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Abstract

In the present paper, we investigate the p-ranks of coverings of curves. Let
G be a finite p-group, f : Y −→ X a morphism of pointed semi-stable curves
over a complete discrete valuation ring R with algebraically closed residue field of
characteristic p > 0, and x a closed point of X . Write η for the generic point of
S := SpecR, and s for the closed point of S. Suppose that the generic fiber Xη of
X is a smooth pointed stable curve over η, and that the morphism fη : Yη −→ Xη

induced by f on generic fibers is a Galois covering whose Galois group is isomorphic
to G, and whose branch locus is contained in the set of marked points of Xη. If
f−1(x) is not a finite set, we shall call x a vertical point associated to f and f−1(x)
the vertical fiber associated to x. We give an explicit formula for the p-rank σ(Ys)
of the special fiber Ys of Y and an explicit formula for the p-rank σ(f−1(x)) of
the vertical fiber f−1(x) associated to x. The formula for the p-rank σ(Ys) can be
regarded as a relative version of the Deuring-Shafarevich formula, and the formula
for the p-rank σ(f−1(x)) generalizes a result of M. Säıdi concerning the formula for
the p-rank σ(f−1(x)) to the case where G is an arbitrary p-group.
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1 Introduction

Let C be a smooth projective curve over an algebraically closed field of characteristic
p > 0. There are two natural invariants associated to C: the genus g(C) and the p-rank
σ(C) := dimFpH

1
ét(C,Fp). These two invariants determine, respectively, the isomorphism

classes (as profinite groups) of the maximal pro-Σ and pro-p quotients of the étale fun-
damental group π1(C) of C, for Σ a set of prime numbers which does not contain p. The
genus and p-rank have some similar properties. Let G be a finite group and h : C ′ −→ C
a G-Galois covering of smooth projective curves (i.e., the extension of function fields
K(C ′)/K(C) induced by h is a Galois extension with Galois group G). The genus g(C ′)
of C ′ can be calculated by the Riemann-Hurwitz formula. In particular, if (♯G, p) = 1,
then the Riemann-Hurwitz formula has the following form:

g(C ′) = ♯G · (g(C)− 1) +
∑

c′∈(C′)cl

(ec′ − 1)/2 + 1,

where (C ′)cl denotes the set of the closed points of C ′, ec′ denotes the ramification index at
c′, and ♯G denotes the order of G. If G is a p-group, then we have the Deuring-Shafarevich
formula (cf. [C]) for the p-rank σ(C ′), as follows:

σ(C ′) = ♯G · (σ(C)− 1) +
∑

c′∈(C′)cl

(ec′ − 1) + 1,

where (C ′)cl denotes the set of the closed points of C ′, ec′ denotes the ramification index
at c′, and ♯G denotes the order of G. In the present paper, we study the geometry of
coverings of curves over a complete discrete valuation ring and prove a relative version
of the Deuring-Shafarevich formula (cf. Theorem 4.5).

Let R be a complete valuation ring with algebraically closed residue field k of charac-
teristic p > 0. Write K for the quotient field of R, S := SpecR, η : SpecK −→ S and
s : Spec k −→ S for the natural morphisms. Let G be a finite group and X = (X,DX) a
pointed semi-stable curve of genus gX over S, where X denotes the underlying curve of X
and DX denotes the set of marked points (each of which is a section S −→ X of X −→ S)
of X . Write Xη = (Xη, DXη) and Xs = (Xs, DXs) for the result of base-changing X by
η and s, respectively. Moreover, we suppose that Xη is a smooth pointed stable curve
over η.

Let Yη = (Yη, DYη) be a smooth pointed stable curve over η and fη : Yη −→ Xη

a morphism of pointed stable curves over η. Write ImDYη
and ImDXη

for the sets of
the images of the elements of DYη and DXη , respectively. Suppose that fη is a Galois
covering whose Galois group is isomorphic to G such that f−1

η (ImDXη
) = ImDYη

, and that
the branch locus of fη is contained in ImDXη

. By replacing S by a finite extension of S
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(i.e., the spectrum of the normalization of R in a finite extension of K), we may assume
that fη extends uniquely to a G-pointed semi-stable covering (cf. Definition 3.3)
f : Y = (Y,DY ) −→ X over S (cf. Proposition 3.4). We are interested in understanding
the structure of the special fiber Ys = (Ys, DYs) of Y . If the order ♯G of G is prime
to p, then by the specialization theorem for log étale fundamental groups, the morphism
fs : Ys −→ Xs on special fibers induced by f is an admissible covering (cf. [V], [Y1]); thus,
Ys may be obtained by gluing together tame coverings of the irreducible components of
Xs. On the other hand, if p|♯G, then fs is not a finite morphism in general. For example,
if char(K) = 0, char(k) = p > 0, and X is a stable curve (i.e., DX = ∅), then there exists
a Zariski dense subset Z of the set of closed points Xcl of X, which may in fact be taken
to be Xcl when k is an algebraic closure of Fp, such that for any x ∈ Z, after possibly
replacing S by a finite extension of S, there exist a finite group H and an H-pointed
semi-stable covering fW : W −→ X over S such that the fiber (fW )−1(x) is not finite (cf.
[T], [Y2]). If f−1(x) is not finite, then we shall call x a vertical point associated to f
and call f−1(x) the vertical fiber associated to x (cf. Definition 3.6).

In order to investigate the properties of Ys, we focus on the p-rank σ(Ys) of Ys (cf.
Definition 3.1 (b)). By the definition of the p-rank of a pointed semi-stable curve, to
calculate σ(Ys), it suffices to calculate dimC H

1(ΓYs ,C) (where ΓYs denotes the dual semi-
graph of Ys (cf. Definition 3.1 (a))), the p-ranks of the irreducible components of Ys which
are finite over Xs, and the p-ranks of the vertical fibers of f . In the present paper, we
study the p-ranks of vertical fibers and special fibers of G-pointed semi-stable coverings
and consider the following Question:

Question 1.1. Let G be a finite p-group and f : Y −→ X a G-pointed semi-stable
covering over S.

(Global Version): Does there exist an explicit formula for the p-rank σ(Ys) of Ys in
terms of the dual semi-graph of Xs and the inertia subgroups of the irreducible components
and marked points of Ys?

(Local Version): Let x be a vertical point associated to f . Then does there exist an
explicit formula for the p-rank σ(f−1(x)) of f−1(x) in terms of the inertia subgroups of
the irreducible components and marked points of f−1(x)?

If the vertical point x is not contained in DXs , Question 1.1 (Local Version) had been
studied by M. Raynaud and M. Säıdi. If x is a smooth point of Xs which is not contained
in DXs , then Raynaud proved that σ(f−1(x)) = 0 (cf. [R, Théorème and Proposition 2
(ii)]). If G is a cyclic p-group, and x is a singular point of Xs, then an explicit formula
has been obtained by M. Säıdi (cf. [S, Proposition 1] and Corollary 4.9 of the present
paper).

The main theorems of the present paper give an answer to Question 1.1 (cf. Theorem
4.5 for the global version and Theorem 4.6 for the local version). Theorem 4.5 can be
regarded as a certain analogue of the Deuring-Shafarevich formula for G-pointed semi-
stable coverings over S. On the other hand, if x is a singular point of Xs, then the explicit
formula for σ(f−1(x)) assumes a simple form (cf. Theorem 4.7), which generalizes Säıdi’s
result to the case where G is an arbitrary p-group.

The present paper is organized as follows. In Section 2, we introduce a kind of purely
combinatorial object called a semi-graph with p-rank. We define p-ranks, coverings,
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and G-coverings for semi-graphs with p-rank; then we calculate the p-ranks of G-coverings
of semi-graphs with p-rank. In Section 3, by using the theory of semi-stable curves, we
prove that for anyG-pointed semi-stable covering, one may construct aG-covering of semi-
graphs with p-rank associated to the G-pointed semi-stable covering (resp. the vertical
fibers of the G-pointed semi-stable covering) in a natural way. In Section 4, we study the
relationship between the inertia groups of irreducible components and the inertia groups
of nodes of the special fiber of a G-pointed semi-stable covering; then together with the
results obtained in Section 2 and Section 3, we obtain our main theorems.

Finally, we would like to mention that by applying the formulas for global and local p-
ranks associated to a G-semi-stable covering f (cf. Definition 3.3 and Theorem 4.7), in
[Y3], we answer an open problem posed by M. Säıdi concerning the boundedness of p-ranks
of vertical fibers (cf. [S, Question]) in the case where G is an arbitrary abelian p-group.
Moreover, we prove that the global and local p-ranks associated to f are determined by
a kind of combinatorial data associated to f .

2 Semi-graphs with p-rank

In this section, we develop the theory of semi-graphs with p-rank. We always assume that
G is a finite p-group with order pr.

2.1 Definitions

We begin with some general remarks concerning semi-graphs (cf. [M]). A semi-graph G
consists of the following data: (i) A set VG whose elements we refer to as vertices; (ii) A
set E G whose elements we refer to as edges. Any element e ∈ E G is a set of cardinality 2
satisfying the following property: For each e ̸= e′ ∈ E G, we have e ∩ e′ = ∅; (iii) A set of
maps {ζGe }e∈E G such that ζe : e −→ V ∪ {V } is a map from the set e to the set V ∪ {V }.
For an edge e ∈ E G, we shall refer to an element b ∈ e as a branch of the edge e. An
edge e ∈ E G is called closed (resp. open) if ζ−1

e ({V G}) = ∅ (resp. ζ−1
e ({V G}) ̸= ∅). A

semi-graph will be called finite if both its set of vertices and its set of edges are finite.
In the present paper, we only consider finite semi-graphs. Since a semi-graph can be
regarded as a topological space, we shall call G a connected semi-graph if G is connected
as a topological space.

