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COHOMOLOGY OF THE GEOMETRIC FUNDAMENTAL
GROUP OF HYPERBOLIC POLYCURVES

KOICHIRO SAWADA

Abstract. In the present paper, we study the cohomology groups of profinite

groups obtained by successive extensions of families of (pro-Σ) surface groups.
As an application, we show, among others, that the dimension of a hyperbolic

polycurve (i.e., a successive extension of a family of hyperbolic curves) over a

field can be reconstructed group-theoretically from its geometric fundamental
group.

Introduction

Let p be a prime number, k a field of characteristic zero, k an algebraic closure
of k, Gk := Gal(k/k) the absolute Galois group of k, and X a variety over k.
Then the structure morphism X → Spec k induces a natural (outer) surjection
π1(X) ³ Gk. Write ∆X/k for the kernel of the surjection π1(X) ³ Gk and ∆p

X/k

for the maximal pro-p quotient of ∆X/k. A. Grothendieck proposed that, for certain
types of k, if X is “an anabelian variety” over k, then the isomorphism class of X
may be completely determined by π1(X) ³ Gk (cf. [2],[3]). In [4], the Grothendieck
conjecture for successive extensions of families of hyperbolic curves (hereinafter
called “hyperbolic polycurves”, cf. Definition 2.1(ii)) of dimension ≤ 4 was proved.
Moreover, in [11], we studied the pro-p version of the Grothendieck conjecture, and
obtained a similar result for hyperbolic polycurves satisfying condition (∗)p (cf.
Definition 2.5).

On the other hand, the Grothendieck conjecture for hyperbolic polycurves of di-
mension ≥ 5 is still open. However, even if the dimension is greater than 4, the étale
fundamental group of a hyperbolic polycurve may have various geometric informa-
tion. In the present paper, we discuss reconstruction of geometric invariants from
the cohomology groups of ∆X/k (resp. ∆p

X/k), where X is a hyperbolic polycurve
over k (resp. a hyperbolic polycurve over k satisfying condition (∗)p). Note that in
this case, ∆X/k (resp. ∆p

X/k) is a successive extension of a family of (profinite (resp.
pro-p)) surface groups. Here, we refer to a profinite group which is isomorphic to
the maximal pro-Σ quotient (where Σ is a nonempty set of prime numbers) of the
étale fundamental group of a hyperbolic curve over an algebraically closed field of
characteristic zero as a (pro-Σ) surface group (cf. [7] Definition 1.2). So we consider
successive extensions of families of surface groups. The following is the main result
of the present paper.

2010 Mathematics Subject Classification. 20J06, 14H30.
Key words and phrases. profinite group cohomology, étale fundamental group, hyperbolic poly-

curve, anabelian geometry.
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Theorem A (cf. Theorem 2.15). Let (G, (Gj)0≤j≤n, (Σj)1≤j≤n) be a successive
extension of surface groups (cf. Definition 2.6) and m a nonnegative integer. Write
Σ :=

⋂n
j=1 Σj. Suppose that Σ 6= ∅. Then the following conditions are equivalent:

(1) m = n.
(2) For any positive real number M , there exists an open subgroup V ⊂ G of G

such that, for any open subgroup U ⊂ V of V , any nonzero finite Σ-torsion
U -module A, and any nonnegative integer i such that i 6= m, it holds that
log(]Hm(U,A)) > M log(]Hj(U,A)).

The following result follows immediately from Theorem A.

Corollary B (cf. Corollary 2.16). Let X be a hyperbolic polycurve over k (resp.
a hyperbolic polycurve over k satisfying condition (∗)p). Then the dimension of X
can be reconstructed group-theoretically from ∆X/k (resp. ∆p

X/k).

Remark B.1. In the special case that X/k is a configuration space of a hyperbolic
curve over k (cf. e.g., [7] Definition 2.1), it has already been verified in [5] that
the dimension can be reconstructed group-theoretically from ∆X/k,∆p

X/k. (The
reconstruction algorithm in [5] is different from our algorithm.)

The following generalization of Corollary B also follows from Theorem A.

Theorem C (cf. Corollary 2.20). Let p be a prime number, X, Y hyperbolic poly-
curves over k (resp. hyperbolic polycurves over k satisfying condition (∗)p), and

X = Xdim(X) → · · · → X2 → X1 → Spec k = X0,

Y = Ydim(Y ) → · · · → Y2 → Y1 → Spec k = Y0

sequences of parametrizing morphisms (cf. Definition 2.1(ii)). Suppose that there
exists an injective homomorphism ∆X/k ↪→ ∆Y/k (resp. ∆p

X/k ↪→ ∆p
Y/k) such that

the image is normal in ∆Y/k (resp. ∆p
Y/k). Then it holds that dim(X) ≤ dim(Y ),

]{j | Xj+1 → Xj : proper} ≤ ]{j | Yj+1 → Yj : proper}. Moreover, if dim(X) =
dim(Y ), then ∆X/k ↪→ ∆Y/k (resp. ∆p

X/k ↪→ ∆p
Y/k) is open.

On the other hand, by characterizing the condition that X is proper over k
group-theoretically (by the method different from that of Theorem C), we obtain
the following result.

Theorem D (cf. Corollary 2.24). Let p be a prime number and X, Y hyperbolic
polycurves over k (resp. hyperbolic polycurves over k satisfying condition (∗)p).
Suppose that there exists an injective homomorphism ∆X/k ↪→ ∆Y/k (resp. ∆p

X/k ↪→
∆p

Y/k) such that the image is normal in ∆Y/k (resp. ∆p
Y/k). Suppose, moreover,

that Y is proper over k. Then X is proper over k.

1. Cohomology Groups of Profinite Groups

In the present §1, we study generalities on the cohomology groups of profinite
groups. Let us fix a real number q > 1. Let Primes be the set of all prime numbers.

Definition 1.1. Let G be a profinite group.
(i) A G-module A is a discrete abelian group A together with a continuous

action of G on A.
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(ii) Let A be a G-module. Then we shall write

Hn(G,A)

for the n-th cohomology group of G with coefficients in A. (For convenience,
we set Hn(G,A) := {0} for all n < 0.)

Theorem 1.2 (Hochschild-Serre spectral sequence (cf. e.g., [8] Theorem (2.4.1))).
Let G be a profinite group, H ⊂ G a normal closed subgroup of G, and A a G-
module. Then there exists a spectral sequence

Eij
2 = Hi(G/H, Hj(H, A)) ⇒ Hi+j(G,A).

It is called the Hochshild-Serre spectral sequence.

Definition 1.3. Let G be a profinite group.
(i) Let A be a G-module. For each integer i, we shall write

hi(G,A) := logq(]H
i(G,A)).

(ii) Let A be a G-module. Suppose that hi(G,A) < ∞ for any integer i, and
that hi(G,A) = 0 for all but finitely many integers i. Then we shall write

χ(G,A) :=
∞∑

i=0

(−1)ihi(G,A).

In this case, we shall say that “χ(G,A) is defined”.
(iii) Let Σ ⊂ Primes be a nonempty subset of Primes. Suppose that there exists

a (unique) constant b ∈ R such that, for any Σ-torsion G-module A (i.e.,
for any a ∈ A, there exists a positive integer n such that na = 0 and that
every prime factor of n is contained in Σ), it holds that χ(G,A) is defined,
and that χ(G,A) = b logq(]A). Then we shall write

χΣ(G) := b.

In this case, we shall say that “χΣ(G) is defined”.

Remark 1.3.1.
(i) For the purpose of this paper, we can choose any q > 1. For this reason,

we sometimes specify that q = p in order to simplify calculations when we
consider the case where A is a p-primary group (i.e., {p}-torsion group).

(ii) It is clear by definition that if χΣ(G) is defined, then χΣ(G) does not
depend on q and χΣ(G) ∈ Z. Moreover, if χΣ(G) is defined, then, for any
nonempty subset Σ′ ⊂ Σ of Σ, χΣ′(G) is also defined and it holds that
χΣ′(G) = χΣ(G).

(iii) If G is a pro-p group such that χ(G,Fp) is defined, then it is well-known that
χ{p}(G) is defined. The value χ{p}(G) is often called the Euler-Poincaré
characteristic of G (cf. e.g., [12] §4.1).

Lemma 1.4. Let Σ ⊂ Primes be a nonempty subset of Primes. Then the following
hold:

(i) Let G be a profinite group and U an open subgroup of G. Suppose that
χΣ(G) is defined. Then χΣ(U) is also defined, and it holds that χΣ(U) =
[G : U ]χΣ(G).
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(ii) Let 1 → G1 → G2 → G3 → 1 be a short exact sequence of profinite groups.
Suppose that χΣ(G3) is defined. Then for any finite Σ-torsion G2-module
A, if χ(G1, A) is defined, then χ(G2, A) is also defined, and it holds that
χ(G2, A) = χ(G1, A) · χΣ(G3). In particular, if χΣ(G1) is defined, then
χΣ(G2) is also defined, and it holds that χΣ(G2) = χΣ(G1) · χΣ(G3).

