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Abstract. The notions of Q-Gorenstein scheme and Q-Gorenstein morphism

are introduced for locally Noetherian schemes by dualizing complexes and

(relative) canonical sheaves. By studying (relative) Sk-condition and base

change properties, expected properties are proved for Q-Gorenstein morphisms.

Various Theorems are presented on infinitesimal criterion, valuative criterion,

Q-Gorenstein refinement, and so forth.
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1. Introduction

The notion of Q-Gorenstein variety is important for the minimal model theory

of algebraic varieties in characteristic zero: A normal algebraic variety X defined

over a field of any characteristic is said to be Q-Gorenstein if rKX is Cartier for

some positive integer r, where KX stands for the canonical divisor of X. In some

papers, X is additionally required to be Cohen–Macaulay. M. Reid used this notion

essentially to define the canonical singularity in [47, Def. (1.1)], and he named the

notion “Q-Gorenstein” in [48, (0.12.e)], where the Cohen–Macaulay condition is

required. The notion without the Cohen–Macaulay condition appears in [23] for

example. In the minimal model theory of algebraic varieties of dimension more than

two, we must deal with varieties with mild singularities such as terminal, canonical,
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log-terminal, and log-canonical (cf. [23, §0-2] for the definition). The notion of Q-

Gorenstein is hence frequently used in studying the higher dimensional birational

geometry.

The notion of Q-Gorenstein deformation is also popular in the study of degen-

erations of normal algebraic varieties in characteristic zero related to the minimal

model theory and the moduli theory since the paper [29] by Kollár and Shepherd-

Barron. Roughly speaking, a Q-Gorenstein deformation X → C of a Q-Gorenstein

normal algebraic variety X is considered as a flat family of algebraic varieties over

a smooth curve C with a closed fiber being isomorphic to X such that rKX/C is

Cartier and rKX/C |X ∼ rKX for some r > 0, where KX/C stands for the relative

canonical divisor. We call such a deformation “naively Q-Gorenstein” (cf. Defini-

tion 7.1 below). This is said to be “weakly Q-Gorenstein” in [14, §3], or satisfying
Viehweg’s condition (cf. Property V[N ] in [20, §2]). We say that X → C is a

Q-Gorenstein deformation if

OX (mKX/C)⊗OX
OX ≃ OX(mKX)

for any integer m. This additional condition seems to be considered first by Kollár

[26, 2.1.2], and it is called the Kollár condition; A similar condition is named as

Property K in [20, §2] for example. A typical example of Q-Gorenstein deforma-

tion appears as a deformation of the weighted projective plane P(1, 1, 4): Its versal

deformation space has two irreducible components, in which the one-dimensional

component corresponds to the Q-Gorenstein deformation and its general fibers are

P2 (cf. [44, §8]). The Q-Gorenstein deformation is also used in constructing some

simply connected surfaces of general type over C in [32]. The authors have suc-

ceeded in generalizing the construction to the positive characteristic case in [31],

where a special case of Q-Gorenstein deformation over a mixed characteristic case

is considered.

During the preparation of the joint paper [31], the authors began generaliz-

ing the notion of Q-Gorenstein morphism to the case of morphisms between lo-

cally Noetherian schemes. The purpose of this article is to give good definitions

of Q-Gorenstein scheme and Q-Gorenstein morphism: We define the notion of

“Q-Gorenstein” for locally Noetherian schemes admitting dualizing complexes (cf.

Definition 6.1 below) and define the notion of “Q-Gorenstein” for flat morphisms

locally of finite type between locally Noetherian schemes (cf. Definition 7.1 below).

So, we try to define the notion of “Q-Gorenstein” as general as possible. We do

not require the Cohen–Macaulay condition, which is assumed in most articles on

Q-Gorenstein deformations. However, “Q-Gorenstein” is always “Gorenstein in

codimension one.”

The definition of Q-Gorenstein scheme in Definition 6.1 below is interpreted as

follows (cf. Lemma 6.4(3)): A locally Noetherian scheme is said to be Q-Gorenstein

if and only if

• it satisfies Serre’s condition S2,

• it is Gorenstein in codimension one,
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• it admits an ordinary dualizing complex locally on X, and for the dualizing

sheaf L, the double dual of L⊗r is invertible for some integer r > 0 locally

on X.

Here, the ordinary dualizing complex and the dualizing sheaf are defined in Defi-

nition 4.13. On the other hand, a flat morphism f : Y → T locally of finite type

between locally Noetherian schemes is said to be a Q-Gorenstein morphism (cf.

Definition 7.1) if and only if

• every fiber is a Q-Gorenstein scheme, and

• for the relative canonical sheaf ωY/T of f , the double-dual of ω⊗m
Y/T satisfies

relative S2 over T for any m ∈ Z.

Here, the relative canonical sheaf is defined for S2-morphisms in Definition 5.3,

and the relative S2-condition is explained in Section 2.2. The Kollár condition is

included as the relative S2-condition for the double dual of ω⊗m
Y/T for all m. The

definition of naively Q-Gorenstein morphism is similar to that of Q-Gorenstein

morphism (cf. Definition 7.1): The difference is on the second condition, which is

weakened to:

• the double dual of ω⊗m
Y/T is invertible for some m locally on Y .

To giving the definitions of Q-Gorenstein, we need some basic properties related

with the (relative) dualizing complex and Serre’s S2-condition. These are prepared

in Sections 2–5 below.

By our definition, we can consider Q-Gorenstein deformations of non-normal

schemes. This topic has already been considered by Hacking [14] and Tziolas [53]

for slc surfaces over the complex number field C. The work of Abramovich–Hassett

[1] covers also non-normal reduced Cohen–Macaulay algebraic schemes over a fixed

field. We can cover all of them and also non-reduced case, since our definition is

considered for any flat morphism locally of finite type between locally Noetherian

schemes.

We can prove some expected properties for Q-Gorenstein morphisms. For exam-

ple, Q-Gorenstein morphisms are stable under base change (cf. Proposition 7.21(5)).

Such elementary properties are presented in Section 7.3. On the other hand, the

results listed below are serious, and show that our definition of Q-Gorenstein mor-

phism is reasonable:

(1) Theorem 7.17 giving a sufficient condition for a virtually Q-Gorenstein mor-

phism to be Q-Gorenstein;

(2) Theorems 7.24 and 7.25 of infinitesimal criterion and of valuative criterion,

respectively, for a morphism to be Q-Gorenstein;

(3) Theorem 7.26 on S3-conditions on fibers giving a sufficient condition for a

morphism to be Q-Gorenstein;

(4) Theorem 7.27 on the existence of Q-Gorenstein refinement.

We shall explain these results briefly.

(1): The virtually Q-Gorenstein morphism is introduced in Section 7.2 as a

weak form of Q-Gorenstein morphism (cf. Definition 7.12). This is inspired by the

definition [14, Def. 3.1] by Hacking on Q-Gorenstein deformation of an slc surface
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in characteristic zero: His definition is generalized to the notion of Kollár family

of Q-line bundles in [1]. Hacking defines the Q-Gorenstein deformation by the

property that it locally lifts to an equivariant deformation of an index-one cover.

This definition essentially coincides with our definition of virtually Q-Gorenstein

morphism (cf. Lemma 7.15 and Remark 7.16). A Q-Gorenstein morphism is always

a virtually Q-Gorenstein morphism. The converse holds if every fiber satisfies S3;

This remarkable result is proved as a part of Theorem 7.17. This theorem is derived

from Theorem 5.10 on a base change property for certain S2-morphisms, and its

proof needs Theorem 3.17 on a criterion for a sheaf to be invertible and a study of

the relative canonical dualizing complex in Section 5.1. By Theorem 7.17, we can

study infinitesimal Q-Gorenstein deformations of a Q-Gorenstein algebraic scheme

over a field k satisfying S3 via the equivariant deformations of the index one cover.

The authors’ study of this deformation is now in progress.

(2): The infinitesimal criterion says that, for a given flat morphism f : Y →
T locally of finite type between locally Noetherian schemes, it is a Q-Gorenstein

morphism if the base change fA : YA = Y ×T SpecA → SpecA is a Q-Gorenstein

morphism for any closed immersion SpecA→ T for any Artinian local ring A. The

valuative criterion is similar but T is assumed to be reduced and SpecA → T is

replaced with any morphism for any discrete valuation ring A.

(3): Theorem 7.26 implies that a morphism f : Y → T as above is a Q-Gorenstein

morphism if Yt is Q-Gorenstein, Yt is Gorenstein in codimension two, and if the

double dual ω
[m]
Yt/k(t)

of the m-th power of the canonical sheaf ωYt/k(t) satisfies S3

for any m ∈ Z.

(4): The Q-Gorenstein refinement for a morphism f : Y → T above, is a mor-

phism S → T satisfying the following property: For a morphism T ′ → T from an-

other locally Noetherian scheme, the base change Y ×T T ′ → T ′ is a Q-Gorenstein

morphism if and only if T ′ → T factors through S → T . Theorem 7.27 shows the ex-

istence of Q-Gorenstein refinement, for example, when f is a projective morphism,

and in this case, S → T is a separated monomorphism of finite type and a local

isomorphism. A similar result is given as Theorem 7.28 for naively Q-Gorenstein

morphisms. Both theorems are derived mainly from Theorem 3.18 on the relative

S2-ification for the double dual, which is analogous to the flattening stratification

theorem by Mumford in [37, Lect. 8] and to the representability theorem of unram-

ified functors by Murre [39]. Similar results to Theorems 3.18 and 7.27 are given

by Kollár in [28].

Organization of this article. In Section 2, we recall some basic notions and

properties related to Serre’s Sk-condition. Section 2.1 recalls basic properties on

dimension, depth, and the Sk-condition. The relative Sk-condition is explained in

Section 2.2. In Section 3, we study restriction homomorphisms of a coherent sheaf

to open subsets, and give several criteria for the restriction homomorphism on a

fiber to be an isomorphism. Section 3.1 is devoted to prove the key proposition

(Proposition 3.7) and its related properties, which are useful for the study of base

change homomorphisms and so on in the latter sections. The key proposition proves

under a suitable situation that the relative S2-condition of a given reflexive sheaf is
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equivalent to the relative flatness of another sheaf (cf. Lemma 3.16). In the course of

studying subjects related to Proposition 3.7, we find a counterexample of a result

of Kollár on the flatness criteria [27, Th. 12]. This is written in Example 3.12.

Section 3.2 contains some applications of Proposition 3.7: Theorem 3.17 gives a

criterion for a sheaf to be invertible, which is used in the proof of Theorem 5.10.

Theorem 3.18 on the relative S2-ification for the double dual, which is applied to

Theorems 7.27 and 7.28, is proved using the exact sequence in Proposition 3.7.

The theory of Grothendieck duality is explained briefly in Section 4. Sections 4.1

and 4.2 recall some well-known properties on the dualizing complex based on ar-

guments in [16] and [6]. The convenient notion of ordinary dualizing complex is

introduced in Section 4.2, since we treat locally equi-dimensional schemes in the

most case. The twisted inverse image functor is explained in Section 4.3 with the

famous Grothendieck duality theorem for proper morphisms (cf. Theorem 4.30).

The base change theorem for the relative dualizing sheaf for a Cohen–Macaulay

morphism is mentioned in Section 4.4. In Section 5, we give some technical base

change results for the relative canonical sheaf of an S2-morphism. As a generaliza-

tion of the relative dualizing sheaf for a Cohen–Macaulay morphism, we introduce

the notion of relative canonical sheaf for an arbitrary S2-morphism in Section 5.1.

Here, we discuss the relative canonical sheaf and the conditions for the relative

canonical sheaf to be relative S2. Section 5.2 contains Theorem 5.10, which pro-

vides a criterion for a base change homomorphism of the relative canonical sheaf

to be an isomorphism. This theorem is applied to Theorem 7.17 on the virtually

Q-Gorenstein morphism. In Section 6, we study Q-Gorenstein schemes. The no-

tion of Q-Gorenstein scheme is introduced in Section 6.1 and its basic properties

are given. As an example of Q-Gorenstein schemes, in Section 6.2, we consider

the case of affine cones over polarized projective schemes over a field. In Sec-

tion 7, we study Q-Gorenstein morphisms, and two variants: naively Q-Gorenstein

morphisms and virtually Q-Gorenstein morphisms. The Q-Gorenstein morphism

and the naively Q-Gorenstein morphism are defined in Section 7.1, and their basic

properties are discussed. Especially, we give a new example of naively Q-Gorenstein

morphisms which are not Q-Gorenstein, by Lemma 7.7 and Example 7.8, inspired

by the work of Patakfalvi in [43]. The virtually Q-Gorenstein morphism is de-

fined in Section 7.2, which contains Theorem 7.17 of a criterion of Q-Gorenstein

morphism (cf. (1) above). In Section 7.3, several basic properties including base

change of Q-Gorenstein morphisms and of their variants are discussed. Theorems

mentioned in (2)–(4) above are proved in Section 7.4.

Some elementary facts on local criterion of flatness and base change isomorphisms

are explained in Appendix A for the readers’ convenience. In this article, we try to

cite references kindly as much as possible for the readers’ convenience and for the

authors’ assurance. We also try to refer to the original article if possible.
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Notation and conventions.

(1) For a complex K• = [· · · → Ki di−→ Ki+1 → · · · ] in an abelian category and

for an integer q, we denote by τ≤q(K•) (resp. τ≥q(K•)) the “truncation”

of K•, which is defined as the complex

[· · · → Kq−2 dq−2

−−−→ Kq−1 → Ker(dq)→ 0→ · · · ]

(resp. [· · · → 0→ Coker(dq−1)→ Kq+1 dq+1

−−−→ Kq+2 → · · · ])
(cf. [9, Déf. 1.1.13]). The complex K•[m] shifted by an integer m is defined

as the complex L• = [· · · → Li
diL−−→ Li+1 → · · · ] such that Li = Ki+m

and diL = (−1)mdi+m for any i ∈ Z. It is known that the mapping cone

of the natural morphism τ≤q(K•)→ K• is quasi-isomorphic to τ≥q+1(K•)

for any q ∈ Z.

(2) For a complex K• in an abelian category (resp. for an object K• of the

derived category), the i-th cohomology of K• is denoted usually by Hi(K•).

For a complex K• of sheaves on a scheme, the i-th cohomology is a sheaf

and is denoted by Hi(K•).

(3) The derived category of an abelian category A is denoted by D(A). More-

over, we write D+(A) (resp. D−(A), resp. Db(A)) for the full subcategory

consisting of bonded below (resp. bounded above, resp. bounded) com-

plexes.

(4) An algebraic scheme over a field k means a k-scheme of finite type. An

algebraic variety over k is an integral separated algebraic scheme over k.

(5) For a scheme X, a sheaf of OX -modules is called an OX -module for simplic-

ity. A coherent (resp. quasi-coherent) sheaf on X means a coherent (resp.

quasi-coherent) OX -module. The (abelian) category of OX -modules (resp.

quasi-coherent OX -modules) is denoted by Mod(OX) (resp. QCoh(OX)).

(6) For a scheme X and a point x ∈ X, the maximal ideal (resp. the residue

field) of the local ring OX,x is denoted by mX,x (resp. k(x)). The stalk of

a sheaf F on X at x is denoted by Fx.
(7) For a morphism f : Y → T of schemes and for a point t ∈ T , the fiber

f−1(t) over t is defined as Y ×T Spec k(t) and is denoted by Yt. For an

OY -module F , the restriction F ⊗OY
OYt

to the fiber Yt is denoted by F(t)

(cf. Notation 2.25).

(8) The derived category of a scheme X is defined as the derived category of

Mod(OX), and is denoted by D(X). The full subcategory consisting of

complexes with quasi-coherent (resp. coherent) cohomology is denoted by

Dqcoh(X) (resp. Dcoh(X)). For ∗ = +, −, b and for † = qcoh, coh, we set

D∗(X) = D∗(Mod(OX)) and D∗
†(X) = D∗(X) ∩D†(X).

(9) For a sheaf F on a scheme X and for a closed subset Z, the i-th local

cohomology sheaf of F with support in Z is denoted by HiZ(F) (cf. [17]).
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(10) For a morphism X → Y of schemes, Ω1
X/Y denotes the sheaf of relative

one-forms. When X → Y is smooth, ΩpX/Y denotes the p-th exterior power∧p
Ω1
X/Y for integers p ≥ 0.

2. Serre’s Sk-condition

We shall recall several fundamental properties on locally Noetherian schemes,

which are indispensable for understanding the explanation of dualizing complex

and Grothendieck duality in Section 4 as well as the discussion of relative canonical

sheaves and Q-Gorenstein morphisms in Sections 5 and 6, respectively. In Sec-

tion 2.1, we recall basic properties on dimension, depth, and Serre’s Sk-condition

especially for k = 1 and 2. The relative Sk-condition is discussed in Section 2.2.

2.1. Basics on Serre’s condition. The Sk-condition is defined by “depth” and

“dimension.” We begin with recalling some elementary properties on dimension,

codimension, and on depth.

Property 2.1 (dimension, codimension). Let X be a scheme and let F be a quasi-

coherent OX -module of finite type (cf. [11, 0I, (5.2.1)]), i.e., F is quasi-coherent and

locally finitely generated as an OX -module. Then, SuppF is a closed subset (cf.

[11, 0I, (5.2.2)]).

(1) If Y is a closed subscheme of X such that Y = SuppF as a set, then

dimFy = dimOY,y = codim({y}, Y )

for any point y ∈ Y , where dimFy is considered as the dimension of the

closed subset SuppFy of SpecOX,y (cf. [11, IV, (5.1.2), (5.1.12)]).

(2) The dimension of F , denoted by dimF , is defined as dimSuppF (cf. [11,

IV, (5.1.12)]). Then,

dimF = sup{dimFx | x ∈ X}
(cf. [11, IV, (5.1.12.3)]). If X is locally Noetherian, then

dimF = sup{dimFx | x is a closed point of X}
by [11, IV, (5.1.4.2), (5.1.12.1), and Cor. (5.1.11)]. Note that the local

dimension of F at a point x, denoted by dimx F , is just the infimum of

dimF|U for all the open neighborhoods U of x.

(3) For a closed subset Z ⊂ X, the equality

codim(Z,X) = inf{dimOX,z | z ∈ Z}
holds, and moreover, if X is locally Noetherian, then

codimx(Z,X) = inf{dimOX,z | z ∈ Z, x ∈ {z}}
for any point x ∈ X (cf. [11, IV, Cor. (5.1.3)]). Note that codim(∅, X) =

+∞ and that codimx(Z,X) = +∞ if x 6∈ Z. Furthermore, if Z is locally

Noetherian, then the function x 7→ codimx(Z,X) is lower semi-continuous

on X (cf. [11, 0IV, Cor. (14.2.6)(ii)]).
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Definition 2.2 (equi-dimensional). Let X be a scheme and F a quasi-coherent

OX -module of finite type. Let A be a ring and M a finitely generated A-module.

(1) We call X (resp. F) equi-dimensional if all the irreducible components of

X (resp. SuppF) have the same dimension.

(2) We call A (resp. M) equi-dimensional if all the irreducible components

of SpecA (resp. SuppM) have the same dimension, where SuppM is the

closed subset of SpecA defined by the annihilator ideal Ann(M). Note

that SuppM equals SuppM∼ for the associated quasi-coherent sheaf M∼

on SpecA.

(3) We call X (resp. F) locally equi-dimensional if the local ring OX,x (resp.

the stalk Fx as an OX,x-module) is equi-dimensional for any point x ∈ X.

Remark. For a locally Noetherian scheme X, it is locally equi-dimensional if and

only if every connected component of X is equi-dimensional. This follows from that

X is locally connected (cf. [11, I, Cor. (6.1.9)]).

Property 2.3 (catenary). A scheme X is said to be catenary if

codim(Y,Z) + codim(Z, T ) = codim(Y, T )

for any irreducible closed subsets Y ⊂ Z ⊂ T of X (cf. [11, 0IV, Prop. (14.3.2)]). A

ring A is said to be catenary if SpecA is so. Then, for a scheme X, it is catenary

if and only if every local ring OX,x is catenary (cf. [11, IV, Cor. (5.1.5)]). If X is a

locally Noetherian scheme and if OX,x is catenary for a point x ∈ X, then

codimx(Y,X) = dimOX,x − dimOY,x
for any closed subscheme Y of X containing x (cf. [11, IV, Prop. (5.1.9)]).

Property 2.4 (depth). Let A be a Noetherian ring, I an ideal of A, and let M be a

finitely generated A-module. The I-depth of M , denoted by depthIM , is defined

as the length of any maximal M -regular sequence contained in I when M 6= IM ,

and as +∞ when M = IM . Here, an element a ∈ I is said to be M -regular if a is

not a zero divisor of M , i.e., the multiplication map x 7→ ax induces an injection

M → M , and a sequence a1, a2, . . . , an of elements of I is said to be M -regular if

ai is Mi-regular for any i, where Mi =M/(a1, . . . , ai−1)M . The following equality

holds (cf. [17, Prop. 3.3], [13, III, Prop. 2.4], [35, Th. 16.6, 16.7]):

depthIM = inf{i ∈ Z≥0 | ExtiA(A/I,M) 6= 0}.
If A is a local ring and if I is the maximal ideal mA, then depthIM is denoted

simply by depthM ; In this case, we have depthM ≤ dimM when M 6= 0 (cf. [11,

0IV, (16.4.5.1)], [35, Exer. 16.1, Th. 17.2]).

Definition 2.5 (Z-depth). Let X be a locally Noetherian scheme and F a coherent

OX -module. For a closed subset Z of X, the Z-depth of F is defined as

depthZ F = inf{depthFz | z ∈ Z}
(cf. [17, p. 43, Def.], [11, IV, (5.10.1.1)], [2, III, Def. (3.12)]), where the stalk Fz of

F at z is regarded as an OX,z-module. Note that depthZ 0 = +∞.
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Property 2.6 (cf. [17, Th. 3.8]). In the situation above, for a given integer k ≥ 1,

one has the equivalence:

depthZ F ≥ k ⇐⇒ HiZ(F) = 0 for any i < k.

Here, HiZ(F) stands for the i-th local cohomology sheaf of F with support in Z

(cf. [17], [13]). In particular, the condition: depthZ F ≥ 1 (resp. ≥ 2) is equiva-

lent to that the restriction homomorphism F → j∗(F|X\Z) is an injection (resp.

isomorphism) for the open immersion j : X \ Z →֒ X. Furthermore, the condition:

depthZ F ≥ 3 is equivalent to: F ≃ j∗(F|X\Z) and R
1j∗(F|X\Z) = 0.

Remark (cf. [17, Cor. 3.6], [2, III, Cor. 3.14]). Let A be a Noetherian ring with an

ideal I and let M be a finitely generated A-module. Then,

depthIM = depthZM
∼

for the closed subscheme Z = SpecA/I of X = SpecA and for the coherent OX -

module M∼ associated with M .

Remark 2.7 (associated prime). Let F be a coherent OX -module on a locally Noe-

therian scheme X. A point x ∈ X is called an associated point of F if the maximal

ideal mx is an associated prime of the stalk Fx (cf. [11, IV, Déf. (3.1.1)]). This

condition is equivalent to: depthFx = 0. We denote by Ass(F) the set of associ-

ated points. This is a discrete subset of SuppF . If an associated point x of F is

not a generic point of F , i.e., depthFx = 0 and dimFx > 0, then x is called the

embedded point of F . If X = SpecA and F =M∼ for a Noetherian ring A and for

a finitely generated A-module M , then Ass(F) is just the set of associated primes

of M , and the embedded points of F are the embedded primes of M .

Remark 2.8. Let φ : F → j∗(F|X\Z) be the homomorphism in Property 2.6 and set

U = X \ Z. Then, φ is an injection (resp. isomorphism) at a point x ∈ Z, i.e., the
homomorphism

φx : Fx → (j∗(F|U ))x
of stalks is an injection (resp. isomorphism), if and only if

depthFx′ ≥ 1 (resp. ≥ 2)

for any x′ ∈ Z such that x ∈ {x′}. In fact, φx is identical to the inverse image

p∗x(φ) by a canonical morphism px : SpecOX,x → X, and it is regarded as the

restriction homomorphism of p∗x(F) to the open subset Ux = p−1
x (U) via the base

change isomorphism

p∗x(j∗(F|U )) ≃ jx∗((p∗xF)|Ux
)

(cf. Lemma A.9 below), where jx stands for the open immersion Ux →֒ SpecOX,x.
For the complement Zx = p−1

x (Z) of Ux in SpecOX,x, by Property 2.6, we know

that p∗x(φ) is an injection (resp. isomorphism) if and only if

depthZx
p∗x(F) ≥ 1 (resp. ≥ 2).

This implies the assertion, since Zx is identical to the set of points x′ ∈ Z such that

x ∈ {x′}.
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We recall Serre’s condition Sk (cf. [11, IV, Déf. (5.7.2)], [2, VII, Def. (2.1)], [35,

p. 183]):

Definition 2.9. Let X be a locally Noetherian scheme, F a coherent OX -module,

and k a positive integer. We say that F satisfies the condition Sk if the inequality

depthFx ≥ inf{k, dimFx}
holds for any point x ∈ X, where the stalk Fx at x is considered as an OX,x-module.

We say that F satisfies Sk at a point x ∈ X if

depthFy ≥ inf{k, dimFy}
for any point y ∈ X such that x ∈ {y}. We say that X satisfies Sk, if OX does so.

Remark. In the situation of Definition 2.9, assume that F = i∗(F ′) for a closed

immersion i : X ′ →֒ X and for a coherent OX′ -module F ′. Then, F satisfies Sk if

and only if F ′ does so. In fact,

depthFx = +∞ and dimFx = −∞
for any x 6∈ X ′, and

depthFx = depthF ′
x and dimFx = dimF ′

x

for any x ∈ X ′ (cf. [11, 0IV, Prop. (16.4.8)]).

Remark 2.10. Let A be a Noetherian ring and M a finitely generated A-module.

For a positive integer k, we say that M satisfies Sk if the associated coherent sheaf

M∼ on SpecA satisfies Sk. Then, for X, F , and x in Definition 2.9, F satisfies Sk
at x if and only if the OX,x-module Fx satisfies Sk. In fact, by considering SuppFx
as a closed subset of SpecOX,x and by the canonical morphism SpecOX,x → X,

we can identify SuppFx with the set of points y ∈ SuppF such that x ∈ {y}.

Definition 2.11 (Cohen–Macaulay). Let A be a Noetherian local ring and M a

finitely generated A-module. Then, M is said to be Cohen–Macaulay if depthM =

dimM unless M = 0 (cf. [11, 0IV, Déf. (16.5.1)], [35, §17]). In particular, if

dimA = depthA, then A is called a Cohen–Macaulay local ring. Let X be a

locally Noetherian scheme and F a coherent OX -module. If the OX,x-module Fx
is Cohen–Macaulay for any x ∈ X, then F is said to be Cohen–Macaulay (cf. [11,

IV, Déf. (5.7.1)]. If OX is Cohen–Macaulay, then X is called a Cohen–Macaulay

scheme.

Remark 2.12. For A and M above, it is known that if M is Cohen–Macaulay, then

the localization Mp is also Cohen–Macaulay for any prime ideal p of A (cf. [11,

0IV, Cor. (16.5.10)], [35, Th. 17.3]). Hence, M is Cohen–Macaulay if and only if M

satisfies Sk for any k ≥ 1.

Definition 2.13 (Sk(F), CM(F)). Let X be a locally Noetherian scheme and let

F be a coherent OX -module. For an integer k ≥ 1, the Sk-locus Sk(F) of F is

defined to be the set of points x ∈ X at which F satisfies Sk (cf. Definition 2.9). The

Cohen–Macaulay locus CM(F) of F is defined to be the set of points x ∈ F such
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that Fx is a Cohen–Macaulay OX,x-module. By definition and by Remark 2.12, one

has: CM(F) = ⋂
k≥1 Sk(F). We define Sk(X) := Sk(OX) and CM(X) = CM(OX),

and call them the Sk-locus and the Cohen–Macaulay locus of X, respectively.

Remark. It is known that Sk(F) and CM(F) are open subsets when X is locally a

subscheme of a regular scheme (cf. [11, IV, Prop. (6.11.2)(ii)]). In Proposition 4.11

below, we shall prove the openness when X admits a dualizing complex.

Remark. For a locally Noetherian scheme X, every generic point of X is contained

in the Cohen–Macaulay locus CM(X). For, dimA = depthA = 0 for any Artinian

local ring A.

Lemmas 2.14 and 2.15 below are basic properties on the condition Sk.

Lemma 2.14. Let X be a locally Noetherian scheme and let G be a coherent OX-

module. For a positive integer k, the following conditions are equivalent to each

other :

(i) The sheaf G satisfies Sk.

(ii) The inequality

depthZ G ≥ inf{k, codim(Z, SuppG)}
holds for any closed (resp. irreducible and closed) subset Z ⊂ SuppG.

(iii) The sheaf G satisfies Sk−1 when k ≥ 2, and depthZ G ≥ k for any closed

(resp. irreducible and closed) subset Z ⊂ SuppG such that codim(Z, SuppG)
≥ k.

(iv) There is a closed subset Z ⊂ SuppG such that depthZ G ≥ k and G|X\Z

satisfies Sk.

Proof. We may assume that G is not zero. The equivalence (i) ⇔ (ii) follows from

Definitions 2.5 and 2.9 and from the equality: dimGx = codim({x}, SuppG) for x ∈
SuppG in Property 2.1(1). The equivalence (i) ⇔ (ii) implies the equivalence: (ii)

⇔ (iii). We have (i)⇒ (iv) by taking a closed subset Z with codim(Z, SuppG) ≥ k
using the inequality in (ii). It is enough to show: (iv) ⇒ (i). More precisely, it is

enough to prove that, in the situation of (iv), the inequality

depthGx ≥ inf{k, dimGx}
holds for any point x ∈ X. If x 6∈ Z, then this holds, since G|X\Z satisfies Sk. If x ∈
Z, then dimGx ≥ depthGx ≥ depthZ G ≥ k (cf. Property 2.4 and Definition 2.5),

and it induces the inequality above. Thus, we are done. �

Lemma 2.15. Let X be a locally Noetherian scheme and G a coherent OX-module.

Then, for any closed subset Z of X, the following hold :

(1) One has the inequality

depthZ G ≤ codim(Z ∩ SuppG, SuppG).
(2) For an integer k > 0, if G satisfies Sk and if codim(Z∩SuppG, SuppG) ≥ k,

then depthZ G ≥ k.
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Proof. The inequality in (1) follows from the inequality depthGx ≤ dimGx for any

x ∈ SuppG, since
codim(Z ∩ SuppG, SuppG) = inf{dimGx | x ∈ Z ∩ SuppG} and

depthZ G = inf{depthGx | x ∈ Z ∩ SuppG}
when Z ∩ SuppG 6= ∅, by Property 2.1 and Definition 2.5. The assertion (2) is

derived from the equivalence (i) ⇔ (ii) of Lemma 2.14. �

For the conditions S1 and S2, we have immediately the following corollary of

Lemma 2.14 by considering Property 2.6.

Corollary 2.16. Let X be a locally Noetherian scheme and let G be a coherent

OX-module. The following three conditions are equivalent to each other, where j

denotes the open immersion X \ Z →֒ X:

(i) The sheaf G satisfies S1 (resp. S2).

(ii) For any closed subset Z ⊂ SuppG with codim(Z, SuppG) ≥ 1 (resp. ≥ 2),

the canonical homomorphism G → j∗(G|X\Z) is injective (resp. an isomor-

phism, and G satisfies S1).

(iii) There is a closed subset Z ⊂ SuppG such that G|X\Z satisfies S1 (resp.

S2) and the canonical homomorphism G → j∗(G|X\Z) is injective (resp. an

isomorphism).

Remark 2.17. Let X be a locally Noetherian scheme and G a coherent OX -module.

Then, by definition, G satisfies S1 if and only if G has no embedded points (cf.

Remark 2.7). In particular, the following hold when G satisfies S1:

(1) Every coherent OX -submodule of G satisfies S1 (cf. Lemma 2.18(2) below).

(2) The sheaf HomOX
(F ,G) satisfies S1 for any coherent OX -module F .

(3) Let T be the closed subscheme defined by the annihilator of G, i.e., OT is

the image of the natural homomorphism OX → HomOX
(G,G). Then, T

also satisfies S1.

Lemma 2.18. Let X be a locally Noetherian scheme and let G be the kernel of a

homomorphism E0 → E1 of coherent OX-modules.

(1) Let Z a closed subset of X. If depthZ E0 ≥ 1, then depthZ G ≥ 1. If

depthZ E0 ≥ 2 and depthZ E1 ≥ 1, then depthZ G ≥ 2.

(2) If E0 satisfies S1, then G satisfies S1.

(3) Assume that SuppG ⊂ Supp E1. If E1 satisfies S1 and E0 satisfies S2, then

G satisfies S2.

Proof. Let B be the image of E0 → E1. Then, we have an exact sequence

0→ H0
Z(G)→ H0

Z(E0)→ H0
Z(B)→ H1

Z(G)→ H1
Z(E0)

and an injection H0
Z(B) → H0

Z(E1) of local cohomology sheaves with support in

Z (cf. [17, Prop. 1.1]). Thus, (1) is derived from Property 2.6. The remaining

assertions (2) and (3) are consequences of (1) above and the equivalence: (i)⇔ (ii)

in Lemma 2.14. �
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Lemma 2.19. Let P = Pnk be the n-dimensional projective space over a field k and

let G be a coherent OP -module such that G satisfies S1 and that every irreducible

component of SuppG has positive dimension. Then, H0(P,G(m)) = 0 for any

m≪ 0, where we write G(m) = G ⊗OP
OP (m).

Proof. We shall prove by contradiction. Assume that H0(P,G(−m)) 6= 0 for in-

finitely many m > 0. There is a member D of |OP (k)| for some k > 0 such

that D ∩ Ass(G) = ∅ (cf. Remark 2.7). Thus, the inclusion OP (−D) ⊂ OP in-

duces an injection G(−D) := G ⊗OP
OP (−D) → G. Thus, we have an injection

G(−k) ≃ G(−D)→ G, and we may assume that H0(P,G(−m)) = H0(P,G) 6= 0 for

any m > 0 by replacing G with G(−l) for some l > 0. Let ξ be a non-zero element

of H0(P,G), which corresponds to a non-zero homomorphism OP → G. Let T be

the closed subscheme of P such that OT is the image of OP → G. Then, T is non-

empty and is contained in the affine open subset P \ D, since ξ ∈ H0(P,G(−D)).

Therefore, T is a finite set, and T ⊂ Ass(G). Since G satisfies S1, every point of T

is an irreducible component of SuppG. This contradicts the assumption. �

Definition 2.20 (reflexive sheaf). For a scheme X and an OX -module F , we

write F∨ for the dual OX -module HomOX
(F ,OX). The double-dual F∨∨ of F is

defined as (F∨)∨. The natural composition homomorphism F⊗F∨ → OX defines a

canonical homomorphism cF : F → F∨∨. Note that cF∨ is always an isomorphism.

If F is a quasi-coherent OX -module of finite type and if cF is an isomorphism, then

F is said to be reflexive.

Remark 2.21. Let π : Y → X be a flat morphism of locally Noetherian schemes.

Then, the dual operation ∨ commutes with π∗, i.e., there is a canonical isomorphism

π∗HomOX
(F ,OX) ≃ HomOY

(π∗F ,OY )
for any coherent OX -module F . In particular, if F is reflexive, then so is π∗F .
This isomorphism is derived from [11, 0I, (6.7.6)], since every coherent OX -module

has a finite presentation locally on X.

Lemma 2.22. Let X be a locally Noetherian scheme, Z a closed subset, and G a

coherent OX-module.

(1) For an integer k = 1 or 2, assume that depthZ OX ≥ k and that G is

reflexive. Then, depthZ G ≥ k.
(2) For an integer k = 1 or 2, assume that X satisfies Sk and that G is reflexive.

Then, G satisfies Sk.

(3) Assume that depthZ OX ≥ 1 and that G|X\Z is reflexive. If depthZ G ≥ 2,

then G is reflexive.

Proof. For the proof of (1), by localizing X, we may assume that there is an exact

sequence E1 → E0 → G∨ → 0 for some free OX -modules E0 and E1 of finite rank.

Taking the dual, we have an exact sequence 0 → G ≃ G∨∨ → E∨0 → E∨1 (cf.

the proof of [19, Proposition 1.1]). The condition: depthZ OX ≥ k implies that

depthZ E∨i ≥ k for i = 0, 1. Thus, depthZ G ≥ k by Lemma 2.18(1). This proves

(1). The assertion (2) is a consequence of (1) (cf. Definition 2.9). We shall show (3).



14 YONGNAM LEE AND NOBORU NAKAYAMA

Let j : X \ Z →֒ X be the open immersion. Then, G ≃ j∗(GX\Z) by Property 2.6,

since depthZ G ≥ 2 by assumption. Hence, we have a splitting of the canonical

homomorphism G → G∨∨ into the double-dual by the commutative diagram

G −−−−→ G∨∨

≃

y
y

j∗(G|X\Z)
≃−−−−→ j∗(G∨∨|X\Z).

Hence, we have an injection C →֒ G∨∨ from C := G∨∨/G, where Supp C ⊂ Z. The

injection corresponds to a homomorphism C ⊗ G∨ → OX , but this is zero, since

depthZ OX ≥ 1. Therefore, C = 0 and G is reflexive. This proves (3), and we are

done. �

Corollary 2.23. Let X be a locally Noetherian scheme, Z a closed subset, and

G a coherent OX-module. Assume that G|X\Z is a reflexive OX\Z-module and

codim(Z,X) ≥ 1. Let us consider the following three conditions :

(i) G satisfies S2 and codim(Z ∩ SuppG, SuppG) ≥ 2;

(ii) depthZ G ≥ 2;

(iii) G is reflexive.

Then, (i) ⇒ (ii) holds true always. If depthZ OX ≥ 1, then (ii) ⇒ (iii) holds, and

if depthZ OX ≥ 2, then (ii) ⇔ (iii) holds. If X satisfies S2 and codim(Z,X) ≥ 2,

then these three conditions are equivalent to each other.

