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Abstract

Usher proved so called sharp energy-capacity inequality of Hofer-Zehnder
capacity for closed symplectic manifolds. In this paper, we consider Floer
homology on symplectic manifolds with boundary (not symplectic homol-
ogy) and its spectral invariants. Then we extend the sharp energy-capacity
inequalities for convex symplectic manifolds.

1 Introduction

In this section, we explain Hofer-Zehnder capacity and the sharp energy-capacity
inequality. Let (M,ω) be a symplectic manifold. For any compact supported
Hamiltonian function H : S1 ×M → R, we define Hamiltonian vector field XHt

as follows.
ω(XHt , ·) = −dHt

The time t map of this vector field defines a diffeomorphism ϕt
H . We denote

ϕ1
Hby ϕH . Such a diffeomorphism is called Hamiltonian diffeomorphism and we

denote the set of Hamiltonian diffeomorphisms by Hamc(M,ω). Hofer’s norm
of a Hamiltonian function is defined as follows.

||H|| =
∫ 1

0

maxHt −minHtdt

This norm also defines Hofer’s norm on Hamc(M,ω) by

||ϕ|| = inf{||H|| | ϕH = ϕ,H ∈ C∞
c (S1 ×M)}

In [4], Lalonde and McDuff proved that ||ϕ|| = 0 holds if and only if ϕ = id
holds. In other words, Hofer’s norm is non-degenerate. By using Hofer’s norm,
we define the displacement energy of A ⊂M as follows.

e(A,M) = inf{||ϕ|| | ϕ(A) ∩A,ϕ ∈ Hamc(M,ω)}

Another important symplectic invariant of A ⊂ M is Hofer-Zehnder capacity
([3]). We consider the following family of Hamiltonian functions.

H(A,M) =
{
H ∈ C∞

c (M)
∣∣∣ suppH ⊂ A\∂M,H ≥ 0,H−1(0) and
H−1(maxH) contain non-empty open subset

}
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Definition 1.1 (1) H ∈ H(A,M) is called HZ-admissible if the flow ϕt
H has

no non-constant periodic orbit whose period is less than 1.

(2) H ∈ H(A,M) is called HZ ◦-admissible if the flow ϕt
H has no non-constant

contractible periodic orbit whose period is less than 1.

Hofer-Zehnder capacity cHZ(A) and π1 sensitive Hofer-Zehnder capacity c◦HZ(A,M)
are defined as follows.

cHZ(A) = {maxH | H ∈ H(A,M), H is HZ-admissible}
c◦HZ(A,M) = {maxH | H ∈ H(A,M),H is HZ◦-admissible}

There are several attempts to relate cHZ(A) (or c
◦
HZ(A,M)) and e(A,M). This

can be written in the form

cHZ(A) ≤ C × e(A,M)

or
c◦HZ(A,M) ≤ C × e(A,M)

where C is some constant. Inequalities of these types are called energy-capacity
inequalities. The most general result is the sharp energy-capacity inequality
which was proved by Usher ([6]).

Theorem 1.1 (Usher) Let (M,ω) be a closed symplectic manifold and let
A ⊂M be any subset in M . Then the following inequality holds.

c◦HZ(A,M) ≤ e(A,M)

In this paper, we generalize the sharp energy capacity inequality for general
convex symplectic manifolds.

Definition 1.2 Let (M,ω) be a symplectic manifold. (M,ω) is called convex
if there is a sequence of codimention 0 submanifolds {Mn}n∈N such that the
following conditions are satisfied.

• Mn−1 ⊂Mn

• M = ∪nMn

• ∂Mn is a contact type hypersurface. In other words, there exists a outward
pointing Liouville vector field Xn which is defined in a neighborhood of
∂Mn. Liouville vector field means that Xn satisfies LXnω = ω.

We prove the following theorem.

Theorem 1.2 Let (M,ω) be a convex symplectic manifold and A ⊂M be a
subset in M . Then, the following inequality holds.

c◦HZ(A,M) ≤ e(A,M)
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2 Floer homology on symplectic manifolds with
contact type boundaries

Let (M,ω) be a symplectic manifold with a boundary. We call ∂M a con-
tact type boundary if there exists a vector field X which satisfies the following
conditions.

