
RIMS-1873

On the asymptotic expansions of

the Kashaev invariant of hyperbolic knots with 7 crossings

By

Tomotada OHTSUKI

April 2017

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES

KYOTO UNIVERSITY, Kyoto, Japan



On the asymptotic expansions of
the Kashaev invariant of hyperbolic knots with 7 crossings

Tomotada Ohtsuki

Abstract

We give presentations of the asymptotic expansions of the Kashaev invariant of hyperbolic knots
with 7 crossings. As the volume conjecture states, the leading terms of the expansions present the
hyperbolic volume and the Chern-Simons invariant of the complements of the knots. As coefficients
of the expansions, we obtain a series of new invariants of the knots.

This paper is a continuation of the previous papers [20, 21], where the asymptotic expansions
of the Kashaev invariant are calculated for hyperbolic knots with 5 and 6 crossings. A technical
difficulty of this paper is to use 4-variable saddle point method, whose concrete calculations are far
more complicated than the previous papers.

Mathematics Subject Classification (2010). Primary: 57M27. Secondary: 57M25, 57M50.

1 Introduction

This paper is a continuation of the previous papers [20, 21]. We review the background
of this paper; for details, see [20, 21]. Kashaev [12, 13, 14] defined the Kashaev invariant
⟨L ⟩

N
∈ C of a link L for N = 2, 3, · · · , and conjectured that, for any hyperbolic link L,

2π
N
log |⟨L ⟩

N
| goes to the hyperbolic volume of S3 −L as N → ∞. Further, H. Murakami

and J. Murakami [18] proved that the Kashaev invariant ⟨L ⟩
N
of any link L is equal to the

N -colored Jones polynomial JN(L; e
2π

√
−1/N) of L evaluated at e2π

√
−1/N , and conjectured

that, for any knot K, 2π
N
log |JN(K; e2π

√
−1/N)| goes to the (normalized) simplicial volume

of S3 − K. This is called the volume conjecture. As a complexification of the volume
conjecture, it is conjectured in [19] that, for a hyperbolic link L,

JN(L; e
2π

√
−1/N) ∼

N→∞
eNς(L),

where we put

ς(L) =
1

2π
√
−1

(
cs(S3 − L) +

√
−1 vol(S3 − L)

)
,

and “cs” and “vol” denote the Chern-Simons invariant and the hyperbolic volume. Fur-
thermore, it is conjectured [9] (see also [3, 10, 34]) that, for a hyperbolic knot K,

JN(K; e2π
√
−1/k) ∼

N,k→∞
u=N/k: fixed

eNςN3/2 ω ·
(
1 +

∞∑
i=1

κi ·
(2π√−1

N

)i)
The author was partially supported by JSPS KAKENHI Grant Numbers 16H02145 and 16K13754.
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for some scalars ς, ω, κi depending on K and u. Recently, it is shown in [20, 21] that,
when K is a hyperbolic knot with up to 6 crossings, the asymptotic expansions of the
Kashaev invariant is presented by the following form,

⟨K ⟩
N

= eNς(K)N3/2 ω(K) ·
(
1 +

d∑
i=1

κi(K) ·
(2π√−1

N

)i
+O

( 1

Nd+1

))
, (1)

for any d, where ω(K) and κi(K)’s are some scalars.
The volume conjecture has been rigorously proved for some particular knots and links

such as torus knots [15] (see also [4]), the figure-eight knot (by Ekholm, see also [1])
Whitehead doubles of (2, p)-torus knots [35], positive iterated torus knots [27], the 52
knot [16, 20], the knots with 6 crossings [21], and some links [8, 11, 26, 27, 28, 35]; for
details see e.g. [17].

The aim of this paper is to extend the above formula to hyperbolic knots with 7
crossings, that is, we show the following theorem. In particular, this means that the
volume conjecture holds for these knots.

Theorem 1.1. The asymptotic expansions of the Kashaev invariant ⟨K ⟩
N
of hyperbolic

knots K with 7 crossings are presented by the form (1) for any d, where ω(K) and κi(K)’s
are some constants depending on K.

It is shown [22] that 2
√
−1ω2(K) for these knots is equal to the twisted Reidemeister

torsion associated with the action on sl2 of the holonomy representation of the hyperbolic
structure. We also remark that Dimofte and Garoufalidis [2] define a formal power series
from an ideal tetrahedral decomposition of a knot complement, which is expected to be
equal to the asymptotic expansion of the Kashaev invariant of the knot.

There are six hyperbolic knots with 7 crossings: the 72, 73, · · · , 77 knots. We show
proofs of the theorem for the 72, 73, 74, · · · , 77 knots in Sections 8, 3, 4, · · · , 7 respectively;
the proof of the 72 knot is relatively long, because of some technical difficulty unlike the
proofs of the other knots. We show the proofs following the proof for the 52 knot in [20].
An outline of the proofs is as follows. From the definition of the Kashaev invariant, the
Kashaev invariant of K is presented by a sum. We rewrite the sum as an integral via the
Poisson summation formula (Proposition 2.2). When we apply the Poisson summation
formula, the right-hand side of the Poisson summation formula consists of infinitely many
summands, and we show that we can ignore them except for the one at 0 in the sense
that they are of sufficiently small order at N → ∞. Further, by the saddle point method
(Proposition 2.4), we calculate the asymptotic expansion of the integral, and obtain the
presentation of the theorem.

A non-trivial part of the proof is to apply the saddle point method, whose concrete
calculations are far more complicated than the case of knots with up to 6 crossings in
[20, 21]. In this part, we need to calculate the asymptotic behavior of an integral of the
following form as N → ∞,∫

∆′
exp

(
N
(
V̂ (t, s, u, v)− ς

))
dt ds du dv,
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where V̂ (t, s, u, v) is the potential function of the hyperbolic structure of the knot comple-

ment, and ς is a critical value of V̂ (t, s, u, v). The domain ∆′ of the integral is a compact
domain in R4, and its boundary is included in the following domain{

(t, s, u, v) ∈ C4
∣∣ Re (V̂ (t, s, u, v)− ς

)
< 0
}
. (2)

The critical value ς is given by a critical point (t0, s0, u0, v0), and it is located near ∆′ in
C4. In order to apply the saddle point method, we need to show that we can move ∆′ in
the imaginary direction by a homotopy in such a way that the new domain ∆′

1 contains
(t0, s0, u0, v0), and ∆′

1−{(t0, s0, u0, v0)} is included in (2), and the boundary of ∆′ always
stays in (2) when we apply the homotopy. We note that, when we restrict the domain
(2) to a sufficiently small neighborhood of (t0, s0, u0, v0), the resulting space is homotopy
equivalent to a 3-sphere. The existence of the above homotopy means that the boundary
of ∆′ is homotopic to this 3-sphere in the domain (2). It is a non-trivial task to see that
they are homotopic in the domain (2), since it is not easy to see the topological type of
the domain (2) directly. We give such a homotopy concretely in Sections 3.5, 4.5, · · · ,
7.5, for the 73, 74, · · · , 77 knots respectively. Further, in the case of the 72 knot, we have
an additional difficulty; in this case, the boundary of ∆′ is not included in the domain
(2), and we need many additional calculations in this case.

By the method of this paper, the asymptotic behavior of the Kashaev invariant is
discussed for some hyperbolic knots with 8 crossings in [24].

The paper is organized as follows. In Section 2, we review definitions and basic prop-
erties of the notation used in this paper. In Sections 3, 4, · · · , 7, 8, we show proofs of
Theorem 1.1 for the 73, 74, · · · , 77, 72 knots respectively.

The authors would like to thank Kazuo Habiro, Hitoshi Murakami, Jun Murakami,
Toshie Takata and Yoshiyuki Yokota for helpful comments.

2 Preliminaries

In this section, we review definitions and basic properties of the notation used in this
paper.

2.1 Integral presentation of (q)n

In this section, we review (q)n and its integral presentation and their basic properties.
Let N be an integer ≥ 2. We put q = exp(2π

√
−1/N), and put

(x)n = (1− x)(1− x2) · · · (1− xn)

for n ≥ 0. It is known [18] (see also [20]) that for any n,m with n ≤ m,

(q)n(q)N−n−1 = N, (3)∑
n≤k≤m

1

(q)m−k(q)k−n
= 1. (4)
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Following Faddeev [5], we define a holomorphic function φ(t) on {t ∈ C | 0 < Re t < 1}
by

φ(t) =

∫ ∞

−∞

e(2t−1)xdx

4x sinhx sinh(x/N)
,

noting that this integrand has poles at nπ
√
−1 (n ∈ Z), where, to avoid the pole at 0, we

choose the following contour of the integral,

γ = (−∞,−1 ] ∪
{
z ∈ C

∣∣ |z| = 1, Im z ≥ 0
}

∪ [ 1,∞).

It is known [7, 30] that

(q)n = exp
(
φ
( 1

2N

)
− φ

(2n+ 1

2N

))
,

(q)n = exp
(
φ
(
1− 2n+ 1

2N

)
− φ

(
1− 1

2N

))
.

(5)

We put ℏ = 2π
√
−1/N , and put

Φd(z) = Li2
(
z
)
+
∑

1≤k≤d

ℏ2kc2k ·
(
z
d

dz

)2k−2 z

1− z
,

where we define c2k by
t/2

sinh(t/2)
=
∑
k≥0

c2k t
2k.

Then, it is known [7, 30] (see also [20]) that, for any d ≥ 0,

φ(t) =
N

2π
√
−1

Φd(e
2π

√
−1 t) +O(ℏ2d+1), (6)

φ(k)(t) =
N

2π
√
−1

( d
dt

)k
Φd(e

2π
√
−1 t) +O(ℏ2d+1), (7)

for each k > 0. More precisely, as for the convergence of 1
N
φ(t) as N → ∞, we recall the

following proposition.

Proposition 2.1 (See [20]). We fix any sufficiently small δ > 0 and any M > 0. Let d
be any non-negative integer. Then, in the domain{

t ∈ C
∣∣ δ ≤ Re t ≤ 1− δ, |Im t| ≤M

}
, (8)

φ(t) is presented by

φ(t) =
N

2π
√
−1

Li2(e
2π

√
−1 t) +O

( 1
N

)
,

where O(1/N) means the error term whose absolute value is bounded by C/N for some
C > 0, which is independent of t (but possibly dependent on δ). In particular, 1

N
φ(t)

uniformly converges to 1
2π

√
−1

Li2(e
2π

√
−1 t) in the domain (8).
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As for properties of φ(t), it is a consequence of (3) and (5) (see [20]) that, for any t ∈ C
with 0 < Re t < 1,

φ(t) + φ(1− t) = 2π
√
−1
(
− N

2

(
t2 − t+

1

6

)
+

1

24N

)
. (9)

Further, the following formulas are known (due to Kashaev, see [20]),

φ
( 1

2N

)
=

N

2π
√
−1

π2

6
+

1

2
logN +

π
√
−1

4
− π

√
−1

12N
,

φ
(
1− 1

2N

)
=

N

2π
√
−1

π2

6
− 1

2
logN +

π
√
−1

4
− π

√
−1

12N
.

(10)

2.2 Some behaviors of the dilogarithm function

In this section, we show some behaviors of the dilogarithm function.
We put

Λ(t) = Re
( 1

2π
√
−1

Li2(e
2π

√
−1 t)

)
.

Since
Λ′(t) = − log 2 sin πt, Λ′′(t) = −π cotπt,

the behavior of Λ(t) is as follows.

t 0 · · · 1
6 · · · 1

2 · · · 5
6 · · · 1

Λ(t) 0 → Λ(1
6
) → 0 → −Λ(1

6
) → 0

Λ′(t) + 0 − − − 0 +

Λ′′(t) − − − 0 + + +

Here, Λ(1
6
) = 0.161533... .

Further, the behavior of Li2
(
e2π

√
−1 (t+X

√
−1)
)
fixing t is presented by the following

formula. It is known [21] that for any real number t with 0 < t < 1, there exists C > 0
such that({

0 if X ≥ 0

2π
(
t− 1

2

)
X if X < 0

)
− C < Re

(
1

2π
√
−1

Li2
(
e2π

√
−1 (t+X

√
−1)
))

<

({
0 if X ≥ 0

2π
(
t− 1

2

)
X if X < 0

)
+ C

(11)

for any X ∈ R.

2.3 Definition of the Kashaev invariant

In this section, we review the definition of the Kashaev invariant of oriented knots.
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Following Yokota [32],1 we review the definition of the Kashaev invariant. We put

N = {0, 1, · · · , N − 1}.

For i, j, k, l ∈ N , we put

Ri j
k l =

N q−
1
2
+i−k θi jk l

(q)[i−j](q)[j−l](q)[l−k−1](q)[k−i]
, R

i j

k l =
N q

1
2
+j−l θi jk l

(q)[i−j](q)[j−l](q)[l−k−1](q)[k−i]
,

where [m] ∈ N denotes the residue of m modulo N , and we put

θi jk l =

{
1 if [i− j] + [j − l] + [l − k − 1] + [k − i] = N − 1,

0 otherwise.

Let K be an oriented knot. We consider a 1-tangle whose closure is isotopic to K such
that its string is oriented downward at its end points. Let D be a diagram of the 1-tangle.
We present D by a union of elementary tangle diagrams shown in (12). We decompose
the string of D into edges by cutting it at crossings and critical points with respect to the
height function of R2. A labeling is an assignment of an element of N to each edge. Here,
we assign 0 to the two edges adjacent to the end points of D. For example, see (23). We
define the weights of labeled elementary tangle diagrams by

W
( i j

k l

)
= Ri j

k l , W
(

k l

)
= q−1/2δk,l−1 , W

(
k l

)
= δk,l ,

W
( i j

k l

)
= R

i j

k l , W
( i j )

= q1/2δi,j+1 , W
( i j )

= δi,j .

(12)

Then, the Kashaev invariant ⟨K ⟩
N
of K is defined by

⟨K ⟩
N

=
∑

labelings

∏
crossings

ofD

W (crossings)
∏

critical
points ofD

W (critical points) ∈ C.

2.4 The Poisson summation formula

In this section, we review a proposition obtained from the Poisson summation formula.

Proposition 2.2 (see [20]). For (c1, c2, c3, c4) ∈ C3 and an oriented 3-ball D′ in R4, we
put

Λ =
{( i
N

+ c1,
j

N
+ c2,

k

N
+ c3,

l

N
+ c4

)
∈ C4

∣∣∣ i, j, k, l ∈ Z,
( i
N
,
j

N
,
k

N
,
l

N

)
∈ D′

}
,

D =
{
(t+ c1, s+ c2, u+ c3, v + c4) ∈ C4

∣∣ (t, s, u, v) ∈ D′ ⊂ R4
}
.

1We make a minor modification of the definition of weights of critical points from the definition in [32], in order to make
⟨K ⟩N invariant under Reidemeister moves.
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Let ψ(t, s, u, v) be a holomorphic function defined in a neighborhood of 0 ∈ C4 including
D. We assume that ∂D is included in the domain{

(t, s, u, v) ∈ C4
∣∣ Reψ(t, s, u, v) < −ε0

}
for some ε0 > 0. Further, we assume that ∂D is null-homotopic in each of the following
domains,{
(t+δ

√
−1, s, u, v) ∈ C4

∣∣ (t, s, u, v) ∈ D′, δ ≥ 0, Reψ(t+δ
√
−1, s, u, v) < 2πδ

}
, (13){

(t−δ
√
−1, s, u, v) ∈ C4

∣∣ (t, s, u, v) ∈ D′, δ ≥ 0, Reψ(t−δ
√
−1, s, u, v) < 2πδ

}
, (14){

(t, s+δ
√
−1, u, v) ∈ C4

∣∣ (t, s, u, v) ∈ D′, δ ≥ 0, Reψ(t, s+δ
√
−1, u, v) < 2πδ

}
, (15){

(t, s−δ
√
−1, u, v) ∈ C4

∣∣ (t, s, u, v) ∈ D′, δ ≥ 0, Reψ(t, s−δ
√
−1, u, v) < 2πδ

}
, (16){

(t, s, u+δ
√
−1, v) ∈ C4

∣∣ (t, s, u, v) ∈ D′, δ ≥ 0, Reψ(t, s, u+δ
√
−1, v) < 2πδ

}
, (17){

(t, s, u−δ
√
−1, v) ∈ C4

∣∣ (t, s, u, v) ∈ D′, δ ≥ 0, Reψ(t, s, u−δ
√
−1, v) < 2πδ

}
, (18){

(t, s, u, v+δ
√
−1) ∈ C4

∣∣ (t, s, u, v) ∈ D′, δ ≥ 0, Reψ(t, s, u, v+δ
√
−1) < 2πδ

}
, (19){

(t, s, u, v−δ
√
−1) ∈ C4

∣∣ (t, s, u, v) ∈ D′, δ ≥ 0, Reψ(t, s, u, v−δ
√
−1) < 2πδ

}
. (20)

Then,
1

N4

∑
(t,s,u,v)∈Λ

eN ψ(t,s,u,v) =

∫
D

eN ψ(t,s,u,v) dt ds du dv +O(e−Nε),

for some ε > 0.

For a proof of the proposition, see [20].

Remark 2.3. Similarly as in [20, Remark 4.8], Proposition 2.2 can naturally be extended
to the case where the holomorphic function ψ(t, s, u, v) depends on N , if ψ(t, s, u, v)
uniformly converges to ψ0(t, s, u, v) as N → ∞, and ψ0(t, s, u, v) satisfies the assumption
of the proposition, and |Ψ(t, s, u, v)| is bounded by a constant which is independent of N ,
where Ψ(t, s, u, v) is some polynomial in (at most the 6th) derivatives of ψ(t, s, u, v). We
note that we can choose ε of the proposition independently of N in this case.

2.5 The saddle point method

In this section, we review a proposition obtained from the saddle point method.

Proposition 2.4 (see [20]). Let A be a non-singular symmetric complex 4×4 matrix, and
let ψ(z1, z2, z3, z4) and r(z1, z2, z3, z4) be holomorphic functions of the forms,

ψ(z1, z2, z3, z4) = zTA z+ r(z1, z2, z3, z4),

r(z1, z2, z3, z4) =
∑

i,j,k bijkzizjzk +
∑

i,j,k,l cijklzizjzkzl + · · · ,
(21)

defined in a neighborhood of 0 ∈ C4. The restriction of the domain{
(z1, z2, z3, z4) ∈ C4

∣∣ Reψ(z1, z2, z3, z4) < 0
}

(22)
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to a neighborhood of 0 ∈ C4 is homotopy equivalent to S3. Let D be an oriented 4-ball
embedded in C4 such that ∂D is included in the domain (22) whose inclusion is homotopic
to a homotopy equivalence to the above S3 in the domain (22). Then,∫

D

eN ψ(z1,z2,z3,z4)dz1 dz2 dz3 dz4 =
π2

N2
√

det(−A)

(
1 +

d∑
i=1

λi
N i

+O
( 1

Nd+1

))
,

for any d, where we choose the sign of
√

det(−A) as explained in [20], and λi’s are
constants presented by using coefficients of the expansion of ψ(z1, z2, z3, z4); such presen-
tations are obtained by formally expanding the following formula,

1 +
∞∑
i=1

λi
N i

= exp
(
N r
( ∂

∂w1

, · · · , ∂

∂w4

))
exp

(
− 1

4N

w1

...
w4


T

A−1

w1

...
w4


)∣∣∣∣∣

w1=···=w4=0

.

For a proof of the proposition, see [20].

Remark 2.5. As mentioned in [20, Remark 3.6], we can extend Proposition 2.4 to the
case where ψ(z1, z2, z3, z4) depends on N in such a way that ψ(z1, z2, z3, z4) is of the form

ψ(z1, z2, z3, z4) = ψ0(z1, z2, z3, z4) + ψ1(z1, z2, z3, z4)
1

N
+ ψ2(z1, z2, z3, z4)

1

N2

+ · · ·+ ψm(z1, z2, z3, z4)
1

Nm
+ rm(z1, z2, z3, z4)

1

Nm+1
,

where ψi(z1, z2, z3, z4)’s are holomorphic functions independent of N , and we assume
that ψ0(z1, z2, z3, z4) satisfies the assumption of the proposition and |rm(z1, z2, z3, z4)| is
bounded by a constant which is independent of N .

3 The 73 knot

In this section, we show Theorem 1.1 for the 73 knot. We give a proof of the theorem in
Section 3.1, using lemmas shown in Sections 3.2–3.5.

3.1 Proof of Theorem 1.1 for the 73 knot

In this section, we show a proof of Theorem 1.1 for the 73 knot.

8



The 73 knot is the closure of the following tangle.