Let G be a semi-graph. Write v(G) for the set of vertices of G, ecl(G) for the set of
closed edges of G, and eop(G) for the set of open edges of G. For each v ∈ v(G), write
b(v) for the set of branches ∪e∈ecl(G)∪eop(G)ζ

−1
e (v) and e(v) for the set of edges which abuts

to v. For each e ∈ ecl(G) ∪ eop(G)), write v(e) for the set which consists of the elements
of v(G) which are abutted by e. An edge e ∈ ecl(G) is called a loop if ♯v(e) = 1, and we
use the notation elp(v) to denotes the set of loops which abut to v for each v ∈ v(G).

A morphism between semi-graphs G −→ H is a collection of maps v(G) −→ v(H);
ecl(G)∪eop(G) −→ ecl(H)∪eop(H) such for each eG ∈ ecl(G) (resp. eG ∈ eop(G)) mapping
to eH ∈ ecl(H) (resp. eH ∈ eop(H)) is a bijection eG

∼→ eH, and all of which are compatible
with the {ζGe }e∈ecl(G)∪eop(G) and {ζHe }e∈ecl(H)∪eop(H).

A sub-semi-graph G′ of G is a semi-graph satisfying the following properties: (i) v(G′)
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(resp. ecl(G′) ∪ eop(G′)) is a subset of v(G) (resp. ecl(G) ∪ eop(G)); (ii) if e ∈ ecl(G′),
ζG

′
e (e) = ζGe (e); (iii) if e = {b1, b2} ∈ eop(G′) such that ζGe (b1) ∈ v(G′) and ζGe (b2) ̸∈ v(G′),
ζG

′
e (b1) = ζGe (b1) and ζ

G′
e (b2) = {v(G′)}.

Definition 2.1. Let G′ be a sub-semi-graph of a semi-graph G. We define a semi-graph
G\G′ as follows: (i) v(G\G′) := v(G)\v(G′); (ii) ecl(G\G′) := {e ∈ ecl(G) | v(e)∩v(G′) =
∅ in G}; (iii) eop(G \ G′) := {e ∈ ecl(G) | v(e) ∩ v(G′) ̸= ∅ in G and v(e) ∩ v(G \ G′) ̸=
∅ in G} ∪ {e ∈ eop(G) | v(e) ∩ v(G \ G′) ̸= ∅ in G}; (iv) For each e = {bi}i={1,2} ∈
ecl(G \ G′) ∪ eop(G \ G′), we set ζ

G\G′
e (bi) = ζGe (bi) (resp. ζ

G\G′
e (bi) = {v(G \ G′)}) if

ζGe (bi) ̸∈ v(G′) (resp. ζGe (bi) ∈ v(G′)).

Definition 2.2. (a) A pair G := (G, σG) which consists of a semi-graph G and a map
σG : v(G) −→ Z. We shall call G a semi-graph with p-rank. We shall refer to G as the
underlying semi-graph of G and σG as the p-rank map of G, respectively.

(b) We define the p-rank σG(G) of G as follows:

σG(G) :=
∑

v∈v(G)

σG(v) +
∑

Gi∈π0(G)

dimCH
1(Gi,C),

where π0(−) denotes the set of the connected components of (−), and C denotes the field
of complex number.

(c) A semi-graph with p-rank is called connected if the underlying semi-graph G is a
connected semi-graph.

(d) A morphism between semi-graphs with p-rank b : G1 := (G1, σG1) −→ G2 :=
(G2, σG2) is defined by a morphism of the underlying semi-graphs β : G1 −→ G2; we shall
refer to the morphism β as the underlying morphism of b.

From now on, we assume that all the semi-graphs with p-rank are connected.

Definition 2.3. Let b : G1 := (G1, σG1) −→ G2 := (G2, σG2) be a morphism of semi-
graphs with p-rank.

(a) We shall call b p-étale (resp. p-purely inseparable) at an edge e ∈ ecl(G1) ∪
eop(G1) if ♯β−1(β(e)) = p (resp. ♯β−1(β(e)) = 1), where ♯(−) denotes the cardinality of
(−). We shall call b p-generically étale at v ∈ v(G1) if one of the following étale types
holds:

(Type-I) If ♯β−1(β(v)) = p, then we have σG1(v) = σG2(β(v));
(Type-II) If ♯β−1(β(v)) = 1, then we have the following Deuring-Shafarevich type

formula:
σG1(v)− 1 = p(σG2(β(v))− 1) +

∑
e∈e(v)

(re − 1),

where re is equal to p if ♯β−1(β(e)) = 1, and re is equal to 1 if ♯β−1(β(e)) = p.
(b) We shall call b purely inseparable at v ∈ v(G1) if ♯β−1(β(v)) = 1 and σG1(v) =

σG2(β(v)) hold.
(c) We shall call b a p-covering if the following conditions hold: (i) there exists

a Z/pZ-action (which may be trivial) on G1 (resp. a trivial Z/pZ-action on G2), and
the underlying morphism β of b is compatible with the Z/pZ-actions; then the natural
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morphism G1/Z/pZ −→ G2 induced by b is an isomorphism; (ii) for each v ∈ v(G1), b is
either p-generically étale or purely inseparable at v; (iii) let e ∈ ecl(G1) and v(e) = {v, v′}
(v and v′ may be equal if e is a loop); if b is p-generically étale at v and v′, then b is
p-étale at e; (iv) For each v ∈ v(G1), then σG1(v) = σG1(τ(v)) holds for each τ ∈ Z/pZ.

Note that by the definition of p-covering, the identity morphism of a semi-graph with
p-rank is a p-covering.

(d) We shall call b a covering if b is a composite of p-coverings.
(e) We shall call

Φ : {1} = Gr ⊂ Gr−1 ⊂ · · · ⊂ G1 ⊂ G0 = G

an maximal normal filtration of G if Gj is a normal subgroup of G and Gj/Gj+1
∼=

Z/pZ for each j = 0, . . . , r − 1. Suppose that G1 (resp. G2) admits a (resp. trivial)
G-action (which may be trivial). Then a maximal normal filtration Φ of G induces a
sequence of semi-graphs:

Φ : G1 = Gr
βr−−−→ Gr−1

βr−1−−−→ . . .
β1−−−→ G0,

where Gj, j = 0, . . . , r, denotes the quotient of G1 by Gj. We shall call b a G-covering
if there exist a maximal normal filtration Φ of G and a set of p-coverings {bj : Gj −→
Gj−1, j = 1, . . . , r} such that the following conditions hold: (i) the underlying morphism
β of b is compatible with the G-actions, and the natural morphism G0 = G1/G −→ G2

induced by β is an isomorphism; (ii) the underlying graph of Gj is equal to Gj for each
j = 0, . . . , r; (iii) the underlying morphism Gj −→ Gj−1 of bj is equal to βj for each
j = 1, . . . , r; (iv) The composite morphism b1 ◦ · · · ◦ br is equal to b.

If b : G1 −→ G2 is a G-covering, then we have a maximal normal filtration Φ of G
and a sequence of p-coverings:

ΦG1/G2 : G1 = Gr
br−−−→ Gr−1

br−1−−−→ . . .
b1−−−→ G0 = G2.

We shall call ΦG1/G2 a sequence of p-coverings induced by Φ.

Definition 2.4. Let b : G1 −→ G2 be a G-covering, β : G1 −→ G2 the underlying
morphism of b, v1 ∈ v(G1), and e1 ∈ ecl(G1) ∪ eop(G1). By the definition of G-coverings,
we have a maximal normal filtration Φ of G and a sequence of p-coverings induced by Φ:

ΦG1/G2 : G1 = Gr
br−−−→ Gr−1

br−1−−−→ . . .
b1−−−→ G0 = G2.

Write βj : Gj −→ Gj−1, j = 1, . . . , r, for the underlying morphism bj. Write vj (resp. ej)
for the image βj+1 ◦ ... ◦ βr(v) (resp. βj+1 ◦ ... ◦ βr(e)), j = 0, . . . , r − 1, and vr for v1.
Then we set

logp(♯Iv1) := ♯{j ∈ {1, . . . , r} | bj is purely inseparable at vj},

logp(♯Ie1) := ♯{j ∈ {1, . . . , r} | bj is purely inseparable at ej},

Dv1 := {τ ∈ G | τ(v1) = v1}.
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Note that if e1 ∈ e(v1), then we have ♯Iv1|♯Ie1 . In particular, if e1 is a loop, then we
have ♯Iv1 = ♯Ie1 by using Definition 2.3 (c, iii). Moreover, Definition 2.3 (c, iii) implies
that ♯Ie1|♯Dv1 . Write v2 (resp. e2) for v0 = β(v1) (resp. e0 = β(e1)). Let (v1)′ (resp.
(e1)′) be an arbitrary element of β−1(v2) (resp. β−1(e2)). By the action of G on G1, we
have ♯Iv1 = ♯I(v1)′ , ♯Ie1 = ♯I(e1)′ , and ♯Dv1 = ♯D(v1)′ . Thus, we use the notation ♯Iv2 (resp.
♯Ie2 , ♯Dv2) to denote ♯Iv1 (resp. ♯Ie1 , ♯Dv1). Then we obtain ♯Iv2|♯Ie2 |♯Dv2 .

Remark 2.4.1. We follow the notations in Definition 2.4. It is easy to compute the
p-rank σG1(v1) by using Definition 2.3 (a, Type-II). Then we have the following Deuring-
Shafarevich type formula (cf. Proposition 3.2 for the Deuring-Shafarevich formula for
curves)

σG1(v1)− 1 = ♯Dv2/♯Iv2(σG2(v2)− 1) +
∑

e2∈e(v2)

(♯Dv2/♯Ie2)(♯Ie2/♯Iv2 − 1)

= ♯Dv2/♯Iv2(σG2(v2)− 1) +
∑

e2∈e(v2)\elp(v2)

(♯Dv2/♯Ie2)(♯Ie2/♯Iv2 − 1).

The second equality follows from Definition 2.3 (c, iii).

