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Abstract

The authors have recently extended the probabilistic serial (PS) mechanism, due
to Bogomolnaia and Moulin, of the random assignment problem to that with unit
demands on a matroidal family of goods. In the present paper we consider a further
extension of the PS mechanism for multi-unit demands on polymatroids and examine
the properties of the extended PS mechanism. We show the ordinal efficiency and
envy-freeness of the extended PS mechanism and also give a useful sufficient con-
dition for the obtained solution to be a weakly sd Nash equilibrium. Moreover, we
show that the extended PS mechanism is weakly strategy-proof when the underlying
polymatroid is a matroid and agents have unit demands.

Keywords: Random assignment, probabilistic serial mechanism, ordinal preference, match-
ings, polymatroids, independent flows, submodular optimization, Nash equilibrium

1. Introduction
Problems of allocating indivisible goods to agents having preferences over the goods, in a
fair and efficient manner without money, have long been investigated in the literature (see,
e.g., [23, 26, 1, 5, 17, 18, 4, 14, 15, 3, 24]). A seminal paper of Bogomolnaia and Moulin
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[5] shows a probabilistic serial mechanism to give a solution to the problem, called the
random assignment problem, by using lotteries. Most of the investigated problems about
the random assignment problem treat a fixed feasible (available) set of goods while they
are extended to the case of multi-unit demands [2, 6, 15, 18, 3].

Another extension of the random assignment problem is made by the present authors
[12] to the case where we are given a family B of feasible sets of indivisible goods which
forms a family of bases of a matroid (see [25, 22]). Paper [6] also investigated extensions
of the ordinary random assignment problem with additional constraints, which are differ-
ent from our (poly)matroidal ones. They considered a bihierarchy structure by means of
laminar families to guarantee the existence of a lottery that realizes the required random-
ized solution. Actually, the laminar family they considered generates a polymatroid of
multi-terminal network flows (see [20] and [11, Sec. 2.2]) and they imposed two polyma-
troids of multi-terminal network flows on N × E, where N is the set of agents and E is
the set of goods. Hence the integrality property of the bihierarchy model [6] follows from
the integrality property of network flows.

In this paper we consider the random assignment problem where each agent has a
multi-unit demand and the set of feasible (available) vectors of multiple goods forms the
set of integral bases of a polymatroid. This is a common generalization of the problem
with multi-unit demands considered by [2, 15, 18] and that with a matroidal feasible set
of goods by the authors [12].

We show that the results obtained in [12] can naturally be extended to the present
problem with polymatroidal supplies. That is, our extended probabilistic serial (extended
PS) mechanism gives a solution that is efficient and envy-free with respect to the par-
tial order defined by the stochastic dominance relation employed by Bogomolnaia and
Moulin [5]. Moreover, we show that the extended PS mechanism gives us a solution that
is a weakly sd Nash equilibrium ([8, 16]) under a certain practically useful condition.
This is new even for the ordinary random assignment problem with multi-unit demands.
Furthermore, we show that the extended PS mechanism is weakly strategy-proof when
the underlying polymatroid is a matroid and agents have unit demands.

The well-known Birkhoff-von Neumann theorem on bi-stochastic matrices shows that
every bi-stochastic matrix is expressed as a convex combination of permutation matrices,
which plays a crucial rôle in designing the probabilistic serial mechanism developed by
Bogomolnaia and Moulin [5]. On the other hand, our extended PS mechanism heavily de-
pends on the results of submodular optimization such as the integrality of the independent
flow polyhedra ([9, 11]), which generalizes the Birkhoff-von Neumann theorem.

The present paper is organized as follows. Definitions and some preliminaries to be
used in the paper are given in Section 2. In Section 3 we describe the random assignment
problem with multi-unit demands and polymatroidal supplies. We first treat the random
assignment problem as an allocation of divisible goods in Section 4 and give the procedure
Extended Random Assignment to obtain a solution called the extended PS solution.
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We also show the ordinal efficiency and the envy-freeness of the extended PS solution. In
Section 5 we discuss the strategy-proofness. Though the extended PS mechanism is not
weakly strategy-proof in general, we give a useful sufficient condition that guarantees that
the obtained solution is a weakly sd Nash equilibrium and also show the weak strategy-
proofness in case of unit demands and matroidal supplies. Section 6 gives a randomized
mechanism that generates the extended PS solution by means of lotteries on deterministic
assignments of indivisible goods. Section 7 concludes the paper.

2. Definitions and Preliminaries
Let N be a finite set of agents and E be that of goods. Suppose that |N | = n and |E| = m,
where | · | denotes the cardinality. For any subset X ⊆ E denote by χX the characteristic
vector of X in RE , i.e., χX(e) = 1 for e ∈ X and χX(e) = 0 for e ∈ E \ X . We also
write χe instead of χ{e} for e ∈ E.

A pair (E, ρ) of a finite nonempty set E and a function ρ : 2E → R≥0 is called a
polymatroid if the following three conditions hold (see, e.g., [7, 11, 25]).

1. ρ(∅) = 0.

2. For any X, Y ∈ 2E with X ⊆ Y we have ρ(X) ≤ ρ(Y ).

3. For any X, Y ∈ 2E we have ρ(X) + ρ(Y ) ≥ ρ(X ∪ Y ) + ρ(X ∩ Y ).1

The set E is called the ground set and the function ρ is called the rank function of the
polymatroid (E, ρ). We assume ρ(E) > 0 in the sequel.

For a given polymatroid (E, ρ), let B(ρ)(⊆ RE) be the base polytope of the polyma-
troid (see, e.g., [11]), which is given by

B(ρ) = {x ∈ RE | ∀X ⊂ E : x(X) ≤ ρ(X), x(E) = ρ(E)}, (2.1)

where for any X ⊆ E we define x(X) =
∑

e∈X x(e). It should be noted that B(ρ) ⊆ RE
≥0.

Also consider the lower hereditary closure of the base polytope B(ρ) given by

P(ρ) = {x ∈ RE | ∀X ⊆ E : x(X) ≤ ρ(X)}, (2.2)

which is called the submodular polyhedron associated with ρ. The polytope P(+)(ρ) ≡
P(ρ) ∩ RE

≥0 is called the independence polytope of polymatroid (E, ρ) and each vector
in P(+)(ρ) is called an independent vector. Given a vector x ∈ P(ρ), a subset X of E is
called tight for x (or x-tight for short) if we have x(X) = ρ(X), and there exists a unique

1A set function satisfying these inequalities is called a submodular function and the negative of a sub-
modular function is called a supermodular function. A function that is submodular and at the same time
supermodular is called a modular function.
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maximal x-tight set, denoted by sat(x), which is equal to the union of all tight sets for x.
We also have

sat(x) = {e ∈ E | ∀α > 0 : x+ αχe /∈ P(ρ)}, (2.3)

which is the set of elements e ∈ E for which we cannot increase x(e) without leaving
P(ρ). Moreover, for x ∈ P(ρ) and e ∈ sat(x) define

dep(x, e) = {e′ ∈ E | ∃α > 0 : x+ α(χe − χe′) ∈ P(ρ)}. (2.4)

The following fact is fundamental in the theory of polymatroids and submodular func-
tions.

• Given any x ∈ P(ρ) and X,Y ⊆ E, if we have x(X) = ρ(X) and x(Y ) = ρ(Y ),
then x(X ∪ Y ) = ρ(X ∪ Y ) and x(X ∩ Y ) = ρ(X ∩ Y ). That is, the set of x-tight
sets is closed with respect to the set union and intersection.

Because of this fact sat(x) for x ∈ P(ρ) is the unique maximal x-tight set and dep(x, e)
for e ∈ sat(x) is the unique minimal x-tight set that includes e. (See [11] for more details
about these concepts and related facts.)

