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Abstract

In the present paper, we study the anabelian geometry of pointed stable curves
over algebraically closed fields of positive characteristic. We prove that the semi-
graph of anabelioids of PSC-type arising from a pointed stable curve over an alge-
braically closed field of positive characteristic can be reconstructed group-theoretically
from its fundamental group. This result may be regarded as a mono-anabelian ver-
sion of the combinatorial Grothendieck conjecture in positive characteristic. As
an application, we prove that, if a pointed stable curve over an algebraic closure
of a finite field satisfies certain conditions, then the isomorphism class of the ad-
missible fundamental group of the pointed stable curve completely determines the
isomorphism class of the pointed stable curve as a scheme.
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Introduction

The main question of interest in the anabelian geometry of curves is, roughly speaking,
the following:

how much geometric information about the isomorphism class of a curve is
contained in various versions of its fundamental group?

In this paper, we study the anabelian geometry of curves over algebraically closed fields
of positive characteristic, and prove that

if a pointed stable curve over an algebraic closure of a finite field satisfies
certain conditions, then the isomorphism class of the admissible fundamental
group of the pointed stable curve completely determines the isomorphism class
of the pointed stable curve as a scheme.

Let X* := (X, Dx) be a pointed stable curve of type (gx,nx) over an algebraically
closed field k. Here, X denotes the underlying scheme of X*, and Dy denotes the set of
marked points of X°®. Write Gy for the semi-graph of anabelioids of PSC-type arising



from X*. We do not recall the theory of semi-graphs of anabelioids in the present paper.
Roughly speaking, a semi-graph of anabelioids is a semi-graph (see [M3] for the definition
of semi-graphs) which is equipped with a Galois category at each vertex and each edge,
together with gluing isomorphisms that satisfy certain conditions; a semi-graph of anabe-
lioids of PSC-type is a semi-graph of anabelioids that is isomorphic to the semi-graph of
anabelioids that arises from a pointed stable curve defined over an algebraically closed
field (cf. [HM], [M3], [M4]).

Suppose that the characteristic char(k) of &k is 0. Then the admissible fundamental

adm

group w3 (X*) (cf. Definition 1.2) of X* depends only on (gx,nx) and is known to
admit a presentation as follows:

W?dm(X°) = (ay, ... a5, b1, .. by 1y Oy | [an,01] - Ggy, Dgyler - e

X = 1>pro7
where (—)P* denotes the profinite completion of (—). Thus, we obtain that (gx,nx)
and Gxe are not completely determined by the isomorphism class of the profinite group
madm(xe).

On the other hand, when char(k) = p > 0, the situation is quite different from the
characteristic 0 case. First, let us explain briefly some well-known results concerning the
anabelian geometry of curves over algebraically closed fields of characteristic p > 0. From
now on, X* always denotes a pointed stable curve over an algebraically closed field k of
characteristic p > 0.

Suppose that X* is smooth over k. By applying techniques based on subtle properties
of wildly ramified coverings, A. Tamagawa proved that (gx,nx) can be reconstructed
group-theoretically from the étale fundamental group 71 (X '\ Dx) of X'\ D, and moreover,
that

if gy = 0 and k = Fp, then the isomorphism class of the profinite group
1 (X' \ Dx) completely determines the isomorphism class of the scheme X'\ Dx

(cf. [T1]). Afterwards, by generalizing M. Raynaud’s theory of theta divisors, Tamagawa
proved that similar results hold if one replaces 7 (X \ Dx) by the tame fundamental
group m*™¢(X \ Dx) of X \ Dx (cf. [T2]). Since 7j*™°(X \ Dx) can be reconstructed
group-theoretically from 71 (X \ Dx) (cf. [T1, Corollary 1.10]), the tame fundamental
group versions are stronger than the étale fundamental group versions. In the case of
curves of higher genus, we have the following finiteness result:

if k = Fp, then there are only finitely many isomorphism classes of smooth

pointed stable curves over k£ whose tame fundamental groups are isomorphic
to wiame(X \ Dy).

This finiteness result was proved by Raynaud, F. Pop, and M. Saidi under certain condi-
tions and by Tamagawa in full generality (cf. [R], [PS], [T3]). Note that, by the definition
of the admissible fundamental group 72 (—) (cf. Definition 1.2), we have a natural
isomorphism 7t¥¢(X \ Dy) = 72dm(X*) if X* is smooth over k.

In the present paper, we consider a generalization of the results of Tamagawa men-
tioned above to the case where X*® is an arbitrary pointed stable curve over an algebraically
closed field k of characteristic p > 0. We were motivated by the following Question.
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Question 0.1. Can Gy« be reconstructed group-theoretically from the profinite group
madm (X )2 If we assume further that k =T, then is the isomorphism class of the scheme
X\ Dx determined completely by the isomorphism class of the profinite group m34™(X*®)?

Next, we explain the main results of the present paper. In Section 5, we prove the
following theorem (cf. Theorem 5.9).

Theorem 0.2. Write Gxeo for the semi-graph of anabelioids of PSC-type arising from X°.
Then p := char(k) can be reconstructed group-theoretically from w3 (X*®). If, moreover,
p := char(k) > 0, then Gx.« can be reconstructed group-theoretically from wd™(X*).

Write ['xe for the dual semi-graph of X*, v(I'xs) for the set of vertices of I'xe. For
each v € v(I'xe), write X, for the normalization of the irreducible component of X

corresponding to v and . .
Xy = (X,,Dx)

for the smooth pointed stable curve over k£ determined by 3(: and the divisor of marked
points D¢ determined by the inverse images (via the natural morphism X, — X) in X,

of the nodes and marked points of X*; (g,,n,) for the type of )?;‘ Theorem 0.3 implies
that the following data can be reconstructed group-theoretically from 724m(X®):

® gx, Nx, and FX‘;
e the conjugacy class of the inertia group of every marked point of X*® in 72dm(X*);

e the conjugacy class of the inertia group of every node of X*® in 7#4m(X*);

e for each v € v(T'y+), g, Ny, and the admissible fundamental group 7™ (X¢) of X¢.

Moreover, Theorem 0.2 can also be regarded as a mono-anabelian version of the com-
binatorial Grothendieck conjecture in positive characteristic (i.e., a group-theoretically
algorithm for reconstructing semi-graphs of anabelioids of PSC-type from their funda-
mental groups — cf. Remark 5.9.1 for more details on the combinatorial Grothendieck
conjecture, which plays a central role in combinatorial anabelian geometry).

We maintain the notations introduced above. By combining Tamagawa’s results and
Theorem 0.2, we obtain the following result, which is the main theorem of the present
paper (see Theorem 6.3 for more details). Theorem 0.3 generalizes Tamagawa’s results to
the case of (possibly singular) pointed stable curves.