Proof. First, we verify assertion (i). Let A be a finite Σ-torsion U -module. Then it
holds that logq(] IndU

G A) = [G : U ] logq(]A). Thus, since Hi(U,A) = Hi(G, IndU
G A)

and IndU
G A is a finite Σ-torsion G-module, χ(U,A) is defined, and it holds that

χ(U,A) = χ(G, IndU
G A) = χΣ(G) logq(] IndU

G A) = [G : U ]χΣ(G) logq(]A).

This implies that χΣ(U) = [G : U ]χΣ(G). This completes the proof of assertion
(i). Next, we verify assertion (ii). Let A be a finite Σ-torsion G2-module. Let us
consider the Hochschild-Serre spectral sequence

Eij
2 = Hi(G3,H

j(G1, A)) ⇒ Hi+j(G2, A).

Note that for any nonnegative integer j, Hj(G1, A) is a finite Σ-torsion G3-module.
Since χΣ(G3) and χ(G1, A) are defined, χ(G2, A) is also defined. Now it holds that

∞∑

i=0

(−1)i+j logq(]E
ij
2 ) =

∞∑

i=0

(−1)i+jhi(G3,H
j(G1, A))

= (−1)jχ(G3,H
j(G1, A))

= (−1)jχΣ(G3) · hj(G1, A).

This implies that
∑∞

i,j=0(−1)i+j logq(]E
ij
2 ) = χ(G1, A)·χΣ(G3). On the other hand,

one verifies easily that
∑∞

i,j=0(−1)i+j logq(]Eij
r ) does not depend on r ≥ 2. Thus,

it holds that χ(G2, A) =
∑∞

i,j=0(−1)i+j logq(]Eij
∞) = χ(G1, A) · χΣ(G3). If χΣ(G1)

is defined, then we have χ(G2, A) = χ(G1, A) ·χΣ(G3) = χΣ(G1) ·χΣ(G3) logq(]A),
which implies that χΣ(G2) = χΣ(G1)·χΣ(G3). This completes the proof of assertion
(ii). ¤

Lemma 1.5 ([11] Lemma 2.17(i)). Let G be a profinite group, H ⊂ G a closed
subgroup of G, and V ⊂ H an open subgroup of H. Then there exists an open
subgroup U ⊂ G of G such that V = H ∩ U .

Lemma 1.6. Let p be a prime number and G a profinite group. Suppose that
cdp G < ∞. Then there exists an open subgroup U ⊂ G of G such that Hcdp G(U,Fp) 6=
{0}.
Proof. Let Gp ⊂ G be a Sylow p-subgroup of G. Then it follows from [8] Corollary
(3.3.6), Proposition (3.3.2) that Hcdp G(Gp,Fp) 6= {0}. On the other hand, it
follows from [10] Proposition 2.1.4(d), together with [8] Proposition (1.5.1), that
Hcdp G(Gp,Fp) = lim−→U

Hcdp G(U,Fp), where U runs over all open subgroups of
G containing Gp. Thus, there exists an open subgroup U ⊂ G of G such that
Hcdp G(U,Fp) 6= {0}. This completes the proof of Lemma 1.6. ¤

Lemma 1.7 ([8] Proposition (3.3.8)). Let p be a prime number, G a profinite
group, and H ⊂ G a normal closed subgroup of G. Then it holds that cdp G ≤
cdp(G/H) + cdp H. If cdp(G/H) < ∞ and cdp H < ∞, and if Hcdp H(U,Fp) is
finite for any open subgroup U ⊂ H of H, then the equality holds.
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Lemma 1.8 ([8] Theorem (3.3.9)). Let p be a prime number, G a profinite group,
and N ⊂ G a normal closed subgroup of G. Suppose that cdp G < ∞, and that
Hcdp N (N,Fp) is finite and nonzero. Then it holds that vcdp(G/N) = cdp G−cdp N
(i.e., there exists an open subgroup U ⊂ G/N of G/N such that cdp U = cdp G −
cdp N).

Corollary 1.9. Let p be a prime number, G a profinite group, and N ⊂ G a normal
closed subgroup of G. Suppose that cdp N < ∞, and that Hcdp N (U,Fp) is finite for
any open subgroup U ⊂ N of N . Then it holds that vcdp(G/N) = vcdp G− cdp N .

Proof. If vcdp G = ∞, then it follows from Lemma 1.7 that vcdp(G/N) = ∞.
Now suppose that vcdp G < ∞. Let W ⊂ G be an open subgroup of G such
that cdp W = vcdp G < ∞. Then it follows from Lemma 1.6 that there exists an
open subgroup U ⊂ N ∩ W of N ∩ W such that Hcdp N (U,Fp) 6= {0}. Now it
follows from Lemma 1.5 that there exists an open subgroup V ⊂ W of W such that
V ∩ N = U . Then V/U is an open subgroup of G/N . Moreover, it follows from
Lemma 1.8 that vcdp(V/U) = cdp V − cdp U = cdp W − cdp N . Thus, we conclude
that vcdp(G/N) = vcdp G− cdp N . This completes the proof of Corollary 1.9. ¤

2. Reconstruction of Invariants from Cohomology Groups

In the present §2, we consider reconstruction of invariants of certain profinite
groups from their cohomology groups. As an application, we prove, among others,
that the dimension of a hyperbolic polycurve (cf. Definition 2.1(ii)) over a field of
characteristic zero can be reconstructed from its geometric fundamental group (cf.
Corollary 2.16). Let us fix q > 1. Let k be a field of characteristic zero and Primes
the set of all prime numbers.

Definition 2.1 (cf. [4] Definition 2.1). Let S be a scheme and X a scheme over S.
(i) We shall say that X is a hyperbolic curve (of type (g, r)) over S if there

exist
• a pair of nonnegative integers (g, r);
• a scheme Xcpt which is smooth, proper, geometrically connected, and

of relative dimension one over S;
• a (possibly empty) closed subscheme D ⊂ Xcpt of Xcpt which is finite

and étale over S
such that
• 2g − 2 + r > 0;
• any geometric fiber of Xcpt → S is (a necessarily smooth proper curve)

of genus g;
• the finite étale covering D ↪→ Xcpt → S is of degree r;
• X is isomorphic to Xcpt \D over S.

(ii) We shall say that X is a hyperbolic polycurve (of relative dimension n)
over S if there exist a positive integer n and a (not necessarily unique)
factorization of the structure morphism X → S

X = Xn → Xn−1 → · · · → X2 → X1 → S = X0

such that, for each i = 1, . . . , n, Xi → Xi−1 is a hyperbolic curve. We
shall refer to the above morphism X → Xn−1 as a parametrizing morphism
for X and refer to the above factorization of X → S as a sequence of
parametrizing morphisms.
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Remark 2.1.1. A sequence of parametrizing morphisms of X → S

X = Xn → Xn−1 → · · · → X2 → X1 → S = X0

is not necessarily unique, but, when we call X/S a hyperbolic polycurve, we always
fix a sequence of parametrizing morphisms of X → S unless otherwise specified.

Definition 2.2. Let X, Y be connected noetherian schemes and f : X → Y a
morphism. Then we shall write

∆f = ∆X/Y ⊂ π1(X)

for the kernel of the outer homomorphism π1(X) → π1(Y ) between étale funda-
mental groups induced by f .

Remark 2.2.1 (cf. [11] Remark 2.8). Let S be a connected noetherian separated
normal scheme over k, and X a hyperbolic polycurve of relative dimension n over
S. Then, for any triplet of integers (i, j, l) such that 0 ≤ i < j < l ≤ n, we obtain
a natural exact sequence of profinite groups

1 → ∆Xl/Xj
→ ∆Xl/Xi

→ ∆Xj/Xi
→ 1.

Definition 2.3. Let G be a group and Σ ⊂ Primes a subset of Primes. Then we
shall write

GΣ

for the pro-Σ completion of G. Note that if G is a topologically finitely generated
profinite group, then, since every homomorphism from G to any finite group is
continuous (cf. [9] Theorem 1.1), GΣ is the maximal pro-Σ quotient of G. Let p be
a prime number. Then we shall write simply

Gp

for the pro-p group G{p}. Moreover, we shall write simply

G∧

for the profinite group GPrimes.

Definition 2.4. Let (g, r) be a pair of nonnegative integers. Then we shall write

Πg,r := 〈α1, . . . , αg, β1, . . . , βg, γ1, . . . , γr | [α1, β1] · · · [αg, βg]γ1 · · · γr = 1〉.
Note that if r > 0, then Πg,r is a free group of rank 2g + r − 1.