• X is defined in a neighborhood of ∂M

• LXω = ω (X is a Liouville vector field)

• X is outward pointing on ∂M

In this section, we assume that (M,ω) be a symplectic manifold with a contact
type boundary. In this case, α = ιXω|∂M is a contact form on ∂M . Then, a
neighborhood of ∂M can be identified with (1 − ϵ, 1] × ∂M whose symplectic
form on (r, y) ∈ (1− ϵ, 1]× ∂M is d(rα). We define the symplectic completion

(M̂, ω̂) as follows.

• M̂ = M ∪∂M [1,∞)× ∂M

•

ω̂ =

{
ω on M

d(rα) on (r, y) ∈ [1,∞)× ∂M

An almost complex structure J on M̂ is contact type if it satisfies the following
properties.

• J preserves Ker(rα) ⊂ T ({r} × ∂M) on {r} × ∂M

• Let X be a Liouville vector field on [1,∞) × ∂M and Let R be a Reeb
vector field of {r} × ∂M . Then J(X) = R and J(R) = −X hold.

Let T > 0 be the smallest period of periodic Reeb orbit of contact form α on ∂M .
We fix 0 < ϵ < T . We consider the following family of pairs of a Hamiltonian
function and a contact type almost complex structure on (M̂, ω̂).

Hϵ =

{
(H,J)

∣∣∣∣∣
J is a S1-dependent contact type almost complex structure

H : S1 × M̂ → R
H(t, (r, y)) = −ϵr + β, (r, y) ∈ [1,∞)× ∂M

}

P (H) = {contractible periodic orbits of XH}
We consider Novikov covering of P (H) as follows.

P̃ (H) = {(r, w)|r ∈ P (H), w : D2 →M,∂w = r}/ v

where equivalence relationv is defined by

(r1, w1) v (r2, w2)⇐⇒


r1 = r2

c1(w1♯w2) = 0

ω(w1♯w2) = 0
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The action functional AH : P̃ (H)→ R is defined as follows.

AH([r, w]) = −
∫
D2

w∗ω +

∫
S1

H(t, r(t))dt

By using this action functional, we define the Floer chain complex for (H, J) ∈ Hϵ

by

CF (H, J) =

{ ∑
x∈P̃ (H),ax∈Q

ax · x

∣∣∣∣∣ ∀c ∈ R, ♯{y|ay ̸= 0, AH(y) > c} <∞

}

We consider the moduli space of pseudo-holomorphic cylinders. For x = [r1, w1]

and y = [r2, w2] in P̃ (H),

M̃(x, y,H, J) =

{
u : R×S1 → M̂

∣∣∣∣∣ ∂su+ Jt(∂tu−XHt) = 0
lims→−∞ u(s, t) = r1(t), lims→∞ u(s, t) = r2(t)

(r2, w1♯u) v (r2, w2)

}

Above moduli space has a natural R action.

M(x, y,H, J) = M̃(x, y,H, J)/R

We call a Hamiltonian function H : S1 × M̂ → R non-degenerate if

dϕH : TpM̂ → TpM̂

does not have 1 as an eigenvalue for all one periodic point p ∈ M̂ . We define a
subset of Hϵ as follows.

Hreg
ϵ = {(H, J) ∈ Hϵ | H is non-degenerate}

In order to define a boundary operator, we need the following lemma ([1], [7]).
Let (V, dθ) be a exact symplectic manifold such that its Liouville vector field
X points inward on ∂V . We fix a Riemann surface with a boundary S and a
1-form γ such that γ|∂S = 0 and dγ ≤ 0 hold. Let J be a S-dependent almost
complex structure such that J is contact type near ∂S. Then, the following
lemma holds.

Lemma 2.1 ([1], [7]) Let H be a Hamiltonian function such that H|∂V ≡ C
holds. Let u be a map

u : S → V

which satisfies the following properties.

