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Abstract

In the present paper, we study the anabelian geometry of pointed stable curves
over algebraically closed fields of positive characteristic. We prove that the semi-
graph of anabelioids of PSC-type arising from a pointed stable curve over an alge-
braically closed field of positive characteristic can be reconstructed group-theoretically
from its fundamental group. This result may be regarded as a mono-anabelian ver-
sion of the combinatorial Grothendieck conjecture in positive characteristic. As
an application, we prove that, if a pointed stable curve over an algebraic closure
of a finite field satisfies certain conditions, then the isomorphism class of the ad-
missible fundamental group of the pointed stable curve completely determines the
isomorphism class of the pointed stable curve as a scheme.
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Introduction

The main question of interest in the anabelian geometry of curves is, roughly speaking,
the following:

how much geometric information about the isomorphism class of a curve is
contained in various versions of its fundamental group?

In this paper, we study the anabelian geometry of curves over algebraically closed fields
of positive characteristic, and prove that

if a pointed stable curve over an algebraic closure of a finite field satisfies
certain conditions, then the isomorphism class of the admissible fundamental
group of the pointed stable curve completely determines the isomorphism class
of the pointed stable curve as a scheme.

Let X• := (X,DX) be a pointed stable curve of type (gX , nX) over an algebraically
closed field k. Here, X denotes the underlying scheme of X•, and DX denotes the set of
marked points of X•. Write GX• for the semi-graph of anabelioids of PSC-type arising
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from X•. We do not recall the theory of semi-graphs of anabelioids in the present paper.
Roughly speaking, a semi-graph of anabelioids is a semi-graph (see [M3] for the definition
of semi-graphs) which is equipped with a Galois category at each vertex and each edge,
together with gluing isomorphisms that satisfy certain conditions; a semi-graph of anabe-
lioids of PSC-type is a semi-graph of anabelioids that is isomorphic to the semi-graph of
anabelioids that arises from a pointed stable curve defined over an algebraically closed
field (cf. [HM], [M3], [M4]).

Suppose that the characteristic char(k) of k is 0. Then the admissible fundamental
group πadm

1 (X•) (cf. Definition 1.2) of X• depends only on (gX , nX) and is known to
admit a presentation as follows:

πadm
1 (X•) ∼= ⟨a1, . . . , agX , b1, . . . , bgX , c1, . . . , cnX

| [a1, b1] . . . [agX , bgX ]c1 . . . cnX
= 1⟩pro,

where (−)pro denotes the profinite completion of (−). Thus, we obtain that (gX , nX)
and GX• are not completely determined by the isomorphism class of the profinite group
πadm
1 (X•).
On the other hand, when char(k) = p > 0, the situation is quite different from the

characteristic 0 case. First, let us explain briefly some well-known results concerning the
anabelian geometry of curves over algebraically closed fields of characteristic p > 0. From
now on, X• always denotes a pointed stable curve over an algebraically closed field k of
characteristic p > 0.

Suppose that X• is smooth over k. By applying techniques based on subtle properties
of wildly ramified coverings, A. Tamagawa proved that (gX , nX) can be reconstructed
group-theoretically from the étale fundamental group π1(X\DX) ofX\DX , and moreover,
that

if gX = 0 and k = Fp, then the isomorphism class of the profinite group
π1(X\DX) completely determines the isomorphism class of the scheme X\DX

(cf. [T1]). Afterwards, by generalizing M. Raynaud’s theory of theta divisors, Tamagawa
proved that similar results hold if one replaces π1(X \ DX) by the tame fundamental
group πtame

1 (X \ DX) of X \ DX (cf. [T2]). Since πtame
1 (X \ DX) can be reconstructed

group-theoretically from π1(X \ DX) (cf. [T1, Corollary 1.10]), the tame fundamental
group versions are stronger than the étale fundamental group versions. In the case of
curves of higher genus, we have the following finiteness result:

if k = Fp, then there are only finitely many isomorphism classes of smooth
pointed stable curves over k whose tame fundamental groups are isomorphic
to πtame

1 (X \DX).

This finiteness result was proved by Raynaud, F. Pop, and M. Säıdi under certain condi-
tions and by Tamagawa in full generality (cf. [R], [PS], [T3]). Note that, by the definition
of the admissible fundamental group πadm(−) (cf. Definition 1.2), we have a natural
isomorphism πtame

1 (X \DX) ∼= πadm
1 (X•) if X• is smooth over k.

In the present paper, we consider a generalization of the results of Tamagawa men-
tioned above to the case whereX• is an arbitrary pointed stable curve over an algebraically
closed field k of characteristic p > 0. We were motivated by the following Question.
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Question 0.1. Can GX• be reconstructed group-theoretically from the profinite group
πadm
1 (X•)? If we assume further that k = Fp, then is the isomorphism class of the scheme
X \DX determined completely by the isomorphism class of the profinite group πadm

1 (X•)?

Next, we explain the main results of the present paper. In Section 5, we prove the
following theorem (cf. Theorem 5.9).

Theorem 0.2. Write GX• for the semi-graph of anabelioids of PSC-type arising from X•.
Then p := char(k) can be reconstructed group-theoretically from πadm

1 (X•). If, moreover,
p := char(k) > 0, then GX• can be reconstructed group-theoretically from πadm

1 (X•).

Write ΓX• for the dual semi-graph of X•, v(ΓX•) for the set of vertices of ΓX• . For

each v ∈ v(ΓX•), write X̃v for the normalization of the irreducible component of X
corresponding to v and

X̃•
v := (X̃v, DX̃v

)

for the smooth pointed stable curve over k determined by X̃v and the divisor of marked
points DX̃v

determined by the inverse images (via the natural morphism X̃v → X) in X̃v

of the nodes and marked points of X•; (gv, nv) for the type of X̃•
v . Theorem 0.3 implies

that the following data can be reconstructed group-theoretically from πadm
1 (X•):

• gX , nX , and ΓX• ;

• the conjugacy class of the inertia group of every marked point of X• in πadm
1 (X•);

• the conjugacy class of the inertia group of every node of X• in πadm
1 (X•);

• for each v ∈ v(ΓX•), gv, nv, and the admissible fundamental group πadm
1 (X̃•

v ) of X̃
•
v .

Moreover, Theorem 0.2 can also be regarded as a mono-anabelian version of the com-
binatorial Grothendieck conjecture in positive characteristic (i.e., a group-theoretically
algorithm for reconstructing semi-graphs of anabelioids of PSC-type from their funda-
mental groups — cf. Remark 5.9.1 for more details on the combinatorial Grothendieck
conjecture, which plays a central role in combinatorial anabelian geometry).

We maintain the notations introduced above. By combining Tamagawa’s results and
Theorem 0.2, we obtain the following result, which is the main theorem of the present
paper (see Theorem 6.3 for more details). Theorem 0.3 generalizes Tamagawa’s results to
the case of (possibly singular) pointed stable curves.

Theorem 0.3. (a) Suppose that k = Fp, and gv = 0 for each v ∈ v(ΓX•). Then the
isomorphism class of the profinite group πadm

1 (X•) completely determines the isomorphism
class of the scheme X \DX .

(b) Suppose that k = Fp. Then there are only finitely many k-isomorphism classes
of pointed stable curves over k whose admissible fundamental groups are isomorphic to
πadm
1 (X•).