Remark 2.4.1. Let S be a connected noetherian separated normal scheme over k, X
a hyperbolic curve of type (g, r) over S, and Σ ⊂ Primes a subset of Primes. Then
it holds that ∆Σ

X/S
∼= ΠΣ

g,r (cf. e.g., [13] Proposition (1.1)(i), [4] Proposition 2.4(ii)).
This profinite group is sometimes called a (pro-Σ) surface group (cf. [7] Definition
1.2). Note that any open subgroup of pro-Σ surface group is pro-Σ surface group.

Definition 2.5 (cf. [11] Definition 2.10). Let p be a prime number, n a positive
integer, S a connected noetherian separated normal scheme over k, and X a hy-
perbolic polycurve of relative dimension n over S. We shall say that X/S satisfies
condition (∗)p if for any triplet of integers (i, j, l) such that 0 ≤ i < j < l ≤ n, the
sequence of profinite groups

1 → ∆p
Xl/Xj

→ ∆p
Xl/Xi

→ ∆p
Xj/Xi

→ 1

is exact.
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Remark 2.5.1. The validity of conditions (∗)p depends on the sequence of parametriz-
ing morphisms (at least by definition). So, precisely, we should say that

X = Xn → Xn−1 → · · · → X2 → X1 → S = X0

satisfies condition (∗)p, but we shall say as in Definition 2.5 for simplicity.

Remark 2.5.2. If X/S satisfies condition (∗)p, then ∆X/S admits various group-
theoretic properties (cf. e.g., Corollary 2.8, [11] Proposition 2.16(iii)). However, it
is unknown whether the validity of condition (∗)p for X/S only depends on the
profinite group ∆X/S or not.

Definition 2.6. Let n be a positive integer. A successive extension of surface
groups is data (G, (Gj)0≤j≤n, (Σj)1≤j≤n) consisting of

• a profinite group G;
• a sequence of profinite groups (Gj)0≤j≤n;
• a sequence of nonempty sets of prime numbers (Σj)1≤j≤n

such that
• G0 = G, Gn = {1};
• for any integer j such that 1 ≤ j ≤ n, Gj is a normal closed subgroup

of Gj−1, and, moreover, there exists a pair of nonnegative integers (gj , rj)
such that 2gj − 2 + rj > 0 and Gj−1/Gj

∼= ΠΣj
gj ,rj .

We shall refer to n as the dimension of (G, (Gj)0≤j≤n, (Σj)1≤j≤n). For a prime
number p, we shall refer to np := ]{j | p ∈ Σj} as the p-dimension of (G, (Gj)0≤j≤n, (Σj)1≤j≤n).

Example 2.6.1. Let n be a positive integer, S a connected noetherian separated
normal scheme over k, and X a hyperbolic polycurve of relative dimension n over
S. Then the data (∆X/S , (∆X/Xj

)0≤j≤n, (Primes)1≤j≤n) is a successive extension
of surface groups of dimension n. If, moreover, X/S satisfies condition (∗)p (where
p is a prime number), then (∆p

X/S , (∆p
X/Xj

)0≤j≤n, ({p})1≤j≤n) is also a successive
extension of surface groups of dimension n.

Remark 2.6.2.
(i) If a profinite group G has two structures of successive extensions of sur-

face groups (G, (Gj)0≤j≤n, (Σj)1≤j≤n), (G, (G′j)0≤j≤n′ , (Σ′j)1≤j≤n′), it is
unknown (at least by definition) that they have the same dimension (or
p-dimension).

(ii) Let (G, (Gj)0≤j≤n, (Σj)1≤j≤n) be a successive extension of surface groups
and U ⊂ G an open subgroup of G. Then U has a natural structure of a
successive extension of surface groups (U, (U∩Gj)0≤j≤n, (Σj)1≤j≤n). More-
over, for each integer i such that 0 ≤ i < n, Gi ⊂ G has a natural structure
of a successive extension of surface groups (Gi, (Gi+j)0≤j≤n−i, (Σi+j)1≤j≤n−i).

(iii) Since it holds that Σj = {p ∈ Primes | (Gj−1/Gj)p 6= {1}}, the sequence
(Σj)1≤j≤n of (G, (Gj)0≤j≤n, (Σj)1≤j≤n) is determined by (G, (Gj)0≤j≤n).

Proposition 2.7. Let Σ ⊂ Primes be a nonempty subset of Primes and (g, r) a
pair of nonnegative integers such that 2g − 2 + r > 0. Then the following hold:

(i) For any p ∈ Σ, if r > 0, then cdp(ΠΣ
g,r) = 1, and if r = 0, then cdp(ΠΣ

g,r) =
2.

(ii) For any Σ-torsion ΠΣ
g,r-module A and any nonnegative integer i, the natural

homomorphism Hi(ΠΣ
g,r, A) → Hi(Π∧g,r, A) is an isomorphism.
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(iii) For any finite Σ-torsion ΠΣ
g,r-module A, it holds that h0(ΠΣ

g,r, A) ≤ logq(]A),
h2(ΠΣ

g,r, A) ≤ logq(]A).
(iv) χΣ(ΠΣ

g,r) is defined, and it holds that χΣ(ΠΣ
g,r) = 2− 2g − r.

Proof. Assertion (i) is well-known (cf. e.g., [12] §3.4, [1] Corollary 17). Assertion
(ii) follows from assertion (i) and [1] Lemma 12 if r > 0, and follows from [1]
Proposition 16 if r = 0. We verify assertions (iii) and (iv). Let A be a finite
Σ-torsion ΠΣ

g,r-module. Let us consider the cohomology groups Hi(Πg,r, A) of the
discrete group Πg,r. Then it follows from [1] Lemma 13, Proposition 14 that for
any nonnegative integer i, the natural homomorphism Hi(ΠΣ

g,r, A) → Hi(Πg,r, A)
is an isomorphism.

First, suppose that r = 0. Then it follows from [6] §11 that the Z[Πg,r]-module
Z with trivial Πg,r-action has a finite free resolution

0 → Z[Πg,r] → Z[Πg,r]⊕2g → Z[Πg,r] → Z→ 0.

Thus, Hi(Πg,r, A) ∼= Exti
Z[Πg,r ](Z, A) is the i-th cohomology group of the complex

HomZ[Πg,r ](Z[Πg,r], A) → HomZ[Πg,r ](Z[Πg,r]⊕2g, A) → HomZ[Πg,r ](Z[Πg,r], A) → 0.

This implies that

]H0(Πg,r, A) ≤ ]A, ]H2(Πg,r, A) ≤ ]A,
]H0(Πg,r, A) · ]H2(Πg,r, A)

]H1(Πg,r, A)
=

]A · ]A
]A⊕2g

= (]A)2−2g.

This completes the proof of assertions (iii) and (iv) in the case r = 0.
Next, suppose that r > 0. Then, since Πg,r is a free group of rank 2g + r − 1,

the Z[Πg,r]-module Z with trivial Πg,r-action has a finite free resolution

0 → Z[Πg,r]⊕2g+r−1 → Z[Πg,r] → Z→ 0.

Thus, it follows from an argument similar to the above argument that

]H0(Πg,r, A) ≤ ]A, ]H2(Πg,r, A) = 1 ≤ ]A,
]H0(Πg,r, A)
]H1(Πg,r, A)

=
]A

]A⊕2g+r−1
= (]A)2−2g−r.

This completes the proof of assertions (iii) and (iv) in the case r > 0, hence also of
Proposition 2.7. ¤

Corollary 2.8. Let p be a prime number, S a connected noetherian separated
normal scheme over k, X a hyperbolic polycurve over S satisfying condition (∗)p,
and A a p-primary ∆p

X/S-module. Then, for any nonnegative integer i, the natural
homomorphism Hi(∆p

X/S , A) → Hi(∆X/S , A) is an isomorphism.

Proof. Write n for the relative dimension of the hyperbolic polycurve X/S. We
verify Corollary 2.8 by induction on n. If n = 1, then Corollary 2.8 follows from
Proposition 2.7(ii). Now suppose that n ≥ 2, and that the induction hypothesis
is in force. Then it follows from a construction of the Hochschild-Serre spectral
sequence (cf. [8] Theorem (2.4.1)) that there exists a natural isomorphism between
two Hochschild-Serre spectral sequences obtained by the exact sequences of profinite
groups

1 → ∆X/X1 → ∆X/S → ∆X1/S → 1, 1 → ∆p
X/X1

→ ∆p
X/S → ∆p

X1/S → 1.