0

n
0i

1
0 i−1 0

j

00 k

0 l

0 m

10

(23)

As shown in [32], we can put the labelings of edges adjacent to the unbounded regions as
shown above. Hence, from the definition of the Kashaev invariant, the Kashaev invariant
of the 73 knot is presented by

⟨ 73 ⟩N =
∑

q1/2 × N q−
1
2

(q)N−n(q)n−1

× N q−
1
2
+i

(q)i−n(q)n−1(q)N−i
× N q−

1
2
−i+1

(q)N−j(q)j−i(q)i−1

× N q−
1
2

(q)N−j(q)j−k(q)k−1

× N q−
1
2

(q)N−k(q)k−l(q)l−1

× N q−
1
2

(q)N−l(q)l−m(q)m−1

× N q−
1
2

(q)N−m(q)m−1

=
∑

0<i≤j≤N
0<l≤k≤j

N5 q−2

(q)i−1(q)N−i(q)j−i(q)N−j(q)N−j(q)j−k(q)k−1(q)N−k(q)k−l(q)l−1(q)N−l

=
∑

0≤i≤j<N
0≤l≤k≤j

N5 q−2

(q)i(q)N−i−1(q)j−i(q)N−j−1(q)N−j−1(q)j−k(q)k(q)N−k−1(q)k−l(q)l(q)N−l−1

=
∑

0≤i≤j<N
0≤k,l
k+l≤j

N5 q−2

(q)j−i(q)N−j+i−1(q)i(q)N−j−1(q)N−j−1(q)k(q)j−k(q)N−j+k−1(q)l(q)j−k−l(q)N−j+k+l−1

where we obtain the third equality by replacing i, j, k, l with i + 1, j + 1, k + 1, l + 1
respectively, and obtain the last equality by replacing j − i, j − k, k − l with i, k, l
respectively.

Proof of Theorem 1.1 for the 73 knot. By (5), the above presentation of ⟨ 73 ⟩N is rewritten

⟨ 73 ⟩N = N5q−2
∑

0≤i≤j<N
0≤k,l
k+l≤j

exp
(
N Ṽ

(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N
,
2l + 1

2N

))
,

9



where we put

Ṽ (t, s, u, v) =
1

N

(
− φ

(
s− t+

1

2N

)
− φ

(
1− s+ t− 1

2N

)
+ φ(t)− φ(s) + φ(1− s)

− φ(1− u) + φ
(
s− u+

1

2N

)
+ φ

(
1− s+ u− 1

2N

)
− φ(1− v)

+ φ
(
s− u− v +

1

N

)
+ φ

(
1− s+ u+ v − 1

N

)
− 6φ

( 1

2N

)
+ 5φ

(
1− 1

2N

))
=

1

N

(
φ(t)− 2φ(s) + φ(u) + φ(v)

)
− 1

2π
√
−1

π2

6
− 11

2N
logN − π

√
−1

4N
+
π
√
−1

12N2

+ 2π
√
−1 · 1

2

((
s− t+

1

2N

)2 − s2 + u2 −
(
s− u+

1

2N

)2
+ v2

−
(
s− u− v +

1

N

)2
+ t+ 2s− 3u− 2v +

1

N

)
.

Here, we obtain the last equality by (9) and (10). Hence, by putting

V (t, s, u, v) = Ṽ (t, s, u, v) +
11

2N
logN,

the presentation of ⟨ 73 ⟩N is rewritten

⟨ 73 ⟩N = N−1/2q−2
∑

i,j,k,l∈Z
( 2i+1

2N
, 2j+1

2N
, 2k+1

2N
, 2l+1

2N
)∈∆

exp
(
N V

(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N
,
2l + 1

2N

))
,

where the range of (2i+1
2N

, 2j+1
2N

, 2k+1
2N

, 2l+1
2N

) of the sum is given by the following domain,

∆ =
{
(t, s, u, v) ∈ R4

∣∣ 0 ≤ t ≤ s ≤ 1, 0 ≤ u, v, u+ v ≤ s
}
.

By Proposition 2.1, as N → ∞, V (t, s, u, v) converges to the following V̂ (t, s, u, v) in the
interior of ∆,

V̂ (t, s, u, v) =
1

2π
√
−1

(
Li2(e

2π
√
−1 t)− 2 Li2(e

2π
√
−1 s) + Li2(e

2π
√
−1u) + Li2(e

2π
√
−1 v)− π2

6

)
+ 2π

√
−1 · 1

2

(
(s− t)2 − s2 + u2 − (s− u)2 + v2 − (s− u− v)2 + t+ 2s− 3u− 2v

)
.

By concrete calculation, we can check that the boundary of ∆ is included in the domain{
(t, s, u, v) ∈ ∆

∣∣ Re V̂ (t, s, u, v) < ς
R
− ε
}

(24)

for some sufficiently small ε > 0, where we put ς
R
= 0.730861... as in (29); we will know

later that this value is equal to the real part of the critical value of V̂ at the critical
point of Lemma 3.2. Since the sum of the problem is of the order O(eNςR ), we can ignore
the sum of the problem restricted in the above domain, and hence, we can remove this
domain from ∆. Therefore, we can choose a new domain ∆′ in the interior of ∆ such that

10



∆−∆′ ⊂ (24); more concretely, we can choose ∆′ as

∆′ =

{
(t, s, u, v) ∈ ∆

∣∣∣∣∣ 0.03 ≤ t ≤ 0.38, 0.68 ≤ s ≤ 0.95, 0.03 ≤ u ≤ 0.38,
0.03 ≤ v ≤ 0.38, 0.4 ≤ s− t ≤ 0.85, 0.4 ≤ s− u ≤ 0.85,
−t+ 2u+ v ≤ 0.85, t+ 2s− 2u− v ≤ 1.8

}
,

(25)
where we calculate the concrete values of the bounds of these inequalities in Section 3.2.
Hence, since ∆−∆′ ⊂ (24), we obtain the second equality of the following formula,

⟨ 73 ⟩N = eNςN−1/2q−2
∑

i,j,k,l∈Z
( 2i+1

2N
, 2j+1

2N
, 2k+1

2N
, 2l+1

2N
)∈∆

exp
(
N · V

(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N
,
2l + 1

2N

)
−Nς

)

= eNς

(
N−1/2q−2

∑
i,j,k,l∈Z

( 2i+1
2N

, 2j+1
2N

, 2k+1
2N

, 2l+1
2N

)∈∆′

exp
(
N · V

(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N
,
2l + 1

2N

)
−Nς

)
+O(e−Nε)

)
,

for some ε > 0.
Further, by Proposition 2.2 (Poisson summation formula), the above sum is presented

by

⟨ 73 ⟩N = eNς

(
N7/2q−2

∫
∆′

exp
(
N · V (t, s, u, v)−Nς

)
dt ds du dv +O(e−Nε)

)
, (26)

noting that we verify the assumption of Proposition 2.2 in Lemma 3.3. Furthermore, by
Proposition 2.4 (saddle point method), there exist some κ′i’s such that

⟨ 73 ⟩N = N7/2 exp
(
N · V (tc, sc, uc, vc)

)
· (2π)

2

N2

(
det(−H)

)−1/2
(
1 +

d∑
i=1

κ′iℏi +O(ℏd+1)
)
,

for any d > 0, noting that we verify the assumption of Proposition 2.4 in Lemma 3.9. Here,
(tc, sc, uc, vc) is the critical point of V which corresponds to the critical point (t0, s0, u0, v0)

of V̂ of Lemma 3.2, where V̂ is the limit of V at N → ∞ whose concrete presentation is
given in Section 3.2, and H is the Hesse matrix of V at (tc, sc, uc, vc).

We calculate the right-hand side of the above formula. Since tc = t0 +O(ℏ), sc = s0 +
O(ℏ), uc = u0+O(ℏ) and vc = v0+O(ℏ), we have that V (tc, sc, uc, vc) = V (t0, s0, u0, v0)+

O(ℏ2). Hence, by comparing V (t0, s0, u0, v0) and V̂ (t0, s0, u0, v0) = ς, we have that

V (t0, s0, u0, v0) = ς +O(ℏ).

Therefore, there exist some κi’s such that

⟨ 73 ⟩N = eNςN3/2 ω ·
(
1 +

d∑
i=1

κiℏi +O(ℏd+1)
)
,

for any d > 0. Hence, we obtain the theorem for the 73 knot.
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3.2 Estimate of the range of ∆′

In this section, we calculate the concrete values of the bounds of the inequalities in (25)
so that they satisfy that ∆−∆′ ⊂ (24).

Putting Λ as in Section 2.2, we have that

Re V̂ (t, s, u, v) = Λ(t)− 2Λ(s) + Λ(u) + Λ(v).

We consider the domain{
(t, s, u, v) ∈ ∆

∣∣ Λ(t)− 2Λ(s) + Λ(u) + Λ(v) ≥ ς
R

}
, (27)

where we put ς
R
= 0.730861... as in (29). We note that this domain is symmetric with

respect to the exchanges of t, u and v. The aim of this section is to show that this
domain is included in the interior of the domain ∆′ of (25). For this purpose, we show
the estimates of the defining inequalities of (25) for (t, s, u, v) in (27).

We calculate the minimal value tmin and the maximal value tmax of t. Since |Λ( · )| ≤
Λ(1

6
),

Λ(t) ≥ ς
R
− 4Λ

(1
6

)
= 0.084729... .

The minimal and maximal values of t are solutions of the equality of the above formula.
By calculating a solution of the equality by Newton’s method from t = 0.03, we obtain
tmin = 0.0328657... , and from t = 0.4, we obtain tmax = 0.372797... . Therefore, we obtain
an estimate of t in ∆′ as

0.03 ≤ t ≤ 0.38.

Remark 3.1. To be precise, the above argument is not partially rigorous, since we do
not estimate the error terms of the numerical solutions of Newton’s method, though the
above argument is practically useful, since we can guess that such error terms would be
sufficiently small for the above purpose. We can obtain rigorous proofs of such estimates
(the above one and the following ones) by concrete calculations (see [20, 21]), though such
calculation might often be far longer than calculations by Newton’s method.

We obtain the estimates of u and v in ∆′ in the same way as above.
We calculate the minimal value smin and the maximal value smax of s. Since Λ( · ) ≤

Λ(1
6
),

−2Λ(s) ≥ ς
R
− 3Λ

(1
6

)
= 0.246262... .

The minimal and maximal values of s are solutions of the equality of the above formula.
By calculating a solution of the equality by Newton’s method from s = 0.65, we obtain
smin = 0.69634... , and from s = 0.95, we obtain smax = 0.935251... . Therefore, we obtain
an estimate of s in ∆′ as

0.68 ≤ s ≤ 0.95.

Before calculating other estimates, we note that the domain (27) is a convex domain
such that the boundary is a smooth closed hypersurface whose sectional curvatures are
positive everywhere, which we show in Appendix A. In the following of this section, we
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consider the maximal and minimal value of some linear function L(t, s, u, v) on this do-
main. The maximal and minimal values of L(t, s, u, v) are obtained when the hyperplane
L(t, s, u, v) = c (where c is a constant) is tangent to such a domain. Such tangent points
are given by solutions of a certain system of equations, and there are exactly two solutions
of such a system of equations, since the domain is of the shape mentioned above. We
calculate such solutions in the following of this section.

We calculate the minimal value (s − t)min and the maximal value (s − t)max of s − t.
Since Λ( · ) ≤ Λ(1

6
),

Λ(t)− 2Λ(s) ≥ ς
R
− 2Λ

(1
6

)
= 0.407795... .

We note that the domain
{
Λ(t)− 2Λ(s) ≥ ς

R
− 2Λ(1

6
)
}
is a convex domain in R2 such

that its boundary is a closed curve whose curvatures are non-zero everywhere. Putting
w = s− t, its minimal and maximal values are solutions of the following equations, Λ(s− w)− 2Λ(s) = ς

R
− 2Λ

(
1
6

)
,

∂

∂s

(
Λ(s− w)− 2Λ(s)

)
= 0.

We note that there are exactly two solutions of this system of equations corresponding to
the minimal and maximal values of s− t. By calculating a solution of these equations by
Newton’s method from (w, s) = (0.4, 0.8), we obtain (s − t)min = 0.429457... , and from
(w, s) = (0.85, 0.9), we obtain (s− t)max = 0.844926... . Therefore, we obtain an estimate
of s− t in ∆′ as

0.4 ≤ s− t ≤ 0.85.

We obtain the estimate of s− u in ∆′ in the same way as above.
We calculate the maximal value (−t+2u+v)max of −t+2u+v. Putting w′ = −t+2u+v,

its maximal value is a solution of the system of the following equations,

Λ(−w′ + 2u+ v)− 2Λ(s) + Λ(u) + Λ(v) = ς
R
,

∂

∂s

(
Λ(−w′ + 2u+ v)− 2Λ(s) + Λ(u) + Λ(v)

)
= 0,

∂

∂u

(
Λ(−w′ + 2u+ v)− 2Λ(s) + Λ(u) + Λ(v)

)
= 0,

∂

∂v

(
Λ(−w′ + 2u+ v)− 2Λ(s) + Λ(u) + Λ(v)

)
= 0.

We note that there are exactly two solutions of this system of equations corresponding to
the maximal and minimal values of−t+2u+v. By calculating a solution of these equations
by Newton’s method from (w′, s, u, v) = (0.8, 0.85, 0.35, 0.2), we obtain (−t+2u+v)max =
0.801018... . Therefore, we obtain an estimate of −t+ 2u+ v in ∆′ as

−t+ 2u+ v ≤ 0.85.

We calculate the maximal value (t + 2s − 2u − v)max of t + 2s − 2u − v. Putting
w′′ = t + 2s − 2u − v, its maximal value is a solution of the system of the following
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equations, 

Λ(w′′ − 2s+ 2u+ v)− 2Λ(s) + Λ(u) + Λ(v) = ς
R
,

∂

∂s

(
Λ(w′′ − 2s+ 2u+ v)− 2Λ(s) + Λ(u) + Λ(v)

)
= 0,

∂

∂u

(
Λ(w′′ − 2s+ 2u+ v)− 2Λ(s) + Λ(u) + Λ(v)

)
= 0,

∂

∂v

(
Λ(w′′ − 2s+ 2u+ v)− 2Λ(s) + Λ(u) + Λ(v)

)
= 0.

We note that there are exactly two solutions of this system of equations corresponding
to the maximal and minimal values of t + 2s − 2u − v. By calculating a solution of
these equations by Newton’s method from (w′′, s, u, v) = (1.8, 0.9, 0.1, 0.1), we obtain
(t+ 2s− 2u− v)max = 1.77226... . Therefore, we obtain an estimate of t+ 2s− 2u− v in
∆′ as

t+ 2s− 2u− v ≤ 1.8.

3.3 Calculation of the critical value

In this section, we calculate the concrete value of a critical point of V̂ .
The differentials of V̂ are presented by

∂

∂t
V̂ (t, s, u, v) = − log(1− x) + 2π

√
−1
(
t− s+

1

2

)
,

∂

∂s
V̂ (t, s, u, v) = 2 log(1− y) + 2π

√
−1
(
− t− 2s+ 2u+ v + 1

)
,

∂

∂u
V̂ (t, s, u, v) = − log(1− z) + 2π

√
−1
(
2s− u− v − 3

2

)
,

∂

∂v
V̂ (t, s, u, v) = − log(1− w) + 2π

√
−1
(
s− u− 1

)
,

where x = e2π
√
−1 t, y = e2π

√
−1 s, z = e2π

√
−1u and w = e2π

√
−1 v.

Lemma 3.2. V̂ has a unique critical point (t0, s0, u0, v0) in P
−1(∆′), where P : C4 → R4

is the projection to the real parts of the entries.

Proof. Any critical point of V̂ is given by a solution of ∂
∂t
V̂ = ∂

∂s
V̂ = ∂

∂u
V̂ = ∂

∂v
V̂ = 0,

and these equations are rewritten,

1− x = −x
y
, (1− y)2 =

xy2

z2w
, 1− z = − y2

zw
, 1− w =

y

z
.

From the first formula, we have that x = y/(y − 1). Further, from the third formula, we
have that w = −y2/

(
z(1 − z)

)
. By substituting them into the second formula, we have

that z = −y/(y3 − 3y2 + 2y − 1). Further, by substituting them into the fourth formula,
we have that

y6 − 7y5 + 19y4 − 28y3 + 26y2 − 13y + 3 = 0.
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Its solutions are

y = 0.49542...±√
−1 ·0.342767... , 0.537981...±√

−1 ·1.04357... , 2.17069... , 2.7625... .

Among these, the solution 0.537981...−√
−1 ·1.04357... gives a solution in ∆′, from which

we have that

x0 = 0.645284...+
√
−1 · 0.801205... , t0 = 0.14209...− √

−1 · 0.00451074... ,
y0 = 0.537981...− √

−1 · 1.04357... , s0 = 0.825756...− √
−1 · 0.0255418... ,

z0 = 0.363612...+
√
−1 · 0.565801... , u0 = 0.159092...+

√
−1 · 0.0631297... ,

w0 = 1.87287...+
√
−1 · 1.51178... , v0 = 0.108085...− √

−1 · 0.139791... ,

where x0 = e2π
√
−1 t0 , y0 = e2π

√
−1 s0 , z0 = e2π

√
−1u0 and w0 = e2π

√
−1 v0 . These give a

unique critical point in P−1(∆′).

The critical value of V̂ at the critical point of Lemma 3.2 is presented by

ς = V̂ (t0, s0, u0, v0)

=
1

2π
√
−1

(
Li2(x0)− 2 Li2(y0) + Li2(z0) + Li2(w0)−

π2

6

)
+ 2π

√
−1 · 1

2

(
(s0 − t0)

2 − s20 + u20 − (s0 − u0)
2 + v20 − (s0 − u0 − v0)

2

+ t0 + 2s0 − 3u0 − 2v0
)

(28)

= 0.730861...+
√
−1 · 0.588168... .

Further, we put its real part to be ς
R
,

ς
R

= Re ς = 0.730861... . (29)

3.4 Verifying the assumption of the Poisson summation formula

In this section, we verify the assumption of the Poisson summation formula in Lemma
3.3, which is used in the proof of Theorem 1.1 for the 73 knot in Section 3.1.

By computer calculation, we can see that the maximal value of Re V̂ − ς
R
is about

0.08. Therefore, in the proof of Lemma 3.3, it is sufficient to decrease, say, Re V̂ (t +
δ
√
−1, s, u, v)− 2πδ by 0.08, by moving δ (though we do not use this value in the proof

of the lemma).
We put

f(X,Y, Z,W ) = Re V̂ (t+X
√
−1, s+ Y

√
−1, u+ Z

√
−1, v +W

√
−1)− ς

R
.

Then, we have that

∂f

∂X
= Re

(√
−1

∂

∂t
V̂ (t+X

√
−1, s+ Y

√
−1, u+ Z

√
−1, v +W

√
−1)

)
= −Im

(
− log(1− x) + 2π

√
−1
(
t− s+

1

2

))
15



= Arg (1− x) + 2π
(
s− t− 1

2

)
. (30)

Similarly, we have that

∂f

∂Y
= −2Arg (1− y) + 2π

(
t+ 2s− 2u− v − 1

)
, (31)

∂f

∂Z
= Arg (1− z)− 2π

(
2s− u− v − 3

2

)
, (32)

∂f

∂W
= Arg (1− w)− 2π

(
s− u− 1

)
. (33)

Lemma 3.3. V (t, s, u, v)− ς
R
satisfies the assumption of Proposition 2.2.

Proof. Since V (t, s, u, v) converges uniformly to V̂ (t, s, u, v) on ∆′, we show the proof

for V̂ (t, s, u, v) instead of V (t, s, u, v). We show that ∂∆′ is null-homotopic in each of
(13)–(20).

As for (13), we show that we can move ∆′ into the following domain,{
(t+ δ

√
−1, s, u, v) ∈ C4

∣∣ (t, s, u, v) ∈ ∆′, δ ≥ 0, Re V̂ (t+ δ
√
−1, s, u, v)− ς

R
< 2πδ

}
.

Hence, putting

F (δ) = Re V̂ (t+ δ
√
−1, s, u, v)− ς

R
− 2πδ = f(δ, 0, 0, 0)− 2πδ,

it is sufficient to show that there exists δ0 > 0 such that

F (δ0) < 0 for any (t, s, u, v) ∈ ∆′, and

F (δ) < 0 for any (t, s, u, v) ∈ ∂∆′ and δ ∈ [0, δ0].
(34)

Therefore, it is sufficient to show that

d

dδ
F (δ) =

∂f

∂X
(δ, 0, 0, 0)− 2π < −ε′,

for some ε′ > 0 (because, if the above formula holds, then (34) holds for a sufficiently
large δ0). Hence, it is sufficient to show that

∂f

∂X
(X, 0, 0, 0) < 2π − ε′.

Further, as for (14), similarly as above, it is sufficient to show that

∂f

∂X
(−X, 0, 0, 0) < 2π − ε′

for some ε′ > 0.
Hence, as for (13) and (14), it is sufficient to show that

−(2π − ε′) <
∂f

∂X
(X, 0, 0, 0) < 2π − ε′ (35)
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for some ε′ > 0. Since 0.03 ≤ t ≤ 0.38,

−2π
(1
2
− t
)
< Arg (1− x) < 0.

Hence, by (30),

−2π
(
1− s

)
<

∂f

∂X
< 2π

(
s− t− 1

2

)
.

Since 0.68 ≤ s and s− t ≤ 0.85,

−2π · 0.32 <
∂f

∂X
< 2π · 0.35.

Therefore, (35) is satisfied, as required.
As for (15) and (16), similarly as above, it is sufficient to show that

−(2π − ε′) ≤ ∂f

∂Y
(0, Y, 0, 0) ≤ 2π − ε′ (36)

for some ε′ > 0. Since 0.68 ≤ s ≤ 0.95,

0 < Arg (1− y) < 2π
(
s− 1

2

)
.

Hence, by (31),

−2π
(
− t+ 2u+ v

)
<

∂f

∂Y
< 2π

(
t+ 2s− 2u− v − 1

)
.