Finally, we mention that various versions of Theorem 0.3 (a) are also known in the
case where X• is a smooth pointed stable curve of type (1, 1) (cf. Remark 6.2.1, [S], [T5]).
These versions in the case of smooth pointed stable curves of (1, 1) allow us to obtain a
slightly more general form of Theorem 0.3 (a) (cf. Remark 6.3.1).
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1 p-rank and p-average

In this section, we recall some definitions and results which will be used in the present
paper.

Definition 1.1. Let G := (v(G), e(G), {ζGe }e∈e(G)) be a semi-graph. Here, v(G), e(G),
and {ζGe }e∈e(G) denote the set of vertices of G, the set of edges of G, and the set of
coincidence maps of G, respectively.

(a) We define eop(G) (resp. ecl(G)) to be the set of open (resp. closed) edges of G.
(b) Let v ∈ v(G). We shall call G 2-connected at v if G \ {v} is either empty or

connected.
(c) We define an one-point compactification Gcpt of G as follows: if eop(G) = ∅,

we set Gcpt = G; otherwise, the set of vertices of Gcpt is v(Gcpt) := v(G)
⨿
{v∞}, the set

of edges of Gcpt is e(Gcpt) := e(G), and each edge e ∈ eop(G) ⊆ e(Gcpt) connects v∞ with
the vertex that is abutted by e.

(d) For each v ∈ v(G), we set

b(v) :=
∑

e∈e(G)

be(v),

where be(v) ∈ {0, 1, 2} denotes the number of times that e meets v. Moreover, we set

v(Gcpt)b≤1 := {v ∈ v(G) ⊆ v(Gcpt) | b(v) ≤ 1}.

We fix some notations. Let k be an algebraically closed field and X• = (X,DX) a
pointed stable curve of type (gX , nX) over k. Here, X denotes the underlying scheme of
X•, and DX denotes the set of marked points of X•. Write ΓX• for the dual semi-graph
of X•, and ΓX for the dual graph of X. Note that by the definitions of ΓX• and ΓX , we
have a natural embedding ΓX ↪→ ΓX• ; then we may identify v(ΓX) (resp. e(ΓX)) with
v(ΓX•) (resp. ecl(ΓX•)) via the natural embedding ΓX ↪→ ΓX• . Write Πtop

X• for the profinite
completion of the topological fundamental group of ΓX• , and rX for dimC(H

1(ΓX• ,C)).

Definition 1.2. Let Y • := (Y,DY ) be a pointed stable curve over k and f • : Y • → X• a
morphism of pointed stable curves over Spec k.

We shall call f • a Galois admissible covering over Spec k (or Galois admissible
covering for short) if the following conditions hold: (i) there exists a finite group G ⊆
Autk(Y

•) such that Y •/G = X•, and f • is equal to the quotient morphism Y • → Y •/G;
(ii) for each y ∈ Y sm \ DY , f

• is étale at y, where (−)sm denotes the smooth locus of
(−); (iii) for any y ∈ Y sing, the image f •(y) is contained in Xsing, where (−)sing denotes
the singular locus of (−); (iv) for each y ∈ Y sing, the local morphism between two nodes
induced by f • may be described as follows:

ÔX,f•(y)
∼= k[[u, v]]/uv → ÔY,y

∼= k[[s, t]]/st
u 7→ sn

v 7→ tn,

where (n, char(k)) = 1 if char(k) > 0; moreover, write Dy ⊆ G for the decomposition
group of y and #Dy for the cardinality of Dy; then τ(s) = ζ#Dys and τ(t) = ζ−1

#Dy
t for
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each τ ∈ Dy, where ζ#Dy is a primitive #Dy-th root of unit; (v) the local morphism
between two marked points induced by f • may be described as follows:

ÔX,f•(y)
∼= k[[a]] → ÔY,y

∼= k[[b]]
a 7→ bm,

where (m, char(k)) = 1 if char(k) > 0 (i.e., a tamely ramified extension). Moreover, we
shall call f • an admissible covering if there exists a morphism of pointed stable curves
(f •)′ : (Y •)′ → Y • over Spec k such that the composite morphism f • ◦ (f •)′ : (Y •)′ → X•

is a Galois admissible covering over Spec k.
Let Z• be the disjoint union of finitely many pointed stable curves over Spec k. We

shall call a morphism Z• → X• over Spec k multi-admissible covering if the restriction
of Z• → X• to each connected component of Z• is admissible. We use the notation
Covadm(X•) to denote the category which consists of (empty object and) all the multi-
admissible coverings of X•. It is well-known that Covadm(X•) is a Galois category. Thus,
by choosing a base point x ∈ Xsm \ DX , we obtain a fundamental group πadm

1 (X•, x)
which is called the admissible fundamental group of X•. For simplicity of notation,
we omit the base point and denote the admissible fundamental group by πadm

1 (X•). Note
that we have a natural surjection πadm

1 (X•) ↠ Πtop
X• .

For more details on admissible coverings and the admissible fundamental groups for
pointed stable curves, see [M1], [M2].

Remark 1.2.1. Let Mg,n be the moduli stack of pointed stable curves of type (g, n)
over SpecZ and Mg,n the open substack of Mg,n parametrizing pointed smooth curves.

Write Mlog

g,n for the log stack obtained by equipping Mg,n with the natural log structure

associated to the divisor with normal crossings Mg,n \Mg,n ⊂ Mg,n relative to SpecZ.
The pointed stable curve X• → Spec k induces a morphism Spec k → MgX ,nX

. Write

slogX for the log scheme whose underlying scheme is Spec k, and whose log structure is
the pulling-back log structure induced by the morphism Spec k → MgX ,nX

. We obtain

a natural morphism slogX → Mlog

gX ,nX
induced by the morphism Spec k → MgX ,nX

and a

stable log curve X log := slogX ×Mlog
gX,nX

Mlog

gX ,nX+1 over slogX whose underlying scheme is X.

Then the admissible fundamental group ΠX• of X• is isomorphic to the geometric log
étale fundamental group of X log (i.e., Ker(π1(X

log) → π1(s
log
X ))).

Remark 1.2.2. If X• is smooth over k, by the definition of admissible fundamental
groups, then we have a natural isomorphism from the admissible fundamental group of
X• to the tame fundamental group of X \DX .

In the remainder of this section, we suppose that the characteristic of k is p > 0.

Definition 1.3. Write ΠX• for πadm
1 (X•). We define the p-rank of X• to be

σ(X•) := dimFp(Π
ab
X• ⊗ Fp) = dimFp((Π

ét
X•)ab ⊗ Fp),

where (−)ab denotes the abelianization of (−), and Πét
X• denotes the étale fundamental

group of X•.
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Remark 1.3.1. For each v ∈ v(ΓX•), write Xv for the irreducible components of X
corresponding to v. Then it is easy to prove that

σ(X•) = σ(X) =
∑

v∈v(ΓX• )

σ(X̃v) + rX ,

where (̃−) denotes the normalization of (−).

Definition 1.4. Let Π be a profinite group, n a natural number, and ℓ a prime number.
(a) We denote by Π(n) the topological closure of the subgroup [Π,Π]Πn of Π. Note

that Π/Π(n) = Πab ⊗ (Z/nZ).
(b) We set γℓ := dimFℓ

(Π/Π(n)) ∈ Z≥0 ∪ {∞}.
(c) Let n be a natural number such that [Π : Π(n)] < ∞. We define ℓ-average of Π

to be
γavℓ (n)(Π) := γℓ(Π(n))/[Π : Π(n)] ∈ Q≥0 ∪ {∞}.

