. Hence, N satisfies relative Sy over T along X, for any m, and N ®o L Ox, =~
Wx, /k(o)- Lherefore, fog is virtually Q-Gorenstein at any point of g 1(y), since N
plays the role of £ in Definition

B): We can apply the argument in the proof of (2)) by setting £ = wy,r. Then,

[m]

N 2 G (Nonlv) 2 G (w3 @0, (9wl ) = du(wifrn) = Wil

along X,. Hence, WE?I/}T satisfies relative Sy over T for any m. Consequently, fog

is Q-Gorenstein with an isomorphism w%]T o~ wg?;]y ®oy 9* (wgﬁr;}T) for any m € Z.

Thus, we are done. ([l

Corollary 7.23. Let Y and T be locally Noetherian schemes and f:Y — T a flat
morphism locally of finite type. Let g: X — Y be a smooth separated surjective
morphism from a locally Noetherian scheme X. Then, [ is Q-Gorenstein if and
onlyif fog: X =Y —= T is so.
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Proof. For the relative Gorenstein loci Y° := Gor(Y/T) and X° := Gor(X/T), we
have X° = g71(Y°) by Lemma [67} Let g°: X° — Y° be the induced smooth
morphism. Then,

(VII-6) Wxo T = Wxo ye ®0xe 97 (Wyo,T)
for the relative canonical sheaves wyo p, wxo 7, and wxo,yo (cf. @) and @) of
Fact £34)). For a point t € T, let g;: X; — Y; be the smooth morphism induced on
the fibers Y; = f~1(¢) and X; = (f o g)~1(¢).

By Proposition [[22][2]), it is enough to prove the “if” part. Assume that fog is
Q-Gorenstein. Then, every fiber Y; is Q-Gorenstein by Lemma 6.7l In particular,
Y; satisfies So and codim(Y; \ Y°,Y;) > 2. Hence, by Lemma 2341,

W = Ge(WE )

for any m € Z, where j: Y° — Y is the open immersion. For the open immersion
jx: X° — X, we have an isomorphism

7 @) ~ g7 (Ga@Er) = xe(9” (WET7))

by the flat base change isomorphism (cf. Lemma [A20). Thus,

Wi o G (WS 1) = G Tk (W) ®oe 07 (WE70)) = Wy @0y g (Wih)
for any m € Z by (VII=G). In particular, w{f}T is flat over T, since g is faithfully
flat (cf. Lemma [AZ6]). Moreover,

9t (‘“JWT ®oy Oy,) = th/Yt ®ox, (W&/}T ®ox Ox,) = “’%/@t Qox, w[XnZ]/k(t)

satisfies Sy for any ¢ € T (cf. Lemma [64[2)). As a consequence, wg]T ®o, Oy,

satisfies So by Fact ZZ7([@]). Therefore, wgf;]T satisfies relative Ss over T for any m,
and Y — T is a Q-Gorenstein morphism. |

Remark. Considering an étale morphism ¢ in Corollary [[.23] we see that, for a
given flat morphism f:Y — T locally of finite type between locally Noetherian
schemes, the Q-Gorenstein condition at a point of Y is not only Zariski local but
also étale local (cf. Remark [6.8]).

7.4. Theorems on Q-Gorenstein morphisms. First of all, we shall prove the
following theorem on infinitesimal criterion:

Theorem 7.24 (infinitesimal criterion). Let f: Y — T be a flat morphism lo-
cally of finite type between locally Noetherian schemes. Then, [ is a Q-Gorenstein
morphism if and only if the base change fa: Y4 =Y X1 Spec A — Spec A is a
Q-Gorenstein morphism for any closed immersion Spec A — T for any Artinian
local ring A.

Proof. The “only if” part is a consequence of Proposition [[.22T[[B]). For the “if” part,
it is enough to prove that f is a Q-Gorenstein morphism along the fiber Y, = f~1(0)
for an arbitrary fixed point o € T. Then, we may assume that T = Spec R for a
the local ring R = Or,, and that the induced morphism f,: Y, =Y X7 Spec R,, —
Spec R,, is Q-Gorenstein for any n > 0, where R, = R/m"*! for the maximal
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ideal m of R. Here, the fiber Y, equals Yy, and k(o) = R/m = Ry. Since Y, is
Q-Gorenstein and since the assertion is also local on Y, by Lemma 239, we may
assume that every fiber Y; = f~1(t) satisfies Sy and codim(Y; \ U,Y;) > 2 for
the relative Gorenstein locus U = Gor(Y/T'). Then, depthy,; Oy, > 2 for any
t € f(Z), where Z = Y \ U. Thus, we can apply Lemma B.I4] to the reflexive
Oy-module F = wg]T, and also we can apply Proposition B.7] to F after replacing
Y with an open subset. Then, the equivalence: (b)) < (E) of Proposition B3]
implies that the base change homomorphism