For any polymatroid (E, ρ) with an integer-valued rank function ρ define

BZ(ρ) = B(ρ) ∩ ZE, PZ(ρ) = P(ρ) ∩ ZE. (2.5)

It is known (see, e.g., [11]) that when (E, ρ) is a polymatroid with an integer-valued rank
function ρ, B(ρ) (resp. P(ρ)) is the convex hull of BZ(ρ) (resp. PZ(ρ)).

Simple examples of polymatroids are given as follows. They will be used to show the
behavior of our solution in the next section.

Matroids: A matroid (E, ρ) is a polymatroid with an integer-valued rank function having
the property that ρ({e}) ≤ 1 for all e ∈ E. This is also the one treated in our previous
paper ([12]). Matroids arise from various combinatorial objects such as graphs, networks,
and matrices (see, e.g., [22, 25]). 2

Symmetric polymatroids: Let g : R → R be a nondecreasing concave function with
g(0) = 0. Define ρ : 2E → R by ρ(X) = g(|X|). Then (E, ρ) is a polymatroid. Note that
the concavity of g corresponds to the law of diminishing marginal utility in economics.

2

Linear polymatroids: Let V be a vector space. Let E be a finite set and for each e ∈ E
let Fe be a finite set of vectors in V . Define ρ : 2E → R by ρ(X) = rank(

∪
e∈X Fe) for

all X ⊆ E. Then (E, ρ) is a polymatroid with the integer-valued rank function ρ. 2

Polymatroids of multi-terminal network flows ([20],[11, Sec 2.2]; also see [10, 13]):
Let N = (G = (V,A), s, T, c) be a network, where G = (V,A) is a graph with a vertex
set V and an arc set A, s ∈ V is a source, T ⊂ V \ {s} is a set of sink terminals, and
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c : A → R>0 is a capacity function of the network. We suppose that there exists no
arc leaving T . A function φ : A → R≥0 is called a feasible flow in N if it satisfies the
capacity constraints

0 ≤ φ(a) ≤ c(a) (∀a ∈ A) (2.6)

and the flow conservation constraints

∂φ(v) = 0 (∀v ∈ V \ ({s} ∪ T )), (2.7)

where the boundary ∂φ : V → R of flow φ is defined by

∂φ(v) =
∑

(v,w)∈A

φ(v, w)−
∑

(w,v)∈A

φ(w, v) (∀v ∈ V ). (2.8)

Also define the out-flow ∂−φ : T → R≥0 of φ by

∂−φ(v) =
∑

(w,v)∈A

φ(w, v) (= −∂φ(v)) (∀v ∈ T ). (2.9)

Then the set of out-flows ∂−φ of all feasible flows in N is the independence polytope, in
RT

≥0, of a polymatroid on T .
When the underlying graph G = (V,A) is a star such that V = {s} ∪ T and A =

{(s, t) | t ∈ T}, we have a polymatroid on T with a modular rank function ρ such that
ρ(X) =

∑
v∈X c(s, v) for all X ⊆ T . Any polymatroid of this kind has a unique base and

vice versa. 2

3. Model Description
Let N = {1, 2, · · · , n} be a set of agents and E be a set of goods. Each good e ∈ E should
be considered as a type of good and the number of available good e can be more than one.
Each agent i ∈ N wants to obtain a certain amount of goods, denoted by d(i) ∈ Z>0, in
total. We refer to d(i) as the demand of agent i. The vector d = (d(i) | i ∈ N) ∈ ZN

>0 is
called the demand vector. For each i ∈ N and e ∈ E let xi(e) be the number of copies of
good e that agent i obtains. Then we must have

xi(E) ≡
∑
e∈E

xi(e) = d(i) (3.1)

and the sum of vectors
∑

i∈N xi must be available in the market. Let the set of all available
vectors of goods in the market be given by B ⊆ ZE

≥0. Hence we must have∑
i∈N

xi ∈ B. (3.2)
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We suppose that each agent i ∈ N has an ordinal preference ≻i over set E of goods,
which is a linear ordering of E. Let agent i’s preference be given by

Li : ei1 ≻i e
i
2 ≻i · · · ≻i e

i
m, (3.3)

where {ei1, ei2, · · · , eim} = E and ei1 is the most favorite good for agent i. Let L be the
profile of preferences Li (i ∈ N).

We consider a problem of allocating multiple goods to agents in an efficient and fair
manner (to be defined later) under the constraints (3.1) and (3.2) and the preference pro-
file L = (Li | i ∈ N). In order to give a solution to the problem without money we will
introduce lotteries, so that we call the problem a random assignment problem as in the lit-
erature [5, 17, 4]. The random assignment problem is denoted by RA = (N,E,L, d,B).
The problem to be considered in the present paper includes the following as special cases.

(a) The ordinary random assignment problem considered in the literature is mostly the
case where d = 1 ∈ ZN

>0 and B = {1} ⊆ ZE
>0 (e.g., [5, 17, 4]). Here 1 denotes a

vector of all ones of appropriate dimension (determined by the context).

(b) Kojima [18], Aziz [2], and Heo [15] considered a multi-unit demand case where
d ∈ ZN

>0 and B = {b} ⊆ ZE
>0 for some b ∈ ZE

>0.

(c) In the unit-demand problem on the full preference domain considered by Katta and
Sethuraman [17], if all agents have the same (common) set of indifference classes
of goods and each agent has a strict preference on the set of the indifference classes,
the problem reduces to a unit demand problem with strict preference domains on
the set E∗ of the common indifference classes of goods, by considering each indif-
ference class as a type of goods, where d = 1 ∈ ZN

>0 and B = {b} ⊆ ZE∗
>0 for some

b ∈ ZE∗
>0.

(d) The authors [12] considered a matroidal extension of (a) where d = 1 ∈ ZN
>0 and

B is the set of all characteristic vectors of bases of a matroid on E. In this model
the constraint (3.1) is relaxed as

∑
e∈E xi(e) ∈ {0, 1} for all i ∈ N .

In the present paper, we consider a common generalization of the above models (a)–
(d) by considering multi-unit demands and polymatroidal available vectors instead of ma-
troidal ones. That is, we consider the case where d ∈ ZN

>0 and B = BZ(ρ), the set of
integral vectors in the base polytope of a polymatroid (E, ρ) with an integer-valued rank
function ρ. Note that when B is a singleton set as in (a), (b), and (c) above, the underlying
polymatroid (E, ρ) has the unique base and the rank function ρ is modular.
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4. Random Assignment with Multi-unit Demands and
Polymatroidal Supplies

In the seminal paper [5] of Bogomolnaia and Moulin they proposed a new solution through
what is called the probabilistic serial (PS) mechanism from the point of view of stochas-
tic dominance when there is only one feasible set of goods. In [12] we extended the PS
mechanism so as to deal with the case where we are given a set of feasible sets of goods
that forms a family of bases of a matroid. In the present paper we further extend the
results of [12] to the case where agents have multi-unit demands and the set of feasible
(available) vectors is the set BZ(ρ) of integral vectors of a base polytope.

Let us consider a random assignment problem given by RA = (N,E,L = (Li | i ∈
N), d = (d(i) | i ∈ N) ∈ ZN

>0,BZ(ρ) ⊆ ZE
≥0). The constraints (3.1) and (3.2) imply∑

i∈N d(i) = ρ(E). However, in order to treat the case where
∑

i∈N d(i) ≥ ρ(E) as
considered in [12] we relax (3.1) as

xi(E) ≡
∑
e∈E

xi(e) ≤ d(i) (∀i ∈ N). (4.1)

4.1. The random assignment as an allocation of divisible goods
First, we consider the base polytope B(ρ) (the convex hull of BZ(ρ)) as a set of divisible
goods and find an allocation of the divisible goods in an efficient and fair manner, where
the precise definitions of efficiency and fairness will be given in Sections 4.2 and 4.3.