Since −t+ 2u+ v ≤ 0.85 and t+ 2s− 2u− v ≤ 1.8,

−2π · 0.85 <
∂f

∂Y
< 2π · 0.8.

Therefore, (36) is satisfied, as required.
As for (17) and (18), similarly as above, it is sufficient to show that

−(2π − ε′) ≤ ∂f

∂Z
(0, 0, Z, 0) ≤ 2π − ε′ (37)

for some ε′ > 0. Since 0.03 ≤ u ≤ 0.38,

−2π
(1
2
− u
)
< Arg (1− z) < 0.

Hence, by (32),

−2π
(
2s− 2u− v − 1

)
<

∂f

∂Z
< 2π

(3
2
− 2s+ u+ v

)
.

Since 2s−2u−v = 2(s−u)−v ≤ 2 ·0.85 = 1.7 and −2s+u+v ≤ −2 ·0.68+0.38+0.38 ≤
−0.6,

−2π · 0.7 <
∂f

∂Z
< 2π · 0.9.
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Therefore, (37) is satisfied, as required.
As for (19) and (20), similarly as above, it is sufficient to show that

−(2π − ε′) ≤ ∂f

∂W
(0, 0, 0,W ) ≤ 2π − ε′ (38)

for some ε′ > 0. Since 0.03 ≤ v ≤ 0.38,

−2π
(1
2
− v
)
< Arg (1− w) < 0.

Hence, by (33),

−2π
(
s− u− v − 1

2

)
<

∂f

∂W
< 2π

(
1− s+ u

)
.

Since 0.4 ≤ s− u ≤ 0.85 and v > 0,

−2π · 0.35 <
∂f

∂W
< 2π · 0.6.

Therefore, (38) is satisfied, as required.

3.5 Verifying the assumption of the saddle point method

In this section, we verify the assumption of the saddle point method in Lemma 3.9. In
order to show this lemma, we show Lemmas 3.4–3.8 in advance.

Lemma 3.4. Fixing Y , Z and W , we regard f as a function of X.
(1) If s− t ≤ 1

2
, then f is monotonically decreasing as a function of X.

(2) If s − t > 1
2
, then f has a unique minimal point as a function of X. In particular,

this minimal point goes to ∞ as s− t→ 1
2
+ 0.

Proof. Since x = e2π
√
−1 (t+X

√
−1) and 0.03 ≤ t ≤ 0.38,

−2π
(1
2
− t
)
< Arg (1− x) < 0,

and Arg (1−x) is monotonically increasing as a function of X. Hence, by (30), ∂f
∂X

is also
monotonically increasing as a function of X. Further,

∂f

∂X

∣∣∣
X→∞

= 2π
(
s− t− 1

2

)
,

∂f

∂X

∣∣∣
X→−∞

= −2π
(
1− s

)
< 0.

If s− t ≤ 1
2
, then ∂f

∂X
is always negative, and (1) holds.

If s− t > 1
2
, then there is a unique zero of ∂f

∂X
, which gives a unique minimal point of

f , and (2) holds.
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Lemma 3.5. Fixing X, Z and W , we regard f as a function of Y .
(1) If t− 2u− v ≥ 0, then f is monotonically increasing as a function of Y .
(2) If t+ 2s− 2u− v ≤ 1, then f is monotonically decreasing as a function of Y .
(3) If t − 2u − v < 0 and t + 2s − 2u − v > 1, then f has a unique minimal point as a
function of Y . In particular, this minimal point goes to −∞ as t − 2u − v → −0, and
goes to ∞ as t+ 2s− 2u− v → 1 + 0.

Proof. Since y = e2π
√
−1 (s+Y

√
−1) and 0.68 ≤ s ≤ 0.95,

0 < Arg (1− y) < 2π
(
s− 1

2

)
,

and Arg (1 − y) is monotonically decreasing as a function of Y . Hence, by (31), ∂f
∂Y

is
monotonically increasing as a function of Y . Further,

∂f

∂Y

∣∣∣
Y→∞

= 2π
(
t+ 2s− 2u− v − 1

)
,

∂f

∂Y

∣∣∣
Y→−∞

= −2π
(
− t+ 2u+ v

)
.

If t− 2u− v ≥ 0, then ∂f
∂Y

is always positive, and (1) holds.

If t+ 2s− 2u− v ≤ 1, then ∂f
∂Y

is always negative, and (2) holds.

If t− 2u− v < 0 and t+2s− 2u− v > 1, then there is a unique zero of ∂f
∂Y

, which gives
a unique minimal point of f , and (3) holds.

Lemma 3.6. Fixing X, Y and W , we regard f as a function of Z.
(1) If 2s− 2u− v ≤ 1, then f is monotonically increasing as a function of Z.
(2) If 2s− u− v ≥ 3

2
, then f is monotonically decreasing as a function of Z.

(3) If 2s−2u−v > 1 and 2s−u−v < 3
2
, then f has a unique minimal point as a function

of Z. In particular, this minimal point goes to −∞ as 2s− 2u− v → 1 + 0, and goes to
∞ as 2s− u− v → 3

2
− 0.

Proof. Since z = e2π
√
−1 (u+Z

√
−1) and 0.03 ≤ u ≤ 0.38,

−2π
(1
2
− u
)
< Arg (1− z) < 0,

and Arg (1− z) is monotonically increasing as a function of Z. Hence, by (32), ∂f
∂Z

is also
monotonically increasing as a function of Z. Further,

∂f

∂Z

∣∣∣
Z→∞

= 2π
(3
2
− 2s+ u+ v

)
,

∂f

∂Z

∣∣∣
Z→−∞

= −2π
(
2s− 2u− v − 1

)
.

If 2s− 2u− v ≤ 1, then ∂f
∂Z

is always positive, and (1) holds.

If 2s− u− v ≥ 3
2
, then ∂f

∂Z
is always negative, and (2) holds.

If 2s− 2u− v > 1 and 2s− u− v < 3
2
, then there is a unique zero of ∂f

∂Z
, which gives a

unique minimal point of f , and (3) holds.
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Lemma 3.7. Fixing X, Y and Z, we regard f as a function of W .
(1) If s− u− v ≤ 1

2
, then f is monotonically increasing as a function of W .

(2) If s−u−v > 1
2
, then f has a unique minimal point as a function of W . In particular,

this minimal point goes to −∞ as s− u− v → 1
2
+ 0.

Proof. Since w = e2π
√
−1 (v+W

√
−1) and 0.03 ≤ v ≤ 0.38,

−2π
(1
2
− v
)
< Arg (1− w) < 0,

and Arg (1 − w) is monotonically increasing as a function of W . Hence, by (33), ∂f
∂W

is
also monotonically increasing as a function of W . Further,

∂f

∂W

∣∣∣
W→∞

= 2π
(
1− s+ u

)
> 0,

∂f

∂W

∣∣∣
W→−∞

= −2π
(
s− u− v − 1

2

)
.

If s− u− v ≤ 1
2
, then ∂f

∂W
is always positive, and (1) holds.

If s−u− v > 1
2
, then there is a unique zero of ∂f

∂W
, which gives a unique minimal point

of f , and (2) holds.

Lemma 3.8. In the fiber of the projection C4 → R4 at (t, s, u, v) ∈ ∆′, we consider the
flow from (X,Y, Z,W ) = (0, 0, 0, 0) determined by the vector field (− ∂f

∂X
,− ∂f

∂Y
,− ∂f

∂Z
,− ∂f

∂W
).

(1) If s− t > 1
2
, t− 2u− v < 0, t+ 2s− 2u− v > 1, 2s− 2u− v > 1, 2s− u− v < 3

2

and s− u− v > 1
2
, then f has a unique minimal point, and the flow goes to this minimal

point.
(2) Otherwise, the flow goes to infinity.

Proof. From the definition of f , we have that

f(X,Y, Z,W ) = Re
1

2π
√
−1

(
Li2(e

2π
√
−1 (t+X

√
−1))

)
+ 2π

(
s− t− 1

2

)
X

− 2Re
1

2π
√
−1

(
Li2(e

2π
√
−1 (s+Y

√
−1))

)
+ 2π

(
2s+ t− 2u− v − 1

)
Y

+Re
1

2π
√
−1

(
Li2(e

2π
√
−1 (u+Z

√
−1))

)
+ 2π

(
− 2s+ u+ v +

3

2

)
Z

+Re
1

2π
√
−1

(
Li2(e

2π
√
−1 (v+W

√
−1))

)
+ 2π

(
1− s+ u

)
W − ς

R
,

and the contributions from X, Y , Z, W to f are independent. Hence, by Lemmas 3.4,
3.5, 3.6 and 3.7, if the assumption of (1) holds, then f has a unique minimal point, and
(1) holds. Otherwise, at least one of X, Y , Z, W goes to infinity by the flow, and (2)
holds.

Lemma 3.9. When we apply Proposition 2.4 to (26), the assumption of Proposition 2.4
holds.
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Proof. We show that there exists a homotopy ∆′
δ (0 ≤ δ ≤ 1) between ∆′

0 = ∆′ and ∆′
1

such that

(t0, s0, u0, v0) ∈ ∆′
1, (39)

∆′
1 − {(t0, s0, u0, v0)} ⊂

{
(t, s, u, v) ∈ C4

∣∣ Re V̂ (t, s, u, v) < ς
R

}
, (40)

∂∆′
δ ⊂

{
(t, s, u, v) ∈ C4

∣∣ Re V̂ (t, s, u, v) < ς
R

}
. (41)

We put g1(t, s, u, v), g2(t, s, u, v), g3(t, s, u, v), g4(t, s, u, v) to be the minimal points of
Lemmas 3.4, 3.5, 3.6, 3.7 respectively. For a sufficiently large R > 0, we put

ĝ1(t, s, u, v) =

{
R if s−t ≤ 1

2
,

min {R, g1(t, s, u, v)} if s−t > 1
2
,

ĝ2(t, s, u, v) =


R if t+2s−2u−v ≤ 1,

min
{
R,max {−R, g2(t, s, u, v)}

}
if t−2u−v < 0, t+2s−2u−v > 1,

−R if t−2u−v ≥ 0,

ĝ3(t, s, u, v) =


R if 2s−u−v ≥ 3

2
,

min
{
R,max {−R, g3(t, s, u, v)}

}
if 2s−2u−v > 1, 2s−u−v < 3

2
,

−R if 2s−2u−v ≤ 1,

ĝ4(t, s, u, v) =

{
max {−R, g4(t, s, u, v)} if s−u−v > 1

2
,

−R if s−u−v ≤ 1
2
,

g(t, s, u, v) =
(
g1(t, s, u, v), g2(t, s, u, v), g3(t, s, u, v), g4(t, s, u, v)

)
,

ĝ(t, s, u, v) =
(
ĝ1(t, s, u, v), ĝ2(t, s, u, v), ĝ3(t, s, u, v), ĝ4(t, s, u, v)

)
.

We note that, since g1(t, s, u, v) → ∞ as s − t → 1
2
+ 0, ĝ1(t, s, u, v) is continuous, and

similarly, we can check that ĝ2(t, s, u, v), ĝ3(t, s, u, v), ĝ4(t, s, u, v) and ĝ(t, s, u, v) are also
continuous. We set the ending of the homotopy by

∆′
1 =

{
(t, s, u, v) + ĝ(t, s, u, v)

√
−1 ∈ C4

∣∣ (t, s, u, v) ∈ ∆′}.
Further, we define the internal part ∆′

δ (0 < δ < 1) of the homotopy by setting it along
the flow from

(
t, s, u, v

)
determined by the vector field

(
− ∂f

∂X
,− ∂f

∂Y
,− ∂f

∂Z
,− ∂f

∂W

)
.

We show (41), as follows. From the definition of ∆′,

∂∆′ ⊂
{
(t, s, u, v) ∈ C4

∣∣ Re V̂ (t, s, u, v) < ς
R

}
.

Further, by the construction of the homotopy, Re V̂ monotonically decreases by the ho-
motopy. Hence, (41) holds.

We show (39) and (40), as follows. Consider the following functions

F (t, s, u, v,X, Y, Z,W ) = Re V̂
(
t+X

√
−1, s+ Y

√
−1, u+ Z

√
−1, v +W

√
−1
)
,

h(t, s, u, v) = F
(
t, s, u, v, ĝ(t, s, u, v)

)
.
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When the assumption of (1) of Lemma 3.8 does not hold, the flow goes to infinity
by Lemma 3.8 (2), and −h(t, s, u, v) is sufficiently large (because we let R be suffi-
ciently large), and hence, (40) holds in this case. The remaining case is the case where
ĝ(t, s, u, v) = g(t, s, u, v). In this case, we show (40), as follows. It is shown from the
definition of g(t, s, u, v) that

∂F

∂X
=

∂F

∂Y
=

∂F

∂Z
=

∂F

∂W
= 0 at (X, Y, Z,W ) = g(t, s, u, v).

Hence,

Im
∂V̂

∂t
= Im

∂V̂

∂s
= Im

∂V̂

∂u
= Im

∂V̂

∂v
= 0, at (t, s, u, v) + g(t, s, u, v)

√
−1 .

Further,

∂h

∂t
= Re

∂V̂

∂t
,

∂h

∂s
= Re

∂V̂

∂s
,

∂h

∂u
= Re

∂V̂

∂u
,

∂h

∂v
= Re

∂V̂

∂v
,

at (t, s, u, v) + g(t, s, u, v)
√
−1 .

Therefore, when (t, s, u, v) is a critial point of h(t, s, u, v),
(
(t, s, u, v) + g(t, s, u, v)

√
−1
)

is a critical point of V̂ . Hence, by Lemma 3.2, h(t, s, u, v) has a unique maximal point at
(t, s, u, v) = (Re t0,Re s0,Reu0,Re v0). Therefore, (39) and (40) hold.

4 The 74 knot

In this section, we show Theorem 1.1 for the 74 knot. We give a proof of the theorem in
Section 4.1, using lemmas shown in Sections 4.2–4.5.

4.1 Proof of Theorem 1.1 for the 74 knot

In this section, we show a proof of Theorem 1.1 for the 74 knot.
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The 74 knot is the closure of the following tangle.

0

n 0

i
1

0 i−1 0

j

0

k

l

0 l−1 0

1

0
m

1
0

As shown in [32], we can put the labelings of edges adjacent to the unbounded regions as
shown above. Hence, from the definition of the Kashaev invariant, the Kashaev invariant
of the 74 knot is presented by

⟨ 74 ⟩N =
∑

q1/2 × N q−
1
2

(q)N−n(q)n−1

× N q−
1
2
+i

(q)i−n(q)n−1(q)N−i
× N q−

1
2
−i+1

(q)N−j(q)j−i(q)i−1

× N q−
1
2

(q)N−j(q)j−k(q)k−1

× N q−
1
2
+l

(q)l−k(q)k−l(q)N−l
× N q−

1
2
−l+1

(q)N−m(q)m−l(q)l−1

× N q−
1
2

(q)N−m(q)m−1

=
∑

0<i≤j≤N
0<k≤l≤N

k≤j

N5 q−1

(q)i−1(q)N−i(q)j−i(q)N−j(q)N−j(q)j−k(q)k−1(q)k−1(q)l−k(q)l−1(q)N−l

=
∑

0≤i≤j<N
0≤k≤l<N

k≤j

N5 q−1

(q)i(q)N−i−1(q)j−i(q)N−j−1(q)N−j−1(q)j−k(q)k(q)k(q)l−k(q)l(q)N−l−1

=
∑

0≤i<N−j
0≤j,k, j+k<N

0≤l<N−k

N5 q−1

(q)i+j(q)N−i−j−1(q)i(q)j(q)j(q)N−j−k−1(q)k(q)k(q)l(q)k+l(q)N−k−l−1

,

where we obtain the third equality by replacing i, j, k, l with i + 1, j + 1, k + 1, l + 1
respectively, and obtain the last equality by replacing i, j and l with N − i − j − 1,
N − j − 1 and k + l respectively.

23



Proof of Theorem 1.1 for the 74 knot. By (5), the above presentation of ⟨ 74 ⟩N is rewritten

⟨ 74 ⟩N = N5q−1
∑

0≤i<N−j
0≤j,k, j+k<N

0≤l<N−k

exp
(
N Ṽ

(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N
,
2l + 1

2N

))
,

where we put

Ṽ (t, s, u, v) =
1

N

(
− φ

(
t+ s− 1

2N

)
− φ

(
1− t− s+

1

2N

)
+ φ(t) + φ(s)− φ(1− s)

− φ
(
s+ u− 1

2N

)
+ φ(u)− φ(1− u) + φ(v)− φ

(
u+ v − 1

2N

)
− φ

(
1− u− v +

1

2N

)
− 4φ

( 1

2N

)
+ 7φ

(
1− 1

2N

))
=

1

N

(
φ(t) + 2φ(s)− φ

(
s+ u− 1

2N

)
+ 2φ(u) + φ(v)

)
+

1

2π
√
−1

π2

2
− 11

2N
logN +

3π
√
−1

4N
− π

√
−1

4N2

+ 2π
√
−1 · 1

2

((
t+ s− 1

2N

)2
+ s2 + u2 +

(
u+ v − 1

2N

)2 − t− 2s− 2u− v +
2

3
+

1

N

)
.

Here, we obtain the last equality by (9) and (10). Hence, by putting

V (t, s, u, v) = Ṽ (t, s, u, v) +
11

2N
logN,

the presentation of ⟨ 74 ⟩N is rewritten

⟨ 74 ⟩N = N−1/2q−1
∑

i,j,k,l∈Z
( 2i+1

2N
, 2j+1

2N
, 2k+1

2N
, 2l+1

2N
)∈∆

exp
(
N V

(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N
,
2l + 1

2N

))
,

where the range of (2i+1
2N

, 2j+1
2N

, 2k+1
2N

, 2l+1
2N

) of the sum is given by the following domain,

∆ =
{
(t, s, u, v) ∈ R4

∣∣ 0 ≤ t ≤ 1− s, 0 ≤ s, u, s+ u ≤ 1, 0 ≤ v ≤ 1− u
}
.

By Proposition 2.1, as N → ∞, V (t, s, u, v) converges to the following V̂ (t, s, u, v) in the
interior of ∆,

V̂ (t, s, u, v) =
1

2π
√
−1

(
Li2(e

2π
√
−1 t) + 2Li2(e

2π
√
−1 s)− Li2(e

2π
√
−1 (s+u))

+ 2Li2(e
2π

√
−1u) + Li2(e

2π
√
−1 v) +

π2

2

)
+ 2π

√
−1 · 1

2

(
(t+ s)2 + s2 + u2 + (u+ v)2 − t− 2s− 2u− v +

2

3

)
.

By concrete calculation, we can check that the boundary of ∆ is included in the domain{
(t, s, u, v) ∈ ∆

∣∣ Re V̂ (t, s, u, v) < ς
R
− ε
}

(42)
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for some sufficiently small ε > 0, where we put ς
R
= 0.817729... as in (48); we will know

later that this value is equal to the real part of the critical value of V̂ at the critical point
of Lemma 4.1. Hence, similarly as in Section 3.1, we choose a new domain ∆′, which
satisfies that ∆−∆′ ⊂ (42), as

∆′ =

{
(t, s, u, v) ∈ ∆

∣∣∣∣∣ 0.02 ≤ t ≤ 0.45, 0.1 ≤ s ≤ 0.45
0.1 ≤ u ≤ 0.45, 0.02 ≤ v ≤ 0.45

}
, (43)

where we calculate the concrete values of the bounds of these inequalities in Section 4.2.
Hence, since ∆−∆′ ⊂ (42), we obtain the second equality of the following formula,

⟨ 74 ⟩N = eNςN−1/2q−1
∑

i,j,k,l∈Z
( 2i+1

2N
, 2j+1

2N
, 2k+1

2N
, 2l+1

2N
)∈∆

exp
(
N · V

(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N
,
2l + 1

2N

)
−Nς

)

= eNς

(
N−1/2q−1

∑
i,j,k,l∈Z

( 2i+1
2N

, 2j+1
2N

, 2k+1
2N

, 2l+1
2N

)∈∆′

exp
(
N · V

(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N
,
2l + 1

2N

)
−Nς

)
+O(e−Nε)

)
,

for some ε > 0.
Further, by Proposition 2.2 (Poisson summation formula), the above sum is presented

by

⟨ 74 ⟩N = eNς

(
N7/2q−1

∫
∆′

exp
(
N · V (t, s, u, v)−Nς

)
dt ds du dv +O(e−Nε)

)
, (44)

noting that we verify the assumption of Proposition 2.2 in Lemma 4.2. Furthermore, by
Proposition 2.4 (saddle point method), there exist some κ′i’s such that

⟨ 74 ⟩N = N7/2 exp
(
N · V (tc, sc, uc, vc)

)
· (2π)

2

N2

(
det(−H)

)−1/2
(
1 +

d∑
i=1

κ′iℏi +O(ℏd+1)
)
,

for any d > 0, noting that we verify the assumption of Proposition 2.4 in Lemma 4.7. Here,
(tc, sc, uc, vc) is the critical point of V which corresponds to the critical point (t0, s0, u0, v0)

of V̂ of Lemma 4.1, where V̂ is the limit of V at N → ∞ whose concrete presentation is
given in Section 4.2, and H is the Hesse matrix of V at (tc, sc, uc, vc).