Theorem 0.3. (a) Suppose that k = F,, and g, = 0 for each v € v(I'xs). Then the
isomorphism class of the profinite group w2 (X*®) completely determines the isomorphism
class of the scheme X \ Dx.

(b) Suppose that k = Fp. Then there are only finitely many k-isomorphism classes

of pointed stable curves over k whose admissible fundamental groups are isomorphic to
W%dm(X.).

Finally, we mention that various versions of Theorem 0.3 (a) are also known in the
case where X* is a smooth pointed stable curve of type (1,1) (cf. Remark 6.2.1, [S], [T5]).
These versions in the case of smooth pointed stable curves of (1,1) allow us to obtain a
slightly more general form of Theorem 0.3 (a) (cf. Remark 6.3.1).
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1 p-rank and p-average

In this section, we recall some definitions and results which will be used in the present
paper.

Definition 1.1. Let G := (v(G), e(G), {(F}ece(@)) be a semi-graph. Here, v(G), e(G),
and {Cf’}eee(g) denote the set of vertices of G, the set of edges of G, and the set of
coincidence maps of G, respectively.

(a) We define e°P(G) (resp. e(G)) to be the set of open (resp. closed) edges of G.

(b) Let v € v(G). We shall call G 2-connected at v if G\ {v} is either empty or
connected.

(c) We define an one-point compactification G®* of G as follows: if e°?(G) = (),
we set GP' = G; otherwise, the set of vertices of G is v(GP*) := v(G) [ [{vw }, the set
of edges of GP* is e(GP") := e(G), and each edge e € e°P(G) C e(G") connects v, with
the vertex that is abutted by e.

(d) For each v € v(G), we set

where b.(v) € {0, 1,2} denotes the number of times that e meets v. Moreover, we set
v(GPY == {v € v(G) C v(G™) | b(v) < 1}.

We fix some notations. Let k be an algebraically closed field and X* = (X, Dx) a
pointed stable curve of type (gx,nx) over k. Here, X denotes the underlying scheme of
X*, and Dx denotes the set of marked points of X*®. Write I'xe for the dual semi-graph
of X*, and 'y for the dual graph of X. Note that by the definitions of I'xe and 'y, we
have a natural embedding I'x < I'xe; then we may identify v(I'x) (resp. e(I'x)) with
v(L'xe) (resp. e(T'xe)) via the natural embedding I'x < I'xe. Write II%% for the profinite
completion of the topological fundamental group of I'xe, and rx for dime(H(I'xe, C)).

Definition 1.2. Let Y* := (Y, Dy) be a pointed stable curve over k and f*:Y* — X* a
morphism of pointed stable curves over Spec k.

We shall call f* a Galois admissible covering over Speck (or Galois admissible
covering for short) if the following conditions hold: (i) there exists a finite group G C
Auty(Y®) such that Y*/G = X*, and f* is equal to the quotient morphism Y* — Y*/G;
(ii) for each y € Y™ \ Dy, f* is étale at y, where (—)™ denotes the smooth locus of
(—); (iii) for any y € Y*®"8 the image f*(y) is contained in X*"8 where (—)"¢ denotes
the singular locus of (—); (iv) for each y € Y*"8 the local morphism between two nodes
induced by f® may be described as follows:

Ox.poy = kl[u,v]]Juv — Oy, = k[[s,]] /st
U — s™
v — t",

where (n,char(k)) = 1 if char(k) > 0; moreover, write D, C G for the decomposition
group of y and #D, for the cardinality of D,; then 7(s) = (xp,s and 7(t) = Cﬁ)yt for
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each 7 € D,, where (4p, is a primitive #D,-th root of unit; (v) the local morphism
between two marked points induced by f*® may be described as follows:

Ox o) Zklla]] — Oy, = k[[D]
a — b,

where (m,char(k)) = 1 if char(k) > 0 (i.e., a tamely ramified extension). Moreover, we
shall call f* an admissible covering if there exists a morphism of pointed stable curves
(f*) : (Y*) — Y* over Speck such that the composite morphism f®o (f*) : (Y*) — X*
is a Galois admissible covering over Spec k.

Let Z*® be the disjoint union of finitely many pointed stable curves over Speck. We
shall call a morphism Z* — X* over Spec £ multi-admissible covering if the restriction
of Z* — X* to each connected component of Z° is admissible. We use the notation
Cov*™(X*) to denote the category which consists of (empty object and) all the multi-
admissible coverings of X*. It is well-known that Cov®®™(X*) is a Galois category. Thus,
by choosing a base point x € X*™ \ Dy, we obtain a fundamental group m34™(X*, )
which is called the admissible fundamental group of X*. For simplicity of notation,
we omit the base point and denote the admissible fundamental group by 724 (X*). Note
that we have a natural surjection 739™(X*) — IT%?.

For more details on admissible coverings and the admissible fundamental groups for
pointed stable curves, see [M1], [M2].

Remark 1.2.1. Let /ngn be the moduli stack of pointed stable curves of type (g,n)
over SpecZ and M, , the open substack of Mg, parametrizing pointed smooth curves.

Write m;i for the log stack obtained by equipping Mg,n with the natural log structure

associated to the divisor with normal crossings M, \ M,,, C M, relative to Spec Z.
The pointed stable curve X*® — Spec k induces a morphism Spec k — ng,n - Write

sl)?g for the log scheme whose underlying scheme is Speck, and whose log structure is

the pulling-back log structure induced by the morphism Speck — ng,nx- We obtain

og

: log ! . . -

a natural morphism sy°> — M, induced by the morphism Speck — Mg, », and a
log .__ log ——log log . .

stable log curve X8 := 5" X0 M, nys1 Over sy° whose underlying scheme is X.

g ,n
Then the admissible fundamental g);oup [Txe of X* is isomorphic to the geometric log
étale fundamental group of X8 (i.e., Ker(m (X'8) — Wl(sl)‘}g))).

Remark 1.2.2. If X* is smooth over k, by the definition of admissible fundamental
groups, then we have a natural isomorphism from the admissible fundamental group of
X* to the tame fundamental group of X \ Dx.

In the remainder of this section, we suppose that the characteristic of k is p > 0.
Definition 1.3. Write [Ix. for 784™(X*). We define the p-rank of X* to be
o(X*) := dimg, (11 @ F,) = dimg, (I1$.)* @ F,),

where (—)2" denotes the abelianization of (—), and 1. denotes the étale fundamental
group of X°.