The following highly nontrivial result concerning p-average of ΠX• was proved by
Tamagawa (cf. [T4, Theorem 3.10]).

Proposition 1.5. For any natural number t ∈ N, we set

γavp (pt − 1)(X•) := γavp (pt − 1)(ΠX•).

Suppose that, for any v ∈ v(ΓX•) ⊆ v(Γcpt
X•), Γ

cpt
X• is 2-connected at v. Then we have

lim
t→∞

γavp (pt − 1)(X•) = gX − rX −#(v(Γcpt
X•)b≤1).

Remark 1.5.1. Tamagawa proved Proposition 1.5 as a main theorem of [T2] in the case
where X• is a smooth pointed stable curve over k by developing a general theory of Ray-
naud’s theta divisor; Tamagawa’s result means that the genus of X• can be reconstructed
group-theoretically from the tame fundamental group of X \ DX . Afterwards, in [T4],
Tamagawa extends the result to the case where X• is a certain pointed stable curve over
k by proving a result concerning the abelian injectivity of admissible fundamental groups.

2 The set of irreducible components

We maintain the notations introduced in Section 1. Let X• be a pointed stable curve over
an algebraically closed field k of characteristic p > 0. In this section, we study the set of
irreducible components of X•.

Definition 2.1. Let Z• := (Z,DZ) be any pointed stable curve over Spec k. Write ΓZ• for
the dual semi-graph of Z•. We shall call Z• untangled (resp. sturdy) if each irreducible
component of Z• is smooth (resp. the genus of the normalization of each irreducible
component of Z• is ≥ 2). We write Irr(Z•) (resp. Nod(Z•)) for the set of irreducible
components (resp. the set of nodes) of Z. We define a set of irreducible components of Z
to be

Irr(Z•)σ>0 := {Zv, v ∈ v(ΓZ•) | σ(Z̃v) > 0} ⊆ Irr(Z•).
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We have the following Proposition.

Proposition 2.2. There exists a connected Galois admissible covering f • : Y • → X•

over Spec k such that Y • is untangled and sturdy, and Irr(Y •)σ>0 = Irr(Y •).

Proof. The proposition follows immediately from [M2, Lemma 2.9] and Proposition 1.5.

Write MX• and M top
X• for H1

ét(X
•,Fp) and H1(ΓX• ,Fp), respectively. Note that there is

a natural injection M top
X• ↪→MX• induced by the natural surjection ΠX• ↠ Πtop

X• . We set

Mntop
X• := coker(M top

X• ↪→MX•).

The elements of MX• correspond to étale, Galois abelian coverings of X• of degree p. Let
V ∗ ⊆ MX• be the subset of elements whose image in Mntop

X• is not 0. Let α ∈ V ∗. Write
X•

α → X• for the étale covering correspond to α. Then we obtain a morphism ι : V ∗ → Z
that maps α 7→ #(Irr(X•

α)). Let V ⊆ V ∗ be the subset of elements α which ι attains its
maximum (i.e., ι(α) = p(#Irr(X•) − 1) + 1). We define a pre-equivalence relation ∼ on
V as follows: let α, β ∈ V ; then α ∼ β if , for each λ, µ ∈ F×

p for which λα+ µβ ∈ V ∗, we
have λα + µβ ∈ V . Then we have the following lemma.

Lemma 2.3. The pre-equivalence relation ∼ on V is an equivalence relation, and, more-
over, the quotient set V/ ∼ is naturally isomorphic to Irr(X•)σ>0.

Proof. For any δ ∈ V , ι(δ) attains its maximum implies that there exists a unique irre-
ducible component IδX•

δ
⊆ X•

δ whose decomposition group is not trivial. We write IδX• ⊆
X• for the image of IδX•

δ
of the covering morphism X•

δ → X•. Note that IδX• ∈ Irr(X•)σ>0.

Then V = ∅ if and only if Irr(X•)σ>0 = ∅.
We suppose that Irr(X•)σ>0 ̸= ∅. Let α, β ∈ V . If IαX• = IβX• , then, for each λ, µ ∈ F×

p

for which λα + µβ ̸= 0, we have Iλα+µβ
X• = IαX• = IβX• . Thus, α ∼ β. On the other

hand, if α ∼ β, we have IαX• = IβX• ; otherwise, there exist two irreducible components of
X•

α+β whose decomposition groups are not trivial. Thus, α ∼ β if and only if IαX• = IβX• .
This means that ∼ is an equivalence relation on V . Then we obtain a natural morphism
κ : V/ ∼→ Irr(X•)σ>0 that maps δ 7→ IδX• .

Let us prove that κ is a bijection. It is easy to see that κ is an injection. For any
irreducible component Xv ∈ Irr(X•)σ>0, since the p-rank of the normalization of Xv is not
0, we may construct an étale, Galois abelian covering f • : Y • → X• of degree p such that
Xv is the unique irreducible component of X• such that (f •)−1(X•

v ) is connected. Then
#(Irr(Y •)) = p(#(Irr(X•))− 1) + 1. Thus, we obtain an element of V corresponding to
Y •. This means that κ is a surjection. We complete the proof of the lemma.

3 Geometry of admissible coverings

We maintain the notations introduced in the previous sections. Let X• be a pointed
stable curve over an algebraically closed field k of characteristic p > 0. In this section, we
study the admissible coverings of X•.
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Lemma 3.1. Let ℓ ̸= 2 be a prime number and

n∑
i=1

xi = 0

a linear indeterminate equation. Suppose that n ≥ 2. Then there exists a solution
(a1, . . . , an) ∈ (Z/ℓZ)⊕n such that ai ̸= 0 for each i = 1, . . . , n.

Proof. Trivial.

Condition 3.2. Let Z• := (Z,DZ) be any pointed stable curve over Spec k. Write
Cusp(Z•) for the set of marked points DZ of Z•. We shall say that Z• satisfies Con-
dition 3.2 if the following conditions hold: (a) Z• is untangled and sturdy; (b) for each
irreducible component Zv ⊆ Z, if Zv∩Nod(Z•) ̸= ∅, we have #(Zv∩Nod(Z•)) ≥ 3; (c) for
each irreducible component Zv ⊆ Z, if Zv∩Cusp(Z•) ̸= ∅, we have #(Zv∩Cusp(Z•)) ≥ 3.

We have the following propositions.

Proposition 3.3. Suppose that Cusp(X•) ̸= ∅, and X• satisfies Condition 3.2. Let
q ∈ Cusp(X•). Then, for any prime number ℓ ̸= 2 distinct from p, there exists a Galois
admissible covering f • : Y • → X• of degree ℓ such that f • is étale over q, and f • is totally
ramified over Cusp(X•) \ {q}.

Proof. Write Xq for the irreducible component of X which contains q. We set

Cusp(Xq) := Xq ∩ Cusp(X•)

and
Sing(Xq) := Xq ∩ Nod(X•).

If X• is smooth over Spec k, then #(Cusp(X•) \ {q}) ≥ 2. Thus, the proposition
follows from the structure of the maximal pro-ℓ quotient of the admissible fundamental
group of ΠX• and Lemma 3.1. Then, in order to prove the proposition, we may assume
that X• is a singular curve. Thus, the assumptions imply that #Irr(X•) ≥ 2.