Do wgf/l]T ®oy Oy, — w[;:]/k(o)

is an isomorphism if and only if the base change homomorphisms

[m]

. m]
Pn: Wy g, @0y, Ovy = Wy g,

are isomorphisms for all n > 0. Now, the latter condition holds, since f, is a Q-
Gorenstein morphism for any n. Thus, ¢, is an isomorphism for any m, and this
implies that f is a Q-Gorenstein morphism along Y. (]

Remark. For the Artinian local ring A above, the morphism f4 is not necessarily
a (Q-Gorenstein morphism even if the scheme Y4 is Q-Gorenstein and A is Goren-
stein. For example, let us consider a naively Q-Gorenstein morphism f: Y — T
of algebraic varieties over an algebraically closed field k such that f is not Q-
Gorenstein and T is a non-singular curve (cf. Fact [[.6, Lemma [7.7] Example [Z.8).
Let Spec A — T be a closed immersion for a local Artinian ring A. Then, A is
Gorenstein, and Y4 — Spec A is a naively Q-Gorenstein morphism by Proposi-
tion [C2T)[). Hence, Y, is Q-Gorenstein by Lemma Therefore, Y4 — Spec A
is not a Q-Gorenstein morphism for some A by Theorem

Remark. The infinitesimal criterion does not hold for naively Q-Gorenstein mor-
phisms (cf. [I5], 14.7], [30, Exam. 7.6]).

We have also the following theorem on valuative criterion.

Theorem 7.25 (valuative criterion). Let f: Y — T be a flat morphism locally of
finite type between locally Noetherian schemes. Assume that T is reduced. Then, f
is a Q-Gorenstein morphism if and only if the base change fr: Yr =Y X1rSpec R —
Spec R is a Q-Gorenstein morphism for any discrete valuation ring R and for any
morphism Spec R — T.

Proof. Tt is enough to check the ‘if’ part (cf. Proposition [[22T|[E])). Then, every fiber
Y; is Q-Gorenstein, since we can consider R as the localization at the prime ideal
(x) of the polynomial ring k[x] for a residue field k of a point of 7' and consider
a morphism Spec R — T as the composite of Spec R — Speck and the morphism
Speck — T into a given point. Therefore, it is enough to prove that wgf]/T satisfies
relative Sy over T for any r > 0. Since the assertion is local on Y and T', we may
assume that Y and T are affine Noetherian schemes and that there is an exact

sequence
[r]

v &= E =G =0

0—w
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on Y, such that £, &' and G,|y. are locally free, where Y° = Gor(Y/T) (cf.
Lemma BI4)). For a morphism Spec R — T and for the base change fr: Yr =
Y X7 Spec R — Spec R, the Oy,-module W[YT,L/R satisfies relative S, over Spec R
if and only if p},G, is flat over Spec R by Lemma B.I6] where pr: Yr — Y is the
induced morphism. Thus, by assumption, prG, is flat over Spec R for any morphism
Spec R — T. Then, the valuative criterion of flatness (cf. [1I, IV, Th. (11.8.1)])
implies that G, is flat. Hence, wg]/T satisfies relative Sy over T' by Lemma
This completes the proof. ([l

The following theorem gives a criterion for a morphism to be Q-Gorenstein only
by conditions on fibers.

Theorem 7.26. Let Y and T be locally Noetherian scheme and f:Y — T be a flat
morphism locally of finite type. Then, f is Q-Gorenstein along a fiber Y; = f~1(t)
if the following conditions are all satisfied:

(1) Y; is Q-Gorenstein;

(2) Y; is Gorenstein in codimension two;

(3) wg?}k(t) satisfies S3 for any m € Z.
Proof. By (), it is enough to prove that F = w@]T satisfies relative Sy over T' for
each m. Since F is reflexive, we can apply Proposition 3.7 and its corollaries to
the morphism Y — T and the closed subset Z =Y \ Gor(Y/T). Then, (@) and (8]
imply the inequality ([II=4)) of Corollary 310l Thus, F satisfies relative Sg over T'
by Corollaries .9 and B.I0 a

The following theorem says that a naively Q-Gorenstein morphism becomes a
Q-Gorenstein morphism by a specific base change, under suitable conditions.