We calculate the right-hand side of the above formula. Similarly as in Section 3.1, we
have that

V (t0, s0, u0, v0) = ς +O(ℏ).
Therefore, there exist some κi’s such that

⟨ 74 ⟩N = eNςN3/2 ω ·
(
1 +

d∑
i=1

κiℏi +O(ℏd+1)
)
,

for any d > 0. Hence, we obtain the theorem for the 74 knot.
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4.2 Estimate of the range of ∆′

In this section, we calculate the concrete values of the bounds of the inequalities in (43)
so that they satisfy that ∆−∆′ ⊂ (42).

Putting Λ as in Section 2.2, we have that

Re V̂ (t, s, u, v) = Λ(t) + 2Λ(s)− Λ(s+ u) + 2Λ(u) + Λ(v).

We consider the domain{
(t, s, u, v) ∈ ∆

∣∣ Λ(t) + 2Λ(s)− Λ(s+ u) + 2Λ(u) + Λ(v) ≥ ς
R

}
, (45)

where we put ς
R
= 0.817729... as in (48). The aim of this section is to show that this

domain is included in the interior of the domain ∆′ of (43). For this purpose, we show
the estimates of the defining inequalities of (43) for (t, s, u, v) in (45).

Since Λ(v) ≤ Λ
(
1
6

)
,

Λ(t) + 2Λ(s)− Λ(s+ u) + 2Λ(u) ≥ ς
R
− Λ

(1
6

)
.

Further, since Λ(t) ≤ Λ
(
1
6

)
,

2 Λ(s)− Λ(s+ u) + 2Λ(u) ≥ ς
R
− 2Λ

(1
6

)
.

We calculate the minimal value tmin and the maximal value tmax of t. They are solutions
of the system of the following equations,

Λ(t) + 2Λ(s)− Λ(s+ u) + 2Λ(u) = ς
R
− Λ

(
1
6

)
,

∂

∂s

(
Λ(t) + 2Λ(s)− Λ(s+ u) + 2Λ(u)

)
= 0,

∂

∂u

(
Λ(t) + 2Λ(s)− Λ(s+ u) + 2Λ(u)

)
= 0.

We note that there are exactly two solutions of this system of equations corresponding
to the maximal and minimal values of t (see Appendix A). By calculating a solution of
these equations by Newton’s method from (t, s, u) = (0.03, 0.2, 0.2), we obtain tmin =
0.0259764... , and from (t, s, u) = (0.4, 0.2, 0.2), we obtain tmax = 0.391511... . Therefore,
we obtain an estimate of t in ∆′ as

0.02 ≤ t ≤ 0.45.

We calculate the minimal value smin and the maximal value smax of s. They are
solutions of the following equations, 2Λ(s)− Λ(s+ u) + 2Λ(u) = ς

R
− 2Λ

(
1
6

)
,

∂

∂u

(
2Λ(s)− Λ(s+ u) + 2Λ(u)

)
= 0.
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By calculating a solution of these equations by Newton’s method from (s, u) = (0.1, 0.2),
we obtain smin = 0.104088... , and from (s, u) = (0.4, 0.2), we obtain smax = 0.441784... .
Therefore, we obtain an estimate of s in ∆′ as

0.1 ≤ s ≤ 0.45.

We obtain the estimates of u and v from the above estimates by the symmetry (46).

4.3 Calculation of the critical value

In this section, we calculate the concrete value of a critical point of V̂ .
The differentials of V̂ are presented by

∂

∂t
V̂ (t, s, u, v) = − log(1− x) + 2π

√
−1
(
t+ s− 1

2

)
,

∂

∂s
V̂ (t, s, u, v) = −2 log(1− y) + log(1− yz) + 2π

√
−1 (t+ 2s− 1),

∂

∂u
V̂ (t, s, u, v) = −2 log(1− z) + log(1− yz) + 2π

√
−1 (2u+ v − 1),

∂

∂v
V̂ (t, s, u, v) = − log(1− w) + 2π

√
−1
(
u+ v − 1

2

)
,

where x = e2π
√
−1 t, y = e2π

√
−1 s, z = e2π

√
−1u and w = e2π

√
−1 v.

Lemma 4.1. V̂ has a unique critical point (t0, s0, u0, v0) in P
−1(∆′), where P : C4 → R4

is the projection to the real parts of the entries.

Proof. Any critical point of V̂ is given by a solution of ∂
∂t
V̂ = ∂

∂s
V̂ = ∂

∂u
V̂ = ∂

∂v
V̂ = 0,

and these equations are rewritten,

1− x = −xy, (1− y)2 = xy2(1− yz), (1− z)2 = z2w(1− yz), 1− w = −zw.

From the first formula, we have that x = 1/(1− y). By substituting this into the second
formula, we have that z = (y3−2y2+3y−1)/y3. Further, by the fourth formula, we have
that w = 1/(1− z). By substituting these into the third formula, we have that

(y3 + 2y − 1)(y4 − 4y3 + 8y2 − 5y + 1) = 0.

Its solutions are

y = − 0.226699...± √
−1 · 1.46771... , 0.453398... ,

0.429304...± √
−1 · 0.10728... , 1.5707...± √

−1 · 1.62477... .

Among these, the first solution gives a solution in ∆′, from which we have that

x0 = 0.335258...+
√
−1 · 0.401127... , t0 = 0.139198...+

√
−1 · 0.103226... ,

y0 = −0.226699...+
√
−1 · 1.46771... , s0 = 0.27439...− √

−1 · 0.0629445... ,
z0 = y0, u0 = s0,

w0 = x0, v0 = t0,
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where x0 = e2π
√
−1 t0 , y0 = e2π

√
−1 s0 , z0 = e2π

√
−1u0 and w0 = e2π

√
−1 v0 . These give a

unique critical point in P−1(∆′).

We note that V̂ and the set of critical points of V̂ have the following symmetry,

(t, s, u, v) 7−→ (v, u, s, t). (46)

The critical value of V̂ at the critical point of Lemma 4.1 is presented by

ς = V̂ (t0, s0, u0, v0)

=
1

2π
√
−1

(
Li2(x0) + 2Li2(y0)− Li2(y0z0) + 2Li2(z0) + Li2(w0) +

π2

2

)
+ 2π

√
−1 · 1

2

(
(t0 + s0)

2 + s20 + u20 + (u0 + v0)
2 − t0 − 2s0 − 2u0 − v0 +

2

3

)
(47)

= 0.817729...− √
−1 · 1.50254... .

Further, we put its real part to be ς
R
,

ς
R

= Re ς = 0.817729... . (48)

4.4 Verifying the assumption of the Poisson summation formula

In this section, we verify the assumption of the Poisson summation formula in Lemma
4.2, which is used in the proof of Theorem 1.1 for the 74 knot in Section 4.1.

By computer calculation, we can see that the maximal value of Re V̂ − ς
R
is about

0.09. Therefore, in the proof of Lemma 4.2, it is sufficient to decrease, say, Re V̂ (t +
δ
√
−1, s, u, v)− 2πδ by 0.09, by moving δ (though we do not use this value in the proof

of the lemma).
We put

f(X,Y, Z,W ) = Re V̂ (t+X
√
−1, s+ Y

√
−1, u+ Z

√
−1, v +W

√
−1)− ς

R
.

Then, we have that

∂f

∂X
= Arg (1− x)− 2π

(
t+ s− 1

2

)
, (49)

∂f

∂Y
= 2Arg (1− y)− Arg (1− yz)− 2π

(
t+ 2s− 1

)
, (50)

∂f

∂Z
= 2Arg (1− z)− Arg (1− yz)− 2π

(
2u+ v − 1

)
, (51)

∂f

∂W
= Arg (1− w)− 2π

(
u+ v − 1

2

)
. (52)

Lemma 4.2. V (t, s, u, v)− ς
R
satisfies the assumption of Proposition 2.2.

28



Proof. Since V (t, s, u, v) converges uniformly to V̂ (t, s, u, v) on ∆′, we show the proof

for V̂ (t, s, u, v) instead of V (t, s, u, v). We show that ∂∆′ is null-homotopic in each of
(13)–(20).

As for (13) and (14), similarly as in the proof of Lemma 3.3, it is sufficient to show
that

−(2π − ε′) <
∂f

∂X
(X, 0, 0, 0) < 2π − ε′ (53)

for some ε′ > 0. Since 0.02 ≤ t ≤ 0.45,

−2π
(1
2
− t
)
< Arg (1− x) < 0.

Hence, by (49),

−2π · s <
∂f

∂X
< 2π

(1
2
− t− s

)
.

Since s ≤ 0.45 and t, s > 0,

−2π · 0.45 <
∂f

∂X
< 2π · 0.5.

Therefore, (53) is satisfied, as required.
As for (15) and (16), similarly as above, it is sufficient to show that

−(2π − ε′) <
∂f

∂Y
(0, Y, 0, 0) < 2π − ε′ (54)

for some ε′ > 0. Since 0.1 ≤ s ≤ 0.45,

−2π
(1
2
− s
)
< Arg (1− y) < 0.

Further, since 0.2 ≤ s+ u ≤ 0.9,

min
{
− 2π

(1
2
− s− u), 0

}
≤ Arg (1− yz) ≤ max

{
0, 2π

(
s+ u− 1

2
)
}
.

Hence, by (50),

∂f

∂Y
> min

{
− 2π(1− 2s), −2π

(
u− s+

1

2
)
}

≥ min
{
− 2π · 0.8, −2π · 0.85

}
= −2π · 0.85,

∂f

∂Y
< max

{
2π
(1
2
− s− u), 0

}
≤ max

{
2π · 0.3, 0

}
= 2π · 0.3,

since 0.1 ≤ s and 0.1 ≤ u ≤ 0.45. Therefore, (54) is satisfied, as required.
We obtain (17), (18), (19) and (20) from the above cases by the symmetry (46).

29



4.5 Verifying the assumption of the saddle point method

In this section, we verify the assumption of the saddle point method in Lemma 4.7. In
order to show this lemma, we show Lemmas 4.3–4.6 in advance.

From the definition of f , we have that

f(X, Y, Z,W ) = Re
1

2π
√
−1

(
Li2(x) + 2Li2(y)− Li2(yz) + 2Li2(z) + Li2(w)

)
− 2π

(
s+ t− 1

2

)
X − 2π(t+ 2s− 1)Y − 2π(2u+ v − 1)Z − 2π

(
u+ v − 1

2

)
W,

where x = e2π
√
−1 (t+X

√
−1), y = e2π

√
−1 (s+Y

√
−1), z = e2π

√
−1 (u+Z

√
−1) and w = e2π

√
−1 (v+W

√
−1).

Hence, since the contributions to f from X, W and (Y, Z) are independent, we consider
each of the contributions independently.

Lemma 4.3. Fixing Y , Z and W , we regard f as a function of X.
(1) If t+ s ≥ 1

2
, then f is monotonically decreasing as a function of X.

(2) If t + s < 1
2
, then f has a unique minimal point as a function of X. In particular,

this minimal point goes to ∞ as t+ s→ 1
2
− 0.

Proof. Since x = e2π
√
−1 (t+X

√
−1) and 0.02 ≤ t ≤ 0.45,

−2π
(1
2
− t
)
< Arg (1− x) < 0,

and Arg (1−x) is monotonically increasing as a function of X. Hence, by (49), ∂f
∂X

is also
monotonically increasing as a function of X. Further,

∂f

∂X

∣∣∣
X→∞

= 2π
(1
2
− t− s

)
,

∂f

∂X

∣∣∣
X→−∞

= −2π · s < 0.

If t+ s ≥ 1
2
, then ∂f

∂X
is always negative, and (1) holds.

If t+ s < 1
2
, then there is a unique zero of ∂f

∂X
, which gives a unique minimal point of

f , and (2) holds.

Lemma 4.4. Fixing X, Y and Z, we regard f as a function of W .
(1) If u+ v ≥ 1

2
, then f is monotonically decreasing as a function of W .

(2) If u + v < 1
2
, then f has a unique minimal point as a function of W . In particular,

this minimal point goes to ∞ as u+ v → 1
2
− 0.

Proof. The lemma is obtained from Lemma 4.3 by the symmetry (46).

In order to calculate the contribution to f from (Y, Z), we put

f̂(Y, Z) = Re
1

2π
√
−1

(
2 Li2(y)−Li2(yz)+2Li2(z)

)
−2π(t+2s−1)Y −2π(2u+v−1)Z,
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where y = e2π
√
−1 (s+Y

√
−1) and z = e2π

√
−1 (u+Z

√
−1). By (50) and (51),

∂f̂

∂Y
= 2Arg (1− y)− Arg (1− yz)− 2π

(
t+ 2s− 1

)
, (55)

∂f̂

∂Z
= 2Arg (1− z)− Arg (1− yz)− 2π

(
2u+ v − 1

)
. (56)

We consider the behavior of f̂ in the following two lemmas, depending on the sign of
s+ u− 1

2
.

Lemma 4.5. In the fiber of the projection C4 → R4 at (t, s, u, v) ∈ ∆′ satisfying that
s+ u ≥ 1

2
, t+ s < 1

2
and u+ v < 1

2
, we consider the flow from (Y, Z) = (0, 0) determined

by the vector field (− ∂f̂
∂Y
,− ∂f̂

∂Z
). Then, f̂ has a unique minimal point, and the flow goes

there.

Proof. Since y = e2π
√
−1 (s+Y

√
−1), d

dY
= −2πy d

dy
. Hence,

∂2f̂

∂Y 2
= −2π y

∂

∂y

(
Im
(
2 log(1− y)− log(1− yz)

))
= 2π Im

( 2y

1− y
− yz

1− yz

)
= 2π Im

( 2

1− y
− 1

1− yz

)
.

Therefore, by calculating other entries similarly, the Hesse matrix of f̂ is presented by

2π

(
2a1 + b b

b 2a2 + b

)
(57)

where we put

a1 = Im
1

1− y
, a2 = Im

1

1− z
, b = Im

−1

1− yz
,

noting that there numbers are positive. Since we can verify that the trace and the deter-
minant of this matrix are positive, the Hesse matrix of f̂ is positive definite, and f̂ is a
convex function.

We consider the behavior of f̂ at infinity. By (11), 1
2π
f̂ is approximated by the following

function,

F (Y, Z) = 2

({
0 if Y ≥ 0(
s− 1

2

)
Y if Y < 0

)
−

({
0 if Y + Z ≥ 0(
s+ u− 1

2

)
(Y + Z) if Y + Z < 0

)

+ 2

({
0 if Z ≥ 0(
u− 1

2

)
Z if Z < 0

)
− (t+ 2s− 1)Y − (2u+ v − 1)Z

=

({
(1− t− 2s)Y if Y ≥ 0

−t Y if Y < 0

)
−

({
0 if Y + Z ≥ 0(
s+ u− 1

2

)
(Y + Z) if Y + Z < 0

)

+

({
(1− 2u− v)Z if Z ≥ 0

−v Z if Z < 0

)
.
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Since t > 0, t + 2s < 1
2
+ 0.45 = 0.95, s + u ≥ 1

2
, 2u + v < 1

2
+ 0.45 = 0.95 and v > 0,

F (Y, Z) → ∞ as Y 2 + Z2 → ∞. Since f̂ is convex, f̂ has a unique minimal point, and
the flow goes there, as required.

Lemma 4.6. In the fiber of the projection C4 → R4 at (t, s, u, v) ∈ ∆′ satisfying that
s+ u < 1

2
, t+ s < 1

2
and u+ v < 1

2
, we consider the flow from (Y, Z) = (0, 0) determined

by the vector field (− ∂f̂
∂Y
,− ∂f̂

∂Z
).

(1) If t+ s+ u > 1
2
and s+ u+ v > 1

2
, then f̂ has a unique minimal point, and the flow

goes there.
(2) Otherwise, the flow goes to infinity.

Proof. When Y > 0, we show that the flow goes in a direction decreasing Y , as follows.
Since y = e2π

√
−1 (s+Y

√
−1), 0.1 ≤ s ≤ 0.45 and Y > 0,

−π
(1
2
− s
)
< Arg (1− y).

Further, since s+ u < 1
2
,

Arg (1− yz) < 0.

Hence, by (55),

∂f̂

∂Y
> −2π

(1
2
− s
)
− 2π(t+ 2s− 1) = 2π

(1
2
− t− s

)
> 0.

Therefore, the flow goes in a direction decreasing Y .
When Z > 0, it follows from the above case by the symmetry (46) that the flow goes

in a direction decreasing Z.
Hence, we can assume that the flow is in the domain that Y ≤ 0 and Z ≤ 0. In this

domain, by (11), 1
2π
f̂ is approximated by

2
(
s− 1

2

)
Y −

(
s+ u− 1

2

)
(Y + Z) + 2

(
u− 1

2

)
Z − (t+ 2s− 1)Y − (2u+ v − 1)Z

=
(1
2
− t− s− u

)
Y +

(1
2
− s− u− v

)
Z.

Hence, since we will show below that f̂ is convex in this domain, we obtain the lemma
similarly as the proof of Lemma 4.5.

Therefore, it is sufficient to show that the Hesse matrix of f̂ is positive definite when
Y ≤ 0 and Z ≤ 0. Similarly as the proof of Lemma 4.5, the Hesse matrix of f̂ is presented
by

2π

(
2a1 − b′ −b′
−b′ 2a2 − b′

)
(58)

where we put

a1 = Im
1

1− y
, a2 = Im

1

1− z
, b′ = Im

1

1− yz
,
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noting that there numbers are positive. It is sufficient to show that(
the trace of (58)

)
= 4π(a1 + a2 − b′) > 0, (59)(

the determinant of (58)
)

= 4π2
(
(2a1 − b′)(2a2 − b′)− b′

2)
= 8π2a1a2b

′( 2
b′
− 1

a1
− 1

a2

)
> 0. (60)

We show that (60) ⇒ (59), as follows. Suppose that (60) holds. Then, 1
b′
> 1

2

(
1
a1
+ 1

a2

)
.

Since a1, a2 and b′ are positive, 1
b′
> 1

a1
or 1

b′
> 1

a2
. Hence, b′ < a1 or b′ < a2. Therefore,

(59) holds.

We show (60), as follows. Since y = e2π
√
−1 (s+Y

√
−1), a1 is presented by

a1 = Im
1

1− y
= Im

1− y∣∣1− y
∣∣2 =

e−2πY sin 2πs

(1− e2π
√
−1 se−2πY )(1− e−2π

√
−1 se−2πY )

=
sin 2πs

e2πY + e−2πY − 2 cos 2πs
.

Hence,
1

a1
=

e2πY + e−2πY − 2 cos 2πs

sin 2πs
.

Similarly, we have that

1

a2
=

e2πZ + e−2πZ − 2 cos 2πu

sin 2πu
,

1

b′
=

e2π(Y+Z) + e−2π(Y+Z) − 2 cos 2π(s+ u)

sin 2π(s+ u)
.

Therefore, the differential of 2
b′
− 1

a1
− 1

a2
with respect to Y is given by

1

2π
· ∂

∂Y

( 2
b′
− 1

a1
− 1

a2

)
= 2 · e

2π(Y+Z) − e−2π(Y+Z)

sin 2π(s+ u)
− e2πY − e−2πY

sin 2πs
.

Since 0.1 ≤ s < 1
2
−u ≤ 0.4, sin 2πs ≥ sin(2π·0.1) = 0.587785... . Hence, 2/ sin 2π(s+u) ≥

2 > 1/ sin 2πs. Further, since Y ≤ 0 and Z ≤ 0, e2π(Y+Z)−e−2π(Y+Z) ≤ e2πY −e−2πY ≤ 0.
Hence, the above formula is non-positive. Therefore, it is sufficient to show (60) when
Y = 0. Further, by the symmetry (46), it is sufficient to show (60) when Z = 0. When
Y = Z = 0,

1

2

( 2
b′
− 1

a1
− 1

a2

)
= 2 · 1− cos 2π(s+ u)

sin 2π(s+ u)
− 1− cos 2πs

sin 2πs
− 1− cos 2πu

sin 2πu
.

Further, since 1−cos 2πα
sin 2πα

= 2 sin2 πα
2 sinπα cosπα

= tan πα,

1

2

( 2
b′
− 1

a1
− 1

a2

)
= 2 tan π(s+ u)− tanπs− tan πu > 0.

Hence, we obtain (60), as required.
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Lemma 4.7. When we apply Proposition 2.4 to (44), the assumption of Proposition 2.4
holds.

Proof. We show that there exists a homotopy ∆′
δ (0 ≤ δ ≤ 1) between ∆′

0 = ∆′ and ∆′
1

such that

(tc, sc, uc, vc) ∈ ∆′
1, (61)

∆′
1 − {(tc, sc, uc, vc)} ⊂

{
(t, s, u, v) ∈ C4

∣∣ Re V̂ (t, s, u, v) < ς
R

}
, (62)

∂∆′
δ ⊂

{
(t, s, u, v) ∈ C4

∣∣ Re V̂ (t, s, u, v) < ς
R

}
. (63)

In the fiber of the projection C4 → R4 at (t, s, u, v) ∈ ∆′, we consider the flow from
(X, Y, Z,W ) = (0, 0, 0, 0) determined by the vector field (− ∂f

∂X
,− ∂f

∂Y
,− ∂f

∂Z
,− ∂f

∂W
). We put

a neighborhood U of (t0, s0, u0, v0) by

U =
{
(t, s, u, v) ∈ ∆′

∣∣∣ 1

2
− u < t+ s <

1

2
,

1

2
− s < u+ v <

1

2

}
.