Let P be an N × E real matrix satisfying the following three conditions:

1. P (i, e) ≥ 0 for all i ∈ N and e ∈ E.

2. For each agent i ∈ N we have ∑
e∈E

P (i, e) ≤ d(i). (4.2)

(Except for the integrality condition this is equivalent to (4.1) with xi(e) = P (i, e)
for all i ∈ N and e ∈ E.)

3. Regarding each ith row Pi ≡ (P (i, e) | e ∈ E) of P as a vector in RE
≥0, we have∑

i∈N

Pi ∈ B(ρ). (4.3)

(Except for the integrality condition this is equivalent to (3.2) with xi(e) = P (i, e)
for all i ∈ N and e ∈ E.)
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Then we call P a random assignment matrix (or a random assignment for short).
Let (E, ρ) be a polymatroid with ρ(E) ≤

∑
i∈N d(i), and we consider the case where

B = B(ρ) in the following. Let us define the base x∗
P associated with a random assign-

ment matrix P by
x∗
P ≡

∑
i∈N

Pi. (4.4)

Recall that for each i ∈ N agent i’s preference is given by (3.3), where {ei1, ei2, · · · , eim} =
E and ei1 is the most favorite good for agent i, and L is the profile of preferences Li

(i ∈ N). Based on the collection (a multiset) of the first (most favorite) elements ei1 of all
agents i ∈ N , define a nonnegative integral vector b(L) ∈ ZE

≥0 by

b(L) =
∑
i∈N

d(i)χei1
, (4.5)

where note that we may have ei1 = ej1 for distinct i, j ∈ N and d(i) is the integral demand
of agent i ∈ N .

We also denote the random assignment problem by RA = (N,E,L = (Li | i ∈
N), d = (d(i) | i ∈ N), (E, ρ)). Our random assignment algorithm by the extended PS
mechanism is described as follows. During the execution of the following algorithm the
current preference lists Li may get shorter because of removal of exhausted (or saturated)
goods.

———————————————————————————————————
Extended Random Assignment
Input: A random assignment problem RA = (N,E,L, d, (E, ρ)).
Output: A random assignment matrix P ∈ RN×E

≥0 .
Step 0: For each i ∈ N put xi ← 0 ∈ RE (the zero vector), and x∗ ← 0 ∈ RE .

Put S0 ← ∅, p← 1, and λ0 ← 0.
Step 1: For current (updated) L = (Li | i ∈ N), using b(L) in (4.5), compute

λp = max{t ≥ λp−1 | x∗ + (t− λp−1)b(L) ∈ P(ρ)}. (4.6)

For each i ∈ N put xi ← xi + (λp − λp−1)d(i)χei1
.

Put x∗ ← x∗ + (λp − λp−1)b(L) and Sp ← sat(x∗).
Step 2: Put Tp ← Sp \ Sp−1.

Update Li (i ∈ N) by removing all elements of Tp from current Li (i ∈ N).
Step 3: If ρ(Sp) < ρ(E), then put p← p+ 1 and go to Step 1.

Otherwise (ρ(Sp) = ρ(E)) put P (i, e)← xi(e) for all i ∈ N and e ∈ E.
Return P .

———————————————————————————————————
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As in [5], the parameter t can be considered as time and each agent i ∈ N eats the current
top good ei1 at the rate d(i) per unit time.

To see the behavior of the procedure Extended Random Assignment let us con-
sider illustrative examples as follows.

Example 1: Consider N = {1, 2, 3, 4} and E = {a, b, c, d}. Let (E, ρ) be a polymatroid
with a rank function given by

ρ(X) =

{
4|X| if |X| ≤ 2
8 if |X| > 2

(∀X ⊆ E). (4.7)

Note that (E, ρ) here is a symmetric polymatroid. Suppose that preferences of all agents
are given as follows.

i ∈ N preference Li

1 a ≻1 b ≻1 c ≻1 d
2 a ≻2 c ≻2 b ≻2 d
3 a ≻3 c ≻3 d ≻3 b
4 b ≻4 a ≻4 d ≻4 c

Let d = (4, 2, 1, 1) be a demand vector. Then by Extended Random Assignment we
have

P =


a b c d

1 16
7

12
7

0 0
2 8

7
0 6

7
0

3 4
7

0 3
7

0
4 0 4

7
+ 3

7
0 0

,

where

b(L) =
( a b c d

4 + 2 + 1, 1, 0, 0
)
, S1 = {a}, λ1 =

4
7
for p = 1

and

b(L) = (0, 4 + 1, 2 + 1, 0), S2 = {a, b, c, d}, λ2 = λ1 +
3
7
for p = 2

to get the random assignment matrix P given above. Also, vectors x∗
λp

, which are the
restriction of x∗

P on Tp = Sp \ Sp−1 for p = 1, 2, are given by

T1 = {a}, T2 = {b, c, d},
x∗
λ1
(a) = 4, x∗

λ2
(b) = 19

7
, x∗

λ2
(c) = 9

7
, x∗

λ2
(d) = 0.

Hence x∗
P = (4, 19

7
, 9
7
, 0). Note that ∅, {a}, {a, b, c}, and {a, b, c, d}(= sat(x∗

P )) are tight
sets for x∗

P . 2
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Example 2: Let N , E, Li (i ∈ N), and d be the same as Example 1, while let ρ : 2E →
Z≥0 be a function defined by

ρ(X) =


4|X| if |X| ≤ 2 and X ̸= {a, b}
4 if X = {a, b}
8 if |X| > 2

(∀X ⊆ E). (4.8)

Then we get

P =


a b c d

1 2 0 2 0
2 1 0 1 0
3 1

2
0 1

2
0

4 0 1
2

0 1
2

,

where

b(L) = (4 + 2 + 1, 1, 0, 0), S1 = {a, b}, λ1 =
1
2
for p = 1,

b(L) = (0, 0, 4 + 2 + 1, 1), S2 = {a, b, c, d}, λ2 = λ1 +
1
2
for p = 2.

Also, vectors x∗
λp

on Tp = Sp \ Sp−1 for p = 1, 2 are given by

T1 = {a, b}, T2 = {c, d},
x∗
λ1
(a) = 7

2
, x∗

λ1
(b) = 1

2
, x∗

λ2
(c) = 7

2
, x∗

λ2
(d) = 1

2
.

Hence x∗
P = (7

2
, 1
2
, 7
2
, 1
2
). We have tight sets ∅, {a, b} and {a, b, c, d} for x∗

P . 2

We will show that the random assignment matrix P obtained by Extended Random
Assignment is an efficient and envy-free allocation of divisible goods in B(ρ), where
precise definitions of efficiency and envy-freeness will be given below.

4.2. Ordinal efficiency
Let P and Q be random assignment matrices for Problem RA = (N,E,L = (Li | i ∈
N), d, (E, ρ)). For each agent i ∈ N with preference relation ≻i given by ei1 ≻i · · · ≻i

eim, define a relation (sd-dominance relation2) ⪰d
i between the ith rows Pi and Qi of P

and Q, respectively, as follows.

Pi ⪰d
i Qi ⇐⇒ ∀ℓ ∈ {1, · · · ,m} :

ℓ∑
k=1

P (i, eik) ≥
ℓ∑

k=1

Q(i, eik). (4.9)

The random assignment matrix P is sd-dominated by Q if we have Qi ⪰d
i Pi for all i ∈ N

and P ̸= Q. We say that P is ordinally efficient if P is not sd-dominated by any other
random assignment ([5]). The following theorem can be shown in a very similar way as
the corresponding one in [5] and [12].