Proof. The implication (i)⇒ (ii) is shown in Lemma 2.15(2). The next implication

(ii) ⇒ (iii) in case depthZ OX ≥ 1 follows from Lemma 2.22(3), and the converse

implication (iii)⇒ (ii) in case depthZ OX ≥ 2 follows from Lemma 2.22(1). Assume

that X satisfies S2 and codim(Z,X) ≥ 2. Then, depthZ OX ≥ 2 by Lemma 2.15(2),

and we have (ii) ⇔ (iii) in this case. It remains to prove: (ii) ⇒ (i). Assume that

depthZ G ≥ 2. Then, codim(Z ∩ SuppG, SuppG) ≥ 2 by Lemma 2.15(1). On the

other hand, the reflexive sheaf G|X\Z satisfies S2 by Lemma 2.22(2), since X \ Z
satisfies S2. Thus, G satisfies S2 by the equivalence (i) ⇔ (iv) of Lemma 2.14.

Thus, we are done. �

Remark. If X is a locally Noetherian scheme satisfying S1, then the support of a

reflexive OX -module is a union of irreducible components of X. In fact, if G is

reflexive, then depthZ G ≥ 1 for any closed subset Z with codim(Z,X) ≥ 1, by

Lemma 2.22(1), and we have codim(Z ∩ SuppG, SuppG) ≥ 1 by Lemma 2.15(1):

This means that SuppG is a union of irreducible components of X. In particular,

if X is irreducible and satisfies S1, then SuppG = X. However, SuppG 6= X in

general when X is reducible. For example, let R be a Noetherian ring with two

R-regular elements u and v, and set X := SpecR/uvR and G := (R/uR)∼. Then,

we have an isomorphism HomOX
(G,OX) ≃ G by the natural exact sequence

0→ R/uR→ R/uvR
u×−−→ R/uvR→ R/uR→ 0.

Thus, G is a reflexive OX -module, but SuppG 6= X when u 6∈
√
vR.
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We have discussed properties S1 and S2 for general coherent sheaves. Finally in

Section 2.1, we note the following well-known facts on locally Noetherian schemes

satisfying S2.

Fact 2.24. Let X be a locally Noetherian scheme satisfying S2.

(1) If X is catenary (cf. Property 2.3), then X is locally equi-dimensional (cf.

Definition 2.2(3)) (cf. [11, IV, Cor. (5.1.5), (5.10.9)]).

(2) For any open subset X◦ with codim(X \X◦, X) ≥ 2 and for any connected

component Xα of X, the intersection Xα ∩ X◦ is connected. This is a

consequence of a result of Hartshorne (cf. [11, IV, Th. (5.10.7)], [13, III,

Th. 3.6]).

2.2. Relative Sk-conditions. Here, we shall consider the relative Sk-condition

for morphisms of locally Noetherian schemes.

Notation 2.25. Let f : Y → T be a morphism of schemes. For a point t ∈ T , the
fiber f−1(t) of f over t is defined as Y ×T Spec k(t), and it is denoted by Yt. For an

OY -module F , the restriction F ⊗OY
OYt
≃ F ⊗OT

k(t) to the fiber Yt is denoted

by F(t).

Remark. The restriction F(t) is identified with the inverse image p∗t (F) for the

projection pt : Yt → Y , and SuppF(t) is identified with Yt∩SuppF = p−1
t (SuppF).

If f is the identity morphism Y → Y , then F(y) is a sheaf on Spec k(y) corresponding

to the vector space Fy ⊗ k(y) for y ∈ Y .

Definition 2.26. For a morphism f : Y → T of schemes and for an OY -module

F , let Fl(F/T ) be the set of points y ∈ Y such that Fy is a flat OT,f(y)-module.

If Y = Fl(F/T ), then F is said to be flat over T , or f -flat. If S is a subset of

Fl(F/T ), then F is said to be flat over T along S, or f -flat along S.

Fact 2.27. Let f : Y → T be a morphism of locally Noetherian schemes and k a

positive integer. For a coherent OY -module F and a coherent OT -module G, the
following results are known, where in (2), (3), and (4), we fix an arbitrary point

y ∈ Y , and set t = f(y):

(1) If f is locally of finite type, then Fl(F/T ) is open.
(2) If Fy is flat over OT,t and if (F(t))y is a free OYt,y-module, then Fy is a free

OY,y-module. In particular, if F is flat over T and if F(t) is locally free for

any t ∈ T , then F is locally free.

(3) If Fy is non-zero and flat over OT,t, then the following equalities hold:

dim(F ⊗OY
f∗G)y = dim(F(t))y + dimGt,(II-1)

depth(F ⊗OY
f∗G)y = depth(F(t))y + depthGt.(II-2)

(4) If Fy is non-zero and flat over OT,t and if F ⊗OY
f∗G satisfies Sk at y, then

G satisfies Sk at t.

(5) Assume that F is flat over T along the fiber Yt over a point t ∈ f(SuppF).
If F(t) satisfies Sk and if G satisfies Sk at t, then F ⊗OY

f∗G also satisfies

Sk at any point of Yt.
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(6) Assume that f is flat and that every fiber Yt satisfies Sk. Then, f
∗G satisfies

Sk at y if and only if G satisfies Sk at f(y).

The assertion (1) is just [11, IV, Th. (11.1.1)]. The assertion (2) is a consequence of

Proposition A.1 and Lemma A.5, since OYt,y = OY,y/I for the ideal I = mT,tOY,y
and we have

Tor
OY,y

1 (Fy,OY,y/I) = 0 and (F(t))y ≃ Fy/IFy
under the assumption of (2). Two equalities (II-1) and (II-2) in (3) follow from [11,

IV, Cor. (6.1.2), Prop. (6.3.1)], since

(F ⊗OY
f∗G)y ≃ Fy ⊗OT,t

Gt and (F(t))y ≃ Fy ⊗OT,t
k(t).

The assertions (4) and (5) are shown in [11, IV, Prop. (6.4.1)] by the equalities

(II-1) and (II-2), and the assertion (6) is a consequence of (4) and (5) (cf. [11, IV,

Cor. (6.4.2)]).

Corollary 2.28. Let f : Y → T be a flat morphism of locally Noetherian schemes.

Let W be a closed subset of T contained in f(Y ). Then,

codim(f−1(W ), Y ) = codim(W,T ) and depthf−1(W ) f
∗G = depthW G

for any coherent OT -module G.

Proof. We may assume that G 6= 0. Then,

codim(f−1(W ), Y ) = inf{dimOY,y | y ∈ f−1(W )},
depthf−1(W ) f

∗G = inf{depth(f∗G)y | y ∈ f−1(W )},
by Property 2.1 and Definition 2.5. Thus, we can prove the assertion by applying

(II-1) to (F ,G) = (OY ,OT ) and (II-2) to (F ,G) = (OY ,G), since
dimOT,t = codim(W,T ) and dimOYt,y = 0

for a certain generic point t of W and a generic point y of Yt, and since

depthGt = depthW G and depth((f∗G)(t))y = depthOYt,y = 0

for a certain point t ∈W ∩ SuppG and for a generic point y of Yt. �

Definition 2.29. Let f : Y → T be a morphism of locally Noetherian schemes and

F a coherent OY -module. As a relative version of Definition 2.13, for a positive

integer k, we define

Sk(F/T ) := Fl(F/T ) ∩
⋃

t∈T
Sk(F(t)) and

CM(F/T ) := Fl(F/T ) ∩
⋃

t∈T
CM(F(t)),

and call them the relative Sk-locus and the relative Cohen–Macaulay locus of F
over T , respectively. We also write

Sk(Y/T ) = Sk(OY /T ) and CM(Y/T ) = CM(OY /T ),
and call them the relative Sk-locus and the relative Cohen–Macaulay locus for f ,

respectively. The relative Sk-condition and the relative Cohen–Macaulay condition

are defined as follows:
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• For a point y ∈ Y (resp. a subset S ⊂ Y ), we say that F satisfies relative

Sk over T at y (resp. along S) if y ∈ Sk(F/T ) (resp. S ⊂ Sk(F/T )). We

also say that F is relatively Cohen–Macaulay over T at y (resp. along S)

if y ∈ CM(F/T ) (resp. S ⊂ CM(F/T )).
• We say that F satisfies relative Sk over T if Y = Sk(F/T ). We also say

that F is relatively Cohen–Macaulay over T if Y = CM(F/T ).

Fact 2.30. For f : Y → T and F in Definition 2.29, assume that f is locally of finite

type and F is flat over T . Then, the following properties are known:

(1) The subset CM(F/T ) is open (cf. [11, IV, Th. (12.1.1)(vi)]).

(2) If F(t) is locally equi-dimensional (cf. Definition 2.2(3)) for any t ∈ T , then
Sk(F/T ) is open for any k ≥ 1 (cf. [11, IV, Th. (12.1.1)(iv)]).

(3) If Y → T is flat, then Sk(Y/T ) is open for any k ≥ 1 (cf. [11, IV,

Th. (12.1.6)(i)]).

Definition 2.31 (Sk-morphism and Cohen–Macaulay morphism). Let f : Y → T

be a morphism of locally Noetherian schemes and k a positive integer. The f is

called an Sk-morphism (resp. a Cohen–Macaulay morphism) if f is a flat morphism

locally of finite type and Y = Sk(Y/T ) (resp. Y = CM(Y/T )). For a subset S of

Y , f is called an Sk-morphism (resp. a Cohen–Macaulay morphism) along S if

f |V : V → T is so for an open neighborhood V of S (cf. Fact 2.30(3)).

Remark. The Sk-morphisms and the Cohen–Macaulay morphisms defined in [11,

IV, Déf. (6.8.1)] are not necessarily locally of finite type. The definition of Cohen–

Macaulay morphism in [16, V, Ex. 9.7] coincides with ours. The notion of “CM

map” in [6, p. 7] is the same as that of Cohen–Macaulay morphism in our sense for

morphisms of locally Noetherian schemes.

Lemma 2.32. Let us given a Cartesian diagram

Y ′ p−−−−→ Y

f ′

y
yf

T ′ q−−−−→ T

of schemes consisting of locally Noetherian schemes. Let F be a coherent OY -
module, Z a closed subset of Y , k a positive integer, and let t′ ∈ T ′ and t ∈ T be

points such that t = q(t′).

(1) If f is flat, then, for the fibers Y ′
t′ = f ′−1(t′) and Yt = f−1(t), one has

codim(p−1(Z) ∩ Y ′
t′ , Y

′
t′) = codim(Z ∩ Yt, Yt), and

depthp−1(Z)∩Y ′

t′
OY ′

t′
= depthZ∩Yt

OYt
.

(2) If F is flat over T , then

depthp−1(Z)∩Y ′

t′
(p∗F)(t′) = depthZ∩Yt

F(t).

(3) If F is flat over T , then Sk(p
∗F/T ′) ⊂ p−1Sk(F/T ). If f is locally of finite

type in addition, then Sk(p
∗F/T ′) = p−1Sk(F/T ).
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(4) If f is locally of finite type and if F satisfies relative Sk over T , then p∗F
does so over T ′.

(5) If f is an Sk-morphism (resp. Cohen–Macaulay morphism), then so is f ′.

Proof. The assertions (1) and (2) follow from Corollary 2.28 applied to the flat

morphism Y ′
t′ → Yt and to G = OYt

or G = F(t). The first half of (3) follows from

Definition 2.29 and Fact 2.27(4) applied to Y ′
t′ → Yt and to (F ,G) = (OY ′

t′
,F(t)).

The latter half of (3) follows from Fact 2.27(6), since the fiber p−1(y) over a point

y ∈ Yt is isomorphic to Spec k(y) ⊗k(t) k(t
′) and since k(y) ⊗k(t) k(t

′) is Cohen–

Macaulay (cf. [11, IV, Lem. (6.7.1.1)]). The assertion (4) is a consequence of (3),

and the assertion (5) follows from (3) in the case: F = OY , by Definition 2.31. �

Lemma 2.33. Let Y → T be a morphism of locally Noetherian schemes and let Z

be a closed subset of Y . Let F be a coherent OY -module and k a positive integer.

(1) If F is flat over T , then

depthZ F ≥ inf{depthZ∩Yt
F(t) | t ∈ f(Z)}.

(2) If F satisfies relative Sk over T and if

codim(Z ∩ SuppF(t), SuppF(t)) ≥ k

for any t ∈ T , then depthZ F ≥ k.
(3) If Y → T is flat and if one of the two conditions below is satisfied, then

depthZ OY ≥ k:
(a) depthYt∩Z OYt

≥ k for any t ∈ T ;
(b) Yt satisfies S2 and codim(Yt ∩ Z, Yt) ≥ k for any t ∈ T .

Proof. For the first assertion (1), we may assume that Z ∩ SuppF 6= ∅. Then, by

Definition 2.5, we have the inequality in (1) from the equality (II-2) in Fact 2.27(3)

in the case where G = OT , since depthOT,t ≥ 0 for any t ∈ T . The assertion (2)

is a consequence of (1) and Lemma 2.15(2) applied to (Yt, Z ∩ Yt,F(t)). The last

assertion (3) is derived from (1) and (2) in the case where F = OY . �

The following result gives some relations between the reflexive modules and the

relative S2-condition. Similar results can be found in [20, §3].

Lemma 2.34. Let f : Y → T be a flat morphism of locally Noetherian schemes, F
a coherent OY -module, and Z a closed subset of Y . Assume that

depthYt∩Z OYt
≥ 1

for any fiber Yt = f−1(t). Then, the following hold for the open immersion j : Y \
Z →֒ Y and for the restriction homomorphism F → j∗(F|Y \Z):

(1) If F|Y \Z is reflexive and if F ≃ j∗(F|Y \Z), then F is reflexive.

(2) If F is reflexive and if depthYt∩Z OYt
≥ 2 for any t ∈ T , then F ≃

j∗(F|Y \Z).

(3) If F is flat over T and if depthYt∩Z F(t) ≥ 2 for any t ∈ T , then F ≃
j∗(F|Y \Z).
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(4) If Yt satisfies S2 and codim(Yt ∩ Z, Yt) ≥ 2 for any t ∈ T , and if F is

reflexive, then F ≃ j∗(F|Y \Z).

(5) If F satisfies relative S2 over T and if codim(Z ∩SuppF(t), SuppF(t)) ≥ 2

for any t ∈ T , then F ≃ j∗(F|Y \Z).

(6) In the situation of (3) or (5), if F(t)|Yt\Z is reflexive, then F(t) is reflexive;

if F|Y \Z is reflexive, then F is reflexive.

Proof. Note that F ≃ j∗(F|Y \Z) if and only if depthZ F ≥ 2 (cf. Property 2.6).

We have depthZ OY ≥ 1 by Lemma 2.33(3). Hence, (1) is a consequence of

Lemma 2.22(3). In case (2), we have depthZ OY ≥ 2 by Lemma 2.33(3), and (2)

is a consequence of Lemma 2.22(1). The assertion (3) follows from Lemma 2.33(1)

with k = 2. The assertions (4) and (5) are special cases of (2) and (3), respectively.

The first assertion of (6) follows from Corollary 2.23. The second assertion of (6)

is derived from (1) and (3). �

Remark. The assumption of Lemma 2.34 holds when Yt satisfies S1 and codim(Yt∩
Z, Yt) ≥ 1 for any t ∈ T (cf. Lemma 2.15(2)).

Lemma 2.35. In the situation of Lemma 2.32, assume that f is flat, F|Y \Z is

locally free, and

depthYt∩Z OYt
≥ 2

for any t ∈ T . Then, F∨∨ ≃ j∗(F|Y \Z) for the open immersion j : Y \ Z →֒ Y ,

and moreover,

(p∗F)∨∨ ≃ (p∗(F∨∨))∨∨.

Moreover, F and p∗F are reflexive if F is flat over T and

depthYt∩Z F(t) ≥ 2

for any t ∈ T .

Proof. Now, depthZ OY ≥ 2 by Lemma 2.33(3). Hence, depthZ F∨∨ ≥ 2 by

Lemma 2.22(1), and this implies the first isomorphism for F∨∨. We have

depthY ′

t′
∩p−1(Z)OY ′

t′
≥ 2

by Lemma 2.32(1). Hence, by the previous argument applied to p∗F and p∗(F∨∨),

we have isomorphisms

(p∗F)∨∨ ≃ j′∗(p∗F|Y ′\p−1(Z)) ≃ (p∗(F∨∨))∨∨

for the open immersion j′ : Y ′ \ p−1(Z) →֒ Y ′. It remains to prove the last as-

sertion. In this case, F is reflexive by (1) and (3) of Lemma 2.34. Moreover, by

Lemma 2.32(2), we have

depthY ′

t′
∩p−1(Z)(p

∗F)(t′) ≥ 2

for any point t′ ∈ T ′. Thus, p∗F is reflexive by the same argument as above. �
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Lemma 2.36. Let f : Y → T be a morphism of locally Noetherian schemes, and

let Z be a closed subset of Y . Assume that f is quasi-flat (cf. [11, IV, (2.3.3)]),

i.e., there is a coherent OY -module F such that F is flat over T and SuppF = Y .

Then,

(II-3) codimy(Z, Y ) ≥ codimy(Z ∩ Yf(y), Yf(y))
for any point y ∈ Z. If codim(Z ∩ Yt, Yt) ≥ k for a point t ∈ T and for an integer

k, then there is an open neighborhood V of Yt in Y such that codim(Z ∩V, V ) ≥ k.

Proof. For the sheaf F above, we have SuppF(t) = Yt for any t ∈ T . If z ∈ Z ∩ Yt,
then

(II-4) dimFz = dimOY,z and dim(F(t))z = dimOYt,z

by Property 2.1(1), and moreover,

(II-5) dimFz = dim(F(t))z + dimOT,t ≥ dim(F(t))z

by (II-1), since F is flat over T . Thus, we have (II-3) from (II-4) and (II-5) by

Property 2.1(3). The last assertion follows from (II-3) and the lower-semicontinuity

of the function x 7→ codimx(Z, Y ) (cf. [11, 0IV, Cor. (14.2.6)]). In fact, the set of

points y ∈ Y with codimy(Z, Y ) ≥ k is an open subset containing Yt. �

We introduce the following notion (cf. [11, IV, Déf. (17.10.1)] and [6, p. 6]).

Definition 2.37 (pure relative dimension). Let f : Y → T be a morphism locally

of finite type. The relative dimension of f at y is defined as dimy Yf(y), and it

is denoted by dimy f . We say that f has pure relative dimension d if d = dimy f

for any y ∈ Y . The condition is equivalent to that every non-empty fiber is equi-

dimensional and has dimension equal to d.

Remark 2.38. If a flat morphism f : Y → T is locally of finite type and it has pure

relative dimension, then it is an equi-dimensional morphism in the sense of [11, IV,

Déf. (13.3.2), (ErrIV, 35)]. Because, a generic point of Y is mapped a generic point

of T by (II-1) applied to F = OY and G = OT , and the condition a′′) of [11, IV,

Prop. 13.3.1] is satisfied.

Lemma 2.39. Let f : Y → T be a flat morphism locally of finite type between

locally Noetherian schemes. For a point y ∈ Y and its image t = f(y), assume that

the fiber Yt satisfies Sk at y for some k ≥ 2. Let Y ◦ be an open subset of Y with

y 6∈ Y ◦. Then, there exists an open neighborhood U of y in Y such that

(1) f |U : U → T is an Sk-morphism having pure relative dimension, and

(2) the inequality

codim(Ut′ \ Y ◦, Ut′) ≥ codimy(Yt \ Y ◦, Yt)

holds for any t′ ∈ f(U), where Ut′ = U ∩ Yt′ .

Proof. By Fact 2.30(3), replacing Y with an open neighborhood of y, we may

assume that f is an Sk-morphism. For any point y′ ∈ Y and for the fiber Yt′

over t′ = f(y′), the local ring OYt′ ,y
′ is equi-dimensional by Fact 2.24(1), since
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Yt′ is catenary satisfying S2. Moreover, the local ring has no embedded primes

by the condition S1. Hence, each associated prime p of OYt′ ,y
′ corresponds to a

generic point of an irreducible component Γp of Yt′ containing y
′, and here, dimΓp

is independent of the choice of p. Thus, by [11, IV, Th. (12.1.1)(ii)] (cf. [11, IV,

Déf. (3.1.1)]), we may assume that f has pure relative dimension, by replacing Y

with an open neighborhood of y. Consequently, Y → T is an equi-dimensional

morphism (cf. Remark 2.38). Then, the function

Y ∋ y′ 7→ codimy′(Yf(y′) \ Y ◦, Yf(y′))

is lower semi-continuous by [11, IV, Prop. (13.3.7)]. Hence, we can take an open

neighborhood U of y satisfying the inequality in (2). Thus, we are done. �

Corollary 2.40. Let f : Y → T be an S2-morphism of locally Noetherian schemes.

Assume that every fiber Yt is connected.

(1) If T are connected, then f has pure relative dimension. In particular, f is

an equi-dimensional morphism.

(2) If f is proper, then the function t 7→ codim(Yt ∩ Z, Yt) is lower semi-

continuous on T for any closed subset Z of Y .

Proof. We may assume that T is connected. We know that every fiber Yt is equi-

dimensional by the proof of Lemma 2.39, since Yt is connected. Moreover, dimYt is

independent of the choice of t ∈ T by Lemma 2.39(1), since T is connected. Hence,

f has pure relative dimension, and (1) has been proved. In the case (2), f(Y ) = T ,

since f(Y ) is open and closed. Let us consider the set Fk of points y ∈ Y such that

codimy(Z ∩ Yf(y), Yf(y)) ≤ k

for an integer k. Then, f(Fk) is the set of points t ∈ T with codim(Yt ∩Z, Yt) ≤ k.
Now, Fk is closed by (1) and by [11, IV, Prop. (13.3.7)]. Since f is proper, f(Fk)

is closed. This proves (2), and we are done. �

3. Flatness criteria

We shall study restriction homomorphisms (cf. Definition 3.2 below) of coherent

sheaf to open subsets by applying the local criterion of flatness (cf. Section A.1),

and give several criteria for the restriction homomorphism on a fiber to be an

isomorphism. Section 3.1 contains the key proposition (Proposition 3.7) and its

related properties. Results in Section 3.1 are original, but seem to be well known

essentially, and these are applied to the study of relative canonical sheaves, etc., in

the latter sections. Some applications of Proposition 3.7 are given in Section 3.2:

Theorem 3.17 is a criterion for a sheaf to be invertible, which is used in the proof

of Theorem 5.10 below. Theorem 3.18 on the relative S2-ification for the double

dual is analogous to the flattening stratification theorem by Mumford in [37, Lect.

8] and to the representability theorem of unramified functors by Murre [39].



22 YONGNAM LEE AND NOBORU NAKAYAMA

3.1. Restriction homomorphisms. In Section 3.1, we work under Situation 3.1

below unless otherwise stated:

Situation 3.1. We fix a morphism f : Y → T of locally Noetherian schemes, a closed

subset Z of Y , and a coherent OY -module F . The complement of Z in Y is written

as U , and j : U →֒ Y stands for the open immersion.

Definition 3.2. The restriction morphism of F to U is defined as the canonical

homomorphism

φ = φU (F) : F → j∗(F|U ).
Similarly, for a point t ∈ T , the restriction homomorphism of F(t) to U (or to

U ∩ Yt) is defined as the canonical homomorphism

φt = φU (F(t)) : F(t) → j∗(F(t)|U∩Yt
).

Here, U ∩ Yt is identical to U ×Y Yt, and j stands also for the open immersion

U ∩ Yt →֒ Yt.

Remark. The homomorphism φt is an isomorphism along U ∩ Yt. In particular, φt
is an isomorphism if t 6∈ f(Z).

Remark. By Remark 2.8, we see that φ is an injection (resp. isomorphism) along

Yt if and only if

depthFy ≥ 1 (resp. ≥ 2)

for any point y ∈ Z such that Yt ∩ {y} 6= ∅.

We use the following notation only in Section 3.1.

Notation 3.3. For simplicity, we write

F∗ := j∗(F|U ) and F(t)∗ := j∗(F(t)|U∩Yt
).

When we fix a point t of f(Z), we write A for the local ring OT,t and m for the

maximal ideal mT,t, and for an integer n ≥ 0, we set

An := A/mn+1, Tn := SpecAn, Yn := Y ×T Tn,
Un = Yn ∩ U, Fn := F ⊗OY

OYn
, Fn∗ := j∗(Fn|Un

).

In particular, Yt = Y0, F(t) = F0, F(t)∗ = F0∗, and Yn is a closed subscheme of Ym
for any m ≥ n. Furthermore, the restriction homomorphisms of Fn and (Fn∗)(t),
respectively, are written by

φn : Fn → Fn∗ = j∗(Fn|Un
) and ϕn : (Fn∗)(t) = Fn∗ ⊗OYn

OY0
→ F0∗.

Remark 3.4. The homomorphism φt in Definition 3.2 equals φ0, and the diagram

Fn ⊗OY
OY0

φn⊗OY0−−−−−→ (Fn∗)⊗OY
OY0

≃

y
yϕn

F0
φ0−−−−→ F0∗

is commutative for any n ≥ 0.
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Lemma 3.5. Assume that F|U is flat over T .

(1) For a point y ∈ Z and t = f(y), if φt is injective at y, then Fy is flat over

OT,t.
(2) For a point y ∈ Z and t = f(y), if φt is an isomorphism at y, then the

restriction homomorphism φn : Fn → Fn∗ is an isomorphism at y for any

n ≥ 0.

(3) If φt is an isomorphism for any t ∈ f(Z), then φ is also an isomorphism.

Proof. First, we shall prove (3) assuming (1) and (2). Since φt is an isomorphism

for any t ∈ f(Z), F is flat over T by (1), and we have

depthYt∩Z F(t) ≥ 2

by (2) (cf. Property 2.6). Then, depthZ F ≥ 2 by Lemma 2.33(1), and φ is an

isomorphism (cf. Property 2.6).

Next, we shall prove (1) and (2). We may assume that T = SpecA for a local

Noetherian ring A in which t = f(y) corresponds to the maximal ideal m of A and

that Y = SpecOY,y for the given point y (cf. Remark 2.8). We write k = A/m =

k(t) and use Notation 3.3. From the standard exact sequence

0→ mn/mn+1 → An → An−1 → 0

of A-modules, by taking tensor products with F over A, we have an exact sequence

(III-1) mn/mn+1 ⊗k F0
un−−→ Fn → Fn−1 → 0

of OY -modules. Here, the left homomorphism un is injective at y for any n ≥ 0 if

and only if Fy is flat over OT,t by the local criterion of flatness (cf. Proposition A.1).

Now, un is injective on the open subset Un, since F|U is flat over T , and u0 is the

identity morphism. For each n > 0, there is a natural commutative diagram

mn/mn+1 ⊗k F0
un−−−−→ Fn −−−−→ Fn−1

id⊗φ0

y φn

y φn−1

y

0 −−−−→ mn/mn+1 ⊗k j∗(F0|U0
)

j∗(un|Un )−−−−−−→ j∗(Fn|Un
) −−−−→ j∗(Fn−1|Un−1

)

of exact sequences. By assumption, φ0 = φt is an injection (resp. isomorphism) at

y in case (1) (resp. (2)) (cf. Remark 2.8). Thus, un is injective at y for any n by

the diagram. This shows (1). In case (2), by induction on n, we see that φn is

an isomorphism at y for any n, by the diagram. Thus, (2) also holds, and we are

done. �

Applying Lemma 3.5 to F = OY , we have:

Corollary 3.6. Suppose that U is flat over T . If the restriction homomorphism

φt(OY ) : OYt
→ j∗(OYt∩U ) is injective for a point t ∈ f(Z), then f is flat along Yt.

If φt(OY ) is an isomorphism for any t ∈ f(Z), then OY ≃ j∗(OU ).
Proposition 3.7 (key proposition). Suppose that there is an exact sequence

0→ F → E0 → E1 → G → 0

of coherent OY -modules such that
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(i) E0, E1, and G|U are flat over T , and

(ii) the inequalities

depthZ∩Yt
E0(t) ≥ 2 and depthZ∩Yt

E1(t) ≥ 1

hold for any t ∈ f(Z).
Then, the following hold :

(1) The restriction homomorphism φ : F → F∗ = j∗(F|U ) is an isomorphism.

(2) For a fixed point t ∈ f(Z) and for any integer n ≥ 0, Fn∗ = j∗(Fn|Un
) (cf.

Notation 3.3) is isomorphic to the kernel F ′
n of the homomorphism

E0n = E0 ⊗OY
OYn

→ E1n = E1 ⊗OY
OYn

induced by E0 → E1. In particular, Fn∗ is coherent for any n ≥ 0, and

F(t)∗ = j∗(F(t)|U∩Yt
) is coherent for any t ∈ f(Z).

(3) For any point y ∈ Y and t = f(y), the following conditions are equivalent

to each other, where we use Notation 3.3 in (a′), (b′), and (b′′):

(a) φt : F(t) → F(t)∗ is surjective at y;

(b) φt is an isomorphism at y;

(c) Gy is flat over OT,t;
(a′) ϕn : (Fn∗)(t) → F0∗ is surjective at y for any n ≥ 0;

(b′) ϕn is an isomorphism at y for any n ≥ 0;

(b′′) φn : Fn → Fn∗ is an isomorphism at y for any n ≥ 0.

Note that if (c) is satisfied, then Fy is also flat over OT,t.

Proof. By (i), (ii) and by Lemma 2.33(1), we have depthZ E0 ≥ 2 and depthZ E1 ≥
1. Thus, depthZ F ≥ 2 by Lemma 2.18(1), this implies (1) (cf. Property 2.6). For

each n ≥ 0, the exact sequence

0→ F ′
n → E0n → E1n → Gn → 0

on Yn satisfies the conditions (i) and (ii) for the induced morphism Yn → Tn, where

Gn = G ⊗ OYn
. Thus, by (1), the restriction homomorphism

φ(F ′
n) : F ′

n → (F ′
n)∗ = j∗(F ′

n|Un
)

of F ′
n is an isomorphism. On the other hand, there is a canonical homomorphism

ψn : Fn = F ⊗OYn
→ F ′

n. Note that ψn is an isomorphism at a point y ∈ Yt = Y0
if Gy is flat over OT,t. In particular, ψn is an isomorphism on Un by the condition

(i). Hence, (F ′
n)∗ ≃ Fn∗, and we have an isomorphism F ′

n ≃ Fn∗ by which φn is

isomorphic to ψn. This proves (2). For the proof of (3), we may assume that y ∈ Z.
We shall show that there is an exact sequence

(III-2) TorA2 (Gy, k)→ (F(t))y = Fy ⊗OY,y
OYt,y

(ψ0)y−−−→ (F ′
0)y → TorA1 (Gy, k)→ 0

of OY,y-modules, where A = OT,t and k = k(t): For the image B of E0 → E1,
we have two short exact sequences 0 → F → E0 → B → 0 and 0 → B → E1 →
G → 0 on Y . Then, the kernel of B0 = B ⊗ OY0

→ E10 = E1 ⊗ OY0
is isomor-

phic to TorOT

1 (G, k), and the kernel of F0 → E00 is isomorphic to TorOT

1 (B, k) ≃
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TorOT

2 (G, k). Then, we have the exact sequence (III-2) by applying the snake lemma

to the commutative diagram

F0 −−−−→ E00 −−−−→ B0 −−−−→ 0

ψ0

y =

y
y

0 −−−−→ F ′
0 −−−−→ E00 −−−−→ E10

of exact sequences. Note that ψ0 ≃ φ0 by the argument above. We shall prove

(3) using (III-2). If (a) holds, then TorA1 (Gy, k) = 0 by (III-2), and it implies (c)

by the local criterion of flatness (cf. Proposition A.1), since Gy ⊗ OYt,y ≃ Gy ⊗ k

is flat over k. If (c) holds, then TorAj (Gy, k) = 0 for j = 1 and 2, and it implies

(b) by (III-2). Thus, we have shown the equivalence of the three conditions (a),

(b), and (c). By applying the equivalence of three conditions to F ′
n ≃ Fn∗ and

Yn → Tn instead of F and Y → T , we see that (a′) and (b′) are both equivalent

to that (Gn)y is flat over OTn,t for any n ≥ 0; This is also equivalent to (c) by

the local criterion of flatness (cf. (i) ⇔ (iv) in Proposition A.1). If (c) holds, then

ψn : Fn → F ′
n is an isomorphism as we have noted before, and the isomorphism

F ′
n ≃ Fn∗ in (2) implies (b′′). Conversely, if (b′′) holds, then ϕn is isomorphic to

the canonical isomorphism (Fn)(t) ≃ F(t) for any n (cf. Remark 3.4), and it implies

(b′). Thus, we are done. �

Remark. The exact sequence (III-2) is obtained as the “edge sequence” of the

spectral sequence

Ep,q2 = TorOT
−p (Hq(E•), k(t))⇒ Ep+q = Hp+q(E•(t))

of OYt
-modules (cf. [11, III, (6.3.2.2)]) arising from the quasi-isomorphism

E•(t) ≃qis E• ⊗L

OT
k(t),

where E• and E•(t) denote the complexes [0→ E0 → E1 → 0] and [0→ E0(t) → E1(t) →
0], respectively.

Remark 3.8. In the situation of Proposition 3.7(2), the canonical homomorphism

φ∞ = lim←−n φn : lim←−n Fn → lim←−n Fn∗
is an isomorphism, where the projective limit lim←−n is taken in the category of OY -
modules. This is shown as follows. Since F ′

n ≃ Fn∗, it is enough to show that the

homomorphism

ψ∞(V ) := lim←−nH
0(V, ψn) : lim←−nH

0(V,Fn)→ lim←−nH
0(V,F ′

n)

is an isomorphism for any open affine subset V of Y , where we note that the

global section functor H0(V, •) commutes with lim←−. For R = H0(V,OV ) and Rn =

R/mn+1R ≃ H0(V,OYn
), we have two exact sequences

0→ H0(V,F)→ H0(V, E0)→ H0(V, E1),
0→ H0(V,F ′

n)→ H0(V, E0)⊗R Rn → H0(V, E1)⊗R Rn.
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Since the mR-adic completion R̂ = lim←−Rn is flat over R and since lim←− is left exact,

we have an isomorphism

H0(V,F)⊗R R̂ ≃ Ker(H0(V, E0)⊗R R̂→ H0(V, E1)⊗R R̂) ≃ lim←−nH
0(V,F ′

n).

Then, ψ∞(V ) is an isomorphism, since

lim←−nH
0(V,Fn) ≃ lim←−n(H

0(V,F)⊗R Rn) ≃ H0(V,F)⊗R R̂.

Corollary 3.9. In the situation of Proposition 3.7, assume that f is locally of finite

type. Then, the condition (c) of Proposition 3.7(3) for a point y ∈ Y is equivalent

to:

(d) there is an open neighborhood V of y in Y such that F|V is flat over T ,

and φt is an isomorphism on V ∩ Yt for any t ∈ f(V ).

Furthermore, if F(t)|U∩Yt
satisfies S2 for the point t = f(y) and if F(t′) is equi-

dimensional and

(III-3) codim(Z ∩ Yt′ ∩ SuppF , Yt′ ∩ SuppF) ≥ 2

for any t′ ∈ T , then (d) is equivalent to:

(e) there is an open neighborhood V of y in Y such that F|V satisfies relative

S2 over T , i.e., V = S2(F|V /T ).

Proof. For the first assertion, by Proposition 3.7(3), it is enough to show (c)⇒ (d)

assuming that f is locally of finite type and y ∈ Z. When (c) holds, G|V is flat over

T for an open neighborhood V of y in Y , by Fact 2.27(1). Thus, F|V is flat over

T by Proposition 3.7(i), and moreover, by Proposition 3.7(3) applied to any point

in V , we see that φt is an isomorphism on Yt ∩ V for any t ∈ f(V ∩Z). Since φt is
an isomorphism for any t 6∈ f(Z), we have proved: (c) ⇒ (d).

We shall show (d) ⇔ (e) in the situation of the second assertion. In this case, if

φt is an isomorphism, then F(t) satisfies S2 by Corollary 2.16. Hence, we have (d)

⇒ (e) by Fact 2.30(2). Conversely, if (e) holds with V = Y , then

depthYt′∩Z
F(t′) ≥ 2

for any t′ ∈ f(Z) by Lemma 2.15(2), since F(t′) satisfies S2 and the inequality

(III-3) holds. Hence, φt′ is an isomorphism for any t′ ∈ f(Z), and (d) holds. Thus,

we are done. �

Corollary 3.10. In the situation of Proposition 3.7, for a point t ∈ f(Z), assume

that the coherent OYt
-module F(t)∗ = j∗(F(t)|Yt∩U ) satisfies

(III-4) depthYt∩Z F(t)∗ ≥ 3.

Then, the sheaves F and G are flat over T along Yt, and the restriction homomor-

phism φt : F(t) → F(t)∗ is an isomorphism.

Proof. By Proposition 3.7(3), it is enough to prove that φt is an isomorphism. By

(III-4), we have

R1j∗(F(t)|U∩Yt
) = R1j∗(F0|U0

) = 0
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(cf. Property 2.6). Hence, the exact sequence (III-1) in the proof of Lemma 3.5

induces an exact sequence

0→ mn/mn+1 ⊗k j∗(F0|U0
)→ j∗(Fn|Un

)→ j∗(Fn−1|Un−1
)→ 0.

Since Fn∗ = j∗(Fn|Un
), the homomorphism ϕn is surjective for any n ≥ 0. There-

fore, φt is an isomorphism by (b′) ⇒ (b) of Proposition 3.7(3). �

Remark 3.11. Corollary 3.10 is similar to a special case of [27, Th. 12], where the

sheaf corresponding to F above may not have an exact sequence of Proposition 3.7.

However, [27, Th. 12] is not true. Example 3.12 below provides a counterexample.