2.2 An operator on G-coverings of semi-graphs with p-rank

Let b : G1 −→ G2 be a G-covering and β : G1 −→ G2 the underlying morphism of b. In
this subsection, we introduce an operator for b. Let v2 ∈ v(G2) and v1 ∈ β−1(v2). First,
let us define a new semi-graph (G1)∗[v2].

If β−1(v2) = {v1} (i.e., Dv1 = G), then we define (G1)∗[v2] to be G1.
If β−1(v2) ̸= {v1}, we define a new semi-graph (G1)∗[v2] as follows. Define v((G1)∗[v2])

(resp. ecl((G1)∗[v2])∪ eop((G1)∗[v2])) to be the disjoint union (v(G1) \ β−1(v2))
⨿
{v∗[v2]}

(resp. ecl(G1) ∪ eop(G1)).

The collection of maps {ζ(G
1)∗[v2]

e }e is as follows: (i) for each branch b ̸∈ ∪v∈β−1(v2)b(v),

ζ
(G1)∗[v2]
e (b) = ζG

1

e (b) if b ∈ e and ζ
(G1)∗[v2]
e (b) = ∅ if b ̸∈ e; (ii) for each v ∈ β−1(v2) and

each branch b ∈ b(v), ζ
(G1)∗[v2]
e (b) = v∗[v2] if b ∈ e and ζ

(G1)∗[v2]
e (b) = ∅ if b ̸∈ e.

Second, we define a map σ(G1)∗[v2] : v((G1)∗[v2]) −→ Z as follows: (i) if v∗[v2] ̸= v ∈
v((G1)∗[v2]), we set σ(G1)∗[v2](v) := σG1(v); (ii) if v = v∗[v2], we set

σ(G1)∗[v2](v
∗[v2]) := ♯G/♯Iv2(σG2(v2)− 1) +

∑
e∈e(v2)

♯G/♯Ie(♯Ie/♯Iv2 − 1) + 1.

We define (G1)∗[v2] to be the pair ((G1)∗[v2], σ(G1)∗[v2]) which is a semi-graph with
p-rank.

We define a morphism of semi-graphs β∗[v2] : (G1)∗[v2] −→ G2 as follows: (i) for each
v ∈ v((G1)∗[v2]), β∗[v2](v) := v2 if v = v∗[v2] and β∗[v2](v) := β(v) if v ̸= v∗[v2]; (ii) if
e ∈ ecl((G1)∗[v2]) ∪ eop((G1)∗[v2]), we set β∗[v2](e) := β(e). Then we obtain a morphism
of semi-graphs with p-rank b∗[v2] : (G1)∗[v2] −→ G2 induced by β∗[v2].

Moreover, (G1)∗[v2] admits a natural G-action as follows: (i) the action of G on
v(G1)∗[v2]) \ {v∗[v2]} (resp. ecl((G1)∗[v2]) ∪ eop((G1)∗[v2])) is the action of G on v(G) \
β−1
G (pi) (resp. e

cl(G) ∪ eop(G)); (ii) the action of G on v∗[v2] is a trivial action.

7



Let us explain that with the G-action defined above, b∗[v2] : (G1)∗[v2] −→ G2 is a
G-covering. Since b : G1 −→ G2 is a G-covering, there exist a maximal normal filtration

Φ : {1} = Gr ⊂ Gr−1 ⊂ · · · ⊂ G1 ⊂ G0 = G

of G and a sequence of p-coverings of semi-graphs with p-rank

ΦG1/G2 : G1 = Gr
br−−−→ Gr−1

br−1−−−→ . . .
b1−−−→ G0 = G2.

Note that for each j = 1, . . . , r, b1 ◦ ... ◦ bj : Gj −→ G0 is a G/Gj-covering. Then we
obtain a sequence of morphisms of semi-graphs with p-rank

Φ(G1)∗[v2]/G2 : (G1)∗[v2] = G∗
r[v

2]
b∗r [v

2]−−−→ G∗
r−1[v

2]
b∗r−1[v

2]
−−−−→ . . .

b∗1[v
2]

−−−→ G0 = G2.

By the construction of G∗
j [v

2], it is easy to see that b∗j [v
2] is a p-covering for each j =

1, . . . , r. Thus, b∗[v2] : (G1)∗[v2] −→ G2 can be regarded as a G-covering.

Definition 2.5. Let b : G1 −→ G2 be a G-covering and v2 ∈ v(G2). We define an
operator ⇌I

II [v
2] from a G-covering to a G-covering to be

⇌I
II [v

2](b : G1 −→ G2) := b∗[v2] : (G1)∗[v2] −→ G2.

2.3 Formula for p-ranks of G-coverings of semi-graphs with p-
rank

In this subsection, we give an explicit formula for the p-rank of G-coverings of semi-graphs
with p-rank.

Lemma 2.6. Let G be a connected semi-graph, {Gi}i=1,...,n a set of connected sub-semi-
graph of G, and vi ∈ v(Gi), i = 1, . . . , n. Suppose that Gs ∩ Gt = ∅ for each s, t ∈
{1, . . . , n}. Let Gc be a semi-graph defined as follows: (i) v(Gc) = v(G)

⨿
{vc}; (ii)

eop(Gc) = eop(G); (iii) ecl(Gc) = ecl(G)
⨿
{eci}i=1,...,n; (iv) if e ̸∈ {eci}i=1,...,n, we set

ζG
c

e (b) = ζGe (b) if b ∈ e and ζG
c

e (b) = if b ̸∈ e; (v) let eci = {b1eci , b
2
eci
}, i = 1, . . . , n; we set

ζG
c

eci
(b1eci ) = vi and ζ

Gc

eci
(b2eci ) = vc for each i = 1, . . . , n. Then we have

dimCH
1(G,C) = dimCH

1(Gc,C)− n+ 1.

Proof. The lemma follows from the construction of Gc.

The following proposition is a key for calculating the p-ranks of G-coverings.

Proposition 2.7. Let b : G1 −→ G2 be a G-covering of semi-graphs with p-rank, v2 ∈
v(G2), and ⇌I

II [v
2](b : G1 −→ G2) := b∗[v2] : (G1)∗[v2] −→ G2. Then we have

σG1(G1) = σ(G1)∗[v2]((G
1)∗[v2]).
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Proof. Write β (resp. β∗[v2]) for the underlying morphism of b (resp. b∗[v2]). Write r
(resp. r\{v2}, r

∗, r∗\{v2}) for dimCH
1(G1,C) (resp. dimCH

1(G1\β−1(v2),C), dimCH
1((G1)∗[v2],C),

dimCH
1((G1)∗[v2] \ (β∗[v2])−1(v2),C)). Then we have

σG1(G1) =
∑

v∈v(G1\β−1(v2))

σG1(v) +
∑

v∈β−1(v2)

σG1(v) + r\{v2} + r − r\{v2}

and

σ(G1)∗[v2]((G
1)∗[v2]) =

∑
v∈v((G1)∗[v2]\(β∗[v2])−1(v2))

σ(G1)∗[v2](v)+σ(G1)∗[v2](v
∗[v2])+r∗\{v2}+r

∗−r∗\{v2}.

Note that by the construction of (G1)∗[v2], we have

A := σG1(G1) =
∑

v∈v(G1\β−1(v2))

σG1(v) =
∑

v∈v((G1)∗[v2]\(β∗[v2])−1(v2))

σ(G1)∗[v2](v)

and
B := r\{v2} = r∗\{v2}.

Let us calculate r − r\{v2} and r∗ − r∗\{v2}. Follows from Lemma 2.6, it is sufficient

to treat the case where G1 \ β−1(v2) = (G1)∗[v2] \ (β∗[v2])−1(v2) is connected. Then we
obtain

r − r\{v2} = ♯G/♯Dv2((
∑

e∈e(v2)∩ecl(G2)

♯Dv2/♯Ie)− 1) + ♯elp(v2)(♯G/♯Iv2)

and
r∗ − r∗\{v2} = (

∑
e∈e(v2)∩ecl(G2)

♯G/♯Ie)− 1 + ♯elp(v2)(♯G/♯Iv2).

The Remark 2.4.1 implies that for each v ∈ β−1(v2), we have

σG1(v) = ♯Dv2/♯Iv2(σG2(v2)− 1) +
∑

e∈e(v2)

(♯Dv2/♯Ie)(♯Ie/♯Iv2 − 1) + 1.

On the other hand, the construction of (G1)∗[v2] implies that

σ(G1)∗[v2](v
∗[v2]) = ♯G/♯Iv2(σG2(v2)− 1) +

∑
e∈e(v2)

♯G/♯Ie(♯Ie/♯Iv2 − 1) + 1.

Thus, we obtain

σG1(G1) = A+B +
∑

v∈β−1(v2)

(♯Dv2/♯Iv2(σG2(v2)− 1) +
∑

e∈e(v2)

(♯Dv2/♯Ie)(♯Ie/♯Iv2 − 1) + 1)

+♯G/♯Dv2((
∑

e∈e(v2)∩ecl(G2)

♯Dv2/♯Ie)− 1) + ♯elp(v2)(♯G/♯Iv2)
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= A+B + ♯G/♯Dv2(♯Dv2/♯Iv2(σG2(v2)− 1) +
∑

e∈e(v2)

(♯Dv2/♯Ie)(♯Ie/♯Iv2 − 1) + 1)

+♯G/♯Dv2((
∑

e∈e(v2)∩ecl(G2)

♯Dv2/♯Ie)− 1) + ♯elp(v2)(♯G/♯Iv2)

= A+B + (♯G/♯Iv2)σG2(v2)− ♯G/♯Iv2 +
∑

e∈e(v2)

♯G/♯Iv2 −
∑

e∈e(v2)

♯G/♯Ie

+
∑

e∈e(v2)∩ecl(G2)

♯G/♯Ie + ♯elp(v2)(♯G/♯Iv2)

= A+B+(♯G/♯Iv2)σG2(v2)−♯G/♯Iv2+
∑

e∈e(v2)

♯G/♯Iv2−
∑

e∈e(v2)∩eop(G2)

♯G/♯Ie+♯e
lp(v2)(♯G/♯Iv2)

and

σ(G1)∗[v2]((G
1)∗[v2]) = A+B + ♯G/♯Iv2(σG2(v2)− 1) +

∑
e∈e(v2)

♯G/♯Ie(♯Ie/♯Iv2 − 1) + 1

+(
∑

e∈e(v2)∩ecl(G2)

♯G/♯Ie)− 1 + ♯elp(v2)(♯G/♯Iv2)

= A+B+(♯G/♯Iv2)σG2(v2)−♯G/♯Iv2+
∑

e∈e(v2)

♯G/♯Iv2−
∑

e∈e(v2)∩eop(G2)

♯G/♯Ie♯e
lp(v2)(♯G/♯Iv2).