• u(∂S) ⊂ ∂V

• (du−XH ⊗ γ)0,1 = 0

Then, u(S) ⊂ ∂V holds.
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This lemma implies that we can ignore M̂\M . We use this lemma implicitly not
only for boundary operators and connecting homomorphism but also for pair
of pants products which we will define later. Then, by counting 0-dimentional
part ofM(x, y,H, J), we can define the boundary operator ∂ on the Floer chain
complex for any (H, J) ∈ Hreg

ϵ ([2]).

∂(x) =
∑

y∈P̃ (H)

♯M(s, y,H, J)y

∂ satisfies ∂ ◦ ∂ = 0 and we denote its homology by HF (H, J). This boundary
operator decreases the values of the action functional AH . In other words, if

M̃(x, y,H, J) ̸= ϕ

holds, then AH(x) ≥ AH(y) holds. This implies that we have a filtration on the
Floer chain complex as follows. For any a ∈ R,

CF (H, J)<a =

{ ∑
x∈P̃ (H),ax∈Q,AH(x)<a

ax · x

}

We denote the homology of (CF<a(H, J), ∂) by HF<a(H,J).
For (H1, J1), (H2, J2) ∈ Hreg

ϵ , we consider a R dependent smooth family
{(Hs, Js)}s∈R of Hϵ which satisfies the following properties.

• (Hs, Js) = (H1, J1) for s ≪ 0

• (Hs, Js) = (H2, J2) for s ≫ 0

Then, by counting the 0 dimentional part of the moduli space,

M(x, y,Hs, Js) =

{
u : R× S1 → R

∣∣∣∣ ∂su+ J(s, t)(∂tu−XH(s,t)) = 0
u(−∞) = x, u(+∞) = y

}
we obtain a chain map

CF (H1, J1)→ CF (H2, J2)

and induced map
HF (H1, J1)→ HF (H2, J2)

As in the closed case, we can see that there is an isomorphism

HF (H,J) ∼= H∗(M : Λ)

where Λ is the Q coefficient Novikov ring of (M,ω). If ϵ1 ≥ ϵ2 holds, there is a
canonical map

HF (H1, J1)→ HF (H2, J2)

for (H1, J1) ∈ Hregϵ1 and (H2, J2) ∈ Hregϵ2 . (This canonical map appears when
we treat symplectic homology theory.) This map is an isomorphism.
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3 Pair of pants product

In this section, we define pair of pants product

∗ : HF (H1, J1)⊗HF (H2, J2)→ HF (H3, J3)

for (Hi, Ji) ∈ Hreg
ϵ (i = 1, 2, 3). We define the following Riemann surface Σ.

Σ = (R× [−1, 0] ⊔ R× [0, 1])/ ∼

where ∼ is defined as follows.

• [0,∞)× {0−} is identified with [0,∞)× {0+}

• [0,∞)× {−1} is identified with [0,∞)× {1}

• (−∞, 0]× {−1} is identified with (−∞, 0]× {0−}

• (−∞, 0]× {1} is identified with (−∞, 0]× {0+}

For 0 < ϵ1 < 1
2ϵ and (K1, J

′
1), (K2, J

′
2) ∈ Hreg

ϵ1 and (H3, J3), we fix a z ⊂ Σ
dependent smooth family (Hz, Jz) so that it satisfies the following properties.

• Hz : M̂ → R and Jz is a contact type almost complex structure

• Hz((r, y)) = −ϵzr + βz, (r, y) ∈ [1,∞)× ∂M

• ∂tϵz = 0 and ∂sϵz ≥ 0

• (Hz, Jz) = (K1, J
′
1) for z = (s, t) ∈ R× [0, 1] and s ≪ 0

• (Hz, Jz) = (K2, J
′
2) for z = (s, t) ∈ R× [−1, 0] and s ≪ 0

• (Hz, Jz) = ( 12H3(
1
2 (t+ 1), ·), J3) for z = (s, t) ∈ R× [−1, 1] and s ≫ 0

For xi ∈ P̃ (Ki) (i = 1, 2) and y ∈ P̃ (H3) we consider the following moduli
space.