This completes the proof of Corollary 2.8. ¤
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Corollary 2.9. Let (G, (Gj)0≤j≤n, (Σj)1≤j≤n) be a successive extension of surface
groups. Suppose that Σ :=

⋂n
j=1 Σj 6= ∅. Then χΣ(G) is defined, and it holds that

χΣ(G) =
∏n

j=1 χΣ(Gj−1/Gj).

Proof. This follows from Lemma 1.4(ii), Proposition 2.7(iv). ¤
Lemma 2.10. Let (G, (Gj)0≤j≤n, (Σj)1≤j≤n) be a successive extension of surface
groups and A a finite G-module. Then, for any nonnegative integer i, Hi(G,A) is
finite.

Proof. We verify Lemma 2.10 by induction on n. If n = 1 and p ∈ Σ1, then Lemma
2.10 follows from Proposition 2.7. If n = 1 and p /∈ Σ1, then since cdp G = 0,
Lemma 2.10 follows from the fact that H0(G,A) = AG. Now suppose that n ≥ 2,
and that the induction hypothesis is in force. Then Lemma 2.10 follows from the
Hochschild-Serre spectral sequence. This completes the proof of Lemma 2.10. ¤
Corollary 2.11. Let p be a prime number and (G, (Gj)0≤j≤n, (Σj)1≤j≤n) a succes-
sive extension of surface groups. Then it holds that cdp G =

∑n
j=1 cdp(Gj−1/Gj).

Proof. This follows from Lemma 1.7, Lemma 2.10. ¤
Lemma 2.12. Let (G, (Gj)0≤j≤n, (Σj)1≤j≤n) be a successive extension of surface
groups, M a positive real number, and A a finite G-module. Then there exists
an open subgroup U ⊂ G of G such that, for any integers i, j such that i ≥ 0
and 0 < j ≤ n, Uj−1/Uj acts trivially on Hi(Uj , A), and, moreover, it holds that
−χΣj

(Uj−1/Uj) > M , where we write Uj := U ∩ Gj for each integer j such that
0 ≤ j ≤ n.

Proof. We verify Lemma 2.12 by induction on n. If n = 1, then, since −χΣ1
(G) ≥ 1

(cf. Proposition 2.7(iv)), it follows from Lemma 1.4(i) that an open subgroup U ⊂ G
of G such that [G : U ] > M satisfies the conditions appearing in the statement of
Lemma 2.12. Now suppose that n ≥ 2, and that the induction hypothesis is in force.
Then it follows from the induction hypothesis that there exists an open subgroup
V ⊂ G1 of G1 such that, for any integers i, j such that i ≥ 0 and 1 < j ≤ n, Vj−1/Vj

acts trivially on Hi(Vj , A), and, moreover, it holds that −χΣj
(Vj−1/Vj) > M ,

where we write Vj := V ∩ Gj for each integer j such that 1 ≤ j ≤ n. Then it
follows from Lemma 1.5 that there exists an open subgroup W ⊂ G of G such that
W ∩G1 = V . On the other hand, it follows from Proposition 2.7(i) and Corollary
2.11 that cdV1 ≤ cd G = supp cdp G ≤ 2n < ∞, which implies that for all but
finitely many integers i, it holds that Hi(V1, A) = {0}. Moreover, it follows from
Lemma 2.10 that Hi(V1, A) is finite. Thus, there exists an open subgroup H ⊂ W/V
of W/V such that for any nonnegative integer i, H acts trivially on Hi(V1, A). By
replacing H by an open subgroup of W/V contained in H if necessary, we may
assume that [W/V : H] > M . Then it follows from Lemma 1.4(i) and Proposition
2.7(iv) that −χΣ1

(H) > M .
Write U ⊂ W for the inverse image of H ⊂ W/V by the natural surjection

W ³ W/V , and Uj := U ∩ Gj for each integer j such that 0 ≤ j ≤ n. Then
since V ⊂ U ⊂ W , it holds that U1 = U ∩ G1 = V , which implies that, for each
integer j such that 1 ≤ j ≤ n, it holds that Uj = Vj . Moreover, it holds that
U0/U1 = U/V = H ⊂ W/V . Thus, it follows from our choice of V and H that U
satisfies the conditions appearing in the statement of Lemma 2.12. This completes
the proof of Lemma 2.12. ¤



10 KOICHIRO SAWADA

Proposition 2.13. Let (G, (Gj)0≤j≤n, (Σj)1≤j≤n) be a successive extension of sur-
face groups and Σ ⊂ Primes a nonempty subset of Primes. Then the following
conditions are equivalent:

(1) Σ ⊂ ⋂n
j=1 Σj.

(2) χΣ(G) is defined.
(3) For each p ∈ Σ and for any open subgroup U ⊂ G of G, it holds that

χ(U,Fp) = [G : U ]χ(G,Fp), where the action of G on Fp is trivial.

In particular,
⋂n

j=1 Σj is completely determined by the profinite group G.

Proof. The implication (1) ⇒ (2) follows from Corollary 2.9, and the implication
(2) ⇒ (3) follows from Lemma 1.4(i). Now we verify the implication (3) ⇒ (1).
Suppose that Σ 6⊂ ⋂n

j=1 Σj . Let p be a prime number such that p ∈ Σ \⋂n
j=1 Σj .

Write l0 for the minimum integer l such that 1 ≤ l ≤ n and p /∈ Σl. Then it follows
from Lemma 2.12 that there exists an open subgroup V ⊂ G of G such that, for
any integers i, j such that i ≥ 0 and 0 < j ≤ n, Vj−1/Vj acts trivially on Hi(Vj , A),
where we write Vj := V ∩Gj for each integer j such that 0 ≤ j ≤ n.

Let W ( Vl0−1/Vl0 be a proper open subgroup of Vl0−1/Vl0 . Then it follows from
Lemma 1.5 that there exists an open subgroup U ⊂ V of V such that, if we write
Uj := U∩Vj for each integer j such that 0 ≤ j ≤ n, then Ul0−1 ⊂ Vl0−1 is the inverse
image of W ( Vl0−1/Vl0 by the surjection Vl0−1 ³ Vl0−1/Vl0 . Note that since
Ul0−1 ⊃ Vl0 , it holds that Uj = Vj for each integer j such that l0 ≤ j ≤ n. Now it
follows from our choice of l0, U, V that for each integer j such that 1 ≤ j ≤ n and p /∈
Σj , Vj−1/Vj (resp. Uj−1/Uj) acts trivially on Hi(Vj ,Fp) (resp. Hi(Uj ,Fp)). Thus,
if p /∈ Σj , then it holds that Hi(Vj−1,Fp) ∼= Hi(Vj ,Fp), Hi(Uj−1,Fp) ∼= Hi(Uj ,Fp).
In particular, if p /∈ Σj , then it holds that χ(Vj−1,Fp) = χ(Vj ,Fp), χ(Uj−1,Fp) =
χ(Uj ,Fp). On the other hand, if p ∈ Σj , then it follows from Lemma 1.4(ii) that
χ(Vj−1,Fp) = χ(Vj ,Fp) · χ{p}(Vj−1/Vj), χ(Uj−1,Fp) = χ(Uj ,Fp) · χ{p}(Uj−1/Uj).
This implies that

χ(V,Fp) = logq p·
∏

1≤j≤n
p∈Σj

χ{p}(Vj−1/Vj)(6= 0), χ(U,Fp) = logq p·
∏

1≤j≤n
p∈Σj

χ{p}(Uj−1/Uj).

Thus, it follows from Lemma 1.4(i) that

χ(U,Fp)
χ(V,Fp)

=
∏

1≤j≤n
p∈Σj

χ{p}(Uj−1/Uj)

χ{p}(Vj−1/Vj)

=
l0−1∏

j=1

χ{p}(Uj−1/Uj)

χ{p}(Vj−1/Vj)

=
l0−1∏

j=1

[Vj−1/Vj : Uj−1/Uj ]

=
[V : U ]

[Vl0−1/Vl0 : Ul0−1/Ul0 ]
6= [V : U ].

On the other hand, if condition (3) holds, then we have

χ(U,Fp) = [G : U ]χ(G,Fp) = [V : U ] · [G : V ]χ(G,Fp) = [V : U ]χ(V,Fp).
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This completes the proof of the implication (3) ⇒ (1), hence also of Proposition
2.13. ¤

Lemma 2.14. Let p be a prime number, (G, (Gj)0≤j≤n, (Σj)1≤j≤n) a successive
extension of surface groups, A a nonzero finite p-primary G-module, and M a
positive real number.