This means that
σG1(G1) = σ(G1)∗[v2]((G

1)∗[v2]).

We complete the proof of the proposition.

Theorem 2.8. Let b : G1 −→ G2 be a G-covering of semi-graphs with p-rank and β the
underlying morphism of b. Then we have

σG1(G1) =
∑

v∈v(G2)

(♯G/♯Iv(σG2(v)− 1) +
∑

e∈e(v)\elp(v)

♯G/♯Ie(♯Ie/♯Iv − 1) + 1)

+
∑

e∈ecl(G2)\elp(G2)

(♯G/♯Ie − 1) +
∑

v∈v(G2)

♯elp(v)(♯G/♯Iv − 1) + dimCH
1(G2,C).

Proof. By applying Proposition 2.7, to calculate the p-rank of G1, it is sufficient to assume
that ♯β−1(v) = 1 for each v ∈ v(G2). Then for each v ∈ v(G2), we have

σG1(β−1(v)) = ♯G/♯Iv(σG2(v)− 1) +
∑
e∈e(v)

♯G/♯Ie(♯Ie/♯Iv − 1) + 1

= ♯G/♯Iv(σG2(v)− 1) +
∑

e∈e(v)\elp(v)

♯G/♯Ie(♯Ie/♯Iv − 1) + 1.
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On the other hand, it is easy to see that

dimCH
1(G1,C) =

∑
e∈ecl(G2)\elp(G2)

(♯G/♯Ie − 1) + dimCH
1(G2,C)−

∑
v∈v(G2)

♯elp(v)

+
∑

v∈v(G2)

♯elp(v)(♯G/♯Iv)

=
∑

e∈ecl(G2)\elp(G2)

(♯G/♯Ie − 1) + dimCH
1(G2,C) +

∑
v∈v(G2)

♯elp(v)(♯G/♯Iv − 1).

Thus, we obtain

σG1(G1) =
∑

v∈v(G2)

(♯G/♯Iv(σG2(v)− 1) +
∑

e∈e(v)\elp(v)

♯G/♯Ie(♯Ie/♯Iv − 1) + 1)

+
∑

e∈ecl(G2)\elp(G2)

(♯G/♯Ie − 1) +
∑

v∈v(G2)

♯elp(v)(♯G/♯Iv − 1) + dimCH
1(G2,C).

This completes the proof of the theorem.

Definition 2.9. Let n be a positive natural number and Pn a semi-graph such that the
following conditions hold: (i) v(Pn) = {p1, . . . , pn}; (ii) ecl(Pn) = {e1,2, . . . , en,n−1} and
eop(Pn) = {e0,1, en,n+1}; (iii)v(e0,1) = {p1} and v(en,n+1) = {pn}; (iv) v(ei,i+1) = {pi, pi+1}.
We define a semi-graph with p-rank Pn to be (Pn, σPn), where σPn(pi) is equal to 0 for
each i = 1, . . . , n. We shall call Pn a n-chain.

We have the following corollary.

Corollary 2.10. Let b : G −→ Pn be a G-covering of semi-graphs with p-rank. Then we
have

σG(G) =
n∑

i=1

♯G/♯Ipi −
n+1∑
i=1

♯G/♯Iei−1,i
+ 1.

Proof. Since
∑

v∈v(Pn)
♯elp(v)(♯G/♯Iv − 1) and dimCH

1(Pn,C) are equal to 0, the corollary
follows from Theorem 2.8.

In the next section, we will use Theorem 2.8 and Corollary 2.10 to calculate the global
and local p-ranks of coverings of curves over a complete discrete valuation ring.

3 Semi-graphs with p-rank associated to pointed semi-

stable coverings

3.1 p-ranks and pointed semi-stable coverings

Definition 3.1. (a) Let C := (C,DC) be a pointed semi-stable curve over a scheme A.
We shall call C the underlying curve of C and DC the set of marked points of C . Write
ImDC

for the scheme theoretic images of the elements of DC ; we identify DC with ImDC
.
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If A is a field, we write Irr(C) for the set of the irreducible components of C and Csing

for the set the singular points of C; the dual semi-graph ΓC of the pointed semi-stable
curve C is a semi-graph defined as follows: (i) v(ΓC ) := {vE}E∈Irr(C); (ii) ecl(ΓC ) :=
{es}s∈Csing ; (iii) eop(ΓC ) := {em}m∈DC

; (iv) for each es = {b1s, b2s} ∈ ecl(ΓC ), ζ
ΓC
es (b1s) ̸= ∅,

ζΓC
es (b2s) ̸= ∅, and ζΓC

es (es) := {vE ∈ v(ΓC ) | a ∈ E}; (v) for each em = {b1m, b2m} ∈ eop(ΓC ),
ζΓC
em (b1m) := {vE ∈ v(ΓC ) | a ∈ E}, ζΓC

em (b2m) := {v(ΓC )}.
(b) Let C be a disjoint union of projective curves over an algebraically closed field of

characteristic p > 0. We define the p-rank of C as follows:

σ(C) := dimFpH
1
ét(C,Fp).

Suppose that C is a semi-stable curve over an algebraically closed field of characteristic
p > 0. Write ΓC for the dual semi-graph of C and v(ΓC) for the set of vertices of ΓC .
Then we have

σ(C) =
∑

v∈v(ΓC)

σ(C̃v) + dimCH
1(ΓC ,C),

where for v ∈ v(Γ), C̃v denotes the normalization of the irreducible component Cv of C
corresponding to v. Let C := (C,DC) be a pointed semi-stable curve over an algebraically
closed field of characteristic p > 0, where C denotes the underlying curve of C , and DC

denotes the set of marked points of C . We define the p-rank σ(C ) of C to be the p-rank
σ(C).

Let G be a finite group. The p-rank of a G-Galois covering (i.e., Galois covering whose
Galois group is isomorphic to G) of a smooth projective curve is difficult to calculate in
general. If G is a p-group, then the p-rank of a G-Galois covering can be calculated by
the Deuring-Shafarevich formula as follows (cf. [C]):

Proposition 3.2. Let h : C ′ −→ C be a Galois covering (possibly ramified) of smooth
projective curves over an algebraically closed field of characteristic p > 0, whose Galois
group is a finite p-group G. Then we have

σ(C ′)− 1 = ♯G(σ(C)− 1) +
∑

c′∈(C′)cl

(ec′ − 1),

where (C ′)cl denotes the set of closed points of C ′, ec′ denotes the ramification index at c′,
and ♯G denotes the order of G.

From now on, let R be a complete discrete valuation ring with algebraically closed
residue field k of characteristic p > 0 and K the quotient field. We use the notation S
to denote the spectrum of R. Write η and s for the generic point and the closed point
corresponding to the natural morphisms SpecK −→ S and Spec k −→ S, respectively.
Let X := (X,DX) be a pointed semi-stable curve over S. Write Xη := (Xη, DXη) and
Xs := (Xs, DXs) for the generic fiber and the special fiber, respectively. Write ΓXs for
the dual semi-graph of X . Moreover, we suppose that Xη is a smooth pointed stable
curve over η.
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Definition 3.3. Let f : Y := (Y,DY ) −→ X be a morphism of pointed semi-stable
curves over S and G a finite group. The morphism f is called a pointed semi-stable
covering (resp. G-pointed semi-stable covering) over S if the morphism fη : Yη =
(Yη, DYη) −→ Xη = (Xη, DXη) over η induced by f on generic fibers is a finite generically
étale morphism (resp. a Galois covering whose Galois group is isomorphic to G) such
that the following conditions are satisfied: (i) the branch locus of fη is contained in DXη ;
(ii) f−1

η (DXη) = DYη ; (iii) the following universal property holds: if g : Z −→ X is a
morphism of pointed semi-stable curves over S such that the generic fiber Zη of Z and
the morphism gη : Zη −→ Xη induced by g on generic fibers are equal to Yη and fη,
respectively, then there exists a unique morphism h : Z −→ Y such that f = g ◦ h.
We shall call f a pointed stable covering (resp. G-pointed stable covering) over
S if f is a pointed semi-stable covering (resp. G-pointed semi-stable covering) over S,
and X is a pointed stable curve. We shall call f a semi-stable covering (resp. stable
covering, G-semi-stable covering, G-stable covering) over S if f is a pointed semi-
stable covering (resp. pointed stable covering, G-pointed semi-stable covering, G-pointed
stable covering) over S, and DX is empty.

Proposition 3.4. Let fη : Yη := (Yη, DYη) −→ Xη be a morphism of pointed smooth
curves over η. Suppose that the branch locus of fη is contained in DXη and f−1

η (DXη) =
DYη . Then by replacing S by a finite extension of S, fη extends uniquely to a pointed
semi-stable covering f : Y = (Y,DY ) −→ X over S such that the restriction of f to η is
fη.

Proof. Write Y ′ for the normalization of X in the function field K(Yη) induced by the
natural injection K(Xη) ↪→ K(Yη) induced by f .