Theorem 7.27. Let f: Y — T be an Sy-morphism of locally Noetherian schemes
with an integer r > 0 such that, for the relative Gorenstein locus Y° = Gor(Y/T),
(i) codim(Y; \ Y°,Y;) > 2 for any fiber Y; = f~1(t),
(ii) Y\ Y° is proper over T, and
(iii) wgft]/k(t) is invertible for any t € T'.
Then, there exists a separated morphism S — T locally of finite type from a locally
Noetherian scheme S satisfying the following properties:

(1) The morphism S — T is a surjective monomorphism.

(2) Let T — T be a morphism from a locally Noetherian scheme T'. Then, it
factors through S — T if and only if the base change Y xp T' — T' is a
Q-Gorenstein morphism.

If, in addition, f is a projective morphism locally on T, then S — T is a local

immersion of finite type.

Definition. A morphism S — T satisfying the condition (2] is unique up to iso-
morphism, and it is called the Q-Gorenstein refinement of f.
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Proof of Theorem [[L27. Applying Theorem [B.I8] to the reflexive Oy-module

_ " [m]
F=@,_ i
and the open subset U = Y°, we have a separated monomorphism S — T locally

of finite type such that the following two conditions are equivalent to each other
for any morphism 77 — T

(a) The double-dual (F')VV of the pullback F x7 1" of F to Y xr T satisfies
relative Sy over T".
(b) The morphism 7" — T factors through S — T.
We shall show that the condition (@) is also equivalent to
(¢) The base change Y xp T" — T" is a Q-Gorenstein morphism.

Weset Y =Y xp T/, Y® :=Y° xpT', and let j': Y'° — Y’ denote the open
immersion. Then, Y’° = Gor(Y’/T") by Corollary[57] and there exist isomorphisms
F)WY = ju(Flye) =@, @) =@, i
by Lemma and by the base change isomorphism (wyo,7) X7 T" =~ wyre /v
(cf. Theorem [40). If (@) holds, then w@f]/T, satisfies relative Sy over T” for any

1 <m < r, and in particular, wgl], 7 is invertible by Fact ZZ7([2), since

T T

Wy 1 ©0y, Oy, = W[y}, Jk(t)

is invertible for any fiber Y}, of Y’ — T". Thus, we have shown (@) = (@). The other
direction (@ = (@) is straightforward by the definition of Q-Gorenstein morphism
(cf. Definition [T]). As a consequence, the conditions (Bl) and (@) are equivalent to
each other, and the morphism S — T satisfies the required conditions (Il) and (2]).
The last assertion is derived from the results in the case (i) of Theorem BI8 O

The following theorem is similar to Theorem [[.27] and it links a projective So-
morphism Gorenstein in codimension one in each fiber, to a naively Q-Gorenstein
morphism by a specific base change.

Theorem 7.28. Let f: Y — T be a projective So-morphism of locally Noetherian
schemes such that every fiber is Gorenstein in codimension one. Then, for each
positive integer v > 0, there exists a separated morphism S, — T from a locally
Noetherian scheme S,. satisfying the following conditions:

(1) The morphism S, — T is a monomorphism and a local immersion of finite
type.

(2) Let T" — T be a morphism from a locally Noetherian scheme T'. Then,
it factors through S, — T if and only if Y X7 T' — T’ is a naively Q-
Gorenstein morphism whose relative Gorenstein index is a divisor of r.

Proof. For a morphism g: 177 — T from a locally Noetherian scheme 17", let p: Y/ —
Y and f/: Y’ — T" be the induced morphisms from the fiber product Y/ =Y xT".

Then,

<p*w¥}T)vv = ‘“J@/T'
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]

by Lemma [2.35] Hence, wgi, is invertible if and only if f’ is a naively Q-

Gorenstein morphism whose r/e{ative Gorenstein index is a divisor of r. Hence,
by applying Theorem [B.I§ to the reflexive Oy-module F = wgf]/T and the open sub-
set U = Y°, we have a separated monomorphism S — T from a locally Noetherian
scheme S such that it is a local immersion of finite type and that the following two
conditions are equivalent to each other for any locally Noetherian T-scheme T":
(a) ww /7 satisfies relative Sy over T,
(b) T/ — T factors through S — T.

