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Abstract

In the present paper, we investigate the p-ranks of coverings of curves. Let
G be a finite p-group, f : ¥ — 2 a morphism of pointed semi-stable curves
over a complete discrete valuation ring R with algebraically closed residue field of
characteristic p > 0, and = a closed point of 2. Write n for the generic point of
S := Spec R, and s for the closed point of S. Suppose that the generic fiber 2Z;, of
2 is a smooth pointed stable curve over 7, and that the morphism f, : %, — 2,
induced by f on generic fibers is a Galois covering whose Galois group is isomorphic
to G, and whose branch locus is contained in the set of marked points of Z;,. If
f~1(z) is not a finite set, we shall call = a vertical point associated to f and f~!(x)
the vertical fiber associated to . We give an explicit formula for the p-rank o (%)
of the special fiber %; of # and an explicit formula for the p-rank o(f~!(z)) of
the vertical fiber f~1(z) associated to z. The formula for the p-rank o(%;) can be
regarded as a relative version of the Deuring-Shafarevich formula, and the formula
for the p-rank o(f~1(x)) generalizes a result of M. Saidi concerning the formula for
the p-rank o(f~1(x)) to the case where G is an arbitrary p-group.
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1 Introduction

Let C' be a smooth projective curve over an algebraically closed field of characteristic
p > 0. There are two natural invariants associated to C: the genus g(C') and the p-rank
o(C) := dimg, H}, (C,F,). These two invariants determine, respectively, the isomorphism
classes (as profinite groups) of the maximal pro-% and pro-p quotients of the étale fun-
damental group m;(C) of C, for ¥ a set of prime numbers which does not contain p. The
genus and p-rank have some similar properties. Let G be a finite group and h : ¢ — C
a G-Galois covering of smooth projective curves (i.e., the extension of function fields
K(C")/K(C) induced by h is a Galois extension with Galois group G). The genus ¢g(C")
of C' can be calculated by the Riemann-Hurwitz formula. In particular, if (1G,p) = 1,
then the Riemann-Hurwitz formula has the following form:

9(C) =4G- ()~ )+ Y (eo—1)/2+1,

C’G(C’)Cl

where (C")¢! denotes the set of the closed points of C’, e denotes the ramification index at
', and G denotes the order of G. If G is a p-group, then we have the Deuring-Shafarevich
formula (cf. [C]) for the p-rank o(C"), as follows:

o(C) =4G-(o(C) = 1)+ Y (eo—1)+1,

cle(cl)ol

where (C")?! denotes the set of the closed points of C’, e denotes the ramification index
at ¢/, and #G denotes the order of GG. In the present paper, we study the geometry of
coverings of curves over a complete discrete valuation ring and prove a relative version
of the Deuring-Shafarevich formula (cf. Theorem 4.5).

Let R be a complete valuation ring with algebraically closed residue field & of charac-
teristic p > 0. Write K for the quotient field of R, S := Spec R, n : Spec K — S and
s : Spec k — S for the natural morphisms. Let G be a finite group and 2" = (X, Dx) a
pointed semi-stable curve of genus gx over S, where X denotes the underlying curve of 2~
and Dy denotes the set of marked points (each of which is a section S — X of X — 9)
of Z'. Write 2, = (X,), Dx,) and Z; = (X, Dx,) for the result of base-changing 2" by
n and s, respectively. Moreover, we suppose that 2, is a smooth pointed stable curve
over 1.

Let %, = (Y;, Dy,) be a smooth pointed stable curve over  and f, : %, — 2,
a morphism of pointed stable curves over n. Write Imp,, and Imp, for the sets of
the images of the elements of Dy, and Dy, , respectively. Suppose that f, is a Galois
covering whose Galois group is isomorphic to G such that f,- H(Tm DX") = Im Dy, and that
the branch locus of f, is contained in Imp,, . By replacing S by a finite extension of S
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(i.e., the spectrum of the normalization of R in a finite extension of K'), we may assume
that f, extends uniquely to a G-pointed semi-stable covering (cf. Definition 3.3)
f:% =(Y,Dy) — Z over S (cf. Proposition 3.4). We are interested in understanding
the structure of the special fiber %, = (Y5, Dy,) of #. If the order G of G is prime
to p, then by the specialization theorem for log étale fundamental groups, the morphism
fs : % — Z; on special fibers induced by f is an admissible covering (cf. [V], [Y1]); thus,
%, may be obtained by gluing together tame coverings of the irreducible components of
Z5. On the other hand, if p|4G, then f; is not a finite morphism in general. For example,
if char(K) = 0, char(k) = p > 0, and 2" is a stable curve (i.e., Dx = (}), then there exists
a Zariski dense subset Z of the set of closed points X of X, which may in fact be taken
to be X! when k is an algebraic closure of F,, such that for any z € Z, after possibly
replacing S by a finite extension of S, there exist a finite group H and an H-pointed
semi-stable covering fy : # — 2 over S such that the fiber (fy)~!(z) is not finite (cf.
[T], [Y2]). If f~!(x) is not finite, then we shall call z a vertical point associated to f
and call f~1(z) the vertical fiber associated to z (cf. Definition 3.6).

In order to investigate the properties of %, we focus on the p-rank o(%;) of %; (cf.
Definition 3.1 (b)). By the definition of the p-rank of a pointed semi-stable curve, to
calculate 0(%;), it suffices to calculate dimc H'(I's,, C) (where I', denotes the dual semi-
graph of #; (cf. Definition 3.1 (a))), the p-ranks of the irreducible components of %, which
are finite over 2, and the p-ranks of the vertical fibers of f. In the present paper, we
study the p-ranks of vertical fibers and special fibers of G-pointed semi-stable coverings
and consider the following Question:

Question 1.1. Let G be a finite p-group and f : ¥ — X a G-pointed semi-stable
covering over S.

(Global Version): Does there exist an explicit formula for the p-rank o(%;) of % in
terms of the dual semi-graph of X and the inertia subgroups of the irreducible components
and marked points of %, ¢

(Local Version): Let x be a vertical point associated to f. Then does there ezist an
explicit formula for the p-rank o(f~1(x)) of f~1(x) in terms of the inertia subgroups of
the irreducible components and marked points of f~(z)?

If the vertical point x is not contained in Dx,, Question 1.1 (Local Version) had been
studied by M. Raynaud and M. Saidi. If x is a smooth point of 2 which is not contained
in Dy,, then Raynaud proved that o(f~!(z)) = 0 (cf. [R, Théoreme and Proposition 2
(i))]). If G is a cyclic p-group, and x is a singular point of 27, then an explicit formula
has been obtained by M. Saidi (cf. [S, Proposition 1] and Corollary 4.9 of the present
paper).

The main theorems of the present paper give an answer to Question 1.1 (cf. Theorem
4.5 for the global version and Theorem 4.6 for the local version). Theorem 4.5 can be
regarded as a certain analogue of the Deuring-Shafarevich formula for G-pointed semi-
stable coverings over S. On the other hand, if = is a singular point of 2, then the explicit
formula for o(f~!(z)) assumes a simple form (cf. Theorem 4.7), which generalizes Saidi’s
result to the case where GG is an arbitrary p-group.

The present paper is organized as follows. In Section 2, we introduce a kind of purely
combinatorial object called a semi-graph with p-rank. We define p-ranks, coverings,
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and G-coverings for semi-graphs with p-rank; then we calculate the p-ranks of G-coverings
of semi-graphs with p-rank. In Section 3, by using the theory of semi-stable curves, we
prove that for any G-pointed semi-stable covering, one may construct a GG-covering of semi-
graphs with p-rank associated to the G-pointed semi-stable covering (resp. the vertical
fibers of the G-pointed semi-stable covering) in a natural way. In Section 4, we study the
relationship between the inertia groups of irreducible components and the inertia groups
of nodes of the special fiber of a G-pointed semi-stable covering; then together with the
results obtained in Section 2 and Section 3, we obtain our main theorems.

Finally, we would like to mention that by applying the formulas for global and local p-
ranks associated to a G-semi-stable covering f (cf. Definition 3.3 and Theorem 4.7), in
[Y3], we answer an open problem posed by M. Saidi concerning the boundedness of p-ranks
of vertical fibers (cf. [S, Question]) in the case where G is an arbitrary abelian p-group.
Moreover, we prove that the global and local p-ranks associated to f are determined by
a kind of combinatorial data associated to f.

2 Semi-graphs with p-rank

In this section, we develop the theory of semi-graphs with p-rank. We always assume that
G is a finite p-group with order p".