Let Dadd
Xη

be a set of closed points of Xη, D
add
X the set

{the closure of xη in X}xη∈Dadd
Xη
,

and Dadd
Yη

the set inverse images {f−1
η (xη)}xη∈Dadd

Xη
such that the following conditions hold:

(1) Dadd
X ∩ DX = ∅; (2) for any xη ∈ Dadd

Xη
, the reduction xs of xη in X is a smooth

point of Xs; (3) for any irreducible component EX ⊆ Xs, there exists a unique point
xη ∈ Dadd

Xη
∪DXη such that the reduction xs of xη in X is contained in EX \(Xs)

sing, where

(−)sing denotes the singular locus of (−); (4) for any yη ∈ Dadd
Yη

, the reduction ys of yη in

Y ′ is a smooth point of the special fiber Y ′
s of Y ′. It is easy to see the existence of Dadd

Xη
.

Furthermore, by replacing S by a finite extension of S, we may assume that all the closed
points which are contained in Dadd

Xη
and Dadd

Yη
are K-rational points, and (Yη, D

add
Yη

∪DYη)

admits a pointed stable model Y add over S. Write Y for the underlying curve of Y add,
DY for the set

{the closure of yη in Y }yη∈DYη
,

and Dadd
Y for the set

{the closure of yη in Y }yη∈Dadd
Yη
.

Note that the set of the marked points of Y add is Dadd
Y ∪DY . Then we obtain a morphism

of pointed stable curves f add : Y add −→ X add = (X,Dadd
X ∪DX) over S. We define Y to
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be the pointed semi-stable curve (Y,DY ). Then by forgetting Dadd
Y and Dadd

X , we obtain a
natural morphism f : Y −→ X such that the restricting morphism f |η is fη. Note that
Y and f do not depend on the choices of Dadd

Xη
.

Next, let us prove that Y satisfies the universal property defined in Definition 3.3. Let
Z = (Z,DZ) be a pointed semi-stable curve over S and g : Z −→ X is a morphism of
pointed semi-stable curves over S such that the generic fiber Zη of Z and the morphism
of generic fibers gη induced by g are equal to Yη and fη, respectively. We may choose Dadd

Xη

such that the following conditions: for any zη ∈ Dadd
Yη

= {f−1
η (xη)}xη∈Dadd

Xη
⊆ Zη = Yη, the

reduction zs of zη in Z is a smooth point of the special fiber Zs of Z. Write Dadd
Z for the

set
{the closure of zη in Z}zη∈Dadd

Yη
.

Then we obtain a pointed semi-stable curve Z add = (Z,Dadd
Z ∪DZ) and a morphism of

pointed semi-stable curves gadd : Z add −→ X add over S. Note that the generic fiber of
Z add is equal to the generic fiber of Y add. Since Y add is a pointed stable curve over S, we
obtain a natural morphism hadd : Z add −→ Y add over S such that f add = gadd ◦ hadd. By
forgetting Dadd

Z , Dadd
Y , and Dadd

X , we obtain a morphism h : Z −→ Y such that f = h◦g.
This completes the proof of the proposition.

Proposition 3.5. Let G be a finite group, f : Y = (Y,DY ) −→ X a finite G-pointed
semi-stable covering over S, and ΓYs the dual semi-graph of Ys. Then the images of nodes
(resp. smooth points) of the special fiber Ys of Y are nodes (resp. smooth points) of Xs.
In particular, the map of dual semi-graphs ΓYs −→ ΓXs induced by the morphism of the
special fiber fs : Ys −→ Xs over s induced by f is a morphism of semi-graphs.

Proof. Let y be a closed point of Y . Write Iy ⊆ G for the inertia subgroup of y. Thus, the
natural morphism Y/Iy −→ X induced by f is étale at the image of y under the quotient
morphism Y −→ Y/Iy. Then to verify the lemma, we may assume that G = Iy.

If y is a smooth point, then x is a smooth point (cf. [R, Proposition 5]). If y is a node,
let Y1 and Y2 be the irreducible components (which may be equal) of Y which contain y.
Write D1 ⊆ G and D2 ⊆ G for the decomposition subgroups of Y1 and Y2, respectively.
The proof of [R, Proposition 5] implies that (i) if D1 and D2 are not equal to Iy = G,
then x is a smooth point; (ii) if Dv1 = Dv2 = G, then x is a node.

Let us prove that the case (i) does not happen. If D1 and D2 are not equal to Iy = G,
then there exists an element τ ∈ G such that τ(Y1) = Y2. Thus, we have D := D1 = D2

is a normal subgroup of G of index 2. By replacing Iy by Iy/D and Y by Y/D and
applying the case (ii), we may assume that D is trivial. Then the morphism of the special
fibers fs : Ys −→ Xs induced by f is étale at ηY1 and ηY2 , where ηY1 and ηY2 denote the
generic points of Y1 and Y2, respectively. Consider the local morphism fy : SpecOY,y −→
SpecOX,x induced by f . Since the restricting morphism fy|η is étale, and the restricting
morphism fy|s is étale at ηY1 and ηY2 , fy is étale at all the points of heights 1. By applying
the Zariski-Nagata purity theorem, we obtain that fy is étale. Thus, y is a smooth point.
This is a contradiction. We complete the proof of the proposition.

Definition 3.6. Let f : Y −→ X be a pointed semi-stable covering over S. A closed
point x ∈ X is called a vertical point associated to f , or for simplicity, a vertical
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point when there is no fear of confusion, if f−1(x) is not a finite set. The inverse image
f−1(x) is called the vertical fiber associated to x.

If a vertical point x is a smooth point of Xs and x ̸∈ DXs , the following result was
proved by Raynaud (cf. [R, Théorème 1, Proposition 1, and Proposition 2]).

Proposition 3.7. Let G be a finite p-group, f : Y −→ X a G-pointed semi-stable
covering over S, and x a vertical point associated to f . If x is a smooth point of Xs

and x ̸∈ DXs, then the p-rank of each connected component of the vertical fiber f−1(x)
associated to x is equal to 0. On the other hand, by contracting the vertical fibers f−1(x),
we obtain a curve Y c over S. Write c : Y −→ Y c for the contracting morphism. Then
the closed points c(f−1(x)) are geometrically unibranch.

3.2 Global cases

From now on, we always assume that G is a finite p-group with order pr. Let f : Y =
(Y,DY ) −→ X = (X,DX) be a G-pointed semi-stable covering over S and

Φ : {1} = Gr ⊂ Gr−1 ⊂ · · · ⊂ G1 ⊂ G0 = G

a maximal normal filtration of G. It follows from [R, Appendice, Corollaire], Yj := Y /Gj,
j = 0, . . . , r, is a pointed semi-stable curve over S. Write X sst := (Xsst, DXsst) for Y0.
We obtain two natural morphisms of pointed semi-stable curves h : Y −→ X sst and
g : X sst −→ X induced by f such that g ◦ h = f . The maximal normal filtration Φ of G
induces a sequence of morphisms of pointed semi-stable curves over S

ΦY /X sst : Y = Yr
ϕr−−−→ Yr−1

ϕr−1−−−→ . . .
ϕ1−−−→ Y0 = X sst

such that ϕ1 ◦ ... ◦ ϕr = h. Note that ϕj, j = 1, . . . , r, is a finite Z/pZ-pointed semi-
stable covering over S. For each j ∈ {0, . . . , r}, write ΓYj

for the dual semi-graph of the
special fiber (Yj)s of Yj. Then for each j = 1, . . . , r, the morphism of the special fibers
(ϕj)s : (Yj)s −→ (Yj−1)s induces a map of semi-graphs βj : ΓYj

−→ ΓYj−1
. Moreover,

Proposition 3.5 implies that βj, j = 1, . . . , r, is a morphism of semi-graphs.

For each v ∈ v(ΓYj
), write Ỹ j

v for the normalization of the irreducible component Y j
v ⊆

(Yj)s corresponding to v. We define a semi-graph with p-rank GYj
:= (GYj

, σGYj
), j =

0, . . . , r, associated to (Yj)s as follows: (i) GYj
= ΓYj

; (ii) for each v ∈ v(GYj
), σ(v) :=

σ(Ỹ j
v ). Then ΦY /X sst induces a sequence of morphisms of semi-graphs with p-rank

ΦGY /GX sst : GY := GYr

br−−−→ GYr−1

br−1−−−→ . . .
b1−−−→ GX sst := GY0 ,

where bj : GYj
−→ GYj−1

, j = 1, . . . , r, is induced by βj : ΓYj
−→ ΓYj−1

, j = 1, . . . , r.
By using the Deuring-Shafarevich formula and Zariski-Nagata purity, it is easy to see
that bj, j = 1, . . . , r, is a p-covering, moreover, b := b1 ◦ · · · ◦ br is a G-covering. Then
we have σGY

(GY ) = σ(Ys). Summarizing the discussion above, we obtain the following
proposition.

Proposition 3.8. Let f : Y −→ X be a G-pointed semi-stable covering over S and
Ys the special fiber of Y . Then there exists a G-covering of semi-graphs with p-rank
b : GY −→ GX associated to f which is constructed above such that σ(Ys) = σGY

(GY ).
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3.3 Local cases

We maintain the notations introduced in Section 3.2. Let x be a vertical point associated
to f . Write Y ′ for the normalization of X in the function field K(Y ) induced by the
natural injection K(X) ↪→ K(Y ) induced by f and ψ for the normalization morphism
Y ′ −→ X. Then Y ′ admits a natural action of G induced by the action of G on the
generic fiber of Y . Let y′ ∈ ψ−1(x). Write Iy′ ⊆ G for the inertia group of y′. Proposition
3.4 implies that the morphism of pointed smooth curves (Yη/Iy′ , DY /Iy′) −→ Xη over η
induced by f extends to a pointed semi-stable covering YIy′

−→ X over S. In order to

calculate the p-rank of f−1(x), since the morphism YIy′
−→ X is finite étale over x, by

replacing X by YIy′
, we may assume that G is equal to Iy′ . In the remainder of this

subsection, we shall assume that G = Iy′ . Then f
−1(x) is connected.