(i) Write j1 < j2 < · · · < jnp for integers such that p ∈ Σjm for each m.
Suppose that for each integer m such that 1 ≤ m ≤ np, it holds that

−χ{p}(Gjm−1/Gjm
) ≥ cd(Gjm−1/Gjm

) · 3mM,

and, moreover, that for any integers i, j such that i ≥ 0, 0 < j ≤ n and
p /∈ Σj, Gj−1/Gj acts trivially on Hi(Gj , A). Then for each nonnegative
integer i such that i 6= np, it holds that hnp(G,A) > Mhi(G,A).

(ii) There exists an open subgroup U ⊂ G of G such that, for each nonnegative
integer i such that i 6= np, it holds that hnp(U,A) > Mhi(U,A).

Proof. We verify assertion (i) by induction on n. If n = 1 and p ∈ Σ1, then np = 1,
and for i = 0, 2, it follows from Proposition 2.7(iii) that

h1(G,A) ≥ −χ{p}(G) logq(]A) + hi(G,A) > −χ{p}(G)hi(G,A) ≥ Mhi(G,A).

If p /∈ Σ1, then np = 0, cdp G = 0, and G acts trivially on H0(G1, A) = A. Thus,
it holds that H0(G,A) = A, which implies that h0(G,A) = logq(]A) > 0. This
completes the proof of assertion (i) in the case n = 1.

Now suppose that n ≥ 2, and that the induction hypothesis is in force. First,
suppose that p /∈ Σ1. Then it follows from the induction hypothesis that, for each
nonnegative integer i such that i 6= np, it holds that hnp(G1, A) > Mhi(G1, A). On
the other hand, since p /∈ Σ1, it holds that cdp(G/G1) = 0. Thus, since (we have
assumed that) for each nonnegative integer i, G/G1 acts trivially on Hi(G1, A),
we obtain an isomorphism Hi(G,A) ∼= Hi(G1, A), which implies that for each
nonnegative integer i such that i 6= np, we have hnp(G,A) > Mhi(G,A).

Finally, suppose that p ∈ Σ1. Then it follows from the induction hypothesis that,
for each nonnegative integer i such that i 6= np − 1, it holds that hnp−1(G1, A) >
3Mhi(G1, A). Let us write hi,j := hi(G/G1,H

j(G1, A)) for each pair of integers
(i, j). Then it follows from the Hochschild-Serre spectral sequence that

hnp(G,A) ≥ h1,np−1 ≥ −χ{p}(G/G1)hnp−1(G,A).

Moreover, it follows from Proposition 2.7(iii),(iv) that, if i 6= 1 and j 6= np−1, then
we have

hi,j ≤ hj(G1, A) <
1

3M
hnp−1(G1, A),

if i 6= 1 and j = np − 1, then we have

hi,j ≤ hnp−1(G1, A),

and if i = 1 and j 6= np − 1, then we have

hi,j ≤ (−χp(G/G1)+cd(G/G1))hj(G1, A) <
−χp(G/G1) + cd(G/G1)

3M
hnp−1(G1, A).

Now suppose that cd(G/G1) = 1. Then it follows from the Hochschild-Serre
spectral sequence that for any nonnegative integer i, we have hi(G,A) ≤ h0,i +
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h1,i−1. Thus, if i 6= np, then we have

Mhi(G,A) ≤ M(h0,i + h1,i−1)

< M

(
max

{
1

3M
, 1

}
+
−χ{p}(G/G1) + 1

3M

)
hnp−1(G1, A)

=
1
3
(−χ{p}(G/G1) + 1 + max{1, 3M})hnp−1(G1, A)

≤
−χ{p}(G/G1) + 1 + max{1, 3M}

−3χ{p}(G/G1)
hnp(G,A).

Since
−χ{p}(G/G1) + 2

−3χ{p}(G/G1)
≤ 1,

−χ{p}(G/G1) + 1 + 3M

−3χ{p}(G/G1)
≤ 2

3
+

M

3M
= 1,

we conclude that Mhi(G,A) < hnp(G,A).
Next, suppose that cd(G/G1) = 2. In this case, it follows from Proposition 2.7(i),

(iv) that −χ{p}(G/G1) ≥ max{2, 6M}. Moreover, it follows from the Hochschild-
Serre spectral sequence that for any nonnegative integer i, we have hi(G,A) ≤
h0,i + h1,i−1 + h2,i−2. Thus, if i 6= np, then we have

Mhi(G,A) ≤ M(h0,i + h1,i−1 + h2,i−2)

< M

(
max

{
1

3M
, 1

}
+

1
3M

+
−χ{p}(G/G1) + 2

3M

)
hnp−1(G1, A)

=
1
3
(−χ{p}(G/G1) + 3 + max{1, 3M})hnp−1(G1, A)

≤
−χ{p}(G/G1) + 3 + max{1, 3M}

−3χ{p}(G/G1)
hnp(G,A).

Since
−χ{p}(G/G1) + 4

−3χ{p}(G/G1)
≤ 1,

−χ{p}(G/G1) + 3 + 3M

−3χ{p}(G/G1)
≤ 5

6
+

M

6M
= 1,

we conclude that Mhi(G,A) < hnp(G,A). This completes the proof of assertion (i).
Assertion (ii) follows from assertion (i), together with Lemma 2.12. This completes
the proof of Lemma 2.14. ¤

Theorem 2.15. Let (G, (Gj)0≤j≤n, (Σj)1≤j≤n) be a successive extension of surface
groups and m a nonnegative integer. Write Σ :=

⋂n
j=1 Σj. Suppose that Σ 6= ∅.

Then the following conditions are equivalent:
(1) m = n.
(2) For any positive real number M , there exists an open subgroup V ⊂ G of G

such that, for any open subgroup U ⊂ V of V , any nonzero finite Σ-torsion
U -module A, and any nonnegative integer i such that i 6= m, it holds that
hm(U,A) > Mhi(U,A).

(3) There exist a positive real number M and an open subgroup V ⊂ G of
G such that, for any open subgroup U ⊂ V , there exists a nonzero finite
Σ-torsion U -module A such that, for any nonnegative integer i such that
i 6= m, it holds that hm(U,A) > Mhi(U,A).
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(4) There exist a positive real number M and an open subgroup U ⊂ G of G
such that, for any nonzero finite Σ-torsion U -module A and any nonnegative
integer i such that i 6= m, it holds that hm(U,A) > Mhi(U,A).

(5) There exist an open subgroup U ⊂ G of G and a nonzero finite Σ-torsion
U -module A such that, for any nonnegative integer i such that i 6= m, it
holds that hm(U,A) ≥ 3cd Ghi(U,A).

In particular, n is completely determined by the profinite group G.

Proof. The implications (2) ⇒ (3), (2) ⇒ (4), and (2) ⇒ (5) are immediate. First,
we verify the implication (1) ⇒ (2). It follows from Lemma 2.12 that there exists
an open subgroup V ⊂ G of G such that, for each integer j such that 0 < j ≤ n,
it holds that −χΣ((V ∩Gj−1)/(V ∩Gj)) ≥ 2 · 3jM . Then it follows from Lemma
2.14(i) that, for any p ∈ Σ, any open subgroup U ⊂ V of V , any finite nonzero
p-primary U -module A, and any nonnegative integer i such that i 6= n, it holds
that hn(U,A) = hn(V, IndU

V A) > Mhi(V, IndU
V A) = Mhi(U,A). Since any finite

Σ-torsion U -module is isomorphic to a direct sum of finite p-primary U -modules
(where p ∈ Σ), the same inequality holds for any nonzero finite Σ-torsion U -module.
This completes the proof of the implication (1) ⇒ (2).

Next, we verify the implication (3) ⇒ (1). Suppose that condition (3) is satisfied.
Let M be a positive real number and V ⊂ G an open subgroup of G satisfying
the condition appearing in (3). Then, since (we have already verified that) the
implication (1) ⇒ (2) holds, there exists an open subgroup W ⊂ G of G satisfying
the condition appearing in (2) for “V ”, where we take the data “(m,M)” to be
(n,M−1). Now it follows from our choice of V that there exists a nonzero finite
Σ-torsion V ∩W -module A such that, for any nonnegative integer i such that i 6= m,
it holds that hm(V ∩W,A) > Mhi(V ∩W,A). On the other hand, it follows from
our choice of W that, for any nonnegative integer i such that i 6= n, it holds that
hn(V ∩W,A) > M−1hi(V ∩W,A). Thus, we conclude that m = n. This completes
the proof of the implication (3) ⇒ (1).