2.1 Definitions

We begin with some general remarks concerning semi-graphs (cf. [M]). A semi-graph G
consists of the following data: (i) A set ¥ whose elements we refer to as vertices; (ii) A
set &C whose elements we refer to as edges. Any element e € & is a set of cardinality 2
satisfying the following property: For each e # ¢/ € &€, we have ene’ = ; (iii) A set of
maps {(F}.cee such that ¢, : e — ¥ U{¥} is a map from the set e to the set ¥ U{¥}.
For an edge e € &%, we shall refer to an element b € e as a branch of the edge e. An
edge e € &€ is called closed (resp. open) if (Z1({#©}) =0 (vesp. (T({¥C}) #0). A
semi-graph will be called finite if both its set of vertices and its set of edges are finite.
In the present paper, we only consider finite semi-graphs. Since a semi-graph can be
regarded as a topological space, we shall call G a connected semi-graph if G is connected
as a topological space.

Let G be a semi-graph. Write v(G) for the set of vertices of G, e(G) for the set of
closed edges of G, and e°P(G) for the set of open edges of G. For each v € v(G), write
b(v) for the set of branches U, e (g)ueor()¢; ' (v) and e(v) for the set of edges which abuts
to v. For each e € e?(G) U e°(G)), write v(e) for the set which consists of the elements
of v(G) which are abutted by e. An edge e € ¢(G) is called a loop if fv(e) = 1, and we
use the notation €'P(v) to denotes the set of loops which abut to v for each v € v(G).

A morphism between semi-graphs G — H is a collection of maps v(G) — v(H);
e (G)UeP(G) — e (H)UeP(H) such for each eg € e?(G) (resp. eg € €°P(G)) mapping
to ey € e(H) (resp. em € e°P(H)) is a bijection eg — ey, and all of which are compatible
with the {(F}ecee(Gyuer(@) and {C¢' }eeeet @myueon ) -

A sub-semi-graph G’ of G is a semi-graph satisfying the following properties: (i) v(G’)



(reisp. el(G') U e°P(G')) is a subset of v(G) (resp. e(G) U eP(G)); (i) if e € e(G'),
Cf’/(e) = (®(e); (iii) if e= {by, by} € €°P(G') such that ¢E(b1) € v(G') and (¥ (bs) & v(G'),
¢ (br) = ¢Z(b1) and ¢ (b2) = {v(G')}.

Definition 2.1. Let G’ be a sub-semi-graph of a semi-graph G. We define a semi-graph
G\G as follows: (i) v(G\G') := v(G)\v(G); (ii) e(G\G') := {e € e(G) | v(e)Nv(G') =
0 in G}; (iii) e?(G\ G') := {e € e(G) | v(e) Nv(G') # 0 in G and v(e) Nv(G\ G') #
0 in G} U {e € e®(G) | v(e) Nv(G\ G') # 0 in G}; (iv) For each e = {b;};i—12) €
NG\ G) UG\ G), we set (&% (b)) = E(b) (resp. &\ (b) = {0(G\ G)}) if
G (bs) & v(G') (resp. ¢Z(bi) € v(G)).

Definition 2.2. (a) A pair & := (G, 0g) which consists of a semi-graph G and a map
o : V(G) — Z. We shall call & a semi-graph with p-rank. We shall refer to G as the
underlying semi-graph of & and og as the p-rank map of &, respectively.

(b) We define the p-rank og(®) of & as follows:

0s(®):= > oe(v)+ Y  dimcH'(G;C),

vev(G) Gi€mo(G)

where my(—) denotes the set of the connected components of (—), and C denotes the field
of complex number.

(c¢) A semi-graph with p-rank is called connected if the underlying semi-graph G is a
connected semi-graph.

(d) A morphism between semi-graphs with p-rank b : &' := (G!,0¢1) — &% =
(G?, 0g2) is defined by a morphism of the underlying semi-graphs 3 : G! — G?; we shall
refer to the morphism 3 as the underlying morphism of b.

From now on, we assume that all the semi-graphs with p-rank are connected.

Definition 2.3. Let b : &' := (G',041) — 62 := (G? 0g2) be a morphism of semi-
graphs with p-rank.

(a) We shall call b p-étale (resp. p-purely inseparable) at an edge e € ¢?(G') U
eP(GY) if 1871(B(e)) = p (resp. #6871 (B(e)) = 1), where #(—) denotes the cardinality of
(—). We shall call b p-generically étale at v € v(G') if one of the following étale types
holds:

(Type) If §5-(5(v)) = p. then we have o1 (v) = oea(5(v)):

(Type-II) If 437'(B(v)) = 1, then we have the following Deuring-Shafarevich type

formula:
o1 (V) = 1= p(oe2(B(v)) = 1) + Y (re — 1),

ece(v)

where 7. is equal to p if 871 (8(e)) = 1, and 7. is equal to 1 if #371(B(e)) = p.

(b) We shall call b purely inseparable at v € v(G') if 371 (3(v)) = 1 and g1 (v) =
oe2(B(v)) hold.

(c) We shall call b a p-covering if the following conditions hold: (i) there exists
a Z/pZ-action (which may be trivial) on G* (resp. a trivial Z/pZ-action on G?), and
the underlying morphism [ of b is compatible with the Z/pZ-actions; then the natural



morphism G'/Z/pZ —s G? induced by b is an isomorphism; (ii) for each v € v(G*), b is
either p-generically étale or purely inseparable at v; (iii) let e € e(G') and v(e) = {v,v'}
(v and v' may be equal if e is a loop); if b is p-generically étale at v and v’, then b is
p-étale at e; (iv) For each v € v(G'), then og1(v) = 0g1(7(v)) holds for each T € Z/pZ.

Note that by the definition of p-covering, the identity morphism of a semi-graph with
p-rank is a p-covering.

(d) We shall call b a covering if b is a composite of p-coverings.

(e) We shall call

Cbl{l}:GTCGT_lC"'CG1CG0:G

an maximal normal filtration of G if G, is a normal subgroup of G and G,;/Gj11 =
Z/pZ for each j = 0,...,7 — 1. Suppose that G' (resp. G?) admits a (resp. trivial)
G-action (which may be trivial). Then a maximal normal filtration ® of G induces a
sequence of semi-graphs:

.G =G, 5 G, I PG,

where G;,j = 0,...,r, denotes the quotient of G' by G,. We shall call b a G-covering
if there exist a maximal normal filtration ® of G and a set of p-coverings {b; : &, —
®;_1, j=1,...,r} such that the following conditions hold: (i) the underlying morphism
B of b is compatible with the G-actions, and the natural morphism Gy = G!/G — G?
induced by (3 is an isomorphism; (ii) the underlying graph of &, is equal to G; for each
Jj = 0,...,r; (ili) the underlying morphism G; — G;_; of b; is equal to §; for each
j=1,...,r; (iv) The composite morphism b; o --- o b, is equal to b.

If b: &' — &2 is a G-covering, then we have a maximal normal filtration ® of G
and a sequence of p-coverings:

Dy 1 Gl =6, —2s 6, L M 6 =62
We shall call ®g1/62 a sequence of p-coverings induced by @.

Definition 2.4. Let b : &! — &2 be a G-covering, 8 : G! — G? the underlying
morphism of b, v! € v(G'), and €' € e(G') U e°?(G'). By the definition of G-coverings,
we have a maximal normal filtration ® of G and a sequence of p-coverings induced by ®:

Dy 1 G =6, —2 s 6, M 6 =62

Write 8 : G; — G;_1,5 = 1,...,r, for the underlying morphism b;. Write v; (resp. e;)
for the image 341 0 ... 0 B,.(v) (vesp. Bjr10...006:(e)), 5 =0,...,r — 1, and v, for v’
Then we set
log,(#1,1) := #{j € {1,...,7} | b; is purely inseparable at v;},
log,(#le1) :==#{j € {1,...,7} | b; is purely inseparable at ¢;},
Dy ={re€G| (') ="}



Note that if e! € e(v!), then we have #1,:|4l,1. In particular, if e! is a loop, then we
have 1,1 = fl.1 by using Definition 2.3 (c, iii). Moreover, Definition 2.3 (c, iii) implies
that 7.1 |4D,1. Write v? (resp. €?) for vy = B(v') (resp. ey = B(e')). Let (v') (resp.
(e')") be an arbitrary element of 371(v?) (resp. 87'(e?)). By the action of G on G!, we
have §1,1 = 1y, Bler = §1 1y, and §D,1 = §D 1y Thus, we use the notation 1,2 (resp.
tl.2, £D,2) to denote 1,1 (resp. #l.1, $D,1). Then we obtain §1,2|81.2|fD,z.