Write X sst
s = (Xsst

s , DXsst
s
) (resp. Ys = (Ys, DYs)) for the special fiber of X (resp.

Y ), and (−)red for the reduced induced closed subscheme of (−). By the general theory
of semi-stable curves, g−1(x)red ⊂ X sst

s (resp. f−1(x)red = h−1(g−1(x))red ⊂ Ys) is a
pointed semi-stable curve over s. In particular, the irreducible components of g−1(x)red
are isomorphic to P1. Write VX for the set of closed points g−1(x)red ∩ X sst

s \ g−1(x)red,
where X sst

s \ g−1(x)red denotes the closure of X sst
s \ g−1(x)red in X sst

s , and VY ⊂ Ys for
the set of closed points {h−1(p)red}p∈VX

. Note that VX consists of a closed point (resp.
two closed points) of Xsst

s if x is a smooth point (resp. a node) of Xs. Write g−1(x)red
(resp. f−1(x)red) for the underlying curve of g−1(x)red (resp. f−1(x)red).

We define two pointed semi-stable curves over s to be EX := (g−1(x)red, (DXsst ∩
g−1(x)red)∪VX) and EY := (f−1(x)red, (DY ∩f−1(x)red)∪VY ). Then we obtain a morphism

of pointed semi-stable curves ρEY /EX
: EY −→ EX induced by h. Moreover, since f−1(x) is

connected, EY admits a natural action of G induced by the action of G on the special fiber
Ys of Y . Write ΓEY

(resp. ΓEX
) for the dual semi-graph of EY (resp. EX). We obtain a

map of semi-graphs δEY /EX
: ΓEY

−→ ΓEX
induced by ρEY /EX

. Proposition 3.5 implies that
the map δEY /EX

: ΓEY
−→ ΓEX

is a morphism of semi-graphs. Note that ΓEX
is a tree.

For each v ∈ v(EY ), write Ỹv for the normalization of the irreducible component
Yv ⊆ Ys corresponding to v. We define a semi-graph with p-rank EY := (EY , σEY

) (resp.
EX := (EX , σEX

)) associated to EY (resp. EX) as follows: (i) EY = ΓEY
(resp. EX = ΓEX

);

(ii) for each v ∈ v(EY ) (resp. v ∈ v(EX)), we set σEY
(v) := σ(Ỹv) (resp. σEX

(v) := 0).
The morphism of dual semi-graphs δEY /EX

: ΓEY
−→ ΓEX

induces a morphism of semi-
graphs with p-rank dEY /EX

: EY −→ EX . Moreover, dEY /EX
is a G-covering. Then we

have σEY
(EY ) = σ(f−1(x)red) = σ(f−1(x)). Summarizing the discussion above, we obtain

the following proposition.

Proposition 3.9. Let f : Y −→ X be a G-pointed semi-stable covering over S and x
a vertical point associated to f . Suppose that f−1(x) is connected. Then there exists a
G-covering of semi-graphs with p-rank dEY /EX

: EY −→ EX associated to f and x which
is constructed above such that σEY

(EY ) = σ(f−1(x)).

In the remainder of this subsection, we suppose that the vertical point x is a node of
Xs. Write X ′

1 and X ′
2 (which may be equal) for the irreducible components of Xs which

contain x. Write X1 and X2 for the strict transforms of X ′
1 and X ′

2 under the birational
morphism g : X sst −→ X , respectively. By the general theory of semi-stable curves,
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g−1(x)red ⊆ X sst
s is a semi-stable curve (i.e., g−1(x)red∩DXsst

s
= ∅) over s whose irreducible

components are isomorphic to P1
k. Write C for the semi-stable subcurve of g−1(x)red which

is a chain of projective lines ∪n
i=1Pi such that the following conditions hold: (i) for any

s, t = 1, . . . , n, Ps ∩Pt = ∅ if |s− t| ≥ 2 and Ps ∩Pt is reduced to a point if |s− t| = 1; (ii)
P1∩X1 (resp. Pn∩X2) is reduced to a point; (iii) C ∩{Xsst \ C} = (P1∩X1)∪ (Pn∩X2),
where {Xsst \ C} denotes the closure of Xsst \ C in Xsst. Then we have

g−1(x)red = C ∪B,

where B denotes the topological closure of g−1(x)red \C in g−1(x)red. Note that B∩C are
smooth points of C. Then it follows from Proposition 3.7, the p-ranks of the connected
components of B are equal to 0. Thus, we have σ(f−1(x)) = σ(h−1(C)).

Let {Vi}ni=1 be a set of irreducible components of the special fiber Ys of Y such that
the following conditions hold: (i) h(Vi) = Pi for i = 1, . . . , n; (ii) the union ∪n

i=1Vi ⊆ Ys is
a connected semi-stable curve (i.e., (∪n

i=1Vi)∩DYs = ∅ ) over s; write IVi
⊆ G, i = 1, . . . , n

for the inertia group of Vi and for any closed point yi ∈ Vi, Iyi ⊆ G for the inertia group
of yi. Then we have the following lemma.

Lemma 3.10. Write RayVi
, i = 1, . . . , n, for the set of the closed points h−1(C∩B)red∩Vi.

Then for any yi ∈ RayVi
, we have Iyi = IVi

.

Proof. Since Iyi ⊇ IVi
, we only need to prove that Iyi ⊆ IVi

. Note that IVi
is a normal

subgroup of Iyi . By replacing G and X sst by Iy′ and Y /Iyi , respectively, we may assume
that G = Iyi . Then we have ♯h−1(h(yi))red = 1.

Consider the quotient curve Y /IVi
. By [R, Appendice Corollaire], Y /IVi

is a pointed
semi-stable curve over S. Write hIVi for the quotient morphism Y −→ Y /IVi

and gIVi for
the Y /IVi

−→ X sst induced by h such that h = gIVi ◦ hIVi . Write Eyi for the connected

component of h−1(B)red which contains yi. Contracting hIVi (Eyi) (resp. h(Eyi)) which is
contained in the special fiber of Y /IVi

(resp. X sst), we obtain a fiber surface (Y /IVi
)c and

a semi-stable curve (X sst)c over S. Moreover, we obtain three morphisms of fiber surfaces
chIVi

(Eyi )
: Y /IVi

−→ (Y /IVi
)c, ch(Eyi )

: X sst −→ (X sst)c, and gcIVi
: (Y /IVi

)c −→
(X sst)c such that ch(Eyi )

◦ gIVi = gcIVi
◦ chIVi

(Eyi )
. Note that ch(Eyi )

◦h(yi) is a smooth point

of the special fiber of (X sst)c, and gcIVi
is étale at the generic point of chIVi

(Eyi )
◦ hIVi (Vi).

Write yci ∈ (Y /IVi
)c and xci ∈ (X sst)c for chIVi

(Eyi )
◦hIVi (yi) and ch(Eyi )

◦h(yi), respec-
tively. Consider the morphism gyci : SpecO(Y /IVi )

c,yci
−→ SpecO(X sst)c,xc

i
induced by gcIVi

.

Proposition 3.7 implies that the special fiber of SpecO(Y /IVi )
c,yci

is irreducible. Then gyci
is generically étale at the generic point of the special fiber of SpecO(Y /IVi )

c,yci
. Thus, by

applying Zariski-Nagata purity, gyci is étale.
If IVi

̸= Iyi , then we obtain that gyci is not an identity. Thus, we have ♯h−1(h(yi))red ̸= 1.
This is a contradiction. Then we have IVi

= Iyi .

Let CY := (h−1(C)red, h
−1((C ∩X1)∪ (C ∩X2))) and CX := (C, (C ∩X1)∪ (C ∩X2))

be two pointed semi-stable curves and ρCY /CX
: CY −→ CX the natural morphism over s

induced by h : Y −→ X sst. Moreover, since f−1(x)red is connected, CY admits a natural
action of G induced by the action of G on f−1(x)red. Write ΓCY

(resp. ΓCX
) for the
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dual semi-graph of CY (resp. CX). Proposition 3.5 implies that the map of semi-graphs
δCY /CX

: ΓCY
−→ ΓCX

induced by ρCY /CX
is a morphism of semi-graphs.

For each v ∈ v(ΓCY
), write Ỹv for the normalization of the irreducible component

Yv ⊆ Ys corresponding to v. We define a semi-graph with p-rank CY := (CY , σCY
) (resp.

CX := (CX , σCX
)) associated to CY (resp. CX) as follows: (i) CY = ΓCY

(resp. CX = ΓCX
);

(ii) For each v ∈ v(CY ) (resp. v ∈ v(CX)), we set σCY
(v) := σ(Ỹv) (resp. σCX

(v) := 0).
The morphism of dual semi-graphs δCY /CX

: ΓCY
−→ ΓCX

induces a morphism of semi-
graphs with p-rank dCY /CX

: CY −→ CX . Moreover, dCY /CX
: CY −→ CX is a G-covering.

Note that by the construction, CX is a n-chain (cf. Definition 2.9). Furthermore, Lemma
3.10 implies that σCY

(CY ) = σ(h−1(C)) = σ(f−1(x)). Summarizing the discussion above,
we obtain the following proposition.

Proposition 3.11. Let f : Y −→ X be a G-pointed semi-stable covering over S and
x ∈ Xs a vertical point associated to f such that x is a node of Xs. Suppose that f

−1(x) is
connected. Then there exists a G-covering of semi-graphs with p-rank dCY /CX

: CY −→ CX

associated to f and x which is constructed above such that CX is a n-chain and σCY
(CY ) =

σ(f−1(x)).

4 Formulas for local and global p-ranks of coverings

of curves

4.1 Inertia groups and a criterion for the existence of vertical
fibers

In this subsection, we study the relationship between the inertia groups of nodes and
the inertia groups of irreducible components of special fibers of G-pointed semi-stable
coverings.