Let B, be the set of points P € Y X S such that w@xTS/S is not invertible

at P. Then, B, is a closed subset of Y xp S. Let S, C S be the complement
of the image of B, in S. Then, S, is an open subset. If W@/T/ is invertible for a
morphism g: 7" — T, then ¢ factors through S — T, and for the induced morphism

h:Y' =Y xp S lying over T’ — S, we have

(7] ~ ¥ (7]
Wyr s = R (wYxTS/S)

by Lemma 235 As a consequence, h(Y’) N B, = () and the image of T" — S is
contained in the open subset S,.. Therefore, the composite morphism S, C S — T
satisfies the required conditions. ([

Remark. When f:Y — T is a projective morphism, similar results to Theo-
rems [7.27] and [[.28] are found in |28, Cor. 24, 25].

APPENDIX A. SOME BASIC PROPERTIES IN SCHEME THEORY

For readers’ convenience, we collect here famous results on the local criterion of
flatness and the base change isomorphisms.

A.1. Local criterion of flatness. Here, we summarize results related to the “local
criterion of flatness.” It is usually considered as Proposition [A1] below. But, the
subsequent Corollaries [A2] [A.3] [A 4] are also useful in the scheme theory. For the
detail, the reader is referred to [12, IV, §5], [Bl III, §5], [IT), O, §10.2], 2, V, §3],
[35, §22], etc. We also mention a “local criterion of freeness” as Lemma [AZ5] and
explain two more results on flatness and local freeness for sheaves on schemes.

Proposition A.1 (local criterion of flatness). For a ring A, an ideal I of A, and
for an A-module M, assume that

(1) T is nilpotent, or

(2) A is Noetherian and M is I-adically ideally separated, i.e., a ® 4 M is

separated for the I-adic topology for all ideals a of A.

Then, the following four conditions are equivalent to each other:

(i) M is flat over A;

(ii) M/IM is flat over A/I and Tor{ (M, A/I) = 0;

(ili) M/IM is flat over A/I and the canonical homomorphism

M/IM ®4/p I¥/1F — TP M/TM ' M

is an isomorphism for any k > 0;



GROTHENDIECK DUALITY AND Q-GORENSTEIN MORPHISMS 99

(iv) M/I*M is flat over A/I* for any k > 1.

Remark. The proof is found in [12, IV, Cor. 5.5, Th. 5.6], [5, III, §5.2, Th. 1], [IT1
O, (10.2.1)], [2L V, Th. (3.2)], [85, Th. 22.3]. The condition (2)) is satisfied, for
example, when there is a ring homomorphism A — B of Noetherian rings such
that M is originally a finitely generated B-module and that I B is contained in
the Jacobson radical rad(B) of B (cf. [B III, §5.4, Prop. 2], [I1}, O, (10.2.2)], [35,
p. 174)).

Corollary A.2. Let A — B be a local ring homomorphism of Noetherian local
rings and let u: M — N be a homomorphism of B-modules such that M and N
are finitely generated B-modules and that N is flat over A. Then, the following two
conditions are equivalent to each other:

(i) w is injective and the cokernel of w is flat over A;
(i) u®ak: M @4k — N ®4 k is injective for the residue field k of A.

The proof is given in [12], IV, Cor. 5.7], [11, O, (10.2.4)], [2} VII, Lem. (4.1)],
35, Th. 22.5].

Corollary A.3 (cf. [T11, Ory, Prop. (15.1.16)], [35, Cor. to Th. 22.5]). Let A — B
be a local ring homomorphism of Noetherian local rings and let M be a finitely
generated B-module. Let k be the residue field of A and let T denote the image of
x € Bin BRak. For elements x1, ..., x, in the mazimal ideal mp, the following
two conditions are equivalent to each other:
(i) (z1,...,2y) is an M-reqular sequence and M/ >, x;M is flat over A;
(ii) (Z1,...,T,) is an M ® 4 k-regular sequence and M is flat over A.