Next, we verify the implication (4) ⇒ (1). Suppose that condition (4) is satisfied.
Let M be a positive real number and U ⊂ G an open subgroup of G satisfying
the condition appearing in (4). Then, since (we have already verified that) the
implication (1) ⇒ (2) holds, there exists an open subgroup V ⊂ G of G satisfying
the condition appearing in (2), where we take the data “(m,M)” to be (n,M−1).
Let A be a nonzero finite Σ-torsion U∩V -module. Then it follows from our choice of
U that, for any nonnegative integer i such that i 6= m, it holds that hm(U ∩V, A) =
hm(U, IndU∩V

U A) > Mhi(U, IndU∩V
U A) = Mhi(U ∩ V, A). Thus, by applying an

argument similar to the argument used in the proof of the implication (3) ⇒ (1),
we conclude that m = n. This completes the proof of the implication (4) ⇒ (1).

Finally, we verify the implication (5) ⇒ (1). Let p ∈ Σ. Suppose that condition
(5) is satisfied. Let us take an open subgroup U ⊂ G of G and a nonzero finite Σ-
torsion U -module A satisfying condition (5). Moreover, it follows from Proposition
2.7(i), Corollary 2.11 that cdG = cdp G =

∑n
j=1 cdp(Gj−1/Gj) ≥ n. Thus, by

applying Lemma 2.14(i), where we take M = 3− cd G, for each nonnegative integer
i such that i 6= n, we have hn(U,A) > 3− cd Ghi(U,A), which implies that m = n.
This completes the proof of the implication (5) ⇒ (1), hence also of Theorem
2.15. ¤
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Remark 2.15.1. It is unknown whether the p-dimension np of (G, (Gj)0≤j≤n, (Σj)1≤j≤n)
is completely determined by the profinite group G or not (where p is a prime number
such that p /∈ ⋂n

j=1 Σj).

Corollary 2.16. Let p be a prime number, S a connected noetherian separated
normal scheme over k, and X a hyperbolic polycurve over S (resp. a hyperbolic
polycurve over S satisfying condition (∗)p). Then the relative dimension of X/S
can be reconstructed group-theoretically from ∆X/S (resp. ∆p

X/S).

Proof. This follows from Theorem 2.15 (cf. Example 2.6.1). ¤

Corollary 2.17. Let p be a prime number, S a connected noetherian separated
normal scheme over k, and X a hyperbolic polycurve over S (resp. a hyperbolic
polycurve over S satisfying condition (∗)p). Write n for the relative dimension of
X/S. Then it holds that ]{j | Xj+1 → Xj : proper} = cd(∆X/S) − n (resp. ]{j |
Xj+1 → Xj : proper} = cd(∆p

X/S) − n). In particular, ]{j | Xj+1 → Xj : proper}
can be reconstructed group-theoretically from ∆X/S (resp. ∆p

X/S).

Proof. The first assertion follows from Proposition 2.7(i), Corollary 2.11. The sec-
ond assertion follows from the first assertion, together with Corollary 2.16. ¤

Remark 2.17.1. Corollary 2.17 implies a purely algebrico-geometric fact that the
number ]{j | Xj+1 → Xj : proper} does not depend on the sequence of parametriz-
ing morphisms of X → S. The author does not know at the time of writing whether
we can prove the above fact only by using a purely algebrico-geometric method or
not.

Lemma 2.18. Let p be a prime number and 1 → N → G → H → 1 an exact
sequence of profinite groups. Let us consider the H-module Fp with trivial action.
Then the following hold:

(i) Suppose that for each nonnegative integer i, it holds that Hi(N,Fp) and
Hi(G,Fp) are finite, and that the action of H on Hi(N,Fp) is trivial. Then,
for each nonnegative integer i, Hi(H,Fp) is finite.

(ii) Let M be a positive real number and n1, n2 nonnegative integers. Suppose
that the conditions appearing in (i) are satisfied. Suppose, moreover, that
the following conditions are satisfied:
(1) cdp H < ∞.
(2) For each nonnegative integer i such that i 6= n1, it holds that

hn1(G,Fp) > (cdp H + 2M + 1)hi(G,Fp).

(3) For each nonnegative integer i such that i 6= n2, it holds that

hn2(N,Fp) > (cdp H + 2M + 1)hi(N,Fp).

Then, for each nonnegative integer i such that i 6= n1 − n2, it holds that
hn1−n2(H,Fp) > Mhi(H,Fp). In particular, 0 ≤ n1 − n2 ≤ cdp H. More-
over, if M ≥ 1 and n1 = n2, then, for each nonnegative integer i, it holds
that Hi(G,Fp) ∼= Hi(N,Fp).

Proof. For simplicity, we assume that q = p (cf. Remark 1.3.1(i)). Note that we
have the Hochschild-Serre spectral sequence

Eij
2 = Hi(H, Hj(N,Fp)) ⇒ Hi+j(G,Fp)
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associated to the exact sequence 1 → N → G → H → 1. First, we verify assertion
(i) by induction on i. If i = 0, then assertion (i) is immediate. Now suppose that
i ≥ 1, and that for each nonnegative integer m such that m < i, Hm(H,Fp) is finite.
Then since (we have assumed that) for each nonnegative integer j, H acts trivially

on Hj(N,Fp), it follows from the fact that Hj(N,Fp) ∼= Fhj(N,Fp)
p , together with

the induction hypothesis, that for each nonnegative integer m such that m < i,
it holds that Emj

2 = Hm(H, Hj(N,Fp)) ∼= Hm(H,Fp)hj(N,Fp) is finite. Thus, for
each integers j, m, r such that j ≥ 0, 0 ≤ m < i, r ≥ 2, it holds that Emj

r is finite.
In particular, for each integer r such that r ≥ 2, it holds that Ei−r,r−1

r , hence
also Im(Ei−r,r−1

r → Ei,0
r ), is finite. On the other hand, since Hi(G,Fp) is finite,

it holds that Ei,0
∞ is finite. Thus, it follows from the fact that Ei,0

r+1 is isomorphic
to Ei,0

r / Im(Ei−r,r−1
r → Ei,0

r ), together with the finiteness of Im(Ei−r,r−1
r → Ei,0

r ),
that for each integer r such that r ≥ 2, Ei,0

r is finite. In particular, Hi(H,Fp) = Ei,0
2

is finite. This completes the proof of assertion (i).
Next, we verify assertion (ii). Let us choose a nonnegative integer i0 such that

i0 6= n1 − n2 and that hi0(H,Fp) is largest among {hi(H,Fp)}i 6=n1−n2 . To verify
the first assertion, it suffices to verify that hn1−n2(H,Fp) > Mhi0(H,Fp). Now,
since for each pair of nonnegative integers (i, j), it holds that

Hi(H, Hj(N,Fp)) ∼= Hi(H,Fhj(N,Fp)
p ) ∼= Hi(H,Fp)hj(N,Fp),

we have

logp(]E
ij
∞) ≤ logp(]E

ij
2 ) = hi(H, Hj(N,Fp)) = hi(H,Fp) · hj(N,Fp).

Thus, it follows from our choice of i0, together with assumption (3), that

hn1(G,Fp) =
∑

i+j=n1

logp(]E
ij
∞)

≤
∑

i+j=n1

hi(H,Fp) · hj(N,Fp)

= hn1−n2(H,Fp) · hn2(N,Fp) +
∑

0≤i≤cdp H
i 6=n1−n2

hi(H,Fp) · hn1−i(N,Fp)

≤ hn1−n2(H,Fp) · hn2(N,Fp) +
cdp H + 1

cdp H + 2M + 1
hi0(H,Fp) · hn2(N,Fp)

≤ (hn1−n2(H,Fp) + hi0(H,Fp))hn2(N,Fp).

On the other hand, it holds that

logp(]E
i0,n2
r+1 ) ≥ logp(]E

i0,n2
r )− logp(]E

i0+r,n2−r+1
r )− logp(]E

i0−r,n2+r−1
r )

≥ logp(]E
i0,n2
r )− logp(]E

i0+r,n2−r+1
2 )− logp(]E

i0−r,n2+r−1
2 ),

which implies that

logp(]E
i0,n2∞ ) = logp(]E

i0,n2
cdp H+1)

≥ logp(]E
i0,n2
2 )−

cdp H∑
r=2

(logp(]E
i0+r,n2−r+1
2 ) + logp(]E

i0−r,n2+r−1
2 ))

= hi0(H,Fp) · hn2(N,Fp)−
cdp H∑
r=2

(logp(]E
i0+r,n2−r+1
2 ) + logp(]E

i0−r,n2+r−1
2 )).
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Moreover, it follows from our choice of i0, together with assumption (3), that
cdp H∑
r=2

(logp(]E
i0+r,n2−r+1
2 ) + logp(]E

i0−r,n2+r−1
2 ))

=
cdp H∑
r=2

(hi0+r(H,Fp) · hn2−r+1(N,Fp) + hi0−r(H,Fp) · hn2+r−1(N,Fp))

≤ 1
cdp H + 2M + 1

hn2(N,Fp)
cdp H∑
r=2

(hi0+r(H,Fp) + hi0−r(H,Fp))

≤ 1
cdp H + 2M + 1

hn2(N,Fp)
∑

0≤r≤cdp H
r 6=i0

hr(H,Fp)

≤ 1
cdp H + 2M + 1

hn2(N,Fp)(cdp H · hi0(H,Fp) + hn1−n2(H,Fp)).