Example 3.12. Let Y be an affine space A8
k of dimension 8 over a field k with a

coordinate system (y1, y2, . . . , y8). Let T be a 3-dimensional affine space A3
k and

let f : Y → T be the projection defined by (y1, . . . , y8) 7→ (y1, y2, y3). The fiber

Y0 = f−1(0) over the origin 0 = (0, 0, 0) of T is of dimension 5. We define closed

subschemes Z and V of Y by

Z := {y4 = y5 = y6 = 0} and

V := {y1 + y2y7 + y3y8 = y4 − y1 = y5 − y2 = y6 − y3 = 0}.
Then, we can show the following properties:

(1) V ≃ A4
k, and V ∩ Y0 = V ∩ Z = Y0 ∩ Z ≃ A2;

(2) codim(Z, Y ) = codim(Z ∩ Y0, Y0) = 3, and codim(Z ∩ V, V ) = 2;

(3) V \ Y0 → T is a smooth morphism of relative dimension one, but the fiber

V ∩ Y0 of V → T over 0 is two-dimensional.

Let j : U →֒ Y be the open immersion from the complement U := Y \ Z, and we

set F := OY ⊕OV and F0 := F ⊗OY
OY0

. By (1) and (2), we have isomorphisms

j∗(F|U ) ≃ j∗OU ⊕ j∗OU∩V ≃ OY ⊕OV and(III-5)

j∗(F0|U∩Y0
) ≃ j∗OU∩Y0

≃ OY0
,(III-6)

since U ∩ V ∩ Y0 = ∅, depthZ OY ≥ 2, depthZ∩V OV ≥ 2, and depthZ∩Y0
OY0
≥ 2.

Thus, we have:

(4) F|U = OU ⊕OU∩V is flat over T by (3);

(5) j∗(F|U ) is not flat over T by (3) and (III-5);

(6) j∗(F0|U∩Y0
) satisfies S3 by (III-6);

(7) the canonical homomorphism

j∗(F|U )⊗OY
OY0
→ j∗(F0|U∩Y0

)

is not an isomorphism by (III-5) and (III-6).

Thus, f : Y → T , F , and U give a counterexample to [27, Th. 12]: The required

assumptions are satisfied by (2), (4), and (6), but the conclusion is denied by (5)

and (7).

The kernel J of OY → OV has also an interesting infinitesimal property. Let

A = k[y1, y2, y3] be the coordinate ring of T , m = (y1, y2, y3) the maximal ideal at

the origin 0 ∈ T , and set

An = A/mn+1, Tn = SpecAn, Yn = Y ×T Tn, Vn = V ×T Tn, Jn = J ⊗OY
OYn
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for each n ≥ 0 as in Notation 3.3. Then, we can prove:

(III-7) J 6≃ OY , J |U 6≃ OU , J ≃ J∗ = j∗(J |U ), and Jn|U∩Yn
≃ OU∩Yn

for any n ≥ 0. In fact, the first two of (III-7) are consequences of that the ideal

sheaf J |U of V ∩U is not an invertible OU -module, and it is derived from codim(V ∩
U,U) = 4 > 1. The third isomorphism of (III-7) follows from depthZ OY ≥ 2 and

depthZ OV ≥ 2 (cf. (2)), and the last one from that the kernel of Jn → OYn
is

isomorphic to TorOY

1 (OV ,OYn
), which is supported on V ∩ Y0 ⊂ Y \ U .

Remark 3.13. In the situation of Notation 3.3, not a few people may fail to believe

the following wrong assertion:

(∗) If φ : F → j∗(F|U ) is an isomorphism, then the morphism

φqcoh∞ : lim←−
qcoh

n
Fn → lim←−

qcoh

n
j∗(j

∗Fn)
induced by φn : Fn → Fn∗ = j∗(j

∗Fn) is also an isomorphism.

Here, lim←−
qcoh stands for the projective limit in the category QCoh(OY ) of quasi-

coherent OY -modules. We shall show that the ideal sheaf J in Example 3.12

provides a counterexample of (∗), and explain why a usual projective limit argument

does not work for the “proof” of (∗).
For simplicity, assume that Y is an affine Noetherian scheme SpecR, and set

M = H0(Y,F), which is a finitely generated R-module. We set Rn = R/mn+1R

and Mn = M ⊗R Rn for integers n ≥ 0. Then F ≃ M∼ and Fn ≃ M∼
n . Let

R̂ be the mR-adic completion lim←−nRn, and let π : Spec R̂ → SpecR = Y be the

associated morphism of schemes. Then, we have isomorphisms

lim←−
qcoh

n
Fn ≃ (M ⊗R R̂)∼ ≃ π∗(π∗F).

Note that the projective limit lim←−n Fn in the category Mod(OY ) of OY -modules is

not quasi-coherent in general.

We shall show that the ideal sheaf J in Example 3.12 provides a counterexample

of (∗). In this case, the left hand side of φqcoh∞ is isomorphic to π∗(π
∗J ) and the right

hand side is to π∗π
∗OY by the last isomorphisms of (III-7). Now, π is faithfully

flat if we replace Y = A8 with SpecOY,0 for the origin 0 = (0, 0, . . . , 0) ∈ Y . Then,

φqcoh∞ is never an isomorphism, since J 6⊂ OY . On the other hand, φ : J → j∗(J |U )
is an isomorphism as the third isomorphism of (III-7).

We remark here on the commutativity of lim←− with functors j∗ and j∗. The

direct image functor j∗ : QCoh(OU )→ QCoh(OY ) is right adjoint to the restriction

functor j∗ : QCoh(OY ) → QCoh(OU ). Thus, lim←− commutes with j∗, and we have

an isomorphism

α : j∗

(
lim←−

qcoh

n
j∗Fn

)
≃−→ lim←−

qcoh

n
j∗(j

∗Fn).
On the other hand, j∗ does not have a left adjoint functor. Because, the left adjoint

functor j! : Mod(OU ) → Mod(OY ) of j∗ : Mod(OY ) → Mod(OU ) does not preserve
quasi-coherent sheaves. Thus, lim←− does not commute with j∗ in general, and hence,

the canonical morphism

β : j∗
(
lim←−

qcoh

n
Fn

)
→ lim←−

qcoh

n
j∗Fn
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in QCoh(OU ) is not necessarily an isomorphism.

It is necessary to check the morphism β to be an isomorphism, for the “proof”

of (∗) by the projective limit argument. In fact, we can prove:

(∗∗) When φ is an isomorphism, φqcoh∞ is an isomorphism if and only if β is so.

This is a point to which many people probably do not pay attention.

Proof of (∗∗). Now, we have a commutative diagram

π∗π
∗F ≃−−−−→ lim←−

qcoh

n
Fn

φqcoh
∞−−−−→ lim←−

qcoh

n
j∗j

∗(Fn)

φ̂

y
y ≃

xα

j∗j
∗(π∗π

∗F) ≃−−−−→ j∗j
∗
(
lim←−

qcoh

n
Fn

)
j∗(β)−−−−→ j∗

(
lim←−

qcoh

n
j∗Fn

)

in QCoh(OY ), where φ̂ is the restriction homomorphism of π∗π
∗F . Thus, it suffices

to show that if φ is an isomorphism, then φ̂ is so. Let us consider an isomorphism

γ : π∗π
∗(j∗j

∗F) ≃−→ j∗j
∗(π∗π

∗F)

defined as the composite

π∗π
∗(j∗j

∗(F)) π∗(δ
′)−−−−→

≃
π∗ĵ∗(π

∗
U (j

∗F)) ≃ j∗πU∗ĵ
∗(π∗F) j∗(δ

′′)−1

−−−−−−→
≃

j∗j
∗π∗π

∗F

of canonical isomorphisms; Here ĵ is the open immersion π−1(U) →֒ Spec R̂ and

πU is the restriction of π to π−1(U), and the morphisms

δ′ : π∗j∗(j
∗F) ≃−→ ĵ∗π

∗
U (j

∗F) and δ′′ : j∗π∗(π
∗F) ≃−→ πU∗ĵ

∗(π∗F)

are flat base change isomorphisms (cf. Lemma A.9). Then, we can write φ̂ =

γ ◦ (π∗π∗(φ)) for the induced morphism

π∗π
∗(φ) : π∗π

∗F → π∗π
∗(j∗j

∗F),

and this shows that if φ is an isomorphism, then φ̂ is so. Thus, we are done. �

In the rest of Section 3.1, in Lemmas 3.14 and 3.15 below, we shall give sufficient

conditions for F to admit an exact sequence of Proposition 3.7.

Lemma 3.14. Suppose that f ◦ j : U → T is flat and

depthYt∩Z OYt
≥ 2

for any t ∈ f(Z). If F is a reflexive OY -module and if F|U is locally free, then

there exists an exact sequence 0 → F → E0 → E1 → G → 0 locally on Y which

satisfies the conditions (i) and (ii) of Proposition 3.7.

Proof. The morphism f is flat by Corollary 3.6. Since F is coherent, locally on Y ,

we have a finite presentation

O⊕m
Y

h−→ O⊕n
Y → F∨ → 0
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of the dual OY -module F∨ = HomOY
(F ,OY ). Let K be the kernel of the left

homomorphism h. Then, K|U is locally free, since so is F|U . We have an exact

sequence

0→ F ≃ F∨∨ → O⊕n
Y

h∨

−−→ O⊕m
Y

by taking the dual. Let G be the cokernel of h∨. Then, G|U is isomorphic to the

locally free sheaf K∨|U . Thus, the exact sequence

0→ F → O⊕n
Y

h∨

−−→ O⊕m
Y → G → 0

satisfies the conditions (i) and (ii) of Proposition 3.7. �

Lemma 3.15. Suppose that f : Y → T is a flat morphism and

(III-8) depthYt∩Z OYt
≥ 2

for any t ∈ f(Z). Moreover, suppose that there is a bounded complex

E• = [· · · → E i → E i+1 → · · · ]
of locally free OY -modules of finite rank satisfying the following four conditions :

(i) Hi(E•)|Y \Z = 0 for any i > 0;

(ii) F ≃ H0(E•);
(iii) Hi(E•(t)) = 0 for any i < 0 and any t ∈ T , where E•(t) stands for the complex

[· · · → E i(t) → E i+1
(t) → · · · ] ≃qis E• ⊗L

OY
OYt

;

(iv) the local cohomology group Hiy(M
•) at the maximal ideal mY,y for the com-

plex

M• =
(
τ≤1E•(t)

)
y

of OY,y-modules is zero for any i ≤ 1 and any y ∈ Z, where t = f(y).

Then, Hi(E•) = 0 for any i < 0, and F admits an exact sequence satisfying the

conditions (i) and (ii) of Proposition 3.7.

Proof. For an integer k, the truncated complex τ≥k(E•) is expressed as

[· · · → 0→ Ck → Ek+1 → Ek+2 → · · · ],
where Ck is the cokernel of Ek−1 → Ek. First, we shall show that E• ≃qis τ

≥0(E•)
and C0 is flat over T . Note that it implies that Hi(E•) = 0 for any i < 0. Since E•
is bounded, we have an integer k < 0 such that E• ≃qis τ

≥k(E•) and Ck is flat over

T . Then, by (iii), one has

Hk(E•(t)) ≃ Ker(Ck(t) → Ek+1
(t) ) = 0

for any t ∈ T . Hence, Ck → Ek+1 is injective and Ck+1 ≃ Ek+1/Ck is flat over T by

a version of local criterion of flatness (cf. Corollary A.2). Thus, E• ≃qis τ
≥k+1(E•),

and we can increase k by one. Therefore, we can take k = 0, and consequently,

E• ≃qis τ
≥0(E•), and C0 is flat over T . We write C := C0. Then,

E•(t) ≃qis [· · · → 0→ C(t) → E1(t) → E2(t) → · · · ]
for any t ∈ T , since C and E i are all flat over T .
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Second, we shall prove that

(III-9) depthYt∩Z C(t) ≥ 2

for any t ∈ f(Z). We define Kt to be the kernel of E1(t) → E2(t). Then,

depthYt∩Z E i(t) ≥ 2 and depthYt∩Z Kt ≥ 2

for i = 0, 1, and for any t ∈ f(Z), by (III-8) and by Lemma 2.18(1). In particular,

for any y ∈ Z ∩ Yt, we have the vanishing

(III-10) Hiy((Kt)y) = 0

of the local cohomology group at y for any i ≤ 1 (cf. Property 2.6). By construction,

we have a quasi-isomorphism

τ≤1(E•(t)) ≃qis [· · · → 0→ C(t) → Kt → 0→ · · · ].
In view of the induced exact sequence

· · · → Hiy(M
•)→ Hiy((C(t))y)→ Hiy((Kt)y)→ · · ·

of local cohomology groups, we have

Hiy((C(t))y) = 0

for any i ≤ 1 by (iv) and (III-10). Thus, we have (III-9) (cf. Property 2.6).

Finally, we consider the cokernel G of C → E1. Then, G|U is flat over T by (i).

Therefore, the exact sequence 0 → F → C → E1 → G → 0 satisfies the conditions

(i) and (ii) of Proposition 3.7. �

3.2. Applications of the key proposition. The following lemma is a direct

application of Proposition 3.7.

Lemma 3.16. Let f : Y → T be a flat morphism of locally Noetherian schemes

and let Z be a closed subset of Y such that

depthYt∩Z OYt
≥ 2

for any fiber Yt. For a morphism q : T ′ → T from another locally Noetherian

scheme, let f ′ : Y ′ → T ′ and p : Y ′ → Y be the induced morphisms for the fiber

product Y ′ = Y ×T T ′. Let 0 → F → E0 → E1 → G → 0 be an exact sequence

of coherent OY -modules such that F|U , E0, E1, and G|U are locally free, where

U = Y \ Z. Then, F is a reflexive OY -module, and

(p∗F)∨∨ ≃ Ker(p∗E0 → p∗E1) ≃ j′∗(p∗F|U ′)

for the open immersion j′ : U ′ = f−1(U) →֒ Y ′. Moreover, (p∗F)∨∨ satisfies rela-

tive S2 over T ′ if and only if p∗G is flat over T ′.

Proof. The exact sequence satisfies the assumptions of Proposition 3.7 for Y → T .

Hence, F ≃ j∗(F|U ), i.e., depthZ F ≥ 2, by Proposition 3.7(1). Moreover, F is

reflexive by Lemma 2.22(3), since we have depthZ OY ≥ 2 by Lemma 2.33(3). Let

F ′ be the kernel of p∗E0 → p∗E1. Then, the exact sequence

0→ F ′ → p∗E0 → p∗E1 → p∗G → 0
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on Y ′ satisfies the assumptions of Proposition 3.7 for f ′ : Y ′ → T ′, since

depthY ′

t′
∩p−1(Z)OY ′

t′
= depthYt∩Z OYt

≥ 2

for any t′ ∈ T and t = q(t′), by Lemma 2.32(1). Hence, F ′ ≃ j′∗(F ′|U ′) by

Proposition 3.7(1). Since F ′|U ′ ≃ p∗F|U ′ , we have F ′ ≃ (p∗F)∨∨ by Lemma 2.35.

Furthermore, by Proposition 3.7(3), we see that F ′ satisfies relative S2 over T ′ if

and only if p∗G is flat over T . �

Theorem 3.17. Let f : Y → T be a morphism of locally Noetherian schemes, Z

a closed subset of Y , F a coherent OY -module, and t a point of f(Z). We set

U = Y \ Z, and write j : U →֒ Y for the open immersion. Assume that :

(i) depthZ OY ≥ 1,

(ii) F|U is flat over T , F|U is invertible, depthZ F ≥ 2, and

(iii) the direct image sheaf

F(t)∗ = j∗((F ⊗OY
OYt

)|U∩Yt
)

(cf. Definition 3.2) is an invertible OYt
-module.

Assume furthermore that one of the conditions (a) and (b) below is satisfied :

(a) depthZ∩Yt
OYt
≥ 3;

(b) the double-dual F [r] of F⊗r is invertible along Yt for a positive integer r

coprime to the characteristic of the residue field k(t).

Then, f is flat along Yt, and F is invertible along Yt.

Proof. We may replace Y with its open subset, since the assertions are local on Y .

By (ii), U is flat over T . Moreover,

(III-11) depthZ∩Yt
OYt
≥ 2

by (iii), since the isomorphism F(t)∗ ≃ j∗(F(t)∗) implies that depth(F(t)∗)y =

depthOYt,y ≥ 2 for any y ∈ Z ∩ Yt. Hence, f : Y → T is flat along Yt by Corol-

lary 3.6 (cf. Property 2.6). Then, F is a reflexive OY -module by Lemma 2.22(3),

since we have assumed depthZ OY ≥ 1 and depthZ F ≥ 2 in (i) and (ii). Therefore,

by (III-11) and Lemma 3.14, we may assume that F admits an exact sequence of

Proposition 3.7.

By Fact 2.27(2), we see that F is invertible along Yt if the two conditions below

are both satisfied:

(1) F is flat over T along Yt;

(2) φt : F(t) → F(t)∗ is an isomorphism.

Here, (1) is a consequence of (2) by Proposition 3.7(3). When (a) holds, we have

depthYt∩Z F(t)∗ ≥ 3

by (iii), and hence, the condition (2) is satisfied by Corollary 3.10. Thus, it remains

to prove (2) assuming the condition (b).

We use Notation 3.3 for t. By replacing Y with its open subset, we may assume

that Y is affine, and there exist isomorphisms

OYt
= OY0

≃ F(t)∗ = F0∗ and F [r] ≃ OY
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in (iii) and in (b), respectively. Note that we have

depthYn∩Z OYn
≥ 2

for any n ≥ 0: This follows from (III-11) by Lemma 2.33(3) applied to the flat

morphism Yn → Tn. As a consequence,

H0(Yn,OYn
) ≃ H0(Un,OUn

)

and for any n, and the restriction homomorphism

(III-12) H0(Un,OUn
)→ H0(Un−1,OUn−1

)

is surjective for any n > 0, since we have assumed that Y is affine.

We set Nn := Fn|Un
. It is enough to show that Nn ≃ OUn

for all n. In fact, if

this is true, then we have an isomorphism

Fn∗ = j∗(Nn) ≃ j∗(OUn
) ≃ OYn

,

and, as a consequence, the restriction homomorphism ϕn : (Fn∗)(t) → F0∗ is an

isomorphism for any n ≥ 0. Hence, in this case, φt : F(t) → F(t)∗ is an isomorphism

by (b′) ⇒ (b) of Proposition 3.7(3).

We shall prove Nn ≃ OUn
by induction on n. When n = 0, we have the

isomorphism from the isomorphism F0∗ ≃ OY0
above. Assume that Nn−1 ≃ OUn−1

for an integer n > 0. Let J be the kernel of OYn
→ OYn−1

. Then, J 2 = 0 as an

ideal of OYn
, and

J ≃ mn/mn+1 ⊗k OY0
.

We have an exact sequence

0→ J → O⋆Yn
→ O⋆Yn−1

→ 1

of sheaves on |Yn| = |Y0| with respect to the Zariski topology, where ⋆ stands for the

subsheaf of invertible sections of a sheaf of rings, and where a local section ζ of J
is mapped to the invertible section 1 + ζ of OYn

. It induces a long exact sequence:

H0(Un,O⋆Un
)

res0−−→ H0(Un−1,O⋆Un−1
)→ H1(U0,J )→ Pic(Un)

res1−−→ Pic(Un−1),

where res0 and res1 are restriction homomorphisms to Un−1. Note that res0 is sur-

jective, since so is (III-12). Hence, the kernel of res1 is a k-vector space isomorphic

to H1(U0,J ). Now, the isomorphism class of Nn in Pic(Un) belongs to the kernel

by Nn−1 ≃ OUn−1
, and its multiple by r is zero by (b), where r is coprime to

char(k). Thus, Nn ≃ OUn
, and we are done. �

The following is analogous to the flattening stratification theorem by Mumford

in [37, Lect. 8]: A similar result in the case (i) is stated by Kollár in [28, Th. 2]

without assuming the S2-condition for f , etc.

Theorem 3.18. Let f : Y → T be an S2-morphism of locally Noetherian schemes.

Let F be a reflexive OY -module such that F|U is locally free for an open subset

U ⊂ Y such that codim(Yt \ U, Yt) ≥ 2 for any fiber Yt = f−1(t). Assume either

that

(i) f is a projective morphism locally over T , or
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(ii) F|Y \Σ satisfies relative S2 over T for a closed subset Σ ⊂ Y such that

Σ→ T is proper.

Then, there is a separated surjective morphism S → T locally of finite type satisfying

the following conditions :

(1) S → T is a monomorphism in the category of schemes (cf. Fact 3.19 below);

(2) S → T is a local immersion of finite type (cf. Remark 3.20 below) in the

case (i);

(3) for a morphism T ′ → T from a locally Noetherian scheme T ′ and for the

pullback F ′ = F ×T T ′ of F to the fiber product Y ×T T ′, the double dual

(F ′)∨∨ satisfies relative S2 over T ′ if and only if T ′ → T factors through

S → T .

Definition. A morphism S → T satisfying the condition (3) above is unique up

to isomorphism, and it is called the relative S2-ification for the double dual for F
with respect to Y → T .

Proof of Theorem 3.18. For any locally Noetherian T -scheme T ′, we set

F (T ′/T ) =

{
⋆, if (F ×T T ′)∨∨ satisfies relative S2 over T ′,

∅, otherwise,

where ⋆ denotes a one-point set. Then, F gives rise to a functor (LNSch/T )op → Set

for the category LNSch/T of locally Noetherian T -schemes. In fact, if F (T ′/T ) = ⋆,

then F (T ′′/T ) = ⋆ for any morphism T ′′ → T ′ of T -schemes, since we have an

isomorphism

(F ×T T ′′)∨∨ ≃ (F ×T T ′)∨∨ ×T ′ T ′′

by Lemma 2.35 and it satisfies relative S2 over T ′′ by Lemma 2.32(3). The functor

F is represented by a locally Noetherian T -scheme S if and only if the morphism

S → T satisfies the conditions (1) and (3) above. Since (2) is a local condition

for S and since S → T is determined uniquely up to isomorphism over T , we can

localize Y freely. Thus, we assume that T is an affine Noetherian scheme and that,

in the case (i), Y is a closed subscheme of PN × T for some N > 0.

We first consider the case (i): LetA be the f -ample invertibleOY -module defined

as the inverse image of O(1) on PN . Then, we can construct an exact sequence

(A⊗−l′)⊕m
′ → (A⊗−l)⊕m → F∨ → 0

on Y for positive some integers m, m′, l, and l′, where the kernel of the left homo-

morphism is locally free on U , since F∨ is so. Taking the dual, we have an exact

sequence 0 → F → E0 → E1 → G → 0 of coherent OY -modules such that E0, E1,
and G|U are locally free (cf. the proof of Lemma 3.14). Let T ′ → T be an arbitrary

morphism from another locally Noetherian scheme. Then, F (T ′/T ) = ⋆ if and only

if G ×T T ′ is flat over T ′, by Lemma 3.16. Hence, the functor F is nothing but the

“universal flattening functor” G : (Sch/T )op → Set for G (cf. Remark 3.21 below)



GROTHENDIECK DUALITY AND Q-GORENSTEIN MORPHISMS 35

restricted to the category LNSch/T . Here,

G(T ′/T ) =

{
⋆, if G ×T T ′ is flat over T ′,

∅, otherwise,

for any T -scheme T ′. By the Theorem of [37, Lect. 8], it is represented by a

separated morphism S → T of finite type which is a local immersion. Thus, we

have proved the assertion in the case (i).

Next, we consider the case (ii): We cover the closed subset Σ by a finite number

of affine open subsets Yλ of Y . By Lemma 3.14, we may assume that, for each λ,

there exists an exact sequence

0→ F|Yλ
→ E0λ → E1λ → Gλ → 0

on Yλ such that E0λ and E1λ are free OYλ
-modules of finite rank, and that Gλ is

locally free on Uλ = U ∩ Yλ. Let T ′ → T be an arbitrary morphism from a locally

Noetherian scheme T ′. By Lemmas 2.32(4), 2.35, and 3.16, we see that F (T ′/T ) = ⋆

if and only if Gλ ×T T ′ is flat over T ′ for any λ. Let Gλ : (Sch/T )
op → Set be the

universal flattening functor for Gλ, which is defined by

Gλ(T
′/T ) =

{
⋆, if Gλ ×T T ′ is flat over T ′;

∅, otherwise.

Let G : (Sch/T )op → Set be the “intersection” functor of all Gλ, i.e., G(T
′/T ) =⋂

Gλ(T
′/T ) for any T/′T . By the argument above, F is the restriction of G to

LNSch/T . The functors Gλ satisfy the conditions (F1)–(F8) of [39] except (F3)

by the proof of [39, Th. 2]. Hence, the intersection functor G satisfies the same

conditions except possibly (F3) and (F8). By [39, Th. 1], we are reduced to check

these two conditions for G. Since the two conditions concern only Noetherian

schemes, we may take F = G.

We shall show that F satisfies (F3) (cf. [39, (F3), p. 244]). Let A be a Noetherian

complete local ring with maximal ideal mA and let SpecA → T be a morphism.

What we have to prove is the bijectivity of the canonical map

F (SpecA)→ lim←−n F (SpecA/m
n
A),

or equivalently that F (SpecA) = ⋆ if F (SpecA/mnA) = ⋆ for all n > 0. Assume the

latter condition. By Corollary 3.9 applied to Yλ×T SpecA→ SpecA for each λ, we

have an open neighborhoodWλ of the closed fiber Yλ×T SpecA/mA in Yλ×T SpecA
such that (F×T SpecA)∨∨|Wλ

satisfies relative S2 over SpecA. On the other hand,

the restriction of (F ×T SpecA)∨∨ to (Y \ Σ) ×T SpecA also satisfies relative S2

over SpecA. Then, the union
⋃
Wλ ∪ ((Y \ Σ) ×T SpecA) equals SpecA, since

its complement is proper over SpecA but does not contain the closed point mA.

Therefore, F (SpecA) = ⋆.

Next, we shall show that F satisfies (F8) (cf. [39, (F8), p. 246]). Let A be a

Noetherian ring containing a unique minimal prime ideal p and let I be a nilpotent

ideal of A such that Ip = 0. Note that p =
√
0. Let SpecA → T be a morphism

and assume that F (SpecA/I) = ⋆ but F (SpecAp/I
′) = ∅ for any ideal I ′ of Ap
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such that I ′ ( Ip. What we have to prove is the existence of an element a ∈ A \ p
having the following property:

(⋄) For any element b ∈ A\p and for any ideal J of Aab = A[(ab)−1], if J ⊂ IAab
and if F (SpecAab/J) = ⋆, then J = IAab.

For each λ, we set Bλ to be an A-algebra such that SpecBλ ≃ Yλ ×T SpecA over

SpecA and let Mλ be a finitely generated Bλ-module such that the quasi-coherent

sheaf M∼
λ on SpecBλ is isomorphic to the pullback Gλ ×T SpecA of Gλ. Note that

Mλ ⊗A Ap/IAp

is a free Ap/IAp-module, since it is is flat over Ap/IAp by Gλ(SpecAp/IAp) = ⋆

and since Ap is an Artinian local ring. Hence,

(Mλ ⊗A A/I)⊗A Aa =Mλ ⊗A Aa/IAa
is a free Aa/IAa-module for an element a ∈ A \ p. For each λ, let Sλ be the set

of ideals J of Aa such that Gλ(SpecAa/J) = ⋆, or equivalently, that Mλ ⊗A Aa/J
is a flat Aa/J-module. By [11, IV, Cor. (11.4.4)], there exists a unique minimal

element Iλ = Iλ,(a) in Sλ, and
(†) for any Aa-algebra A′, if Mλ ⊗A A′ is a flat A′-module, then A′ is an

Aa/Iλ-algebra.

Note that Iλ is nilpotent, since the nilpotent ideal IAa belongs to Sλ. We define

I(a) :=
∑
Iλ,(a) as an ideal of Aa. Then, it has the following property:

(‡) For any Aa-algebra A
′, it is an Aa/I(a)-algebra if and only if Mλ ⊗A A′ is

flat over A′ for any λ, i.e., F (SpecA′) = ⋆.

By the assumption of Ip, we have (I(a))p = I(a)Ap = IAp. Thus, there is an element

a′ ∈ A \ p such that I(a)Aaa′ = IAaa′ . Here, Iλ,(aa′) = Iλ,(a)Aaa′ for any λ by the

property (†) of Iλ. Thus, I(aa′) = I(a)Aaa′ = IAaa′ . Therefore, aa′ satisfies the

condition (⋄) by the property (‡). Thus, we have checked the conditions (F3) and

(F8), and we are done. �

Fact 3.19. Let h : S → T be a morphism locally of finite type between locally

Noetherian schemes. Then, h is a morphism locally of finite presentation (cf. [11,

IV, §1.4]), and we have the following properties:

(1) The morphism h is a monomorphism in the category of schemes if and only

if h is radicial and unramified, by [11, IV, Prop. (17.2.6)].

(2) If h is an unramified morphism, then it is étale locally a closed immersion,

i.e., for any point s ∈ S, there exists an open neighborhood V of s such

that the induced morphism V → T is written as the composite of a closed

immersion V → W and an étale morphism W → T (cf. [11, IV, Cor.

(18.4.7)], [12, I, Cor. 7.8]).

Remark 3.20. A morphism S → T of schemes is called a local immersion if, for any

point s ∈ S, there is an open neighborhood V of s such that the induced morphism

V → T is a closed immersion into an open subset of T (cf. [11, I, Déf. (4.5.1)]).
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Remark 3.21. The (universal) flattening functor is introduced by Murre in [39], but

its origin seems to go back to Grothendieck as the subtitle says. Murre gives a cri-

terion of the representability of the functor in [39, §3, (A)], whose prototype seems

to be [11, IV, Prop. (11.4.5)]. Mumford considers the case of projective morphism

in [37, Lect. 8], and proves the representability by using Hilbert polynomials, where

the representing scheme is called the “flattening stratification.” He also mentioned

that Grothendieck has proved a weaker result by much deeper method. Raynaud

[45, Ch. 3] and Raynaud–Gruson [46, Part 1, §4] give further criteria of the repre-

sentability of the universal flattening functor by another method.

4. Grothendieck duality

We shall explain the theory of Grothendieck duality with some base change

theorems referring to [16], [6], [33], etc. We do not prove the main part of the

duality theory but show several consequences. Some of them are useful for studying

Q-Gorenstein schemes and Q-Gorenstein morphisms in Sections 6 and 7.

Some well-known properties on the dualizing complex are mentioned in Sec-

tions 4.1 and 4.2 based on arguments in [16] and [6]. Section 4.1 explains some

basic properties and results on a locally Noetherian scheme admitting a dualizing

complex, mainly on the codimension function associated with the dualizing com-

plex and on interpretation of Sk-conditions for a coherent sheaf via the dualizing

complex. In Section 4.2, we introduce a useful notion “ordinary dualizing complex”

for a class of locally Noetherian schemes whose local rings are all equi-dimensional,

and study cohomology sheaves of ordinary dualizing complexes. Section 4.3 ex-

plains the notion of twisted inverse image and the relative duality theory referring

mainly to [16], [6], [33]. Additionally, a base change result for the relative dualizing

complex to the fiber is proved in Corollary 4.38. In Section 4.4, we explain the

relative dualizing sheaf for a Cohen–Macaulay morphism (cf. Definition 2.31) and

its base change property referring to [6], [49], etc.

4.1. Dualizing complex. We shall begin with recalling the notion of dualizing

complex, which is introduced in [16, V].

Definition 4.1. A dualizing complex R• of a locally Noetherian scheme X is

defined to be a complex of OX -modules bounded below such that

• it has coherent cohomology and has finite injective dimension, i.e., R• ∈
D+

coh(X)fid in the sense of [16], and

• the natural morphism

OX → RHomOX
(R•,R•)

is a quasi-isomorphism (cf. [16, V, Prop. 2.1]).

Remark. Every complex in D+
coh(X)fid is quasi-isomorphic to a bounded complex

of quasi-coherent injective OX -modules when X is quasi-compact (cf. [16, II, Prop.

7.20]). The derived functor RHomOX
of the bi-functor HomOX

is considered as a

functor

D(X)op ×D(X) ∋ (F•,G•) 7→ RHomOX
(F•,G•) ∈ D(X)



38 YONGNAM LEE AND NOBORU NAKAYAMA

(cf. [16, I, §6], [52, Th. A(ii)]).
Example. A Noetherian local ring A is said to be Gorenstein if there is a finite

injective resolution of A. In particular, OX is a dualizing complex for X = SpecA.

There are known several conditions for a local ring A to be Gorenstein (e.g. [16, V,

Th. 9.1], [35, Th. 18.1]): For example, A is Gorenstein if and only if A is Cohen–

Macaulay and Extn(A/mA, A) ≃ A/mA for the maximal ideal mA and n = dimA.

A locally Noetherian scheme Y is said to be Gorenstein if every local ring OY,y
is Gorenstein. For a locally Noetherian scheme Y , it is Gorenstein of finite Krull

dimension if and only if OY is a dualizing complex (cf. [16, II, Prop. 7.20]).

Example (cf. [16, V, Prop. 3.4], [35, Th. 18.6]). For an Artinian local ring A, let I

be an injective hull of the residue field A/mA. Then, the associated quasi-coherent

sheaf I∼ on SpecA is a dualizing complex.

Remark 4.2 ([16, V, §10]). Let X be a locally Noetherian scheme. If there is

a morphism X → Y of finite type to a locally Noetherian scheme Y admitting a

dualizing complex in which the dimensions of fibers are bounded, thenX also admits

a dualizing complex [16, VI, Cor. 3.5]. In particular, any scheme of finite type over a

Noetherian Gorenstein scheme of finite Krull dimension admits a dualizing complex.

When X is connected, the dualizing complex is unique up to quasi-isomorphism,

shift, and up to tensor product with invertible sheaves (cf. [16, V, Th. 3.1], [6,

(3.1.30)]).

Fact. For a Noetherian ring A, the affine scheme SpecA admits a dualizing complex

if and only if there is a surjection B → A from a Gorenstein ring B of finite Krull

dimension. This is conjectured by Sharp [51, Conj. (4.4)] and has been proved by

Kawasaki [24, Cor. 1.4].

We shall explain the notion of codimension function.

Definition 4.3 (cf. [16, V, p. 283]). Let X be a scheme such that every local ring

OX,x has finite Krull dimension. A function d : X → Z is called a codimension

function if

d(x) = d(y) + codim({x}, {y})
for any points x and y such that x ∈ {y}.
Remark. Let X be a scheme whose local rings OX,x all have finite Krull dimension.

If X admits a codimension function, then X is catenary (cf. Property 2.3). In fact,

codim({x}, {z}) = codim({x}, {y}) + codim({y}, {z})
holds for any x, y, z ∈ X satisfying x ∈ {y} and y ∈ {z}. Moreover, if the

codimension function is bounded, then X has finite Krull dimension.

Lemma 4.4. Let X be a scheme such that every local ring OX,x has finite Krull

dimension, and let d : X → Z be a codimension function. Then,

d(y)− dimOX,y ≥ d(x)− dimOX,x
holds for any points x, y ∈ X with x ∈ {y}. Moreover, the following three conditions

are equivalent to each other :
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(i) the equality

d(y)− dimOX,y = d(x)− dimOX,x

holds for any points x, y ∈ X with x ∈ {y};
(ii) the function X ∋ x 7→ d(x)− dimOX,x ∈ Z is locally constant ;

(iii) X is locally equi-dimensional (cf. Definition 2.2(3)).

Proof. The first inequality is derived from the well-known inequality

dimOX,x ≥ dimOY,y + codim({x}, {y})

(cf. Property 2.1(1), [11, 0IV, Prop. (14.2.2)]). To show the equivalence of three

conditions (i)–(iii), we may assume that X is connected. Let S be the set of generic

points of irreducible components of X and, for a point x ∈ X, let S(x) be the

subset consisting of y ∈ S with x ∈ {y}. Note that OX,x is equi-dimensional if and

only if

(IV-1) codim({x}, {y}) = codim({x}, X)

for any y ∈ S(x). In fact, a point y ∈ S(x) corresponds to a minimal prime ideal p

of OX,x via the natural morphism SpecOX,x → X, and (IV-1) is written as

dimOX,x/p = dimOX,x

(cf. Property 2.1(1)). The implication (ii) ⇒ (i) is trivial, and (i) ⇒ (iii) is shown

by the equality dimOX,x = codim({x}, {y}) for any y ∈ S(x), which holds by

(i). It suffices to prove: (iii) ⇒ (ii). In the situation of (iii), by (IV-1), we have

d(x) − dimOX,x = d(y) = d(y) − dimOX,y for any x ∈ X and y ∈ S(x). This

implies that x 7→ d(x) − dimOX,x is a constant function with value d(y) on {y}
for any y ∈ S, and d(y) = d(y′) for any points y, y′ ∈ S with {y} ∩ {y′} 6= ∅.
Consequently, x 7→ d(x)− dimOX,x is constant on X, since X is connected. Thus,

we are done. �

The importance of the codimension function comes from the following:

Fact 4.5. Let X be a locally Noetherian scheme with a dualizing complex R•.

Then, we can define a function d : X → Z by

ExtiOX,x
(k(x),R•

x) = Hi(RHomOX,x
(k(x),R•

x)) =

{
0, for i 6= d(x);

k(x), for i = d(x),

where k(x) denotes the residue field at x and R•
x denotes the stalk at x (cf. [16, V,

Prop. 3.4]). The function d is a bounded codimension function (cf. [16, V, Cor. 7.2]),

and we call d the codimension function associated with R•. In particular, X is

catenary and has finite Krull dimension.

The following result and Lemma 4.8 below are useful for checking Sk-conditions

for coherent sheaves.
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Proposition 4.6. Let X be a locally Noetherian scheme admitting a dualizing

complex R• with codimension function d : X → Z. Let F be a coherent OX-module.

For an integer j, we set

G(j) := Ext
j
OX

(F ,R•) := Hj(RHomOX
(F ,R•)).

Then, G(j) is a coherent OX-module and

G(j)x ≃ ExtjOX,x
(Fx,R•

x)

for the stalk G(j)x = (G(j))x at any point x ∈ X. Moreover, the following hold for a

point x ∈ X:

(1) If j − d(x) < − dimFx or j − d(x) > 0, then G(j)x = 0.