M(s1, x2, y,Hz, Jz) =

{
u : Σ→ M̃

∣∣∣∣∣ ∂su(z) + Jz(∂tu(z)−XHz ) = 0
u(−∞× [0, 1]) = x1, u(−∞× [−1, 0]) = x2

u(+∞) = y

}

By counting 0 dimentional part of this moduli space in an obvious way, we
obtain the following pairing.

∗̃ : HF (K1, J
′
1)⊗HF (K2, J

′
2)→ HF (H3, J3)

The standard cobordims argument implies that this pairing does not depend on
the choice of a family (Hz, Jz).

We take the composition of this pairing ∗̃ and the inverse of canonical iso-
morphisms

HF (Ki, J
′
i)→ HF (Hi, Ji)

6



and obtain a desired pairing

∗ : HF (H1, J1)⊗HF (H2, J2)→ HF (H3, J3)

for (Hi, Ji) ∈ Hreg
ϵ . ∗ does not depend on the choice of ϵ1 < ϵ. This follows from

the following argument. We choose (Li, J
′′
i ) ∈ Hreg

ϵ2 for ϵ1 ≤ ϵ2 < ϵ. Then we
have the following commutative diagram. Commutativity implies independence
of the choice.

HF (H1, J1)⊗HF (H2, J2)
∼=←−−−− HF (K1, J

′
1)⊗HF (K2, J

′
2) −−−−→ HF (H3, J3)∥∥∥ y ∥∥∥

HF (H1, J1)⊗HF (H2, J2)
∼=←−−−− HF (L1, J

′′
1 )⊗HF (L2, J

′′
2 ) −−−−→ HF (H3, J3)

The fact that ∗ does not depend on the choice of ϵ1 and (Ki, J
′
i) also implies

that ∗ is associative.

4 Spectral invariants

We generalize spectral invariants of Floer homology for non compact case. In
this section, we assume that (M,ω) is a symplectic manifold with a contact
type boundary. What we have to check is that this spectral invariants also sat-
isfy triangle inequality. First, we introduce some notations about Hamiltonian
functions.

C∞
c (S1 ×M) = {H ∈ C∞(S1 ×M) | suppH ∈ IntM}

H♯K(t, x) = H(t, x) +K(t, (ϕt
H)−1(x))

H(H)(t, x) = −H(t, ϕt
H(x))

Then, Hamiltonian diffeomorphisms gemerated by H♯K and H satisfy the fol-
lowing properties.

ϕt
H♯K(x) = ϕt

H(ϕt
K(x))

ϕt
H
(x) = (ϕt

H)−1(x)

For (H,J) ∈ Hreg
ϵ and e ∈ HF (H, J), we define ”pre” spectral invariant

ρ̂(H, e) by

ρ̂(H, e) = inf{a | e ∈ Im(HF<a(H,J)→ HF (H, J))}

As in the closed case, this does not depend on J and the following inequality
holds.

|ρ̂(H, e)− ρ̂(K, e)| ≤ ||H −K||

This inequality enable us to extend ρ̂(·, e) for continuous functionH ∈ C(S1 × M̂)
such that

H(t, (r, y)) = −ϵr + C, (r, y) ∈ [1,∞)× ∂M
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holds. For compact supported continuous function H ∈ Cc(S
1 ×M), we define

the canonical extension Hϵ by

Hϵ(t, x) =

{
H(t, x) x ∈M

−ϵ(r − 1) x = (r, y) ∈ [1,∞)× ∂M

Then, we define spectral invariant of H by

ρ(H, e) = ρ̂(Hϵ, e)

We prove the following triangle inequality.

Lemma 4.1 For any e1, e2 and H,K ∈ Cc(S
1 ×M), the following inequality

holds.
ρ(H♯K, e1 ∗ e2) ≤ ρ(H, e1) + ρ(K, e2)

Proof We fix δ > 0 and two functions

fϵ, f 1
2 ϵ

: [0,∞)→ R

such that

• fϵ(r) = f 1
2 ϵ
(r) on r ∈ [0, 1]

• f ′
ϵ ≤ f ′

1
2 ϵ
≤ 0

• f ′′
ϵ , f

′′
1
2 ϵ

< 0

• |fϵ(r) + ϵ(r − 1)| ≤ δ, |f 1
2 ϵ
(r) + 1

2ϵ(r − 1)| ≤ δ on r ∈ [1,∞)

• f ′
ϵ(r) = −ϵ, f ′

1
2 ϵ
(r) = −1

2ϵ for r ≫ 0

Then we can take four non-degenerate Hamiltonian functions

H̃ϵ, H̃ 1
2 ϵ
, K̃ϵ, K̃ 1

2 ϵ
∈ C∞(S1 × M̂)

which satisfy the following conditions.