Then, by Lemmas 4.3, 4.4, 4.5 and 4.6, the following (1) and (2) holds.

(1) If (t, s, u, v) ∈ U , then f has a unique minimal point, and the flow goes there.

(2) If (t, s, u, v) /∈ U , then the flow goes to infinity.

We put g(t, s, u, v) to be the minimal point of (1). In particular, |g(t, s, u, v) | → ∞,
as (t, s, u, v) goes to ∂U . Further, for a sufficiently large R > 0, we stop the flow when
|g(t, s, u, v) | = R. We put ĝ(t, s, u, v) to be the destination of this revised flow. In
particular, when |g(t, s, u, v) | < R, ĝ(t, s, u, v) = g(t, s, u, v). We define the ending of
the homotopy to be the set of the destinations of these revised flows,

∆′
1 =

{
(t, s, u, v) + ĝ(t, s, u, v)

√
−1

∣∣ (t, s, u, v) ∈ ∆′}.
Further, we define the internal part of the homotopy by setting it along the flows.

We can show (61), (62) and (62) by using Lemma 4.1 in a similar way as the proof of
Lemma 3.9.

5 The 75 knot

In this section, we show Theorem 1.1 for the 75 knot. We give a proof of the theorem in
Section 5.1, using lemmas shown in Sections 5.2–5.5.

5.1 Proof of Theorem 1.1 for the 75 knot

In this section, we show a proof of Theorem 1.1 for the 75 knot.
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The 75 knot is the closure of the following tangle.

0

0 n

i 0

0

j

1
0j−1

0

k

0 l

0 m

0

As shown in [32], we can put the labelings of edges adjacent to the unbounded regions as
shown above. Hence, from the definition of the Kashaev invariant, the Kashaev invariant
of the 75 knot is presented by

⟨ 75 ⟩N =
∑

q1/2 × N q
1
2
−n

(q)N−n(q)n−1

× N q
1
2
+n−i

(q)N−n(q)n−i(q)i−1

× N q
1
2
+i−1

(q)j−i(q)i−1(q)N−j

× N q
1
2
−k

(q)N−k(q)k−j(q)j−1

× N q
1
2
+k−l

(q)N−k(q)k−l(q)l−1

× N q
1
2
+l−m

(q)N−l(q)l−m(q)m−1

× N q
1
2
+m−1

(q)N−m(q)m−1

=
∑

0<i≤j≤k
0<l≤k≤N

N5 q2

(q)i−1(q)i−1(q)j−i(q)j−1(q)N−j(q)k−j(q)N−k(q)N−k(q)k−l(q)l−1(q)N−l

=
∑

0≤i≤j≤k
0≤l≤k<N

N5 q2

(q)i(q)i(q)j−i(q)j(q)N−j−1(q)k−j(q)N−k−1(q)N−k−1(q)k−l(q)l(q)N−l−1

=
∑

0≤i≤j≤k
0≤l≤k<N

N5 q2

(q)i(q)i(q)j−i(q)j(q)N−j−1(q)k−j(q)N−k−1(q)N−k−1(q)l(q)k−l(q)N−k+l−1

,

where we obtain the third equality by replacing i, j, k, l with i + 1, j + 1, k + 1, l + 1
respectively, and obtain the last equality by replacing l with k − l.

Proof of Theorem 1.1 for the 75 knot. By (5), the above presentation of ⟨ 75 ⟩N is rewritten

⟨ 75 ⟩N = N5q2
∑

0≤i≤j≤k
0≤l≤k<N

exp
(
N Ṽ

(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N
,
2l + 1

2N

))
,
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where we put

Ṽ (t, s, u, v) =
1

N

(
φ(t)− φ(1− t)− φ

(
1− s+ t− 1

2N

)
+ φ(s) + φ(1− s)

− φ
(
1− u+ s− 1

2N

)
− φ(u) + φ(1− u) + φ(v)− φ

(
u− v +

1

2N

)
− φ

(
1− u+ v − 1

2N

)
− 5φ

( 1

2N

)
+ 6φ

(
1− 1

2N

))
=

1

N

(
2φ(t)− φ

(
1− s+ t− 1

2N

)
− φ

(
1− u+ s− 1

2N

)
− 2φ(u) + φ(v)

)
+

1

2π
√
−1

π2

6
− 11

2N
logN +

π
√
−1

4N
− π

√
−1

12N2

+ 2π
√
−1 · 1

2

(
t2 − s2 − u2 +

(
u− v +

1

2N

)2 − t+ s+ v − 1

2N

)
.

Here, we obtain the last equality by (9) and (10). Hence, by putting

V (t, s, u, v) = Ṽ (t, s, u, v) +
11

2N
logN,

the presentation of ⟨ 75 ⟩N is rewritten

⟨ 75 ⟩N = N−1/2q2
∑

i,j,k,l∈Z
( 2i+1

2N
, 2j+1

2N
, 2k+1

2N
, 2l+1

2N
)∈∆

exp
(
N V

(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N
,
2l + 1

2N

))
,

where the range of (2i+1
2N

, 2j+1
2N

, 2k+1
2N

, 2l+1
2N

) of the sum is given by the following domain,

∆ =
{
(t, s, u, v) ∈ R4

∣∣ 0 ≤ t ≤ s ≤ u, 0 ≤ v ≤ u ≤ 1
}
.

By Proposition 2.1, as N → ∞, V (t, s, u, v) converges to the following V̂ (t, s, u, v) in the
interior of ∆,

V̂ (t, s, u, v) =
1

2π
√
−1

(
2 Li2(e

2π
√
−1 t)− Li2(e

2π
√
−1 (t−s))− Li2(e

2π
√
−1 (s−u))

− 2 Li2(e
2π

√
−1u) + Li2(e

2π
√
−1 v) +

π2

6

)
+ 2π

√
−1 · 1

2

(
t2 − s2 − u2 + (u− v)2 − t+ s+ v

)
.

By concrete calculation, we can check that the boundary of ∆ is included in the domain{
(t, s, u, v) ∈ ∆

∣∣ Re V̂ (t, s, u, v) < ς
R
− ε
}

(64)

for some sufficiently small ε > 0, where we put ς
R
= 1.02552... as in (69); we will know

later that this value is equal to the real part of the critical value of V̂ at the critical point
of Lemma 5.1. Hence, similarly as in Section 3.1, we choose a new domain ∆′, which
satisfies that ∆−∆′ ⊂ (64), as

∆′ =

{
(t, s, u, v) ∈ ∆

∣∣∣∣∣ 0.1 ≤ t ≤ 0.33, 0.67 ≤ u ≤ 0.9, 0.05 ≤ v ≤ 0.3
0.15 ≤ s− t ≤ 0.45, 0.15 ≤ u− s ≤ 0.45

}
, (65)
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where we calculate the concrete values of the bounds of these inequalities in Section 5.2.
Hence, since ∆−∆′ ⊂ (64), we obtain the second equality of the following formula,

⟨ 75 ⟩N = eNςN−1/2q2
∑

i,j,k,l∈Z
( 2i+1

2N
, 2j+1

2N
, 2k+1

2N
, 2l+1

2N
)∈∆

exp
(
N · V

(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N
,
2l + 1

2N

)
−Nς

)

= eNς

(
N−1/2q2

∑
i,j,k,l∈Z

( 2i+1
2N

, 2j+1
2N

, 2k+1
2N

, 2l+1
2N

)∈∆′

exp
(
N · V

(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N
,
2l + 1

2N

)
−Nς

)
+O(e−Nε)

)
,

for some ε > 0.
Further, by Proposition 2.2 (Poisson summation formula), the above sum is presented

by

⟨ 75 ⟩N = eNς

(
N7/2q2

∫
∆′

exp
(
N · V (t, s, u, v)−Nς

)
dt ds du dv +O(e−Nε)

)
, (66)

noting that we verify the assumption of Proposition 2.2 in Lemma 5.2. Furthermore, by
Proposition 2.4 (saddle point method), there exist some κ′i’s such that

⟨ 75 ⟩N = N7/2 exp
(
N · V (tc, sc, uc, vc)

)
· (2π)

2

N2

(
det(−H)

)−1/2
(
1 +

d∑
i=1

κ′iℏi +O(ℏd+1)
)
,

for any d > 0, noting that we verify the assumption of Proposition 2.4 in Lemma 5.5. Here,
(tc, sc, uc, vc) is the critical point of V which corresponds to the critical point (t0, s0, u0, v0)

of V̂ of Lemma 5.1, where V̂ is the limit of V at N → ∞ whose concrete presentation is
given in Section 5.2, and H is the Hesse matrix of V at (tc, sc, uc, vc).

We calculate the right-hand side of the above formula. Similarly as in Section 3.1, we
have that

V (t0, s0, u0, v0) = ς +O(ℏ).
Therefore, there exist some κi’s such that

⟨ 75 ⟩N = eNςN3/2 ω ·
(
1 +

d∑
i=1

κiℏi +O(ℏd+1)
)
,

for any d > 0. Hence, we obtain the theorem for the 75 knot.

5.2 Estimate of the range of ∆′

In this section, we calculate the concrete values of the bounds of the inequalities in (65)
so that they satisfy that ∆−∆′ ⊂ (64).

Putting Λ as in Section 2.2, we have that

Re V̂ (t, s, u, v) = 2Λ(t) + Λ(s− t) + Λ(u− s)− 2Λ(u) + Λ(v).
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We consider the domain{
(t, s, u, v) ∈ ∆

∣∣ 2Λ(t) + Λ(s− t) + Λ(u− s)− 2Λ(u) + Λ(v) ≥ ς
R

}
, (67)

where we put ς
R
= 1.02552... as in (69). The aim of this section is to show that this

domain is included in the interior of the domain ∆′ of (65). For this purpose, we show
the estimates of the defining inequalities of (65) for (t, s, u, v) in (67).

Since Λ(v) ≤ Λ
(
1
6

)
,

2 Λ(t) + Λ(s− t) + Λ(u− s)− 2Λ(u) ≥ ς
R
− Λ

(1
6

)
.

We calculate the minimal value tmin and the maximal value tmax of t. They are solutions
of the system of the following equations,

2Λ(t) + Λ(s− t) + Λ(u− s)− 2Λ(u) = ς
R
− Λ

(
1
6

)
,

∂

∂s

(
2Λ(t) + Λ(s− t) + Λ(u− s)− 2Λ(u)

)
= 0,

∂

∂u

(
2Λ(t) + Λ(s− t) + Λ(u− s)− 2Λ(u)

)
= 0.

We note that there are exactly two solutions of this system of equations corresponding to
the maximal and minimal values of t (see Appendix A). By calculating a solution of these
equations by Newton’s method from (t, s, u) = (0.15, 0.5, 0.8), we obtain tmin = 0.147538...
, and from (t, s, u) = (0.3, 0.5, 0.8), we obtain tmax = 0.291380... . Therefore, we obtain
an estimate of t in ∆′ as

0.1 ≤ t ≤ 0.33.

We obtain the estimate of u in ∆′ from the above estimate of t by replacing (t, s, u)
with (1− u, 1− s, 1− t).

We calculate the minimal value (s − t)min and the maximal value (s − t)max of s − t.
Putting w = s − t, its minimal and maximal values are solutions of the system of the
following equations,

2Λ(s− w) + Λ(w) + Λ(u− s)− 2Λ(u) = ς
R
− Λ

(
1
6

)
,

∂

∂s

(
2Λ(s− w) + Λ(w) + Λ(u− s)− 2Λ(u)

)
= 0,

∂

∂u

(
2Λ(s− w) + Λ(w) + Λ(u− s)− 2Λ(u)

)
= 0.

We note that there are exactly two solutions of this system of equations corresponding to
the maximal and minimal values of s− t (see Appendix A). By calculating a solution of
these equations by Newton’s method from (w, s, u) = (0.2, 0.4, 0.75), we obtain (s−t)min =
0.184286... , and from (w, s, u) = (0.4, 0.6, 0.8), we obtain (s − t)max = 0.397155... .
Therefore, we obtain an estimate of s− t in ∆′ as

0.15 ≤ s− t ≤ 0.45.

We obtain the estimate of u − s in ∆′ from the above estimate of s − t by replacing
(t, s, u) with (1− u, 1− s, 1− t).
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We calculate the minimal value vmin and the maximal value vmax of v. They are
solutions of the system of the following equations,

2Λ(t) + Λ(s− t) + Λ(u− s)− 2Λ(u) + Λ(v) = ς
R
,

∂

∂t

(
2Λ(t) + Λ(s− t) + Λ(u− s)− 2Λ(u) + Λ(v)

)
= 0,

∂

∂s

(
2Λ(t) + Λ(s− t) + Λ(u− s)− 2Λ(u) + Λ(v)

)
= 0,

∂

∂u

(
2Λ(t) + Λ(s− t) + Λ(u− s)− 2Λ(u) + Λ(v)

)
= 0.

We note that there are exactly two solutions of this system of equations corresponding
to the maximal and minimal values of v (see Appendix A). By calculating a solution
of these equations by Newton’s method from (t, s, u, v) = (0.2, 0.5, 0.75, 0.1), we obtain
vmin = 0.0846896... , and from (t, s, u, v) = (0.2, 0.5, 0.8, 0.3), we obtain vmax = 0.26949... .
Therefore, we obtain an estimate of v in ∆′ as

0.05 ≤ v ≤ 0.3.

5.3 Calculation of the critical value

In this section, we calculate the concrete value of a critical point of V̂ .
The differentials of V̂ are presented by

∂

∂t
V̂ (t, s, u, v) = −2 log(1− x) + log

(
1− x

y

)
+ 2π

√
−1
(
t− 1

2

)
,

∂

∂s
V̂ (t, s, u, v) = − log

(
1− x

y

)
+ log

(
1− y

z

)
− 2π

√
−1
(
s− 1

2

)
,

∂

∂u
V̂ (t, s, u, v) = 2 log(1− z)− log

(
1− y

z

)
− 2π

√
−1 v,

∂

∂v
V̂ (t, s, u, v) = − log(1− w) + 2π

√
−1
(
v − u+

1

2

)
,

where x = e2π
√
−1 t, y = e2π

√
−1 s, z = e2π

√
−1u and w = e2π

√
−1 v.

Lemma 5.1. V̂ has a unique critical point (t0, s0, u0, v0) in P
−1(∆′), where P : C4 → R4

is the projection to the real parts of the entries.

Proof. Any critical point of V̂ is given by a solution of ∂
∂t
V̂ = ∂

∂s
V̂ = ∂

∂u
V̂ = ∂

∂v
V̂ = 0,

and these equations are rewritten,

(1−x)2 = −x
(
1− x

y

)
, 1− y

z
= −y

(
1− x

y

)
, (1− z)2 = w

(
1− y

z

)
, 1−w = −w

z
.

From the first formula, we have that y = x2/(x2 − x + 1). By substituting this into the
second formula, we have that z = −x2/(x3 − 3x2 + 2x − 1). Further, from the fourth
formula, we have that w = z/(z − 1). By substituting these into the third formula, we
have that

x8 + x7 − 12x6 + 25x5 − 31x4 + 25x3 − 14x2 + 5x− 1 = 0.
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Its solutions are

x = − 4.85443... , 1.57227... , 0.18596...± √
−1 · 0.689115... ,

0.39462...± √
−1 · 0.631293... , 0.560504...± √

−1 · 0.387082... .

Among these, the third solution gives a solution in ∆′, from which we have that

x0 = 0.18596...+
√
−1 · 0.689115... , t0 = 0.208051...+

√
−1 · 0.0536673... ,

y0 = −0.842429...− √
−1 · 0.289836... , s0 = 0.552738...+

√
−1 · 0.0183872... ,

z0 = 0.320754...− √
−1 · 0.851242... , u0 = 0.807352...+

√
−1 · 0.0150681... ,

w0 = 0.427274...+
√
−1 · 0.717749... , v0 = 0.164541...+

√
−1 · 0.0286421... ,

where x0 = e2π
√
−1 t0 , y0 = e2π

√
−1 s0 , z0 = e2π

√
−1u0 and w0 = e2π

√
−1 v0 . These give a

unique critical point in P−1(∆′).

The critical value of V̂ at the critical point of Lemma 5.1 is presented by

ς = V̂ (t0, s0, u0, v0)

=
1

2π
√
−1

(
2 Li2(x0)− Li2

(x0
y0

)
− Li2

(y0
z0

)
− 2 Li2(z0) + Li2(w0) +

π2

6

)
+ 2π

√
−1 · 1

2

(
t20 − s20 − u20 + (u0 − v0)

2 − t0 + s0 + v0
)

(68)

= 1.02552...− √
−1 · 0.378738... .

Further, we put its real part to be ς
R
,

ς
R

= Re ς = 1.02552... . (69)

5.4 Verifying the assumption of the Poisson summation formula

In this section, we verify the assumption of the Poisson summation formula in Lemma
5.2, which is used in the proof of Theorem 1.1 for the 75 knot in Section 5.1.

By computer calculation, we can see that the maximal value of Re V̂ − ς
R
is about

0.02. Therefore, in the proof of Lemma 5.2, it is sufficient to decrease, say, Re V̂ (t +
δ
√
−1, s, u, v)− 2πδ by 0.02, by moving δ (though we do not use this value in the proof

of the lemma).
We put

f(X,Y, Z,W ) = Re V̂ (t+X
√
−1, s+ Y

√
−1, u+ Z

√
−1, v +W

√
−1)− ς

R
.

Then, we have that

∂f

∂X
= 2Arg (1− x)− Arg

(
1− x

y

)
− 2π

(
t− 1

2

)
, (70)

∂f

∂Y
= Arg

(
1− x

y

)
− Arg

(
1− y

z

)
+ 2π

(
s− 1

2

)
, (71)
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∂f

∂Z
= −2Arg (1− z) + Arg

(
1− y

z

)
+ 2πv, (72)

∂f

∂W
= Arg (1− w) + 2π

(
u− v − 1

2

)
. (73)

Lemma 5.2. V (t, s, u, v)− ς
R
satisfies the assumption of Proposition 2.2.

Proof. Since V (t, s, u, v) converges uniformly to V̂ (t, s, u, v) on ∆′, we show the proof

for V̂ (t, s, u, v) instead of V (t, s, u, v). We show that ∂∆′ is null-homotopic in each of
(13)–(20).

As for (13) and (14), similarly as in the proof of Lemma 3.3, it is sufficient to show
that

−(2π − ε′) <
∂f

∂X
(X, 0, 0, 0) < 2π − ε′ (74)

for some ε′ > 0. Since 0.1 ≤ t ≤ 0.33,

−2π
(1
2
− t
)
< Arg (1− x) < 0.

Further, since 0.15 ≤ s− t ≤ 0.45,

0 < Arg
(
1− x

y

)
< 2π

(1
2
− s+ t

)
.

Hence, by (70),

−2π(1− s) <
∂f

∂X
< 2π

(1
2
− t
)
.

Further, since s = t+ (s− t) ≥ 0.1 + 0.15 = 0.25 and 0.1 ≤ t,

−2π · 0.75 <
∂f

∂X
< 2π · 0.4.

Therefore, (74) is satisfied, as required.
As for (15) and (16), similarly as above, it is sufficient to show that

−(2π − ε′) <
∂f

∂Y
(0, Y, 0, 0) < 2π − ε′ (75)

for some ε′ > 0. Since 0.15 ≤ s− t ≤ 0.45,

0 < Arg
(
1− x

y

)
< 2π

(1
2
− s+ t

)
.

Further, since 0.15 ≤ u− s ≤ 0.45,

0 < Arg
(
1− y

z

)
< 2π

(1
2
− u+ s

)
.

Hence, by (71),

−2π(1− u) <
∂f

∂Y
< 2πt.
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Further, since 0.67 ≤ u and t ≤ 0.33,

−2π · 0.33 <
∂f

∂Y
< 2π · 0.33.

Therefore, (75) is satisfied, as required.
As for (17) and (18), similarly as above, it is sufficient to show that

−(2π − ε′) <
∂f

∂Z
(0, 0, Z, 0) < 2π − ε′ (76)

for some ε′ > 0. Since 0.67 ≤ u ≤ 0.9,

0 < Arg (1− z) < 2π
(
u− 1

2

)
.

Further, since 0.15 ≤ u− s ≤ 0.45,

0 < Arg
(
1− y

z

)
< 2π

(1
2
− u+ s

)
.

Hence, by (72),

−2π(2u− v − 1) <
∂f

∂Z
< 2π

(
s− u+ v +

1

2

)
.

Since 2u− v < 2u ≤ 2 · 0.9 = 1.8 and s− u+ v = v − (u− s) ≤ 0.3− 0.15 = 0.15,

−2π · 0.8 <
∂f

∂Z
< 2π · 0.65.

Therefore, (76) is satisfied, as required.
As for (19) and (20), similarly as above, it is sufficient to show that

−(2π − ε′) <
∂f

∂W
(0, 0, 0,W ) < 2π − ε′ (77)

for some ε′ > 0. Since 0.05 ≤ v ≤ 0.3,

−2π
(1
2
− v
)
< Arg (1− w) < 0.

Hence, by (73),

−2π
(
1− u

)
<

∂f

∂W
< 2π

(
u− v − 1

2

)
.

Since 0.67 ≤ u and u− v ≤ 0.9− 0.05 = 0.85,

−2π · 0.33 <
∂f

∂W
< 2π · 0.35.

Therefore, (77) is satisfied, as required.