Remark 1.3.1. For each v € v(I'xs), write X, for the irreducible components of X
corresponding to v. Then it is easy to prove that

(X =0(X)= Y o(X.) +rx,
vev(Txe)

where (—) denotes the normalization of (—).

Definition 1.4. Let II be a profinite group, n a natural number, and ¢ a prime number.

(a) We denote by II(n) the topological closure of the subgroup [II, IT]II"™ of II. Note
that I1/T(n) = I** @ (Z/nZ).

(b) We set v, := dimp, (II/II(n)) € Z>o U {oo}.

(c) Let n be a natural number such that [II : II(n)] < co. We define ¢-average of 11
to be

7" (n)(T) == e(I1(n)) /[IT - TI(n)] € Qxo U {oo}.

The following highly nontrivial result concerning p-average of Ilx. was proved by
Tamagawa (cf. [T4, Theorem 3.10]).

Proposition 1.5. For any natural number t € N, we set
% (0 = DX®) o= (0" = 1)(IIxe).
Suppose that, for any v € v(Lxs) C v(I'), TSy is 2-connected at v. Then we have
Jim 5 (p = 1)(X*) = gx — rx — #(o(TF2)")).

Remark 1.5.1. Tamagawa proved Proposition 1.5 as a main theorem of [T2] in the case
where X*® is a smooth pointed stable curve over k by developing a general theory of Ray-
naud’s theta divisor; Tamagawa’s result means that the genus of X*® can be reconstructed
group-theoretically from the tame fundamental group of X \ Dy. Afterwards, in [T4],
Tamagawa extends the result to the case where X* is a certain pointed stable curve over
k by proving a result concerning the abelian injectivity of admissible fundamental groups.

2 The set of irreducible components

We maintain the notations introduced in Section 1. Let X*® be a pointed stable curve over
an algebraically closed field %k of characteristic p > 0. In this section, we study the set of
irreducible components of X*°.

Definition 2.1. Let Z* := (Z, D) be any pointed stable curve over Spec k. Write I'z+ for
the dual semi-graph of Z°. We shall call Z* untangled (resp. sturdy) if each irreducible
component of Z* is smooth (resp. the genus of the normalization of each irreducible
component of Z°* is > 2). We write Irr(Z°®) (resp. Nod(Z*)) for the set of irreducible
components (resp. the set of nodes) of Z. We define a set of irreducible components of Z
to be

Irr(Z2°)°7° .= {Z,,v € v(Tz) | 0(Z,) > 0} C Trr(Z°).
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We have the following Proposition.

Proposition 2.2. There exists a connected Galois admissible covering f* : Y® — X*
over Speck such that Y* is untangled and sturdy, and Trr(Y*)7>% = Trr(Y'®).

Proof. The proposition follows immediately from [M2, Lemma 2.9] and Proposition 1.5.
O

Write Mye and MP for H, (X*,F,) and H'(I'x, F,), respectively. Note that there is
a natural injection M)t(of’ — Mx. induced by the natural surjection Ilxe —» HE??. We set

M := coker( MY < Mx.).

The elements of Mx. correspond to étale, Galois abelian coverings of X*® of degree p. Let
V* C My be the subset of elements whose image in Mys® is not 0. Let a € V*. Write
X2 — X* for the étale covering correspond to a. Then we obtain a morphism ¢ : V* — Z
that maps a — #(Irr(X?2)). Let V' C V* be the subset of elements o which ¢ attains its
maximum (i.e., ¢(a) = p(#Irr(X*®) — 1) + 1). We define a pre-equivalence relation ~ on
V as follows: let a, 8 € V; then a ~ B if , for each A, p € F for which Aa+ uf € V*, we
have Aa + pf € V. Then we have the following lemma.

Lemma 2.3. The pre-equivalence relation ~ on V is an equivalence relation, and, more-
over, the quotient set V/ ~ is naturally isomorphic to Trr(X*)7>°.

Proof. For any § € V +(0) attains its maximum implies that there exists a unique irre-
ducible component Ig(g C X} whose decomposition group is not trivial. We write I, C
X* for the image of [g(g of the covering morphism X§ — X*. Note that I, € Trr(X*)7>0.
Then V = () if and only if Irr(X*)7>° = (.

We suppose that Trr(X®)?0 £ (). Let o, f € V. If [$e = Iﬁ., then, for each A, i € F
for which Aa + pf # 0, we have I35 = I¢, = I%.. Thus, a ~ (. On the other
hand, if o ~ 3, we have [$. = [ f(.; otherwise, there exist two irreducible components of
X5 whose decomposition groups are not trivial. Thus, a ~ f if and only if I%. =1 )’2..

(0%
This means that ~ is an equivalence relation on V. Then we obtain a natural morphism

Kk: V) ~— Irr(X*)7>° that maps ¢ — I%..

Let us prove that x is a bijection. It is easy to see that k is an injection. For any
irreducible component X, € Irr(X*)7>°, since the p-rank of the normalization of X, is not
0, we may construct an étale, Galois abelian covering f® : Y* — X* of degree p such that
X, is the unique irreducible component of X* such that (f*)~'(X?) is connected. Then
#(Irr(Y*)) = p(#(Irr(X*®)) — 1) + 1. Thus, we obtain an element of V' corresponding to
Y*. This means that x is a surjection. We complete the proof of the lemma. n

3 Geometry of admissible coverings
We maintain the notations introduced in the previous sections. Let X*® be a pointed

stable curve over an algebraically closed field k£ of characteristic p > 0. In this section, we
study the admissible coverings of X*°.



Lemma 3.1. Let £ # 2 be a prime number and

i=1

a linear indeterminate equation. Suppose that n > 2. Then there exists a solution
(a1, ...,an) € (ZJOZ)®™ such that a; # 0 for eachi=1,...,n.

Proof. Trivial. O]

Condition 3.2. Let Z* := (Z,Dyz) be any pointed stable curve over Speck. Write
Cusp(Z*®) for the set of marked points Dy of Z*. We shall say that Z* satisfies Con-
dition 3.2 if the following conditions hold: (a) Z* is untangled and sturdy; (b) for each
irreducible component Z, C Z, if Z,NNod(Z*) # (), we have #(Z,NNod(Z*)) > 3; (c) for
each irreducible component Z, C Z, if Z,NCusp(Z*) # 0, we have #(Z,NCusp(Z*)) > 3.

We have the following propositions.

Proposition 3.3. Suppose that Cusp(X*®) # 0, and X* satisfies Condition 3.2. Let
q € Cusp(X*®). Then, for any prime number ¢ # 2 distinct from p, there exists a Galois
admissible covering f® : Y* — X of degree ¢ such that f* is étale over q, and f* is totally
ramified over Cusp(X*®) \ {q}.