• |H̃τ −Hτ | ≤ δ, |K̃τ −Kτ | ≤ δ (τ = ϵ or 1
2ϵ)

• H̃τ (t, (r, y)) = fτ (r) (r ∈ [1− κ,∞) for some κ > 0)

• H̃ϵ(t, x) = H̃ 1
2 ϵ
(t, x) (x ∈M\[1− κ, 1]× ∂M)

• K̃τ (t, (r, y)) = fτ (r) (r ∈ [1− κ,∞) for some κ > 0)

• K̃ϵ(t, x) = K̃ 1
2 ϵ
(t, x) (x ∈M\[1− κ, 1]× ∂M)
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By definition, ∗ is decomposed as follows.

HF (H̃ϵ, J1)⊗HF (K̃ϵ, J2)
∼=−−−−→ HF (H̃ 1

2 ϵ
, J1)⊗HF (K̃ 1

2 ϵ
, J2)

∗̃
y

HF (H̃ 1
2 ϵ
♯K̃ 1

2 ϵ
, J3)

What we want to prove is that ∗ preserves the energy filtration. In othe words,
we want to prove that

∗(HF<a(H̃ϵ, J1)⊗HF<b(K̃ϵ, J2)) ⊂ HF a+b(H̃ϵ♯K̃ϵ, J3)

holds for any a, b ∈ R. As in the closed case, we can see that

∗̃(HF<a(H̃ 1
2 ϵ
, J1)⊗HF<b(K̃ 1

2 ϵ
, J2)) ⊂ HF a+b(H̃ϵ♯K̃ϵ, J3)

holds. So what we have to prove is the inverse of canonical isomorphisms

ι1 : HF (H̃ 1
2 ϵ
, J1)→ HF (H̃ϵ, J1)

ι2 : HF (K̃ 1
2 ϵ
, J2)→ HF (K̃ϵ, J2)

preserve energy filtrations. In other words,

ι−1
1 (HF<a(H̃ϵ, J1)) ⊂ HF<a(H̃ 1

2 ϵ
, J1)

ι−1
2 (HF<b(K̃ϵ, J2)) ⊂ HF<b(K̃ 2

2 ϵ
, J2)

hold. For this purpose, we fix a monotone increasing function

ρ : R→ [0, 1]

such that

ρ(s) =

{
0 s ≪ 0

1 s ≫ 0

holds and a homotopy (Hs, Js) from (H̃ 1
2 ϵ
, J1) to (H̃ϵ,J1) by

Hs(t, x) = (1− ρ(s))H̃ 1
2 ϵ
(t, x) + ρ(s)H̃ϵ(t, x)

Js = J1

This Hs satisfies ∂
∂sHs ≤ 0. Then Lemma 2.1 implies that the moduli space

M(x, y,Hs, Js) has the natural R action for any x ∈ P (H̃ 1
2 ϵ
) and y ∈ P (H̃ϵ).

So, if the dimension of a connected component of this moduli space equals
to 0, x = y holds and it consists of trivial one point (s-independent cylinder

u(s, t) = x(t)). So, by identifying P (H̃ 1
2 ϵ
) and P (H̃ϵ),

ι1 : CF (H̃ 1
2 ϵ
, J1)→ CF (H̃ϵ, J1)
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becomes an identity map. This implies that

ι−1
1 (HF<a(H̃ϵ, J1)) ⊂ HF<a(H̃ 1

2 ϵ
, J1)

holds for any a ∈ R. The same property also holds for ι−1
2 . So, we have

ρ̂(H̃ 1
2 ϵ
♯K̃ 1

2 ϵ
, e1 ∗ e2) ≤ ρ̂(H̃ϵ, e1) + ρ̂(K̃ϵ, e2)

holds. Then, by definition, we can see that

ρ(H♯K, e1 ∗ e2)− ρ(H, e1)− ρ(K, e2)