Remark 2.4.1. We follow the notations in Definition 2.4. It is easy to compute the
p-rank og (v!') by using Definition 2.3 (a, Type-II). Then we have the following Deuring-
Shafarevich type formula (cf. Proposition 3.2 for the Deuring-Shafarevich formula for
curves)

01 (V') =1 =Dy /fl2(062(v?) = 1) + > (4Dy2/4)(§1e2 /41,2 — 1)

e2ee(v?)

= 1Dy /82 (0e2(V?) = 1)+ Y (8D /8le) (/1,2 — 1).

e2ee(v?)\elP(v?)

The second equality follows from Definition 2.3 (c, iii).

2.2 An operator on G-coverings of semi-graphs with p-rank

Let b: ' — &2 be a G-covering and 3 : G! — G? the underlying morphism of b. In
this subsection, we introduce an operator for b. Let v? € v(G?) and v! € f71(v?). First,
let us define a new semi-graph (G')*[v?].

If 871(v?) = {v'} (i.e., Dyi = G), then we define (G')*[v?] to be G'.

If 371 (v?) # {v'}, we define a new semi-graph (G')*[v?] as follows. Define v((G')*[v?])
(resp. e((GH)*[v?]) UeP((GY)*[v?])) to be the disjoint union (v(G')\ S71(v?)) [[{v*[v*]}
(resp. e(G') U eP(Gh)).

The collection of maps {CéGl)*[vz]}e is as follows: (i) for each branch b & U,cz-1(,2)b(v),
O B) = B ) if b e e and CCV(B) = 0 it b & e; (ii) for each v € B~1(v?) and
each branch b € b(v), CéGl)*[UQ](b) = v*[v?] if b € e and CéGl)*[UQ](b) =0ifb¢de.

Second, we define a map o)z : V((G')*[v?]) — Z as follows: (i) if v*[v?] # v €
v((GY)*[v?]), we set o)z (V) := o1 (v); (ii) if v = v*[v?], we set

oty ) (v [0°]) = §G e (02 (v¥) = 1) + Y $G/4L(EL /8] — 1) + L.

ece(v?)

We define (&')*[v?] to be the pair ((G')*[v?], 0(g1)+[2)) which is a semi-graph with
p-rank.

We define a morphism of semi-graphs 3*[v?] : (G!)*[v?] — G? as follows: (i) for each
v € v((GH*[v?]), B*[v¥](v) := v? if v = v*[v?] and B*[v?](v) := B(v) if v # v*[v?]; (ii) if
e € e((GH*[v?]) U eP((GY)*[v?]), we set B*[v?](e) := B(e). Then we obtain a morphism
of semi-graphs with p-rank b*[v?] : (8')*[v?] — &? induced by 3*[v?].

Moreover, (G')*[v?] admits a natural G-action as follows: (i) the action of G on
v(GH*[v?]) \ {v*[v?]} (resp. e((G)*[v?]) U e ((G1)*[v?])) is the action of G on v(G) \
Be'(pi) (resp. e (G) U e°P(G)); (ii) the action of G' on v*[v?] is a trivial action.

7



Let us explain that with the G-action defined above, b*[v?] : (&')*[v?] — &2 is a
G-covering. Since b : &' — &2 is a G-covering, there exist a maximal normal filtration

(I)I{l}:GTCGT_lC"'CG1CG0:G

of G and a sequence of p-coverings of semi-graphs with p-rank

b, br— b
Dyi/p2 1 B =6, —— &, Do — By = B2,

Note that for each j = 1,...,7, bjo...ob; : &; — & is a G/Gj-covering. Then we
obtain a sequence of morphisms of semi-graphs with p-rank

b, by [?] by [v?]

D1y p2yje - (B1) 0] = &1 [v?] —— &) [v7] _— y By = B2,

By the construction of &*[v?], it is easy to see that b%[v?] is a p-covering for each j =
1,...,r. Thus, b*[v?] : (&')*[v?] — &2 can be regarded as a G-covering.

Definition 2.5. Let b : &' — &? be a G-covering and v? € v(G?). We define an
operator =1, [v?] from a G-covering to a G-covering to be

=1, (b : &' — &%) 1= b*[v?] : (1) [v?] — &>

2.3 Formula for p-ranks of G-coverings of semi-graphs with p-
rank

In this subsection, we give an explicit formula for the p-rank of G-coverings of semi-graphs
with p-rank.

Lemma 2.6. Let G be a connected semi-graph, {G;}i—1.. ., a set of connected sub-semi-
graph of G, and v; € v(G;),i = 1,...,n. Suppose that G; N Gy = () for each s,t €
{1,...,n}. Let G° be a semi-graph defined as follows: (i) v(G®) = v(G)][{v°}; (i)

CE(b) = CE(b) ifbe e and CE(b) = ifb g e; (v) let €8 = {ble, b2}, i =1,...,n; we set
(et (bee) = vi and (& (bZ) = v° for eachi=1,...,n. Then we have

dimcH' (G, C) = dimcH' (G, C) — n + 1.
Proof. The lemma follows from the construction of G°. m

The following proposition is a key for calculating the p-ranks of G-coverings.

Proposition 2.7. Let b : &' — &2 be a G-covering of semi-graphs with p-rank, v? €
v(G?), and =L, [v?](b: ' — &?) := b*[v?] : (B1)*[v?] — &2. Then we have

Ol (@1) == 0(@1)*[1,2}((61)*[1)2]).



Proof. Write 8 (resp. *[v?]) for the underlying morphism of b (resp. b*[v?]). Write r
(vesp. r\qu2}, 77, 1,0y ) for dimcH' (GY, C) (resp. dimcH'(GH\B71(v?), C), dimcH' ((G1)*[?], C),
dimcH' ((GY)*[v?] \ (8*[v?])~*(v?),C)). Then we have

op1 (BY) = Z oe1(v) + Z o1 (V) + 1\ 2y + 7 — 1\ (02
vev(G1\B~1(v?)) veB1(v?)
and
O’(le)*[UQ]((@l)*[’UZ]) = Z O’(le)*[vz](U)+U(Q51)*[U2](U*[112])4‘7“1{{”2}4‘7’*—7”&1)2}.

vev((GH)* [ \(B*[v?])~1(v?))

Note that by the construction of (&')*[v?], we have

A= Ol (@1) = Z Ol (1)) = Z 0(61)*[1)2](1})

vev(G\f~1(v2)) vev((GL)*[v2\(8*[v2]) ~1(v2))
and
B = T\{v2} = 7"?{02}.
Let us calculate 7 — r\ 2y and 7* — ri (02} Follows from Lemma 2.6, it is sufficient

to treat the case where G\ 87(v?) = (G')*[v?] \ (8*[v?])~(v?) is connected. Then we
obtain

r—rey =4G/De (Y #De/tl) — 1) + te®(v*)(1G/1,2)

ece(v2)Nel(G2)

and

el =0 Y, HG/EL) — 1+ 5P () (G H ).

ece(v?)Nec(G2)

The Remark 2.4.1 implies that for each v € 57! (v?), we have

061 (V) = §Dy2 /11,2 (0w2(v?) = 1) + Y (8D /L) (#I /81,2 — 1) + 1.

ece(v?)

On the other hand, the construction of (&!)*[v?] implies that

o)) (V[0°]) = 4G /42 (062(v)) = 1) + Y $G/HL(4L /8,2 — 1) + 1.

ece(v?)

Thus, we obtain

0-(’51(6 ) A+ B+ Z ﬁDvQ/ﬂI 2 0-62( ) - 1) + Z (ﬂDUQ/ﬁle)(ﬁ]e/hIUQ - 1) + 1)

veB1(v2) ece(v?)

HIG/ED (Y §Dw /L) — 1) + §e(0°) (4G /41,2)

e€e(v2)Nel(G2?)



= A+ B+14G/tDy2(4D2 /8L,2(062(v*) = 1) + > (8D /41.)(E1e/8L,2 — 1) + 1)

ece(v?)

HG/De (Y iDe/tl) — 1) + te®(v*) (1G/1,2)

ece(v?)Nel(G2)

= A+ B+ (1G/t12)0e2(v) — 4G /tL2 + Y 1G/8l2 — > 1G/HI,

ece(v?) e€e(v?)

+ Y MG/ + 5P (V) (BG /)

e€e(v?)Nel(G?)
= A+B+(1G/t1,2)002 (V) 4G /812t Y 4G/flo— > 1G/i+e® () (1G/11,2)
ece(v?) e€e(v?)Neor(G2)

and

0(61)*[v2]((®1)*[02]> =A+ B+ uG/ﬁIUQ(O-@? (UQ) - 1) + Z ﬁG/lj[e(ﬂ[e/ﬁIUQ - 1) +1

e€e(v?)