Proof. Write X, for the irreducible component of X which contains g. We set
Cusp(X,) := X, N Cusp(X*)

and

Sing(X,) := X, N Nod(X*).

If X* is smooth over Speck, then #(Cusp(X*®) \ {q}) > 2. Thus, the proposition
follows from the structure of the maximal pro-f quotient of the admissible fundamental
group of Ilye. and Lemma 3.1. Then, in order to prove the proposition, we may assume
that X* is a singular curve. Thus, the assumptions imply that #Irr(X*®) > 2.

Since the maximal pro-¢ quotient of admissible fundamental groups of pointed stable
curves of type (g, ) do not depend on the moduli, without the loss of generality, we may
assume that #Irr(X*) = 2. Write X\, for the irreducible component of X distinct from
X, We set

Cusp(Xyq) := X\ N Cusp(X*)

and

Sing(X\4) := X\ N Nod(X*).
Moreover, we define two pointed stable curves over Speck to be
Xy = (X, Cusp(Xy) U Sing(Xy))

and
X3, = (X\g, Cusp(Xy4) U Sing(X\g)).



Note that we have a natural bijection 6 : Sing(X,) = Sing(X\,) determined by X*.
Since X* satisfies Condition 3.2, Lemma 3.1 implies that there exists a solution

(al,)yesing(xq) (resp. (b,,),,ecusp(xq)\{q}, (cy),,ecusp(x\q)) of the linear indeterminate equa-

tion
Z x, =0 (resp. Z x, =0, Z x, =0)
veSing(Xq) veCusp(Xq)\{q} veCusp(X\q)
in Z/lZ such that a, # 0 (resp. b, # 0, ¢, # 0) for each v € Sing(X,) (resp. v €
Cusp(Xy) \ {¢}, v € Cusp(X\,)). For any v € Sing(X,), we set dg) := —a,. Then

(dg(,,)),,esmg( x,) is a solution of the linear indeterminate equation

Z z,=0

v€Sing(X\ )

in Z/VZ.

V</rite Hé’%b (resp. H?;i.b) for the abelianization of the maximal pro-¢ quotient of the
admissible fundamental g;oup of X7 (resp. X{ ). Moreover, for each v € Sing(X,)
(resp. v € Cusp(X,), v € Sing(X\y), v € Cusp(X\,)), we write o, (resp. B,, 6., 7,) for
a generator of the inertia group associated to v in Hf;’iﬁb (resp. Héiﬁb, Hf;’(?:, Hf;fi}:). The

structure of ITI{5” (resp. Hﬁ;?b) implies that we may construct a morphism from II5%” (resp.
q q q

Hﬁ’(‘i.b) to Z/¢Z that maps «, +— a, for v € Sing(X;), By by, forv e CUSP(X;) \{g¢}, and

Bq > 0 (resp. 0, — dg() for dog) € Sing(X\’q) and 7, — ¢, for v € Cusp(X\'q)). Then we
obtain two Galois admissible coverings

£V = X;

and
Rt Yy = XY
over Speck of degree £; moreover, fs is totally ramified over (Cusp(X,) U Sing(X,)) \ {¢}
and ¢tale over ¢, and [, is totally ramified over Cusp(X\q) U Sing(X\,).
Thus, by gluing f7 and f\’q together, we obtain a Galois admissible covering f®:Y*® —
X* of degree ¢ such that f* is étale over ¢, and f* is totally ramified over Cusp(X*) \
{a}- O

Furthermore, similar arguments to the arguments given in the proof of Proposition
3.3 imply the following proposition holds.

Proposition 3.4. Suppose that Nod(X*®) # 0, and X* satisfies Condition 3.2. Let
q € Nod(Z). Then, for any prime number ¢ # 2 distinct from p, there exists a Ga-

lois admissible covering f® : Y*® — X* of degree { such that f*® is étale over q, and f* is
totally ramified over Nod(X*) \ {q¢}.



4 A result of pro-/ combinatorial anabelian geometry

Let ¢ be a prime number. In this section, we prove a result of pro-¢ combinatorial anabelian
geometry.

Definition 4.1. Let G be a semi-graph of anabelioids of PSC-type. Write Ilg for the
fundamental group of G and I'g for the underlying semi-graph of G.

(a) We shall call G untangled (resp. sturdy) if G is isomorphic to the semi-graph of
anabelioids of PSC-type arising from a untangled (resp. sturdy) pointed stable curve over
an algebraically closed field.

(b) For any open normal subgroup H C Ilg, write Gy for the Galois covering of G
determined by H, and write I'g,, for the underlying semi-graph of Gy. We shall denote
by Hgk;l/edge the quotient of ITg> by the closed subgroup generated by the images in 12>
of the edge-like subgroups (cf. [HM, Definition 1.3 (i)]).

In the remainder of this section, we suppose that G is the semi-graph of anabelioids
of PSC-type arising from a pointed stable curve over an algebraically closed field of char-
acteristic p > 0; moreover, we suppose that ¢ # p, and we write G* for the semi-graph
of anabelioids of pro-¢ PSC-type induced by G (cf. [M4, Definition 1.1 (i)]). Write Ilg
for the fundamental group of G¢. Then Ilg is naturally isomorphic to the maximal pro-¢
quotient of Ilg.

Condition 4.2. For any open normal subgroup H C Ilg, the set of vertices U(F%) of
Lge . the morphism v(L'ge ) — v(L'ge) induced by the Galois covering Gt — G* determined

by H, and HZE/ € can be reconstructed group-theoretically from Tlg:.
H

Then we have the following result.

Proposition 4.3. Suppose that G* satisfies Condition 4.2. Then G* can be reconstructed
group-theoretically from Ilge.

Proof. Since G* satisfies Condition 4.2, the set of vertical-like groups of Ilg: can be recon-
structed group-theoretically from Ilge; furthermore, [HM, Lemma 1.6] implies that the set
of edges-like groups of Il can be reconstructed group-theoretically from Ilge.

On the other hand, by applying [HM, Lemma 1.9 (ii)] (resp. [HM, Lemma 1.7] and
[HM, Lemma 1.9 (i)] ), we have the set of vetices v(I'ge) (resp. the set of edges e(I'ge))
of the underlying semi-graph I'g: of G* can be reconstructed group-theoretically from
IIge. Moreover, [HM, Lemma 1.7] implies that the set of coincidence maps of I'ge can be
reconstructed group-theoretically from Ilg.. This completes the proof of the proposition.

m

5 A mono-anabelian version of the Grothendieck con-
jecture for semi-graphs of anabelioids of PSC-type
in positive characteristic

We maintain the notations introduced in the previous sections. Let X*® be a pointed stable
curve over an algebraically closed field k. Write Gx. for the semi-graph of anabelioids of
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PSC-type arising from X*. In this section, we will give a mono-anabelian reconstruction
for Gxe from Ilxe.