Lemma 4.1. Let f : Y = (Y,DY ) −→ X be a finite G-semi-stable covering over S,
Ys = (Ys, DYs) the special fiber of Y , y ∈ Ys a node, and Y1 and Y2 the irreducible
components of Ys which contain y (which may be equal). Write Iy ⊆ G (resp. IY1 ⊆ G,
IY2 ⊆ G) for the inertia group of y (resp. Y1, Y2). If G is a p-group, then inertia group
Iy is generated by IY1 and IY2.

Proof. Write I for the group generated by IY1 and IY2 . Then we have I ⊆ Iy. Consider the
quotient Y /I. We obtain two morphism of pointed semi-stable curves µ1 : Y −→ Y /I
and µ2 : Y /I −→ X over S such that µ2◦µ1 = f . Note that Y /I is a pointed semi-stable
curve over S, and µ1(y) is node of the special fiber (Y /I)s of Y /I (cf. [R, Appendice,
Corollaire] and the proof). Moreover, µ2 is generically étale at the generic points of µ1(Y1)
and µ1(Y2). Then applying [T, Lemma 2.1 (iii)] to SpecOY /I,µ1(y) −→ SpecOX ,f(y), we
obtain that µ2 is tamely ramified at µ1(y). Moreover, since G is a p-group, µ2 is étale at
µ1(y). This means that Iy ⊆ I. Thus, we obtain Iy = I.

The following criterion for the existence of vertical fibers due to A. Tamagawa (cf. [T,
Propoisiton 4.3 (ii)]).
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Proposition 4.2. Let f : Y −→ X be a G-semi-stable covering over S, and x a node of
Xs. Suppose that for each irreducible component Z := {z} of Spec ÔXs,x and each point
w of the fiber Y ×X z, the natural morphism from the integral closure W s of Z in k(w)s

to Z is wildly ramified, where k(w)s denotes the maximal separable subextension of k(w)
in k(z). Then x is a vertical point associated to f .

We prove a criterion of existence of vertical fibers over nodes as follows:

Proposition 4.3. Let f : Y = (Y,DY ) −→ X be a G-semi-stable covering over S,
Yη = (Yη, DYη) the generic fiber of Y , Ys = (Ys, DYs) the special fiber of Y , and x a node
of Xs. Write Y ′ for the normalization of X in the function field K(Y ) induced by the
natural injection K(X) ↪→ K(Y ) induced by f , and ψ2 for the resulting normalization
morphism Y ′ −→ X . There is a natural morphism of fiber surfaces ψ1 : Y −→ Y ′

induced by f such that ψ2 ◦ ψ1 = f . Write X1 and X2 for the irreducible components
of Xs which contain x (which may be equal). Let y′ ∈ ψ−1

2 (x), Y1 and Y2 the irreducible
components of Ys such that y′ ∈ ψ1(Y1) ∩ ψ1(Y2), and IY1 ⊆ G and IY2 ⊆ G the inertia
group of Y1 and Y2, respectively. If neither IY1 ⊆ IY2 nor IY1 ⊇ IY2 holds, then x is a
vertical point associated to f .

Proof. To verify the proposition, we assume that x is not a vertical point associated
to f . Then f−1(x) is a finite set, and ψ1 and ψ2 coincide with f over x. Write y for
y′ ∈ ψ−1

1 (x) = f−1(x). By replacing X by the quotient Y /Dy and G by Dy ⊆ G, where
Dy denotes the decomposition group of y, we may assume that f−1(x) = {y} ⊆ Y1 ∩ Y2.
Consider the quotient Y /IY1 (resp. Y /IY2) which is a semi-stable curve over S. We
obtain two morphism of semi-stable curves λ11 : Y −→ Y /IY1 and λ12 : Y /IY1 −→ X
over S such that λ12 ◦λ11 = f (resp. λ21 : Y −→ Y /IY2 and λ

2
2 : Y /IY2 −→ X over S such

that λ22 ◦ λ21 = f). Note that λ12 (resp. λ22) is étlae at the generic point of λ11(Y1) (resp.
λ21(Y2)) with degree ♯G/♯IY1 (resp. ♯G/♯IY2).

If λ12 (resp. λ
2
2) is generically étale at the generic point of λ11(Y2) (resp. λ

2
1(Y1)), then by

applying [T, Lemma 2.1 (iii)] to Spec ÔY /IY1 ,λ
1
1(y)

−→ Spec ÔX ,x (resp. Spec ÔY /IY2 ,λ
2
1(y)

−→ Spec ÔX ,x), we obtain Spec Ôλ1
1(Y1),λ1

1(y)
−→ Spec ÔX1,x (resp. Spec Ôλ2

1(Y2),λ2
1(y)

−→
Spec ÔX2,x) induced by λ12 (resp. λ22) is tamely ramified with ramification index t1 (resp.
t2). Thus, we have (t1, p) = 1 (resp. (t2, p) = 1. On the other hand, since IY1 (resp. IY2)
does not contain IY2 (resp. IY1), and IY1 (resp. IY2) is a p-group, we have p|t1 (resp. p|t2).
This is a contradiction. Thus, λ12 (resp. λ22) is not generically étale at the generic point
of λ11(Y2) (resp. λ

2
1(Y1)).

Moreover, the morphism Spec Ôλ1
1(Y1),λ1

1(y)
−→ Spec ÔX1,x (resp. Spec Ôλ2

1(Y2),λ2
1(y)

−→
Spec ÔX2,x) induced by λ12 (resp. λ22) is wildly ramified. Thus, Proposition 2.3 implies
that x is a vertical point associated to f . This is a contradiction. We complete the proof
of the proposition.

Corollary 4.4. Let f : Y = (Y,DY ) −→ X be a G-semi-stable covering over S, Ys =
(Ys, DYs) the special fiber of Y , y ∈ Ys a node, and Y1 and Y2 the irreducible components
of Ys which contain y (which may be equal). Write Iy ⊆ G (resp. IY1 ⊆ G, IY2 ⊆ G)
for the inertia group of y (resp. Y1, Y2). Suppose that G is a p-group, and f is a finite
morphism. Then either IY1 ⊆ IY2 or IY1 ⊇ IY2 holds, moreover, the inertia group Iy is
equal to either IY1 or IY2.
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Proof. The corollary follows from Lemma 4.1 and Proposition 4.3.

4.2 Global version

Let f : Y = (Y,DY ) −→ X = (X,DX) be a G-pointed semi-stable covering over S,
h : Y −→ Y /G := X sst = (Xsst, DXsst) the quotient morphism, and ΓX sst

s
the dual

semi-graph of the special fiber X sst
s = (Xsst

s , DXsst
s
) of X sst. For each v ∈ v(ΓX sst

s
) (resp.

e ∈ ecl(ΓX sst
s
) ∪ eop(ΓX sst

s
)), write Xv (resp. xe) for the irreducible component of X sst

s

corresponding to v (resp. for the node of X sst
s corresponding to e if e ∈ ecl(ΓX sst

s
) or a

marked point of X sst
s corresponding to e if e ∈ eop(ΓX sst

s
)), X̃v for the normalization of

Xv. For each v ∈ v(ΓX sst
s
) (resp. e ∈ ecl(ΓX sst

s
) ∪ eop(ΓX sst

s
)), let Yv (resp. ye) be an

connected component of h−1(Xv)red (resp. a point of h−1(xe)red). Write IYv ⊆ G (resp.
Iye ⊆ G) for the inertia group of Yv (resp. ye). Since ♯IYv (resp. ♯Iye) does not depend
on the choices of Yv (resp. ye), we may use the notation ♯Iv (resp. ♯Ie) to denote ♯IYv

(resp. ♯Iye). For any e ∈ ecl(ΓX sst
s
), write ♯Ime for maxv∈e(v){Iv}. By Corollary 4.4, we

have ♯Ie = ♯Ime . Then Theorem 2.8 and Proposition 3.8 imply the following theorem.

Theorem 4.5. We maintain the notations introduced above. Then we have

σ(Ys) =
∑

v∈v(ΓX sst
s

)

(♯G/♯Iv(σ(X̃v)− 1) +
∑

e∈e(v)\elp(v)

♯G/♯Ie(♯Ie/♯Iv − 1) + 1)

+
∑

e∈ecl(ΓX sst
s

)\elp(ΓX sst
s

)

(♯G/♯Ie − 1) +
∑

v∈v(ΓX sst
s

)

♯elp(v)(♯G/♯Iv − 1) + dimCH
1(ΓX sst

s
,C).

In particular, if f : Y −→ X is a G-semi-stable covering, then we have

σ(Ys) =
∑

v∈v(ΓX sst
s

)

(♯G/♯Iv(σ(X̃v)− 1) +
∑

e∈e(v)\elp(v)

♯G/♯Ime (♯Ime /♯Iv − 1) + 1)

+
∑

e∈ecl(ΓX sst
s

)\elp(ΓX sst
s

)

(♯G/♯Ime − 1) +
∑

v∈v(ΓX sst
s

)

♯elp(v)(♯G/♯Iv − 1) + dimCH
1(ΓX sst

s
,C).

4.3 Local version

We follow the notations of Section 4.2. Let x be a vertical point associated to f . Suppose
that f−1(x) is connected. Write g for the natural morphism X sst −→ X over S induced
by f such that f = g ◦ h. Write

g−1(x)red

for the underlying curve of g−1(x)red and VX for the set of closed points

g−1(x)red ∩Xsst
s \ g−1(x)red,

where Xsst
s \ g−1(x)red denotes the closure of Xsst

s \ g−1(x)red in Xsst
s . Let

EX := (g−1(x)red, (DXsst
s

∩ g−1(x)red) ∪ VX)

and ΓEX
the dual semi-graph of EX . Note that ΓEX

is a tree. Then Theorem 2.8 and
Proposition 3.9 imply the following theorem.
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Theorem 4.6. We maintain the notations introduced above. Then we have

σ(f−1(x)) =
∑

v∈v(ΓEX
)

(−♯G/♯Iv +
∑
e∈e(v)

♯G/♯Ie(♯Ie/♯Iv − 1) + 1)

+
∑

e∈ecl(ΓEX
)

(♯G/♯Ie − 1).