(2) For an integer k, depthFx ≥ k if and only if G(j)x = 0 for any j > d(x)−k.
(3) For an integer k, F satisfies Sk at x if and only if G(j)y = 0 for any point

y ∈ X with x ∈ {y} and for any j > d(y)− inf{k, dimFy}.
(4) Fx is a Cohen–Macaulay OX,x-module if and only if G(j)x = 0 for any

j 6= d(x)− dimFx.
(5) If x ∈ SuppF , then G(i)x 6= 0 for i = d(x)− dimFx.

Proof. The first assertion is derived from: R• ∈ D+
coh(X)fid. The assertions (1) and

(2) are essentially proved in [16, V]; (1) is shown in the proof of [16, V, Prop. 3.4],

and (2) follows from the local duality theorem [16, V, Cor. 6.3]. The assertion (3)

follows from (2) and Definition 2.9. The assertion (4) is a consequence of (1) and

(2), since Fx is Cohen–Macaulay if and only if depthFx = dimFx unless Fx = 0.

The assertion (5) is shown as follows. For the given point x ∈ SuppF , we can find

a point y ∈ SuppF such that {y} is an irreducible component of SuppF containing

x and dimFx = codim({x}, {y}). Then, d(x)− dimFx = d(y). If G(d(y))x = 0, then

G(d(y))y = 0, since x ∈ {y}. But, in this case, G(j)y = 0 for any j ∈ Z by (1), i.e.,

RHomOX
(F ,R•)y ≃qis 0. This is a contradiction, since Fy 6= 0 and

F ≃qis RHomOX
(RHomOX

(F ,R•),R•)

by [16, V, Prop. 2.1]. Therefore, G(i)x 6= 0 for i = d(x)− dimFx = d(y). �

Corollary 4.7. Let X be a locally Noetherian scheme admitting a dualizing complex

R• and let F be a coherent OX-module.

(1) Assume that SuppF is connected. Then, F is a Cohen–Macaulay OX-

module if and only if

RHomOX
(F ,R•) ≃qis G[−c]

for a coherent OX-module G and a constant c ∈ Z. In this case, G is also

a Cohen–Macaulay OX-module and SuppG = SuppF .
(2) Assume that X is connected. Then, X is Cohen–Macaulay if and only if

R• ≃qis L[−c] for a coherent OX-module L and a constant c ∈ Z. In this

case, L is also a Cohen–Macaulay OX-module and SuppL = X.



GROTHENDIECK DUALITY AND Q-GORENSTEIN MORPHISMS 41

(3) Assume that F be a Cohen–Macaulay OX-module and let S be a closed

subscheme of X such that S = SuppF as a set. Then, S is locally equi-

dimensional.

Proof. It suffices to prove (1) and (3), since (2) is a special case of (1). Let d : X → Z

be the codimension function associated with R•. First, we shall prove the “if” part

of (1). The quasi-isomorphism in (1) implies that G(j) := Ext
j
OX

(F ,R•) = 0 for

any j 6= c and G ≃ G(c). Then, F is Cohen–Macaulay and c = d(x)−dimFx for any

x ∈ X by (4) and (5) of Proposition 4.6. Second, we shall prove the remaining part

of (1) and (3). For the proof of (3), we may also assume that SuppF is connected.

Suppose that F is Cohen–Macaulay. Then, d(x) − dimFx = d(y) − dimFy holds

for any points x, y ∈ S with x ∈ {y} by (4) and (5) of Proposition 4.6, where

we use the property that G(j)x = 0 implies G(j)y = 0. As a consequence, c :=

d(x) − dimFx is constant on S = SuppF . We have dimFx = dimOS,x for any

x ∈ S by Property 2.1(1). Thus, S is locally equi-dimensional by Lemma 4.4, and

this proves (3). Furthermore, RHomOX
(F ,R•) ≃ G[−c] for the cohomology sheaf

G = G(c). We have also

F ≃ RHomOX
(G[−c],R•)

by [16, V, Prop. 2.1]. Thus, SuppG = SuppF , and G is also a Cohen–Macaulay

OX -module by the “if” part of (1). Thus, we are done. �

Lemma 4.8. Let X, R•, F , and G(j) be as in Proposition 4.6. Then, G(j) = 0

except for finitely many j. For a positive integer k, the following hold :

(1) F satisfies Sk at a point x ∈ SuppF if and only if

codimx(SuppG(i) ∩ SuppG(j), SuppF) ≥ k + i− j

for any i > j.

(2) F satisfies Sk if and only if

codim(SuppG(i) ∩ SuppG(j), SuppF) ≥ k + i− j

for any i > j.

Proof. The first assertion follows from Proposition 4.6(1), since d : X → Z is

bounded and dimX <∞ by Fact 4.5. For integers i, j with i > j, we set

Z(i,j) := SuppG(i) ∩ SuppG(j).

Note that codim(Z(i,j), SuppF) = +∞ if Z(i,j) = ∅. The assertion (1) is derived

from (2) applied to the coherent sheaf (Fx)∼ on SpecOX,x associated with Fx (cf.

Remark 2.10), since

codimx(Z
(i,j), SuppF) = codim(SuppG(i)x ∩ SuppG(j)x , SuppFx)

(cf. Property 2.1(3)). Hence, it is enough to prove (2). Assume first that F satisfies

Sk. For integers i > j with Z(i,j) 6= ∅, we can find a generic point x of Z(i,j) such

that

codim(Z(i,j), SuppF) = codim({x}, SuppF) = dimFx.
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If dimFx ≤ k, then i = j = d(x)− dimFx by (1) and (3) of Proposition 4.6. This

is a contradiction, since i > j. Thus, dimFx > k, and

d(x)− dimFx ≤ j < i ≤ d(x)− k

also by (1) and (3) of Proposition 4.6. Hence, i − j ≤ dimFx − k, and this is

equivalent to the inequality in (2).

Conversely, assume that the inequality in (2) holds for any i > j. For a point

x ∈ SuppF , we set c(x) := d(x) − dimFx. By (1) and (5) of Proposition 4.6, we

know that x ∈ SuppG(c(x)) and x 6∈ SuppG(i) for any i < c(x). If G(i)x 6= 0 for some

i 6= c(x), then i > c(x) and

dimFx ≥ codim(Z(i,c(x)), SuppF) ≥ k + i− c(x) = k + i− d(x) + dimFx.

Hence, i ≤ d(x) − k and dimFx > k. Thus, F satisfies Sk by Proposition 4.6(3).

Therefore, (2) has been proved, and we are done. �

Corollary 4.9. Let X, R•, F , and G(j) be as in Proposition 4.6. Let k be a

positive integer.

(1) Assume that SuppF is connected and equi-dimensional. Then, there is a

positive integer c such that c = d(x) − dimFx for any x ∈ X. For the

integer c, one has SuppG(c) = SuppF . Moreover, F satisfies Sk if and

only if

codim(SuppG(j), SuppF) ≥ k + j − c
for any j > c.

(2) Assume that SuppF is connected, equi-dimensional, and equi-codimen-

sional (cf. [11, 0IV, Déf. (14.2.1)]). Furthermore, assume that SuppF is

Noetherian. Let c be the integer in (1). Then, F satisfies Sk if and only if

dimSuppG(j) ≤ dimSuppF + c− j − k

for any j > c.

(3) Assume that Fx 6= 0 and Fx is equi-dimensional (cf. Definition 2.2). Then,

F satisfies Sk at x if and only if dimG(j)x ≤ d(x) − j − k for any j 6=
d(x)− dimFx.

Proof. (1): For a closed subscheme S with S = SuppF , we have the integer c such

that c = d(x)−dimOS,x = d(x)−dimFx for any x ∈ SuppF by Lemma 4.4. Then,

SuppG(c) = SuppF by Proposition 4.6(5). Assume that F satisfies Sk. Then,

codim(SuppG(j), SuppF) = codim(SuppG(j) ∩ SuppG(c), SuppF) ≥ k + j − c

for any j > c by Lemma 4.8. Conversely, assume that the inequality in (1) holds

for any j > c. If G(j)x 6= 0 for some j > c, then

dimFx ≥ codim(SuppG(j), SuppF) ≥ k + j − c = k + j − d(x) + dimFx

as in the proof of Lemma 4.8(2). Hence, G(j)x 6= 0 implies that dimFx > k and

j ≤ d(x)− k. This means that F satisfies Sk by Proposition 4.6(3).
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(2): This is a consequence of (1). For, dimSuppF ≤ dimX < ∞ by Fact 4.5

and dimZ+codim(Z, SuppF) = dimSuppF for any closed subset Z of SuppF by

[11, 0IV, Cor. (14.3.5)].

(3): We can apply (1) to the coherent sheaf F∼
x on SpecOX,x associated with

Fx (cf. Remark 2.10). Hence, F satisfies Sk at x if and only if

codimx(SuppG(j), SuppF) ≥ k + j − c(x)
for any j > c(x), where c(x) := d(x)− dimFx. Here,

codimx(SuppG(j), SuppF) = codim({x}, SuppF)− codim({x}, SuppG(j))
= dimFx − dimG(j)x ,

since SuppFx is equi-dimensional and catenary (cf. Property 2.1(3)). Therefore,

the Sk condition at x is equivalent to that

dimG(j)x ≤ c(x)− k − j + dimFx = d(x)− k − j
for any j > c(x) = d(x)−dimFx. Thus, we have (3) by Proposition 4.6(1), and we

are done. �

Definition 4.10 (Gor(X)). The Gorenstein locus Gor(X) of a locally Noetherian

scheme X is defined to be the set of points x ∈ X such that OX,x is Gorenstein.

Note that X is Gorenstein if and only if X = Gor(X). The following is a general-

ization of [11, IV, Prop. (6.11.2)(ii)] (cf. [50, Prop. (3.2)] for Gor(X)).

Proposition 4.11. Let X be a locally Noetherian scheme admitting a dualizing

complex locally on X and let F be a coherent OX-module. Then, Sk(F) for all

k ≥ 1 and CM(F) are open subsets of X. In particular, CM(X) is open. Moreover,

Gor(X) is also open.

Proof. Localizing X, we may assume that X is an affine Noetherian scheme with

a dualizing complex R•. The openness of Gor(X) follows from that of CM(X). In

fact, if X is Cohen–Macaulay, then we may assume that R• ≃qis L for a coherent

OX -module L by Corollary 4.7(2), and Gor(X) is the maximal open subset on which

L is invertible. The openness of CM(F) is derived from Corollary 4.7(1). This

follows also from the openness of Sk(F) for all k ≥ 1. In fact, CM(F) = Sk(F) for
k ≫ 0, since dimF ≤ dimX < ∞ (cf. Fact 4.5 and Remark 2.12). The openness

of Sk(F) is derived from Lemma 4.8(1), since x 7→ codimx(Z, SuppF) is lower

semi-continuous for any closed subset Z ⊂ SuppF (cf. Property 2.1(3)). �

Remark. In the situation of Proposition 4.11, all Sk(F) are open if and only if the

map

SuppF ∋ x 7→ codepthFx := dimFx − depthFx ∈ Z≥0

is upper semi-continuous (cf. [11, IV, Rem. (6.11.4)]).

The following analogy of Fact 2.27(6) for G = OY is known:

Fact 4.12 (cf. [35, Th. 23.4], [16, V, Prop. 9.6]). Let Y → T be a flat morphism of

locally Noetherian schemes. Then, Y is Gorenstein if and only if T and every fiber

are Gorenstein.
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4.2. Ordinary dualizing complex. We introduce the notion of ordinary dualiz-

ing complex R• and that of dualizing sheaf as the cohomology sheaf H0(R•) for lo-

cally Noetherian schemes which are locally equi-dimensional (cf. Definition 2.2(3)),

especially for locally Noetherian schemes satisfying S2. In many articles, the dual-

izing sheaf is usually defined for a Cohen–Macaulay scheme, and it coincides with

the dualizing sheaf in our sense (cf. Remark 4.15 below).

Definition 4.13. Let X be a locally Noetherian scheme.

(1) A dualizing complex R• of X is said to be ordinary if the codimension

function d associated with R• satisfies d(x) = dimOX,x for any x ∈ X.

(2) A coherent sheaf L on X is called a dualizing sheaf of X if L ≃ H0(R•)

for an ordinary dualizing complex R• of X.

As a corollary to Lemma 4.4 above, we have:

Lemma 4.14. Let X be a locally Noetherian scheme admitting a dualizing complex.

Then, X admits an ordinary dualizing complex if and only if X is locally equi-

dimensional. In particular, X admits an ordinary dualizing complex if X satisfies

S2.

Proof. We may assume that X is connected. Let R• be a dualizing complex of

X with codimension function d : X → Z. If it is ordinary, then X is locally equi-

dimensional by Lemma 4.4. Conversely, ifX is locally equi-dimensional, then d(x)−
dimOX,x is a constant c by Lemma 4.4, and hence, the shift R•[c] is an ordinary

dualizing complex. The last assertion follows from Facts 4.5 and 2.24(1). �

Remark. For a locally Noetherian scheme, the ordinary dualizing complex is unique

up to quasi-isomorphism and tensor product with an invertible sheaf (cf. Re-

mark 4.2). Similarly, the dualizing sheaf is unique up to isomorphism and tensor

product with an invertible sheaf.

Remark 4.15. Let X be a locally Noetherian Cohen–Macaulay scheme admitting a

dualizing complex. Then, X has an ordinary dualizing complex R• which is quasi-

isomorphic to the dualizing sheaf L = H0(R•). Here, L is also a Cohen–Macaulay

OX -module. These are derived from Proposition 4.6(4) and Corollary 4.7(2). In

many articles, L is called a “dualizing sheaf” for a locally Noetherian Cohen–

Macaulay scheme.

Lemma 4.16. Let X be a locally Noetherian scheme admitting an ordinary dual-

izing complex R•. Let Z(i) be the support of the cohomology sheaf Hi(R•) for any

i ∈ Z. Then, Z(i) = ∅ for any i < 0, Z(0) = X, and the following hold for any

x ∈ X:

(1) x 6∈ Z(i) for any i > dimOX,x;
(2) depthOX,x = dimOX,x − sup{j | x ∈ Z(j)};
(3) for an integer k ≥ 1, X satisfies Sk at x if and only if

codimx(Z
(j), X) ≥ k + j
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for any j > 0. This is also equivalent to:

dimx Z
(j) ≤ dimOX,x − k − j

for any j > 0;

(4) OX,x is Cohen–Macaulay if and only if x 6∈ Z(j) for any j > 0.

Proof. Now, d(x) = dimOX,x for the codimension function d : X → Z associated

with R•, and X is locally equi-dimensional by Lemma 4.4. Thus, applying Proposi-

tion 4.6 to F = OX , we have the assertions except (3). The assertion (3) is obtained

by Corollary 4.9(3) (cf. Property 2.1). �

Remark. Let X be a connected locally Noetherian scheme with a dualizing complex

R• such that Hi(R•) = 0 for i < 0 and H0(R•) 6= 0. The sheaf H0(R•) is called the

“canonical module” in many articles. But as in Example 4.17 below, the support

of the sheaf H0(R•) is not always X. This is one of the reasons why we do not

consider H0(R•) as the dualizing sheaf for arbitrary locally Noetherian schemes.

Example 4.17. Let P be a polynomial ring k[x, y, z] of three variables over a field

k. For the ideals I = (x, y) and J = (z) of P , we set A := P/IJ and R• :=

RHomP (A,P [1]). Then, we have a Noetherian affine scheme X = SpecA and a

dualizing complex R• on X associated with R• (cf. Example 4.23 below). The

X is a union of a plane SpecP/J and a line SpecP/I in the three-dimensional

affine space SpecP ≃ A3
k, where the plane and the line intersect at the origin O

corresponding to the maximal ideal (x, y, z). Note that the local ring OX,O is not

equi-dimensional. We can calculate the cohomology modules of R• as

Hi(R•) ≃ Exti+1
P (A,P ) ≃





0, for any i < 0 and i > 1;

P/J, for i = 0;

P/I, for i = 1,

by the free resolution

0→ P
g−→ P⊕2 f−→ P → A→ 0,

where f and g are defined by

f(a, b) = xza+ yzb and g(c) = (yc,−xc)

for any a, b, and c ∈ P . Consequently, SuppH0(R•) = SpecR/J is a proper subset

of X.

Lemma 4.18. Let X be a locally Noetherian scheme admitting an ordinary dual-

izing complex R•. We set

G(j)≤b := Ext
j
OX

(τ≤b(R•),R•) and G(j)≥b := Ext
j
OX

(τ≥b(R•),R•)

for integers b ≥ 0 and j, where τ≤b and τ≥b stand for the truncations of a complex

(cf. Notation and conventions, (1)). Then, the following hold :

(1) One has : G(0)≥0 ≃ OX and G(i)≥0 = 0 for any i 6= 0.
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(2) There exist an exact sequence

0→ G(−1)
≤b → G(0)≥b+1 → OX → G

(0)
≤b → G

(1)
≥b+1 → 0

and an isomorphism

G(j)≤b ≃ G
(j+1)
≥b+1

for any j 6= {0,−1}. Moreover, G(j)≤0 = 0 for any j < 0.

(3) For any integers b ≥ 0, i 6= 0, and j, one has :

• codim(SuppG(j)≥b , X) ≥ j + b for any j ∈ Z,

• codim(SuppG(j)≤b , X) ≥ j + b+ 2 for any j 6= 0, and

• codim(SuppG(0)≤b , X) = 0.

(4) If X satisfies Sk for some k ≥ 1, then

• G(j)≥b = 0 for any b > 0 and j < k, and

• G(i)≤b = 0 for any 0 < i < k − 1.

Proof. We have a quasi-isomorphism R• ≃qis τ
≥0(R•) by Lemma 4.16. Hence, the

first assertion (1) interprets the quasi-isomorphism

RHomOX
(R•,R•) ≃qis OX .

For the second assertion (2), the exact sequence and the next isomorphism are

derived from the canonical distinguished triangle

· · · → τ≤b(R•)→ R• → τ≥b+1(R•)→ τ≤b(R•)[1]→ · · · .

The last vanishing in (2) is expressed as Ext
j
OX

(L,R•) = 0 for any j < 0, where

L := H0(R•), and this is a consequence of Proposition 4.6(1) applied to F = L with

the property X = SuppL shown in Lemma 4.16. For the remaining assertions (3)

and (4), it is enough to consider only the sheaves G(j)≥b . In fact, by (2), we have an

injection G(i)≤b → G
(i+1)
≥b+1 for any i 6= 0, and an exact sequence G(0)≥b+1 → OX → G

(0)
≤b ,

where codim(SuppG(0)≥b+1, X) > 0 by the assertion for G(0)≥b+1. Hence,

codim(SuppG(i)≤b, X) ≥ codim(SuppG(i+1)
≥b+1, X)

for any i 6= 0 and codim(SuppG(0)≤b , X) = 0. In order to prove (3) and (4) for G(j)≥b ,

let us consider the spectral sequence

(IV-2) Ep,q2 = Ext
p
OX

(H−q(τ≥b(R•)),R•)⇒ Ep+q = G(p+q)≥b

of OX -modules (cf. Remark 4.19 below). Assume that (Ep,q2 )x 6= 0 for a point

x ∈ X. Then, −q ≥ b, and
(IV-3) dimOX,x ≥ p ≥ dimOX,x − dimH−q(R•)x = codimx(SuppH−q(R•), X)

by Proposition 4.6(1), since d(x) = dimOX,x for the codimension function d of

R•. In particular, p + q ≤ dimOX,x − b. Therefore, if j + b > dimOX,x, then
x 6∈ SuppG(j)≥b , since (Ep,q2 )x = 0 for any integers p, q with p + q = j. Thus, we
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have (3). Assume that X satisfies Sk. If (Ep,q2 )x 6= 0 and q < 0, then p+ q ≥ k by

(IV-3), since

codimx(SuppH−q(R•), X) ≥ k − q
for any q < 0 by Lemma 4.16(3). Hence, G(j)≥b = 0 for any b > 0 and j < k, since

Ep,q2 = 0 for any integers p, q with p+ q = j. This proves (4), and we are done. �

Remark 4.19. The spectral sequence (IV-2) is obtained by the same method as

follows. Let A be a commutative ring and let M• and N• be complexes of A-

modules such that N• is bounded below. We shall construct a spectral sequence

Ep,q2 = ExtpA(H
−q(M•), N•)⇒ Ep+q = Extp+qA (M•, N•),

where ExtpA denotes the p-th hyper-ext group. Since there is a quasi-isomorphism

from N• into a complex of injective A-modules bounded below, we may assume

that N• itself is a complex of injective A-modules bounded below. We consider

a double complex K•,• defined by Kp,q = HomA(M
−p, Nq) for p, q ∈ Z with the

differentials dI : K
p,q → Kp+1,q and dII : K

p,q → Kp,q+1 which are induced from the

differentials M−p−1 → M−p and Nq → Nq+1, respectively. Then, Extk(M•, N•)

is isomorphic to the k-th cohomology group of the total complex K• defined by

Kn =
∏
p+q=nK

p,q (cf. [16, I, Th. 6.4]). Moreover, we have

HqI (K
•,p) ≃ HomA(H

−q(M•), Np)

for any p and q, since Np is now assumed to be injective. Thus, we have the spectral

sequence above as the well-known spectral sequence HpII H
q
I (K

•,•) ⇒ Hp+q(K•)

associated with the double complex K•,•.

Corollary 4.20. Let X be a locally Noetherian scheme admitting an ordinary

dualizing complex R•. For a point x ∈ X and for an integer b ≥ 0, the vanishing

Hix(τ
≤b(R•)x) = 0

holds for any i < b + 2 except i = dimOX,x, where Hix(M
•) stands for the local

cohomology group at the maximal ideal mx for a complex M• of OX,x-modules

bounded below.

Proof. By the local duality theorem [16, V, Th. 6.2], we have

Hix(τ
≤b(R•)x) ≃ HomOX,x

(Ext−iOX,x
(τ≤b(R•)x,R•

x[d(x)]), Ix)

for the injective OX,x-module Ix = H
d(x)
x (R•

x), where d(x) = dimOX,x. In partic-

ular,

Hix(τ
≤b(R•)x) 6= 0 if and only if x ∈ SuppG(d(x)−i)≤b .

If d(x)− i 6= 0, then the non-vanishing above implies that

d(x) = dimOX,x ≥ codim(SuppG(d(x)−i)≤b , X) ≥ d(x)− i+ b+ 2

by Lemma 4.18(3). Thus, we have the vanishing for i < b+ 2 except i = d(x). �
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Proposition 4.21. Let X be a locally Noetherian scheme admitting an ordinary

dualizing complex R•. Then, the dualizing sheaf L = H0(R•) satisfies S2 and

SuppL = X. If X satisfies S2, then HomOX
(L,L) ≃ OX . If X satisfies S3, then

Ext1OX
(L,L) = 0.

Proof. We have SuppL = X by Lemma 4.16. Hence,

dimLx = codim({x}, SuppL) = dimOX,x
for any x ∈ X. Applying Corollary 4.9(1) to L, where c = d(x) − dimLx = 0, we

see that L satisfies S2 by Lemma 4.18(3), since codim(SuppG(i)≤0, X) ≥ i+2 for any

i > 0, where G(i)≤0 = Ext iOX
(L,R•). For the remaining assertions, we assume that

X satisfies S2 or S3. Note that we have an isomorphism

HomOX
(L,L) ≃ Ext0OX

(L,R•) = G(0)≤0

and an injection

Ext1OX
(L,L)→ Ext1OX

(L,R•) = G(1)≤0

by L ≃qis τ
≤0(R•). If X satisfies S2, then G(0)≥1 = G(1)≥1 = 0 by Lemma 4.18(4), and

hence, OX ≃ G(0)≤0 by Lemma 4.18(2); thus, OX ≃ HomOX
(L,L). If X satisfies S3,

then G(1)≤0 = 0 by Lemma 4.18(4), and consequently, Ext1OX
(L,L) = 0. �

Remark (S2-ification). For a locally Noetherian scheme X admitting an ordinary

dualizing complex R• and for the dualizing sheaf L = H0(R•), we consider the

coherent OX -module A := HomOX
(L,L). Then, we can show:

• A has a structure of OX -algebra,

• OX → A is an isomorphism on the S2-locus S2(X) (cf. Definition 2.13),

and

• A satisfies S2.

Therefore, the finite morphism SpecX A → X is regarded as the so-called “S2-

ification” of X (cf. [11, IV, (5.10.11), Prop. (5.11.1)], [3, Prop. 2], [4, Th. 3.2], [21,

Prop. 2.7]). Three properties above are shown as follows: We know that L satisfies

S2, U := S2(X) is an open subset by Proposition 4.11, and that OX → A is an

isomorphism on U by Proposition 4.21. In particular, A ≃ j∗(A|U ) for the open

immersion j : U →֒ X, since it is expressed as

A = HomOX
(L,L)→ j∗(A|U ) ≃ HomOX

(L, j∗(L|U )).

Thus, A satisfies S2 by Corollary 2.16, and consequently, A ≃ j∗OU has an OX -

algebra structure.

Corollary 4.22. Let X be a locally Noetherian scheme admitting a dualizing com-

plex R•, and set L := H0(R•). Let X◦ ⊂ X be an open subset such that

codim(X \X◦, X) ≥ 1 and R•|X◦ ≃qis L|X◦ .

Then, R• is ordinary and L satisfies S2. In particular, if codim(X \X◦, X) ≥ 2,

then L ≃ j∗(L|X◦) for the open immersion j : X◦ →֒ X.
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Proof. It is enough to prove that R• is ordinary. In fact, if so, then the dualizing

sheaf L satisfies S2 by Proposition 4.21, and we have the isomorphism L ≃ j∗(L|X◦)

by Corollary 2.16 when codim(X \X◦, X) ≥ 2. Let d : X → Z be the codimension

function associated with R•. Then, d(x) = dimOX,x for any x ∈ X◦ by Proposi-

tion 4.6(5) applied to F = OX◦ . For a point x ∈ X \X◦, we have a generic point

y of X such that x ∈ {y} and codim({x}, {y}) = dimOX,x. Then, d(y) = 0, since

y ∈ X◦, and we have

d(x) = d(y) + codim({x}, {y}) = dimOX,x.
Thus, R• is ordinary. �

4.3. Twisted inverse image. We shall explain the twisted inverse image functor,

the relative duality theorem, and some base change theorems referring to [16],

[6], [33]. Let f : Y → T be a morphism of locally Noetherian schemes which is

locally of finite type. In the theory of Grothendieck duality, the “twisted inverse

image functor” f ! plays an essential role, which is unfortunately defined only when

some suitable conditions are satisfied (cf. [16, III, Th. 8.7], [16, VII, Cor. 3.4], [16,

Appendix, no. 4], [42], [6], [33]). However, f !OT has a unique meaning at least

locally on Y , where f !OT is expressed as a complex of OY -modules with coherent

cohomology which vanish in sufficiently negative degree, i.e., f !OT ∈ D+
coh(Y ). We

write ω•
Y/T := f !OT whenever f !OT is defined, and call it the relative dualizing

complex for Y/T (or, with respect to f). When T = SpecA, we write ω•
Y/A for

ω•
Y/ SpecA.

Example 4.23. For a scheme S, an S-morphism f : Y → T of locally Noether-

ian schemes over S is called an S-embeddable morphism if f = p ◦ i for a finite

morphism i : Y → P ×S T and the second projection p : P ×S T → T for a lo-

cally Noetherian S-scheme P such that P → S is a smooth separated morphism

of pure relative dimension (cf. [6, (2.8.1)], [16, III, p. 189]). When S = T , an S-

embeddable morphism is called simply an embeddable morphism. There is a theory

of f ! : D+
qcoh(T )→ D+

qcoh(Y ) (resp. f ! : D+
coh(T )→ D+

coh(Y )) for the S-embeddable

morphisms f : Y → T of locally Noetherian S-schemes as in [16, III, Th. 8.7] (cf.

[6, Th. 2.8.1]). For a complex G• ∈ D+
qcoh(T ), if f is separated and smooth of pure

relative dimension d (cf. Definition 2.37), then

f !(G•) = ΩdY/T [d]⊗L

OY
Lf∗(G•),

and if f is a finite morphism, then f !(G•) is defined by

Rf∗(f
!(G•)) = RHomOT

(f∗OY ,G•).
In the both cases of f above, f !(G•) ∈ D+

coh(Y ) if G• ∈ D+
coh(T ). If f = g◦h for two

S-embeddable morphisms h : Y → Z and g : Z → T , then f ! ≃ h! ◦ g! as functors

D+
qcoh(T )→ D+

qcoh(Y ) (resp. D+
coh(T )→ D+

coh(Y )).

Example 4.24. Let f : Y → T be a morphism of finite type between Noetherian

schemes. Then, the dimensions of fibers are bounded. Assume that T admits a

dualizing complex R•
T . In this situation, we have the twisted inverse image functor
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f ! : D+
coh(T )→ D+

coh(Y ) as follows (cf. [16, VI], [6, §3]). For the dualizing complex

R•
T of T , we have the corresponding residual complex E(R•

T ) on T (cf. [16, VI,

Prop. 1.1], [6, Lem. 3.2.1]) and the “twisted inverse image” f△(E(R•
T )) on Y as a

residual complex on Y (cf. [16, VI, Th. 3.1, Cor. 3.5], [6, §3.2]), which corresponds

to a dualizing complex

R•
Y := f !(R•

T ) := Q(f△(E(R•
T )))

of Y (cf. [16, VI, Prop. 1.1, Remarks in p. 306], [6, §3.3]). Then, one can define

f ! : D+
coh(T )→ D+

coh(Y ) by

f !(G•) = DY (Lf
∗(DT (G•))),

where DY and DT are the dualizing functors defined by:

DY (F•) := RHomOY
(F•,R•

Y ) and DT (G•) := RHomOT
(G•,R•

T ).

The definition of f ! does not depend on the choice of R•
T (cf. [6, §3.3]), and f !

satisfies expected compatible properties in [16, VII, Cor. 3.4] (cf. [6, Th. 3.3.1]).

Moreover, when f is an embeddable morphism, then this f ! is isomorphic to the

functor f ! defined in Example 4.23 (cf. [16, VI, Th. 3.1, VII, Cor. 3.4], [6, §3.3]).

The following is shown in [16, V, Cor. 8.4, VI, Prop. 3.4] but with an error

concerning ± (cf. [6, (3.1.25), (3.2.4)]).

Lemma 4.25. Let f : Y → T be a morphism of finite type between Noetherian

schemes such that T admits a dualizing complex R•
T . Let R•

Y be the induced du-

alizing complex f !(R•
T ) of Y . Let dT : T → Z and dY : Y → Z be the codimension

functions associated with R•
T and R•

Y , respectively. Then,

dY (y) = dT (t)− tr. deg k(y)/k(t)

for any y ∈ Y with t = f(y), where k(t) and k(y) denote the residue fields of OT,t
and OY,y, respectively.

Proof. Since the assertion is local on Y , we may assume that Y → T is an embed-

dable morphism. Hence, it is enough to prove assuming that f is a finite morphism

or a smooth and separated morphism. Assume first that f is finite. Then,

Rf∗ RHomOY
(F ,R•

Y ) ≃ RHomOT
(f∗F ,R•

T )

for any coherent OY -module F by [16, III, Th. 6.7] (cf. Theorem 4.30 below).

Applying this to F = OZ for the closed subscheme Z = {y} with reduced structure,

and localizing Y , we have

RHomOY,y
(k(y), (R•

Y )y) ≃qis RHomOT,t
(k(y), (R•

T )t).

Since k(y) is a finite-dimensional k(t)-vector space, we have tr. deg k(y)/k(t) = 0

and dY (y) = dT (t). Thus, we are done in the case where f is finite. Assume next

that f is smooth and separated. We may assume furthermore that f has pure

relative dimension d by localizing Y . Then,

R•
Y ≃qis Ω

d
Y/T [d]⊗L

OY
Lf∗(R•

T )
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as in Example 4.23, and it implies that

Hi(R•
Y )y ≃ Hi+d(R•

T )t ⊗OT,t
OY,y,

since f is flat. Here, Hi(R•
Y )y 6= 0 if and only if Hi+d(R•

T )t 6= 0, since f is faithfully

flat. We know that

dT (t)− dimOT,t = inf{i | Hi(R•
T )t 6= 0}

by (1) and (5) of Proposition 4.6. The similar formula holds also for (Y, y) and R•
Y .

Thus,

dY (y)− dimOY,y = dT (t)− dimOT,t − d.
Since f is flat, we have

dimOY,y = dimOT,t + dimOYt,y

for the fiber Yt = f−1(t) by (II-1). Furthermore, we have

d = dimy Yt = dimOYt,y + tr. deg k(y)/k(t),

since Yt is algebraic over k(t) (cf. [11, IV, Cor. (5.2.3)]). Therefore,

dY (y) = dT (t)− d+ dimOY,y − dimOT,t = dT (t)− tr. deg k(y)/k(t).

Thus, we are done. �

Definition 4.26 (canonical dualizing complex). Let X be an algebraic scheme

over a field k, i.e., a k-scheme of finite type. We define the canonical dualizing

complex ω•
X/k of X to be the twisted inverse image f !(k) for the structure morphism

f : X → Spec k.

The dualizing complex ω•
X/k has the following property related to Serre’s condi-

tions Sk.

Lemma 4.27. Let X be an n-dimensional algebraic scheme over a field k. For an

integer i, let Zi be the support of H−i(ω•
X/k). Then, Zi = ∅ for any i > n, and Zn is

the union of irreducible components of X of dimension n. If X is equi-dimensional,

then ω•
X/k[−n] is an ordinary dualizing complex, and the following hold for integers

k ≥ 1: X satisfies Sk if and only if dimZi ≤ i− k for any i 6= n.

Proof. By Lemma 4.25, d(x) = − tr. deg k(x)/k for the codimension function d : X

→ Z associated with the dualizing complex ω•
X/k (cf. Example 4.24). Moreover,

(IV-4) n ≥ dimxX = dimOX,x + tr. deg k(x)/k

by [11, IV, Cor. (5.2.3)]. Thus, d(x)−dimOX,x = − dimxX ≥ −n, and H−i(ω•
X/k)

= 0 for any i > n by Proposition 4.6(1) applied to the case where (R•,F) =

(ω•
X/k,OX). Thus, Zi = ∅ for any i > n. If dimxX = n, then H−n(ω•

X/k)x 6= 0 by

Proposition 4.6(5). If dimxX < n, then H−n(ω•
X/k)x = 0 by Proposition 4.6(1).

Therefore, Zn is just the union of irreducible components of X of dimension n.

Assume that X is equi-dimensional, i.e., dimxX = n for any x ∈ X. Then,

ω•
X/k[−n] is an ordinary dualizing complex, since the associated codimension func-

tion is x 7→ d(x) + n = dimOX,x. Moreover, X is equi-codimensional, since
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n = dimzX = dimOX,z for any closed point z of X by (IV-4). Thus, the as-

sertion on Sk is a consequence of Corollary 4.9(2), since d(x)− dimOX,x = −n for

any x ∈ X. Thus, we are done. �

Definition 4.28 (canonical sheaf). Let X be an algebraic scheme over a field k.

Assume that X is locally equi-dimensional. This is satisfied for example when X

satisfies S2 (cf. Fact 2.24(1)). Then, we define the canonical sheaf ωX/k by

ωX/k|Xα
:= H− dimXα(ω•

X/k)|Xα

for any connected component Xα of X.

Remark. The canonical sheaf ωX/k is a dualizing sheaf of X in the sense of Defini-

tion 4.13. In fact,

ω•
Xα/k

[− dimXα] = ω•
X/k[− dimXα]|Xα

is an ordinary dualizing complex of the connected component Xα by Lemma 4.27.

In particular, if X is connected and Cohen–Macaulay, then ω•
X/k ≃qis ωX/k[dimX].

By Corollary 4.22, we have:

Corollary 4.29. For an algebraic scheme X over k, if it is locally equi-dimensional,

then ωX/k satisfies S2.

For a proper morphism f : Y → T of Noetherian schemes, we have the following

general result on the twisted inverse image functor f !, which is derived from [33,

Th. 4.1.1]:

Theorem 4.30 (Grothendieck duality for a proper morphism). Let f : Y → T be

a proper morphism of Noetherian schemes. Then, there is a triangulated functor

f ! : Dqcoh(T ) → Dqcoh(Y ) which induces D+
coh(T ) → D+

coh(Y ) and which is right

adjoint to the derived functor Rf∗ : Dqcoh(Y ) → Dqcoh(T ) in the sense that there

is a functorial isomorphism

RHomOT
(Rf∗(F•),G•) ≃qis RHomOY

(F•, f !(G•))

for F• ∈ Dqcoh(Y ) and G• ∈ Dqcoh(T ).

Remark. In [33, Th. 4.1.1], the existence of a similar right adjoint f× is proved for

a quasi-compact and quasi-separated morphism f : Y → T of quasi-compact and

quasi-separated schemes Y and T . When f is proper, it is written as f ! (cf. the

paragraph just before [33, Cor. 4.2.2]). By [52, Th. A], the total derived functor

RHomOX
of HomOX

exists for any scheme X as a bi-functor D(X)op ×D(X) →
D(Z), and there exists also the total right derived functor Rf∗ : D(Y ) → D(T ) of

the direct image functor f∗. When f : Y → T is a proper morphism of Noetherian

schemes, we have:

• Rf∗(Dqcoh(Y )) ⊂ Dqcoh(T ) by [33, Prop. 3.9.1],

• Rf∗(D
+
coh(Y )) ⊂ D+

coh(T ) by [16, II, Prop. 2.2], and

• Rf∗(D
−
coh(Y )) ⊂ D−

coh(T ) by the explanation just before [33, Cor. 4.2.2].
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The functor f ! is bounded below (cf. [33, Def. 11.1.1]). Thus, f !(D+
qcoh(T )) ⊂

D+
qcoh(Y ). The inclusion f !(D+

coh(T )) ⊂ D+
coh(Y ) is proved firstly by reducing to

the case where T is the spectrum of a Noetherian local ring by the base change

isomorphism (cf. [33, Cor. 4.4.3]), and secondly by applying [54, Lem. 1].