For any open normal subgroup H C Ilx., we write X3 — X* for the Galois ad-
missible covering of X* determined by H, I'xs for the dual semi-graph of X7, rx, for
dim(cHl(FX;{,C), gx, for the genus of X}, and ny, for the cardinality of the set of
marked points of X3, Then reconstructing Gxe group-theoretically from Ilx. is equiv-
alent to, for any open normal subgroup H C Ilx., the morphism of dual semi-graphs
I'xe — I'xe induced by the Galois admissible covering X7, — X*® determined by H can
be reconstructed group-theoretically from ITye.

In this section, we only assume that IIx. is the admissible fundamental group
of a pointed stable curve X* defined over an algebraically closed field k. First,
we have the following basic proposition.

Proposition 5.1. The characteristic p := char(k) can be reconstructed group-theoretically
from 1l x..

Proof. For any prime number £, if dimg, (I13% ®TF,) is a constant and p > 0, we have either
char(k) = gx = 2g9x + nx — 1

or
char(k) = gx = 2¢gx

holds. Thus, we obtain either (gx,nx) = (0,1) or (gx,nx) = (0,0) holds. Since IIxe is

the admissible fundamental group of a pointed stable curve, this is a contradiction. Thus,

if dimg, (I18% ® F) is a constant, we have p = 0. Then we can detect whether p > 0 or

not, group-theoretically from I1x.. Moreover, if p > 0, then p is the unique prime number
such that dimg (IT3% @ F,) # dimg, (I13% ® F,) for each prime number ¢ # p. O

In the remainder of this section, we assume that p := char(k) > 0. Next, let us
introduce some conditions on semi-graphs.

Condition 5.2. Let G be a semi-graph. We shall say that G satisfies Condition 5.2 if
G°P* is 2-connected at each v € v(G) C v(G®*) and

#(G)S) =0
Remark 5.2.1. If I'x. satisfies Condition 5.2, Proposition 1.5 implies that
lim 7" (p" — 1)(X*®) = gx — 7.
t—o0

Lemma 5.3. There exists an open characteristic subgroup N C Iy« such that the follow-
ing conditions hold: (a) the order of N is prime to p; (b) X3 satisfies Condition 3.2; (c)
X3 is untangled and sturdy, and Uxs satisfies Condition 5.2; (d) N can be reconstructed
group-theoretically from Ilx..

Proof. Let {G;}icr be a set of semi-graphs of anabelioids of PSC-type such that the fol-
lowing conditions hold: (i) IIg, = Ilxe for each i € I; (ii) for any semi-graph of anabelioids
of PSC-type G, if IIg = Ilx., then there exists G; € {G;}ier such that G = G;; (iii) for
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any 4,7 € I, G; = G; if and only if i = j. Since the set of isomorphism classes of the
semi-graphs of anabelioids of PSC-type whose fundamental groups are isomorphic to ITye
is finite, we have [ is a finite set.

It is easy to see that, for each 7 € I, we may construct a Galois covering Gy, — G,
determined by an open normal subgroup N; C IIy. such that IV; is an open characteristic
subgroup whose order is prime to p, Gy, is isomorphic to the semi-graph of anabelioids of
PSC-type arising from a pointed stable curve satisfying Condition 3.2, Gy, is untangled
and sturdy, and the underlying semi-graph I'g, of Gy, satisfies Condition 5.2. We set

N::ﬂNi.

iel
Then the lemma follows. O
If the dual semi-graph I'xe satisfies Condition 5.2, we have the following result.

Lemma 5.4. Write 115" for the mazimal pro-p quotient of TI'y. Suppose that T xe
satisfies Condition 5.2. Then TT5 P can be reconstructed group-theoretically from Txe;
moreover, gx, Nx, and rx can be reconstructed group-theoretically from Ilx..

Proof. Let H be any open normal subgroup of I1x.. We note that, if [Ty /H is a p-group,
then the decomposition group of every irreducible component of X7, is trivial if and only
if
9xy — Txy = #xe/H)(gx —rx).
We set
Top, (Ilxe) := {H C Ilx. open normal | [Ix./H is a p-group

and gx, —rx, = #(Uxe/H)(gx —rx)}.

Then IT% can be reconstructed group-theoretically from Ilx. as follows:

P =Tx/( () H).

HeTop, (I xe)

Since I"y. satisfies Condition 5.2, we have [xe satisfies Condition 5.2 for each H €
Topp(H xe). Then gx —rx and gx,, — rx, can be reconstructed group-theoretically from
Ix. and H, respectively. Thus, II% and rx = dime (II%2"* @ C) can be reconstructed
group-theoretically from IIx.. Moreover, gx can be reconstructed group-theoretically
from IIye.

Next, we reconstruct nx. Let £ # p be a prime number. Suppose that dimg, (1135 ®

Fy) # 2¢gx, then we have
nx = dimg, (5% ® F,) — 2gx + 1.

Suppose that dimg,(I13% ® Fy) = 2gx. Then nx = 0 if, for any open normal subgroup
H C Mx., dimp,(H* ® F;) = 2gx,. Otherwise, we have nxy = 1. This completes the
proof of the lemma. O

Lemma 5.4 implies that the following corollary.

12



Corollary 5.5. Suppose that I xe satisfies Condition 5.2. Then the natural exact sequence

0— M — Mxe — My® =0

>0

can be reconstructed group-theoretically from x.. Moreover, Irr(X*) can be recon-

structed group-theoretically from Ilxe.

Proof. Note that Mx. = Hom(Ily.,F,), My?y = Hom(II%.P,F,), and Myd < Mx. is
induced by the natural surjection Ilxe — 115", Then the corollary follows immediately

from Lemma 2.3 and Lemma 5.4. O
Next, we reconstruct the set of vertices of I"ye from Ilxe.

Proposition 5.6. The set of vertices v(I'xs) can be reconstructed group-theoretically from
IIxe. Moreover, for any open normal subgroup Q C Ilx., the morphism U(Fxé) — v(Cye)
on the sets of vertices induced by the admissible covering X¢ — X* determined by Q) can
be reconstructed group-theoretically from Ilxe.