Since the maximal pro-ℓ quotient of admissible fundamental groups of pointed stable
curves of type (g, r) do not depend on the moduli, without the loss of generality, we may
assume that #Irr(X•) = 2. Write X\q for the irreducible component of X distinct from
Xq. We set

Cusp(X\q) := X\q ∩ Cusp(X•)

and
Sing(X\q) := X\q ∩ Nod(X•).

Moreover, we define two pointed stable curves over Spec k to be

X•
q := (Xq,Cusp(Xq) ∪ Sing(Xq))

and
X•

\q := (X\q,Cusp(X\q) ∪ Sing(X\q)).
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Note that we have a natural bijection θ : Sing(Xq)
∼→ Sing(X\q) determined by X•.

Since X• satisfies Condition 3.2, Lemma 3.1 implies that there exists a solution
(aν)ν∈Sing(Xq) (resp. (bν)ν∈Cusp(Xq)\{q}, (cν)ν∈Cusp(X\q)) of the linear indeterminate equa-
tion ∑

ν∈Sing(Xq)

xν = 0 (resp.
∑

ν∈Cusp(Xq)\{q}

xν = 0,
∑

ν∈Cusp(X\q)

xν = 0)

in Z/ℓZ such that aν ̸= 0 (resp. bν ̸= 0, cν ̸= 0) for each ν ∈ Sing(Xq) (resp. ν ∈
Cusp(Xq) \ {q}, ν ∈ Cusp(X\q)). For any ν ∈ Sing(Xq), we set dθ(ν) := −aν . Then
(dθ(ν))ν∈Sing(Xq) is a solution of the linear indeterminate equation∑

ν∈Sing(X\q)

xν = 0

in Z/ℓZ.
Write Πℓ,ab

X•
q

(resp. Πℓ,ab
X•

\q
) for the abelianization of the maximal pro-ℓ quotient of the

admissible fundamental group of X•
q (resp. X•

\q). Moreover, for each ν ∈ Sing(Xq)

(resp. ν ∈ Cusp(Xq), ν ∈ Sing(X\q), ν ∈ Cusp(X\q)), we write αν (resp. βν , δν , γν) for

a generator of the inertia group associated to ν in Πℓ,ab
X•

q
(resp. Πℓ,ab

X•
q
, Πℓ,ab

X•
\q
, Πℓ,ab

X•
\q
). The

structure of Πℓ,ab
X•

q
(resp. Πℓ,ab

X•
\q
) implies that we may construct a morphism from Πℓ,ab

X•
q
(resp.

Πℓ,ab
X•

\q
) to Z/ℓZ that maps αν 7→ aν for ν ∈ Sing(X•

q ), βν 7→ bν for ν ∈ Cusp(X•
q )\{q}, and

βq 7→ 0 (resp. δν 7→ dθ(ν) for dθ(ν) ∈ Sing(X•
\q) and γν 7→ cν for ν ∈ Cusp(X•

\q)). Then we
obtain two Galois admissible coverings

f •
q : Y •

q → X•
q

and
f •
\q : Y

•
\q → X•

\q

over Spec k of degree ℓ; moreover, f •
q is totally ramified over (Cusp(Xq)∪ Sing(Xq)) \ {q}

and étale over q, and f •
\q is totally ramified over Cusp(X\q) ∪ Sing(X\q).

Thus, by gluing f •
q and f •

\q together, we obtain a Galois admissible covering f • : Y • →
X• of degree ℓ such that f • is étale over q, and f • is totally ramified over Cusp(X•) \
{q}.

Furthermore, similar arguments to the arguments given in the proof of Proposition
3.3 imply the following proposition holds.

Proposition 3.4. Suppose that Nod(X•) ̸= ∅, and X• satisfies Condition 3.2. Let
q ∈ Nod(Z). Then, for any prime number ℓ ̸= 2 distinct from p, there exists a Ga-
lois admissible covering f • : Y • → X• of degree ℓ such that f • is étale over q, and f • is
totally ramified over Nod(X•) \ {q}.
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4 A result of pro-ℓ combinatorial anabelian geometry

Let ℓ be a prime number. In this section, we prove a result of pro-ℓ combinatorial anabelian
geometry.

Definition 4.1. Let G be a semi-graph of anabelioids of PSC-type. Write ΠG for the
fundamental group of G and ΓG for the underlying semi-graph of G.

(a) We shall call G untangled (resp. sturdy) if G is isomorphic to the semi-graph of
anabelioids of PSC-type arising from a untangled (resp. sturdy) pointed stable curve over
an algebraically closed field.

(b) For any open normal subgroup H ⊆ ΠG, write GH for the Galois covering of G
determined by H, and write ΓGH

for the underlying semi-graph of GH . We shall denote

by Π
ab/edge
GH

the quotient of Πab
GH

by the closed subgroup generated by the images in Πab
GH

of the edge-like subgroups (cf. [HM, Definition 1.3 (i)]).

In the remainder of this section, we suppose that G is the semi-graph of anabelioids
of PSC-type arising from a pointed stable curve over an algebraically closed field of char-
acteristic p > 0; moreover, we suppose that ℓ ̸= p, and we write Gℓ for the semi-graph
of anabelioids of pro-ℓ PSC-type induced by G (cf. [M4, Definition 1.1 (i)]). Write ΠGℓ

for the fundamental group of Gℓ. Then ΠGℓ is naturally isomorphic to the maximal pro-ℓ
quotient of ΠG.

Condition 4.2. For any open normal subgroup H ⊆ ΠGℓ, the set of vertices v(ΓGℓ
H
) of

ΓGℓ
H
, the morphism v(ΓGℓ

H
) → v(ΓGℓ) induced by the Galois covering Gℓ

H → Gℓ determined

by H, and Π
ab/edge

Gℓ
H

can be reconstructed group-theoretically from ΠGℓ.

Then we have the following result.

Proposition 4.3. Suppose that Gℓ satisfies Condition 4.2. Then Gℓ can be reconstructed
group-theoretically from ΠGℓ.

Proof. Since Gℓ satisfies Condition 4.2, the set of vertical-like groups of ΠGℓ can be recon-
structed group-theoretically from ΠGℓ ; furthermore, [HM, Lemma 1.6] implies that the set
of edges-like groups of ΠGℓ can be reconstructed group-theoretically from ΠGℓ .

On the other hand, by applying [HM, Lemma 1.9 (ii)] (resp. [HM, Lemma 1.7] and
[HM, Lemma 1.9 (i)] ), we have the set of vetices v(ΓGℓ) (resp. the set of edges e(ΓGℓ))
of the underlying semi-graph ΓGℓ of Gℓ can be reconstructed group-theoretically from
ΠGℓ . Moreover, [HM, Lemma 1.7] implies that the set of coincidence maps of ΓGℓ can be
reconstructed group-theoretically from ΠGℓ . This completes the proof of the proposition.

5 A mono-anabelian version of the Grothendieck con-

jecture for semi-graphs of anabelioids of PSC-type

in positive characteristic

We maintain the notations introduced in the previous sections. Let X• be a pointed stable
curve over an algebraically closed field k. Write GX• for the semi-graph of anabelioids of
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PSC-type arising from X•. In this section, we will give a mono-anabelian reconstruction
for GX• from ΠX• .