Thus, we conclude that

logp(]E
i0,n2∞ ) ≥ 1

cdp H + 2M + 1
((2M + 1)hi0(H,Fp)− hn1−n2(H,Fp))hn2(N,Fp).

Now, since i0 6= n1 − n2, we have (cdp H + 2M + 1)hi0+n2(G,Fp) < hn1(G,Fp) (cf.
assumption (2)). Moreover, it is clear that hi0+n2(G,Fp) ≥ logp(]Ei0,n2∞ ). Thus,
we conclude that

(2M + 1)hi0(H,Fp)− hn1−n2(H,Fp) < hn1−n2(H,Fp) + hi0(H,Fp),

which implies that hn1−n2(H,Fp) > Mhi0(H,Fp). This completes the proof of the
first assertion.

Finally, suppose that M ≥ 1 and n1 = n2. Then, for each positive integer i, it
holds that ]Hi(H,Fp) < ]H0(H,Fp) = p, i.e., Hi(H,Fp) = {0}. Thus, since (we
have assumed that) the action of H on Hj(N,Fp) is trivial, we have

Eij
∞ ∼= Eij

2
∼=

{
Hj(N,Fp) (i = 0)
{0} (i 6= 0),

which implies that Hi(G,Fp) ∼= Hi(N,Fp). This completes the proof of assertion
(ii), hence also of Lemma 2.18. ¤

Theorem 2.19. Let p be a prime number and (G, (Gj)0≤j≤n, (Σj)1≤j≤n),
(G′, (G′j)0≤j≤n′ , (Σ′j)1≤j≤n′) successive extensions of surface groups of dimension
n, n′, respectively. Write np, n

′
p for the p-dimension of (G, (Gj)0≤j≤n, (Σj)1≤j≤n),

(G′, (G′j)0≤j≤n′ , (Σ′j)1≤j≤n′), respectively. Suppose that there exists an injective
homomorphism G ↪→ G′ such that the image is normal in G′. Suppose, moreover,
that p ∈ ⋂n′

j=1 Σ′j. Then it holds that np ≤ n′p, cdp G−np ≤ cdp G′−n′p. Moreover,
if np = n′p, then G ↪→ G′ is open, and n = n′ = np = n′p.

Proof. Let us regard G as a normal closed subgroup of G′ via G ↪→ G′. It follows
from Corollary 1.9, Lemma 2.10 that vcdp(G′/G) = cdp G′ − cdp G. Thus, there
exists an open subgroup H ⊂ G′/G of G′/G such that cdp H = cdp G′−cdp G. Write
H ′ ⊂ G′ for the inverse image of H ⊂ G′/G by the natural surjection G′ ³ G′/G.
Then it follows from the implication (1) ⇒ (2) of Theorem 2.15 that there exists
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an open subgroup V ′ ⊂ H ′ of H ′ such that, for any open subgroup U ′ ⊂ V ′ of
V ′ and nonnegative integer i such that i 6= n′p = n′, it holds that hn′p(U ′,Fp) >

(cdp G′− cdp G+3)hi(U ′,Fp). Moreover, it follows from Lemma 2.14(ii) that there
exists an open subgroup W ⊂ V ′ ∩ G of V ′ ∩ G such that, for each nonnegative
integer i such that i 6= np, it holds that hnp(W,Fp) > (cdp G′−cdp G+3)hi(W,Fp).
Now it follows from Lemma 1.5 that there exists an open subgroup W ′ ⊂ V ′ such
that W ′ ∩ G = W . Then, since W ′/W is an open subgroup of H, it follows from
Lemma 2.10 that there exists an open subgroup U ⊂ W ′/W such that, for each
nonnegative integer i, U acts trivially on Hi(W,Fp).

Write U ′ ⊂ W ′ for the inverse image of U ⊂ W ′/W by the natural surjection
W ′ ³ W ′/W . Then it follows from our choice of W,U ′, U that

• the sequence 1 → W → U ′ → U → 1 is exact,
• W (resp. U ′, U) is an open subgroup of G (resp. G′, H),
• for each nonnegative integer i, the action of U on Hi(W,Fp) is trivial,
• for each nonnegative integer i such that i 6= np, it holds that

hnp(W,Fp) > (cdp G′ − cdp G + 3)hi(W,Fp),

• for each nonnegative integer i such that i 6= n′p, it holds that

hn′p(U ′,Fp) > (cdp G′ − cdp G + 3)hi(U ′,Fp).

Thus, it follows from Lemma 2.18(ii), together with Lemma 2.10, that 0 ≤ n′p −
np ≤ cdp U = cdp H = cdp G′ − cdp G, which implies that np ≤ n′p, cdp G − np ≤
cdp G′ − n′p.

Next, assume that np = n′p and U is nontrivial. Then it follows from Lemma
2.18(ii) that, for each nonnegative integer i, it holds that Hi(U ′,Fp) ∼= Hi(W,Fp).
In particular, we have χ(U ′,Fp) = χ(W,Fp). On the other hand, since U is non-
trivial, there exists a proper open subgroup Ũ ( U of U . Write Ũ ′ ⊂ U ′ for
the inverse image of Ũ ( U by the surjection U ′ ³ U . Then, by applying an
argument similar to the above argument, we have χ(Ũ ′,Fp) = χ(W,Fp). Thus,
we conclude that χ(U ′,Fp) = χ(Ũ ′,Fp). However, since χ{p}(U

′) and χ{p}(Ũ
′)

are defined and nonzero (cf. Proposition 2.7(iv), Corollary 2.9), it follows from
Lemma 1.4(i) that χ{p}(Ũ

′) = [U ′ : Ũ ′]χ{p}(U
′) 6= χ{p}(U

′), which contradicts the
equation above. Thus, if np = n′p, then it holds that U = {1}, hence U ′ = W .
This implies that G ↪→ G′ is open. Then, since (G, (G ∩ G′j)0≤j≤n′ , (Σ′j)1≤j≤n′)
is a successive extension of surface groups, it follows from Proposition 2.13 that⋂n

j=1 Σj =
⋂n′

j=1 Σ′j 3 p. Thus, it holds that n = np = n′p = n′. This completes the
proof of Theorem 2.19. ¤

Corollary 2.20. Let p be a prime number, k1, k2 fields of characteristic zero,
S, T connected noetherian separated normal schemes over k1, k2, respectively, and
X, Y hyperbolic polycurves over S, T (resp. hyperbolic polycurves over S, T satisfying
condition (∗)p), respectively. Write nX , nY for the relative dimension of X/S, Y/T ,
respectively. Suppose that there exists an injective homomorphism ∆X/S ↪→ ∆Y/T

(resp. ∆p
X/S ↪→ ∆p

Y/T ) such that the image is normal in ∆Y/T (resp. ∆p
Y/T ). Then

it holds that nX ≤ nY , ]{j | Xj+1 → Xj : proper} ≤ ]{j | Yj+1 → Yj : proper}.
Moreover, if nX = nY , then ∆X/S ↪→ ∆Y/T (resp. ∆p

X/S ↪→ ∆p
Y/T ) is open.

Proof. This follows from Corollary 2.17, Theorem 2.19. ¤
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Proposition 2.21. Let p be a prime number and (G, (Gj)0≤j≤n, (Σj)1≤j≤n) a
successive extension of surface groups of p-dimension np. Let us consider the G-
module Fp with trivial action. Then the following conditions are equivalent:

(1) cdp G = 2np.
(2) For any open subgroup U ⊂ G of G, it holds that ]Hcdp G(U,Fp) ≤ p.

Proof. For simplicity, we assume that q = p (cf. Remark 1.3.1(i)). For each integer
j such that 1 ≤ j ≤ n, let (gi, ri) be a pair of nonnegative integers such that
Gj−1/Gj

∼= ΠΣj
gj ,rj . Since it holds that

cdp G =
n∑

j=1

cdp(Gj−1/Gj) =
∑

j: p∈Σj

cdp(Gj−1/Gj)

(cf. Corollary 2.11), condition (1) holds if and only if cdp(Gj−1/Gj) = 2 for each j
such that p ∈ Σj , i.e., rj = 0 for each j such that p ∈ Σj (cf. Proposition 2.7(i)).