+( Y HG/EL) — 1+ 1eP (V) (HG/t],2)

ece(v?)Ne(G2)
= A+B+(1G/th)oe (') 4G [tha+ Y | 4G [tla— Y 4G/tleP(v*) (4G /t2).
ece(v?) e€e(v?)NeoP (G?2)
This means that
061 (&) = o(e1y 2 ((B1)"[v7)).
We complete the proof of the proposition. O]

Theorem 2.8. Let b : &' — &2 be a G-covering of semi-graphs with p-rank and 3 the
underlying morphism of b. Then we have

oe1 (&) = D (1G/th(oe2(v) = 1)+ Y HG/HL(4L /8, — 1) + 1)

veEV(G2) ece(v)\elP(v)

+ ) G-+ Y e (v)(4G/4L, — 1) + dimcHY (G, C).

e€eel (G2)\eP(G?) vev(G?)

Proof. By applying Proposition 2.7, to calculate the p-rank of &1, it is sufficient to assume
that £87!(v) = 1 for each v € v(G?). Then for each v € v(G?), we have

061 (871 (v)) = 1G/8L,(062(v) = 1) + Y 1G/8L (/8] — 1) + 1

ece(v)

=G/t (0e2(v) = 1)+ Y HG/tL (1 /4, — 1) + 1
ece(v)\elP(v)
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On the other hand, it is easy to see that

dimcH' (G, C) = > (1G/4L - 1) + dimcH'(G*,C) — > 4 (v)
ecel(G?)\eP(G?) vev(G2)
+ ) teP()(1G/4L)
veV(G2)
= > (#G/fI — 1) + dimcHY(G*, C) + > e (v)(1G/4L, — 1).
ecel(G?)\elP(G?) vev(G?)

Thus, we obtain

051 (8') = Y (1G/iL(0e2(v) = 1)+ Y HG/HL(t1/8, — 1)+ 1)

vev(G2) ece(v)\elP(v)
+ ) G-+ Y teP(v)(4G/4L, — 1) + dimcHY (G, C).
ecel(G2)\elP(G2) vev(G2)
This completes the proof of the theorem. m

Definition 2.9. Let n be a positive natural number and P,, a semi-graph such that the
following conditions hold: (i) v(P,) = {p1,...,pu}; (ii) e(P,) = {e12,...,€nn_1} and

eP(Pp) = {eo1; enmr}; (ii)v(eor) = {p1} and v(enns1) = {pn}; (iv) v(eiiv1) = {pi pisa}-
We define a semi-graph with p-rank B,, to be (P,, oy, ), where oy, (p;) is equal to 0 for
each i =1,...,n. We shall call %§,, a n-chain.

We have the following corollary.

Corollary 2.10. Let b : & — B, be a G-covering of semi-graphs with p-rank. Then we

have
n+1

0s(®) = > 1G/4, — > 4G/t ,, +1.

i=1 =1

Proof. Since &, e'?(v) (G /41, — 1) and dimcH!(PP,, C) are equal to 0, the corollary
follows from Theorem 2 8. ]

In the next section, we will use Theorem 2.8 and Corollary 2.10 to calculate the global
and local p-ranks of coverings of curves over a complete discrete valuation ring.

3 Semi-graphs with p-rank associated to pointed semi-
stable coverings

3.1 p-ranks and pointed semi-stable coverings

Definition 3.1. (a) Let 4" := (C, D¢) be a pointed semi-stable curve over a scheme A.
We shall call C' the underlying curve of ¥ and D¢ the set of marked points of €. Write
Imp,, for the scheme theoretic images of the elements of D¢; we identify Do with Imp,,.
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If A is a field, we write Irr(C') for the set of the irreducible components of C' and C*&
for the set the singular points of C'; the dual semi-graph I'¢ of the pointed semi-stable
curve % is a semi-graph defined as follows: (i) v(T'y) = {vg}Eem(c); (i) e (Ty) =
{es}secsne; (iii) €P(T¢) = {em tmene; (iv) for each e, = {bl, 02} € e(Ty), (L4 (b}) # 0,

CLe(b?) £ 0, and (% (e) := {vp € v(T'¢) | a € E}; (v) for each e, = {b},, b2} € eP(Ty),
Cle(vl) == {vp € v(Iy) | a € B}, (Te(82,) := {v(Te)}.

(b) Let C be a disjoint union of projective curves over an algebraically closed field of

characteristic p > 0. We define the p-rank of C' as follows:

o(C) = dimp, Hg (C, F).

Suppose that C' is a semi-stable curve over an algebraically closed field of characteristic
p > 0. Write I'c for the dual semi-graph of C' and v(I'¢) for the set of vertices of I'¢.
Then we have .

a(C)= Y o(C,)+dimcH (T¢, C),

vev(le)

where for v € v(I'), C, denotes the normalization of the irreducible component C, of C
corresponding to v. Let € := (C, D¢) be a pointed semi-stable curve over an algebraically
closed field of characteristic p > 0, where C' denotes the underlying curve of ¢, and D¢
denotes the set of marked points of €. We define the p-rank o(%) of € to be the p-rank
a(C).

Let G be a finite group. The p-rank of a G-Galois covering (i.e., Galois covering whose
Galois group is isomorphic to G) of a smooth projective curve is difficult to calculate in
general. If G is a p-group, then the p-rank of a (G-Galois covering can be calculated by
the Deuring-Shafarevich formula as follows (cf. [C]):

Proposition 3.2. Let h : C" — C be a Galois covering (possibly ramified) of smooth
projective curves over an algebraically closed field of characteristic p > 0, whose Galois
group is a finite p-group G. Then we have

o(C) =1=tG((C) =)+ Y (ev—1),

C’E(C’)Cl

where (C")! denotes the set of closed points of C', ew denotes the ramification index at ¢,

and 4G denotes the order of G.

From now on, let R be a complete discrete valuation ring with algebraically closed
residue field k& of characteristic p > 0 and K the quotient field. We use the notation S
to denote the spectrum of R. Write n and s for the generic point and the closed point
corresponding to the natural morphisms Spec K — S and Speck — S, respectively.
Let 2" := (X, Dx) be a pointed semi-stable curve over S. Write 2, := (X, Dx,) and
Zs = (X, Dx,) for the generic fiber and the special fiber, respectively. Write I'y, for
the dual semi-graph of 2. Moreover, we suppose that %2, is a smooth pointed stable
curve over 7.
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Definition 3.3. Let f : & := (Y,Dy) — 2 be a morphism of pointed semi-stable
curves over S and G a finite group. The morphism f is called a pointed semi-stable
covering (resp. G-pointed semi-stable covering) over S if the morphism f, : %, =
(Y, Dy,) — %, = (X,), Dx,) over 1) induced by f on generic fibers is a finite generically
étale morphism (resp. a Galois covering whose Galois group is isomorphic to G) such
that the following conditions are satisfied: (i) the branch locus of f,, is contained in Dy, ;
(ii) f,'(Dx,) = Dy,; (iii) the following universal property holds: if g : 2% — 2" is a
morphism of pointed semi-stable curves over S such that the generic fiber 2, of 2 and
the morphism g, : 2, — %, induced by g on generic fibers are equal to %, and f,,
respectively, then there exists a unique morphism h : & — % such that f = g o h.
We shall call f a pointed stable covering (resp. G-pointed stable covering) over
S if f is a pointed semi-stable covering (resp. G-pointed semi-stable covering) over S,
and 2 is a pointed stable curve. We shall call f a semi-stable covering (resp. stable
covering, G-semi-stable covering, G-stable covering) over S if f is a pointed semi-
stable covering (resp. pointed stable covering, G-pointed semi-stable covering, G-pointed
stable covering) over S, and Dy is empty.