42



5.5 Verifying the assumption of the saddle point method

In this section, we verify the assumption of the saddle point method in Lemma 5.5. In
order to show this lemma, we show Lemmas 5.3 and 5.4 in advance.

From the definition of f , we have that

f(X,Y, Z,W ) = Re
1

2π
√
−1

(
2 Li2(x)− Li2

(x
y

)
− Li2

(y
z

)
− 2 Li2(z) + Li2(w)

)
− 2π

(
t− 1

2

)
X + 2π

(
s− 1

2

)
Y + 2πvZ + 2π

(
u− v − 1

2

)
W,

where x = e2π
√
−1 (t+X

√
−1), y = e2π

√
−1 (s+Y

√
−1), z = e2π

√
−1 (u+Z

√
−1) and w = e2π

√
−1 (v+W

√
−1).

Hence, since the contributions to f from (X, Y, Z) and W are independent, we consider
each of the contributions independently.

Lemma 5.3. Fixing X, Y and Z, we regard f as a function of W .
(1) If u− v ≤ 1

2
, then f is monotonically decreasing as a function of W .

(2) If u − v > 1
2
, then f has a unique minimal point as a function of W . In particular,

this minimal point goes to ∞ as u− v → 1
2
+ 0.

Proof. Since w = e2π
√
−1 (v+W

√
−1) and 0.05 ≤ v ≤ 0.3,

−2π
(1
2
− v
)
< Arg (1− w) < 0,

and Arg (1 − w) is monotonically increasing as a function of W . Hence, by (73), ∂f
∂W

is
also monotonically increasing as a function of W . Further,

∂f

∂W

∣∣∣
W→∞

= 2π
(
u− v − 1

2

)
,

∂f

∂W

∣∣∣
W→−∞

= −2π
(
1− u

)
< 0.

If u− v ≤ 1
2
, then ∂f

∂W
is always negative, and (1) holds.

If u− v > 1
2
, then there is a unique zero of ∂f

∂W
, which gives a unique minimal point of

f , and (2) holds.

In order to consider the contribution to f from (X,Y, Z), we put

f̂(X,Y, Z) = Re
1

2π
√
−1

(
2 Li2(x)− Li2

(x
y

)
− Li2

(y
z

)
− 2 Li2(z)

)
− 2π

(
t− 1

2

)
X + 2π

(
s− 1

2

)
Y + 2πvZ,

where x = e2π
√
−1 (t+X

√
−1), y = e2π

√
−1 (s+Y

√
−1) and z = e2π

√
−1 (u+Z

√
−1).

Lemma 5.4. In the fiber of the projection C4 → R4 at (t, s, u, v) ∈ ∆′, we consider the

flow from (X,Y, Z) = (0, 0, 0) determined by the vector field (− ∂f̂
∂X
,− ∂f̂

∂Y
,− ∂f̂

∂Z
). Then,
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there exists a convex neighborhood U of (t0, s0, u0, v0) such that the following (1) and (2)
holds.
(1) If (t, s, u, v) ∈ U , then f̂ has a unique minimal point, and the flow goes there.
(2) If (t, s, u, v) /∈ U , then the flow goes to infinity.

Proof. It is shown by concrete calculation that the Hesse matrix of f̂ is presented by

2π Im



1 + x

1− x
−

x
y

1− x
y

x
y

1− x
y

0

x
y

1− x
y

−
x
y

1− x
y

−
y
z

1− y
z

− 1
y
z

1− y
z

0
y
z

1− y
z

−2z

1− z
−

y
z

1− y
z


= 2π

a1 + b1 −b1 0
−b1 b1 + b2 −b2
0 −b2 a2 + b2

 ,

where we put

a1 = Im
2

1− x
, a2 = Im

−2

1− z
, b1 = Im

−1

1− x
y

, b2 = Im
−1

1− y
z

,

noting that these numbers are positive. Further, the above matrix is equivalent, as a
quadratic form, to

2π

a1 + b1 0 0

0
a1b1
a1 + b1

+
a2b2
a2 + b2

0

0 0 a2 + b2

 .

Hence, the Hesse matrix of f̂ is always positive definite, and f̂ is a convex function.
We consider the behavior of f̂ at infinity. By (11), 1

2π
f̂ is approximated by the following

F (X, Y, Z),

F (X, Y, Z) =

({
0 if X ≥ 0

−
(
1− 2t

)
X if X < 0

)
+

({
0 if X ≥ Y

−
(
1
2
− s+ t

)
(X − Y ) if X < Y

)

+

({
0 if Y ≥ Z

−
(
1
2
− u+ s

)
(Y − Z) if Y < Z

)
+

({
0 if Z ≥ 0

−
(
2u− 1

)
Z if Z < 0

)
+
(1
2
− t
)
X +

(
s− 1

2

)
Y + v Z.

Hence, if
F (X, Y, Z) → ∞ as X2 + Y 2 + Z2 → ∞, (78)

then the conclusion of (1) holds, since f̂ is convex. Otherwise, the conclusion of (2) holds.
Therefore, we consider the condition of (78). Since F is piecewise linear, this condition
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can be presented by a system of inequalities of t, s, u, v of degree 1. Hence, U of the lemma
is convex.

In order to complete the proof of the lemma, it is sufficient to show (78) in a neigh-
borhood of (t0, s0, u0, v0). We show that, if s > 1

2
, then (78) holds, as follows. We rewrite

F (X, Y, Z) as

F (X,Y, Z) =

({(
1
2
− t
)

if X ≥ 0

−
(
1
2
− t
)
X if X < 0

)
+

({
0 if X ≥ Y

−
(
1
2
− s+ t

)
(X − Y ) if X < Y

)

+

({(
s− 1

2

)
(Y − Z) if Y ≥ Z

−
(
1− u

)
(Y − Z) if Y < Z

)
+

({(
s+ v − 1

2

)
if Z ≥ 0

−
(
2u− s− v − 1

2

)
Z if Z < 0

)
.

Since s > 1
2
by the assumption and t ≤ 0.33, s − t ≤ 0.45, u ≤ 0.9, 2u − s − v =

(u− s) + u− v ≥ 0.15 + 0.67− 0.3 = 0.52, each of the summands of the right-hand side
of the above formula is positive. Hence, there exists some constant C such that

F (X,Y, Z) ≥ C
(
|X|+ |X−Y |+ |Y −Z|+ |Z|

)
.

Therefore, (78) holds in a neighborhood of (t0, s0, u0, v0), as required.

Lemma 5.5. When we apply Proposition 2.4 to (66), the assumption of Proposition 2.4
holds.

Proof. We show that there exists a homotopy ∆′
δ (0 ≤ δ ≤ 1) between ∆′

0 = ∆′ and ∆′
1

such that

(tc, sc, uc, vc) ∈ ∆′
1, (79)

∆′
1 − {(tc, sc, uc, vc)} ⊂

{
(t, s, u, v) ∈ C4

∣∣ Re V̂ (t, s, u, v) < ς
R

}
, (80)

∂∆′
δ ⊂

{
(t, s, u, v) ∈ C4

∣∣ Re V̂ (t, s, u, v) < ς
R

}
. (81)

In the fiber of the projection C4 → R4 at (t, s, u, v) ∈ ∆′, we consider the flow from
(X, Y, Z,W ) = (0, 0, 0, 0) determined by the vector field (− ∂f

∂X
,− ∂f

∂Y
,− ∂f

∂Z
,− ∂f

∂W
). As

mentioned at the beginning of this section, the contributions to f from (X, Y, Z) and W
are independent. Hence, by Lemmas 5.3 and 5.4, there exists a convex neighborhood U ′

of (t0, s0, u0, v0) such that the following (1) and (2) holds.

(1) If (t, s, u, v) ∈ U ′, then f has a unique minimal point, and the flow goes there.

(2) If (t, s, u, v) /∈ U ′, then the flow goes to infinity.

We put the homotopy ∆′
δ in a similar way as in the proof of Lemma 4.7.

We can show (79), (80) and (80) by using Lemma 5.1 in a similar way as the proof of
Lemma 3.9.

6 The 76 knot

In this section, we show Theorem 1.1 for the 76 knot. We give a proof of the theorem in
Section 6.1, using lemmas shown in Sections 6.2–6.5.

45



6.1 Proof of Theorem 1.1 for the 76 knot

In this section, we show a proof of Theorem 1.1 for the 76 knot.
The 76 knot is the closure of the following tangle.

0

0
0

N−1 n

i

0j0

N−1

0

k

l

0
1

m 0

0

As shown in [32], we can put the labelings of edges adjacent to the unbounded regions as
shown above. Hence, from the definition of the Kashaev invariant, the Kashaev invariant
of the 76 knot is presented by

⟨ 76 ⟩N =
∑

q−1/2 × N q
1
2

(q)N−n−1(q)n
× N q−

1
2
−i

(q)N−j(q)j−i−1(q)i
× N q

1
2
+i

(q)n−i(q)i(q)N−n−1

× N q
1
2
−k

(q)N−k(q)k−l−1(q)l
× N q−

1
2
+k

(q)k−j(q)j−1(q)N−k
× N q

1
2

(q)l(q)N−m−1(q)m−l
× N q

1
2

(q)m(q)N−m−1

=
∑

0≤i<j≤k
0≤l<k≤N

N5 q

(q)i(q)i(q)j−i−1(q)j−1(q)N−j(q)k−j(q)N−k(q)N−k(q)k−l−1(q)l(q)l

=
∑

0≤i≤j≤k
0≤l≤k<N

N5 q

(q)i(q)i(q)j−i(q)j(q)N−j−1(q)N−j−k−1(q)k(q)k(q)N−k−l−1(q)l(q)l
,

where we obtain the last equality by replacing j with j + 1 and replacing k with N − k.

Proof of Theorem 1.1 for the 76 knot. By (5), the above presentation of ⟨ 76 ⟩N is rewritten

⟨ 76 ⟩N = N5q−1
∑

0≤i<N−j
0≤j,k, j+k<N

0≤l<N−k

exp
(
N Ṽ

(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N
,
2l + 1

2N

))
,
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where we put

Ṽ (t, s, u, v) =
1

N

(
φ(t)− φ(1− t) + φ

(
s− t+

1

2N

)
− φ(s)− φ(1− s)

+ φ
(
1− s− u+

1

2N

)
+ φ(u)− φ(1− u)− φ

(
u+ v − 1

2N

)
+ φ(v)

− φ(1− v)− 5φ
( 1

2N

)
+ 6φ

(
1− 1

2N

))
=

1

N

(
2φ(t) + φ

(
s− t+

1

2N

)
+ φ

(
1− s− u+

1

2N

)
+ 2φ(u)

− φ
(
u+ v − 1

2N

)
+ 2φ(v)

)
+

1

2π
√
−1

π2

6
− 11

2N
logN +

π
√
−1

4N
− π

√
−1

12N2

+ 2π
√
−1 · 1

2

(
t2 + s2 + u2 + v2 − t− s− u− v +

2

3

)
.

Here, we obtain the last equality by (9) and (10). Hence, by putting

V (t, s, u, v) = Ṽ (t, s, u, v) +
11

2N
logN,

the presentation of ⟨ 76 ⟩N is rewritten

⟨ 76 ⟩N = N−1/2q−1
∑

i,j,k,l∈Z
( 2i+1

2N
, 2j+1

2N
, 2k+1

2N
, 2l+1

2N
)∈∆

exp
(
N V

(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N
,
2l + 1

2N

))
,

where the range of (2i+1
2N

, 2j+1
2N

, 2k+1
2N

, 2l+1
2N

) of the sum is given by the following domain,

∆ =
{
(t, s, u, v) ∈ R4

∣∣ 0 ≤ t ≤ s ≤ 1− u, 0 ≤ u, v, u+ v ≤ 1
}
.

By Proposition 2.1, as N → ∞, V (t, s, u, v) converges to the following V̂ (t, s, u, v) in the
interior of ∆,

V̂ (t, s, u, v) =
1

2π
√
−1

(
2 Li2(e

2π
√
−1 t) + Li2(e

2π
√
−1 (s−t)) + Li2(e

−2π
√
−1 (s+u))

+ 2Li2(e
2π

√
−1u)− Li2(e

2π
√
−1 (u+v)) + 2Li2(e

2π
√
−1 v) +

π2

6

)
+ 2π

√
−1 · 1

2

(
t2 + s2 + u2 + v2 − t− s− u− v +

2

3

)
.

By concrete calculation, we can check that the boundary of ∆ is included in the domain{
(t, s, u, v) ∈ ∆

∣∣ Re V̂ (t, s, u, v) < ς
R
− ε
}

(82)

for some sufficiently small ε > 0, where we put ς
R
= 1.1276... as in (87); we will know

later that this value is equal to the real part of the critical value of V̂ at the critical point
of Lemma 6.1. Hence, similarly as in Section 3.1, we choose a new domain ∆′, which
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satisfies that ∆−∆′ ⊂ (82), as

∆′ =

{
(t, s, u, v) ∈ ∆

∣∣∣∣∣ 0.05 ≤ t ≤ 0.34, 0.25 ≤ s ≤ 0.64, 0.15 ≤ u ≤ 0.48
0.1 ≤ v ≤ 0.45, 0.1 ≤ s− t ≤ 0.45, 0.55 ≤ s+ u ≤ 0.9

}
,

(83)
where we calculate the concrete values of the bounds of these inequalities in Section 6.2.
Hence, since ∆−∆′ ⊂ (82), we obtain the second equality of the following formula,

⟨ 76 ⟩N = eNςN−1/2q
∑

i,j,k,l∈Z
( 2i+1

2N
, 2j+1

2N
, 2k+1

2N
, 2l+1

2N
)∈∆

exp
(
N · V

(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N
,
2l + 1

2N

)
−Nς

)

= eNς

(
N−1/2q

∑
i,j,k,l∈Z

( 2i+1
2N

, 2j+1
2N

, 2k+1
2N

, 2l+1
2N

)∈∆′

exp
(
N · V

(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N
,
2l + 1

2N

)
−Nς

)
+O(e−Nε)

)
,

for some ε > 0.
Further, by Proposition 2.2 (Poisson summation formula), the above sum is presented

by

⟨ 76 ⟩N = eNς

(
N7/2q

∫
∆′

exp
(
N · V (t, s, u, v)−Nς

)
dt ds du dv +O(e−Nε)

)
, (84)

noting that we verify the assumption of Proposition 2.2 in Lemma 6.2. Furthermore, by
Proposition 2.4 (saddle point method), there exist some κ′i’s such that

⟨ 76 ⟩N = N7/2 exp
(
N · V (tc, sc, uc, vc)

)
· (2π)

2

N2

(
det(−H)

)−1/2
(
1 +

d∑
i=1

κ′iℏi +O(ℏd+1)
)
,

for any d > 0, noting that we verify the assumption of Proposition 2.4 in Lemma 6.6. Here,
(tc, sc, uc, vc) is the critical point of V which corresponds to the critical point (t0, s0, u0, v0)

of V̂ of Lemma 6.1, where V̂ is the limit of V at N → ∞ whose concrete presentation is
given in Section 6.2, and H is the Hesse matrix of V at (tc, sc, uc, vc).

We calculate the right-hand side of the above formula. Similarly as in Section 3.1, we
have that

V (t0, s0, u0, v0) = ς +O(ℏ).
Therefore, there exist some κi’s such that

⟨ 76 ⟩N = eNςN3/2 ω ·
(
1 +

d∑
i=1

κiℏi +O(ℏd+1)
)
,

for any d > 0. Hence, we obtain the theorem for the 76 knot.
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6.2 Estimate of the range of ∆′

In this section, we calculate the concrete values of the bounds of the inequalities in (83)
so that they satisfy that ∆−∆′ ⊂ (82).

Putting Λ as in Section 2.2, we have that

Re V̂ (t, s, u, v) = 2Λ(t) + Λ(s− t)− Λ(s+ u) + 2Λ(u)− Λ(u+ v) + 2Λ(v).

We consider the domain{
(t, s, u, v) ∈ ∆

∣∣ 2Λ(t) + Λ(s− t)−Λ(s+ u) + 2Λ(u)−Λ(u+ v) + 2Λ(v) ≥ ς
R

}
, (85)

where we put ς
R

= 1.1276... as in (87). The aim of this section is to show that this
domain is included in the interior of the domain ∆′ of (83). For this purpose, we show
the estimates of the defining inequalities of (83) for (t, s, u, v) in (85).

We calculate the minimal value tmin and the maximal value tmax of t. They are solutions
of the system of the following equations,

2Λ(t) + Λ(s− t)− Λ(s+ u) + 2Λ(u)− Λ(u+ v) + 2Λ(v) = ς
R
,

∂

∂s

(
2Λ(t) + Λ(s− t)− Λ(s+ u) + 2Λ(u)− Λ(u+ v) + 2Λ(v)

)
= 0,

∂

∂u

(
2Λ(t) + Λ(s− t)− Λ(s+ u) + 2Λ(u)− Λ(u+ v) + 2Λ(v)

)
= 0,

∂

∂v

(
2Λ(t) + Λ(s− t)− Λ(s+ u) + 2Λ(u)− Λ(u+ v) + 2Λ(v)

)
= 0.

We note that there are exactly two solutions of this system of equations corresponding
to the maximal and minimal values of t (see Appendix A). By calculating a solution of
these equations by Newton’s method from (t, s, u, v) = (0.1, 0.35, 0.35, 0.25), we obtain
tmin = 0.103312... , and from (t, s, u, v) = (0.3, 0.5, 0.3, 0.25), we obtain tmax = 0.319994... .
Therefore, we obtain an estimate of t in ∆′ as

0.05 ≤ t ≤ 0.34.

We calculate the minimal value smin and the maximal value smax of s. They are
solutions of the system of the following equations,

2Λ(t) + Λ(s− t)− Λ(s+ u) + 2Λ(u)− Λ(u+ v) + 2Λ(v) = ς
R
,

∂

∂t

(
2Λ(t) + Λ(s− t)− Λ(s+ u) + 2Λ(u)− Λ(u+ v) + 2Λ(v)

)
= 0,

∂

∂u

(
2Λ(t) + Λ(s− t)− Λ(s+ u) + 2Λ(u)− Λ(u+ v) + 2Λ(v)

)
= 0,

∂

∂v

(
2Λ(t) + Λ(s− t)− Λ(s+ u) + 2Λ(u)− Λ(u+ v) + 2Λ(v)

)
= 0.

We note that there are exactly two solutions of this system of equations corresponding to
the maximal and minimal values of s (see Appendix A). By calculating a solution of these
equations by Newton’s method from (t, s, u, v) = (0.15, 0.3, 0.35, 0.25), we obtain smin =
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0.286689... , and from (t, s, u, v) = (0.25, 0.6, 0.25, 0.25), we obtain smax = 0.610894... .
Therefore, we obtain an estimate of s in ∆′ as

0.25 ≤ s ≤ 0.64.

We calculate the minimal value umin and the maximal value umax of u. They are
solutions of the system of the following equations,

2Λ(t) + Λ(s− t)− Λ(s+ u) + 2Λ(u)− Λ(u+ v) + 2Λ(v) = ς
R
,

∂

∂t

(
2Λ(t) + Λ(s− t)− Λ(s+ u) + 2Λ(u)− Λ(u+ v) + 2Λ(v)

)
= 0,

∂

∂s

(
2Λ(t) + Λ(s− t)− Λ(s+ u) + 2Λ(u)− Λ(u+ v) + 2Λ(v)

)
= 0,

∂

∂v

(
2Λ(t) + Λ(s− t)− Λ(s+ u) + 2Λ(u)− Λ(u+ v) + 2Λ(v)

)
= 0.

We note that there are exactly two solutions of this system of equations corresponding to
the maximal and minimal values of u (see Appendix A). By calculating a solution of these
equations by Newton’s method from (t, s, u, v) = (0.2, 0.5, 0.2, 0.25), we obtain umin =
0.182665... , and from (t, s, u, v) = (0.2, 0.35, 0.45, 0.2), we obtain umax = 0.455212... .
Therefore, we obtain an estimate of u in ∆′ as

0.15 ≤ u ≤ 0.48.

We calculate the minimal value vmin and the maximal value vmax of v. They are
solutions of the system of the following equations,

2Λ(t) + Λ(s− t)− Λ(s+ u) + 2Λ(u)− Λ(u+ v) + 2Λ(v) = ς
R
,

∂

∂t

(
2Λ(t) + Λ(s− t)− Λ(s+ u) + 2Λ(u)− Λ(u+ v) + 2Λ(v)

)
= 0,

∂

∂s

(
2Λ(t) + Λ(s− t)− Λ(s+ u) + 2Λ(u)− Λ(u+ v) + 2Λ(v)

)
= 0,

∂

∂u

(
2Λ(t) + Λ(s− t)− Λ(s+ u) + 2Λ(u)− Λ(u+ v) + 2Λ(v)

)
= 0.

We note that there are exactly two solutions of this system of equations corresponding
to the maximal and minimal values of v (see Appendix A). By calculating a solution
of these equations by Newton’s method from (t, s, u, v) = (0.2, 0.45, 0.3, 0.1), we obtain
vmin = 0.13126... , and from (t, s, u, v) = (0.2, 0.45, 0.3, 0.4), we obtain vmax = 0.390199... .
Therefore, we obtain an estimate of v in ∆′ as

0.1 ≤ v ≤ 0.45.