Remark. When T admits a dualizing complex (or a residual complex), Theorem 4.30

for G• ∈ D+
coh(T ) is a consequence of [16, VII, Cor. 3.4]. In [8, Th. 2], Deligne has

proved Theorem 4.30 for F• ∈ Db
coh(Y ) without assuming the existence of dualizing

complex of T . These results are summarized by Verdier as [54, Th. 1], which is

almost the same as Theorem 4.30 in the case where T has finite Krull dimension.

Neeman [42] gives a new idea toward the proof of Theorem 4.30 by using Brown

representability. He generalizes Theorem 4.30 to the case where Y and T are only

quasi-compact and separated schemes butDqcoh(T ) andDqcoh(Y ) are replaced with

D(QCoh(OT )) andD(QCoh(OY )), respectively (cf. [42, Exam. 4.2]). Neeman’s idea

is used in Lipman’s article [33], which contains generalizations of Theorem 4.30 to

non-proper and non-Noetherian case.

The sheafified form of the duality theorem is as follows (cf. [33, Th. 4.2]):

Corollary 4.31. In the situation of Theorem 4.30, there exists a canonical quasi-

isomorphism

Rf∗ RHomOY
(F•, f !G•) ≃qis RHomOT

(Rf∗F•,G•)
for any F• ∈ Dqcoh(Y ) and G• ∈ Dqcoh(T ).

As a special case of Theorem 4.30, we have the following, which is called the

Serre duality theorem for coherent sheaves.

Corollary 4.32. Let X be a projective scheme over a field k. Then, there is a

canonical quasi-isomorphism

RHomOX
(F•, ω•

X/k) ≃qis RHomk(RΓ(X,F•), k)

for any F• ∈ D+
coh(X). In particular,

ExtiOX
(F•, ω•

X/k) ≃ Homk(H
i(X,F•), k)

for any i, where Exti and Hi stands for the i-th hyper-Ext group and i-th hyper

cohomology group, respectively.

Example 4.33. Let f : Y → T be a separated morphism of finite type between Noe-

therian schemes. By the Nagata compactification theorem (cf. [40], [41], [34], [7],

[10]), f is expressed as the composite π ◦ j of an open immersion j : Y →֒ Z and a

proper morphism π : Z → T . Using the functor π! : D+
qcoh(T )→ D+

qcoh(Z) in Theo-

rem 4.30, we define the twisted inverse image functor f ! : D+
qcoh(T )→ D+

qcoh(Y ) as

Lj∗ ◦π!. This is well-defined up to functorial isomorphism, i.e., it is independent of

the choice of factorization f = π ◦ j, by [8, Th. 2], [54, Cor. 1]. Deligne [8] defines

a functor Rf! : proDb
coh(Y ) → proDb

coh(T ) and shows in [8, Th. 2] that f ! above

is a right adjoint of Rf!.
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Fact 4.34. The twisted inverse image functors in Example 4.33 have the follow-

ing properties. Let f : Y → T be a separated morphism of finite type between

Noetherian schemes.

(1) Let h : X → Y be a separated morphism of finite type from another Noether-

ian scheme X. Then, there is a functorial isomorphism (f ◦ h)! ≃ h! ◦ f !.
(2) If f : Y → T is a smooth morphism of pure relative dimension d, then

f !(G•) ≃qis Ω
d
Y/T [d]⊗L

OY
Lf∗(G•).

(3) If T admits a dualizing complex, then f ! is functorially isomorphic to the

twisted inverse image functor DY ◦ Lf∗ ◦DT in Example 4.24.

(4) For a flat morphism g : T ′ → T from a Noetherian scheme T ′, let Y ′ be the

fiber product Y ×T T ′ and let f ′ : Y ′ → T ′ and g′ : Y ′ → Y be the induced

morphisms. Then, g′∗ ◦ f ! ≃ f ′! ◦ g∗.
The property (1) is derived from the isomorphism R(f ◦ h)! ≃ Rf! ◦ Rh! shown
in [8, no. 3]. This is also proved in [33, Th. 4.8.1]. The properties (2) and (3) are

proved in [54, Th. 3, Cor. 3] and [33, (4.9.4.2), Prop. 4.10.1]. In order to prove

the property (4), we may assume that f is proper, and in this case, this is shown

in [33, Cor. 4.4.3] (cf. [54, Th. 2]). As a refinement of the property (1) above,

f 7→ f ! can be regarded as a pseudo-functor, and Lipman proves in [33, Th.4.8.1]

the uniqueness of f 7→ f ! under three conditions corresponding to:

• f ! is a right adjoint of Rf∗ when f is proper (Theorem 4.30).

• The property (2) above for étale f .

• The property (4) above for proper f and étale g.

Fact 4.35. The following are also known for a flat separated morphism f : Y → T

of finite type between Noetherian schemes:

(1) The twisted inverse image f !OT is an f -perfect complex in Dcoh(Y ) (cf. [22,

III, Prop. 4.9], [33, Th. 4.9.4]). For the definition of “f -perfect,” see [22,

III, Déf. 4.1] (cf. Remark 4.36 below). Note that a coherent OY -module

flat over T is f -perfect.

(2) For an f -perfect complex E•,
DY/T (E•) := RHomOY

(E•, f !OT )
is also f -perfect and the canonical morphism

E• → DY/T (DY/T (E•))
is a quasi-isomorphism (cf. [22, III, Cor. 4.9.2]). In particular,

(IV-5) OY → RHomOY
(f !OT , f !OT )

is a quasi-isomorphism (cf. [33, p. 234]).

(3) There is a quasi-isomorphism

f !(F•)⊗L

OY
Lf∗(G•) ≃qis f

!(F• ⊗L

OT
G•)

for any F•, G• ∈ D+
qcoh(T ) with F•⊗L

OT
G• ∈ D+

qcoh(T ) (cf. [33, Th. 4.9.4]).

In particular,

(IV-6) f !OT ⊗L

OY
Lf∗(G•) ≃qis f

!(G•)
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for any G• ∈ D+
qcoh(T ). Similar results are proved in [16, V, Cor. 8.6], [54,

Cor. 2], and [42, Th. 5.4].

Remark 4.36 (cf. [22, III, Prop. 4.4]). Let f : Y → T be a morphism of finite type

between Noetherian schemes and let F• be an object of Dqcoh(Y ). Assume that

f is the composite g ◦ i of a closed immersion i : Y → P and a smooth separated

morphism g : P → T . Then, F• is f -perfect if and only if Ri∗(F•) is perfect (cf.

[22, I, Déf. 4.7]), i.e., locally on P , it is quasi-isomorphic to a bounded complex of

free OP -modules.

Lemma 4.37. Let f : Y → T be a flat separated morphism of finite type between

Noetherian schemes in which T admits a dualizing complex. Let g : T ′ → T be a

finite morphism from another Noetherian scheme T ′. For the fiber product Y ′ =

Y ×T T ′, let f : Y ′ → T ′ and g′ : Y ′ → Y be the projections. Thus, we have a

Cartesian diagram:

Y ′ g′−−−−→ Y

f ′

y
yf

T ′ g−−−−→ T.
In this situation, there is a natural quasi-isomorphism

Lg′∗(f !OT ) ≃qis f
′ !OT ′ .

Proof. Let DT , DY , DT ′ , and DY ′ , respectively, be the dualizing functors on T , Y ,

T ′, and Y ′ defined by a dualizing complex on T and their transforms by f !, g!, and

(f ◦ g′)! ≃ (g ◦ f ′)! (cf. Fact 4.34(1)) as in Example 4.24. For any G• ∈ D+
coh(T

′),

we have

f !(Rg∗(G•)) ≃qis DY ◦ Lf∗ ◦DT (Rg∗(G•)) ≃qis DY ◦ Lf∗ ◦Rg∗(DT ′(G•))
≃qis DY ◦Rg′∗ ◦ Lf ′∗(DT ′(G•)) ≃qis Rg

′
∗ ◦DY ′(Lf ′∗(DT ′(G•)))

≃qis Rg
′
∗(f

′ !(G•)),
where we use the flat base change isomorphism: Lf∗ ◦ Rg∗ ≃qis Rg′∗ ◦ Lf ′∗ (cf.

Proposition A.10), and the duality isomorphisms: DT ◦ Rg∗ ≃qis Rg∗ ◦ DT ′ and

DY ◦Rg′∗ ≃qis Rg
′
∗ ◦DY ′ for the finite morphisms g and g′ (cf. Corollary 4.31). On

the other hand, we have

f !(Rg∗(G•)) ≃qis f
!OT ⊗L

OY
Lf∗(Rg∗G•) ≃qis f

!OT ⊗L

OY
Rg′∗(Lf

′∗(G•))
by the quasi-isomorphism (IV-6) in Fact 4.35 and by the flat base change isomor-

phism. Substituting G• = OT ′ , we have a quasi-isomorphism

f !OT ⊗L

OY
Rg′∗OY ′ ≃qis Rg

′
∗(f

′ !OT ′).

It is associated with a morphism Lg′∗(f !OT )→ f ′ !OT ′ in D+
coh(Y

′) which induces

a quasi-isomorphism by taking Rg′∗. Hence, Lg
′∗(f !OT ) ≃qis f

′ !OT ′ . �

Corollary 4.38. Let f : Y → T be a flat separated morphism of finite type between

Noetherian schemes. For a point t ∈ T , let φt : Spec k(t) → T be the canonical

morphism for the residue field k(t), and let ψt : Yt = f−1(t) → Y be the base
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change of φt by f : Y → T . Then, the canonical dualizing complex ω•
Yt/k(t)

defined

in Definition 4.26 is quasi-isomorphic to Lψ∗
t (f

!OT ).

Proof. Let SpecOT,t → T be the canonical morphism from the spectrum of the local

ring OT,t. Considering the completion ÔT,t of OT,t and the surjection ÔT,t → k(t)

to the residue field, we have a flat morphism

τ : T ♭ := Spec ÔT,t → SpecOT,t → T

and a closed immersion ι : Spec k(t) →֒ T ♭. Let Y ♭ be the fiber product Y ×T T ♭
and let f ♭ : Y ♭ → T ♭ and τ ′ : Y ♭ → Y be projections, which make a Cartesian

diagram:

Y ♭
τ ′

−−−−→ Y

f♭

y
yf

T ♭
τ−−−−→ T.

By Fact 4.34(4), we have a quasi-isomorphism

Lτ ′∗(f !OT ) ≃qis f
♭!OT ♭ .

Hence, we may assume from the beginning that T = T ♭. Then, φt is the closed

immersion ι. Now, T admits a dualizing complex, since we have a surjection to

ÔT,t from a complete regular local ring by Cohen’s structure theorem. Thus, we

are done by Lemma 4.37. �

4.4. Cohen–Macaulay morphisms and Gorenstein morphisms. The notions

of Cohen–Macaulay morphism and Gorenstein morphism are introduced in [11, IV,

Déf. (6.8.1)] and [16, V, Ex. 9.7]. By [6, Sect. 3.5] or [49, Th. 2.2.3], one can define

the relative dualizing sheaf for a Cohen–Macaulay morphism (cf. Definition 4.43

below), and prove a base change property (cf. Theorem 4.46 below). We shall

explain these facts.

We have defined the notion of Cohen–Macaulay morphism in Definition 2.31.

The notion of Gorenstein morphism is defined as follows.

Definition 4.39 (Gor(Y/T )). Let Y and T be locally Noetherian schemes and

f : Y → T a flat morphism locally of finite type. We define

Gor(Y/T ) :=
⋃

t∈T
Gor(Yt),

and call it the relative Gorenstein locus for f . The flat morphism f is called a

Gorenstein morphism if Gor(Y/T ) = Y .

Remark. The Gorenstein locus Gor(Y/T ) is open. In fact, this is characterized as

the maximal open subset of the relative Cohen–Macaulay locus Y ♭ = CM(Y/T )

on which the relative dualizing sheaf ωY ♭/T is invertible (cf. Lemma 4.40 below),

where Y ♭ is open by Fact 2.30(1).

The following characterizations of Cohen–Macaulay morphism and Gorenstein

morphism are known:
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Lemma 4.40 ([16, V, Exer. 9.7], [6, Th. 3.5.1]). Let f : Y → T be a flat mor-

phism locally of finite type between locally Noetherian schemes. Then, f is Cohen–

Macaulay if and only if, locally on Y , the twisted inverse image f !OT is quasi-

isomorphic to a T -flat coherent OY -module ωY/T up to shift. Here, f is Gorenstein

if and only if ωY/T is invertible.

Proof. We may assume that f is a separated morphism of finite type between affine

Noetherian schemes by localizing Y and T . For a point t ∈ T , let Yt denote the

fiber f−1(t) and let ψt : Yt → Y be the base change of Spec k(t)→ T by f . Assume

first that f !OT ≃qis ωY/T [d] for a coherent OY -module ωY/T flat over T and for

an integer d. For an arbitrary fiber Yt, the dualizing complex ω•
Yt/k(t)

is quasi-

isomorphic to ωY/T ⊗OY
OYt

[d] by Corollary 4.38. Hence, Yt is Cohen–Macaulay

by Corollary 4.7(2) or Lemma 4.16(4).

Conversely, assume that every fiber Yt is Cohen–Macaulay. Then, we may assume

that f has pure relative dimension d by Lemma 2.39. We shall show that

f !OT ≃qis ωY/T [d]

for the cohomology sheaf ωY/T := H−d(f !OT ) and that ωY/T is flat over T . For a

point t ∈ T , we have a quasi-isomorphism

(IV-7) Lψ∗
t (f

!OT ) ≃qis ωYt/k(t)[d]

for the canonical sheaf ωYt/k(t) by Corollary 4.38. Now, f !OT belongs to D−
coh(OY ).

In fact, f !OT is f -perfect by Fact 4.35(1). For the stalk (f !OT )y at a point y ∈ Yt,
we have

(f !OT )y[−d]⊗L

OT,t
k(t) ≃qis (ωYt/k(t))y

by (IV-7). By applying Lemma 4.41 below to (f !OT )y[−d] and OT,t → OY,y, we
see that Hi(f !OT )y = 0 for any i 6= −d and H−d(f !OT )y is a flat OT,t-module with

an isomorphism

H−d(f !OT )y ⊗OT,t
k(t) ≃ (ωYt/k(t))y.

Since these hold for arbitrary point y ∈ Y , there is a quasi-isomorphism f !OT ≃qis

ωY/T [d] and ωY/T is flat over T . Therefore, we have proved the first assertion

on a characterization of Cohen–Macaulay morphism. For the second assertion, we

assume that f is a Cohen–Macaulay morphism. Then, ωY/T is flat over T . Thus,

ωY/T is invertible along a fiber Yt if and only if ωY/T ⊗OY
OYt

is invertible (cf.

Fact 2.27(2)). By the isomorphism ωY/T ⊗OY
OYt

≃ ωYt/k(t), we see that Yt is

Gorenstein if and only if ωY/T is invertible along Yt. Thus, the second assertion

follows, and we are done. �

The following is used in the proof of Lemma 4.40 above:

Lemma 4.41. Let A be a Noetherian local ring with residue field k and let A→ B

be a local ring homomorphism to another Noetherian local ring B. Let L• be a

complex of B-modules such that Hl(L•) = 0 for l ≫ 0 and Hi(L•) is a finitely

generated B-modules for any i ∈ Z, i.e., L• ∈ D−
coh(B). Assume that

Hi(L• ⊗L

A k) = 0
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for any i > 0. Then, Hi(L•) = 0 for any i > 0, and there exist an isomorphism

H0(L•)⊗A k ≃ H0(L• ⊗L

A k)

and an exact sequence

TorA2 (H
0(L•), k)→ H−1(L•)⊗A k

h−→ H−1(L• ⊗L

A k)→ TorA1 (H
0(L•), k)→ 0.

Consequently, the following hold :

(1) H0(L•) is flat over A if and only if the homomorphism h above is surjective.

(2) If Hi(L• ⊗L

A k) = 0 for any i 6= 0, then L• is quasi-isomorphic to a flat

A-module.

Proof. There is a standard spectral sequence

Ep,q2 = TorA−p(H
q(L•), k)⇒ Ep+q = Hp+q(L• ⊗L

A k)

(cf. [11, III, (6.3.2.2)]), where Ep,q2 = 0 for any p > 0. Let a be an integer such that

Hl(L•) = 0 for any l > a. Then, Ep,q2 = 0 for any q > a, and we have Ea ≃ E0,a
2

and an exact sequence

E−2,a
2 → E0,a−1

2 → Ea−1 → E−1,a
2 → 0.

Hence, if a > 0, then Ha(L•) = 0 by E0,a
2 = 0, and we may decrease a by 1. Thus,

we can choose a = 0, and we have the required isomorphism and exact sequence.

The assertion (1) is derived from the local criterion of flatness (cf. Proposition A.1),

since H0(L•) is flat over A if and only if TorA1 (H
0(L•), k) = 0. The assertion (2)

follows from (1) and τ≤−1(L•) ≃qis 0, the latter of which is obtained by applying

the result above to the complex τ≤−1(L•) instead of L•. �

Fact 4.42. Let f : Y → T be a Cohen–Macaulay morphism having pure relative

dimension d (cf. Definition 2.37). In [6, Sect. 3.5], Conrad defines a sheaf ωf , called

the dualizing sheaf for f , on Y such that

ωf |U ≃ H−d((f |U )!OT )
for any open subset U ⊂ Y such that the restriction f |U : U → T factors as a

closed immersion U →֒ P followed by a smooth separated morphism P → T with

pure relative dimension. Here, the sheaf ωf is obtained by gluing the sheaves

H−d((f |U )!OT ) along natural isomorphisms, where the compatibility of gluing is

checked by explicit calculation of Ext groups. In [49, Th. 2.3.3, 2.3.5], Sastry defines

the same sheaf ωf by another method: This is obtained by gluing H−d((f |V )!OT )
for open subsets V ⊂ Y such that f |V factors as an open immersion V →֒ V

followed by an d-proper morphism V → T in the sense of [49, Def. 2.2.1].

Definition 4.43 (relative dualizing sheaf). Let f : Y → T be a Cohen–Macaulay

morphism. For any connected component Yα of Y , it is shown in Lemma 2.39 that

the restriction morphism fα = f |Yα
: Yα → T has pure relative dimension. Thus,

one can consider the dualizing sheaf ωfα in Fact 4.42 for fα. We define the relative

dualizing sheaf ωY/T of Y over T by

ωY/T |Yα
= ωfα
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for any connected component Yα. The ωY/T is also called the relative dualizing

sheaf for f or the relative canonical sheaf of Y over T (cf. Definition 5.3 below).

We sometimes write ωf for ωY/T .

By Corollary 4.7(2) and Lemma 4.40, we have:

Corollary 4.44. For a Cohen–Macaulay morphism f : Y → T , the relative du-

alizing sheaf ωY/T is relatively Cohen–Macaulay over T (cf. Definition 2.29) and

SuppωY/T = Y .

By Lemma 2.34(5), we have also:

Corollary 4.45. For a Cohen–Macaulay morphism f : Y → T , let Y ◦ be an open

subset of Y such that codim(Yt \ Y ◦, Yt) ≥ 2 for any fiber Yt = f−1(t). Then,

ωY/T ≃ j∗(ωY ◦/T ) for the open immersion j : Y ◦ →֒ Y .

The following base change property is known for the relative dualizing sheaves

(cf. [6, Th. 3.6.1], [25, Prop. (9)], [49, Th. 2.3.5]):

Theorem 4.46. Let f : Y → T be a Cohen-Macaulay morphism. For an arbitrary

morphism T ′ → T from a locally Noetherian scheme T ′, let Y ′ be the fiber product

Y ×T T ′ and let p : Y ′ → Y be the projection. Then, p∗(ωY/T ) ≃ ωY ′/T ′ .

Remark. Conrad [6, Th. 3.6.1] and Sastry [49, Th. 2.3.5] prove Theorem 4.46 as-

suming that f has pure relative dimension, but it is enough for the proof, since

the restriction of f to any connected component of Y has pure relative dimension

(cf. Lemma 2.39). When f is proper, Theorem 4.46 is shown by Kleiman [25,

Prop. (9)(iii)], whose proof uses another version of twisted inverse image functor

f !. The proof of [6, Th. 3.6.1] is based on arguments in [16, V], while the proof of

[49, Th. 2.3.5] is based on arguments in [8], [54], [25], and [33].

5. Relative canonical sheaves

As a generalization of the relative dualizing sheaf for a Cohen–Macaulay mor-

phism, we introduce the notion of relative canonical sheaf for an arbitrary S2-

morphism (cf. Definition 2.31). We give some base change properties of the relative

canonical sheaf and its “multiple.” These are used for studying Q-Gorenstein mor-

phisms in Section 7. In Section 5.1, we shall study the relative canonical sheaf

and the conditions for when it satisfies relative S2. Section 5.2 is devoted to prove

Theorem 5.10, which provides a criterion for a base change homomorphism of the

relative canonical sheaf to be an isomorphism.

5.1. Relative canonical sheaf for an S2-morphism. First of all, we shall give

a partial generalization of the notion of canonical sheaf in Definition 4.28 as follows.

Definition 5.1. Let X be a k-scheme locally of finite type for a field k. Assume

that

• X is locally equi-dimensional, and

• codim(X \X♭, X) ≥ 2 for the Cohen–Macaulay locus X♭ = CM(X).



60 YONGNAM LEE AND NOBORU NAKAYAMA

Note that this assumption is verified when X satisfies S2. For the relative dualizing

sheaf ωX♭/k over Spec k in Definition 4.43 and for the open immersion j♭ : X♭ →֒ X,

we set

ωX/k := j♭∗(ωX♭/k)

and call it the canonical sheaf of X.

Remark. By Corollaries 4.22 and 4.29, we have the following properties in the

situation of Definition 5.1:

(1) Let U be an arbitrary open subset of X which is of finite type over Spec k.

Then, ωX/k|U is isomorphic to the canonical sheaf ωU/k defined in Defini-

tion 4.28. Thus, the use of the same symbol ωX/k for the canonical sheaf

causes no confusion.

(2) The canonical sheaf ωX/k is coherent and satisfies S2.

Lemma 5.2. Let X be a scheme locally of finite type over a field k. Assume that

X is Gorenstein in codimension one and satisfies S2. Then, ωX/k is reflexive, and

every reflexive OX-module satisfies S2. In particular, the double-dual ω
[m]
X/k of ω⊗m

X/k

satisfies S2 for any m ∈ Z.

Proof. Let Z be the complement of the Gorenstein locus of X (cf. Definition 4.10).

Then, codim(Z,X) ≥ 2 and ωX/k|X\Z is invertible. Hence, ωX/k is reflexive by

Corollary 2.23, since ωX/k satisfies S2 and SuppωX/k = X. Every reflexive OX -

module satisfies S2 by Lemma 2.22(2). �

The definition of the canonical sheaf above is partially extended to the relative

situation as follows.

Definition 5.3 (relative canonical sheaf). Let f : Y → T be an S2-morphism

of locally Noetherian schemes. Let j : Y ♭ →֒ Y be the open immersion from the

relative Cohen–Macaulay locus Y ♭ = CM(Y/T ). Note that codim(Yt \ Y ♭, Yt) ≥ 2

for any fiber Yt = f−1(t), since Yt satisfies S2. In this situation, we define

ωY/T := j∗(ωY ♭/T )

for the relative dualizing sheaf ωY ♭/T for f |Y ♭ in the sense of Definition 4.43. We

call ωY/T also the relative canonical sheaf of Y over T .

Lemma 5.4. Let f : Y → T be an S2-morphism of locally Noetherian schemes and

let

Y ′ p−−−−→ Y

f ′

y
y

T ′ −−−−→ T
be a Cartesian diagram such that T ′ is a locally Noetherian scheme flat over T .

Then, ωY ′/T ′ ≃ p∗(ωY/T ).

Proof. Let Y ♭ (resp. Y ′♭) be the relative Cohen–Macaulay locus for f (resp. f ′) and

let j : Y ♭ →֒ Y (resp. j′ : Y ′♭ →֒ Y ′) be the open immersion. Then, Y ′♭ = p−1(Y ♭),
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and j′ is induced from j. Let p♭ : Y ′♭ → Y ♭ be the restriction of p. Then, ωY ′♭/T ′ ≃
p♭∗(ωY ♭/T ) by Theorem 4.46. Thus, we have

ωY ′/T ′ ≃ j′∗(p♭∗(ωY ♭/T )) ≃ p∗(j∗(ωY ♭/T )) ≃ p∗ωY/T
by the flat base change isomorphism (cf. Lemma A.9) for the Cartesian diagram

composed of p, p♭, j, and j′. �

Proposition 5.5. Let f : Y → T be an S2-morphism of locally Noetherian schemes.

Then, the relative canonical sheaf ωY/T defined in Definition 5.3 is coherent, and

moreover, if f is a separated morphism of pure relative dimension d, then

Hi(f !OT ) ≃
{
0, if i < −d;
ωY/T , if i = −d,

for the twisted inverse image f !OT . Let Y ◦ be an open subset of CM(Y/T ) such

that codim(Yt \ Y ◦, Yt) ≥ 2 for any fiber Yt = f−1(t). For a point t ∈ T , let
φt : ωY/T ⊗OY

OYt
→ ωYt/k(t) = jt∗(ωY ◦∩Yt/k(t))

be the homomorphism induced from the base change isomorphism

(V-1) ωY ◦/T ⊗OY ◦ OY ◦∩Yt
≃ ωY ◦∩Yt/k(t)

(cf. Theorem 4.46), where jt : Y
◦ ∩ Yt →֒ Yt denotes the open immersion. Then,

for any point y ∈ Y , the following three conditions are equivalent to each other :

(a) The homomorphism φf(y) is surjective at y.

(b) The homomorphism φf(y) is an isomorphism at y.

(c) There is an open neighborhood U of y in Y such that ωY/T |U satisfies rel-

ative S2 over T (cf. Definition 2.29).

Proof. The coherence of ωY/T and the conditions (a)–(c) are local on Y . Hence,

we may assume that f is a separated morphism of pure relative dimension d by

Lemma 2.39(1). Then, we have the twisted inverse image f !OT with a quasi-

isomorphism

(f !OT )|Y ♭ ≃qis ωY ♭/T [d]

for Y ♭ = CM(Y/T ) by Lemma 4.40, and we have a canonical homomorphism

φ : H−d(f !OT )→ j♭∗(ωY ♭/T ) = ωY/T

for the open immersion j♭ : Y ♭ →֒ Y . In order to prove that φ is an isomorphism,

since it is a local condition, we may replace Y with an open subset freely. Thus,

we may assume that

• f is the composite p◦ι of a closed immersion ι : Y →֒ P and a smooth affine

morphism p : P → T .

By Fact 4.35(1) and Remark 4.36, we know that Rι∗(f
!OT ) is perfect. Hence,

by localizing Y , we may assume that

• Rι∗(f
!OT ) is quasi-isomorphic to a bounded complex E• = [· · · → E i →

E i+1 → · · · ] of free OP -modules of finite rank.
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Then, we have an isomorphism Hi(E•) ≃ ι∗Hi(f !OT ) for any i ∈ Z. Moreover,

there exist quasi-isomorphisms

E• ⊗L

OP
OPt
≃qis Rι∗(f

!OT ⊗L

OY
Lι∗OPt

) ≃qis Rι∗(f
!OT ⊗L

OY
Lf∗k(t))

≃qis Rι∗(f
!OT ⊗L

OY
OYt

) ≃qis Rιt∗(ω
•
Yt/k(t)

)

for any t ∈ T and for the induced closed immersion ιt : Yt →֒ Pt = p−1(t). In fact,

the first quasi-isomorphism is known as the projection formula (cf. [16, II, Prop.

5.6]), the quasi-isomorphisms

OPt
≃qis Lp

∗k(t) and Lf∗k(t) ≃qis OYt

are derived from the flatness of p and f , and the quasi-isomorphism

f !OT ⊗L

OY
OYt
≃qis ω

•
Yt/k(t)

is obtained by Corollary 4.38. We shall show that the three data:

E•[−d], Z := ι(Y \ Y ◦), F := H0(E•[−d]) ≃ ι∗H−d(f !OT ),
satisfy the conditions of Lemma 3.15 for the morphism P → T . The required

inequality (III-8) of Lemma 3.15 is derived from

depthPt∩Z OPt
= codim(Pt ∩ Z,Pt) = codim(Yt ∩ Z,Pt) ≥ codim(Yt ∩ Z, Yt) ≥ 2

(cf. Lemma 2.14). The condition (i) of Lemma 3.15 is derived from (cf. Lemma 4.40):

Hi(E•)|P\Z ≃ ι∗(Hi(f !OT ))|P\Z ≃
{
0, if i 6= −d;
ι∗ωY ◦/T , if i = −d,

and the next condition (ii) has no meaning now. The condition (iii) follows from

Hi(E ⊗L

OP
OPt

) ≃ ιt∗(Hi(ω•
Yt/k(t)

)) = 0

for any i < −d (cf. Lemma 4.27). The last condition (iv) of Lemma 3.15 is a

consequence of Corollary 4.20 applied to the ordinary dualizing complex ω•
Yt/k(t)

[−d]
(cf. Lemma 4.27) and to b = 1, since

• the complex M• in Lemma 3.15(iv) is quasi-isomorphic to the stalk of

τ≤1(Rι∗ω
•
Yt/k(t)

[−d]) ≃qis Rι∗(τ
≤1(ω•

Yt/k(t)
[−d])), and

• dimOPt,z ≥ codim(Z ∩ Yt, Yt) ≥ 2 for any z ∈ Z with t = f(z).

Therefore, all the conditions of Lemma 3.15 are satisfied, and consequently,

Hi(E•) ≃ ι∗Hi(f !OT ) = 0

for any i < −d, and we can apply Proposition 3.7 to F via Lemma 3.15. Then,

F ≃ j∗(F|P\Z) for the open immersion j : P \Z →֒ P by Proposition 3.7(1), and it

implies that the morphism φ above is an isomorphism. Moreover, the three condi-

tions (a)–(c) are equivalent to each other by Proposition 3.7(3) and Corollary 3.9.

Thus, we are done. �

Proposition 5.6. Let f : Y → T be an S2-morphism of locally Noetherian schemes

and let j : Y ◦ →֒ Y be the open immersion from an open subset Y ◦ of the relative

Gorenstein locus Gor(Y/T ) for f . Assume that
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• codim(Yt \ Y ◦, Yt) ≥ 2 for any fiber Yt = f−1(t).

For an integer m and for the relative canonical sheaf ωY/T , let ω
[m]
Y/T denote the

double-dual of ω⊗m
Y/T . Then,

ω
[m]
Y/T ≃ j∗(ω⊗m

Y ◦/T )

for any m. In particular, ωY/T is reflexive. For an integer m and a point t ∈ T ,
let

φ
[m]
t : ω

[m]
Y/T ⊗OY

OYt
→ ω

[m]
Yt/k(t)

= jt∗(ω
⊗m
Y ◦∩Yt/k(t)

)

be the homomorphism induced from the base change isomorphism (V-1), where

jt : Y
◦ ∩ Yt →֒ Yt denotes the open immersion. Then, for any integer m and any

point y ∈ Y , the following three conditions are equivalent to each other :

(a) φ
[m]
f(y) is surjective at y.

(b) φ
[m]
f(y) is an isomorphism at y.

(c) There is an open neighborhood V of y in Y such that ω
[m]
Y/T |V satisfies

relative S2 over T .

Proof. We apply some results in Section 3.1 to the reflexive sheaf F = ω
[m]
Y/T and the

closed subset Z := Y \Y ◦. By assumption, F|Y \Z is invertible and depthYt∩Z OYt
≥

2 (cf. Lemma 2.14(ii)). Thus, we can apply Lemma 3.14, and consequently, we can

assume that F has an exact sequence of Proposition 3.7, by replacing Y with its

open subset. Then, ω
[m]
Y/T ≃ j∗(ω

⊗m
Y ◦/T ) by Proposition 3.7(1). In case m = 1,

we have ω
[1]
Y/T ≃ ωY/T ≃ j∗(ωY ◦/T ) by Corollary 4.45 and Definition 5.3, and as

a consequence, ωY/T is reflexive. The equivalence of three conditions (a)–(c) is

derived from Proposition 3.7(3) and Corollary 3.9. �

Corollary 5.7. Let us consider a Cartesian diagram

Y ′ p−−−−→ Y

f ′

y
yf

T ′ q−−−−→ T

of locally Noetherian schemes in which f is a flat morphism locally of finite type.

Then, p−1 CM(Y/T ) = CM(Y ′/T ′) and p−1 Gor(Y/T ) = Gor(Y ′/T ′). Assume that

f is an S2-morphism. Then:

(1) If ωY/T satisfies relative S2 over T , then p∗ωY/T ≃ ωY ′/T ′ .

(2) If every fiber Yt = f−1(t) is Gorenstein in codimension one, then, for any

m ∈ Z, there is a canonical isomorphism

(p∗ω
[m]
Y/T )

∨∨ ≃ ω[m]
Y ′/T ′ .

Here, if ω
[m]
Y/T satisfies relative S2 over T , then p∗ω

[m]
Y/T ≃ ω

[m]
Y ′/T ′ .

Proof. The equality for CM is derived from Lemma 2.32(3) for F = OY . If f is a

Cohen–Macaulay morphism, then p∗ωY/T ≃ ωY ′/T ′ by Theorem 4.46. This implies
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the equality for Gor by the Remark of Definition 4.39. Assume that f is an S2-

morphism. Then, f ′ is so by Lemma 2.32(5). For open subsets Y ♭ := CM(Y/T )

and Y ′♭ := p−1(Y ♭), we have

codim(Y ′
t′ \ Y ′♭, Y ′

t′) = codim(Yt \ Y ♭, Yt) ≥ 3

for any t′ ∈ T ′ and t = q(t) by Lemma 2.32(1) and by the S2-condition of Yt. If

ωY/T satisfies relative S2 over T , then the canonical base change isomorphism

(V-2) p∗ωY ♭/T ≃ ωY ′♭/T ′

in Theorem 4.46 induces an isomorphism

p∗ωY/T ≃ j′∗(p∗ωY/T |Y ′♭) ≃ j′∗ωY ′♭/T ′ = ωY ′/T ′

for the open immersion j′ : Y ′♭ →֒ Y ′, by Lemma 2.33(2) applied to (F , Z) =

(p∗ωY/T , Y
′ \ Y ′♭). This proves (1). In the situation of (2), codim(Yt \ Y ◦, Yt) ≥ 2

for any t ∈ T , where Y ◦ = Gor(Y/T ). In particular,

depthYt\Y ◦ F ⊗OY
OYt
≥ 2

for any coherent OY -module F satisfying relative S2 over T , by Lemma 2.15(2).

Thus, (2) is a consequence of Lemma 2.35 via the isomorphism (V-2). �

Proposition 5.8. Let f : Y → T be an S2-morphism of locally Noetherian schemes.

Then,

HomOY
(ωY/T , ωY/T ) ≃ OY

for the relative canonical sheaf ωY/T in the sense of Definition 5.3. If every fiber

satisfies S3, then

Ext1OY
(ωY/T , ωY/T ) = 0.

Proof. Let j : Y ♭ →֒ Y be the open immersion from the relative Cohen–Macaulay

locus Y ♭ = CM(Y/T ). Now, we have a quasi-isomorphism

OY ♭ ≃ RHomO
Y ♭
(ωY ♭/T , ωY ♭/T )

by (IV-5) in Fact 4.35(2). This induces another quasi-isomorphism

RHomOY
(ωY/T ,Rj∗(ωY ♭/T )) ≃qis Rj∗ RHomO

Y ♭
(ωY ♭/T , ωY ♭/T ) ≃ Rj∗OY ♭

and the spectral sequence

Ep,q2 = ExtpOY
(ωY/T , R

qj∗(ωY ♭/T ))⇒ Ep+q = Rp+qj∗OY ♭ .

Since ωY/T = j∗(ωY ♭/T ), the isomorphism E0,02 ≃ E0 and the injection E1,02 →֒ E1,
respectively, correspond to an isomorphism HomOY

(ωY/T , ωY/T ) ≃ j∗OY ♭ and an

injection Ext1OY
(ωY/T , ωY/T ) →֒ R1j∗OY ♭ . Therefore, it suffices to prove that

(1) OY ≃ j∗OY ♭ , and

(2) if every fiber satisfies S3, then R
1j∗OY ♭ = 0.

Here, (1) (resp. (2)) is equivalent to: depthZ OY ≥ 2 (resp. ≥ 3) for Z := Y \ Y ♭
(cf. Property 2.6). If a fiber Yt satisfies Sk, then codim(Z ∩ Yt, Yt) > k, and

depthZ∩Yt
OYt

≥ k by Lemma 2.15(2). Hence, we have depthZ OY ≥ 2 (resp.

≥ 3) by Lemma 2.33(3) when every fiber Yt satisfies S2 (resp. S3). Thus, we are

done. �
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5.2. Some base change theorems for the relative canonical sheaf. For an

S2-morphism f : Y → T of locally Noetherian schemes and for a fiber Yt = f−1(t),

let

φt(ωY/T ) : ωY/T ⊗OY
OYt
→ ωYt/k(t) = j♭∗(ωY ♭

t /k(t)
)

be the canonical homomorphism induced from the base change isomorphism

ωY ♭/T ⊗O
Y ♭
OY ♭

t
≃ ωY ♭

t /k(t)

(cf. Theorem 4.46), where Y ♭ = CM(Y/T ), Y ♭t = Y ♭ ∩ Yt, and j♭ is the open im-

mersion Y ♭ →֒ Y . The homomorphism φt(ωY/T ) is not necessarily an isomorphism

(e.g. Fact 7.6 below). We shall give a sufficient condition for φt(ωY/T ) to be an

isomorphism in Theorem 5.10 below.