Now we verify the implication (1) ⇒ (2). Suppose that condition (1) is sat-
isfied. We verify that condition (2) holds by induction on n. If n = 1 and
p /∈ Σ1, then condition (2) immediately holds. If n = 1 and p ∈ Σ1, then
it follows from Proposition 2.7(iii) that condition (2) holds. Now suppose that
n ≥ 2, and that the induction hypothesis is in force. Let U ⊂ G be an open
subgroup of G. Write U1 := U ∩ G1. Note that since (G, (Gj)0≤j≤n, (Σj)1≤j≤n)
satisfies condition (1), (G1, (Gj+1)0≤j≤n−1, (Σj+1)1≤j≤n−1) also satisfies condition
(1). Thus, it follows from the induction hypothesis that ]Hcdp G1(U1,Fp) ≤ p.
If p /∈ Σ1, then, since it holds that Hcdp G(U,Fp) = (Hcdp G1(U1,Fp))U/U1 , we
have ]Hcdp G(U,Fp) ≤ ]Hcdp G1(U1,Fp) ≤ p. If p ∈ Σ1, then, since it holds that
Hcdp G(U,Fp) ∼= H2(U/U1,H

cdp G1(U1,Fp)), it follows from Proposition 2.7(iii)
that ]Hcdp G(U,Fp) ≤ ]Hcdp G1(U1,Fp) ≤ p. This completes the proof of the impli-
cation (1) ⇒ (2).

Next, we verify the implication (2) ⇒ (1). Suppose that cdp G 6= 2np. We
verify that there exists an open subgroup U ⊂ G of G such that ]Hcdp G(U,Fp) > p
(i.e., hcdp G(U,Fp) > 1) by induction on n. If n = 1, then, since cdp G 6= 2np,
it holds that p ∈ Σ1, r1 6= 0. Thus, it follows from Proposition 2.7(iv) that
h1(G,Fp) = h0(G,Fp) − χ{p}(G) > 1. Now suppose that n ≥ 2, and that the
induction hypothesis is in force. Then it follows from Lemma 1.6 that there exists
an open subgroup V ⊂ G1 of G1 such that Hcdp G1(V,Fp) 6= {0}. Note that, by
the induction hypothesis, if (G1, (Gj+1)0≤j≤n−1, (Σj+1)1≤j≤n−1) does not satisfy
condition (1), then, by replacing V by an open subgroup of V if necessary, we may
assume that hcdp G1(V,Fp) > 1.

On the other hand, it follows from Lemma 1.5 that there exists an open subgroup
W ⊂ G of G such that W ∩ G1 = V . Moreover, since Hcdp G1(V,Fp) is finite (cf.
Lemma 2.10), there exists an open subgroup H ⊂ W/V of W/V (hence also of
G/G1) such that H acts trivially on Hcdp G1(V,Fp). By replacing H by an open
subgroup of H if necessary, we may assume that Hcdp(G/G1)(H,Fp) 6= {0} (cf.
Lemma 1.6). Write U ⊂ W for the inverse image of H ⊂ W/V by the natural
surjection W ³ W/V . Then it follows from the Hochschild-Serre spectral sequence
that

Hcdp G(U,Fp) ∼= Hcdp(G/G1)(H, Hcdp G1(V,Fp)),
which implies that hcdp G(U,Fp) = hcdp G1(V,Fp) · hcdp(G/G1)(H,Fp). Note that at
least one of (G1, (Gj+1)0≤j≤n−1, (Σj+1)1≤j≤n−1) and (G/G1, (Gj/G1)0≤j≤1, (Σ1)1≤j≤1)
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does not satisfy condition (1). If (G1, (Gj+1)0≤j≤n−1, (Σj+1)1≤j≤n−1) does not sat-
isfy condition (1), then, since we have assumed that hcdp G1(V,Fp) > 1, we have
hcdp G(U,Fp) > 1. If (G/G1, (Gj/G1)0≤j≤1, (Σ1)1≤j≤1) does not satisfy condition
(1), then it follows from an argument similar to the argument in the case of n = 1
that hcdp(G/G1)(H,Fp) > 1, which implies that hcdp G(U,Fp) > 1. This completes
the proof of the implication (2) ⇒ (1), hence also of Proposition 2.21. ¤

Corollary 2.22. Let p be a prime number, S a connected noetherian separated
normal scheme over k, and X a hyperbolic polycurve over S (resp. a hyperbolic
polycurve over S satisfying condition (∗)p). Let us consider the ∆X/S (resp. ∆p

X/S)-
module Fp with trivial action. Then the following conditions are equivalent:

(1) X → S is proper.
(2) For each integer j such that 1 ≤ j ≤ n, Xj → Xj−1 is proper.
(3) For any open subgroup U of ∆X/S (resp. ∆p

X/S), it holds that ]Hcd(∆X/S)(U,Fp) ≤
p.

Proof. The equivalence (2) ⇔ (3) follows from Corollary 2.17, Proposition 2.21.
Moreover, the implication (2) ⇒ (1) is trivial. We verify the implication (1) ⇒ (2)
by induction on n. If n = 1, then the implication (1) ⇒ (2) is immediate. Now
suppose that n ≥ 2, and that the induction hypothesis is in force. Suppose that
condition (1) is satisfied. Then, since X1 → S is separated, X → X1 is proper.
Thus, it follows from the induction hypothesis that for each integer j such that
2 ≤ j ≤ n, Xj → Xj−1 is proper. On the other hand, it is clear that X1 → X0 = S
is separated and of finite type, X → X1 is surjective, and X → X0 is universally
closed. Thus, since surjectivity is stable under base change, it holds that X1 → X0

is universally closed, hence proper. This completes the proof of the implication
(1) ⇒ (2), hence also of Corollary 2.22. ¤

Remark 2.22.1. In fact, by comparing the profinite cohomology groups with the
étale cohomology groups, we can verify that the conditions appearing in Corollary
2.22 are equivalent to the following condition:

(3)′ For any open subgroup U of ∆X/S (resp. ∆p
X/S), it holds that Hcd(∆X/S)(U,Fp) ∼=

Fp.

Corollary 2.23. Let p be a prime number and (G, (Gj)0≤j≤n, (Σj)1≤j≤n),
(G′, (G′j)0≤j≤n′ , (Σ′j)1≤j≤n′) successive extensions of surface groups of p-dimension
np, n

′
p, respectively. Suppose that there exists an injective homomorphism G ↪→ G′

such that the image is normal in G′. Suppose, moreover, that cdp G′ = 2n′p. Then
it holds that cdp G = 2np.

Proof. For simplicity, we assume that q = p (cf. Remark 1.3.1(i)). Let us regard
G as a normal closed subgroup of G′ via G ↪→ G′. Suppose that cdp G 6= 2np.
Then it follows from Proposition 2.21 that there exists an open subgroup N ⊂ G
of G such that ]Hcdp G(N,Fp) > p. On the other hand, it follows from Lemma
1.5 that there exists an open subgroup V ⊂ G′ of G′ such that V ∩ G = N . Note
that it follows from Lemma 2.10 that Hcdp G(N,Fp) is finite. Moreover, it follows
from Corollary 1.9 that vcdp(V/N) = cdp G′ − cdp G. Thus, there exists an open
subgroup H ⊂ V/N of V/N such that cdp H = cdp G′− cdp G, and the action of H
on Hcdp G(N,Fp) is trivial. By replacing H by an open subgroup of H if necessary,
we may assume that Hcdp G′−cdp G(H,Fp) 6= {0} (cf. Lemma 1.6).
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Write U ⊂ V for the inverse image of H ⊂ V/N by the natural surjection V ³
V/N . Then U is an open subgroup of G′, and the sequence 1 → N → U → H → 1
is exact. Thus, it follows from the Hochschild-Serre spectral sequence that

Hcdp G′(U,Fp) ∼= Hcdp G′−cdp G(H, Hcdp G(N,Fp)),

which implies that hcdp G′(U,Fp) = hcdp G(N,Fp) · hcdp G′−cdp G(H,Fp) > 1. How-
ever, since (we have assumed that) cdp G′ = 2n′p, we obtain a contradiction (cf.
Proposition 2.21). This completes the proof of Corollary 2.23. ¤
Corollary 2.24. Let p be a prime number, k1, k2 fields of characteristic zero,
S, T connected noetherian separated normal schemes over k1, k2, respectively, and
X, Y hyperbolic polycurves over S, T (resp. hyperbolic polycurves over S, T satisfying
condition (∗)p), respectively. Suppose that there exists an injective homomorphism
∆X/S ↪→ ∆Y/T (resp. ∆p

X/S ↪→ ∆p
Y/T ) such that the image is normal in ∆Y/T

(resp. ∆p
Y/T ). Suppose, moreover, that Y → T is proper. Then X → S is proper.

Proof. This follows from Corollary 2.23, together with Corollary 2.17 and the equiv-
alence (1) ⇔ (2) of Corollary 2.22. ¤
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