2sd stands for (first-order) stochastic dominance employed in [5].
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Theorem 4.1: The procedure Extended Random Assignment computes a random as-
signment matrix P that is ordinally efficient.

(Proof) By Procedure Extended Random Assignment we get a random assignment P
together with a chain S0 = ∅ ⊂ S1 ⊂ · · · ⊂ Sp = E. Let Q be an arbitrary random
assignment and suppose that Q = P or Q sd-dominates P . It suffices to prove Q = P .

At the qth execution of Step 1 of Extended Random Assignment define

Fq = {i ∈ N | ei1 ∈ Tq}. (4.10)

Let us denote ei1 (the top element in current Li) at the qth execution of Step 1 by ei1(q) and
suppose that for some integer q∗ ≥ 1 we have

Q(i, ei1(q)) = P (i, ei1(q)) (∀q = 1, · · · , q∗ − 1, ∀i ∈ Fq) (4.11)

and we execute the q∗th Step 1. Then, because of Step 1 of Extended Random Assignment
we have ∑

i∈Fq

P (i, ei1(q)) = ρ(Sq)− ρ(Sq−1) (q = 1, · · · , q∗). (4.12)

Since Q = P or Q sd-dominates P , it follows from (4.11) that Q(i, ei1(q
∗)) ≥ P (i, ei1(q

∗))
for all i ∈ Fq∗ . Hence from (4.11) and (4.12) we must have

Q(i, ei1(q
∗)) = P (i, ei1(q

∗)) (∀i ∈ Fq∗), (4.13)

since we have
∑

i∈Fq∗
Q(i, ei1(q

∗)) ≤ ρ(Sq∗)−ρ(Sq∗−1). (Here,
∑q∗

q=1

∑
i∈Fq

Q(i, ei1(q)) ≤
ρ(Sq∗).)

Now, note that when q∗ = 1, (4.11) is void (and thus holds). Hence, by induction on
q = 1, · · · , p, we have shown Q = P . 2

4.3. Envy-freeness
We say a random assignment P is normalized envy-free ([15]) with respect to a profile of

ordinal preferences ≻i for all i ∈ N if for all i, j ∈ N we have
1

d(i)
Pi ⪰d

i

1

d(j)
Pj .

We have the following theorem on normalized envy-freeness of the extended PS mech-
anism. The proof is actually a direct adaptation of the one given by Bogomolnaia and
Moulin [5] and Schulman and Vazirani [24] for a non-matroidal problem setting (also see
[15, 12]). It should be noted that by Extended Random Assignment every agent i ∈ N
eats d(i) units of goods per unit time.

Theorem 4.2: The procedure Extended Random Assignment computes a random as-
signment matrix P that is normalized envy-free.

11



(Proof) It suffices to show that for any i ∈ N and k ∈ {1, · · · ,m} we have

1

d(i)

k∑
ℓ=1

P (i, eiℓ) ≥
1

d(j)

k∑
ℓ=1

P (j, eiℓ) (∀j ∈ N). (4.14)

Define

tik =
1

d(i)

k∑
ℓ=1

P (i, eiℓ). (4.15)

When good eik is removed after an execution of Step 1, all goods eiℓ (ℓ = 1, · · · , k)
have been removed from E. It follows that for all j ∈ N the time spent by agent j
to eat eiℓ (ℓ = 1, · · · , k) given by the sum of possible values 1

d(j)
P (j, eiℓ) for goods eiℓ

(ℓ = 1, · · · , k) is within tik. Hence we must have

tik ≥
1

d(j)

k∑
ℓ=1

P (j, eiℓ) (∀j ∈ N). (4.16)

2

5. Strategy-proofness
It is known that the extension of the PS mechanism of Bogomolnaia and Moulin to the
case of multi-unit demands cannot be weakly strategy-proof in general ([6, 15, 18, 3]).
Therefore, our polymatroidal extension is not weakly strategy-proof in general either.

Note that a solution mechanism M is weakly strategy-proof if for every input prefer-
ence profile L the mechanism M gives a solution P such that every misreport of every
agent i’s preference results in a solution Q satisfying that Qi does not sd-dominate Pi for
i. Here the strategy-proofness is concerned with the mechanism.

5.1. Weakly sd Nash equilibrium
Let us consider the concept of a weakly sd Nash equilibrium ([8, 16]), which is a property
of the obtained solution. For a given input profile we say that the solution P obtained
by the mechanism M is called a weakly sd Nash equilibrium if every misreport of every
agent i’s preference results in a solution Q satisfying that Qi does not sd-dominate Pi for
i. The solution of the extended PS mechanism for multi-unit demands was investigated
from the point of view of the weakly sd Nash equilibrium in [8, 16].

We examine our polymatroidal extension and give a certain (useful) sufficient condi-
tion for our solution to be a weakly sd Nash equilibrium. The result, Theorem 5.4 given
below, seems to be new even for the ordinary multi-demand case where the base polytope

12



consists of a single base, i.e., B(ρ) = {b} for some b ∈ ZE
>0. At the end of this section

(Sec. 5.2) we also show the weak strategy-proofness in the special case of unit demands
and matroidal supplies considered in [12].

5.1.1. Lemmas

We first prepare a few lemmas to prove Theorem 5.4 concerned with a condition for our
extended PS solution to be weakly sd Nash equilibrium.

For any vector x ∈ RE and any set A ⊆ E define xA ∈ RA by xA(e) = x(e) for all
e ∈ A.

Lemma 5.1: Let P = (E, ρ) be a polymatroid. For any vectors x, y ∈ P(ρ) satisfying
x(e) ≥ y(e) (∀e ∈ E \ sat(x)), we have sat(x) ⊇ sat(y).

(Proof) Suppose that we are given vectors x, y ∈ P(ρ) satisfying x(e) ≥ y(e) (∀e ∈
E \ sat(x)). Increase the values of y(e) for all e ∈ sat(x) as much as possible while
keeping the vector within P(ρ), and let us denote by y′ the resulting vector in P(ρ). Then,
we have sat(y′) ⊇ sat(x). Letting A = sat(x) and B = sat(y′), if ρ(A) > y′(A), then

ρ(B)− ρ(A) < y′(B)− y′(A) ≤ x(B)− x(A).

Since ρ(A) = x(A), this implies ρ(B) < x(B), a contradiction. Hence ρ(A) = y′(A)
and (y′)A and xA are bases of P ·A = (A, ρA), the restriction of P to A. Hence (y′)E\A ∈
P(ρA), where ρA is the rank function of the contraction (E \ A, ρA) of P by A. Since
x(e) ≥ y′(e) (∀e ∈ E \ A) and sat(x) = A, we have sat(y) ⊆ sat(y′) ⊆ sat(x) = A. 2

Let us consider the ‘eating process’ (due to Bogomolnaia and Moulin [5]). By the
procedure Extended Random Assignment we have critical times

λ0 = 0 < λ1 < · · · < λq = ρ(E)/d(N)

computed by (4.6), where d(N) =
∑

i∈N d(i). At each critical time λk > 0, L is updated
by removing all the saturated goods from L.

For each time t with λk ≤ t ≤ λk+1 for k ∈ {0, · · · , q − 1} we put

x∗
t = x∗

λk
+ (t− λk)b(Lt),

where Lt = (Li
t | i ∈ N) denotes the current L = (Li | i ∈ N) at time t and

b(Lt) =
∑
i∈N

d(i)χei1

with ei1 being the top element (good) of current Li
t. We put x∗

0 = 0. Note that we have

sat(x∗
t ) = sat(x∗

λk
) (∀t ∈ [λk, λk+1), ∀k ∈ {0, · · · , q − 1}).