We calculate the minimal value (s − t)min and the maximal value (s − t)max of s − t.
Putting w = s − t, its minimal and maximal values are solutions of the system of the
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following equations,

2Λ(s− w) + Λ(w)− Λ(s+ u) + 2Λ(u)− Λ(u+ v) + 2Λ(v) = ς
R
,

∂

∂s

(
2Λ(s− w) + Λ(w)− Λ(s+ u) + 2Λ(u)− Λ(u+ v) + 2Λ(v)

)
= 0,

∂

∂u

(
2Λ(s− w) + Λ(w)− Λ(s+ u) + 2Λ(u)− Λ(u+ v) + 2Λ(v)

)
= 0,

∂

∂v

(
2Λ(s− w) + Λ(w)− Λ(s+ u) + 2Λ(u)− Λ(u+ v) + 2Λ(v)

)
= 0.

We note that there are exactly two solutions of this system of equations corresponding
to the maximal and minimal values of s− t (see Appendix A). By calculating a solution
of these equations by Newton’s method from (w, s, u, v) = (0.1, 0.3, 0.35, 0.25), we obtain
(s−t)min = 0.105664... , and from (w, s, u, v) = (0.4, 0.6, 0.25, 0.25), we obtain (s−t)max =
0.411943... . Therefore, we obtain an estimate of s− t in ∆′ as

0.1 ≤ s− t ≤ 0.45.

We calculate the minimal value (s+ u)min and the maximal value (s+ u)max of s+ u.
Putting w′ = s + u, its minimal and maximal values are solutions of the system of the
following equations,

2Λ(t) + Λ(w′ − u− t)− Λ(w′) + 2Λ(u)− Λ(u+ v) + 2Λ(v) = ς
R
,

∂

∂t

(
2Λ(t) + Λ(w′ − u− t)− Λ(w′) + 2Λ(u)− Λ(u+ v) + 2Λ(v)

)
= 0,

∂

∂u

(
2Λ(t) + Λ(w′ − u− t)− Λ(w′) + 2Λ(u)− Λ(u+ v) + 2Λ(v)

)
= 0,

∂

∂v

(
2Λ(t) + Λ(w′ − u− t)− Λ(w′) + 2Λ(u)− Λ(u+ v) + 2Λ(v)

)
= 0.

We note that there are exactly two solutions of this system of equations corresponding to
the maximal and minimal values of s+ u (see Appendix A). By calculating a solution of
these equations by Newton’s method from (w′, t, u, v) = (0.6, 0.15, 0.25, 0.25), we obtain
(s+u)min = 0.588057... , and from (w′, t, u, v) = (0.9, 0.2, 0.35, 0.25), we obtain (s+u)max =
0.894336... . Therefore, we obtain an estimate of s+ u in ∆′ as

0.55 ≤ s+ u ≤ 0.9.

6.3 Calculation of the critical value

In this section, we calculate the concrete value of a critical point of V̂ .
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The differentials of V̂ are presented by

∂

∂t
V̂ (t, s, u, v) = −2 log(1− x) + log

(
1− y

x

)
+ 2π

√
−1
(
t− 1

2

)
,

∂

∂s
V̂ (t, s, u, v) = − log

(
1− y

x

)
+ log

(
1− 1

yz

)
+ 2π

√
−1
(
s− 1

2

)
,

∂

∂u
V̂ (t, s, u, v) = −2 log(1− z) + log

(
1− 1

yz

)
+ log(1− zw) + 2π

√
−1
(
u− 1

2

)
,

∂

∂v
V̂ (t, s, u, v) = −2 log(1− w) + log(1− zw) + 2π

√
−1
(
v − 1

2

)
,

where x = e2π
√
−1 t, y = e2π

√
−1 s, z = e2π

√
−1u and w = e2π

√
−1 v.

Lemma 6.1. V̂ has a unique critical point (t0, s0, u0, v0) in P
−1(∆′), where P : C4 → R4

is the projection to the real parts of the entries.

Proof. Any critical point of V̂ is given by a solution of ∂
∂t
V̂ = ∂

∂s
V̂ = ∂

∂u
V̂ = ∂

∂v
V̂ = 0,

and these equations are rewritten,

(1− x)2 = −x
(
1− y

x

)
,

1− y

x
= −y

(
1− 1

yz

)
,

(1− z)2 = −z
(
1− 1

yz

)
(1− zw),

(1− w)2 = −w(1− zw).

From the first formula, we have that y = x2 − x + 1. Hence, from the second formula,
we have that z = x/(x3 − 2x2 + 3x − 1). Further, from the third formula, we have that
w = x(x2 − 2x + 2)(x2 − x + 2). By substituting these into the fourth formula, we have
that

x9 − 6x8 + 20x7 − 43x6 + 65x5 − 69x4 + 50x3 − 23x2 + 5x− 1 = 0.

Its solutions are

x = 0.0848864...± √
−1 · 0.271383... , 0.558614...± √

−1 · 1.43795... ,
0.629127...± √

−1 · 1.09993... , 1.09612...± √
−1 · 1.16718... , 1.26251... .

Among these, the solution 0.558614...+
√
−1 · 1.43795... gives a solution in ∆′, from which

we have that

x0 = 0.558614...+
√
−1 · 1.43795... , t0 = 0.191027...− √

−1 · 0.0689933... ,
y0 = −1.31426...+

√
−1 · 0.168567... , s0 = 0.479698...− √

−1 · 0.0447913... ,
z0 = −0.23704...+

√
−1 · 1.46509... , u0 = 0.275529...− √

−1 · 0.0628402... ,
w0 = −0.0892864...+

√
−1 · 0.842785... , v0 = 0.266799...+

√
−1 · 0.0263342... ,

where x0 = e2π
√
−1 t0 , y0 = e2π

√
−1 s0 , z0 = e2π

√
−1u0 and w0 = e2π

√
−1 v0 . These give a

unique critical point in P−1(∆′).
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The critical value of V̂ at the critical point of Lemma 6.1 is presented by

ς = V̂ (t0, s0, u0, v0)

=
1

2π
√
−1

(
2 Li2(x0) + Li2

(y0
x0

)
+ Li2

( 1

y0z0

)
+ 2Li2(z0)− Li2(z0w0) + 2Li2(w0) +

π2

6

)
+ 2π

√
−1 · 1

2

(
t20 + s20 + u20 + v20 − t0 − s0 − u0 − v0 +

2

3

)
(86)

= 1.1276...− √
−1 · 0.57266... .

Further, we put its real part to be ς
R
,

ς
R

= Re ς = 1.1276... . (87)

6.4 Verifying the assumption of the Poisson summation formula

In this section, we verify the assumption of the Poisson summation formula in Lemma
6.2, which is used in the proof of Theorem 1.1 for the 76 knot in Section 6.1.

By computer calculation, we can see that the maximal value of Re V̂ − ς
R
is about

0.06. Therefore, in the proof of Lemma 6.2, it is sufficient to decrease, say, Re V̂ (t +
δ
√
−1, s, u, v)− 2πδ by 0.06, by moving δ (though we do not use this value in the proof

of the lemma).
We put

f(X,Y, Z,W ) = Re V̂ (t+X
√
−1, s+ Y

√
−1, u+ Z

√
−1, v +W

√
−1)− ς

R
.

Then, we have that

∂f

∂X
= 2Arg (1− x)− Arg

(
1− y

x

)
− 2π

(
t− 1

2

)
, (88)

∂f

∂Y
= Arg

(
1− y

x

)
− Arg

(
1− 1

yz

)
− 2π

(
s− 1

2

)
, (89)

∂f

∂Z
= 2Arg (1− z)− Arg

(
1− 1

yz

)
− Arg (1− zw)− 2π

(
u− 1

2

)
, (90)

∂f

∂W
= 2Arg (1− w)− Arg (1− zw)− 2π

(
v − 1

2

)
, (91)

where x = e2π
√
−1 (t+X

√
−1), y = e2π

√
−1 (s+Y

√
−1), z = e2π

√
−1 (u+Z

√
−1) and w = e2π

√
−1 (v+W

√
−1).

Lemma 6.2. V (t, s, u, v)− ς
R
satisfies the assumption of Proposition 2.2.

Proof. Since V (t, s, u, v) converges uniformly to V̂ (t, s, u, v) on ∆′, we show the proof

for V̂ (t, s, u, v) instead of V (t, s, u, v). We show that ∂∆′ is null-homotopic in each of
(13)–(20).

As for (13) and (14), similarly as in the proof of Lemma 3.3, it is sufficient to show
that

−(2π − ε′) <
∂f

∂X
(X, 0, 0, 0) < 2π − ε′ (92)
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for some ε′ > 0. Since 0.05 ≤ t ≤ 0.34,

−2π
(1
2
− t
)
< Arg (1− x) < 0.

Further, since 0.1 ≤ s− t ≤ 0.45,

−2π
(1
2
− s+ t

)
< Arg

(
1− y

x

)
< 0.

Hence, by (88),

−2π
(1
2
− t
)
<

∂f

∂X
< 2π(1− s).

Since 0.05 ≤ t and 0.25 ≤ s,

−2π · 0.45 <
∂f

∂X
< 2π · 0.75.

Therefore, (92) is satisfied, as required.
As for (15) and (16), similarly as above, it is sufficient to show that

−(2π − ε′) <
∂f

∂Y
(0, Y, 0, 0) < 2π − ε′ (93)

for some ε′ > 0. Since 0.1 ≤ s− t ≤ 0.45,

−2π
(1
2
− s+ t

)
< Arg

(
1− y

x

)
< 0.

Further, since 0.55 ≤ s+ u ≤ 0.9,

−2π
(
s+ u− 1

2

)
< Arg

(
1− 1

yz

)
< 0.

Hence, by (89),

−2πt <
∂f

∂Y
< 2πu.

Since t ≤ 0.34 and u ≤ 0.48,

−2π · 0.34 <
∂f

∂Y
< 2π · 0.48.

Therefore, (93) is satisfied, as required.
As for (17) and (18), similarly as above, it is sufficient to show that

−(2π − ε′) <
∂f

∂Z
(0, 0, Z, 0) < 2π − ε′ (94)

for some ε′ > 0. Since 0.15 ≤ u ≤ 0.48,

−2π
(1
2
− u
)
< Arg (1− z) < 0.
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Further, since 0.55 ≤ s+ u ≤ 0.9,

−2π
(
s+ u− 1

2

)
< Arg

(
1− 1

yz

)
< 0.

Furthermore, since 0.25 ≤ u+ v ≤ 0.93,

min
{
− 2π

(1
2
− u− v

)
, 0
}
< Arg (1− zw) < max

{
0, 2π

(
u+ v − 1

2

)}
.

Hence, by (90),

∂f

∂Z
> min

{
− 2π

(1
2
− u
)
, −2πv

}
≥ min

{
− 2π · 0.35, −2π · 0.45

}
= −2π · 0.45,

∂f

∂Z
< max

{
2π
(1
2
+ s− u− v

)
, 2πs

}
≤ max

{
2π · 0.89, 2π · 0.64

}
= 2π · 0.89,

since 0.15 ≤ u, 0.1 ≤ v ≤ 0.45 and s ≤ 0.64. Therefore, (94) is satisfied, as required.
As for (19) and (20), similarly as above, it is sufficient to show that

−(2π − ε′) <
∂f

∂W
(0, 0, 0,W ) < 2π − ε′ (95)

for some ε′ > 0. Since 0.15 ≤ u ≤ 0.48,

−2π
(1
2
− u
)
< Arg (1− z) < 0.

Further, since 0.25 ≤ u+ v ≤ 0.93,

min
{
− 2π

(1
2
− u− v

)
, 0
}
< Arg (1− zw) < max

{
0, 2π

(
u+ v − 1

2

)}
.

Hence, by (91),

∂f

∂W
> min

{
− 2π

(1
2
− v
)
, −2πu

}
≥ min

{
− 2π · 0.4, −2π · 0.48

}
= −2π · 0.48,

∂f

∂W
< max

{
2π
(
1− u− 2v

)
, 2π

(1
2
− v
)}

≤ max
{
2π · 0.65, 2π · 0.4

}
= 2π · 0.65,

since 0.1 ≤ v and 0.15 ≤ u ≤ 0.48. Therefore, (95) is satisfied, as required.

6.5 Verifying the assumption of the saddle point method

In this section, we verify the assumption of the saddle point method in Lemma 6.6. In
order to show this lemma, we show Lemmas 6.3–6.5 in advance.

Lemma 6.3. In the fiber of the projection C4 → R4 at (t, s, u, v) ∈ ∆′ satisfying that
s < 1

2
and u+ v > 1

2
, f → ∞ as X2 + Y 2 + Z2 +W 2 → ∞.
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Proof. By (11), 1
2π
f is approximated by the following function,

F (X,Y, Z,W ) =

({(
1
2
− t
)
X if X ≥ 0

−
(
1
2
− t
)
X if X < 0

)
+

({
0 if Y ≥ X(
s− t− 1

2

)
(Y −X) if Y < X

)

+
(1
2
− s
)
Y −

({
0 if Y +Z ≥ 0(
s+ u− 1

2

)
(Y +Z) if Y +Z < 0

)
+

({(
1
2
− u
)
Z if Z ≥ 0

−
(
1
2
− u
)
Z if Z < 0

)

−

({
0 if Z +W ≥ 0(
u+ v − 1

2

)
(Z +W ) if Z +W < 0

)
+

({(
1
2
− v
)
W if W ≥ 0

−
(
1
2
− v
)
W if W < 0

)
.

We note that all summands of the right-hand side except for the third summand are
non-negative. Further, the sum of the first three summands are rewritten,({(

1− t− s
)
X if X ≥ 0

−
(
s− t

)
X if X < 0

)
+

({(
1
2
− s
)
(Y −X) if Y ≥ X

−t (Y −X) if Y < X

)
.

Hence,

F (X,Y, Z,W ) ≥

({(
1− t− s

)
X if X ≥ 0

−
(
s− t

)
X if X < 0

)
+

({(
1
2
− s
)
(Y −X) if Y ≥ X

−t (Y −X) if Y < X

)

+

({(
1
2
− u
)
Z if Z ≥ 0

−
(
1
2
− u
)
Z if Z < 0

)
+

({(
1
2
− v
)
W if W ≥ 0

−
(
1
2
− v
)
W if W < 0

)
≥ C

(
|X|+ |X − Y |+ |Z|+ |W |

)
,

for some constant C > 0. Therefore, we obtain the lemma.

In the fiber of the projection C4 → R4 at (t, s, u, v) ∈ ∆′, we consider the flow from
(X, Y, Z,W ) = (0, 0, 0, 0) determined by the vector field (− ∂f

∂X
,− ∂f

∂Y
,− ∂f

∂Z
,− ∂f

∂W
) in the

following two lemmas, depending on the sign of u+ v − 1
2
.

Lemma 6.4. In the fiber of the projection C4 → R4 at (t, s, u, v) ∈ ∆′, we consider the
flow from (X,Y, Z,W ) = (0, 0, 0, 0) determined by the vector field (− ∂f

∂X
,− ∂f

∂Y
,− ∂f

∂Z
,− ∂f

∂W
).

There exists a convex neighborhood U of (t0, s0, u0, v0) such that the following (1) and (2)
holds.
(1) If (t, s, u, v) ∈ U and u + v ≥ 1

2
, then f has a unique minimal point, and the flow

goes there.
(2) If (t, s, u, v) /∈ U and u+ v ≥ 1

2
, then the flow goes to infinity.

Proof. Similarly as the proof of Lemma 4.5, the Hesse matrix of f is calculated as

2π


2a1 + b1 −b1 0 0
−b1 b1 + b2 b2 0
0 b2 2a3 + b2 + b3 b3
0 0 b3 2a4 + b3

 ,

56



where we put

a1 = Im
1

1− x
, a3 = Im

1

1− z
, a4 = Im

1

1− w
,

b1 = Im
1

1− y
x

, b2 = Im
1

1− 1
yz

, b3 = Im
−1

1− zw
,

noting that these numbers are positive. The above matrix is equivalent, as a quadratic
form, to

2π


2a1 + b1 0 0 0

0 2a2 + b2 b2 0
0 b2 2a3 + b2 + b3 b3
0 0 b3 2a4 + b3

 ,

where we put a2 = a1b1/(2a1 + b1). Further, this matrix is equivalent, as a quadratic
form, to

2π


2a1 + b1 0 0 0

0 2a2 + b2 0 0
0 0 2a′3 + 2a3 + b3 b3
0 0 b3 2a4 + b3

 ,

where we put a′3 = a2b2/(2a2+ b2). Furthermore, the following matrix is positive definite,(
2a3 + b3 b3

b3 2a4 + b3

)
,

since we can verify that its trace and determinant are positive. Therefore, the Hesse
matrix of f is positive definite, and f is a convex function.

Hence, since 1
2π
f is approximated by F as in the proof of Lemma 6.3, if

F (X, Y, Z,W ) → ∞ as X2 + Y 2 + Z2 +W 2 → ∞, (96)

then the conclusion of (1) holds, since f is convex. Otherwise, the conclusion of (2) holds.
Therefore, we consider the condition of (96). Since F is piecewise linear, this condition
can be presented by a system of inequalities of t, s, u, v of degree 1. Hence, U of the
lemma is convex. Further, by Lemma 6.3, (96) holds in a neighborhood of (t0, s0, u0, v0).
Therefore, we obtain the lemma.

Lemma 6.5. In the fiber of the projection C4 → R4 at (t, s, u, v) ∈ ∆′, we consider the
flow from (X,Y, Z,W ) = (0, 0, 0, 0) determined by the vector field (− ∂f

∂X
,− ∂f

∂Y
,− ∂f

∂Z
,− ∂f

∂W
).

There exists a convex neighborhood U of (t0, s0, u0, v0) such that the following (1) and (2)
holds.
(1) If (t, s, u, v) ∈ U and u + v < 1

2
, then f has a unique minimal point, and the flow

goes there.
(2) If (t, s, u, v) /∈ U and u+ v < 1

2
, then the flow goes to infinity.
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Proof. Similarly as the proof of Lemma 6.4, the Hesse matrix of f is calculated as

2π


2a1 + b1 −b1 0 0
−b1 b1 + b2 b2 0
0 b2 2a3 + b2 − b′3 −b′3
0 0 −b′3 2a4 − b′3

 ,

where we put a1, a3, a4, b1, b2 as in the proof of Lemma 6.4, and put

b′3 = Im
1

1− zw
,

noting that these numbers are positive. We will show below that the flow of the lemma
always goes to the domain that Z ≤ 0 and W ≤ 0, and that(

2a3 − b′3 −b′3
−b′3 2a4 − b′3

)
is positive definite in this domain. (97)

Then, we can show the lemma, in the same way as the proof of Lemma 6.4.
We show that the flow of the lemma goes to the domain that Z ≤ 0 and W ≤ 0, as

follows. When Z > 0, since 0.15 ≤ u ≤ 0.48 and 0.25 ≤ u+v < 1
2
, Arg (1−z) > −π

(
1
2
−u
)

and Arg (1− zw) < 0. Hence, by (90), ∂f
∂Z

> 0, and the flow goes in a direction decreasing

Z. Further, when W > 0, we can similarly show that ∂f
∂W

> 0, and the flow goes in a
direction decreasing W . Therefore, the flow goes to the domain that Z ≤ 0 and W ≤ 0.

We show (97), as follows. It is sufficient to show that(
the trace of the matrix of (97)

)
= 2π(a3 + a3 − b′3) > 0, (98)(

the determinant of the matrix of (97)
)

= 2a3a4b
′
3

( 2
b′3

− 1

a3
− 1

a4

)
> 0. (99)

We can show that (99) ⇒ (98), in the same way as in the proof of Lemma 4.6. We show
(99), as follows. Similarly as in the proof of Lemma 4.6, we have that

1

a3
=

e2πZ + e−2πZ − 2 cos 2πu

sin 2πu
,

1

a4
=

e2πW + e−2πW − 2 cos 2πv

sin 2πv
,

1

b′3
=

e2π(Z+W ) + e−2π(Z+W ) − 2 cos 2π(u+ v)

sin 2π(u+ v)
.

Hence, the differential of 2
b′3
− 1

a3
− 1

a4
with respect to Z is given by

1

2π
· ∂

∂Z

( 2
b′3

− 1

a3
− 1

a4

)
= 2 · e

2π(Z+W ) − e−2π(Z+W )

sin 2π(u+ v)
− e2πZ − e−2πZ

sin 2πu
.

Since 0.15 ≤ u < 1
2
− v ≤ 0.4, sin 2πu ≤ sin(2π · 0.1) = 0.587785... . Hence, 2/ sin 2π(u+

v) ≥ 2 > 1/ sin 2πu. Further, since Z ≤ 0 and W ≤ 0, e2π(Z+W ) − e−2π(Z+W ) ≤
e2πZ − e−2πZ ≤ 0. Hence, the above formula is non-positive. Therefore, it is sufficient to
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show (99) when Z = 0. In a similar way, we can show that it is sufficient to show (99)
when W = 0. When Z =W = 0, similarly as in the proof of Lemma 4.6, we have that

1

2

( 2

b′3
− 1

a3
− 1

a4

)
= 2 tanπ(u+ v)− tanπu− tanπv > 0,

since 0 < u < u+ v < 1
2
and 0 < v < u+ v < 1

2
. Hence, we obtain (99), as required.

Lemma 6.6. When we apply Proposition 2.4 to (84), the assumption of Proposition 2.4
holds.