Proposition 3.4. Let f, : %, = (Y;, Dy,) — %, be a morphism of pointed smooth
curves over 1. Suppose that the branch locus of f, is contained in Dx, and fn_l(DXn) =
Dy, . Then by replacing S by a finite extension of S, f, extends uniquely to a pointed
semi-stable covering f : % = (Y, Dy) — 2" over S such that the restriction of f ton is

-

Proof. Write Y’ for the normalization of X in the function field K (Y;) induced by the
natural injection K (X,) — K(Y,) induced by f.
Let Df}g}d be a set of closed points of X,,, D34 the set

{the closure of z, in X}wneD;d;,

and D%jd the set inverse images { f," ()}, e paaa such that the following conditions hold:
n

(1) D¥Y N Dx = 0; (2) for any x, € D3, the reduction z, of z, in X is a smooth
point of Xj; (3) for any irreducible component Fx C X, there exists a unique point
T, € Di}?ﬁd U Dy, such that the reduction z, of z,, in X is contained in Ex \ (X,)""¢, where

(—)*"# denotes the singular locus of (—); (4) for any y, € D¢, the reduction y, of y, in
Y" is a smooth point of the special fiber Y] of Y’. It is easy to see the existence of D%gvd.
Furthermore, by replacing S by a finite extension of S, we may assume that all the closed
points which are contained in D%&d and D?}:d are K-rational points, and (Y, D?fnld U Dy,)
admits a pointed stable model 24 over S. Write Y for the underlying curve of %244,
Dy for the set

{the closure of y, in Y}y, ep,. ,

and D39 for the set
{the closure of y,, in Y}, paa.
n

Note that the set of the marked points of #24 is D344 Dy-. Then we obtain a morphism
of pointed stable curves fadd : @add __y @radd — (X paddy Dy) over S. We define % to
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be the pointed semi-stable curve (Y, Dy ). Then by forgetting D34 and D34, we obtain a
natural morphism f : % — 2" such that the restricting morphism f|, is f,. Note that
% and f do not depend on the choices of Dadd

Next, let us prove that % satisfies the universal property defined in Definition 3.3. Let
% = (Z,Dyz) be a pointed semi-stable curve over S and g : & — £ is a morphism of
pointed semi-stable curves over S such that the generic fiber 2, of 2 and the morphism
of generic fibers g, induced by g are equal to %;, and f,,, respectively. We may choose D%&d

such that the following conditions: for any z, € D%‘Sd = {f (@) }a e pua © Zy =Y, the
n

reduction z, of z, in Z is a smooth point of the special fiber Z, of Z. Write D% for the
set
{the closure of 2, in Z}, . Dy

Then we obtain a pointed semi-stable curve 2244 = (Z, D#4 U D) and a morphism of
pointed semi-stable curves g2dd : 2add o 27add gyer G Note that the generic fiber of
2°24d i5 equal to the generic fiber of /244, Since 2244 is a pointed stable curve over S, we
obtain a natural morphism A4 : 27add s gyadd gyer § guch that 244 = gadd o padd, By
forgetting D34, D244 and D334, we obtain a morphism h : 2 — % such that f = hog.
This completes the proof of the proposition. Il

Proposition 3.5. Let G be a finite group, f : % = (Y,Dy) — 2" a finite G-pointed
semi-stable covering over S, and Uy, the dual semi-graph of %;. Then the images of nodes
(resp. smooth points) of the special fiber %; of % are nodes (resp. smooth points) of Zs.
In particular, the map of dual semi-graphs I'e, — "4, induced by the morphism of the
special fiber f, . %, — Z, over s induced by f is a morphism of semi-graphs.

Proof. Let y be a closed point of Y. Write I, C G for the inertia subgroup of y. Thus, the
natural morphism Y/I, — X induced by f is étale at the image of y under the quotient
morphism Y — Y/I,. Then to verify the lemma, we may assume that G = I,,.

If y is a smooth point, then z is a smooth point (cf. [R, Proposition 5]). If y is a node,
let Y7 and Y3 be the irreducible components (which may be equal) of Y which contain y.
Write Dy C G and Dy C G for the decomposition subgroups of Y; and Y5, respectively.
The proof of [R, Proposition 5] implies that (i) if D; and D, are not equal to I, = G,
then x is a smooth point; (ii) if D,, = D,, = G, then z is a node.

Let us prove that the case (i) does not happen. If D; and D, are not equal to I, = G,
then there exists an element 7 € G such that 7(Y;) = Y;. Thus, we have D := Dy = Dy
is a normal subgroup of G of index 2. By replacing I, by [,/D and Y by Y/D and
applying the case (ii), we may assume that D is trivial. Then the morphism of the special
fibers fs : %, — Z; induced by f is étale at ny, and ny,, where ny, and 7y, denote the
generic points of Y; and Y5, respectively. Consider the local morphism f, : Spec Oy, —
Spec O, induced by f. Since the restricting morphism f,|, is étale, and the restricting
morphism f,|, is étale at ny, and ny,, f, is étale at all the points of heights 1. By applying
the Zariski-Nagata purity theorem, we obtain that f, is étale. Thus, y is a smooth point.
This is a contradiction. We complete the proof of the proposition. O

Definition 3.6. Let f : & — 2 be a pointed semi-stable covering over S. A closed
point z € 2 is called a vertical point associated to f, or for simplicity, a vertical
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point when there is no fear of confusion, if f~!(x) is not a finite set. The inverse image
f~Y(x) is called the vertical fiber associated to .

If a vertical point x is a smooth point of 25 and x ¢ Dx,_, the following result was
proved by Raynaud (cf. [R, Théoréeme 1, Proposition 1, and Proposition 2]).

Proposition 3.7. Let G be a finite p-group, f : % — X a G-pointed semi-stable
covering over S, and x a vertical point associated to f. If x is a smooth point of X,
and x € Dyx., then the p-rank of each connected component of the vertical fiber f=(z)
associated to x is equal to 0. On the other hand, by contracting the vertical fibers f~'(z),
we obtain a curve %° over S. Write ¢ : % — % for the contracting morphism. Then
the closed points c(f~(x)) are geometrically unibranch.

3.2 Global cases

From now on, we always assume that G is a finite p-group with order p”. Let f : & =
(Y, Dy) — Z = (X, Dx) be a G-pointed semi-stable covering over S and

(I)I{l}:GTCGT_lC"'CG1CG0:G

a maximal normal filtration of G. It follows from [R, Appendice, Corollaire|, %; := % /G,
j =0,...,r, is a pointed semi-stable curve over S. Write 2" := (X' Dyss) for %.
We obtain two natural morphisms of pointed semi-stable curves h : % — 275" and
g: 2" — 2 induced by f such that goh = f. The maximal normal filtration ® of G
induces a sequence of morphisms of pointed semi-stable curves over .S

Dy jgon W =W 2y @ DL O g g

such that ¢y o...0 ¢, = h. Note that ¢;,5 = 1,...,r, is a finite Z/pZ-pointed semi-
stable covering over S. For each j € {0,...,r}, write I'p, for the dual semi-graph of the
special fiber (%;)s of %;. Then for each j = 1,...,r, the morphism of the special fibers
(¢5)s = (#)s — (#-1)s induces a map of semi-graphs 3; : 'y, — I'y,_,. Moreover,
Proposition 3.5 implies that 5,7 = 1,...,r, is a morphism of semi-graphs.

For each v € v(I'y, ), write }71] for the normalization of the irreducible component Y7 C
(%;)s corresponding to v. We define a semi-graph with p-rank &g, = (Gg,, U@@j), Jj =
0,...,r, associated to (%]) as follows: (i) Ga, = I'y;; (ii) for each v € v(Gy,), o(v)
a(}N/Uj). Then @y 9t induces a sequence of morphisms of semi-graphs with p-rank

br b b
Py /6 o+ O 1= By —— Gy, L By = By,
where b; : &y — By, = 1,...,7, isinduced by 8; : 'y, —> T'y,_,j = 1,...,71.
By using the Deuring-Shafarevich formula and Zariski-Nagata purity, it is easy to see
that b;,7 = 1,...,r, is a p-covering, moreover, b := b; o--- 0 b, is a G-covering. Then

we have 0g,, (B4 ) = 0(%;). Summarizing the discussion above, we obtain the following
proposition.

Proposition 3.8. Let f : ¥ — 2 be a G-pointed semi-stable covering over S and
%, the special fiber of % . Then there exists a G-covering of semi-graphs with p-rank
b: By — By associated to f which is constructed above such that o(%;) = 0e,, (G ).
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3.3 Local cases

We maintain the notations introduced in Section 3.2. Let x be a vertical point associated
to f. Write Y’ for the normalization of X in the function field K(Y) induced by the
natural injection K(X) < K(Y) induced by f and v for the normalization morphism
Y’ — X. Then Y’ admits a natural action of G induced by the action of G on the
generic fiber of Y. Let ' € ¢~ *(z). Write [,, C G for the inertia group of y'. Proposition
3.4 implies that the morphism of pointed smooth curves (Y, /1, Dy /I,) — %, over n
induced by f extends to a pointed semi-stable covering %y, — 2 over S. In order to
calculate the p-rank of f~!(x), since the morphism %U, — A is finite étale over z, by
replacing 2" by %y,, we may assume that G is equal to I,,. In the remainder of this
subsection, we shall assume that G = I,,. Then f~*(z) is connected.