Lemma 5.9. Let f : Y → T be a Cohen–Macaulay morphism of locally Noetherian

schemes. Let L be a coherent OY -module flat over T with an isomorphism

(V-3) L ⊗OY
OYt
≃ ωYt/k(t)

for the fiber Yt = f−1(t) over a given point t ∈ T . Then, for the sheaf M :=

HomOY
(L, ωY/T ), the canonical homomorphism L⊗M→ ωY/T is an isomorphism

along Yt, andM is an invertible sheaf along Yt with an isomorphismM⊗OY
OYt
≃

OYt
.

Proof. Since the assertions are local on Yt, we may assume that

(1) f has pure relative dimension d (cf. Lemma 2.39), and

(2) f is the composite p◦ι of a closed immersion ι : Y →֒ P and a smooth affine

morphism p : P → T of pure relative dimension e.

Then, f !OT ≃ ωY/T [d] and ωY/T is flat over T by Lemma 4.40. The complex

RHomOY
(L, f !OT ) is f -perfect by Fact 4.35(2), and there is a quasi-isomorphism

Rι∗ RHomOY
(L, f !OT ) ≃qis RHomOP

(ι∗L, ωP/T [e])
by Corollary 4.31, where p!OT = ωP/T [e] by (2) above. Localizing Y , by Re-

mark 4.36, we may assume furthermore that

(3) Rι∗ RHomOY
(L, f !OT ) is quasi-isomorphic to a bounded complex E• =

[· · · → E i → E i+1 → · · · ] of free OP -modules of finite rank.

Note that we have an isomorphism

H−d(E•) ≃ ι∗HomOY
(L, ωY/T ) ≃ ι∗M.

For the closed immersion ι : Y →֒ P and the induced closed immersion ιt : Yt →֒
Pt = p−1(t), we have quasi-isomorphisms

E• ⊗L

OP
OPt
≃qis RHomOPt

((ι∗L)⊗L

OP
OPt

, ωP/T [e]⊗L

OP
OPt

)

≃qis RHomOPt
(ιt∗(L ⊗OY

OYt
), ωPt/k(t)[e])

by [22, I, Prop. 7.1.2], since L is flat over T , ι∗L is perfect (cf. Fact 4.35(1) and

Remark 4.36), and since P → T is smooth. ¿From the isomorphism (V-3) and the

base change isomorphism

φt(ωY/T ) : ωY/T ⊗OY
OYt
≃ ωYt/k(t)
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(cf. Theorem 4.46), by duality for ιt (cf. Corollary 4.31), we have quasi-isomorphisms

E• ⊗L

OT
k(t) ≃qis E• ⊗L

OP
OPt
≃qis Rιt∗ RHomOYt

(L ⊗OY
OYt

, ωYt/k(t)[d])

≃qis Rιt∗ RHomOYt
(ωYt/k(t), ωYt/k(t)[d]) ≃qis ιt∗OYt

[d],

where the last quasi-isomorphism follows from that ωYt/k(t)[d] is a dualizing complex

of Yt. Then, by Lemma 4.41, we see that

(4) E•[−d] is quasi-isomorphic to H−d(E•) ≃ ι∗M along Yt,

(5) ι∗M is flat over T along Yt, and

(6) there is an isomorphism

ι∗M⊗OP
OPt
≃ H−d(E• ⊗L

OT
k(t)) ≃ ιt∗OYt

.

Hence, M is flat over T along Yt with an isomorphismM⊗OY
OYt
≃ OYt

by (5)

and (6). As a consequence,M is an invertible OY -module along Yt by Fact 2.27(2).

Now, we have a quasi-isomorphism

RHomOY
(L, ωY/T ) ≃qisM

along Yt by (3) and (4). By the duality quasi-isomorphism

L ≃qis RHomOY
(RHomOY

(L, ωY/T ), ωY/T )
(cf. Fact 4.35(2)), we have an isomorphism

L ≃ HomOY
(M, ωY/T ) ≃ ωY/T ⊗OY

M−1

along Yt, sinceM is invertible along Yt. Thus, we are done. �

Theorem 5.10. For an S2-morphism f : Y → T of locally Noetherian schemes, let

L be a coherent OY -module and set M := HomOY
(L, ωY/T ). For an open subset

U of Y and for the fiber Yt = f−1(t) over a given point t ∈ T , assume that

(i) codim(Yt \ U, Yt) ≥ 2,

(ii) L is flat over T with an isomorphism L ⊗OY
OYt
≃ ωYt/k(t), and

(iii) one of the following two conditions is satisfied :

(a) Yt satisfies S3 and codim(Yt \ U, Yt) ≥ 3;

(b) there is a positive integer r coprime to the characteristic of k(t) such

that L[r] = (L⊗r)∨∨ and ω
[r]
Y/T = (ω⊗r

Y/T )
∨∨ are invertible OY -module

along Yt.

Then,M is an invertible OY -module along Yt with an isomorphismM⊗OY
OYt
≃

OYt
, and the canonical homomorphism L⊗OY

M→ ωY/T is an isomorphism along

Yt. Moreover, the “base change homomorphism”

φt(ωY/T ) : ωY/T ⊗OY
OYt
→ ωYt/k(t)

is an isomorphism.

Proof. Since the assertions are local on Yt, we may replace Y with an open subset

freely. Let Y ♭ be the relative Cohen–Macaulay locus CM(Y/T ), which is an open

subset by Fact 2.30(1). Then, codim(Yt \ Y ♭, Yt) ≥ 3 (resp. ≥ 4 in the case (a)),

since Yt satisfies S2 (resp. S3). We set U ♭ := U ∩ Y ♭. Then,
(V-4) codim(Yt \ U ♭, Yt) = codim((Yt \ U) ∪ (Yt \ Y ♭), Yt) ≥ 2 (resp. ≥ 3).
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By Lemma 5.9 applied to the Cohen–Macaulay morphism U ♭ → T , there is an

isomorphism

(1) M|U♭ ⊗O
U♭
OU♭∩Yt

≃ OU♭∩Yt
,

and there is an open neighborhood U ′ of U ♭ ∩ Yt in U ♭ such that

(2) M|U ′ is an invertible sheaf, and

(3) the canonical homomorphism L⊗OY
M→ ωY/T is an isomorphism on U ′.

We set Z = Y \U ′. Then, codim(Yt∩Z, Yt) = codim(Yt\U ♭, Yt) ≥ 2 by (V-4). Since

f is an S2-morphism, by Lemma 2.39, we may assume that codim(Yt′ ∩Z, Yt′) ≥ 2

for any t′ ∈ T by replacing Y with an open subset. Then, depthZ OY ≥ 2 by

Lemma 2.33(3), and

ωY/T ≃ j∗(ωU/T ) ≃ j′∗(ωU ′/T )

for the open immersion j′ : U ′ →֒ Y by Corollary 4.45. In particular, depthZM≥ 2,

i.e.,M≃ j′∗(M|U ′), by the isomorphism

HomOY
(L, ωY/T ) ≃ HomOY

(L, j′∗(ωU ′/T )) ≃ j′∗HomOU′
(L|U ′ , ωU ′/T ).

By (ii), L satisfies relative S2 over T along Yt, since ωYt/k(t) satisfies S2 by Corol-

lary 4.29. Hence, we have also an isomorphism L ≃ j′∗(L|U ′) by Lemma 2.34(5).

We shall show thatM is invertible along Yt by applying Theorem 3.17 to Y → T ,

the closed subset Z = Y \U ′, and to the sheafM as F . By the previous argument,

we have checked the conditions (i) and (ii) of Theorem 3.17. The condition (iii) is

derived from (1): In fact, we have

(V-5) M(t)∗ = j′∗((M⊗OY
OYt

)|U ′∩Yt
) ≃ j′∗(OU ′∩Yt

) ≃ OYt
,

since we have depthYt∩Z OYt
≥ 2 by the S2-condition on Yt and by codim(Yt ∩

Z, Yt) ≥ 2 (cf. Lemma 2.14). Similarly, in the case of (a) above, we have the

condition (a) of Theorem 3.17 by the S3-condition on Yt and by codim(Yt∩Z, Yt) =
codim(Yt \ U ♭, Yt) ≥ 3 (cf. (V-4)). In the case of (b) above, M[r] is an invertible

OY -module along Yt. In fact, the restriction homomorphisms

M[r] → j′∗(M[r]|U ′) and ω
[r]
Y/T → j′∗(ω

[r]
U ′/T )

are isomorphisms by Lemma 2.34(4), since M[r] and ω
[r]
Y/T are reflexive, and the

isomorphism

L[r]|U ′ ⊗OU′
M[r]|U ′ ≃ ω[r]

U ′/T

obtained by (2) and (3) induces an isomorphism

M[r] ≃ j′∗(M[r]|U ′) ≃ j′∗HomOU′
(L[r]|U ′ , ω

[r]
U ′/T )

≃ HomOY
(L[r], j′∗(ω

[r]
U ′/T )) ≃ HomOY

(L[r], ω
[r]
Y/T ).

Thus, the condition (b) of Theorem 3.17 is also satisfied in the case of (b). Hence,

we can apply Theorem 3.17, and as a result, we see that M is an invertible sheaf

along Yt.
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Then, we have an isomorphismM⊗OY
OYt
≃ OYt

by (V-5), and the canonical

homomorphism L⊗OY
M→ ωY/T is an isomorphism along Yt by (3): In fact, it is

expressed as the composite

L ⊗OY
M≃ j′∗(L|U ′)⊗OY

M→ j′∗(L|U ′ ⊗M|U ′) ≃ j′∗(ωU ′/T ) ≃ ωY/T ,
where the middle arrow is an isomorphism along Yt by the projection formula,

sinceM is invertible along Yt. In particular, ωY/T ⊗OY
OYt

satisfies S2, and as a

consequence, φt(ωY/T ) is an isomorphism by (V-4). Thus, we are done. �

6. Q-Gorenstein schemes

A normal algebraic variety defined over a field is said to be Q-Gorenstein if some

positive multiple of the canonical divisor is Cartier. We shall generalize the notion

of Q-Gorenstein to locally Noetherian schemes. In Section 6.1, the notion of Q-

Gorenstein scheme is defined and its basic properties are given. In Section 6.2, we

consider the case of affine cones over polarized projective schemes over a field, and

determine when it is a Q-Gorenstein scheme.

6.1. Basic properties of Q-Gorenstein schemes. We begin with defining the

notion of Q-Gorenstein scheme in a general form.

Definition 6.1 (Q-Gorenstein scheme). Let X be a locally Noetherian scheme

admitting a dualizing complex locally on X and assume that X is Gorenstein in

codimension one, i.e., codim(X \X◦) ≥ 2 for the Gorenstein locus X◦ = Gor(X)

(cf. Definition 4.10).

(1) The scheme X is said to be quasi-Gorenstein (or 1-Gorenstein) at a point

P if there exist an open neighborhood U of P and a dualizing complex R•

of U such that H0(R•) is invertible at P . If X is quasi-Gorenstein at every

point, then X is said to be quasi-Gorenstein (or 1-Gorenstein).

(2) The scheme X is said to be Q-Gorenstein at P if there exist an open

neighborhood U of P , a dualizing complex R• of U , and an integer r > 0

such that L = H0(R•) is invertible on the Gorenstein locus U◦ = U ∩X◦

and

j∗
(
L⊗r|U◦

)

is invertible at P , where j : U◦ →֒ U denotes the open immersion. If X is

Q-Gorenstein at every point, then X is said to be Q-Gorenstein.

Definition 6.2 (Gorenstein index). For a Q-Gorenstein scheme X, the Gorenstein

index of X at P ∈ X is defined to be the smallest positive integer r satisfying the

condition (2) of Definition 6.1 for an open neighborhood of P . The least common

multiple of Gorenstein indices of X at all the points is called the Gorenstein index

of X, which might be +∞.

Remark. The conditions (1) and (2) of Definition 6.1 do not depend on the choice

of R• by the essential uniqueness of the dualizing complex (cf. Remark 4.2).

Lemma 6.3. (1) A quasi-Gorenstein (1-Gorenstein) scheme is nothing but a

Q-Gorenstein scheme of Gorenstein index one.
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(2) Every Q-Gorenstein scheme satisfies S2.

Proof. (1): LetX be a locally Noetherian scheme admitting a dualizing complexR•

such that it is Gorenstein in codimension one and that L := H0(R•) is invertible on

the Gorenstein locus X◦. Then, L satisfies S2 and L → j∗(L|X◦) is an isomorphism

by Corollary 4.22. Hence, X is Q-Gorenstein with Gorenstein index one if and only

if L is invertible, equivalently, X is quasi-Gorenstein.

(2): We may assume that X admits a dualizing complex R• such that L =

H0(R•) is invertible on the Gorenstein locus X◦, since the condition S2 is local.

Then,Mr := j∗(L⊗r|X◦) is invertible for some r by Definition 6.1(2). Hence,Mr

satisfies S2 by Corollary 2.16. Therefore, X satisfies S2. �

Lemma 6.4. Let X be a locally Noetherian scheme admitting a dualizing com-

plex R•. For the cohomology sheaf L := H0(R•) and for an open subset U with

codim(X \ U,X) ≥ 2, assume that L|U is invertible and R•|U ≃qis L|U . Then, the

following hold :

(1) If X satisfies S1, then R• is an ordinary dualizing complex of X and the

dualizing sheaf L is a reflexive OX-module satisfying S2.

(2) If X satisfies S2, then the double-dual L[m] of L⊗m satisfies S2 for any

integer m, and in particular,

L[m] ≃ j∗(L⊗m|U )
for the open immersion j : U →֒ X.

(3) The scheme X is Q-Gorenstein if and only if X satisfies S2 and, locally on

X, there is a positive integer r such that L[r] is invertible.

Proof. (1): This follows from Corollary 4.22 with Lemmas 2.14 and 2.22(3).

(2): Since depthX\U OX ≥ 2 by the S2-condition, we have the isomorphism

L[m] ≃ j∗(L⊗m|U ) by Lemma 2.22(1). Hence, L[m] satisfies S2 by Corollary 2.16,

since L|U is invertible.

(3): This is a consequence of (2) above and Lemma 6.3(2) by the uniqueness of

dualizing complex explained in Remark 4.2. �

Example 6.5. Let X be a k-scheme locally of finite type for a field k. Assume that

X satisfies S2 and codim(X \X◦, X) ≥ 2 for the Gorenstein locus X◦ = Gor(X).

Let ωX/k be the canonical sheaf defined in Definition 5.1 and let ω
[m]
X/k denote the

double-dual of ω⊗m
X/k for any k ∈ Z (cf. Proposition 5.6). Then, X is Q-Gorenstein

at a point x if and only if ω
[r]
X/k is invertible at x for some r > 0.

Example 6.6. Let X be a normal algebraic k-variety for a field k, i.e., a normal

integral separated scheme of finite type over k. Then, X is Q-Gorenstein if and

only if the multiple rKX of the canonical divisor KX is Cartier for some r > 0.

In fact, X satisfies S2, ωX◦/k ≃ OX◦(KX) for the Gorenstein locus X◦ = Gor(X),

where codim(X \X◦, X) ≥ 2, and hence ω
[m]
X/k ≃ OX(mKX) for any m ∈ Z.

Lemma 6.7. Let X be a locally Noetherian scheme and let π : Y → X be a smooth

surjective morphism. Then, for any integer k ≥ 1, Y satisfies Sk if and only if X
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satisfies Sk. In particular, Y is Cohen–Macaulay if and only if X is so. Moreover,

Y is Gorenstein if and only if X is so. Assume that X admits a dualizing complex

locally on X. Then, Y is quasi-Gorenstein (resp. Q-Gorenstein of index r) if and

only if X is so.

Proof. The first assertion follows from Fact 2.27(6). In particular, we have the

equivalence for the Cohen–Macaulay property (cf. Remark 2.12). The Gorenstein

case follows from Fact 4.12. It remains to prove the case of Q-Gorenstein prop-

erty, since “quasi-Gorenstein” is nothing but “Q-Gorenstein of index one” (cf.

Lemma 6.3(1)). Since the Q-Gorenstein property is local and it implies S2, we

may assume that

• X has a dualizing complex R•
X ,

• X and Y are affine schemes satisfying S2, and

• π = p ◦ λ for an étale morphism λ : Y → X × Ad and the first projection

p : X×Ad → X for the “d-dimensional affine space” Ad = SpecZ[x1, . . . , xd]

for some integer d ≥ 0 (cf. [11, IV, Cor. (17.11.4)]).

In particular, π has pure relative dimension d. We may assume also that R•
X is an

ordinary dualizing complex by Lemma 4.14. We set LX to be the dualizing sheaf

H0(R•
X).

By Examples 4.23 and 4.24, we see that R•
Y := π!(R•

X) is a dualizing complex

of Y , and we have an isomorphism

ωY/X ≃ ΩdY/X ≃ λ∗(ωX×Ad/X) ≃ OY
for the relative dualizing sheaf ωY/X . Thus, π!(OX) ≃qis OY [d], and

R•
Y ≃qis π

!(OX)⊗L

OY
Lπ∗(R•

X) ≃qis Lπ
∗(R•

X)[d]

(cf. Example 4.23, Fact 4.34(2)). Since Y satisfies S2, the shift R•
Y [−d] is an

ordinary dualizing complex on Y by the proof of Lemma 4.14. Here, the associated

dualizing sheaf LY := H0(R•
Y [−d]) is isomorphic to π∗(LX). Since π is faithfully

flat, we see that LY is invertible if and only if LX is so (cf. Lemma A.7). For an

integer m, let L[m]
X (resp. L[m]

Y ) be the double-dual of L⊗m
X (resp. L⊗m

Y ). Then,

L[m]
Y ≃ π∗(L[m]

X ) for any m ∈ Z by Remark 2.21. Hence, for a given integer r, L[r]
Y is

invertible if and only if L[r]
X is invertible by the same argument as above. Therefore,

by Lemma 6.4(3), Y is Q-Gorenstein of index r if and only if X is so. Thus, we are

done. �

Remark 6.8. By Lemma 6.7, we see that the Q-Gorenstein property is local even

in the étale topology. More precisely, for an étale morphism X ′ → X, for a point

P ∈ X, and for a point P ′ ∈ X ′ lying over P , X is Q-Gorenstein of index r at P if

and only if X ′ is so at P ′.

6.2. Affine cones of polarized projective schemes over a field. For an affine

cone over a projective scheme over a field k, we shall determine when it is Cohen–

Macaulay, Gorenstein, Q-Gorenstein, etc., under suitable conditions. We fix a field

k which is not necessarily algebraically closed.
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Definition 6.9 (affine cone). A polarized projective scheme over k is a pair (S,A)
consisting of a projective scheme S over k and an ample invertible sheaf A on S.

The polarized projective scheme (S,A) is said to be connected if S is connected. For

a connected polarized projective scheme (S,A), the affine cone of (S,A) defined to

be SpecR for the graded k-algebra

R = R(S,A) :=
⊕

m≥0
H0(S,A⊗m).

We denote the affine cone by Cone(S,A). Note that the closed subscheme of

Cone(S,A) = SpecR defined by the ideal

R+ =
⊕

m>0
H0(S,A⊗m)

of R is isomorphic to SpecH0(S,OS), and the support of the closed subscheme is a

point, since the finite-dimensional k-algebra H0(S,OS) is an Artinian local ring by

the connectedness of S. The point is called the vertex of Cone(S,A).

Remark. The k-algebra R(S,A) above is finitely generated, since S is projective

and A is ample. Moreover, S ≃ ProjR(S,A). In some articles, the affine cone of

(S,A) is defined to be SpecR′ for the graded subring R′ of R such that R′
n = Rn

for n > 0 and R′
0 = k.

Similar results to the following are well-known on the structure of affine cones

(cf. [11, II, Prop. (8.6.2), (8.8.2)]).

Lemma 6.10. For a connected polarized projective scheme (S,A) over k, let X be

the affine cone Cone(S,A). Let π : Y → S be the geometric line bundle associated

with A, i.e., Y = V(A) = SpecS R, where R =
⊕

m≥0A⊗m. Let E be the zero-

section of π corresponding to the projection R → OS to the component of degree

zero. Then, E is a relative Cartier divisor over S (cf. [11, IV, Déf. (21.15.2)]) with

an isomorphism OY (−E) ≃ π∗A. Moreover, there exists a projective k-morphism

µ : Y → X such that

(1) OX → µ∗OY is an isomorphism,

(2) π∗A is µ-ample,

(3) µ−1(P ) = E as a closed subset of Y for the vertex P of X, and

(4) µ induces an isomorphism Y \ E ≃ X \ P .

Proof. For an open subset U = SpecB of S with an isomorphism ε : A|U ≃ OU , we
have an isomorphism ϕ : π−1(U) ≃ SpecB[t] for the polynomial B-algebra B[t] of

one variable such that ϕ induces an isomorphism

H0(π−1(U),OY ) =
⊕

m≥0
H0(U,A⊗m) ≃ B[t] =

⊕
m≥0

Btm

of graded B-algebras. Then, E|π−1(U) is a Cartier divisor corresponding to div(t)

on SpecB[t], which is relatively Cartier over SpecB (cf. [11, IV, (21.15.3.3)]). Thus,

E is a relative Cartier divisor over S, since such open subsets U cover S. The exact

sequence 0→ OY (−E)→ OY → OE → 0 induces an isomorphism

π∗OY (−E) ≃
⊕

m≥1
A⊗m ≃ A⊗OS

R(−1)
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of graded R-modules, where R(−1) denotes the twisted graded module. In partic-

ular, OY (−E) ≃ π∗A.
The canonical homomorphisms H0(S,A⊗m) ⊗k OS → A⊗m induce a graded

homomorphism Φ: R⊗kOS → R of graded OS-algebras, where R := R(S,A). The
cokernel of Φ is a finitely generated OS-module, since A⊗m is generated by global

sections for m ≫ 0. Hence, R is a finitely generated R ⊗k OS-module. Therefore,

Φ defines a finite morphism

ν : Y = SpecS R → SpecS(R⊗k OS) ≃ X ×Spec k S

over S. Let p1 : X ×Spec k S → X and p2 : X ×Spec k S → S be the first and

second projections. Then, µ := p1 ◦ ν : Y → X is a projective morphism, since

S is projective over k. Here, OX ≃ µ∗OY , since H0(Y,OY ) ≃ H0(S,R) ≃ R.

Moreover π∗A is µ-ample, since p∗2A is relatively ample over X and π∗A is the

pullback by the finite morphism ν. Thus, µ satisfies the conditions (1) and (2).

Since the projection R → OS defining E induces the projection R = H0(S,R) →
H0(S,OS) to the component of degree zero, the scheme-theoretic image µ(E) is

the zero-dimensional closed subscheme SpecH0(S,OS) of X defined by the ideal

R+ =
⊕

m>0 H
0(S,A⊗m) of R. Hence, the image µ(E) is set-theoretically the

vertex P . We shall show that the morphism

µ′ : Y ′ := Y \ µ−1(P )→ X ′ := X \ P
induced by µ is an isomorphism. Since µ is proper, so is µ′. Moreover, the structure

sheaf OY ′ is µ′-ample, since π∗A ≃ OY (−E) is µ-ample by (2). Hence, µ′ is a

finite morphism. Thus, µ′ is an isomorphism by (1), since OX′ ≃ µ′
∗OY ′ . As a

consequence, (4) is derived from (3), and it remains to prove (3) for µ and P .

For a global section f of A⊗m for some m > 0, we set V (f) to be the closed

subscheme Spec(R/fR) of X = SpecR by regarding f as a homogeneous element

of R of degree m. We also set a closed subscheme W (f) of S to be the “zero-

subscheme” of f , i.e., it is defined by the exact sequence

A⊗−m ⊗f−−→ OS → OW (f) → 0.

The condition (3) is derived from the following (∗) for any f and for any affine open

subsets U = SpecB with an isomorphism ε : A|U ≃ OU :
(∗) µ−1V (f) ∩ π−1(U) = (π−1W (f) ∪ E) ∩ π−1(U) as a subset of π−1(U).

In fact, if (∗) holds for all U and f , then µ−1V (f) = π−1W (f) ∪ E for any f , and

we have µ−1(P ) = E by
⋂
f V (f) = P and

⋂
f W (f) = ∅. Here,

⋂
f V (f) = P

and
⋂
f W (f) = ∅ hold, since all of such f ∈ R generate the ideal R+ and since

A is ample. We shall prove (∗) as follows. Let ϕ : π−1(U) ≃ SpecB[t] be the

isomorphism above defined by ε. We set

b = ε⊗m(f |U ) ∈ H0(U,OU ) = B

for the induced isomorphism ε⊗m : A⊗m|U ≃ OU . Then, W (f) ∩ U = SpecB/bB,

and ϕ induces isomorphisms µ−1V (f)∩π−1(U) ≃ SpecB[t]/(btm) and E∩π−1(U)

≃ SpecB[t]/(t). This implies (∗), and we are done. �
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Corollary 6.11. In the situation of Lemma 6.10, for an integer k ≥ 1, S satis-

fies Sk if and only if X \ P satisfies Sk. Moreover, S is Cohen–Macaulay (resp.

Gorenstein, resp. quasi-Gorenstein, resp. Q-Gorenstein of Gorenstein index r) if

and only if X \ P is so.

Proof. This is a consequence of Lemmas 6.7 and 6.10, since X \P ≃ Y \E is smooth

and surjective over S. �

The following result is essentially well-known (cf. [36, Prop. 1.7], [43, Lem. 4.3]).

Proposition 6.12. Let X be the affine cone of a connected polarized projective

scheme (S,A) over k and let P be the vertex of X. For a coherent OS-module G,
we set F = µ∗(π

∗G) for the morphisms µ : Y → X and π : Y → S in Lemma 6.10

for the geometric line bundle Y = VS(A) over S. We define also F̃ := j∗(F|X\P )

for the open immersion j : X \ P →֒ X, and for simplicity, we define

Hi(G(m)) := Hi(S,G ⊗OS
A⊗m)

for m ∈ Z and i ≥ 0. Then, the following hold :

(0) If G = OS, then F ≃ OX .

(1) The inequality depthFP ≥ 1 holds ; Equivalently, F →֒ F̃ is injective.

(2) The inequality depthFP ≥ 2 holds if and only if H0(G(m)) = 0 for any

m < 0. This condition is also equivalent to that F ≃ F̃ .
(3) The quasi-coherent OX-module F̃ is coherent if and only if H0(G(m)) =

0 for m ≪ 0. In particular, F̃ is coherent if G satisfies S1 and every

irreducible component of SuppG has positive dimension.

(4) Assume that F̃ is coherent. Then, for an integer k ≥ 3, depth F̃P ≥ k

holds if and only if Hi(G(m)) = 0 for any m ∈ Z and 0 < i < k − 1.

(5) The F satisfies S1 if and only if G satisfies S1.

(6) The F satisfies S2 if and only if G satisfies S2 and H0(G(m)) = 0 for any

m < 0.

(7) Assume that F̃ is coherent. Then, for an integer k ≥ 3, F̃ satisfies Sk if and

only if G satisfies Sk and Hi(G(m)) = 0 for any m ∈ Z and 0 < i < k − 1.

(8) Assume that F̃ is coherent. Then, F̃ is a Cohen–Macaulay OX-module if

and only G is a Cohen–Macaulay OS-module and Hi(G(m)) = 0 for any

m ∈ Z and 0 < i < dimSuppG.

Proof. The assertion (0) is a consequence of Lemma 6.10(1). We consider the local

cohomology sheaves HiP (F ′) with support in P for F ′ = F or F ′ = F̃ . These are

quasi-coherent sheaves on X supported on P (cf. [17, Prop. 2.1]). Thus,

HiP (X,F ′) ≃ H0(X,HiP (F ′))

and it is also isomorphic to the stalk (HiP (F ′))P at P . Note that, for a positive

integer k, when F ′ is coherent, depthF ′
P ≥ k if and only if (HiP (F ′))P = 0 for any

i < k (cf. Property 2.6). There exist an exact sequence

0→ H0
P (X,F ′)→ H0(X,F ′)→ H0(X \ P,F ′)→ H1

P (X,F ′)→ 0
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and isomorphisms Hi(X \ P,F ′) ≃ Hi+1
P (X,F ′) for all i ≥ 1 (cf. [17, Prop. 2.2]).

Hence, if F ′ is a coherent OX -module, then depthF ′
P ≥ k if and only if

(i) H0(X,F ′)→ H0(X \ P,F ′) is injective, when k = 1,

(ii) H0(X,F ′)→ H0(X \ P,F ′) is an isomorphism, when k = 2, and

(iii) H0(X,F ′) → H0(X \ P,F ′) is an isomorphism and Hi(X \ P,F ′) = 0 for

any 0 < i < k − 1, when k ≥ 3.

By construction and by Lemma 6.10(4), we have isomorphisms

H0(X,F) ≃ H0(Y, π∗G) ≃
⊕

m≥0
H0(G(m)), and

Hi(X \ P,F) ≃ Hi(Y \ E, π∗G) ≃
⊕

m∈Z
Hi(G(m))

for any i ≥ 0, where the homomorphism H0(Y, π∗G)→ H0(Y \E, π∗G) is an injection

and is the identity on each component H0(G(m)) of degree m ≥ 0. We have (1),

(2), and (4) by considering the conditions (i)–(iii) above. Moreover, (3) holds, since

F̃ is coherent if and only if F̃P /FP has a finite-dimensional k-vector space, and

since we have an isomorphism

F̃P /FP ≃
⊕

m<0
H0(G(m))

by the argument above: This implies the first half of (3), and the second half follows

from Lemma 2.19.

For an integer k > 0, F|X\P satisfies Sk if and only if G satisfies Sk by [11, IV,

Cor. (6.4.2)], since Y \ E ≃ X \ P . Thus, the assertion (5) (resp. (6), resp. (7))

follows from (1) (resp. (2), resp. (4)) by the equivalence: (i) ⇔ (iv) in Lemma 2.14

applied to Z = P . The last assertion (8) is a consequence of (7), since dim F̃P =

dimSuppG + 1. �

Proposition 6.13. Let (S,A) be a connected polarized projective scheme over k

and let X be the affine cone Cone(S,A). Let π : Y → S and µ : Y → X be the

morphisms in Lemma 6.10. Assume that X satisfies S2 and n := dimS > 0.

Then,

(0) S and Y also satisfy S2, and the schemes S, Y , and X are all equi-

dimensional.

Let ωX/k (resp. ωY/k, resp. ωS/k) be the canonical sheaf of X (resp. Y , resp. S) in

the sense of Definition 4.28, and let ω
[r]
X/k (resp. ω

[r]
S/k) denote the double-dual of

ω⊗r
X/k (resp. ω⊗r

S/k) for an integer r.

(1) There exist isomorphisms

ωY/k ≃ π∗(ωS/k ⊗OS
A) and(VI-1)

ω
[r]
Y/k ≃ π∗(ω

[r]
S/k ⊗OS

A⊗r)(VI-2)

for any integer r. Moreover, ω
[r]
X/k is isomorphic to the double-dual of

µ∗(ω
[r]
Y/k) for any integer r.

(2) For any integer r and for any integer k ≥ 3,

depth(ω
[r]
X/k)P ≥ k
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holds for the vertex P of X if and only if

Hi(S, ω
[r]
S/k ⊗OS

A⊗m) = 0

for any m ∈ Z and any 0 < i < k − 1. Moreover, ω
[r]
X/k satisfies Sk for the

same r and k if and only if ω
[r]
S/k satisfies Sk and

Hi(S, ω
[r]
S/k ⊗OS

A⊗m) = 0

for any m ∈ Z and any 0 < i < k − 1.

(3) For any positive integer r, the following three conditions are equivalent to

each other :

(i) ω
[r]
X/k ≃ OX .

(ii) ω
[r]
X/k is invertible.

(iii) ω
[r]
S/k ≃ A⊗l for an integer l.

Proof. The assertion (0) is a consequence of Proposition 6.12(6) for G = OS ,
Lemma 6.7, and Fact 2.24(1). Let ω•

S/k (resp. ω•
Y/k, resp. ω

•
X/k) be the canoni-

cal dualizing complex of S (resp. Y , resp. X) in the sense of Definition 4.26. Note

that ω•
S/k[−n] (resp. ω•

Y/k[−n − 1], resp. ω•
X/k[−n − 1]) is an ordinary dualizing

complex by Lemma 4.27 for n = dimS. Then,

ω•
Y/k ≃qis Ω

1
Y/S [1]⊗L

OY
Lπ∗(ω•

S/k) ≃qis Lπ
∗(A⊗L

OS
ω•
S/k)[1],

since π is separated and smooth (cf. Example 4.23) and since there is an isomor-

phism Ω1
Y/S ≃ π∗A (cf. [11, IV, Cor. 16.4.9]). Thus, we have the isomorphism

(VI-1). By taking double-dual of tensor powers of both sides of (VI-1), we have

the isomorphism (VI-2) for any integer r by Remark 2.21. Since X satisfies S2, any

reflexive OX -module F satisfies S2 by Corollary 2.23, and moreover, depthP F ≥ 2,

since codim(P,X) = dimX = n+ 1 ≥ 2. Thus, we have isomorphisms

ω
[r]
X/k ≃ j∗(ω

[r]
X\P/k) ≃ j∗(µ∗(ω

[r]
Y/k)|X\P )) ≃ (µ∗(ω

[r]
Y/k))

∨∨

for any integer r and for the open immersion j : X \ P →֒ X. This proves (1).

By (1), we see that (2) is a consequence of (4) and (7) of Proposition 6.12 applied

to the case: G = ω
[r]
S/k⊗A⊗r, where F̃ ≃ ω[r]

X/k. It remains to prove the equivalence

of the conditions (i)–(iii) of (3). Since (i) ⇒ (ii) is trivial, it is enough to prove (ii)

⇒ (iii) and (iii) ⇒ (i).

Proof of (iii) ⇒ (i): Assume that ω
[r]
S/k ≃ A⊗l for some r > 0 and l ∈ Z. Since

OY (−E) ≃ π∗A for the zero-section E of Lemma 6.10, we have

ω
[r]
Y/k ⊗OY

OY ((r + l)E) ≃ π∗(ω
[r]
S/k ⊗A⊗r ⊗OS

A⊗−(r+l)) ≃ OY

from the isomorphism in (1). By taking µ∗, we have: ω
[r]
X/k ≃ π∗OY ≃ OX .

Proof of (ii) ⇒ (iii): Assume that ω
[r]
X/k is invertible. Then, ω

[r]
Y/k is invertible on

Y \E, since Y \E ≃ X \P . Moreover, ω
[r]
S/k is invertible by (VI-2), since Y \E → S
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is faithfully flat (cf. Lemma A.7). Thus, ω
[r]
Y/k is also invertible again by (VI-2).

There is an injection

φ : ω
[r]
Y/k ⊗OY

OY (−bE) →֒ µ∗(ω
[r]
X/k)

for some integer b such that the cokernel of φ is supported on E. In fact, for any

integer b, we have a canonical homomorphism

µ∗(ω
[r]
Y/k ⊗OY

OY (−bE)) →֒ j∗(µ∗(ω
[r]
Y/k ⊗OY

OY (−bE))|X\P )

≃ j∗(µ∗(ω
[r]
Y/k)|X\P ) ≃ ω[r]

X/k

whose cokernel is supported on P , and if b is sufficiently large, then

µ∗µ∗(ω
[r]
Y/k ⊗OY

OY (−bE))→ ω
[r]
Y/k ⊗OY

OY (−bE)

is surjective, since OY (−E) ≃ π∗A is relatively ample over X. Thus,

µ∗µ∗(ω
[r]
Y/k ⊗OY

OY (−bE))→ µ∗(ω
[r]
X/k)

induces the injection φ, since the invertible sheaf µ∗(ω
[r]
X/k) does not contain non-zero

coherent OY -submodule whose support is contained in E by the S1-condition on Y .

Let b be a minimal integer with an injection φ above. Then, φ is an isomorphism.

This is shown as follows. The homomorphism

φ|E : (ω
[r]
Y/k ⊗OY

OY (−bE))⊗OY
OE → µ∗(ω

[r]
X/k)⊗OY

OE
is not zero by the minimality of b. Here, φ|E corresponds to a non-zero homomor-

phism

ω
[r]
S/k ⊗OS

A⊗(r+b) → OS
by the isomorphism π|E : E ≃ S and by (VI-2). In particular, there is an non-

empty open subset U ⊂ S such that φ is an isomorphism on π−1(U). On the other

hand, since φ is an injection between invertible sheaves, there is an effective Cartier

divisor D on Y such that the cokernel of φ is isomorphic to OD ⊗OY
π∗(ω

[r]
X/k)

and that SuppD ⊂ E. Then, D is a relative Cartier divisor over S, since every

fiber of π is A1 (cf. [11, IV, (21.15.3.3)]). Thus, π|D : D → S is a flat and finite

morphism. If D 6= 0, then π(D) = S by the connectedness of S, and it contradicts

SuppD ∩ π−1(U) = ∅. Thus, D = 0, and consequently, φ is an isomorphism.

Therefore, we have an isomorphism

ω
[r]
S/k ⊗OS

A⊗(r+b) ≃ OS
corresponding to the isomorphism φ|E , and the condition (iii) is satisfied for l =

−(r + b). Thus, we have proved the equivalence of (i)–(iii), and we are done. �

Corollary 6.14. Let X be the affine cone of a connected polarized scheme (S,A)
over k. Assume that n = dimS > 0 and H0(S,A⊗m) = 0 for any m < 0. Then,

the following hold :

(1) The scheme X is Gorenstein if and only if

• S is Gorenstein,

• Hi(S,A⊗m) = 0 for any 0 < i < n and any m ∈ Z, and

• ωS/k ≃ A⊗l for some integer l.
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(2) The scheme X is quasi-Gorenstein if and only if S is quasi-Gorenstein and

ωS/k ≃ A⊗l for some integer l.

(3) The scheme X is Q-Gorenstein if and only if S is Q-Gorenstein and ω
[r]
S/k ≃

A⊗l for some integers r > 0 and l.