13



Now, suppose that agent 1 ∈ N has a preference list L1 and misreports her preference
as L̄1. Put L̄ = (L̄i | i ∈ N) with L̄i = Li for i ∈ N \ {1}. For any original object p (a
parameter, a vector, etc.) defined under preference profile L, let us denote by p̄ the object
p defined under misreported preference profile L̄.

For each e ∈ E define NP (e) = {i ∈ N | P (i, e) > 0}. For each e ∈ E let t(e) be
the time when good e is exhausted (or saturated). Also for each e ∈ E and i ∈ NP (e) let
ti0(e) be the time when agent i starts eating good e (or the time when e becomes the top
element of current Li).

Lemma 5.2: Let L1 and L̄1 be given by

L1 : w1 ≻ · · · ≻ ws ≻ a ≻ · · · , (5.1)
L̄1 : w1 ≻ · · · ≻ ws ≻ z1 ≻ · · · ≻ zs′ ≻ a ≻ · · · (5.2)

with P (1, a) > 0 for some integers s ≥ 0 and s′ ≥ 1. Suppose that t̄(a) > t(a). Then, the
following three statements hold during the execution of Extended Random Assignment
with current time t < t(a).

(a) For each i ∈ N \ {1} we have ei1 ⪰i ē
i
1, where ei1 and ēi1 are the top elements of

current Li
t for Lt and current L̄i

t for L̄t, respectively, and ⪰i is the order of original
Li.

(b) For each e ∈ E \ (sat(x̄∗
t ) ∪ {a}) we have x∗

t (e) ≤ x̄∗
t (e).

(c) sat(x∗
t ) ⊆ sat(x̄∗

t ).

Moreover, we have

(d) t̄i0(a) ≤ ti0(a) (∀i ∈ NP (a) \ {1}).

(Proof) We can easily see from the procedure Extended Random Assignment and the
definition of L and L̄ that (a) implies

b(L̄t)(e) ≥ b(Lt)(e) (∀t ∈ [0, t(a)), ∀e ∈ E \ (sat(x̄∗
t ) ∪ {a})),

which implies (b). Moreover, (c) follows from (b) and Lemma 5.1, where we restrict the
ground set of polymatroid (E, ρ) to E \ {a} since a is not saturated for both x∗

t and x̄∗
t for

t < t(a) by the assumption. Also (d) easily follows from (a) (for all t ∈ [0, t(a))).
Hence it suffices to show that (a) holds for all t ∈ [0, t(a)), by induction on the indices

k of critical times λk and λ̄k. First, note that (a) holds for t ∈ [0,min{λ1, λ̄1, t(a)}) since
ei1 = ēi1 for all i ∈ N \ {1}.

We consider the following three cases (A), (B), and (C).
(A) Suppose that (a) holds for all t ∈ [0, λk) for some k ≥ 1 with λk < t(a) and that

λk is not equal to any critical time for L̄, i.e., λ̄p < λk < λ̄p+1 for some p. Then it follows
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from Lemma 5.1 that at time t = λk, if ei1 for i ∈ N \ {1} becomes saturated, then ei1
belongs to sat(x̄∗

t ) and the new (non-saturated) ei1 satisfies ei1 ⪰i ēi1. (Here we employ
Lemma 5.1 by restricting the polymatroid to E\{a} since a is not saturated for x∗

t with t <
t(a).) Hence (a) holds for t = λk and then so does for all t ∈ [0,min{λk+1, λ̄p+1, t(a)}).

(B) Suppose that (a) holds for all t ∈ [0, λ̄k) for some k ≥ 1 with λ̄k < t(a) and that
λp < λ̄k < λp+1 for some p. Then at time t = λ̄k we have sat(x̄∗

t ) enlarged and newly
saturated ēi1 is replaced by the next non-saturated one in L̄i

t, current L̄i. Hence (a) holds
for t = λ̄k and then so does for all t ∈ [0,min{λp+1, λ̄k+1, t(a)}).

(C) Suppose that (a) holds for all t ∈ [0, λk) for some k ≥ 1 with λk < t(a) and that
λk = λ̄p for some p ≥ 1. Then at time t = λ̄p(= λk) we have sat(x̄∗

t ) enlarged and newly
saturated ēi1 is replaced by the next non-saturated one in L̄i

t. Also, at time t = λk(= λ̄p),
if ei1 becomes saturated, then ei1 belongs to updated sat(x̄∗

t ) and the new non-saturated ei1
satisfies ei1 ⪰i ēi1 for possibly new non-saturated ēi1 (due to Lemma 5.1). Hence (a) holds
for t = λk(= λ̄p) and then so does for all t ∈ [0,min{λk+1, λ̄p+1, t(a)}).

This completes the proof of the present lemma by induction. 2

Lemma 5.3: Under the same assumption as in Lemma 5.2, we have

x∗
t(a)(a) ≥ x̄∗

t̄(a)(a). (5.3)

(Proof) Suppose that t̄(a) > t(a) and let p and q be integers such that λ̄p < t(a) ≤ λ̄p+1

and λq = t(a). It follows from Lemma 5.2 that for all t ∈ [λ̄p, t(a))

sat(x∗
t ) ⊆ sat(x̄∗

t ), x∗
t (e) ≤ x̄∗

t (e) (∀e ∈ E \ (sat(x̄∗
t ) ∪ {a})). (5.4)

Also we see from Lemma 5.2 and the continuity of x∗
t in t that at t = t(a) we have

x∗
t(a)(e) ≤ x̄∗

t(a)(e) (∀e ∈ E \ (sat(x̄∗
t(a)) ∪ {a})). (5.5)

Define ȳϵ = x̄∗
t̄(a)−ϵ for any ϵ with 0 < ϵ ≤ t̄(a). Then, for a sufficiently small ϵ > 0 we

have a /∈ sat(ȳϵ) and

x̄∗
t(a)(e) = ȳϵ(e) (∀e ∈ sat(x̄∗

t(a))), (5.6)
x̄∗
t(a)(e) ≤ ȳϵ(e) (∀e ∈ E \ sat(x̄∗

t(a))). (5.7)

Increase the values of x∗
t(a)(e) for all e ∈ sat(ȳϵ) as much as possible while keeping the

vector within P(ρ). Let y∗ be the resulting independent vector. Then we have

sat(y∗) ⊇ sat(ȳϵ) ∪ {a}. (5.8)

Put A = sat(y∗) and B = sat(ȳϵ). Then,

x∗
t(a)(A)− x∗

t(a)(B) = y∗(A)− y∗(B) ≥ ρ(A)− ρ(B) > ȳϵ(A)− ȳϵ(B), (5.9)
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where the last inequality follows from the fact that a ∈ A and a /∈ sat(ȳϵ). Hence from
(5.5)–(5.9) we have

x∗
t(a)(a) > ȳϵ(a) = x̄∗

t̄(a)−ϵ(a). (5.10)

Since (5.10) holds for any sufficiently small ϵ > 0 and x̄∗
t is continuous in t, we have

x∗
t(a)(a) ≥ x̄∗

t̄(a)(a). 2

5.1.2. Proof of Theorem 5.4

Suppose that we are given the extended PS solution P . Recall that NP (e) = {i ∈ N |
P (i, e) > 0} for all e ∈ E.

Theorem 5.4: Given the extended PS solution P , if we have |NP (e)| ̸= 1 for all e ∈ E,
then the solution P is a weakly sd Nash equilibrium.

(Proof) Suppose that |NP (e)| ̸= 1 for all e ∈ E. Recall that for each e ∈ E, t(e) is the
time when good e is exhausted (or saturated). Also for each e ∈ E and i ∈ NP (e), ti0(e)
is the time when agent i starts eating good e (or the time when e becomes the top element
of current Li).

For the extended PS solution P , if P (1, a) = 0 for some a ∈ E, shifting good a in L1

toward the end of L1 does not change the solution P . Hence we can assume

(†) goods e with P (1, e) > 0 appear consecutively in L1 from the top of L1.