Write 2" = (X3, Dxs«t) (resp. %, = (Y;, Dy,)) for the special fiber of 2" (resp.
%), and (—)yeq for the reduced induced closed subscheme of (—). By the general theory
of semi-stable curves, g7 (z)rea C 25 (resp. f7HZ)rea = h g7 (2))ea C %e) is a
pointed semi-stable curve over s. In particular, the irreducible components of ¢! (Z);eq
are isomorphic to P'. Write Vy for the set of closed points ¢~ (2)req N 22\ ¢ (2)red,
where 25t \ g=1(2),eq denotes the closure of 25\ g7 (x)eq in 2%, and Vi C % for
the set of closed points {h™'(p)red }pevy- Note that Vy consists of a closed point (resp.
two closed points) of X' if z is a smooth point (resp. a node) of X,. Write g~ (2)seq
(resp. f71(2)eq) for the underlying curve of g7 (x)eq (resp. f~1(x)red)-

We define two pointed semi-stable curves over s to be & = (¢ (Z)req, (Dxsst N
9 H(T)red)UVy) and &y := (f (%) red, (Dy N f () 1ea) UVy). Then we obtain a morphism
of pointed semi-stable curves pg, /6, : 6y — Ex induced by h. Moreover, since f~!(z) is
connected, & admits a natural action of G induced by the action of G' on the special fiber
%, of . Write I'g, (resp. I'g,) for the dual semi-graph of & (resp. &x). We obtain a
map of semi-graphs dg, /s, : I's, — e, induced by pg, /¢, . Proposition 3.5 implies that
the map ds, /¢, : I'g, — I's is @ morphism of semi-graphs. Note that s, is a tree.

For each v € v(Ey), write Y, for the normalization of the irreducible component
Y, C Y, corresponding to v. We define a semi-graph with p-rank &y := (Ey, ¢, ) (resp.
¢x = (Ex,0¢,)) associated to &y (resp. &x) as follows: (i) Ey =T'g, (resp. Ex =g );
(ii) for each v € v(Ey) (resp. v € v(Eyx)), we set g, (v) := o(Y,) (resp. oe, (v) := 0).
The morphism of dual semi-graphs s, /s, : I's, — I'¢, induces a morphism of semi-
graphs with p-rank 0¢, /e, : €& — €x. Moreover, ¢, /¢, is a G-covering. Then we
have o¢, (€y) = o(f 71 (x)ed) = o(f~!(z)). Summarizing the discussion above, we obtain
the following proposition.

Proposition 3.9. Let f : % — 2 be a G-pointed semi-stable covering over S and x
a wvertical point associated to f. Suppose that f~'(x) is connected. Then there exists a
G-covering of semi-graphs with p-rank Vg, /e, : € — Ex associated to f and x which
is constructed above such that og, (€y) = o(f1(x)).

In the remainder of this subsection, we suppose that the vertical point x is a node of
Zs. Write X{ and X} (which may be equal) for the irreducible components of 2 which
contain z. Write X; and X, for the strict transforms of X| and X} under the birational
morphism g : 25" — 27, respectively. By the general theory of semi-stable curves,

16



G H(1)rea C 2% is a semi-stable curve (i.e., g~ (z),caN D xsst = () over s whose irreducible
components are isomorphic to IP’}C. Write C for the semi-stable subcurve of g~ ()eq Which
is a chain of projective lines U , P; such that the following conditions hold: (i) for any
s,t=1,...,n,PsNP,=0if |s—t| >2and P;N P, is reduced to a point if |s —¢| = 1; (ii)
PN X (resp. P,NX>) is reduced to a point; (iii) CN{X*\ C'} = (PLNX;)U (P, NX>),
where { Xt \ C'} denotes the closure of X*'\ C'in X**. Then we have

gil(x)red = O U B?

where B denotes the topological closure of g7 (2)eq \ C in ¢7(z).eq- Note that BNC' are
smooth points of C'. Then it follows from Proposition 3.7, the p-ranks of the connected
components of B are equal to 0. Thus, we have o(f~(z)) = o(h™}(C)).

Let {V;}7, be a set of irreducible components of the special fiber %; of % such that
the following conditions hold: (i) A(V;) = P, fori = 1,...,n; (ii) the union U}, V; C % is
a connected semi-stable curve (i.e., (U, V;)N Dy, =0 ) over s; write I, C G,i=1,...,n
for the inertia group of V; and for any closed point y; € V;, I,, C G for the inertia group
of y;. Then we have the following lemma.

Lemma 3.10. Write Rayy,,i = 1,...,n, for the set of the closed points h™*(CNB)eaNV;.
Then for any y; € Rayy,, we have I, = Iy;.

Proof. Since I, O Iy;, we only need to prove that I,, C Iy;. Note that [y, is a normal
subgroup of I,,. By replacing G and 27" by I, and %'/I,,, respectively, we may assume
that G = I,,. Then we have th™'(h(y;))rea = 1.

Consider the quotient curve % /Iy.. By [R, Appendice Corollaire|, % /Iy, is a pointed
semi-stable curve over S. Write hy, for the quotient morphism % — %'/Iy, and g,, for
the % /Iy, — 27" induced by h such that h = gry, © hr,. . Write E,, for the connected
component of h™!(B),eq which contains y;. Contracting hy, (E,,) (vesp. h(E,,)) which is
contained in the special fiber of %/ Iy, (resp. 2™*"), we obtain a fiber surface (% /I v;)¢ and
a semi-stable curve (27*)¢ over S. Moreover, we obtain three morphisms of fiber surfaces
ChIVi(Eyz‘) . @/[\/Z — (g/fvl)c, Ch(Eyi) I A — (%SSt)C, and g?Vi : (@/[\/Z)C —
(Z°4)¢ such that Ch(Ey,) © Iy, = g}vi O Chy, (By,)- Note that Ch(E,,) © h(y;) is a smooth point
of the special fiber of (2™")¢, and g}VZ_ is ¢tale at the generic point of ¢y, (s,.) © hr,, (V2).

Write y§ € (#/1y;)¢ and af € (27%)° for ¢y, (m,,) © Iy, (y;) and ch(Eyi)Zo h(y;), respec-
tively. Consider the morphism g,c : Spec O/ Ivi;cvyf — Spec O(gsstye o induced by g7, .
Proposition 3.7 implies that the special fiber of Spec O, Iy )es 18 irreducible. Then g;q
is generically étale at the generic point of the special fiber of Spec O /1y, )eye. Thus, by
applying Zariski-Nagata purity, g, is étale.

If Iy, # 1, then we obtain that g,c is not an identity. Thus, we have ™" (h(y;))rea 7# 1.
This is a contradiction. Then we have Iy, = I,,. ]

Let 6y == (h"Y{C)ea, A H(CN X)) U(CNXy))) and €x := (C, (CN X)) U(CNXy))
be two pointed semi-stable curves and pg, /4, 1 6y — €x the natural morphism over s
induced by h : & — 27, Moreover, since f~!(x).q is connected, ¢y admits a natural
action of G induced by the action of G on f7!(x),q. Write I'y, (resp. Ty, ) for the
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dual semi-graph of @y (resp. €x). Proposition 3.5 implies that the map of semi-graphs
day j¢x : ey — D'y induced by pg, %, is a morphism of semi-graphs.

For each v € v(I'y,), write Y, for the normalization of the irreducible component
Y, C Y, corresponding to v. We define a semi-graph with p-rank €y := (Cy, o¢, ) (resp.
Cx := (Cx,0¢,)) associated to €y (resp. €x) as follows: (i) Cy = I'y, (resp. Cx = T'yy);
(ii) For each v € v(Cy) (resp. v € v(Cx)), we set oe, (v) := o(Y,) (resp. ey (v) := 0).

The morphism of dual semi-graphs d¢, /¢, : I's,, — I'g, induces a morphism of semi-
graphs with p-rank 0¢, /¢, : €&y — €x. Moreover, ¢, /¢, : €y — Cx is a G-covering.
Note that by the construction, €x is a n-chain (cf. Definition 2.9). Furthermore, Lemma
3.10 implies that o¢, (€y) = o(h™*(C)) = o(f~'(x)). Summarizing the discussion above,
we obtain the following proposition.

Proposition 3.11. Let [ : % — 2 be a G-pointed semi-stable covering over S and
r € 2 avertical point associated to f such that x is a node of 2. Suppose that f~1(x) is
connected. Then there exists a G-covering of semi-graphs with p-rank d¢, j¢, : €y — €x
associated to f and x which is constructed above such that €x is a n-chain and o¢, (Cy) =

o(f~H(x)).