Proof. The assertion (1) follows from (2) and Proposition 6.12(8). The “only if”

parts of (2) and (3) are shown as follows. Assume that X is Q-Gorenstein of

Gorenstein index r. Note that X is quasi-Gorenstein if and only if r = 1 by

Lemma 6.3(1). Then, S is Q-Gorenstein by Corollary 6.11. Moreover, ω
[r]
S/k ≃ A⊗l

for some l ∈ Z by the implication (ii) ⇒ (iii) of Proposition 6.13(3). Thus, the

“only if” parts are proved. The “if” parts of (2) and (3) are shown as follows.

Assume that S is Q-Gorenstein. Then, X \P is Q-Gorenstein by Corollary 6.11. In

particular, codim(X\X◦, X) ≥ 2 for the Gorenstein locusX◦ = Gor(X). Moreover,

X satisfies S2 by Proposition 6.12(6), since S satisfies S2 and H0(S,A⊗m) = 0 for

any m < 0 by assumption. If ω
[r]
S/k ≃ A⊗l for integers r > 0 and l, then ω

[r]
X/k

is invertible by the implication (iii) ⇒ (ii) of Proposition 6.13(3). Thus, X is Q-

Gorenstein. This proves the “if” part of (3). The “if” part of (2) follows also from

the argument above by setting r = 1. Thus, we are done. �

Corollary 6.15. Let X be the affine cone of a connected polarized scheme (S,A)
over k. Assume that S is Cohen–Macaulay, n := dimS > 0, and

Hi(S,A⊗m) = Hi(S, ωS/k ⊗A⊗m) = 0

for any i > 0 and m > 0. Then, the following hold :

(1) The affine cone X satisfies S2. In particular, S is reduced (resp. normal)

if and only if X is so.

(2) The following conditions are equivalent to each other for an integer k ≥ 3:

(a) depthOX,P ≥ k;
(b) X satisfies Sk;

(c) Hi(S,OS) = 0 for any 0 < i < k − 1.

(3) The affine cone X is Cohen–Macaulay if and only if Hi(S,OS) = 0 for any

0 < i < n.

(4) The following conditions are equivalent to each other for an integer k ≥ 3:

(a) depth(ωX/k)P ≥ k;
(b) ωX/k satisfies Sk;

(c) Hi(S,OS) = 0 for any n− k + 1 < i < n.

(5) When S is Gorenstein, X is Q-Gorenstein if and only if ω⊗r
S/k ≃ A⊗l for

some integers r > 0 and l.

(6) When S is Gorenstein, X is Gorenstein if and only if ωS/k ≃ A⊗l for some

l ∈ Z and if Hi(S,OS) = 0 for any 0 < i < n.

Proof. By duality (cf. Corollary 4.32), we have

Hi(S,A⊗m) ≃ Hn−i(S, ωS/k ⊗OS
A⊗−m)∨

for any integers m and i, and by assumption, this is zero either if m > 0 and i > 0

or if m < 0 and i < n. Thus, X satisfies S2 by considering the case: m < 0
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and i = 0 and by Proposition 6.12(6) applied to G = OS . This proves (1). The

assertion (2) (resp. (4)) is a consequence of (4) and (7) of Proposition 6.12 applied

to G = OS (resp. G = ωS/k ⊗ A). Similarly, the assertion (3) is a consequence of

Proposition 6.12(8) applied to G = OS . Moreover, the assertion (5) (resp. (6)) is

derived from (3) (resp. (1)) of Corollary 6.14. Thus, we are done. �

7. Q-Gorenstein morphisms

Section 7 introduces the notion of “Q-Gorenstein morphism” and its weak forms:

“naively Q-Gorenstein morphism” and “virtually Q-Gorenstein morphism.” We

inspect relations between these three notions, and prove some expected properties

for Q-Gorenstein morphisms.

In Sections 7.1 and 7.2, we define the notions of Q-Gorenstein morphism, naively

Q-Gorenstein morphism, and virtually Q-Gorenstein morphism, and we discuss

their properties giving some criteria for a morphism to be Q-Gorenstein. A Q-

Gorenstein morphism is always naively and virtually Q-Gorenstein. In Section 7.1,

we provide a new example of naively Q-Gorenstein morphisms which are not Q-

Gorenstein, by Lemma 7.7 and Example 7.8, and discuss the relative Gorenstein

index for a naively Q-Gorenstein morphism in Proposition 7.10. Theorem 7.17 in

Section 7.2 shows that a virtually Q-Gorenstein morphism is a Q-Gorenstein mor-

phism under some mild conditions. In Section 7.3, several basic properties including

base change of Q-Gorenstein morphisms and of their variants are discussed.

Finally, in Section 7.4, we shall prove several important theorems. We prove

three criteria for a morphism to be Q-Gorenstein: an infinitesimal criterion (Theo-

rem 7.24), a valuative criterion (Theorem 7.25), and a criterion by S3-conditions on

fibers (Theorem 7.26). Moreover, we prove the existence theorem of Q-Gorenstein

refinement (Theorem 7.27).

7.1. Q-Gorenstein morphisms and naively Q-Gorenstein morphisms.

Definition 7.1. Let f : Y → T be an S2-morphism of locally Noetherian schemes

such that every fiber is Q-Gorenstein. Let ωY/T denote the relative canonical sheaf

in the sense of Definition 5.3 and let ω
[m]
Y/T denote the double-dual of ω⊗m

Y/T for

m ∈ Z.

(1) The morphism f is said to be naively Q-Gorenstein at a point y ∈ Y if

ω
[r]
Y/T is invertible at y for some integer r > 0. If f is naively Q-Gorenstein

at every point of Y , then it is called a naively Q-Gorenstein morphism.

(2) If ω
[m]
Y/T satisfies relative S2 over T (cf. Definition 2.29) for any m ∈ Z, then

f is called a Q-Gorenstein morphism. If f |U : U → T is a Q-Gorenstein

morphism for an open neighborhood U of a point y ∈ Y , then f is said to

be Q-Gorenstein at y.

Remark 7.2. For an S2-morphism f : Y → T of locally Noetherian schemes, if every

fiber is Gorenstein in codimension one and if ωY/T is an invertible OY -module, then

f is a Q-Gorenstein morphism. In fact, ω
[m]
Y/T ≃ ω⊗m

Y/T satisfies relative S2 over T
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for any m ∈ Z and every fiber Yt = f−1(t) is Q-Gorenstein of Gorenstein index

one, since ωY/T ⊗OY
OYt
≃ ωYt/k(t) (cf. Proposition 5.5).

The Q-Gorenstein morphisms and the naively Q-Gorenstein morphisms are char-

acterized as follows.

Lemma 7.3. Let Y and T be locally Noetherian schemes and f : Y → T a flat

morphism locally of finite type. Let j : Y ◦ →֒ Y be the open immersion from an

open subset Y ◦ of the relative Gorenstein locus Gor(Y/T ). For a point y ∈ Y , the

fibers Yt = f−1(t) and Y ◦
t = Y ◦ ∩ Yt over t = f(y), and for a positive integer r, let

us consider the following conditions :

(i) The fiber Yt satisfies S2 at y and codimy(Yt \ Y ◦, Yt) ≥ 2.

(ii) The direct image sheaf j∗(ω
⊗r
Y ◦/T ) is invertible at y.

(iii) The fiber Yt is Q-Gorenstein at y, and r is divisible by the Gorenstein index

of Yt at y.

(iv) For any 0 < k ≤ r, the base change homomorphism

φ
[k]
t : j∗(ω

⊗k
Y ◦/T )⊗OY

OYt
→ ω

[k]
Yt/k(t)

= j∗(ω
⊗k
Y ◦
t /k(t)

)

induced from the base change isomorphism ωY ◦/T ⊗ OYt
≃ ωY ◦

t /k(t)
(cf.

Proposition 5.6) is surjective at y.

(v) There is an open neighborhood U of y such that f |U : U → T is a naively

Q-Gorenstein morphism and ω
[r]
U/T is invertible.

(vi) There is an open neighborhood U of y such that f |U : U → T is a Q-

Gorenstein morphism and ω
[r]
U/T is invertible.

Then, one has the following equivalences and implication on these conditions :

• (i) + (ii) ⇔ (v);

• (i) + (ii) ⇒ (iii);

• (iii) + (iv) ⇔ (vi).

Proof. First, we shall prove: (i) + (ii) ⇒ (iii). We set Mr := j∗(ω
⊗r
Y ◦/T ). Then,

Mr ⊗OY
OYt

is invertible at y by (ii), and

Mr ⊗OY
OYt
→ j∗ ((Mr ⊗OY

OYt
)|Y ◦) ≃ j∗(ω⊗r

Y ◦
t /k(t)

) ≃ ω[r]
Yt/k(t)

is an isomorphism at y by (i). In particular, ω
[r]
Yt/k(t)

is invertible at y. Thus, (iii)

holds (cf. Definitions 6.1(2) and 6.2).

Second, we shall prove (v) ⇒ (i) + (ii) and (vi) ⇒ (iii) + (iv). We may assume

that f is naively Q-Gorenstein. Since every fiber Yt is a Q-Gorenstein scheme, we

have (i) (cf. Definition 6.1). Moreover,

ω
[k]
Y/T ≃ j∗(ω⊗k

Y ◦/T )

for any k ∈ Z by Proposition 5.6. Hence, (ii) is also satisfied, since ω
[r]
Y/T is invertible

for an integer r > 0. If f is Q-Gorenstein, then ω
[k]
Y/T is flat over T and ω

[k]
Y/T⊗OY

OYt

satisfies the S2-condition for any t ∈ T (cf. Definition 7.1(2)); thus, φ
[k]
t is an

isomorphism for any t ∈ T and k ∈ Z, and in particular, (iii) and (iv) are satisfied.
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Finally, we shall prove (i) + (ii) ⇒ (v) and (iii) + (iv) ⇒ (vi). Assume that (i)

holds. By Lemma 2.39, there is an open neighborhood U of y such that f |U : U → T

is an S2-morphism having pure relative dimension and codim(Ut′ \ Y ◦, Ut′) ≥ 2 for

any t′ ∈ f(U), where Ut′ = U ∩ Yt′ ; Thus,

ω
[k]
U/T ≃ j∗(ω⊗k

U∩Y ◦/T )

for any k ∈ Z by Lemma 2.34(4). Therefore, if (ii) also holds, then ω
[r]
U ′/T is

invertible for an open neighborhood U ′ of y in U , and f |U ′ : U ′ → T is a naively Q-

Gorenstein morphism. This proves (i) + (ii)⇒ (v). Next, assume that (iii) and (iv)

hold. Note that (iii) implies (i). Thus, we have the same open neighborhood U of

y as above. For any integer 0 < k ≤ r, there is an open neighborhood U ′
k of y in U ′

above such that ω
[k]
U ′

k
/T satisfies relative S2 over T , by (iv) and by Proposition 5.6.

In particular, ω
[r]
Y/T is invertible at y by Fact 2.27(2). In fact, it is flat over T at y

and its restriction to the fiber Yt is invertible at y. Then, ω
[r]
Y/T is invertible on an

open neighborhood U ′′
r of y in U ′

r. We set U ′′ to be the intersection of U ′
k for all

0 < k < r and U ′′
r . Then, ω

[l]
U ′′/T satisfies relative S2 over T for any l ∈ Z, since

ω
[l]
U ′′/T ≃ (ω

[r]
U ′′/T )

⊗m ⊗ ω[k]
U ′′/T

for integers m and k such that l = mr + k and 0 ≤ k < r. This means that

f |U ′′ : U ′′ → T is a Q-Gorenstein morphism, and it proves (iii) + (iv) ⇒ (vi).

Thus, we are done. �

Remark. For f : Y → T and j : Y ◦ →֒ Y in Lemma 7.3, we have:

(1) The set of points y ∈ Y satisfying the condition (i) of Lemma 7.3 is open.

(2) If every fiber of f satisfies S2 and is Gorenstein in codimension one, then

OY ≃ j∗OY ◦ and codim(Y \Y ◦, Y ) ≥ 2. Here, if Y is connected in addition,

then f has pure relative dimension.

(3) The set of points y ∈ Y at which f is naively Q-Gorenstein is open.

(4) The set of points y ∈ Y at which f is Q-Gorenstein is open.

In fact, the property (1) is mentioned in the proof of Lemma 7.3, and The property

(2) is derived from Lemmas 2.34(4), 2.36, and 2.39. The properties (3) and (4) are

deduced from Definition 7.1.

Example 7.4. For an S2-morphism f : Y → T of locally Noetherian schemes, even

if every fiber is Q-Gorenstein, f need not to be a naively Q-Gorenstein morphism.

We shall give an example of f . Let F4 = P(O ⊕ O(4)) → P1 be the ruling of the

Hirzebruch surface of degree 4. The contraction of the unique (−4)-curve σ is a

birational morphism to the weighted projective space P(1, 1, 4). ¿From an exact

sequence 0 → OP1 → O(2) ⊕ O(2) → O(4) → 0 on P1, we have a family F → A1

of Hirzebruch surfaces such that the fiber over 0 is isomorphic to F4 and the other

fibers are isomorphic to P(O(2)⊕O(2)) ≃ P1×P1. Furthermore, we can extend the

contraction morphism of σ to a birational morphism F → P over A1 to a normal

projective variety P which contracts σ only. For the flat morphism P → A1, every

fiber is Q-Gorenstein, since
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• the fiber over 0 is isomorphic to P(1, 1, 4),

• the other fibers are isomorphic to P1 × P1.

However, P is not Q-Gorenstein, i.e., the canonical divisor KP is not Q-Cartier.

This follows fromKFσ = KF4
σ = 2 for the canonical divisorKF of F . Since F → P

is an isomorphism in codimension one, we see that ω
[r]
P/A1 ≃ ω

[r]
P/k = OP (rKP ) is

not invertible for any r > 0. Thus, f is not naively Q-Gorenstein.

Remark 7.5. Let f : Y → T be an S2-morphism of locally Noetherian schemes whose

fibers are all Gorenstein in codimension one. We define the Kollár condition for f

along a fiber Yt = f−1(t) to be the condition that the base change homomorphism

φ
[m]
t : ω

[m]
Y/T ⊗OY

OYt
→ ω

[m]
Yt/k(t)

is an isomorphism for any m ∈ Z. By Lemma 7.3, we can prove:

• if a fiber Yt is Q-Gorenstein, then the Kollár condition for f is satisfied

along Yt if and only if f is Q-Gorenstein along Yt.

The Kollár condition has been considered for deformations of Q-Gorenstein alge-

braic varieties of characteristic zero in [26, 2.1.2], [20, §2, Property K], etc.

Fact 7.6. Some naively Q-Gorenstein morphisms are not Q-Gorenstein. Kollár

gives an example of a naively Q-Gorenstein morphism which is not Q-Gorenstein

in the positive characteristic case (cf. [15, 14.7], [30, Exam. 7.6]). Patakfalvi has

constructed an example of characteristic zero in [43, Th. 1.2] using some example

of projective cones (cf. [43, Prop. 5.4]): This is a projective flat morphism H → B

of normal algebraic varieties over a field k of characteristic zero such that

• B is an open subset of P1
k,

• a closed fiberH0 has a unique singular point, but other fibers are all smooth

of dimension ≥ 3,

• ω[r]
H/B is invertible for some r > 0, but

ωH/B ⊗OH
OH0

6≃ ωH0/k.

We can construct another example by the following lemma, which is inspired by

Patakfalvi’s work [43].

Lemma 7.7. Let S be a non-singular projective variety of dimension ≥ 2 over

an algebraically closed field k of characteristic zero, and let L be an invertible OS-
module of order l > 1, i.e., l is the smallest positive integer such that L⊗l ≃ OS.
Assume that H1(S,OS) = 0, H1(S,L) 6= 0, and that KS is ample. For an integer

r ≥ 2, we set

A := OS(rKS)⊗ L−1 = ω⊗r
S/k ⊗ L−1,

and let X be the affine cone Cone(S,A) with a vertex P . Then,

(1) X is normal Q-Gorenstein variety with one isolated singularity P of Goren-

stein index lr,

and the following hold for any non-constant function f : X → A1
k =: T :

(2) f is a naively Q-Gorenstein morphism along the fiber F = f−1(f(P ));
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(3) ω
[r]
X/T ≃ ω

[r]
X/k does not satisfy relative S2 over T at P . In particular, f is

not Q-Gorenstein at P .

Proof. (1): The affine cone X is Q-Gorenstein by Corollary 6.14(3). Here, X \ P
is a non-singular variety by Lemma 6.10(4). Therefore, X is a normal variety. We

have ω
[lr]
X/k ≃ OX by Proposition 6.13(3). If ω

[m]
X/k is invertible for some m > 0, then

ω⊗m
S/k ≃ A⊗l′ for some integer l′ by Proposition 6.13(3), but it implies that m = l′r,

and L⊗l′ ≃ OS . Hence, the Gorenstein index of X is lr.

(2): For any i > 0 and m > 0, we have

Hi(S,A⊗m) = Hi(S, ωS/k ⊗OS
A⊗m) = 0

by the Kodaira vanishing theorem, since

A⊗m ⊗OS
ω−1
S/k ≃ A⊗m−1 ⊗OS

ω⊗r−1
S/k ⊗ L−1

is ample. Then, we can apply Corollary 6.15(2). As a consequence, X satisfies

S3, since H1(S,OS) = 0. Now, f is a flat morphism, since X is irreducible and

dominates T . Hence, F satisfies S2 by the equality

depthOF,x = depthOX,x − depthOT,f(x) = depthOX,x − 1

for any closed point x ∈ F (cf. (II-2) in Fact 2.27). Thus, f is an S2-morphism

along F , and f is a naively Q-Gorenstein morphism along F (cf. Definition 7.1(1)),

since ω
[lr]
X/T ≃ ω

[lr]
X/k is invertible by (1).

(3): By assumption, we have

H1(S, ω
[r]
S/k ⊗A−1) ≃ H1(S,L) 6= 0.

Then, depth(ω
[r]
X/k)P = 2 by Proposition 6.13(2). Since ω

[r]
X/k is flat over T , we have

depth(ω
[r]
X/k ⊗OX

OF )P = depth(ω
[r]
X/k)P − depthOT,f(P ) = 1

by (II-2) in Fact 2.27. This implies that ω
[r]
X/k ≃ ω

[r]
X/T does not satisfy relative S2

over T at P . Therefore, f is not Q-Gorenstein at P (cf. Definition 7.1(2)). �

We have the following example of non-singular projective varieties S with invert-

ible OS-module L of order l = 2 in Lemma 7.7:

Example 7.8. Let V be an abelian variety of dimension d ≥ 3 and let ι : V → V be

the involution defined by ι(v) = −v with respect to the group structure on V . Let

W be the quotient variety V/〈ι〉. Then, W is a normal projective variety with only

isolated singular points, and

(VII-1) H1(W,OW ) = 0,

since it is isomorphic to the invariant part of H1(V,OV ) by the induced action of

ι, which is just the multiplication map by −1. The quotient morphism π : V →W

is a double-cover étale outside the singular locus of W , and we have isomorphisms

π∗OV ≃ OW ⊕ ωW/k and ω
[2]
W/k ≃ OW . In particular,

(VII-2) H1(W,ωW/k) ≃ H1(V,OV ) ≃ k⊕d
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by (VII-1). We can take a smooth ample divisor S on W away from the singular

locus of W . Then, dimS = d − 1 ≥ 2. By the Kodaira vanishing theorem applied

to the ample divisor π∗S on V , we have Hi(V, π∗OW (−S)) = 0 for any 0 < i < d =

dimW . Hence,

(VII-3) Hi(W,OW (−S)) = Hi(W,ωW/k ⊗OW
OW (−S)) = 0

for i = 1 and 2. The canonical divisor KS is ample by

ω⊗2
S/k ≃ (ω

[2]
W/k ⊗OW

OW (2S))⊗OW
OS ≃ OS(2S).

We define L := ωW/k ⊗OW
OS . This is invertible and L⊗2 ≃ OS . We have

H1(S,OS) = 0 and H1(S,L) ≃ k⊕d

by applying (VII-1), (VII-2), and (VII-3) to the cohomology long exact sequences

derived from two short exact sequences:

0→ OW (−S)→ OW → OS → 0,

0→ ωW/k ⊗OW
OW (−S)→ ωW/k → L → 0.

The order of L equals two by H1(S,L) 6≃ H1(S,OS). Therefore, S and L satisfy

the conditions of Lemma 7.7.

Definition 7.9 (relative Gorenstein index). For a naively Q-Gorenstein morphism

f : Y → T and for a point y ∈ Y , the relative Gorenstein index of f at y is the

smallest positive integer r such that ω
[r]
Y/T is invertible at y. The least common mul-

tiple of relative Gorenstein indices at all the points is called the relative Gorenstein

index of f , which might be +∞.

Proposition 7.10. Let f : Y → T be a naively Q-Gorenstein morphism. For

a point y ∈ Y , let m be the relative Gorenstein index of f at y and let r be the

Gorenstein index of Yt = f−1(t) at y, where t = f(y). Then, m = r in the following

three cases :

(i) f is Q-Gorenstein at y;

(ii) Yt is Gorenstein in codimension two and satisfies S3 at y;

(iii) m is coprime to the characteristic of k(t).

Proof. Note that m is divisible by r. In fact, the base change homomorphism

ω
[m]
Y/T ⊗OY

OYt
→ ω

[m]
Yt/k(t)

is an isomorphism at y, since the left hand side is invertible at y and since Yt
satisfies S2. We set M := ω

[r]
Y/T . It is enough to prove that M is invertible at

y. Let Z be the complement of the relative Gorenstein locus Gor(Y/T ) and let

j : Y \ Z →֒ Y be the open immersion. Note that codim(Z ∩ Yt, Yt) ≥ 2 (≥ 3 in

case (ii)) and codim(Z, Y ) ≥ 2. If f is Q-Gorenstein, thenM satisfies relative S2

over T ; in particular,

M⊗OY
OYt
≃ j∗

(
(M⊗OY

OYt
)|Yt\Z

)
≃ ω[r]

Yt/k(t)
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and hence,M is invertible at y by Fact 2.27(2). Thus, it is enough to consider the

cases (ii) and (iii). By replacing Y with an open neighborhood of y, we may assume

the following:

(1) depthZ OY ≥ 2 (cf. Lemma 2.33(3));

(2) M|Y \Z is invertible and depthZM≥ 2 (cf. Proposition 5.6);

(3) j∗(M⊗OY
OYt
|Yt\Z) ≃ ω

[r]
Yt/k(t)

is invertible;

(4) one of the following holds:

(a) depthZ∩Yt
OYt
≥ 3;

(b) M[m/r] ≃ ω
[m]
Y/T is invertible, where m/r is coprime to the character-

istic of k(t).

Then,M is invertible by Theorem 3.17, and we are done. �

Remark 7.11. A special case of Proposition 7.10 for naively Q-Gorenstein mor-

phisms is stated in [29, Lem. 3.16], where T is the spectrum of a complete Noether-

ian local C-algebra and the closed fiber Yt is a normal complex algebraic surface.

However, the proof of [29, Lem. 3.16] has two problems. We explain them using

the notation there, where (X → S, 0 ∈ S) corresponds to (Y → T, t ∈ T ) in our

situation, and 0 is the closed point of S. The central fiber X0 is only a germ of

complex algebraic surface in [29, §3], but here, for simplicity, we consider X0 as a

usual algebraic surface and hence consider X → S as a morphism of finite type.

The authors of [29] write X0 for Gor(X/S) and write Y 0 → X0 for the cyclic étale

cover associated with an isomorphism ω
[m]
X/S ≃ OX . They want to prove that m is

equal to the Gorenstein index r of the fiber X0 of X → S over 0.

The first problem is in the proof in the case where S = SpecA is Artinian. This

is minor and is caused by omitting an explanation of the isomorphism ω
[m]
X/S ≃ OX .

In this situation, they assert that it is enough to prove the fiber Y 0
0 of Y 0 → S

over 0 to be connected. However, Y 0
0 is connected even if r 6= m. In fact, for

isomorphisms u : ω
[r]
X0/C

≃ OX0
and v : ω

[m]
X/S ≃ OX , we have an invertible element

θ of OX0
such that

v|X0
= θu⊗m/r

as an isomorphism ω
[m]
X/S ⊗OX

OX0
≃ OX0

. Here, we can take v so that θ can not

have k-th root in OX0
for any integer k dividing r. Then, Y 0

0 is connected for such

v. Of course, this problem is resolved by replacing the isomorphism v with v(θ̃)−1

for a function θ̃ ∈ OX which is a lift of θ ∈ OX0
.

The second problem is in the reduction to the Artinian case. They set An =

A/mn, Sn = SpecAn, and X
0
n = X0 ×S Sn, for n ≥ 1 and for the maximal ideal m

of A, and they obtain an isomorphism

Φn : ω
⊗r
X0

n/Sn
≃ OX0

n

for any n by applying the assertion: m = r, to the Artinian case. However, just

after the isomorphism Φn, they deduce an isomorphism ω⊗r
X0/S ≃ OX0 without

mentioning any reason. This is thought of as a lack of the proof, by Remark 3.13.
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For, their isomorphism above induces isomorphisms

ω
[r]
X/S ⊗OXn

≃ j∗(ω⊗r
X0

n/Sn
)

for all n, while we always have an isomorphism

ω
[r]
X/S ≃ j∗(ω⊗r

X0/S),

where j : X0 →֒ X denotes the open immersion.

7.2. Virtually Q-Gorenstein morphisms.

Definition 7.12. Let f : Y → T be a morphism locally of finite type between

locally Noetherian schemes. For a given point y ∈ Y and the image o = f(y), the

morphism f is said to be virtually Q-Gorenstein at y if

• f is flat at y,

• the fiber Yo = f−1(o) is Q-Gorenstein at y,

and if there exist an open neighborhood U of y in Y and a reflexive OU -module L
satisfying the following conditions:

(i) L ⊗OU
OUo

≃ ωUo/k(o), where Uo = U ∩ Yo;
(ii) for any integer m, the double-dual L[m] of L⊗m satisfies relative S2 over T

at y.

If f is virtually Q-Gorenstein at every point of Y , then it is called a virtually

Q-Gorenstein morphism.

Remark 7.13. If the morphism f above is virtually Q-Gorenstein at y, then there

exist an open neighborhood U of y in Y and a reflexive OU -module L such that

(1) f |U : U → T is an S2-morphism of pure relative dimension,

(2) every non-empty fiber Ut = U ∩Yt of f |U is Gorenstein in codimension one,

i.e., codim(Ut \ Y ◦, Ut) ≥ 2 for any t ∈ f(U), where Y ◦ = Gor(Y/T ),

(3) L ⊗OU
OUo

≃ ωUo/k(o),

(4) L|U∩Y ◦ is invertible,

(5) L[r] is invertible for some integer r > 0, and

(6) L[m] satisfies relative S2 over T for any integer m.

In fact, we have an open neighborhood U satisfying (1) and (2) by Lemma 2.39.

By shrinking U and by Fact 2.27(2), we may assume the existence of L satisfying

(3), (4), and (5), where r is a multiple the Gorenstein index of Yo at y. Then,

for any point t ∈ f(U), the coherent sheaf L[m]
(t) = L[m] ⊗ OUt

is locally equi-

dimensional by Fact 2.24(1), since SuppL[m] = U , SuppL[m]
(t) = Ut, and since

Ut is catenary satisfying S2. Hence, the relative S2-locus S2(L[m]/T ) is an open

subset of U by Fact 2.30(2), and now, y ∈ S2(L[m]/T ) for any m ∈ Z. We have

S2(L[m+r]/T ) = S2(L[m]/T ) for any m by L[m+r] ≃ L[r] ⊗ L[m], and hence the

intersection of S2(L[m]/T ) for all m is still an open neighborhood of y. Thus, we

can also assume (6). As a consequence of (1)–(6), we see that

(7) Uo = U ∩ Yo is Q-Gorenstein, and

(8) L[m] ⊗OU
OUo

≃ ω[m]
Uo/k(o)

for any m ∈ Z.
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In fact, L[m] ⊗OU
OUo

satisfies S2 by (6) and its depth along Uo \ Y ◦ is ≥ 2 by (1)

and (2) (cf. Lemma 2.15(2)); this implies (8). The condition (7) follows from (5)

and (8).

Remark. The set of points y ∈ T at which f is virtually Q-Gorenstein, is not open

in general. Even if a morphism f : Y → T is virtually Q-Gorenstein at any point

of a fiber Yo, the other fibers Yt are not necessarily Q-Gorenstein even if t ∈ T is

sufficiently close to the point o. The following gives such an example.

Example 7.14. Let X be a non-singular projective variety over an algebraically

closed field k of characteristic zero such that the dualizing sheaf ωX/k is ample,

H1(X,OX) 6= 0, and H1(X,ωX/k) = 0. Then, n := dimX ≥ 3. As an example

of X, we can take the product C × S of a non-singular projective curve C of

genus ≥ 2 and a non-singular projective surface S such that ωS/k is ample and

H1(S,OS) = H2(S,OS) = 0. Let us take a positive-dimensional nonsingular affine

subvariety T = SpecA of the Picard scheme Pic0(X) which contains the origin 0 of

Pic0(X). Then, there is an invertible sheaf N on XA := X ×Spec k T such that

• N(t) is algebraically equivalent to zero for any t ∈ T , and
• N(t) ≃ OXt

if and only if t = 0,

where Xt = X ×Spec k Spec k(t) and N(t) = N ⊗OXA
OXt

(cf. Notation 2.25). We

define a Z≥0-graded A-algebra R =
⊕

m≥0Rm by

Rm := H0(XA, (p
∗(ωX/k)⊗OXA

N )⊗m)

for the projection p : XA → X, and let f : Y := SpecR → T = SpecA be the

induced affine morphism. We shall prove the following by replacing T with a

suitable open neighborhood of 0:

(1) f is a flat morphism;

(2) for any t ∈ T , the fiber Yt = f−1(t) is isomorphic to the affine cone of the

polarized scheme (Xt, ωXt/k(t) ⊗N(t));

(3) the set of points t ∈ T such that Yt is Q-Gorenstein, is a countable set ;

(4) f is virtually Q-Gorenstein at any point of the fiber Y0.

For the proof, we consider a graded k(t)-algebra Rt =
⊕

m≥0R
t
m defined by

Rtm = H0(Xt, (ωXt/k(t) ⊗OXt
N(t))

⊗m).

Then, SpecRt is the affine cone associated with (Xt, ωXt
⊗ N(t)). On the other

hand, Yt = Spec(R⊗A k(t)), and we have a natural homomorphism

ϕt : R⊗A k(t)→ Rt

of graded k(t)-algebras, since (p∗ωX/k) ⊗OXA
OXt

≃ ωXt/k(t). Let ϕtm be the

homomorphism Rm ⊗A k(t)→ Rtm of m-th graded piece of ϕt. Note that

H1(Xt, (ωXt/k(t) ⊗OXt
N(t))

⊗m) = 0

for any m ≥ 2 by the Kodaira vanishing theorem, since ωX/k is ample and N(t) is

algebraically equivalent to zero. Moreover, there is an open neighborhood U of 0

in T such that

H1(Xt, ωXt/k(t) ⊗OXt
N(t)) = 0
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for any t ∈ U by the upper semi-continuity theorem (cf. [11, III, Th. (7.7.5) I], [38,

§5, Cor., p. 50]), since we have assumed that H1(X,ωX/k) = 0. We may replace T

with U . Then, ϕtm is an isomorphism for any m ≥ 1 and for any t ∈ T by [11, III,

Th. (7.7.5) II] (cf. [38, §5, Cor. 3, p. 53]). Since ϕt0 is obviously an isomorphism, ϕt

is an isomorphism and Yt ≃ SpecRt for any t ∈ T . Moreover Rm is a flat A-module

for any m ≥ 0 by [11, III, Cor. (7.5.5)] (cf. [18, III, Th. 12.11]), and it implies that

Y = SpecR is flat over T . This proves (1) and (2).

By Corollary 6.15(5), Yt is Q-Gorenstein if and only if N⊗r
(t) ≃ OXt

for some

r > 0. For an integer r > 0, let Fr be the kernel of the r-th power map Pic0(X)→
Pic0(X) which sends an invertible sheaf L to L⊗r. Then, Fr is a finite set, and

Fr∩T is just the set of points t ∈ T such thatN⊗r
(t) ≃ OXt

. Thus, Yt is Q-Gorenstein

if and only if t is contained in the countable set
⋃
r>0 Fr ∩ T . This proves (3).

Note that ωY0/k ≃ OY0
by Proposition 6.13(3). Hence, f : Y → T is virtually

Q-Gorenstein at any point of Y0, since OY plays the role of L in Definition 7.12.

This proves (4).

Lemma 7.15. Let f : Y → T be a flat morphism locally of finite type between

locally Noetherian schemes and let o ∈ T be a point such that Yo = f−1(o) is Q-

Gorenstein. Let us given an isomorphism u : ω
[r]
Yo/k(o)

→ OYo
for a positive integer

r, and we set

R =
⊕r−1

i=0
ω
[i]
Yo/k(o)

to be the Z/rZ-graded OYo
-algebra defined by the isomorphism u. Then, the follow-

ing two conditions are equivalent to each other :

(1) Locally on Y , there exists a Z/rZ-graded coherent OY -algebra R∼ flat over

T with an isomorphism

R∼ ⊗OY
OYo
≃ R

as a Z/rZ-graded OYo
-algebra.

(2) The morphism f is virtually Q-Gorenstein along Yo.

Proof. We write X = Yo and k = k(o) for short. First, we shall show (1) ⇒ (2).

We may assume that R∼ is defined on Y . Thus, there exist coherent OY -modules

Li for 0 ≤ i ≤ r − 1 such that

R∼ =
⊕r−1

i=0
Li

as a Z/rZ-graded OY -algebra. Hence, Li are all flat over T , and moreover,

• Li ⊗OY
OX ≃ ω[i]

X/k for any 1 ≤ i ≤ r − 1,

• the multiplication map L⊗i
1 → Li restricts to the canonical homomorphism

ω⊗i
X/k → ω

[i]
X/k for any 1 ≤ i ≤ r − 1, and

• the multiplication map L⊗r
1 → OY induces the isomorphism u : ω

[r]
X/k →

OX .

We shall show that L[r]
1 ≃ OY and Li ≃ L[i]

1 for any 1 ≤ i ≤ r along X = Yo. Now,

Li satisfies relative S2 over T along X for any 0 ≤ i ≤ r− 1, since ω
[i]
X/k satisfies S2

(cf. Lemma 5.2). Thus, there is a closed subset Z of Y such that
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• Gor(X) ⊂ X \ Z,
• Li|Y \Z is invertible for any 0 ≤ i ≤ r − 1 (cf. Fact 2.27(2)),

• the multiplication maps L⊗i
1 → Li and L⊗r

1 → OY are isomorphisms on

Y \ Z.
By replacing Y with its open subset, we may assume that codim(Yt∩Z, Yt) ≥ 2 for

any t ∈ T by Lemma 2.39, since codim(Yo∩Z, Yo) ≥ codim(X\Gor(X), X) ≥ 2 and

may assume that Li satisfies relative S2 over T for all i (cf. Fact 2.30(2)). Then,

for any m ≥ 1 and any 1 ≤ i ≤ r − 1, we have

L[m]
1 ≃ j∗(L⊗m

1 |Y \Z) and Li ≃ j∗(Li|Y \Z)

for the open immersion j : Y \ Z →֒ Y by (4) and (5) of Lemma 2.34, respectively.

This argument shows that Li ≃ L[i]
1 and OY ≃ L[r]

1 along X = Yo.

As a consequence, L1 satisfies the conditions in Definition 7.12 for any point of

Yo, and we have proved (1) ⇒ (2).

Next, we shall show: (2) ⇒ (1). We may assume the existence of a reflexive

OY -module L which satisfies the conditions of Remark 7.13 for U = Y and for the

fiber Yo = X. By replacing Y with an open neighborhood of an arbitrary point of

Yo, we may assume that there is an isomorphism u∼ : L[r] → OY which restricts

to the composite of the isomorphism L[r] ⊗OY
OX ≃ ω

[r]
X/k and the isomorphism

u : ω
[r]
X/k → OX . Then, u∼ defines a Z/rZ-graded OY -algebra

R∼ =
⊕r−1

i=0
L[i],

which satisfies the condition (1). Thus, we are done. �

Remark 7.16. The Q-Gorenstein deformation in the sense of Hacking [14, Def.

3.1] is considered as a virtually Q-Gorenstein deformation by Lemma 7.15. Hack-

ing’s notion is generalized to the notion of Kollár family of Q-line bundles by

Abramovich–Hassett (cf. [1, Def. 5.2.1]). This is related to the notion of virtually

Q-Gorenstein morphism as follows. Let f : Y → T be an S2-morphism between

Noetherian schemes such that every fiber is a connected, reduced, and Q-Gorenstein

scheme. Let L be a reflexive OY -module. Then, L satisfies the conditions (i) and

(ii) of Definition 7.12 for U = Y and for any y ∈ Y , if and only if (Y → T,L) is a
Kollár family of Q-line bundles with L ⊗ OYt

≃ ωYt/k(t) for all t ∈ T . However, in

their study of Kollár families (Y → T,L) for L = ωY/T , every fiber and every ω
[m]
Y/T

are assumed to be Cohen–Macaulay (cf. [1, Rem. 5.3.9, 5.3.10]).

A Q-Gorenstein morphism is always virtually Q-Gorenstein. The following the-

orem shows conversely that a virtually Q-Gorenstein morphism is a Q-Gorenstein

morphism under some mild conditions. In particular, we see that a virtually Q-

Gorenstein morphism is Q-Gorenstein if it is a Cohen–Macaulay morphism.

Theorem 7.17. Let Y and T be locally Noetherian schemes and f : Y → T a flat

morphism locally of finite type. For a point t ∈ T , assume that f is virtually Q-

Gorenstein at any point of the fiber Yt = f−1(t) and that one of the following two

conditions is satisfied :
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(a) Yt satisfies S3;

(b) there is a positive integer r coprime to the characteristic of k(t) such that

ω
[r]
Y/T is invertible along Yt.

Then, f is Q-Gorenstein along Yt.