In the remainder of this section, we suppose that x is a node of Xs. Write X ′
1 and X

′
2

(which may be equal) for the irreducible components of Xs which contain x. WriteX1 and
X2 for the strict transforms of X ′

1 and X
′
2 under the birational morphism g : X sst −→ X ,

respectively. By the general theory of semi-stable curves, g−1(x)red ⊆ X sst
s is a semi-stable

curve over s whose irreducible components are isomorphic to P1
k. Write C for the semi-

stable subcurve of g−1(x)red which is a chain of projective lines ∪n
i=1Pi such that the

following conditions hold: (i) for any s, t = 1, . . . , n, Ps ∩ Pt = ∅ if |s− t| ≥ 2 and Ps ∩ Pt

is reduced to a point if |s− t| = 1; (ii) P1 ∩X1 (resp. Pn ∩X2) is reduced to a point; (iii)
C ∩ {Xsst \ C} = (P1 ∩X1)∪ (Pn ∩X2), where {Xsst \ C} denotes the closure of Xsst \C
in Xsst. Then we have

g−1(x)red = C ∪B,

where B denotes the topological closure of g−1(x)red\C in g−1(x)red. Write Bi, i = 1, . . . , n,
for the set of the connected components of B which intersect with Vi are not empty.

Let {Vi}n+1
i=0 be a set of irreducible components of the special fiber Ys of Y such

that the following conditions hold: (i) h(Vi) = Pi for i = 1, . . . , n; (ii) h(V0) = X1 and
h(Vn+1) = X2; (iii) the union ∪n+1

i=0 Vi ⊆ Ys is a connected semi-stable curve over s. Write
IVi

⊆ G, i = 0, . . . , n+ 1 for the inertia group of Vi.

Lemma 4.7. We have G = ⟨IV1 , IVn+1⟩, where ⟨IV1 , IVn+1⟩ denotes the subgroup of G
generated by IV1 and IVn+1.

Proof. If G ̸= ⟨IV1 , IVn+1⟩, since G is a p-group, then there exists a normal subgroup
H ⊆ G of index p such that ⟨IV1 , IVn+1⟩ ⊆ H. Write Y ′ for the normalization of X in the
function field K(Y ) induced by the natural injection K(X) ↪→ K(Y ) induced by f . The
normalization Y ′ admits an action of G induced by the action of G on Y . Consider the
quotient Y ′/H. Then we obtain a morphism of fiber surfaces fH : Y ′/H −→ X over S
induced by f . Moreover, Y ′/H admits an action of G/H ∼= Z/pZ induced by the action
of G on Y ′. Then fH is generically étale above X ′

1 and X ′
2. Thus, [T, Lemma 2.1 (iii)]

implies that fH is étale above x. Then f−1(x) is not connected. This is a contradiction.
We complete the proof of the lemma.

Let (u,w) ∈ {0, . . . , n+1}× {0, . . . , n+1} be a pair such that u ≤ w. We shall call a
group Imin

u,w a minimal element associated to {IVi
}n+1
i=0 if one of the following conditions hold:

(i) (u,w) = (0, n+ 1) and for any IVi
, i = 0, . . . , n+ 1, Imin

0,n+1 = IVi
; (ii) (u,w) = (0, w) ̸=

(0, n + 1), Imin
0,w = IV0 = IV1 = · · · = IVw ⊂ IVw+1 ; (iii) (u,w) = (u, n + 1) ̸= (0, n + 1),

IVu−1 ⊃ IVu = IVu+1 · · · = IVn+1 = Imin
u,n+1; (iv) u ̸= 0, w ̸= n + 1, and IVu−1 ⊃ Imin

u,w =
IVu = IVu+1 · · · = IVw ⊂ IVw+1 . We shall call a group Jmax

u,w a maximal element associated

to {IVi
}n+1
i=0 if one of the following conditions holds: (i) (u,w) = (0, n + 1) and for any

21



IVi
, i = 0, . . . , n+1, Jmax

0,n+1 = IVi
; (ii) (u,w) = (0, w) ̸= (0, n+1), Jmax

0,w = IV0 = IV1 = · · · =
IVw ⊃ IVw+1 ; (iii) (u,w) = (u, n+ 1) ̸= (0, n+ 1), IVu−1 ⊂ IVu = IVu+1 · · · = IVn+1 = Jmax

u,n+1;
(iv) u ̸= 0, w ̸= n + 1, and IVu−1 ⊂ Jmax

u,w = IVu = IVu+1 · · · = IVw ⊃ IVw+1 . We define Min
to be the set

{Imin
u,w }(u,w)∈{1,...,n}×{1,...,n+1} or {Imin

0,n+1},

and Max to be the set
{Imax

u,w }(u,w)∈{0,...,n+1}×{0,...,n+1}.

Note that Min may be an empty set. Then Corollary 2.10, Proposition 3.11, Lemma 4.1,
Corollary 4.4, and Lemma 4.7 imply the following theorem.

Theorem 4.8. We maintain the notations introduced above. Then we have

σ(f−1(x)) =
n∑

i=1

♯G/♯IVi
−

n+1∑
i=1

♯G/♯⟨IVi−1
, IVi

⟩+ 1

=
n∑

i=1

♯G/♯IVi
−

n+1∑
i=1

♯G/♯Ii−1,i + 1,

where for each i = 1, . . . , n + 1, ⟨IVi−1
, IVi

⟩ denotes the subgroup of G generated by IVi−1

and IVi
, and ♯Ii−1,i denotes max{♯IVi−1

, ♯IVi
}. Note that ♯IVi

, i = 0, . . . , n + 1, does not
depend on the choices of Vi. Moreover, we have

σ(f−1(x)) =
∑
I∈Min

♯G/♯I −
∑

J∈Max

♯G/♯J + 1, if Min ̸= {Imin
0,n+1},

and
σ(f−1(x)) = 0 if Min = {Imin

0,n+1}.

Remark 4.8.1. The formulas

σ(f−1(x)) =
∑
I∈Min

♯G/♯I −
∑

J∈Max

♯G/♯J + 1, if Min ̸= {Imin
0,n+1},

and
σ(f−1(x)) = 0 if Min = {Imin

0,n+1}

are the key in the calculation of bounds of vertical fibers (cf. [Y3]).

If G is an abelian p-group, then IVi
, i = 0, . . . , n + 1, does not depend on the choices

of Vi. Then if G is abelian, we use the notation IPi
, i = 0, . . . , n+ 1, to denote IVi

.

Lemma 4.9. We maintain the notations introduced above. If G is a cyclic p-group, then
there exists 0 ≤ u ≤ n+ 1 such that

IP0 ⊇ IP1 ⊇ IP2 ⊇ · · · ⊇ IPu ⊆ · · · ⊆ IPn−1 ⊆ IPn ⊆ IPn+1 .
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Proof. If the lemma is not true, there exist s, t and v such that IPv ̸= IPs , IPv ̸= IPt and
IPs ⊂ IPs+1 = · · · = IPv = · · · = IPt−1 ⊃ IPt . Since G is a cyclic group, we may assume
IPs ⊇ IPt .

Considering the quotient of Y by IPs , we obtain a natural morphism of pointed semi-
stable curves hs : Y /IPs −→ X sst over S. By contacting Ps+1, Ps+2, . . . , Pt−1, Bs+1, . . . , Bt−1

(resp. (hs)
−1(Ps+1)red, (hs)

−1(Ps+2)red, . . . , (hs)
−1(Pt−1)red, (hs)

−1(Bs+1)red, . . . , (hs)
−1(Bt−1)red),

we obtain a pointed semi-stable curve (X sst)c (resp. a fiber surface (Y /IPs)
c) and a con-

tacting morphism cX sst : X sst −→ (X sst)c (resp. cY /IPs
: Y /IPs −→ (Y /IPs)). The

morphism hs induces a morphism of fiber surfaces hcs : (Y /IPs)
c −→ (X sst)c. Then we

have the following commutative diagram as follows:

Y /IPs

cY /IPs−−−−→ (Y /IPs)
c

hs

y hc
s

y
X sst

cX sst−−−→ (X sst)c.

Write P c
s and P c

t for the images cX sst(Ps) and cX sst(Pt), respectively, and x
c
st for the closed

point P c
s ∩P c

t . Since h
c
s is generically étale above P c

s and P c
t , [T, Lemma 2.1 (iii)] implies

that (hcs)
−1(xcst)red are nodes. Thus, (Y /IPs)

c is a semi-stable curve over S, moreover, we
have hcs is étale over x

c
st. Then the inertia groups of the closed points (hcs)

−1(xcst)red of the
special fiber (Y /IPs)

c
s of (Y /IPs)

c are trivial.
On the other hand, since IPs is a proper subgroup of IPv , we obtain the natural action

of G/IPs on the irreducible components of h−1
s (∪t−1

j=s+1Pj)red is trivial. Thus, the inertia

groups of the closed points cY /IPs
(h−1

s (∪t−1
j=s+1Pj)red) = (hcs)

−1(xcst)red of the special fiber
(Y /IPs)

c
s of (Y /IPs)

c are not trivial. This is a contradiction. Then we complete the proof
of the lemma.

Then Theorem 4.8 and Lemma 4.9 imply the following corollary.

Corollary 4.10. Suppose that G is a cyclic p-group, and IP0 is equal to G. Then we have

σ(f−1(x)) = ♯G/♯Imin − ♯G/♯IPn+1 ,

where Imin denotes the group ∩n+1
i=0 IPi

.

Remark 4.10.1. The formula in Corollary 4.10 had been obtained by M. Säıdi (cf. [S,
Proposition 1]).
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