Proof. Let H C Ilxe be any open normal subgroup, and let {a;}icriye/um C Hxe be a
set of lifting of the elements of Ily./H that the image of a; € Ily. under the quotient
morphism Ilye — Ilye/H is i € llxe/H. Write Mx,s for H (X}, F,). Then, for any
i € llxe/H, the action of i on Mx. is conjugation action a;lMX;{ai. Thus, by applying
Lemma 2.3, we have the action of IIx./H on MX;'{ induces an action of [Ixe/H on the
set Irr(X3)7>%. Note that the action of IIx./H on Irr(X$%)?”° does not depend on the
choices of {a;}icriy./m. Thus, we obtain a morphism

Irr(X3,)770 — Trr(X3)°70 /(xe /H) C Irr(X°®).

By applying Lemma 5.3, we obtain a characteristic subgroup NV C Ilx. such that I'xs
satisfies Condition 5.2, and N can be constructed group-theoretically from I1y.. We set

Irrye == U Irr(X3n) 70 /(Ilxe /(H N N)).

HCIIye open normal

Then we have Irrye C Irr(X*®). On the other hand, Proposition 2.2 implies that Irry. =
Irr(X*).

By applying Corollary 5.5, we have that Irr(X -y
theoretically from IIxe. Moreover, since the action of Ilye/(H N N) on Irr( Xy
can be reconstructed group-theoretically from Ily., we obtain v(I'ys) = Irr(X*®) can be
reconstructed group-theoretically from Ilye.

Let ) C IIxe be an open normal subgroup. We set Ng := QN N. Then, for any open
normal subgroup H C (), we have a natural morphism

)°>Y can be reconstructed group-

)0>0

(X7, )"/ (Q/H NV Ng) — Tre(Xfyn) 7" /(T /(H NV N));

note that where H N Ng = H N N. Moreover, we set

hrxg = () (X, )/ (Q/(H N N)).

HCQ open normal
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Then we obtain a natural morphism
v(Pxp) = Irr(X§) = Ity — Irrxe = Irr(X°) = 0(T'x).

Since the morphism Irr(X3 .y, )7"°/(Q/H N Ng) — Irr(Xfy)77%/(Ilxs /(H N N)) can
be reconstructed group-theoretically from IIy.. Then the morphism v(I'xs) — v(I'xe)
can be reconstructed group-theoretically from Ilxe.. This completes the proof of the
proposition. ]

Next, let us start to reconstruct Gye from Ilxe.

Lemma 5.7. Let { be a prime number distinct from p. Write G&. for the semi-graph of
anabelioids of pro-f PSC-type induced by Gxe. Suppose that I xe satisfies Condition 5.2.
Then G%. can be reconstructed group-theoretically from Ilye.

Proof. Let H be any open normal subgroup of IIxs. Since I'xe satisfies Condition 5.2,
I'xe satisfies Condition 5.2 too. By applying Lemma 5.4, we obtain that nx, and rx, can
be reconstructed group-theoretically from H; moreover, Proposition 5.6 implies that the
set of vertices v(I'ys ) of I'ys and the morphism v(I'ys ) = v(I'xs) induced by the Galois
covering Xy, — X°* determined by H can be reconstructed group-theoretically from H
and I[Tye. Then, by applying the Euler-Poincaré characteristic formula for I"x«, we obtain
that

#(c(Txy,)) = rxy + #(0(Txy,)) — 1
can be reconstructed group-theoretically from H.
We set
Et(ILye) := {H C Ilx. open normal | ny, +#(e” (Dxs ) = (#(Ixe/H))(nx+#(e" (Dx+)))}.

Then the étale fundamental group IS, of X*® can be reconstructed group-theoretically
from Ilx. as follows:

I =Tx./ (] H

HEFt(TTye)
Note that I = Hg‘j{/ 48 Then Haglz/ °d€° can be reconstructed group-theoretically from
X.
[Ix.. Thus, the lemma follows from Proposition 4.3 and Proposition 5.6. O]

Lemma 5.8. Suppose that X*® and Gxe« satisfy Condition 3.2 and Condition 5.2, respec-
tively. Then Gxe« can be reconstructed group-theoretically from Ilxe..

Proof. Let H C Ilxe be any open normal subgroup. In order to prove the lemma, we
only need to prove that the morphism ¢y : I'ys — I'xe on dual semi-graphs induced
by the Galois admissible covering X7, — X°® determined by H can be reconstructed
group-theoretically from Ilx.; moreover, Proposition 5.6 and Lemma 5.7 imply that it is
sufficient to prove that the morphism ¢H|5(Fxf{) e(I'xe ) — e(I'x+) on the sets of edges

induced by ¢y can be reconstructed group-theoretically from IIxe.
Let ¢ # 2 be a prime number distinct from p such that (#(I1xe/H),¢) = 1, and let
q be any marked point of X°*. Write e, € e®®(I'x.) for the open edge corresponding to
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q. Since we assume that X*® satisfies Condition 3.2, Proposition 3.3 implies that there
exists a Galois admissible covering f® : Y* — X*® whose Galois group is isomorphic to
Z/UZ such that f* is étale over ¢, and f* is totally ramified over Cusp(X*®) \ {q}. Then
we obtain a connected Galois admissible covering ¢° : Y7 :=Y*® X xe« X3, — X},. Here, ¢°
is the natural projection.

Write Gxs and Gye for the semi-graphs of anabelioids of PSC-type arising from X}
and Y}y, respectively; moreover, write Qf(l.{ and Gi. for the semi-graphs of anabelioids
of pro-f PSC-type induced by Gxs and Gys, respectively. Then Lemma 5.7 implies that
the morphism of dual semi-graphs ¢y : I'ys — I'xe induced by g* can be reconstructed
group-theoretically from H. Thus, we have

O (eq) = {e € eP(Ixy,) | #(vy (e)) = £}
Then the morphism ¢H|eop(f‘x;{) e (I'xs ) — €P(I'xe) induced by ¢ on the sets of open
edges can be reconstructed group-theoretically from IIye.

Together with Proposition 3.4, similar arguments to the arguments given in the proof
above imply that the morphism ¢ e , ) @ €!(Txs ) — €(T'x+) induced by ¢ on the

sets of closed edges can be reconstructed group-theoretically from IIxe. Then ¢gler,. ) :
H

Lxe.

e(I'xs ) — e(T'x+) can be reconstructed group-theoretically from ITx.. This completes the
proof of the lemma. O

Next, we prove the main theorem of the present section.

Theorem 5.9. Let X*® be a pointed stable curve over an algebraically closed field k. Write
[Ixe for the admissible fundamental group of X°®, and Gxe for the semi-graph of anabe-
lioids of PSC-type Gxe arising from X*. Then p := char(k) can be reconstructed group-
theoretically from Ilx.. Moreover, if p := char(k) > 0, then Gx. can be reconstructed
group-theoretically from Ilx..