= ρ̂((H♯K)ϵ, e1 ∗ e2)− ρ̂(Hϵ, e1)− ρ̂(Kϵ, e2)

≤ ρ̂(H̃ 1
2 ϵ
♯K̃ 1

2 ϵ
, e1 ∗ e2)− ρ̂(H̃ϵ, e1)− ρ̂(K̃ϵ) + 3δ ≤ 3δ

So, we proved that

ρ(H♯K, e1 ∗ e2) ≤ ρ(H, e1) + ρ(K, e2)

�

By using this triangle inequality, we can prove the next lemma.

Lemma 4.2 For H,K ∈ C∞
c (S1 ×M), we assume that ϕK displaces suppH.

Then
ρ(H, e1 ∗ e2) ≤ ρ(K, e1) + ρ(K, e2).

holds for any e1, e2

Proof We fix ∀δ > 0. We can take a non-degenerate Hamiltonian T ∈ C∞(S1 × M̂)
such that

• T (t, (r, y)) = −ϵ(r − 1) on (r, y) ∈ [1,∞)× ∂M

• |T −Kϵ| ≤ δ

• |(H♯K)ϵ −H♯T | ≤ δ

• ϕT (suppH) ∩ suppH = ϕ

As in the closed case, we have

ρ̂(H♯K, e1) = ρ̂(T, e1)

So, we can see that

ρ(H, e1 ∗ e2) ≤ ρ(H♯K, e1) + ρ(K, e2)

= ρ̂((H♯K)ϵ, e1) + ρ(K, e2) ≤ ρ̂(H♯T, e1) + ρ(K, e2) + δ

= ρ̂(T, e1) + ρ(K, e2) + δ ≤ ρ̂(Kϵ, e1) + ρ(K, e2) + 2δ

= ρ(K, e1) + ρ(K, e2) + 2δ

�

10



5 Proof of the sharp energy capacity inequality

In this section, we assume that (M,ω) is a convex symplectic manifold. In other
words, there is a sequence of codimension 0 submanifolds

M1 ⊂M2 ⊂ · · · ⊂Mn ⊂ · · ·

such that

•
∪

n≥1 Mn = M

• (Mn, ωn = ω|Mn) has a contact type boundary

hold. We fix A ⊂M . Let H ∈ H(A) and K ∈ C∞
c (S1 ×M) be two Hamiltonian

functions such that

• H is HZ ◦-admissible

• ϕK(A) ∩A = ϕ

hold. Our purpose is to prove

maxH ≤ ||K||

holds. From the second assumption, A is relatively compact. So, we can take
sufficiently large n ≥ 1 so that A ⊂ IntMn and suppK ⊂ IntMn hold. From now
on, we consider spectral invariants on (Mn, ωn). We fix ∀δ > 0. As in [6], we

can take a Morse function H̃ : M̂n → R such that

• |H̃|Mn −HMn | ≤ δ

• H̃((r, y)) = −ϵ(r − 1) on [1,∞)× ∂Mn

• a period of any non-constant contractible orbit of XH̃ is larger than 1.

Let 1 ∈ HF (H̃, J) be the unit. As in [5], we can see that

ρ̂(H̃, 1) = max H̃

holds. This also implies that ρ(0, 1) = ρ̂(0ϵ, 1) = 0 holds. So we have

ρ(K, 1) + ρ(K, 1) ≤ (ρ(K, 1)− ρ(0, 1)) + (ρ(K, 1)− ρ(0, 1)) ≤ ||K||

Then, the following inequality holds.

||K|| −maxH ≥ ||K|| −max H̃ − δ

≥ ρ(K, 1) + ρ(K, 1)− ρ̂(H̃, 1)− δ

≥ ρ(K, 1) + ρ(K, 1)− ρ(H, 1)− 2δ ≥ −2δ

This inequality implies that

maxH ≤ ||K||

holds.

�
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