4 Formulas for local and global p-ranks of coverings
of curves

4.1 Inertia groups and a criterion for the existence of vertical
fibers

In this subsection, we study the relationship between the inertia groups of nodes and
the inertia groups of irreducible components of special fibers of G-pointed semi-stable
coverings.

Lemma 4.1. Let f : &% = (Y,Dy) — 2 be a finite G-semi-stable covering over S,
%, = (Ys, Dy,) the special fiber of %, y € Yy a node, and Yy and Ys the irreducible
components of Ys which contain y (which may be equal). Write I, C G (resp. Iy, C G,
Iy, C G) for the inertia group of y (resp. Y1, Y2). If G is a p-group, then inertia group
I, is generated by Iy, and Iy,.

Proof. Write I for the group generated by Iy, and Iy,. Then we have I C I,,. Consider the
quotient % /1. We obtain two morphism of pointed semi-stable curves uy : % — %'/1
and py : % /I — 2 over S such that psop; = f. Note that /1 is a pointed semi-stable
curve over S, and pu4(y) is node of the special fiber (% /I)s of %' /I (cf. [R, Appendice,
Corollaire] and the proof). Moreover, s is generically étale at the generic points of p; (Y1)
and p(Y2). Then applying [T, Lemma 2.1 (iii)] to Spec O /1 ) — Spec Ox sy, We
obtain that u is tamely ramified at u(y). Moreover, since G is a p-group, o is étale at
p1(y). This means that I, C I. Thus, we obtain I, = I. O

The following criterion for the existence of vertical fibers due to A. Tamagawa (cf. [T,
Propoisiton 4.3 (ii)]).
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Proposition 4.2. Let f : % — 2 be a G-semi-stable covering over S, and x a node of
Zs. Suppose that for each irreducible component Z = @ of Spec Oy, , and each point
w of the fiber % X 4 z, the natural morphism from the integral closure W* of Z in k(w)?
to Z is wildly ramified, where k(w)® denotes the mazimal separable subextension of k(w)
in k(z). Then x is a vertical point associated to f.

We prove a criterion of existence of vertical fibers over nodes as follows:

Proposition 4.3. Let f : % = (Y,Dy) — 2" be a G-semi-stable covering over S,
%, = (Y,, Dy, ) the generic fiber of %', %, = (Y, Dy,) the special fiber of %, and x a node
of Zs. Write %" for the normalization of 2 in the function field K(Y') induced by the
natural injection K(X) — K(Y) induced by f, and 1y for the resulting normalization
morphism %' — 2. There is a natural morphism of fiber surfaces ¢y : % — %’
induced by f such that g 0y = f. Write Xy and Xy for the irreducible components
of X, which contain x (which may be equal). Let y' € 1y (x), Y1 and Yy the irreducible
components of % such that y' € ¥1(Y1) N1(Ys), and Iy, C G and Iy, C G the inertia
group of Y1 and Ys, respectively. If neither Iy, C Iy, nor Iy, O Iy, holds, then x is a
vertical point associated to f.

Proof. To verify the proposition, we assume that = is not a vertical point associated
to f. Then f~!(z) is a finite set, and v, and 1y coincide with f over z. Write y for
y' € ¥y (z) = f~Y(x). By replacing 2" by the quotient #/D, and G by D, C G, where
D, denotes the decomposition group of y, we may assume that f~'(z) = {y} C Y1 NYa.
Consider the quotient % /Iy, (resp. % /Iy,) which is a semi-stable curve over S. We
obtain two morphism of semi-stable curves \{ : % — % /Iy, and A} : ¥ /Iy, — X
over S such that Ml oAl = f (resp. N2 : % — % /Iy, and \3 : % /Iy, — 2 over S such
that A2 o A2 = f). Note that A} (resp. \3) is étlae at the generic point of A}(Y7) (resp.
A (Y2)) with degree §G /1y, (resp. 1G/tly,).

If A} (resp. A3) is generically étale at the generic point of A{(Y2) (resp. AF(Y1)), then by
applying [T Lemma 2.1 (iii)] to Spec Og/ly Aly) — Spec Oy .« (resp. Spec 6@/IYQ,A%(y)
— Spec Oy z), we obtain Spec (9,\1(5/1) M(y) — Spec (/Q\th (resp. Spec @,\f(yg),,\f(y) —

Spec Oy, ») induced by A (resp. A2) is tamely ramified with ramification index #; (resp.
ty). Thus, we have (t;,p) =1 (resp. (t2,p) = 1. On the other hand, since Iy, (resp. Iy,)
does not contain Iy, (resp. Iy,), and Iy, (resp. Iy,) is a p-group, we have p|t! (resp. p|t?).
This is a contradiction. Thus, A} (resp. A3) is not generically étale at the generic point
of A(Ys) (resp. A3(Y7)).

Mireover, the morphism Spec (/f)\/\%(yl))\%(y) — Spec 6X1,m (resp. Spec (5,\%(5/2)’)\%(:,}) —
Spec Ox, ) induced by A} (resp. A3) is wildly ramified. Thus, Proposition 2.3 implies
that x is a vertical point associated to f. This is a contradiction. We complete the proof
of the proposition. n

Corollary 4.4. Let f : % = (Y,Dy) — 2" be a G-semi-stable covering over S, % =
(Ys, Dy,) the special fiber of %, y € Yy a node, and Y, and Ys the irreducible components
of % which contain y (which may be equal). Write I, C G (resp. Iy, C G, Iy, C G)
for the inertia group of y (resp. Y1, Y3). Suppose that G is a p-group, and f is a finite
morphism. Then either Iy, C Iy, or Iy, 2 Iy, holds, moreover, the inertia group I, is
equal to either Iy, or Iy,.
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Proof. The corollary follows from Lemma 4.1 and Proposition 4.3. O

4.2 Global version

Let f: % = (Y,Dy) — Z = (X,Dx) be a G-pointed semi-stable covering over S,
h:% — %G = 2> = (X, Dxs) the quotient morphism, and I' g the dual
semi-graph of the special fiber 2" = (X3, D) of 2. For each v € v(T'gs) (resp.
e € e[ gust) UeP([gun)), write X, (resp. z.) for the irreducible component of 2
corresponding to v (resp. for the node of 27! corresponding to e if e € (T gsst) OF &

marked point of 2" corresponding to e if e € €P(I" gsxt)), X, for the normalization of
X,. For each v € v(Dysst) (resp. e € e (Dysst) UeP(Lgun)), let Y, (resp. ye) be an
connected component of h™(X,)eq (resp. a point of h™!(z,)req). Write Iy, C G (resp.
I,, € G) for the inertia group of Y, (resp. y.). Since tly, (resp. #I,,) does not depend
on the choices of Y, (resp. y.), we may use the notation #I, (resp. £I.) to denote fly,
(resp. #1,,). For any e € (T ys=t), write I for maxyeq(v){l,}. By Corollary 4.4, we
have #I. = #§I*. Then Theorem 2.8 and Proposition 3.8 imply the following theorem.

Theorem 4.5. We maintain the notations introduced above. Then we have

(@)= Y (HGHLE(X,) -1+ Y G/L(EL/t, —1) + 1)

vew(T %Ssst) ece(v)\elP(v)
+ > BG/HL — 1)+ Y te®(0)(4G/t1, — 1) + dimeH' Ty, C).
eEeCI(F%.SSSt)\elP(F%SSSt) UG’U(F%ssst)
In particular, if f % — Z is a G-semi-stable covering, then we have

(@)= > (HG/HLe(X,) -1+ Y IGHIMEIN/L, —1) + 1)

’UGU(F%SSSt) ece(v)\elP(v)

+ > WGAIM —1)+ > 4eP)(HG/4L, — 1) + dimcH' (T e, C).

eEeCl(F%Ssst )\elP(F%gst ) vEV(T grst)

4.3 Local version

We follow the notations of Section 4.2. Let = be a vertical point associated to f. Suppose
that f~!(z) is connected. Write g for the natural morphism 2%* — 2" over S induced
by f such that f = go h. Write

g 1(I)red

for the underlying curve of g=!(z),cq and Vy for the set of closed points
g_l(x>red N XSSSt \ gil(x)reda
where X3¢\ g=1(x),.q denotes the closure of X5\ g7!(z),.q in X5 Let

Ex = (g~ (@)sea, (Dxp N g~ (@)rea) U Vi)

and I'g, the dual semi-graph of &x. Note that I's, is a tree. Then Theorem 2.8 and
Proposition 3.9 imply the following theorem.
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Theorem 4.6. We maintain the notations introduced above. Then we have

o(f @) = Y (—4G/EL+ Y tG/EL(EL /8, — 1) + 1)

vev(Tey ) ece(v)

+ > (1G4 —1).

ecel(Te,.)