Proof. Proposition 5.1 implies that the characteristic of £ can be reconstructed group-
theoretically from ITy.. We only prove the “moreover” part of the theorem.

Suppose that p := char(k) > 0. Let H C IIy. be any open normal subgroup. Propo-
sition 5.6 implies that, to verify the theorem, it is sufficient to prove that the morphism
['ys — I'xe on the sets of edges induced by the Galois covering X3 — X* determined by
H can be reconstructed group-theoretically from IIxe.

By applying Lemma 5.3, we obtain an open characteristic subgroup N C Ily. such
that the conditions of Lemma 5.3. Write Hy for H N N, gX?{N for the semi-graph of
anabelioids of PSC-type arising from X . Since X7 and the dual semi-graph of I'xe
satisfy Condition 3.2 and Condition 5.2, respectively, then Lemma 5.8 implies that G Xt
can be reconstructed group-theoretically from Hy.

Note that the natural action of IIxe/Hy on Q’X;IN induces an action of Ilx./Hy on
xy, 5 moreover, we have ['ys = FX;IN/(HX'/H> and ['ys = FX;{N/(H/HN). Thus, we
obtain a natural morphism

FX?{ = FX;{N/(H/HN) — 'xe = FX;{N/(HX'/H)

Thus, I'xs — I'xe can be reconstructed group-theoretically from IIxe. This completes
the proof of the theorem. O
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Remark 5.9.1. The bi-anabelian combinatorial Grothendieck conjecture for semi-graphs
of anabelioids of PSC-type can be formulated as follows.

Let G and Gy be two semi-graphs of anabelioids of PSC-type associated to two pointed
stable curves over algebraically closed fields ky and ko, respectively, 1lg, and Ilg, the fun-
damental groups of Gi and Gy, respectively, o : Ilg, — Ilg, an isomorphism of profinite
groups, I and Iy profinite groups, pr, : I — Out(Ilg,) and pr, : Iy — Out(Ilg,) outer
Galois representations, and 3 : I, = I, an isomorphism of profinite groups. Suppose that
the diagram

I 2 Out(llg,)

BJ/ Out(a) l

I, 225 Out(Ilg,),

is commutative, where Out(a) denotes the isomorphism induced by «. Then we have

g1 = 0.

Let 3 C Primes be a set of prime numbers which does not contain char(k;) and char(ks),
where PBrimes denotes the set of prime numbers. Suppose that G; and G, are two
semi-graphs of anabelioids of pro-> PSC-type. Then the bi-anabelian combinatorial
Grothendieck conjecture was proved by S. Mochizuki in the case where p;, and pj, are
outer Galois representations of IPSC-type (cf. [M4]), and by Y. Hoshi and Mochizuki in
the case where py, and py, are certain outer Galois representations of NN-type (cf. [HM]).
Furthermore, Theorem 5.9 may be regarded as a mono-abelian version of the combina-
torial Grothendieck conjecture for the semi-graphs of anabelioids of PSC-type arising from
pointed stable curves in positive characteristic (i.e., a group-theoretically algorithm for
reconstructing semi-graphs of anabelioids of PSC-type from their fundamental groups).

Remark 5.9.2. Theorem 5.9 is a generalized version of a result of Tamagawa that the
tame inertia groups associated to the cusps of smooth pointed stable curves can be re-
constructed group-theoretically from their tame fundamental groups (cf. [T2, Theorem
5.2]).

6 The anabelian geometry of curves over algebraically
closed fields of characteristic p > 0

We maintain the notations introduced in Section 1. Let X*® be a pointed stable curve over
an algebraically closed field k of characteristic p > 0. In this section, we use Theorem 5.9
to prove some anabelian results for pointed stable curves in positive characteristic.

Let ¢ be any prime number and F, an algebraic closure of F,. We define two sets of
rational points of moduli stacks as follows:

Ry = |J Myu(Fo)

£ePBrimes
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and

Ryn= |J Mya(Fo),

£ePBrimes

where M,,,, denotes the moduli stack of pointed stable curve of type (g,n) over SpecZ,
and M, ,, denotes the open substack of M g.n Parametrizing pomted smooth curves of type
(g,n). For any rational point q € R,,, : SpecF, — M,,,, write Xy == (Xq, Dx,) for the
pointed stable curve M, 11 X5 My F, over F; determined by q. We deﬁne an equivalence
relation ~*" on R, ,, as follows: if q1, qs € R, then q; ~* gy if X \Dx,, and Xg,\Dx,
are isomorphic as schemes (though not necessarily as F,-schemes). Let FPG be the set of
topologically finitely generated profinite groups. We define an equivalence relation ~P™
on FPG as follows: if G1,Gs € FPG, then Gy ~P™ (G5 if G; and G5 are isomorphic as
profinite groups. Then we obtain a natural morphism as follows:

7Ta.dIIl . Eg,n/ Nsch_> FPG/ ~_bro

g)n

that maps the equivalence class of q to the equivalence class of m39m (X, 1)

Definition 6.1. Let S; — S5 be a morphism of sets. We shall call the morphism S; — S
quasi-finite if, for any sy € Ss, #((S1 — S2)"!(sq)) is finite.

Then the following theorem was proved by Tamagawa (cf. [T2], [T3]).

Theorem 6.2. (a) Suppose that Fp Ck, and X* is a smooth pointed stable curve over k.
Let X§ be a smooth pointed stable curve over Fp of genus gx, = 0. Then we can detect
whether X*® is isomorphic to X XF, k or not, group-theoretically from Il xe. In particular,
the morphism

ToN™ Ro s © R/ P FPG/ ~PT

induced by 7Tadm on the subset Ry ,/ ~*" of Ro,/ ~* is an injection.

(b) Let S be an F,-scheme, and 1 and s points of S such that s € {n} holds. We
denote by M and 5 geometric points on n and s, respectively. Let Z* be a smooth pointed
stable curve of type (g,n) over S and

SR (2 ) (2 %, 5)

a specialization map. Suppose that Z* x, 1 cannot be defined over an algebraic closure
of Fp, and Z'° x5 can be defined over an algebraic closure of F,. Then spadm 18 not an
1somorphism. Moreover, the morphism

adrn|]%gn/,\,sch . gn/ ~° _) FPG/ ~P

induced by 7Tadm on the subset R,/ ~* of R,/ ~* is quasi-finite.