For any open normal subgroup H ⊆ ΠX• , we write X•
H → X• for the Galois ad-

missible covering of X• determined by H, ΓX•
H

for the dual semi-graph of X•
H , rXH

for

dimCH
1(ΓX•

H
,C), gXH

for the genus of X•
H , and nXH

for the cardinality of the set of
marked points of X•

H . Then reconstructing GX• group-theoretically from ΠX• is equiv-
alent to, for any open normal subgroup H ⊆ ΠX• , the morphism of dual semi-graphs
ΓX•

H
→ ΓX• induced by the Galois admissible covering X•

H → X• determined by H can
be reconstructed group-theoretically from ΠX• .

In this section, we only assume that ΠX• is the admissible fundamental group
of a pointed stable curve X• defined over an algebraically closed field k. First,
we have the following basic proposition.

Proposition 5.1. The characteristic p := char(k) can be reconstructed group-theoretically
from ΠX•.

Proof. For any prime number ℓ, if dimFℓ
(Πab

X•⊗Fℓ) is a constant and p > 0, we have either

char(k) = gX = 2gX + nX − 1

or
char(k) = gX = 2gX

holds. Thus, we obtain either (gX , nX) = (0, 1) or (gX , nX) = (0, 0) holds. Since ΠX• is
the admissible fundamental group of a pointed stable curve, this is a contradiction. Thus,
if dimFℓ

(Πab
X• ⊗ Fℓ) is a constant, we have p = 0. Then we can detect whether p > 0 or

not, group-theoretically from ΠX• . Moreover, if p > 0, then p is the unique prime number
such that dimFp(Π

ab
X• ⊗ Fp) ̸= dimFℓ

(Πab
X• ⊗ Fℓ) for each prime number ℓ ̸= p.

In the remainder of this section, we assume that p := char(k) > 0. Next, let us
introduce some conditions on semi-graphs.

Condition 5.2. Let G be a semi-graph. We shall say that G satisfies Condition 5.2 if
Gcpt is 2-connected at each v ∈ v(G) ⊆ v(Gcpt) and

#(v(Gcpt)b≤1) = 0.

Remark 5.2.1. If ΓX• satisfies Condition 5.2, Proposition 1.5 implies that

lim
t→∞

γavp (pt − 1)(X•) = gX − rX .

Lemma 5.3. There exists an open characteristic subgroup N ⊆ ΠX• such that the follow-
ing conditions hold: (a) the order of N is prime to p; (b) X•

N satisfies Condition 3.2; (c)
X•

N is untangled and sturdy, and ΓX•
N
satisfies Condition 5.2; (d) N can be reconstructed

group-theoretically from ΠX•.

Proof. Let {Gi}i∈I be a set of semi-graphs of anabelioids of PSC-type such that the fol-
lowing conditions hold: (i) ΠGi

∼= ΠX• for each i ∈ I; (ii) for any semi-graph of anabelioids
of PSC-type G, if ΠG ∼= ΠX• , then there exists Gi ∈ {Gi}i∈I such that G ∼= Gi; (iii) for
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any i, j ∈ I, Gi
∼= Gj if and only if i = j. Since the set of isomorphism classes of the

semi-graphs of anabelioids of PSC-type whose fundamental groups are isomorphic to ΠX•

is finite, we have I is a finite set.
It is easy to see that, for each i ∈ I, we may construct a Galois covering GNi

→ Gi

determined by an open normal subgroup Ni ⊆ ΠX• such that Ni is an open characteristic
subgroup whose order is prime to p, GNi

is isomorphic to the semi-graph of anabelioids of
PSC-type arising from a pointed stable curve satisfying Condition 3.2, GNi

is untangled
and sturdy, and the underlying semi-graph ΓGNi

of GNi
satisfies Condition 5.2. We set

N :=
∩
i∈I

Ni.

Then the lemma follows.

If the dual semi-graph ΓX• satisfies Condition 5.2, we have the following result.

Lemma 5.4. Write Πp-top
X• for the maximal pro-p quotient of Πtop

X• . Suppose that ΓX•

satisfies Condition 5.2. Then Πp-top
X• can be reconstructed group-theoretically from ΠX•;

moreover, gX , nX , and rX can be reconstructed group-theoretically from ΠX•.

Proof. Let H be any open normal subgroup of ΠX• . We note that, if ΠX•/H is a p-group,
then the decomposition group of every irreducible component of X•

H is trivial if and only
if

gXH
− rXH

= #(ΠX•/H)(gX − rX).

We set
Topp(ΠX•) := {H ⊆ ΠX• open normal | ΠX•/H is a p-group

and gXH
− rXH

= #(ΠX•/H)(gX − rX)}.
Then Πp-top

X• can be reconstructed group-theoretically from ΠX• as follows:

Πp-top
X• = ΠX•/(

∩
H∈Topp(ΠX• )

H).

Since ΓX• satisfies Condition 5.2, we have ΓX•
H
satisfies Condition 5.2 for each H ∈

Topp(ΠX•). Then gX − rX and gXH
− rXH

can be reconstructed group-theoretically from

ΠX• and H, respectively. Thus, Πp-top
X• and rX = dimC(Π

p-top,ab
X• ⊗C) can be reconstructed

group-theoretically from ΠX• . Moreover, gX can be reconstructed group-theoretically
from ΠX• .

Next, we reconstruct nX . Let ℓ ̸= p be a prime number. Suppose that dimFℓ
(Πab

X• ⊗
Fℓ) ̸= 2gX , then we have

nX = dimFℓ
(Πab

X• ⊗ Fℓ)− 2gX + 1.

Suppose that dimFℓ
(Πab

X• ⊗ Fℓ) = 2gX . Then nX = 0 if, for any open normal subgroup
H ⊆ ΠX• , dimFℓ

(Hab ⊗ Fℓ) = 2gXH
. Otherwise, we have nX = 1. This completes the

proof of the lemma.

Lemma 5.4 implies that the following corollary.
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Corollary 5.5. Suppose that ΓX• satisfies Condition 5.2. Then the natural exact sequence

0 →M top
X• →MX• →Mntop

X• → 0

can be reconstructed group-theoretically from ΠX•. Moreover, Irr(X•)σ>0 can be recon-
structed group-theoretically from ΠX•.

Proof. Note that MX• = Hom(ΠX• ,Fp), M
top
X• = Hom(Πp-top

X• ,Fp), and M top
X• ↪→ MX• is

induced by the natural surjection ΠX• ↠ Πp-top
X• . Then the corollary follows immediately

from Lemma 2.3 and Lemma 5.4.

Next, we reconstruct the set of vertices of ΓX• from ΠX• .

Proposition 5.6. The set of vertices v(ΓX•) can be reconstructed group-theoretically from
ΠX•. Moreover, for any open normal subgroup Q ⊆ ΠX•, the morphism v(ΓX•

Q
) ↠ v(ΓX•)

on the sets of vertices induced by the admissible covering X•
Q → X• determined by Q can

be reconstructed group-theoretically from ΠX•.

Proof. Let H ⊆ ΠX• be any open normal subgroup, and let {ai}i∈ΠX•/H ⊂ ΠX• be a
set of lifting of the elements of ΠX•/H that the image of ai ∈ ΠX• under the quotient
morphism ΠX• ↠ ΠX•/H is i ∈ ΠX•/H. Write MX•

H
for H1

ét(X
•
H ,Fp). Then, for any

i ∈ ΠX•/H, the action of i on MX• is conjugation action a−1
i MX•

H
ai. Thus, by applying

Lemma 2.3, we have the action of ΠX•/H on MX•
H
induces an action of ΠX•/H on the

set Irr(X•
H)

σ>0. Note that the action of ΠX•/H on Irr(X•
H)

σ>0 does not depend on the
choices of {ai}i∈ΠX•/H . Thus, we obtain a morphism

Irr(X•
H)

σ>0 ↠ Irr(X•
H)

σ>0/(ΠX•/H) ⊆ Irr(X•).