Corollary A.4. Let A — B and B — C be local ring homomorphisms of Noether-
tan local rings and let k be the residue field of A. Assume that B is flat over A.
Then, for a finitely generated C'-module M, the following conditions are equivalent
to each other:

(i) M is flat over B;

(ii) M is flat over A and M ®4 k is flat over B ® 4 k.

The proof is given in [12], IV, Cor. 5.9], [B III, §5.4, Prop. 3], [II} O, (10.2.5)],
[2, V, Prop. (3.4)].

Next, we shall give the “local criterion of freeness” as Lemma below, which
is similar to Proposition [AJl This result is well known (cf. [12, IV, Prop. 4.1], [5]
I1, §3.2, Prop. 5], [II} O, (10.1.2)]), but is not usually called the “local criterion
of freeness” in articles.

Lemma A.5 (local criterion of freeness). Let A be a ring, I an ideal of A, and M
an A-module such that

e [ is nilpotent or
e A is Noetherian, I C rad(A), and M is a finitely generated A-module.

Then, the following conditions are equivalent to each other:
(i) M is a free A-module;
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(i) M/IM is a free A/I-module and Tori (M, A/I) = 0;
(i) M/IM is a free A/I-module and the canonical homomorphism
M/IM ®4/p IF/TF — T°M/TM M
is an isomorphism for any k > 0.

Remark. Applying Lemma to the case where A is a Noetherian local ring and
I is the maximal ideal, we have the equivalence of flatness and freeness for finitely
generated A-modules (cf. [I2, IV, Cor. 4.3], [11} O, (10.1.3)]). On the other hand,
the equivalence of flatness and freeness can be proved by other methods (cf. [35]
Th. 7.10], [2, Lem. 5.8]), and using the equivalence, we obtain Lemma for the
same local ring (A, I) and for a finitely generated A-module M, as a corollary of
Proposition [A.1l

Remark. The equivalence explained above implies the following well-known fact:
For a locally Noetherian scheme X, a coherent flat Ox-module is nothing but a
locally free Ox-module of finite rank.

The following is proved immediately from the definitions of flatness and faithful
flatness (cf. [5l I, §3, no. 2, Prop. 4]):

Lemma A.6. Let f: X - Y and g: Y — Z be morphisms of schemes such that f
is faithfully flat, i.e., flat and surjective. Then, for an Oy -module G, it is flat over
Z if and only if f*G is flat over Z.

As a corollary in the case where Y = Z, we have the following descent property
of locally freeness by the relation with flat coherent sheaves.

Lemma A.7. Let f: X — Y be a flat surjective morphism of locally Noetherian
schemes. For a coherent Oy -module G, it is locally free if and only if f*G is so.

The authors could not find a good reference for Lemma [A.7l For example, we have
a weaker result as a part of [I2, VIII, Prop. 1.10], where f is assumed additionally
to be quasi-compact; However, the quasi-compactness is related to the other part.

A.2. Base change isomorphisms. Let us consider a Cartesian diagram

x -4 . x

f'l lf

s —2— 8
of schemes, i.e., X' ~ X xgS’. Then, for any quasi-coherent Ox-module F, one
has a functorial canonical homomorphism

O(F): g"(fuF) = filg" F)
of Og/-modules, and more generally, a functorial canonical homomorphism
0'(F): g" (R f.F) = R fi(g" F)
for each i > 0. We have the following assertions on (F) and 6%(F).
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Lemma A.8 (affine base change). If f is an affine morphism, then 0(F) is an
isomorphism.

Lemma A.9 (flat base change). Assume that g is flat and that f is quasi-compact
and quasi-separated. Then, 0'(F) is an isomorphism for any i.

A proof of Lemma [A§ is given [I1} II, Cor. (1.5.2)], and a proof of Lemma [A.0]
is given in [II, III, Prop. (1.4.15)] (cf. [II, IV, (1.7.21)]). Here, the morphism
f: X — S is said to be “quasi-separated” if the diagonal morphism X — X xg X
is quasi-compact (cf. [I1, IV, Déf. (1.2.1)]).

We have also the following generalization of Lemma to the case of complexes
by [16], II, Prop. 5.12], [22, IV, Prop. 3.1.0], and [33, Prop. 3.9.5].

Proposition A.10. In the situation of Lemma [A9, let F* be a complex of Ox-
modules in DT (X). Then, there is a functorial quasi-isomorphism

qcoh
Lg"(Rf.(F°)) = RfL(Lg™(F*)).
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