Remark 6.2.1. By replacing FPG (resp. 7*1™(—)) by the set of profinite groups (resp.
m(—) (i.e., the étale fundamental group of (—))), we obtain the following natural mor-
phism:

Tgn : Rgn/ ~ "= PG/ ~P
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that maps the equivalence class of q to the equivalence class of m (X, \ Dx,). Before
Tamagawa proved Theorem 6.2 (a), he obtained an étale fundamental group version of
Theorem 6.2 (a) (i.e., Ton|g,,, /~en is an injection) in a completely different way (by using
wildly ramified coverings) (cf. [T1]). Note that, for any nonsingular pointed stable curve
Z* := (Z,Dz) over an algebraically closed filed of positive characteristic, since 7w84m(Z*)
can be reconstructed group-theoretically from m(Z \ Dz) (cf. [T1, Corollary 1.10]),
Theorem 6.2 (a) is stronger than the theorem of étale fundamental group version.
Recently, by following Tamagawa’s idea, A. Sarashina proved that my 1| Ry /~sch 1S an
injection (cf. [S], [T5, Theorem 6 (i)]). Moreover, by applying the theory of Tamagawa
developed in [T2], Sarashina’s result holds also for 9™ (g, /s (cf. [T5, Theorem 6 (ii)]).

Remark 6.2.2. Theorem 6.2 (b) was first proved by Raynaud (cf. [R]) and Pop-Saidi
(cf. [PS]) under certain assumptions of Jacobian, and by Tamagawa in the fully general
case (cf. [T3]).

Next, we prove our main theorem of the present paper. We generalize Theorem 6.2 as
follows.

Theorem 6.3. (a) Suppose that Fp C k, and X* is a pointed stable curve of over k. Let
X$ = (Xo, Dx,) be a pointed stable curve over IF,. Write U'xs for the dual semi-graph of

X§. For each v € v(I'xs), write (X,)o for the normalization of the irreducible component
of Xy corresponding to v and

(X = (X0). D)
for the smooth pointed stable curve over Fp determined by (Xy), and the divisor of marked

—~—

points D(/)a))/ determined by the inverse images (via the natural morphism (Xg), — Xo)

in (Xo)y of the nodes and marked points of X3; (gv,ny) for the type of)/(vg. Suppose that
9o = 0 for each v € v(I'xs). Then we can detect whether X* is isomorphic to X Xz, k
or not, group-theoretically from U xe. In particular, the morphism

TeW™ Ry ~*"s FPG/ ~P™°

18 an injection.

(b) Let X (resp. X3) be a pointed stable curves over an algebraically closed field
ki (resp. ky) of positive characteristic. Write Gxs (resp. Gxg) for the semi-graph of
anabelioids of PSC-type associated to X} (resp. X3). Then 4™ (X7) =2 2™ (X3) if and
only if char(k;) = char(ky) and Gxs = Gxg. Moreover, we have the following result: Let
S be an F,-scheme, and n and s points of S such that s € m holds. We denote by
and 5 geometric points on n and s, respectively. Let Z* be a pointed stable curve of type
(g,m) over S,

PRI T 2% ¢, ) T2 %, 5)
a specialization map. Suppose that Z'* x, N cannot be defined over an algebraic closure
of Fp, and Z'* X435 can be defined over an algebraic closure of F,. Then spf]fism s mot an
1somorphism. Furthermore, the morphism

T Ty s FPG/
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1S quasi-finite.

Proof. First, let us prove (a). We will prove that X* = X X5, k if and only if TIxe =
madm(X#). Since the admissible fundamental groups of pointed stable curves do not de-
pend on the base fields, we obtain the “only if” part of the theorem. Next, we prove
the “if” part. Suppose that [Iye = 739 (Xs). Write Gy and Gxg for the semi-graphs
of anabelioids of PSC-type arising from X*® and X, respectively. By applying Theorem
5.9, we obtain Gy« = ng. We fix an isomorphism Gxe — QX(;, and we may assume that
G :=Gxe = Gxs and II := IIx. = radm(X#). Write I for the underlying semi-graph of G,
and IT*P for the profinite completion of the topological fundamental group of I". Note that
there is a natural surjection IT — II*P. Moreover, it is easy see that there exists a open
normal group H C II such that H D ker(IT — II'°P), and the semi-graph of anabelioids
of PSC-type Gy determined by H is untangled. To verify the theorem, by replacing G by
Gy, we may assume that G is untangled. Then every irreducible component of X*® and
X?¢ is isomorphic to P!

Let v € v(I'). Write X, and (Xj), of X*® and X{ for the irreducible component
corresponding to v, respectively. We set

X = (X,, X, N (Nod(X*) N Dy))

and
(Xo)y = ((Xo0)w, (X0)» N (Nod(X7) N Dx,)),

where Nod(—) denotes the set of nodes of (—). Since we assume that G is untangled,

we have (X()? = (Xp)2. On the other hand, for any v € v(I'), (Xo)s can be defined
over a finite field Fya,. Let m € N such that ([[,c,dv)|m. Thus, Theorem 5.9 and
Theorem 6.2 (a) imply that X3 = 7,((Xo)3(m) X5, k), where 7, € Aut(X}), and (—)(m)
denotes the m-th Frobenius twist of (—). Thus, by gluing {7,},ecsr), We obtain X*® =
Xg(m) x5, k = X§ x5, k. This completes the proof of (a).

Next, we prove (b). The first part of (b) follows immediately from Theorem 5.9. The
“moreover” part and the “furthermore” part follow immediately from Theorem 5.9 and

Theorem 6.2 (b). O

Remark 6.3.1. By Remark 6.2.1, we obtain the following generalized version of Theorem
6.3 (a).

Suppose that Fp C k, and X* is a pointed stable curve of over k. Let X§ := (Xo, Dx,)
be a pointed stable curve over F,. Write I'xs for the dual semi-graph of X§. For each

—_—

v € v([xg), write (X,)o for the normalization of the irreducible component of X corre-
sponding to v and

(X% = (Xa)u Dy
for the smooth pointed stable curve over Fp determined by (Xo), and the divisor of marked

—~—

points D(X}T determined by the inverse images (via the natural morphism (Xg), — Xo)

in (Xo), of the nodes and marked points of XJ; (gv,ny) for the type of)A(;'. Suppose that,
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—_—

for each v € v(I'xes), (Xo)3 is either a smooth pointed stable curve over F, of genus g, = 0

or a smooth pointed stable curve over Fp of type (1,1). Then we can detect whether X*® is
isomorphic to X§ XF, k or not, group-theoretically from Il xe. In particular, the morphism

adm . D sch pro
7 Ry ) ~Pes FPG/ ~

is an injection if g =0 or (g,n) = (1,1).

Remark 6.3.2. The “moreover” part of Theorem 6.3 (b) can also be proved by applying
Theorem 6.2 (b) and the geometry of stable reduction of admissible coverings. Then sim-
ilar arguments to the arguments given in [T3, Theorem 8.6] imply that the “furthermore”
part holds.
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