By applying Lemma 5.3, we obtain a characteristic subgroup N ⊆ ΠX• such that ΓX•
N

satisfies Condition 5.2, and N can be constructed group-theoretically from ΠX• . We set

IrrX• :=
∪

H⊆ΠX• open normal

Irr(X•
H∩N)

σ>0/(ΠX•/(H ∩N)).

Then we have IrrX• ⊆ Irr(X•). On the other hand, Proposition 2.2 implies that IrrX• =
Irr(X•).

By applying Corollary 5.5, we have that Irr(X•
H∩N)

σ>0 can be reconstructed group-
theoretically from ΠX• . Moreover, since the action of ΠX•/(H ∩ N) on Irr(X•

H∩N)
σ>0

can be reconstructed group-theoretically from ΠX• , we obtain v(ΓX•) = Irr(X•) can be
reconstructed group-theoretically from ΠX• .

Let Q ⊆ ΠX• be an open normal subgroup. We set NQ := Q∩N . Then, for any open
normal subgroup H ⊆ Q, we have a natural morphism

Irr(X•
H∩NQ

)σ>0/(Q/H ∩NQ) ↠ Irr(X•
H∩N)

σ>0/(ΠX•/(H ∩N));

note that where H ∩NQ = H ∩N . Moreover, we set

IrrX•
Q
:=

∪
H⊆Q open normal

Irr(X•
H∩NQ

)σ>0/(Q/(H ∩NQ)).
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Then we obtain a natural morphism

v(ΓX•
Q
) = Irr(X•

Q) = IrrX•
Q
↠ IrrX• = Irr(X•) = v(ΓX•).

Since the morphism Irr(X•
H∩NQ

)σ>0/(Q/H ∩ NQ) ↠ Irr(X•
H∩N)

σ>0/(ΠX•/(H ∩ N)) can

be reconstructed group-theoretically from ΠX• . Then the morphism v(ΓX•
Q
) ↠ v(ΓX•)

can be reconstructed group-theoretically from ΠX• . This completes the proof of the
proposition.

Next, let us start to reconstruct GX• from ΠX• .

Lemma 5.7. Let ℓ be a prime number distinct from p. Write Gℓ
X• for the semi-graph of

anabelioids of pro-ℓ PSC-type induced by GX•. Suppose that ΓX• satisfies Condition 5.2.
Then Gℓ

X• can be reconstructed group-theoretically from ΠX•.

Proof. Let H be any open normal subgroup of ΠX•
H
. Since ΓX• satisfies Condition 5.2,

ΓX•
H
satisfies Condition 5.2 too. By applying Lemma 5.4, we obtain that nXH

and rXH
can

be reconstructed group-theoretically from H; moreover, Proposition 5.6 implies that the
set of vertices v(ΓX•

H
) of ΓX•

H
and the morphism v(ΓX•

H
) ↠ v(ΓX•) induced by the Galois

covering X•
H → X• determined by H can be reconstructed group-theoretically from H

and ΠX• . Then, by applying the Euler-Poincaré characteristic formula for ΓX• , we obtain
that

#(ecl(ΓX•
H
)) = rXH

+#(v(ΓX•
H
))− 1

can be reconstructed group-theoretically from H.
We set

Et(ΠX•) := {H ⊆ ΠX• open normal | nXH
+#(ecl(ΓX•

H
)) = (#(ΠX•/H))(nX+#(ecl(ΓX•)))}.

Then the étale fundamental group Πét
X• of X• can be reconstructed group-theoretically

from ΠX• as follows:
Πét

X• := ΠX•/
∩

H∈Et(ΠX• )

H.

Note that Πét,ab
X• = Π

ab/edge
GX• . Then Π

ab/edge

Gℓ
X•

can be reconstructed group-theoretically from

ΠX• . Thus, the lemma follows from Proposition 4.3 and Proposition 5.6.

Lemma 5.8. Suppose that X• and GX• satisfy Condition 3.2 and Condition 5.2, respec-
tively. Then GX• can be reconstructed group-theoretically from ΠX•.

Proof. Let H ⊆ ΠX• be any open normal subgroup. In order to prove the lemma, we
only need to prove that the morphism ϕH : ΓX•

H
→ ΓX• on dual semi-graphs induced

by the Galois admissible covering X•
H → X• determined by H can be reconstructed

group-theoretically from ΠX• ; moreover, Proposition 5.6 and Lemma 5.7 imply that it is
sufficient to prove that the morphism ϕH |e(ΓX•

H
) : e(ΓX•

H
) → e(ΓX•) on the sets of edges

induced by ϕH can be reconstructed group-theoretically from ΠX• .
Let ℓ ̸= 2 be a prime number distinct from p such that (#(ΠX•/H), ℓ) = 1, and let

q be any marked point of X•. Write eq ∈ eop(ΓX•) for the open edge corresponding to
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q. Since we assume that X• satisfies Condition 3.2, Proposition 3.3 implies that there
exists a Galois admissible covering f • : Y • → X• whose Galois group is isomorphic to
Z/ℓZ such that f • is étale over q, and f • is totally ramified over Cusp(X•) \ {q}. Then
we obtain a connected Galois admissible covering g• : Y •

H := Y • ×X• X•
H → X•

H . Here, g
•

is the natural projection.
Write GX•

H
and GY •

H
for the semi-graphs of anabelioids of PSC-type arising from X•

H

and Y •
H , respectively; moreover, write Gℓ

X•
H

and Gℓ
Y •
H

for the semi-graphs of anabelioids
of pro-ℓ PSC-type induced by GX•

H
and GY •

H
, respectively. Then Lemma 5.7 implies that

the morphism of dual semi-graphs ψH : ΓY •
H
→ ΓX•

H
induced by g• can be reconstructed

group-theoretically from H. Thus, we have

ϕ−1
H (eq) = {e ∈ eop(ΓX•

H
) | #(ψ−1

H (e)) = ℓ}.

Then the morphism ϕH |eop(ΓX•
H
) : e

op(ΓX•
H
) → eop(ΓX•) induced by ϕH on the sets of open

edges can be reconstructed group-theoretically from ΠX• .
Together with Proposition 3.4, similar arguments to the arguments given in the proof

above imply that the morphism ϕH |ecl(ΓX•
H
) : e

cl(ΓX•
H
) → ecl(ΓX•) induced by ϕH on the

sets of closed edges can be reconstructed group-theoretically from ΠX• . Then ϕH |e(ΓX•
H
) :

e(ΓX•
H
) → e(ΓX•) can be reconstructed group-theoretically from ΠX• . This completes the

proof of the lemma.

Next, we prove the main theorem of the present section.

Theorem 5.9. Let X• be a pointed stable curve over an algebraically closed field k. Write
ΠX• for the admissible fundamental group of X•, and GX• for the semi-graph of anabe-
lioids of PSC-type GX• arising from X•. Then p := char(k) can be reconstructed group-
theoretically from ΠX•. Moreover, if p := char(k) > 0, then GX• can be reconstructed
group-theoretically from ΠX•.

Proof. Proposition 5.1 implies that the characteristic of k can be reconstructed group-
theoretically from ΠX• . We only prove the “moreover” part of the theorem.