Now suppose that for agent 1 ∈ N her preference is given by

L1 : a ≻ · · · (5.11)

with P (1, a) > 0 and she misreports her preference as

L̄1 : z1 ≻ · · · ≻ zs ≻ a ≻ · · · (5.12)

with some integer s ≥ 1. Let P̄ be the PS solution obtained under the misreport. When L1

is replaced by L̄1, we denote t(e) and ti0(e) by t̄(e) and t̄i0(e), respectively, for all e ∈ E
and i ∈ N , and also denote x∗

t by x̄∗
t .

Suppose that P̄1 sd-dominates P1 or is equal to P1 (i.e., P̄1 ⪰d
1 P1), where recall

P̄1 = (P̄ (1, e) | e ∈ E) and P1 = (P (1, e) | e ∈ E). Then it suffices to prove P̄1 = P1.

(I) Suppose that t̄(a) > t(a). Then from Lemma 5.2 (d) and Lemma 5.3 we have

t̄i0(a) ≤ ti0(a) (∀i ∈ NP (a) \ {1}). (5.13)

x∗
t(a)(a) ≥ x̄∗

t̄(a)(a), (5.14)
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Now, since t̄(a) > t(a) and NP (a) \ {1} ̸= ∅ by the assumption, it follows from (5.13)
and (5.14) that P̄ (1, a) < P (1, a), a contradiction. Hence we have t̄(a) ≤ t(a) and

P̄ (1, a) = t̄(a)− (P̄ (1, z1) + · · ·+ P̄ (1, zs)) ≤ t(a) = P (1, a). (5.15)

Since from the assumption that P̄1 ⪰d
1 P1 we must have P̄ (1, a) ≥ P (1, a), it follows

from (5.15) that

P̄ (1, a) = P (1, a), P̄ (1, z1) = · · · = P̄ (1, zs) = 0. (5.16)

The latter relation in (5.16) implies

• elements z1, · · · , zs are saturated at time t = 0 for L̄.

Since shifting elements z1, · · · , zs toward the end of L̄1 does not change P̄ , it suffices to
consider that L1 and L̄1 are given as

L1 : a ≻ b ≻ · · · , (5.17)
L̄1 : a ≻ z′1 ≻ · · · ≻ · · · ≻ z′s′ ≻ b ≻ · · · (5.18)

for some {z′1, · · · , z′s′} ⊆ E \ {a, b} with an integer s′ ≥ 0.
(II) If P (1, b) = 0, then it easily follows from the assumption (†) that P1 = P̄1. Hence
suppose P (1, b) > 0. Then by the same arguments as in (I), using Lemma 5.3 again, we
can show

1. t̄(b) ≤ t(b),

2. P̄ (1, b) = P (1, b), P̄ (1, z′1) = · · · = P̄ (1, z′s′) = 0,

3. elements z′1, · · · , z′s′ are saturated at time t = t̄(a)(= t(a)) for L̄

and it suffices to consider the case where there is no element between a and b in L̄1.
(III) Further repeating this argument, we can show that P̄1 = P1. 2

Theorem 5.4 is rephrased as follows. (Note that matrix P ∈ RN×E has the row set N
and the column set E.)

• If no column of P contains exactly one non-zero entry, the extended PS solution P
is a weakly sd Nash equilibrium.

Theorem 5.4 has very useful practical implications from the point of view of strategy-
proofness. The condition that |NP (e)| ̸= 1 (∀e ∈ E) is very likely to be satisfied when
the number |N | of ‘agents’ is significantly large, compared with the number |E| of ‘types
of goods’ such as the assignment of students to courses.
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Related non-manipulability result was also obtained by Kojima and Manea [19], as-
suming the availability of utility functions. They gave a sufficient condition for their
extended PS solution to be a weakly sd Nash equilibrium, which can be checked by the
given data including utility functions. On the other hand, our condition can easily be
checked by the extended PS solution computed without using any additional information
about utility functions.

5.2. Weak strategy-proofness in case of unit demands and matroidal
supplies

We show that when the polymatroid (E, ρ) is a matroid and agents have unit demands,
the extended PS mechanism is weakly strategy-proof, where the matroidal {0, 1} property
plays a crucial rôle.

Consider the random assignment problem RA = (N,E,L = (Li | i ∈ N), d, (E, ρ))
and suppose that the underlying polymatroid (E, ρ) is a matroid and agents have unit
demands, i.e., d = 1, which is treated by the authors [12]. We assume that ρ(E) = |N |.

Lemma 5.5: Suppose that L1 and L̄1 are given by (5.1) and (5.2) and that P (1, a) > 0.
Suppose that t̄(a) > t(a). Then we have P̄ (1, a) ≤ P (1, a). Moreover, we have P̄ (1, a) =
P (1, a)(> 0) only when P̄ (1, z1) = · · · = P̄ (1, zs′) = 0.

(Proof) Because of Theorem 5.4 it suffices to consider the case where |NP (a)| = 1.
Suppose that L1 and L̄1 are given by (5.1) and (5.2) and that P (1, a) > 0.

Suppose |NP (a)| = 1, i.e., NP (a) = {a}. From Lemma 5.3 we have

P (1, a) = x∗
t(a)(a) ≥ x̄∗

t̄(a)(a) ≥ P̄ (1, a). (5.19)

If |N̄P̄ (a)| ≥ 2, then the last inequality in (5.19) should hold with strict inequality. Hence
it suffices to consider the case where |N̄P̄ (a)| = 1 = |NP (a)|. Moreover, since t̄(a) >
t(a) by the assumption, it follows from (5.19) that

P̄ (1, z1) + · · ·+ P̄ (1, zs′) > 0. (5.20)

We show that this leads us to P̄ (1, a) < P (1, a).
Increase the values of x∗

t(a)(e) for all e ∈ sat(x̄∗
t(a)) as much as possible while keeping

the vector within P(ρ). (Here note that a /∈ sat(x̄∗
t(a)) since t̄(a) > t(a).) Let z∗ be the

resulting independent vector. Then, since X ≡ sat(x̄∗
t(a)) and Z ≡ dep(x∗

t(a), a) are tight
for z∗, we have

z∗(X ∪ Z) = ρ(X ∪ Z). (5.21)

Consider the following two cases (i) and (ii).
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Case (i): (Z \ {a}) \X ̸= ∅. In this case, it follows from (5.5) that

x̄∗
t̄(a)(e) > x̄∗

t(a)(e) ≥ x∗
t(a)(e) (∀e ∈ (Z \ {a}) \X). (5.22)

(Here note that for all e ∈ (Z \ {a}) \X we have x̄∗
t(a)(e) ≥ x∗

t(a)(e) > 0, where we have
x∗
t(a)(e) > 0 because of the definition of Z = dep(x∗

t(a), a), and hence e is the top element
of current Li

t of at least one agent i ∈ N \ {1} for L̄t (as well as for Lt) at time t = t(a).)
Hence, if x̄∗

t̄(a)(a) = x∗
t(a)(a), then from (5.21) and (5.22) we have

x̄∗
t̄(a)(X ∪ Z) > z∗(X ∪ Z) = ρ(X ∪ Z), (5.23)

a contradiction. We thus have P̄ (1, a) = x̄∗
t̄(a)(a) < x∗

t(a)(a) = P (1, a).

Case (ii): (Z \ {a}) \X = ∅. In this case, it follows from (5.21) that

P (1, a) = x∗
t(a)(a) = z∗(X ∪ {a})− z∗(X) = ρ(X ∪ {a})− ρ(X) = 1, (5.24)

where note that X ∪Z = X ∪{a} and P (1, a) > 0. It follows from (5.20) that P̄ (1, a) =
x̄∗
t̄(a)(a) < 1 = P (1, a). 2

It should be noted that the above proof in Case (ii) depends on the matroidal {0, 1}
property.