In the remainder of this section, we suppose that z is a node of Z;. Write X] and X}
(which may be equal) for the irreducible components of Z; which contain z. Write X; and
X, for the strict transforms of X| and X}, under the birational morphism g : 2" — 27,
respectively. By the general theory of semi-stable curves, g7!(x)eq € 2¢ is a semi-stable
curve over s whose irreducible components are isomorphic to Pi. Write C' for the semi-
stable subcurve of g~!(2),q which is a chain of projective lines U, P; such that the
following conditions hold: (i) for any s,t =1,...,n,P,NP, =0 if |s—t| > 2 and P,N P,
is reduced to a point if |s —¢| = 1; (ii) P, N X (resp. P, N X3) is reduced to a point; (iii)
Cn{Xst\C} = (P NX;)U(P,NX3), where {X®t\ C'} denotes the closure of X*'\ C
in X' Then we have

g_l(x)red =CU B7

where B denotes the topological closure of g7 (2),6q4\C in ¢ () eq. Write B;,i =1,...,n,
for the set of the connected components of B which intersect with V; are not empty.

Let {V;}4} be a set of irreducible components of the special fiber %; of # such
that the following conditions hold: (i) A(V;) = P, for i = 1,....n; (ii) A(Vp) = X; and
h(Vny1) = Xo; (iii) the union U'V; C Y, is a connected semi-stable curve over s. Write
Iy, CG,1=0,...,n+ 1 for the inertia group of V;.

Lemma 4.7. We have G = (Iy,,Iy,,,), where (Iy,, Iy, ,) denotes the subgroup of G
generated by Iy, and Iy, .

Proof. If G # (Iv,,lv,,,), since G is a p-group, then there exists a normal subgroup
H C G of index p such that (Iy,, I, ,) C H. Write & for the normalization of 2" in the
function field K(Y") induced by the natural injection K(X) < K(Y') induced by f. The
normalization %’ admits an action of G induced by the action of G on #'. Consider the
quotient #’/H. Then we obtain a morphism of fiber surfaces fy : #'/H — X over S
induced by f. Moreover, #'/H admits an action of G/H = Z/pZ induced by the action
of G on #'. Then fy is generically étale above X| and X). Thus, [T, Lemma 2.1 (iii)]
implies that fy is étale above z. Then f~!(z) is not connected. This is a contradiction.
We complete the proof of the lemma. O

Let (u,w) € {0,...,n+1} x{0,...,n+ 1} be a pair such that u < w. We shall call a

group [, 31;;1 a minimal element associated to {Iy; }!7" if one of the following conditions hold:

(i) (w,w) = (0,n +1) and for any Iy,,i = 0,...,n+ 1, I[f%" | = Iy; (i) (u,w) = (0,w) #

(0,n+ 1)7 [(r)l,lziun =ly=1Iy="-= I'Vw - ]Vw+1; (iii) (u7w) = (U,?’L+ 1) 7 (O,?’L+ 1)7
Ivu_l D) [V'u. = IVu+1 DR [Vn+1 = [3}2;_17 (IV) u 7é O, w 7é n + 1, and Ivu_l D) [3}3}1 =
Iy, =1y, - =1y, C Iy,,,. We shall call a group J, 7" a maximal element associated

to {Iy,}14) if one of the following conditions holds: (i) (u,w) = (0,n + 1) and for any
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[V“Z':O,...,n—l—l, J&fil :[‘/7,7 (11) (u,w) = (O,w) # (O,n+1), J(I)IE‘]X:IVO :IVl = ... =

Iy, D Iy,,,; (i) (u,w) = (u,n+1) # (0,n+1), Iy, , C Iy, = Iy, - = Iv,,, = J%;
(iv)u#0,w#n+1,and Iy, , C J73 = Iy, = Iy,,,--- = Iy, D Iy,,,. We define Min

to be the set . .
{00} ww) ety x{L,mt1} OF {1500}
and Max to be the set
{00 ww)e {0, 1 x{0,.ccm+1}-

Note that Min may be an empty set. Then Corollary 2.10, Proposition 3.11, Lemma 4.1,
Corollary 4.4, and Lemma 4.7 imply the following theorem.

Theorem 4.8. We maintain the notations introduced above. Then we have

n+1

o(f7H(@) = D_8G/ 8l = 3 4G/8(Ivi y, Iv) + 1

n+1

— Z 1G /81y, — ZﬂG/Wi—l,i + 1,

i=1
where for each i = 1,...,n+ 1, (Iy,_,, Iy,) denotes the subgroup of G generated by Iy,_,
and Iy,, and 81;,_y,; denotes max{fly, ,,tlv.}. Note that §Iy.,i = 0,...,n+ 1, does not
depend on the choices of V;. Moreover, we have

o(fMx) = Y $G/HI — > tG/4J +1, if Min # {133},
IeMin JeMax

and

o(f~"(x)) = 0 if Min = {Ig3", }.
Remark 4.8.1. The formulas

o(fMx) = D 4G/ — Y 4G/4T +1, if Min £ {I7i ),

IeMin JEMax

and

o(f7H(x)) = 0if Min = {757, }

are the key in the calculation of bounds of vertical fibers (cf. [Y3]).

If G is an abelian p-group, then Iy,,7 = 0,...,n + 1, does not depend on the choices
of V;. Then if G is abelian, we use the notation I/p,,7 =0,...,n + 1, to denote Iy;.

Lemma 4.9. We maintain the notations introduced above. If G is a cyclic p-group, then
there exists 0 < u <n -+ 1 such that

Ip, 21Ip 21Ip, 2---21p, C---Clp,_, Clp, ClIp,,.
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Proof. If the lemma is not true, there exist s,¢ and v such that Ip, # Ip,, Ip, # Ip, and
Ip, CIp , =---=1Ip, = -+ =1Ip_, D Ip. Since G is a cyclic group, we may assume
Ip, O Ip,.

Considering the quotient of % by Ip,, we obtain a natural morphism of pointed semi-
stable curves hy : % /Ip, —» 2™ over S. By contacting Pyy1, Psi2,..., Ps_1,Bsi1,. .., Bi1
(resp. (hs>_1(Ps+1>red7 (hs)_l(Ps+2)red7 R (hfs)_l(Ptfl)reda (hs)_l(Bs+1)red7 R (hs)_l(Btfl)red%
we obtain a pointed semi-stable curve (2Z™5")¢ (resp. a fiber surface (% /Ip,)¢) and a con-
tacting morphism cgsse : X — () (vesp. cayrp, 0 ¥ /Ip, — (% /1p,)). The
morphism %, induces a morphism of fiber surfaces hS : (% /Ip,)* — (2. Then we
have the following commutative diagram as follows:

Co/Ip,

Y /1, (Z/1p,)

hsl h;l

%sst C%S“} (%‘sst)c'

Write P¢ and Py for the images cgsst(Ps) and cgsst(P;), respectively, and z¢, for the closed
point P¢ N Pf. Since h¢ is generically étale above PS¢ and Pf, [T, Lemma 2.1 (iii)] implies
that (hS) ™1 (2S,)reqa are nodes. Thus, (% /Ip,)¢ is a semi-stable curve over S, moreover, we
have h¢ is étale over x¢,. Then the inertia groups of the closed points (hS)™!(z¢,)req of the
special fiber (% /1p,)S of (% /1p,)¢ are trivial.

On the other hand, since Ip, is a proper subgroup of Ip,, we obtain the natural action
of G/Ip, on the irreducible components of hy'(UZ} | P;j)rea is trivial. Thus, the inertia
groups of the closed points ¢y /r, (' (UZL 1 P))rea) = (hS) ™ (2% )rea of the special fiber
(% /1p,)S of (% /1p,)° are not trivial. This is a contradiction. Then we complete the proof

of the lemma. N
Then Theorem 4.8 and Lemma 4.9 imply the following corollary.

Corollary 4.10. Suppose that G is a cyclic p-group, and Ip, is equal to G. Then we have

O'(f_1<I>> - uG/ﬁ]min - ﬂG/WPnHa
where I, denotes the group ﬂ?jollpi.

Remark 4.10.1. The formula in Corollary 4.10 had been obtained by M. Saidi (cf. [S,
Proposition 1}).
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