Suppose that p := char(k) > 0. Let H ⊆ ΠX• be any open normal subgroup. Propo-
sition 5.6 implies that, to verify the theorem, it is sufficient to prove that the morphism
ΓX•

H
→ ΓX• on the sets of edges induced by the Galois covering X•

H → X• determined by
H can be reconstructed group-theoretically from ΠX• .

By applying Lemma 5.3, we obtain an open characteristic subgroup N ⊆ ΠX• such
that the conditions of Lemma 5.3. Write HN for H ∩ N , GX•

HN
for the semi-graph of

anabelioids of PSC-type arising from X•
HN

. Since X•
HN

and the dual semi-graph of ΓX•
HN

satisfy Condition 3.2 and Condition 5.2, respectively, then Lemma 5.8 implies that GX•
HN

can be reconstructed group-theoretically from HN .
Note that the natural action of ΠX•/HN on GX•

HN
induces an action of ΠX•/HN on

ΓX•
HN

; moreover, we have ΓX• = ΓX•
HN
/(ΠX•/H) and ΓX•

H
= ΓX•

HN
/(H/HN). Thus, we

obtain a natural morphism

ΓX•
H
= ΓX•

HN
/(H/HN) → ΓX• = ΓX•

HN
/(ΠX•/H).

Thus, ΓX•
H

→ ΓX• can be reconstructed group-theoretically from ΠX• . This completes
the proof of the theorem.
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Remark 5.9.1. The bi-anabelian combinatorial Grothendieck conjecture for semi-graphs
of anabelioids of PSC-type can be formulated as follows.

Let G1 and G2 be two semi-graphs of anabelioids of PSC-type associated to two pointed
stable curves over algebraically closed fields k1 and k2, respectively, ΠG1 and ΠG2 the fun-
damental groups of G1 and G2, respectively, α : ΠG1

∼→ ΠG2 an isomorphism of profinite
groups, I1 and I2 profinite groups, ρI1 : I1 → Out(ΠG1) and ρI2 : I1 → Out(ΠG2) outer
Galois representations, and β : I1

∼→ I2 an isomorphism of profinite groups. Suppose that
the diagram

I1
ρI1−−−→ Out(ΠG1)

β

y Out(α)

y
I2

ρI2−−−→ Out(ΠG2),

is commutative, where Out(α) denotes the isomorphism induced by α. Then we have
G1

∼= G2.

Let Σ ⊆ Primes be a set of prime numbers which does not contain char(k1) and char(k2),
where Primes denotes the set of prime numbers. Suppose that G1 and G2 are two
semi-graphs of anabelioids of pro-Σ PSC-type. Then the bi-anabelian combinatorial
Grothendieck conjecture was proved by S. Mochizuki in the case where ρI1 and ρI2 are
outer Galois representations of IPSC-type (cf. [M4]), and by Y. Hoshi and Mochizuki in
the case where ρI1 and ρI2 are certain outer Galois representations of NN-type (cf. [HM]).
Furthermore, Theorem 5.9 may be regarded as a mono-abelian version of the combina-
torial Grothendieck conjecture for the semi-graphs of anabelioids of PSC-type arising from
pointed stable curves in positive characteristic (i.e., a group-theoretically algorithm for
reconstructing semi-graphs of anabelioids of PSC-type from their fundamental groups).

Remark 5.9.2. Theorem 5.9 is a generalized version of a result of Tamagawa that the
tame inertia groups associated to the cusps of smooth pointed stable curves can be re-
constructed group-theoretically from their tame fundamental groups (cf. [T2, Theorem
5.2]).

6 The anabelian geometry of curves over algebraically

closed fields of characteristic p > 0

We maintain the notations introduced in Section 1. Let X• be a pointed stable curve over
an algebraically closed field k of characteristic p > 0. In this section, we use Theorem 5.9
to prove some anabelian results for pointed stable curves in positive characteristic.

Let ℓ be any prime number and Fℓ an algebraic closure of Fℓ. We define two sets of
rational points of moduli stacks as follows:

Rg,n :=
∪

ℓ∈Primes

Mg,n(Fℓ)
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and
Rg,n :=

∪
ℓ∈Primes

Mg,n(Fℓ),

where Mg,n denotes the moduli stack of pointed stable curve of type (g, n) over SpecZ,
andMg,n denotes the open substack ofMg,n parametrizing pointed smooth curves of type
(g, n). For any rational point q ∈ Rg,n : SpecFℓ → Mg,n, write X

•
q := (Xq, DXq) for the

pointed stable curve Mg,n+1 ×Mg,n
Fℓ over Fℓ determined by q. We define an equivalence

relation ∼sch on Rg,n as follows: if q1, q2 ∈ Rg,n, then q1 ∼sch q2 ifXq1\DXq1
andXq2\DXq2

are isomorphic as schemes (though not necessarily as Fℓ-schemes). Let FPG be the set of
topologically finitely generated profinite groups. We define an equivalence relation ∼pro

on FPG as follows: if G1, G2 ∈ FPG, then G1 ∼pro G2 if G1 and G2 are isomorphic as
profinite groups. Then we obtain a natural morphism as follows:

πadm
g,n : Rg,n/ ∼sch→ FPG/ ∼pro

that maps the equivalence class of q to the equivalence class of πadm
1 (X•

q ).

Definition 6.1. Let S1 → S2 be a morphism of sets. We shall call the morphism S1 → S2

quasi-finite if, for any s2 ∈ S2, #((S1 → S2)
−1(s2)) is finite.

Then the following theorem was proved by Tamagawa (cf. [T2], [T3]).

Theorem 6.2. (a) Suppose that Fp ⊆ k, and X• is a smooth pointed stable curve over k.
Let X•

0 be a smooth pointed stable curve over Fp of genus gX0 = 0. Then we can detect
whether X• is isomorphic to X•

0 ×Fp
k or not, group-theoretically from ΠX•. In particular,

the morphism
πadm
0,n |R0,n/∼sch : R0,n/ ∼sch↪→ FPG/ ∼pro

induced by πadm
0,n on the subset R0,n/ ∼sch of R0,n/ ∼sch is an injection.

(b) Let S be an Fp-scheme, and η and s points of S such that s ∈ {η} holds. We
denote by η and s geometric points on η and s, respectively. Let X • be a smooth pointed
stable curve of type (g, n) over S and

spadmη,s : πadm
1 (X • ×η η) ↠ πadm

1 (X • ×s s)

a specialization map. Suppose that X • ×η η cannot be defined over an algebraic closure
of Fp, and X • ×s s can be defined over an algebraic closure of Fp. Then spadmη,s is not an
isomorphism. Moreover, the morphism

πadm
g,n |Rg,n/∼sch : Rg,n/ ∼sch→ FPG/ ∼pro

induced by πadm
g,n on the subset Rg,n/ ∼sch of Rg,n/ ∼sch is quasi-finite.

Remark 6.2.1. By replacing FPG (resp. πadm(−)) by the set of profinite groups (resp.
π1(−) (i.e., the étale fundamental group of (−))), we obtain the following natural mor-
phism:

πg,n : Rg,n/ ∼sch→ PG/ ∼pro
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that maps the equivalence class of q to the equivalence class of π1(Xq \ DXq). Before
Tamagawa proved Theorem 6.2 (a), he obtained an étale fundamental group version of
Theorem 6.2 (a) (i.e., π0,n|R0,n/∼sch is an injection) in a completely different way (by using
wildly ramified coverings) (cf. [T1]). Note that, for any nonsingular pointed stable curve
Z• := (Z,DZ) over an algebraically closed filed of positive characteristic, since πadm

1 (Z•)
can be reconstructed group-theoretically from π1(Z \ DZ) (cf. [T1, Corollary 1.10]),
Theorem 6.2 (a) is stronger than the theorem of étale fundamental group version.