Theorem 5.6: When the underlying polymatroid (E, ρ) is a matroid and agents have unit
demands, the extended PS mechanism is weakly strategy-proof.

(Proof) The present theorem can be shown similarly as Theorem 5.4, based on Lemma 5.5.
2

6. Randomized Mechanism
Now we consider the assignment problem with indivisible goods.

Suppose that given a random assignment matrix P obtained as the output of the proce-
dure Extended Random Assignment, P can be represented by a convex combination
of assignment matrices Q(k) ∈ BZ(ρ) (k ∈ K) with a finite index set K as

P =
∑
k∈K

νkQ
(k), (6.1)

where each row sum of Q(k) satisfies the demand constraint (4.2) (because of Theorem 6.2
shown below). Here, each Q(k) (k ∈ K) is a feasible deterministic assignment, and we
see that the convex combination coefficients νk > 0 (k ∈ K) with

∑
k∈K νk = 1 serve
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as the probability distribution over the deterministic assignments Q(k) (k ∈ K), which
realizes a required lottery to get the solution P as an expected assignment matrix.

Let us consider Example 2 given in Section 4.1. The random assignment matrix P
obtained in Example 2 is expressed as

P =


2 0 2 0
1 0 1 0
1
2

0 1
2

0
0 1

2
0 1

2

 =
1

2


2 0 2 0
1 0 1 0
0 0 1 0
0 1 0 0

+
1

2


2 0 2 0
1 0 1 0
1 0 0 0
0 0 0 1


=

1

2
Q(1) +

1

2
Q(2). (6.2)

Note that both Q(1) and Q(2) satisfy the demand constraints with demand vector (4,2,1,1).
The solution P is realized by choosing Q(1) or Q(2) at random (with equal probability 1

2
).

Now we will show that we can always compute a required convex combination rep-
resentation (6.1) in an efficient way. With the aid of polymatroidal results achieved in
[9, 10, 11] we can construct a randomized mechanism to attain P . The procedure is es-
sentially the same as the one given in [12] for a special case of a matroidal family of
feasible sets of goods.

6.1. Random assignments and independent flows
Consider a complete bipartite graph G = (S+, S−;A) with a vertex set V = S+ ∪ S−

given by
S+ = N, S− = E (6.3)

and an arc set A given by
A = N × E. (6.4)

For every arc a ∈ A we consider its capacity c(a) = +∞. The vertex set S+=N is the set
of entrances and S−=E is the set of exits. Denote byN = (G = (S+, S−, A), d, c, (E, ρ))
the network with the polymatroidal constraints on the exit set S− = E defined as fol-
lows. (See Figure 1.) Consider a nonnegative flow φ : A → R≥0 in N and define
∂±φ : S± → R≥0 by

∂+φ(i) =
∑
{φ(i, e) | e ∈ E} (∀i ∈ S+ = N), (6.5)

∂−φ(e) =
∑
{φ(i, e) | i ∈ N} (∀e ∈ S− = E). (6.6)

If φ : A→ R≥0 satisfies

∂+φ(i) ≤ d(i) (∀i ∈ N), ∂−φ ∈ B(ρ), (6.7)
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Figure 1: An independent-flow network N .

then we call φ an independent flow in N .
Given a random assignment matrix P computed by Extended Random Assignment,

put
φP (a) = P (i, e) (∀a = (i, e) ∈ A). (6.8)

Then the flow φP : A→ R≥0 is an independent flow in N and satisfies

∂+φP (i) ≤ d(i) (∀i ∈ N), (6.9)
∂−φP ∈ B(ρ), (6.10)

where note that ∂−φP = x∗
P . It should also be noted that if d(N) = ρ(E), then (6.10)

together with (6.9) implies

∂+φP (i) = d(i) (∀i ∈ N). (6.11)

Define a polytope P ∗ by

P ∗ = {φ | φ is an independent flow in N}. (6.12)

It should be noted that P ∗ is nonempty since φP satisfies (6.9) and (6.10) and hence
φP ∈ P ∗.
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The following integrality property holds true for independent flows in N ([9, 11]),
which plays a crucial rôle in our problem setting. Note that P ∗ is a polytope, i.e., a
bounded polyhedron, by definition.

Proposition 6.1: The polytope P ∗ defined by (6.12) is integral, i.e., every extreme point
of P ∗ is an integral vector.

When a random assignment matrix Q is integral, we call Q an assignment matrix. By
Proposition 6.1 we have

Theorem 6.2: For the random assignment matrix P computed by Extended Random
Assignment there exist assignment matrices Q(k) (k ∈ K) and convex combination co-
efficients νk (k ∈ K) such that

P =
∑
k∈K

νkQ
(k). (6.13)

Since the present paper is a generalization of our previous paper [12], Theorem 6.2 is
also a generalization of the Birkhoff-von Neumann theorem on bi-stochastic matrices.

6.2. Computing the probability distribution
In the following we show how to efficiently compute an expression (6.13). It is basically
a standard procedure to obtain an expression of a given point in polytope P ∗ by a convex
combination of its extreme points, but it is crucial how efficiently we can compute an end
point of the intersection of a line and a base polytope ([21]) and can identify the unique
minimal face of P ∗ containing any given point in P ∗ ([11]).

For the random assignment matrix P (or independent flow φP ) and base x∗
P ∈ B(ρ)

computed by Extended Random Assignment we first consider the unique minimal
face of P ∗ containing φP .

Denote by D(x∗
P ) the set of all tight sets for x∗

P in B(ρ), where D(x∗
P ) is closed with

respect to the binary operations of set union and intersection and is a distributive lattice
(see [11]). Let a maximal chain of D(x∗

P ) be given by

Ĉ : Ŝ0 = ∅ ⊂ · · · ⊂ Ŝp = E. (6.14)

The chain of tight sets obtained during the execution of Extended Random Assignment
is a subchain of (6.14). A maximal chain Ĉ is determined by the dependence structure as-
sociated with dep(x∗

P , e) for all e ∈ E and can be computed in strongly polynomial time
([11, 12]).

For each q = 1, · · · , p consider the minor, denoted by Pq, of polymatroid (E, ρ)
obtained by its restriction to Ŝq followed by the contraction of Ŝq−1. The minor Pq is the
polymatroid on T̂q ≡ Ŝq \ Ŝq−1 with the rank function ρq given by

ρq(X) = ρ(X ∪ Ŝq−1)− ρ(Ŝq−1) (∀X ⊆ T̂q). (6.15)
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Also denote by x∗
q the restriction of x∗

P to T̂q(= Ŝq \ Ŝq−1). Then x∗
q is a base of the

polymatroid (T̂q, ρq), i.e., x∗
q ∈ B(ρq). Note that x∗

P is a base of the direct sum ⊕p
q=1Pq

of minors Pq (q = 1, · · · , p). Let ρ̂ be the rank function of polymatroid ⊕p
q=1Pq. It

should be noted that because of the maximality of chain Ĉ, for each q = 1, · · · , p the base
polytope B(ρq) ⊆ RT̂q is of dimension |T̂q| − 1 and base x∗

q is within the relative interior
of B(ρq) and that x∗

P is within the relative interior of the base polytope B(ρ̂) of ⊕p
q=1Pq,

which is the unique minimal face of B(ρ) containing x∗
P . (See [11, Chapter II].)

Put

Â0 = {a ∈ A | φP (a) = 0}, (6.16)
Â+ = A \ Â0, (6.17)
Î = {i ∈ N | ∂+φP (i) = d(i)}. (6.18)

Then, define a face of P ∗ containing φP by

P ∗(φP ) = {φ ∈ P ∗ | ∀i ∈ Î : ∂+φ(i) = d(i), ∀a ∈ Â0 : φ(a) = 0, ∂−φ ∈ B(ρ̂)}.
(6.19)

We can show the following lemma.