Proof. Since the assertion is local, by Remark 7.13, we may assume that f is an

S2-morphism and there is a reflexive OY -module L satisfying the following two

conditions:

(1) L[m] = (L⊗m)∨∨ satisfies relative S2 over T for any integer m;

(2) there is an isomorphism L ⊗OY
OYt
≃ ωYt/k(t).

We can prove the following forM := HomOY
(L, ωY/T ) applying Theorem 5.10:

(3) M is an invertible OY -module along Yt;

(4) L ≃ ωY/T ⊗OY
M−1 along Yt.

In fact, the condition (ii) of Theorem 5.10 holds by (1) and (2) above, and the

condition (i) of Theorem 5.10 holds for U = CM(Y/T ) (resp. U = Gor(Y/T )) in

case (a) (resp. (b)). The remaining condition (iii) of Theorem 5.10 is checked as

follows. In case (a), the condition (iii)(a) of Theorem 5.10 is satisfied for U above.

In case (b), L[r] is invertible along Yt by (1) and (2), since

L[r] ⊗OY
OYt
≃ ω[r]

Yt/k(t)
≃ ω[r]

Y/T ⊗OY
OYt

is invertible (cf. Fact 2.27(2)); Thus, the condition (iii)(b) of Theorem 5.10 is sat-

isfied in this case. Therefore, we can apply Theorem 5.10 and obtain (3) and (4).

As a consequence, we have an isomorphism

ω
[m]
Y/T ≃ L[m] ⊗OY

M⊗m

for any m ∈ Z along Yt. Therefore, ω
[m]
Y/T satisfies relative S2 over T along Yt by

(1), and hence f : Y → T is Q-Gorenstein along Yt. �

Corollary 7.18. Let Y and T be locally Noetherian schemes and f : Y → T a flat

morphism locally of finite type. For a point t ∈ T , assume that the fiber Yt = f−1(t)

is quasi-Gorenstein. If ω
[r]
Y/T is invertible for a positive integer r coprime to the

characteristic of k(t), then f is Q-Gorenstein along Yt.

Proof. The morphism f is virtually Q-Gorenstein at any point of Yt, since OY plays

the role of L in Definition 7.12. Thus, we are done by Theorem 7.17 in the case

(b). �

7.3. Basic properties of Q-Gorenstein morphism. We shall explain several

properties of Q-Gorenstein morphisms and its variants. The following is a criterion

for a morphism to be naively Q-Gorenstein.

Lemma 7.19. Let f : Y → T be an S2-morphism of locally Noetherian schemes.

Assume that T is Q-Gorenstein and that every fiber of f is Gorenstein in codi-

mension one. Then, f is a naively Q-Gorenstein morphism if and only if Y is

Q-Gorenstein.
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Proof. Since the Q-Gorenstein properties are local, we may assume that T and Y

are affine and that f is of finite type with pure relative dimension (cf. Lemma 2.39).

Since the Q-Gorenstein scheme T satisfies S2 (cf. Lemma 6.3(2)), we may assume

the following (cf. Lemma 6.4):

• T admits an ordinary dualizing complex R• (cf. Lemma 4.14) with the

dualizing sheaf ωT := H0(R•);

• the double-dual ω
[m]
T of ω⊗m

T satisfies S2 for any integer m;

• ω[r]
T is invertible for a positive integer r.

For the Gorenstein locus T ◦ := Gor(T ) and the relative Gorenstein locus Y ◦ :=

Gor(Y/T ), we set U := f−1(T ◦) and U◦ := U ∩ Y ◦. Then, codim(Y \U, Y ) ≥ 2 by

(II-1) in Fact 2.27 and Property 2.1(3), since f is flat and codim(T \ T ◦, T ) ≥ 2.

Hence, codim(Y \ U◦, Y ) ≥ 2 by codim(Y \ Y ◦, Y ) ≥ 2, since f is an S2-morphism

(cf. Lemma 2.36). The twisted inverse image R•
Y := f !(R•) is a dualizing complex

of Y (cf. Example 4.24) with a quasi-isomorphism

R•
Y ≃qis f

!OT ⊗L

OY
Lf∗(R•)

by (IV-6) in Fact 4.35, where

ωY ◦/T [d] ≃qis f
!OT |Y ◦

for the relative dimension d of f . Note that Y satisfies S2 by Fact 2.27(6). Thus,

R•
Y [−d] is an ordinary dualizing complex of Y , and ωY := H−d(R•

Y ) is a dualizing

sheaf of Y . In particular, U◦ is a Gorenstein scheme with the dualizing sheaf

ωY |U◦ = H−d(R•
Y )|U◦ ≃ ωY ◦/T |U◦ ⊗OU◦ (f |U◦)∗(ωT◦).

By Lemma 6.4, we have an isomorphism

(VII-4) ω
[m]
Y ≃ ω[m]

Y/T ⊗OY
f∗(ω

[m]
T )

for any integer m. For a point y ∈ Y , Y is Q-Gorenstein at y if and only if ω
[m]
Y

is invertible at y for some m > 0. On the other hand, f is naively Q-Gorenstein

at y if and only of ω
[m]
Y/T is invertible at y for some m > 0. Since ω

[r]
T is invertible,

the isomorphism (VII-4) implies that Y is Q-Gorenstein if and only if f is naively

Q-Gorenstein. �

The following is a criterion for a morphism to be Q-Gorenstein.

Proposition 7.20. Let f : Y → T be a flat morphism locally of finite type between

locally Noetherian schemes. For a point t ∈ T , assume that the fiber Yt = f−1(t) is

a Q-Gorenstein scheme. If there exist coherent OY -modules Mm for m ≥ 1 such

that

Mm ⊗OY
OYt
≃ ω[m]

Yt/k(t)
and Mm|Y ◦ ≃ ω⊗m

Y ◦/T ,

where Y ◦ is the relative Gorenstein locus Gor(Y/T ), then f is a Q-Gorenstein

morphism along Yt.
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Proof. We setM0 = OY . Then,Mm,(t) =Mm ⊗OY
OYt

satisfies S2 along Yt for

any m ≥ 0. For the complement Z = Y \ Y ◦, we have codim(Z ∩ Yt, Yt) ≥ 2, since

Yt is Q-Gorenstein. Hence, Mm is flat over T along Yt by Lemma 3.5(1), since

Mm|Y ◦ ≃ ω⊗m
Y ◦/T is flat over T and

depthZ∩Yt
Mm,(t) ≥ 2

(cf. Lemma 2.15(2)). As a consequence, Mm satisfies relative S2 over T along Yt
for any m ≥ 0. In particular, f is an S2-morphism along Yt by considering the

case m = 0. By replacing Y with an open neighborhood of Yt, we may assume

that f is an S2-morphism and that codim(Z ∩ Yt′ , Yt′) ≥ 2 for any t′ ∈ f(Y ), by

Lemma 2.39.

Now, SuppMm = Y , since it contains the dense open subset Y ◦. Hence,

SuppMm,(t′) = Yt′ for any t
′ ∈ T , and it is locally equi-dimensional by Fact 2.24(1).

Thus, Um := S2(Mm) is open by Fact 2.30(2), and

depthZ∩Um
Mm|Um

≥ 2

by Lemma 2.33(1). It implies that, for the open immersion j : Y ◦ →֒ Y ,

Mm → j∗(Mm|Y ◦) ≃ j∗(ω⊗m
Y ◦/T ) = ω

[m]
Y/T

is an isomorphism along Yt. As a consequence, ω
[m]
Y/T satisfies relative S2 over T

along Yt for any m ≥ 0. Therefore, f is a Q-Gorenstein morphism along Yt. �

We have the following base change properties for Q-Gorenstein morphisms and

for their variants.

Proposition 7.21. Let f : Y → T be a flat morphism locally of finite type between

locally Noetherian schemes and let

Y ′ p−−−−→ Y

f ′

y
yf

T ′ q−−−−→ T

be a Cartesian diagram of schemes such that T ′ is also locally Noetherian.

(1) If f is a naively Q-Gorenstein morphism, then so is f ′. Here, if ω
[r]
Y/T is

invertible, then ω
[r]
Y ′/T ′ ≃ p∗(ω[r]

Y/T ).

(2) In case q : T ′ → T is a flat and surjective morphism, if f ′ is naively Q-

Gorenstein, then so is f .

(3) If every fiber of f is Q-Gorenstein, then every fiber of f ′ is so. The converse

holds if q is surjective.

(4) If f is virtually Q-Gorenstein at a point y ∈ Y , then f ′ is so at any point

of p−1(y).

(5) If f is Q-Gorenstein, then f ′ is so and ω
[m]
Y ′/T ′ ≃ p∗(ω[m]

Y/T ) for any m ∈ Z.

Proof. Note that Y ′◦ = p−1(Y ◦) for Y ′◦ := Gor(Y ′/T ′) (cf. Corollary 5.7) and that

(VII-5) codim(Yt \ Y ◦, Yt) = codim(Y ′
t′ \ Y ′◦, Y ′)

for any t′ ∈ T and t = q(t′) (cf. Lemma 2.32(1)).
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(1): The base change f ′ is an S2-morphism by Lemma 2.32(5), and we have an

isomorphism ω
[r]
Y ′/T ′ ≃ p∗(ω

[r]
Y/T ) by Corollary 5.7(2). In particular, f ′ is a naively

Q-Gorenstein morphism.

(2): The morphism f is an S2-morphism by Lemma 2.32(3) applied to F =

OY , since p : Y ′ → Y is surjective. Moreover, every fiber of f is Gorenstein in

codimension one by (VII-5). Now, p∗(ω
[m]
Y/T ) is reflexive for any m by Remark 2.21,

since p is flat. Hence, p∗(ω
[m]
Y/T ) ≃ ω

[m]
Y ′/T ′ for anym by Corollary 5.7(2). If p∗(ω

[r]
Y/T )

is invertible, then so is ω
[r]
Y/T , since p is fully faithful (cf. Lemma A.7). Therefore,

f is naively Q-Gorenstein.

(3): This is obtained by applying (1) and (2) to the case where T = Spec k(t)

and T ′ = Spec k(t′) and by Lemma 7.19.

(4): We may assume that the conditions of Remark 7.13 are satisfied for U = Y ,

a certain reflexive OY -module L, and for o = f(y). Then, the conditions (1) and

(2) of Remark 7.13 imply

depthYt\Y ◦ OYt
≥ 2

for any t ∈ f(Y ), by Lemma 2.15(2). Hence, p∗(L[m]) is a reflexive OY ′ -module and

(p∗L)[m] ≃ p∗(L[m]) for any m, by Lemma 2.35 applied to Z = Y \Y ◦ and to L[m].

Here, (p∗L)[m] satisfies relative S2 over T ′ by Remark 7.13(6) and Lemma 2.32(4).

Furthermore, for any point t′ ∈ T ′ and t = q(t′), we have isomorphisms

p∗L ⊗OY ′
OY ′

t′
≃ (L ⊗OY

OYt
)⊗k(t) k(t

′) ≃ ωYt/k(t) ⊗k(t) k(t
′) ≃ ωY ′

t′
/k(t′),

by applying Lemma 5.4 to Spec k(t′) → Spec k(t). Therefore, f ′ is virtually Q-

Gorenstein at any point of p−1(y), since p∗L plays the role of L in Definition 7.12.

(5): By (1), f ′ is an S2-morphism whose fibers are all Q-Gorenstein. If ω
[m]
Y/T

satisfies relative S2 over T , then p∗ω
[m]
Y/T does so over T ′ by Lemma 2.32(4), and

p∗ω
[m]
Y/T ≃ ω

[m]
Y ′/T ′ by Corollary 5.7(2). Therefore, f ′ is Q-Gorenstein (cf. Defini-

tion 7.1(2)). �

We have the following properties for compositions of Q-Gorenstein morphisms

and of their variants.

Proposition 7.22. Let f : Y → T and g : X → Y be flat morphisms of locally

Noetherian schemes.

(1) If f and g are naively Q-Gorenstein, then f ◦ g is so, and

ω
[r]
X/T ≃ ω

[r]
X/Y ⊗OX

g∗(ω
[r]
Y/T )

for an integer r > 0 such that ω
[r]
X/Y and ω

[r]
Y/T are invertible.

(2) Assume that g is a Q-Gorenstein morphism. If f is virtually Q-Gorenstein

at a point y, then f ◦ g virtually Q-Gorenstein at any point g−1(y).

(3) If f and g are Q-Gorenstein morphisms, then f ◦ g is so, and

ω
[m]
X/T ≃ ω

[m]
X/Y ⊗OX

g∗(ω
[m]
Y/T )

for any integer m.
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Proof. (1): Every fiber of the composite f ◦ g is Q-Gorenstein by Lemma 7.19 and

by Proposition 7.21(1). In particular, f ◦ g is an S2-morphism. For the relative

Gorenstein loci Y ◦ := Gor(Y/T ) and X◦ := Gor(X/Y ), let V be the intersection

X◦ ∩ g−1(Y ◦). Then, V ⊂ Gor(X/T ) and codim(Xt \ V,Xt) ≥ 2 for any fiber

Xt = (f ◦ g)−1(t) of f ◦ g. We set

Mr := ω
[r]
X/Y ⊗ g∗(ω

[r]
Y/T )

for an integer r > 0 such that ω
[r]
X/Y and ω

[r]
Y/T are invertible. Then,Mr|V ≃ ω⊗r

V/T

and

Mr ≃ j∗(ω⊗r
V/T ) = ω

[r]
Y/T

for the open immersion j : V →֒ X, since f ◦ g is an S2-morphism. Thus, f ◦ g is

naively Q-Gorenstein.

(2): We may assume that the conditions of Remark 7.13 are satisfied for U = Y ,

a certain reflexive OY -module L, and for o = f(y). We set

Nm := ω
[m]
X/Y ⊗OX

g∗(L[m])

for an integer m. This is flat over T , since L[m] is so over T and ω
[m]
X/Y is so

over Y . Let go = g|Xo
: Xo → Yo be the induced Q-Gorenstein morphism (cf.

Proposition 7.21(5)). Then, Xo = g−1(Yo) is Q-Gorenstein by Remark 7.13(7) and

Lemma 7.19, and we have isomorphisms

Nm ⊗OX
OXo

≃ (ω
[m]
X/Y ⊗OX

OXo
)⊗OXo

g∗o(ω
[m]
Yo/k(o)

)

≃ ω[m]
Xo/Yo

⊗OXo
g∗o(ω

[m]
Yo/k(o)

) ≃ ω[m]
Xo/k(o)

,

where the first isomorphism is derived from Remark 7.13(8) and the last one from

(VII-4) in the proof of Lemma 7.19. In particular, Nm satisfies relative S2 over T

along Xo. Then, for N := N1, we have isomorphisms

Nm ≃ j∗(Nm|V ) ≃ j∗
(
ω⊗m
V/Y ⊗OV

(g∗L)⊗m|V
)
≃ j∗(N⊗m|V ) = N [m]

along Xo by Lemma 2.34(5), where j : V →֒ X is the open immersion in the proof of

(1). Hence, N [m] satisfies relative S2 over T along Xo for anym, and N⊗OX
OXo

≃
ωXo/k(o). Therefore, f ◦ g is virtually Q-Gorenstein at any point of g−1(y), since N
plays the role of L in Definition 7.12.

(3): We can apply the argument in the proof of (2) by setting L = ωY/T . Then,

N [m] ≃ j∗(Nm|V ) ≃ j∗
(
ω⊗m
V/Y ⊗OV

(g∗ω⊗m
Y/T )|V

)
≃ j∗(ω⊗m

V/T ) = ω
[m]
X/T

along Xo. Hence, ω
[m]
X/T satisfies relative S2 over T for any m. Consequently, f ◦ g

is Q-Gorenstein with an isomorphism ω
[m]
X/T ≃ ω

[m]
X/Y ⊗OX

g∗(ω
[m]
Y/T ) for any m ∈ Z.

Thus, we are done. �

Corollary 7.23. Let Y and T be locally Noetherian schemes and f : Y → T a flat

morphism locally of finite type. Let g : X → Y be a smooth separated surjective

morphism from a locally Noetherian scheme X. Then, f is Q-Gorenstein if and

only if f ◦ g : X → Y → T is so.
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Proof. For the relative Gorenstein loci Y ◦ := Gor(Y/T ) and X◦ := Gor(X/T ), we

have X◦ = g−1(Y ◦) by Lemma 6.7. Let g◦ : X◦ → Y ◦ be the induced smooth

morphism. Then,

(VII-6) ωX◦/T ≃ ωX◦/Y ◦ ⊗OX◦ g
◦∗(ωY ◦/T )

for the relative canonical sheaves ωY ◦/T , ωX◦/T , and ωX◦/Y ◦ (cf. (1) and (2) of

Fact 4.34). For a point t ∈ T , let gt : Xt → Yt be the smooth morphism induced on

the fibers Yt = f−1(t) and Xt = (f ◦ g)−1(t).

By Proposition 7.22(2), it is enough to prove the “if” part. Assume that f ◦ g is

Q-Gorenstein. Then, every fiber Yt is Q-Gorenstein by Lemma 6.7. In particular,

Yt satisfies S2 and codim(Yt \ Y ◦, Yt) ≥ 2. Hence, by Lemma 2.34(4),

ω
[m]
Y/T ≃ j∗(ω⊗m

Y ◦/T )

for any m ∈ Z, where j : Y ◦ →֒ Y is the open immersion. For the open immersion

jX : X◦ →֒ X, we have an isomorphism

g∗(ω
[m]
Y/T ) ≃ g∗(j∗(ω⊗m

Y ◦/T )) ≃ jX∗(g
◦∗(ω⊗m

Y ◦/T ))

by the flat base change isomorphism (cf. Lemma A.9). Thus,

ω
[m]
X/T ≃ jX∗(ω

⊗m
X◦/T ) ≃ jX∗(j

∗
X(ω⊗m

X/Y )⊗OX◦ g
◦∗(ω⊗m

Y ◦/T◦)) ≃ ω⊗m
X/Y ⊗OY

g∗(ω
[m]
Y/T )

for any m ∈ Z by (VII-6). In particular, ω
[m]
Y/T is flat over T , since g is faithfully

flat (cf. Lemma A.6). Moreover,

g∗t (ω
[m]
Y/T ⊗OY

OYt
) ≃ ω⊗−m

Xt/Yt
⊗OXt

(ω
[m]
X/T ⊗OX

OXt
) ≃ ω⊗−m

Xt/Yt
⊗OXt

ω
[m]
Xt/k(t)

satisfies S2 for any t ∈ T (cf. Lemma 6.4(2)). As a consequence, ω
[m]
Y/T ⊗OY

OYt

satisfies S2 by Fact 2.27(6). Therefore, ω
[m]
Y/T satisfies relative S2 over T for any m,

and Y → T is a Q-Gorenstein morphism. �

Remark. Considering an étale morphism g in Corollary 7.23, we see that, for a

given flat morphism f : Y → T locally of finite type between locally Noetherian

schemes, the Q-Gorenstein condition at a point of Y is not only Zariski local but

also étale local (cf. Remark 6.8).

7.4. Theorems on Q-Gorenstein morphisms. First of all, we shall prove the

following theorem on infinitesimal criterion:

Theorem 7.24 (infinitesimal criterion). Let f : Y → T be a flat morphism lo-

cally of finite type between locally Noetherian schemes. Then, f is a Q-Gorenstein

morphism if and only if the base change fA : YA = Y ×T SpecA → SpecA is a

Q-Gorenstein morphism for any closed immersion SpecA → T for any Artinian

local ring A.

Proof. The “only if” part is a consequence of Proposition 7.21(5). For the “if” part,

it is enough to prove that f is a Q-Gorenstein morphism along the fiber Yo = f−1(o)

for an arbitrary fixed point o ∈ T . Then, we may assume that T = SpecR for a

the local ring R = OT,o and that the induced morphism fn : Yn = Y ×T SpecRn →
SpecRn is Q-Gorenstein for any n ≥ 0, where Rn = R/mn+1 for the maximal
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ideal m of R. Here, the fiber Yo equals Y0, and k(o) = R/m = R0. Since Yo is

Q-Gorenstein and since the assertion is also local on Y , by Lemma 2.39, we may

assume that every fiber Yt = f−1(t) satisfies S2 and codim(Yt \ U, Yt) ≥ 2 for

the relative Gorenstein locus U = Gor(Y/T ). Then, depthYt∩Z OYt
≥ 2 for any

t ∈ f(Z), where Z = Y \ U . Thus, we can apply Lemma 3.14 to the reflexive

OY -module F = ω
[m]
Y/T , and also we can apply Proposition 3.7 to F after replacing

Y with an open subset. Then, the equivalence: (b) ⇔ (b′) of Proposition 3.7(3)

implies that the base change homomorphism

φo : ω
[m]
Y/T ⊗OY

OYo
→ ω

[m]
Yo/k(o)

is an isomorphism if and only if the base change homomorphisms

ϕn : ω
[m]
Yn/Rn

⊗OYn
OY0
→ ω

[m]
Y0/R0

are isomorphisms for all n ≥ 0. Now, the latter condition holds, since fn is a Q-

Gorenstein morphism for any n. Thus, φo is an isomorphism for any m, and this

implies that f is a Q-Gorenstein morphism along Yo. �

Remark. For the Artinian local ring A above, the morphism fA is not necessarily

a Q-Gorenstein morphism even if the scheme YA is Q-Gorenstein and A is Goren-

stein. For example, let us consider a naively Q-Gorenstein morphism f : Y → T

of algebraic varieties over an algebraically closed field k such that f is not Q-

Gorenstein and T is a non-singular curve (cf. Fact 7.6, Lemma 7.7, Example 7.8).

Let SpecA → T be a closed immersion for a local Artinian ring A. Then, A is

Gorenstein, and YA → SpecA is a naively Q-Gorenstein morphism by Proposi-

tion 7.21(1). Hence, YA is Q-Gorenstein by Lemma 7.19. Therefore, YA → SpecA

is not a Q-Gorenstein morphism for some A by Theorem 7.24.

Remark. The infinitesimal criterion does not hold for naively Q-Gorenstein mor-

phisms (cf. [15, 14.7], [30, Exam. 7.6]).

We have also the following theorem on valuative criterion.

Theorem 7.25 (valuative criterion). Let f : Y → T be a flat morphism locally of

finite type between locally Noetherian schemes. Assume that T is reduced. Then, f

is a Q-Gorenstein morphism if and only if the base change fR : YR = Y ×T SpecR→
SpecR is a Q-Gorenstein morphism for any discrete valuation ring R and for any

morphism SpecR→ T .

Proof. It is enough to check the ‘if’ part (cf. Proposition 7.21(5)). Then, every fiber

Yt is Q-Gorenstein, since we can consider R as the localization at the prime ideal

(x) of the polynomial ring k[x] for a residue field k of a point of T and consider

a morphism SpecR → T as the composite of SpecR → Spec k and the morphism

Spec k→ T into a given point. Therefore, it is enough to prove that ω
[r]
Y/T satisfies

relative S2 over T for any r > 0. Since the assertion is local on Y and T , we may

assume that Y and T are affine Noetherian schemes and that there is an exact

sequence

0→ ω
[r]
Y/T → E0r → E1r → Gr → 0
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on Yr such that E0r , E1r , and Gr|Y ◦ are locally free, where Y ◦ = Gor(Y/T ) (cf.

Lemma 3.14). For a morphism SpecR → T and for the base change fR : YR =

Y ×T SpecR → SpecR, the OYR
-module ω

[r]
YR/R

satisfies relative S2 over SpecR

if and only if p∗RGr is flat over SpecR by Lemma 3.16, where pR : YR → Y is the

induced morphism. Thus, by assumption, p∗RGr is flat over SpecR for any morphism

SpecR → T . Then, the valuative criterion of flatness (cf. [11, IV, Th. (11.8.1)])

implies that Gr is flat. Hence, ω
[r]
Y/T satisfies relative S2 over T by Lemma 3.16.

This completes the proof. �

The following theorem gives a criterion for a morphism to be Q-Gorenstein only

by conditions on fibers.

Theorem 7.26. Let Y and T be locally Noetherian scheme and f : Y → T be a flat

morphism locally of finite type. Then, f is Q-Gorenstein along a fiber Yt = f−1(t)

if the following conditions are all satisfied :

(1) Yt is Q-Gorenstein;

(2) Yt is Gorenstein in codimension two;

(3) ω
[m]
Yt/k(t)

satisfies S3 for any m ∈ Z.

Proof. By (1), it is enough to prove that F = ω
[m]
Y/T satisfies relative S2 over T for

each m. Since F is reflexive, we can apply Proposition 3.7 and its corollaries to

the morphism Y → T and the closed subset Z = Y \Gor(Y/T ). Then, (2) and (3)

imply the inequality (III-4) of Corollary 3.10. Thus, F satisfies relative S2 over T

by Corollaries 3.9 and 3.10. �

The following theorem says that a naively Q-Gorenstein morphism becomes a

Q-Gorenstein morphism by a specific base change, under suitable conditions.

Theorem 7.27. Let f : Y → T be an S2-morphism of locally Noetherian schemes

with an integer r > 0 such that, for the relative Gorenstein locus Y ◦ = Gor(Y/T ),

(i) codim(Yt \ Y ◦, Yt) ≥ 2 for any fiber Yt = f−1(t),

(ii) Y \ Y ◦ is proper over T , and

(iii) ω
[r]
Yt/k(t)

is invertible for any t ∈ T .
Then, there exists a separated morphism S → T locally of finite type from a locally

Noetherian scheme S satisfying the following properties :

(1) The morphism S → T is a surjective monomorphism.

(2) Let T ′ → T be a morphism from a locally Noetherian scheme T ′. Then, it

factors through S → T if and only if the base change Y ×T T ′ → T ′ is a

Q-Gorenstein morphism.

If, in addition, f is a projective morphism locally on T , then S → T is a local

immersion of finite type.

Definition. A morphism S → T satisfying the condition (2) is unique up to iso-

morphism, and it is called the Q-Gorenstein refinement of f .
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Proof of Theorem 7.27. Applying Theorem 3.18 to the reflexive OY -module

F =
⊕r

m=1
ω
[m]
Y/T

and the open subset U = Y ◦, we have a separated monomorphism S → T locally

of finite type such that the following two conditions are equivalent to each other

for any morphism T ′ → T :

(a) The double-dual (F ′)∨∨ of the pullback F ×T T ′ of F to Y ×T T ′ satisfies

relative S2 over T ′.

(b) The morphism T ′ → T factors through S → T .

We shall show that the condition (a) is also equivalent to

(c) The base change Y ×T T ′ → T ′ is a Q-Gorenstein morphism.

We set Y ′ = Y ×T T ′, Y ′◦ := Y ◦ ×T T ′, and let j′ : Y ′◦ →֒ Y ′ denote the open

immersion. Then, Y ′◦ = Gor(Y ′/T ′) by Corollary 5.7, and there exist isomorphisms

(F ′)∨∨ ≃ j′∗(F ′|Y ′◦) ≃
⊕r

m=1
j′∗(ω

⊗m
Y ′◦/T ′) ≃

⊕r

m=1
ω
[m]
Y ′/T ′

by Lemma 2.35 and by the base change isomorphism (ωY ◦/T ) ×T T ′ ≃ ωY ′◦/T ′

(cf. Theorem 4.46). If (a) holds, then ω
[m]
Y ′/T ′ satisfies relative S2 over T ′ for any

1 ≤ m ≤ r, and in particular, ω
[r]
Y ′/T ′ is invertible by Fact 2.27(2), since

ω
[r]
Y ′/T ′ ⊗OY ′

OY ′

t′
≃ ω[r]

Y ′

t′
/k(t′)

is invertible for any fiber Y ′
t′ of Y

′ → T ′. Thus, we have shown (a)⇒ (c). The other

direction (c) ⇒ (a) is straightforward by the definition of Q-Gorenstein morphism

(cf. Definition 7.1). As a consequence, the conditions (b) and (c) are equivalent to

each other, and the morphism S → T satisfies the required conditions (1) and (2).

The last assertion is derived from the results in the case (i) of Theorem 3.18. �

The following theorem is similar to Theorem 7.27, and it links a projective S2-

morphism Gorenstein in codimension one in each fiber, to a naively Q-Gorenstein

morphism by a specific base change.

Theorem 7.28. Let f : Y → T be a projective S2-morphism of locally Noetherian

schemes such that every fiber is Gorenstein in codimension one. Then, for each

positive integer r > 0, there exists a separated morphism Sr → T from a locally

Noetherian scheme Sr satisfying the following conditions :

(1) The morphism Sr → T is a monomorphism and a local immersion of finite

type.

(2) Let T ′ → T be a morphism from a locally Noetherian scheme T ′. Then,

it factors through Sr → T if and only if Y ×T T ′ → T ′ is a naively Q-

Gorenstein morphism whose relative Gorenstein index is a divisor of r.

Proof. For a morphism q : T ′ → T from a locally Noetherian scheme T ′, let p : Y ′ →
Y and f ′ : Y ′ → T ′ be the induced morphisms from the fiber product Y ′ = Y ×T T ′.

Then,

(p∗ω
[r]
Y/T )

∨∨ ≃ ω[r]
Y ′/T ′



98 YONGNAM LEE AND NOBORU NAKAYAMA

by Lemma 2.35. Hence, ω
[r]
Y ′/T ′ is invertible if and only if f ′ is a naively Q-

Gorenstein morphism whose relative Gorenstein index is a divisor of r. Hence,

by applying Theorem 3.18 to the reflexive OY -module F = ω
[r]
Y/T and the open sub-

set U = Y ◦, we have a separated monomorphism S → T from a locally Noetherian

scheme S such that it is a local immersion of finite type and that the following two

conditions are equivalent to each other for any locally Noetherian T -scheme T ′:

(a) ω
[r]
Y ′/T ′ satisfies relative S2 over T ′;

(b) T ′ → T factors through S → T .

Let Br be the set of points P ∈ Y ×T S such that ω
[r]
Y×TS/S

is not invertible

at P . Then, Br is a closed subset of Y ×T S. Let Sr ⊂ S be the complement

of the image of Br in S. Then, Sr is an open subset. If ω
[r]
Y ′/T ′ is invertible for a

morphism q : T ′ → T , then q factors through S → T , and for the induced morphism

h : Y ′ → Y ×T S lying over T ′ → S, we have

ω
[r]
Y ′/T ′ ≃ h∗(ω[r]

Y×TS/S
)

by Lemma 2.35. As a consequence, h(Y ′) ∩ Br = ∅ and the image of T ′ → S is

contained in the open subset Sr. Therefore, the composite morphism Sr ⊂ S → T

satisfies the required conditions. �

Remark. When f : Y → T is a projective morphism, similar results to Theo-

rems 7.27 and 7.28 are found in [28, Cor. 24, 25].

Appendix A. Some basic properties in scheme theory

For readers’ convenience, we collect here famous results on the local criterion of

flatness and the base change isomorphisms.

A.1. Local criterion of flatness. Here, we summarize results related to the “local

criterion of flatness.” It is usually considered as Proposition A.1 below. But, the

subsequent Corollaries A.2, A.3, A.4 are also useful in the scheme theory. For the

detail, the reader is referred to [12, IV, §5], [5, III, §5], [11, 0III, §10.2], [2, V, §3],
[35, §22], etc. We also mention a “local criterion of freeness” as Lemma A.5, and

explain two more results on flatness and local freeness for sheaves on schemes.

Proposition A.1 (local criterion of flatness). For a ring A, an ideal I of A, and

for an A-module M , assume that

(1) I is nilpotent, or

(2) A is Noetherian and M is I-adically ideally separated, i.e., a ⊗A M is

separated for the I-adic topology for all ideals a of A.

Then, the following four conditions are equivalent to each other :

(i) M is flat over A;

(ii) M/IM is flat over A/I and TorA1 (M,A/I) = 0;

(iii) M/IM is flat over A/I and the canonical homomorphism

M/IM ⊗A/I Ik/Ik+1 → IkM/Ik+1M

is an isomorphism for any k ≥ 0;
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(iv) M/IkM is flat over A/Ik for any k ≥ 1.

Remark. The proof is found in [12, IV, Cor. 5.5, Th. 5.6], [5, III, §5.2, Th. 1], [11,
0III, (10.2.1)], [2, V, Th. (3.2)], [35, Th. 22.3]. The condition (2) is satisfied, for

example, when there is a ring homomorphism A → B of Noetherian rings such

that M is originally a finitely generated B-module and that IB is contained in

the Jacobson radical rad(B) of B (cf. [5, III, §5.4, Prop. 2], [11, 0III, (10.2.2)], [35,
p. 174]).

Corollary A.2. Let A → B be a local ring homomorphism of Noetherian local

rings and let u : M → N be a homomorphism of B-modules such that M and N

are finitely generated B-modules and that N is flat over A. Then, the following two

conditions are equivalent to each other :

(i) u is injective and the cokernel of u is flat over A;

(ii) u⊗A k : M ⊗A k→ N ⊗A k is injective for the residue field k of A.

The proof is given in [12, IV, Cor. 5.7], [11, 0III, (10.2.4)], [2, VII, Lem. (4.1)],

[35, Th. 22.5].

Corollary A.3 (cf. [11, 0IV, Prop. (15.1.16)], [35, Cor. to Th. 22.5]). Let A→ B

be a local ring homomorphism of Noetherian local rings and let M be a finitely

generated B-module. Let k be the residue field of A and let x̄ denote the image of

x ∈ B in B⊗A k. For elements x1, . . . , xn in the maximal ideal mB, the following

two conditions are equivalent to each other :

(i) (x1, . . . , xn) is an M -regular sequence and M/
∑n
i=1 xiM is flat over A;

(ii) (x̄1, . . . , x̄n) is an M ⊗A k-regular sequence and M is flat over A.

Corollary A.4. Let A→ B and B → C be local ring homomorphisms of Noether-

ian local rings and let k be the residue field of A. Assume that B is flat over A.

Then, for a finitely generated C-module M , the following conditions are equivalent

to each other :

(i) M is flat over B;

(ii) M is flat over A and M ⊗A k is flat over B ⊗A k.

The proof is given in [12, IV, Cor. 5.9], [5, III, §5.4, Prop. 3], [11, 0III, (10.2.5)],
[2, V, Prop. (3.4)].

Next, we shall give the “local criterion of freeness” as Lemma A.5 below, which

is similar to Proposition A.1. This result is well known (cf. [12, IV, Prop. 4.1], [5,

II, §3.2, Prop. 5], [11, 0III, (10.1.2)]), but is not usually called the “local criterion

of freeness” in articles.

Lemma A.5 (local criterion of freeness). Let A be a ring, I an ideal of A, and M

an A-module such that

• I is nilpotent or

• A is Noetherian, I ⊂ rad(A), and M is a finitely generated A-module.

Then, the following conditions are equivalent to each other :

(i) M is a free A-module;
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(ii) M/IM is a free A/I-module and TorA1 (M,A/I) = 0;

(iii) M/IM is a free A/I-module and the canonical homomorphism

M/IM ⊗A/I Ik/Ik+1 → IkM/Ik+1M

is an isomorphism for any k ≥ 0.

Remark. Applying Lemma A.5 to the case where A is a Noetherian local ring and

I is the maximal ideal, we have the equivalence of flatness and freeness for finitely

generated A-modules (cf. [12, IV, Cor. 4.3], [11, 0III, (10.1.3)]). On the other hand,

the equivalence of flatness and freeness can be proved by other methods (cf. [35,

Th. 7.10], [2, Lem. 5.8]), and using the equivalence, we obtain Lemma A.5 for the

same local ring (A, I) and for a finitely generated A-module M , as a corollary of

Proposition A.1.

Remark. The equivalence explained above implies the following well-known fact:

For a locally Noetherian scheme X, a coherent flat OX-module is nothing but a

locally free OX-module of finite rank.

The following is proved immediately from the definitions of flatness and faithful

flatness (cf. [5, I, §3, no. 2, Prop. 4]):

Lemma A.6. Let f : X → Y and g : Y → Z be morphisms of schemes such that f

is faithfully flat, i.e., flat and surjective. Then, for an OY -module G, it is flat over
Z if and only if f∗G is flat over Z.

As a corollary in the case where Y = Z, we have the following descent property

of locally freeness by the relation with flat coherent sheaves.

Lemma A.7. Let f : X → Y be a flat surjective morphism of locally Noetherian

schemes. For a coherent OY -module G, it is locally free if and only if f∗G is so.

The authors could not find a good reference for Lemma A.7. For example, we have

a weaker result as a part of [12, VIII, Prop. 1.10], where f is assumed additionally

to be quasi-compact; However, the quasi-compactness is related to the other part.

A.2. Base change isomorphisms. Let us consider a Cartesian diagram

X ′ g′−−−−→ X

f ′

y
yf

S′ g−−−−→ S
of schemes, i.e., X ′ ≃ X ×S S′. Then, for any quasi-coherent OX -module F , one
has a functorial canonical homomorphism

θ(F) : g∗(f∗F)→ f ′∗(g
′∗F)

of OS′ -modules, and more generally, a functorial canonical homomorphism

θi(F) : g∗(Rif∗F)→ Rif ′∗(g
′∗F)

for each i ≥ 0. We have the following assertions on θ(F) and θi(F).
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Lemma A.8 (affine base change). If f is an affine morphism, then θ(F) is an

isomorphism.

Lemma A.9 (flat base change). Assume that g is flat and that f is quasi-compact

and quasi-separated. Then, θi(F) is an isomorphism for any i.

A proof of Lemma A.8 is given [11, II, Cor. (1.5.2)], and a proof of Lemma A.9

is given in [11, III, Prop. (1.4.15)] (cf. [11, IV, (1.7.21)]). Here, the morphism

f : X → S is said to be “quasi-separated” if the diagonal morphism X → X ×S X
is quasi-compact (cf. [11, IV, Déf. (1.2.1)]).

We have also the following generalization of Lemma A.9 to the case of complexes

by [16, II, Prop. 5.12], [22, IV, Prop. 3.1.0], and [33, Prop. 3.9.5].

Proposition A.10. In the situation of Lemma A.9, let F• be a complex of OX-

modules in D+
qcoh(X). Then, there is a functorial quasi-isomorphism

Lg∗(Rf∗(F•))→ Rf ′∗(Lg
′∗(F•)).
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