Recently, by following Tamagawa’s idea, A. Sarashina proved that π1,1|R1,1/∼sch is an
injection (cf. [S], [T5, Theorem 6 (i)]). Moreover, by applying the theory of Tamagawa
developed in [T2], Sarashina’s result holds also for πadm

1,1 |R1,1/∼sch (cf. [T5, Theorem 6 (ii)]).

Remark 6.2.2. Theorem 6.2 (b) was first proved by Raynaud (cf. [R]) and Pop-Saidi
(cf. [PS]) under certain assumptions of Jacobian, and by Tamagawa in the fully general
case (cf. [T3]).

Next, we prove our main theorem of the present paper. We generalize Theorem 6.2 as
follows.

Theorem 6.3. (a) Suppose that Fp ⊆ k, and X• is a pointed stable curve of over k. Let
X•

0 := (X0, DX0) be a pointed stable curve over Fp. Write ΓX•
0
for the dual semi-graph of

X•
0 . For each v ∈ v(ΓX•

0
), write (̃Xv)0 for the normalization of the irreducible component

of X0 corresponding to v and

(̃X0)•v := ((̃X0)v, D(̃X0)v
)

for the smooth pointed stable curve over Fp determined by (̃X0)v and the divisor of marked

points D
(̃X0)v

determined by the inverse images (via the natural morphism (̃X0)v → X0)

in (̃X0)v of the nodes and marked points of X•
0 ; (gv, nv) for the type of X̃•

v . Suppose that
gv = 0 for each v ∈ v(ΓX•

0
). Then we can detect whether X• is isomorphic to X•

0 ×Fp
k

or not, group-theoretically from ΠX•. In particular, the morphism

πadm
0,n : R0,n/ ∼sch↪→ FPG/ ∼pro

is an injection.
(b) Let X•

1 (resp. X•
2 ) be a pointed stable curves over an algebraically closed field

k1 (resp. k2) of positive characteristic. Write GX•
1
(resp. GX•

2
) for the semi-graph of

anabelioids of PSC-type associated to X•
1 (resp. X•

2 ). Then πadm
1 (X•

1 )
∼= πadm

1 (X•
2 ) if and

only if char(k1) = char(k2) and GX•
1

∼= GX•
2
. Moreover, we have the following result: Let

S be an Fp-scheme, and η and s points of S such that s ∈ {η} holds. We denote by η
and s geometric points on η and s, respectively. Let X • be a pointed stable curve of type
(g, n) over S,

spadmη,s : πadm
1 (X • ×η η) ↠ πadm

1 (X • ×s s)

a specialization map. Suppose that X • ×η η cannot be defined over an algebraic closure
of Fp, and X • ×s s can be defined over an algebraic closure of Fp. Then spadmη,s is not an
isomorphism. Furthermore, the morphism

πadm
g,n : Rg,n/ ∼sch→ FPG/ ∼pro
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is quasi-finite.

Proof. First, let us prove (a). We will prove that X• ∼= X•
0 ×Fp

k if and only if ΠX• ∼=
πadm
1 (X•

0 ). Since the admissible fundamental groups of pointed stable curves do not de-
pend on the base fields, we obtain the “only if” part of the theorem. Next, we prove
the “if” part. Suppose that ΠX• ∼= πadm

1 (X•
0 ). Write GX• and GX•

0
for the semi-graphs

of anabelioids of PSC-type arising from X• and X•
0 , respectively. By applying Theorem

5.9, we obtain GX• ∼= GX•
0
. We fix an isomorphism GX•

∼→ GX•
0
, and we may assume that

G := GX• = GX•
0
and Π := ΠX• ∼= πadm

1 (X•
0 ). Write Γ for the underlying semi-graph of G,

and Πtop for the profinite completion of the topological fundamental group of Γ. Note that
there is a natural surjection Π ↠ Πtop. Moreover, it is easy see that there exists a open
normal group H ⊆ Π such that H ⊇ ker(Π ↠ Πtop), and the semi-graph of anabelioids
of PSC-type GH determined by H is untangled. To verify the theorem, by replacing G by
GH , we may assume that G is untangled. Then every irreducible component of X• and
X•

0 is isomorphic to P1.
Let v ∈ v(Γ). Write Xv and (X0)v of X• and X•

0 for the irreducible component
corresponding to v, respectively. We set

X•
v := (Xv, Xv ∩ (Nod(X•) ∩DX))

and
(X0)

•
v := ((X0)v, (X0)v ∩ (Nod(X•

0 ) ∩DX0)),

where Nod(−) denotes the set of nodes of (−). Since we assume that G is untangled,

we have (X0)
•
v = (̃X0)•v. On the other hand, for any v ∈ v(Γ), (X0)

•
v can be defined

over a finite field Fpdv . Let m ∈ N such that (
∏

v∈v(Γ) dv)|m. Thus, Theorem 5.9 and

Theorem 6.2 (a) imply that X•
v = τv((X0)

•
v(m)×Fp

k), where τv ∈ Autk(X
•
v ), and (−)(m)

denotes the m-th Frobenius twist of (−). Thus, by gluing {τv}v∈v(Γ), we obtain X• ∼=
X•

0 (m)×Fp
k ∼= X•

0 ×Fp
k. This completes the proof of (a).

Next, we prove (b). The first part of (b) follows immediately from Theorem 5.9. The
“moreover” part and the “furthermore” part follow immediately from Theorem 5.9 and
Theorem 6.2 (b).

Remark 6.3.1. By Remark 6.2.1, we obtain the following generalized version of Theorem
6.3 (a).

Suppose that Fp ⊆ k, and X• is a pointed stable curve of over k. Let X•
0 := (X0, DX0)

be a pointed stable curve over Fp. Write ΓX•
0
for the dual semi-graph of X•

0 . For each

v ∈ v(ΓX•
0
), write (̃Xv)0 for the normalization of the irreducible component of X0 corre-

sponding to v and

(̃X0)•v := ((̃X0)v, D(̃X0)v
)

for the smooth pointed stable curve over Fp determined by (̃X0)v and the divisor of marked

points D
(̃X0)v

determined by the inverse images (via the natural morphism (̃X0)v → X0)

in (̃X0)v of the nodes and marked points of X•
0 ; (gv, nv) for the type of X̃•

v . Suppose that,
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for each v ∈ v(ΓX•
0
), (̃X0)•v is either a smooth pointed stable curve over Fp of genus gv = 0

or a smooth pointed stable curve over Fp of type (1, 1). Then we can detect whether X• is
isomorphic to X•

0 ×Fp
k or not, group-theoretically from ΠX•. In particular, the morphism

πadm
g,n : Rg,n/ ∼sch↪→ FPG/ ∼pro

is an injection if g = 0 or (g, n) = (1, 1).

Remark 6.3.2. The “moreover” part of Theorem 6.3 (b) can also be proved by applying
Theorem 6.2 (b) and the geometry of stable reduction of admissible coverings. Then sim-
ilar arguments to the arguments given in [T3, Theorem 8.6] imply that the “furthermore”
part holds.
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