Lemma 6.3: The polytope P ∗(φP ) is the unique minimal face of P ∗ containing φP .
Moreover, P ∗(φP ) restricted in RÂ+

is the set of independent flows satisfying (6.10) in
the network N̂ = (Ĝ = (S+, S−; Â+), d, c, (E, ρ̂)).

(Proof) In the system of inequalities (and equations) that defines P ∗ of (6.12), the given
φP satisfies ∂+φP (i) = d(i) for all i ∈ Î , φP (a) = 0 for all a ∈ Â0, and

∂−φP (X) = ρ(X) (∀X ∈ D(x∗
P )), (6.20)

which includes all the inequalities for P ∗ satisfied with equality by φP . Note that (6.20)
is implied by

∂−φP (X) = ρ(X) (∀X ∈ C(x∗
P )), (6.21)

sinceD(x∗
P ) is a distributive lattice and ρ is modular onD(x∗

P ). Also note that the system
of equations (6.21) together with ∂−φP ∈ B(ρ) is equivalent to ∂−φP ∈ B(ρ̂). Hence
(6.19) defines the unique minimal face of P ∗ containing φP .

Moreover, the latter statement holds true because of the definition of the network N̂ .
2

Based on Lemma 6.3, we can compute the expression of x∗
P as a convex combina-

tion of integral vectors in BZ(ρ) corresponding to assignments Q(k) (k ∈ K) and then
accordingly P can be expressed by a convex combination of Q(k) (k ∈ K) as (6.13).
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6.3. Randomized mechanism
Now we have the following procedure.
———————————————————————————————————
Randomized Mechanism

1. Compute P by Extended Random Assignment.

2. Compute an expression (6.13).

3. Choose an assignment from among Q(k) (k ∈ K) by the lottery with the probability
distribution νk (k ∈ K).

———————————————————————————————————

Consequently, we can show the following theorem.

Theorem 6.4: For the random assignment matrix P computed by Extended Random
Assignment, the above described Randomized Mechanism generates an assignment
in strongly polynomial time whose expectation is equal to the PS solution P .

(Proof) We begin with base x∗
1 ≡ x∗

P ∈ B(ρ̂) and independent flow φ̂1 ≡ (the restriction
of φP on Â+) in network N̂ = (Ĝ = (S+, S−; Â+), d, c, (E, ρ̂)) such that x∗

1 = ∂−φ̂1. If
φP is already integer-valued, we are done. Hence we assume that φP is not integer-valued.
Perform the following procedure to compute an expression (6.13).

——————————————————————————————————–

1. Put t← 1.

2. Find an integer-valued independent flow φt in N̂ .

3. Compute
β∗
t = max{β > 0 | φ̂t + β(φ̂t − φt) ∈ P ∗(φ̂t)}. (6.22)

4. Put φ̂t+1 ← φ̂t + β∗
t (φ̂t − φt) and x∗

t+1 ← x∗
t + β∗

t (x
∗
t − ∂−φt).

5. If flow φ̂t+1 is not integer-valued, then put t← t+1, update N̂ for the current base
x∗
t and flow φ̂t, and go to Step 2.

Otherwise put φt+1 ← φ̂t+1.
Return φs for all s = 1, · · · , t+ 1 and β∗

s for all s = 1, · · · , t.

——————————————————————————————————

During the execution of the above procedure, P ∗(φ̂t) appearing in (6.22) is the unique
minimal face of P ∗ containing φ̂t, due to Lemma 6.3. At the tth execution of Step 3 with
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current rank function ρ̂ we have the unique minimal face B(ρ̂) of B(ρ) containing x∗
t .

Then β∗
t in (6.22) is the maximum value of β that satisfies

∂+φ̂t(i) ≤ d(i) (∀i ∈ N), (6.23)
φ̂t(a) + β(φ̂t(a)− φt(a)) ≥ 0 (∀a ∈ Â+

t ), (6.24)
x∗
t + β(x∗

t − ∂−φt) ∈ B(ρ̂), (6.25)

where Â+
t = {a ∈ A | φ̂t(a) > 0}. Note that since φ̂t is within the relative interior

of P ∗(φ̂t), we get β∗
t > 0. We can compute β∗

t in strongly polynomial time (due to
Nagano [21]) by using any strongly polynomial submodular function minimization algo-
rithm. Also note that the final value of t is O(|N ||E|) since every execution of Step 3 and
Step 4 makes at least one strict inequality in (6.23) or (6.24) hold with equality or makes
the length of a maximal chain C(x∗

t+1) greater than that of C(x∗
t ).

We regard each φs (s = 1, · · · , t + 1) as a flow in the original network N by putting
φs(a) = 0 for all a ∈ A \ Â+

s , and similarly for φ̂s (s = 1, · · · , t + 1). From the output
φs for all s = 1, · · · , t+ 1 and β∗

s for all s = 1, · · · , t we have

φ̂s+1 = (1 + β∗
s )φ̂s − β∗

sφs (∀s = 1, · · · t), (6.26)

or
φ̂s = (1 + β∗

s )
−1(φ̂s+1 + β∗

sφs) (∀s = 1, · · · t). (6.27)

Eliminating φ̂s for s = 1, · · · , t and using φ̂t+1 = φt+1, we can obtain the following
expression.

φP (= φ̂1) =
t+1∑
s=1

νsφs (6.28)

for some convex combination coefficients νs (s = 1, · · · , t + 1). Each integer-valued
flow φs gives a desired assignment matrix Q(s), and νs (s = 1, · · · , t + 1) the desired
probability distribution on the set of assignment matrices Q(s) (s = 1, · · · , t + 1). Note
that (6.28) is equivalent to

P =
t+1∑
s=1

νsQ
(s), (6.29)

which thus can be computed in strongly polynomial time. 2

It should be noted that defining u = ⌊∂−φP ⌋ and u = ⌈∂−φP ⌉, we may replace the
original base polytope B(ρ) by its vector minor (the restriction by u and the contraction
by u)

B(ρ)uu = {x ∈ B(ρ) | u ≤ x ≤ u}, (6.30)

where for any real z ⌊z⌋ and ⌈z⌉ are, respectively, the integer z∗ nearest to z satisfying
z∗ ≤ z and z ≤ z∗, and for any x ∈ RE ⌊x⌋ = (⌊x(e)⌋ | e ∈ E) and ⌈x⌉ = (⌈x(e)⌉ | e ∈
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E). Also we define lower and upper capacities c and c on arcs in A as c(a) = ⌊φP (a)⌋ and
c(a) = ⌈φP (a)⌉ for all a ∈ A, and consider the independent flows with these capacities
and base polytope B(ρ)uu. Then, we can adapt the procedure Randomized Mechanism
to the independent flow network modified above and the obtained Q(k) (k ∈ K) become
closer to P than those obtained for the original network N . This may give a favorable
lottery in practice, especially for a polymatroid (E, ρ) with large ρ(E) or d(N).

7. Conclusion
We have considered the random assignment problem with multi-unit demands and poly-
matroidal supplies and have shown that the probabilistic serial (PS) mechanism can nat-
urally be extended to give an ordinally efficient and normalized envy-free solution. The
obtained results are natural extensions of those given in [12], while we have shown a suf-
ficient condition (Theorem 5.4) that guarantees that the computed PS solution is a weakly
sd Nash equilibrium, which is practically useful for problems with a large number of
agents. We have also shown the weak strategy-proofness (Theorem 5.6) of the extended
PS mechanism in case of unit demands and matroidal supplies.
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