Proof. We show that there exists a homotopy ∆′
δ (0 ≤ δ ≤ 1) between ∆′

0 = ∆′ and ∆′
1

such that

(tc, sc, uc, vc) ∈ ∆′
1, (100)

∆′
1 − {(tc, sc, uc, vc)} ⊂

{
(t, s, u, v) ∈ C4

∣∣ Re V̂ (t, s, u, v) < ς
R

}
, (101)

∂∆′
δ ⊂

{
(t, s, u, v) ∈ C4

∣∣ Re V̂ (t, s, u, v) < ς
R

}
. (102)

In the fiber of the projection C4 → R4 at (t, s, u, v) ∈ ∆′, we consider the flow from
(X, Y, Z,W ) = (0, 0, 0, 0) determined by the vector field (− ∂f

∂X
,− ∂f

∂Y
,− ∂f

∂Z
,− ∂f

∂W
). By

Lemmas 6.3, 6.4 and 6.5, there exists a convex neighborhood U ′ of (t0, s0, u0, v0) such
that the following (1) and (2) holds.

(1) If (t, s, u, v) ∈ U ′, then f has a unique minimal point, and the flow goes there.

(2) If (t, s, u, v) /∈ U ′, then the flow goes to infinity.

We put the homotopy ∆′
δ in a similar way as in the proof of Lemma 4.7.

We can show (100), (101) and (101) by using Lemma 6.1 in a similar way as the proof
of Lemma 3.9.

7 The 77 knot

In this section, we show Theorem 1.1 for the 77 knot. We give a proof of the theorem in
Section 7.1, using lemmas shown in Sections 7.2–7.5.

7.1 Proof of Theorem 1.1 for the 77 knot

In this section, we show a proof of Theorem 1.1 for the 77 knot.
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The 77 knot is the closure of the following tangle.

0

0

0 n 0i

j
10

N−1

0
k

l
0m

1

0

0

As shown in [32], we can put the labelings of edges adjacent to the unbounded regions as
shown above. Hence, from the definition of the Kashaev invariant, the Kashaev invariant
of the 77 knot is presented by

⟨ 77 ⟩N =
∑

q1/2 × N q−
1
2

(q)N−n(q)n−1

× N q
1
2
−i

(q)N−i(q)i−j−1(q)j
× N q−

1
2
+i

(q)i−n(q)n−1(q)N−i

× N q
1
2

(q)j(q)N−k−1(q)k−j
× N q−

1
2
−l

(q)N−m(q)m−l−1(q)l
× N q

1
2
+l

(q)k−l(q)l(q)N−k−1

× N q−
1
2

(q)N−m(q)m−1

=
∑

0≤j<i≤N
0≤l≤k<N

j≤k

N5

(q)N−i(q)N−i(q)i−j−1(q)j(q)j(q)k−j(q)N−k−1(q)N−k−1(q)k−l(q)l(q)l

=
∑

0≤i,j,k,l i+j<N
j+k<N, k+l<N

N5

(q)i(q)i(q)N−i−j−1(q)j(q)j(q)N−j−k−1(q)k(q)k(q)N−k−l−1(q)l(q)l
,

where we obtain the last equality by replacing i and k with N−i and N−k−1 respectively.

Proof of Theorem 1.1 for the 77 knot. By (5), the above presentation of ⟨ 77 ⟩N is rewritten

⟨ 77 ⟩N = N5
∑

0≤i,j,k,l i+j<N
j+k<N, k+l<N

exp
(
N Ṽ

(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N
,
2l + 1

2N

))
,

where we put

Ṽ (t, s, u, v) =
1

N

(
φ(t)− φ(1− t)− φ

(
t+ s− 1

2N

)
+ φ(s)− φ(1− s)

+ φ
(
1− s− u+

1

2N

)
+ φ(u)− φ(1− u)− φ

(
u+ v − 1

2N

)
+ φ(v)

− φ(1− v)− 5φ
( 1

2N

)
+ 6φ

(
1− 1

2N

))
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=
1

N

(
2φ(t)− φ

(
t+ s− 1

2N

)
+ 2φ(s) + φ

(
1− s− u+

1

2N

)
+ 2φ(u)

− φ
(
u+ v − 1

2N

)
+ 2φ(v)

)
+

1

2π
√
−1

π2

6
− 11

2N
logN +

π
√
−1

4N
− π

√
−1

12N2

+ 2π
√
−1 · 1

2

(
t2 + s2 + u2 + v2 − t− s− u− v +

2

3

)
.

Here, we obtain the last equality by (9) and (10). Hence, by putting

V (t, s, u, v) = Ṽ (t, s, u, v) +
11

2N
logN,

the presentation of ⟨ 77 ⟩N is rewritten

⟨ 77 ⟩N = N−1/2
∑

i,j,k,l∈Z
( 2i+1

2N
, 2j+1

2N
, 2k+1

2N
, 2l+1

2N
)∈∆

exp
(
N V

(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N
,
2l + 1

2N

))
,

where the range of (2i+1
2N

, 2j+1
2N

, 2k+1
2N

, 2l+1
2N

) of the sum is given by the following domain,

∆ =
{
(t, s, u, v) ∈ R4

∣∣ 0 ≤ t, s, u, v, t+ s ≤ 1, s+ u ≤ 1, u+ v ≤ 1
}
.

By Proposition 2.1, as N → ∞, V (t, s, u, v) converges to the following V̂ (t, s, u, v) in the
interior of ∆,

V̂ (t, s, u, v) =
1

2π
√
−1

(
2 Li2(e

2π
√
−1 t)− Li2(e

2π
√
−1 (t+s)) + 2Li2(e

2π
√
−1 s)

+ Li2(e
−2π

√
−1 (s+u)) + 2Li2(e

2π
√
−1u)− Li2(e

2π
√
−1 (u+v)) + 2Li2(e

2π
√
−1 v) +

π2

6

)
+ 2π

√
−1 · 1

2

(
t2 + s2 + u2 + v2 − t− s− u− v +

2

3

)
.

By concrete calculation, we can check that the boundary of ∆ is included in the domain{
(t, s, u, v) ∈ ∆

∣∣ Re V̂ (t, s, u, v) < ς
R
− ε
}

(103)

for some sufficiently small ε > 0, where we put ς
R
= 1.21648... as in (109); we will know

later that this value is equal to the real part of the critical value of V̂ at the critical point
of Lemma 7.1. Hence, similarly as in Section 3.1, we choose a new domain ∆′, which
satisfies that ∆−∆′ ⊂ (103), as

∆′ =

{
(t, s, u, v) ∈ ∆

∣∣∣∣∣ 0.1 ≤ t ≤ 0.4, 0.26 ≤ s ≤ 0.45
0.26 ≤ u ≤ 0.45, 0.1 ≤ v ≤ 0.4

}
, (104)

where we calculate the concrete values of the bounds of these inequalities in Section 7.2.
Hence, since ∆−∆′ ⊂ (103), we obtain the second equality of the following formula,

⟨ 77 ⟩N = eNςN−1/2
∑

i,j,k,l∈Z
( 2i+1

2N
, 2j+1

2N
, 2k+1

2N
, 2l+1

2N
)∈∆

exp
(
N · V

(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N
,
2l + 1

2N

)
−Nς

)
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= eNς

(
N−1/2

∑
i,j,k,l∈Z

( 2i+1
2N

, 2j+1
2N

, 2k+1
2N

, 2l+1
2N

)∈∆′

exp
(
N · V

(2i+ 1

2N
,
2j + 1

2N
,
2k + 1

2N
,
2l + 1

2N

)
−Nς

)
+O(e−Nε)

)

for some ε > 0.
Further, by Proposition 2.2 (Poisson summation formula), the above sum is presented

by

⟨ 77 ⟩N = eNς

(
N7/2

∫
∆′

exp
(
N · V (t, s, u, v)−Nς

)
dt ds du dv +O(e−Nε)

)
, (105)

noting that we verify the assumption of Proposition 2.2 in Lemma 7.2. Furthermore, by
Proposition 2.4 (saddle point method), there exist some κ′i’s such that

⟨ 77 ⟩N = N7/2 exp
(
N · V (tc, sc, uc, vc)

)
· (2π)

2

N2

(
det(−H)

)−1/2
(
1 +

d∑
i=1

κ′iℏi +O(ℏd+1)
)
,

for any d > 0, noting that we verify the assumption of Proposition 2.4 in Lemma 7.8. Here,
(tc, sc, uc, vc) is the critical point of V which corresponds to the critical point (t0, s0, u0, v0)

of V̂ of Lemma 7.1, where V̂ is the limit of V at N → ∞ whose concrete presentation is
given in Section 7.2, and H is the Hesse matrix of V at (tc, sc, uc, vc).

We calculate the right-hand side of the above formula. Similarly as in Section 3.1, we
have that

V (t0, s0, u0, v0) = ς +O(ℏ).
Therefore, there exist some κi’s such that

⟨ 77 ⟩N = eNςN3/2 ω ·
(
1 +

d∑
i=1

κiℏi +O(ℏd+1)
)
,

for any d > 0. Hence, we obtain the theorem for the 77 knot.

7.2 Estimate of the range of ∆′

In this section, we calculate the concrete values of the bounds of the inequalities in (104)
so that they satisfy that ∆−∆′ ⊂ (103).

Putting Λ as in Section 2.2, we have that

Re V̂ (t, s, u, v) = 2Λ(t)− Λ(t+ s) + 2Λ(s)− Λ(s+ u) + 2Λ(u)− Λ(u+ v) + 2Λ(v).

We consider the domain{
(t, s, u, v) ∈ ∆

∣∣ 2Λ(t)−Λ(t+ s)+2Λ(s)−Λ(s+u)+2Λ(u)−Λ(u+ v)+2Λ(v) ≥ ς
R

}
,

(106)
where we put ς

R
= 1.21648... as in (109). The aim of this section is to show that this

domain is included in the interior of the domain ∆′ of (104). For this purpose, we show
the estimates of the defining inequalities of (104) for (t, s, u, v) in (106).
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We calculate the minimal value tmin and the maximal value tmax of t. They are solutions
of the system of the following equations,

2Λ(t)− Λ(t+ s) + 2Λ(s)− Λ(s+ u) + 2Λ(u)− Λ(u+ v) + 2Λ(v) = ς
R
,

∂

∂s

(
2Λ(t)− Λ(t+ s) + 2Λ(s)− Λ(s+ u) + 2Λ(u)− Λ(u+ v) + 2Λ(v)

)
= 0,

∂

∂u

(
2Λ(t)− Λ(t+ s) + 2Λ(s)− Λ(s+ u) + 2Λ(u)− Λ(u+ v) + 2Λ(v)

)
= 0,

∂

∂v

(
2Λ(t)− Λ(t+ s) + 2Λ(s)− Λ(s+ u) + 2Λ(u)− Λ(u+ v) + 2Λ(v)

)
= 0.

We note that there are exactly two solutions of this system of equations corresponding to
the maximal and minimal values of t (see Appendix A). By calculating a solution of these
equations by Newton’s method from (t, s, u, v) = (0.2, 0.35, 0.35, 0.25), we obtain tmin =
0.173218... , and from (t, s, u, v) = (0.3, 0.35, 0.35, 0.25), we obtain tmax = 0.322858... .
Therefore, we obtain an estimate of t in ∆′ as

0.1 ≤ t ≤ 0.4.

We calculate the minimal value smin and the maximal value smax of s. They are
solutions of the system of the following equations,

2Λ(t)− Λ(t+ s) + 2Λ(s)− Λ(s+ u) + 2Λ(u)− Λ(u+ v) + 2Λ(v) = ς
R
,

∂

∂t

(
2Λ(t)− Λ(t+ s) + 2Λ(s)− Λ(s+ u) + 2Λ(u)− Λ(u+ v) + 2Λ(v)

)
= 0,

∂

∂u

(
2Λ(t)− Λ(t+ s) + 2Λ(s)− Λ(s+ u) + 2Λ(u)− Λ(u+ v) + 2Λ(v)

)
= 0,

∂

∂v

(
2Λ(t)− Λ(t+ s) + 2Λ(s)− Λ(s+ u) + 2Λ(u)− Λ(u+ v) + 2Λ(v)

)
= 0.

We note that there are exactly two solutions of this system of equations corresponding to
the maximal and minimal values of s (see Appendix A). By calculating a solution of these
equations by Newton’s method from (t, s, u, v) = (0.25, 0.25, 0.35, 0.25), we obtain smin =
0.264013... , and from (t, s, u, v) = (0.2, 0.4, 0.3, 0.25), we obtain smax = 0.436051... .
Therefore, we obtain an estimate of s in ∆′ as

0.26 ≤ s ≤ 0.45.

We obtain the estimates of u and v from the above estimates by the symmetry (107).

7.3 Calculation of the critical value

In this section, we calculate the concrete value of a critical point of V̂ .
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The differentials of V̂ are presented by

∂

∂t
V̂ (t, s, u, v) = −2 log(1− x) + log(1− xy) + 2π

√
−1
(
t− 1

2

)
,

∂

∂s
V̂ (t, s, u, v) = −2 log(1− y) + log(1− xy) + log

(
1− 1

yz

)
+ 2π

√
−1
(
s− 1

2

)
,

∂

∂u
V̂ (t, s, u, v) = −2 log(1− z) + log(1− zw) + log

(
1− 1

yz

)
+ 2π

√
−1
(
u− 1

2

)
,

∂

∂v
V̂ (t, s, u, v) = −2 log(1− w) + log(1− zw) + 2π

√
−1
(
v − 1

2

)
,

where x = e2π
√
−1 t, y = e2π

√
−1 s, z = e2π

√
−1u and w = e2π

√
−1 v.

Lemma 7.1. V̂ has a unique critical point (t0, s0, u0, v0) in P
−1(∆′), where P : C4 → R4

is the projection to the real parts of the entries.

Proof. Any critical point of V̂ is given by a solution of ∂
∂t
V̂ = ∂

∂s
V̂ = ∂

∂u
V̂ = ∂

∂v
V̂ = 0,

and these equations are rewritten,

(1− x)2 = −x(1− xy),

(1− y)2 = −y(1− xy)
(
1− 1

yz

)
,

(1− z)2 = −z(1− zw)
(
1− 1

yz

)
,

(1− w)2 = −w(1− zw).

From the first formula, we have that y = (x2−x+1)/x2. Hence, from the second formula,
we have that z = x3/

(
(x − 1)(x2 + 1)

)
. Further, from the third formula, we have that

w = (x6 − 2x5 + 5x4 − 6x3 + 5x2 − 3x + 1)/x5. By substituting these into the fourth
formula, we have that(

2x4 − 3x3 + 3x2 − 2x+ 1
)(
x6 − x5 + 3x4 − 4x3 + 4x2 − 3x+ 1

)
= 0.

Its solutions are

x = 0.0287264...± √
−1 · 0.813859... , 0.721274...± √

−1 · 0.48342... ,
− 0.377439...± √

−1 · 1.47725... , 0.232606...± √
−1 · 0.943705... ,

0.644833...± √
−1 · 0.198843... .

Among these, the first solution gives a solution in ∆′, from which we have that

x0 = 0.0287264...+
√
−1 · 0.813859... , t0 = 0.244385...+

√
−1 · 0.0326818... ,

y0 = −0.547424...+
√
−1 · 1.12087... , s0 = 0.322307...− √

−1 · 0.0351838... ,
z0 = y0, u0 = s0,

w0 = x0, v0 = t0,

where x0 = e2π
√
−1 t0 , y0 = e2π

√
−1 s0 , z0 = e2π

√
−1u0 and w0 = e2π

√
−1 v0 . These give a

unique critical point in P−1(∆′).
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We note that V̂ and the set of critical points of V̂ have the following symmetry,

(t, s, u, v) 7−→ (v, u, s, t). (107)

The critical value of V̂ at the critical point of Lemma 7.1 is presented by

ς = V̂ (t0, s0, u0, v0)

=
1

2π
√
−1

(
2 Li2(x0)− Li2(x0y0) + 2Li2(y0) + Li2

( 1

y0z0

)
+ 2Li2(z0)− Li2(z0w0)

+ 2Li2(w0) +
π2

6

)
+ 2π

√
−1 · 1

2

(
t20 + s20 + u20 + v20 − t0 − s0 − u0 − v0 +

2

3

)
(108)

= 1.21648...− √
−1 · 0.417787... .

Further, we put its real part to be ς
R
,

ς
R

= Re ς = 1.21648... (109)

7.4 Verifying the assumption of the Poisson summation formula

In this section, we verify the assumption of the Poisson summation formula in Lemma
7.2, which is used in the proof of Theorem 1.1 for the 77 knot in Section 7.1.

By computer calculation, we can see that the maximal value of Re V̂ − ς
R
is about

0.02. Therefore, in the proof of Lemma 7.2, it is sufficient to decrease, say, Re V̂ (t +
δ
√
−1, s, u, v)− 2πδ by 0.02, by moving δ (though we do not use this value in the proof

of the lemma).
We put

f(X,Y, Z,W ) = Re V̂ (t+X
√
−1, s+ Y

√
−1, u+ Z

√
−1, v +W

√
−1)− ς

R
.

Then, we have that

∂f

∂X
= 2Arg (1− x)− Arg (1− xy)− 2π

(
t− 1

2

)
, (110)

∂f

∂Y
= 2Arg (1− y)− Arg (1− xy)− Arg

(
1− 1

yz

)
− 2π

(
s− 1

2

)
, (111)

∂f

∂Z
= 2Arg (1− z)− Arg (1− zw)− Arg

(
1− 1

yz

)
− 2π

(
u− 1

2

)
, (112)

∂f

∂W
= 2Arg (1− w)− Arg (1− zw)− 2π

(
v − 1

2

)
, (113)

where x = e2π
√
−1 (t+X

√
−1), y = e2π

√
−1 (s+Y

√
−1), z = e2π

√
−1 (u+Z

√
−1) and w = e2π

√
−1 (v+W

√
−1).

Lemma 7.2. V (t, s, u, v)− ς
R
satisfies the assumption of Proposition 2.2.

Proof. Since V (t, s, u, v) converges uniformly to V̂ (t, s, u, v) on ∆′, we show the proof

for V̂ (t, s, u, v) instead of V (t, s, u, v). We show that ∂∆′ is null-homotopic in each of
(13)–(20).
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As for (13) and (14), similarly as in the proof of Lemma 3.3, it is sufficient to show
that

−(2π − ε′) <
∂f

∂X
(X, 0, 0, 0) < 2π − ε′ (114)

for some ε′ > 0. Since 0.1 ≤ t ≤ 0.4,

−2π
(1
2
− t
)
< Arg (1− x) < 0.

Further, since 0.36 ≤ t+ s ≤ 0.85,

min
{
− 2π

(1
2
− t− s

)
, 0
}
< Arg (1− xy) < max

{
0, 2π

(
t+ s− 1

2

)}
.

Hence, by (110),

∂f

∂X
> min

{
− 2π

(1
2
− t
)
, −2π · s

}
≥ min

{
− 2π · 0.4, −2π · 0.45

}
= −2π · 0.45,

∂f

∂X
< max

{
2π(1− 2t− s), 2π

(1
2
− t
)}

≤ max
{
2π · 0.54, 2π · 0.4

}
= 2π · 0.54,

since 0.1 ≤ t and 0.26 ≤ s ≤ 0.45. Therefore, (114) is satisfied, as required.
As for (15) and (16), similarly as above, it is sufficient to show that

−(2π − ε′) <
∂f

∂Y
(0, Y, 0, 0) < 2π − ε′ (115)

for some ε′ > 0. Since 0.26 ≤ s ≤ 0.45,

−2π
(1
2
− s
)
< Arg (1− y) < 0.

Further, since 0.36 ≤ t+ s ≤ 0.85,

min
{
− 2π

(1
2
− t− s

)
, 0
}
< Arg (1− xy) < max

{
0, 2π

(
t+ s− 1

2

)}
.

Furthermore, since 0.52 ≤ s+ u ≤ 0.9,

−2π
(
s+ u− 1

2
) < Arg

(
1− 1

yz

)
< 0.

Hence, by (111),

∂f

∂Y
> min

{
− 2π · u, −2π

(
t+ s+ u− 1

2

)}
≥ min

{
− 2π · 0.45, −2π · 0.8

}
= −2π · 0.8,

∂f

∂Y
< max

{
2π(1− t− 2s), 2π

(1
2
− s
)}

≤ max
{
2π · 0.5, 2π · 0.3

}
= 2π · 0.5,

since 0.1 ≤ t and 0.26 ≤ s ≤ 0.45. Therefore, (115) is satisfied, as required.
We obtain (17), (18), (19) and (20) from the above cases by the symmetry (107).
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7.5 Verifying the assumption of the saddle point method

In this section, we verify the assumption of the saddle point method in Lemma 7.8. In
order to show this lemma, we show Lemmas 7.3–7.7 in advance.

Lemma 7.3. In the fiber of the projection C4 → R4 at (t, s, u, v) ∈ ∆′, f → ∞ as
X2 + Y 2 + Z2 +W 2 → ∞.

Proof. By (11), 1
2π
f is approximated by the following function,

F1(X, Y ) +

({
0 if Y + Z ≤ 0(
s+ u− 1

2

)
(Y + Z) if Y + Z > 0

)
+ F2(Z,W ), (116)

where we put

F1(X, Y ) =

({(
1
2
− t
)
X if X ≥ 0

−
(
1
2
− t
)
X if X < 0

)
+

({(
1
2
− s
)
Y if Y ≥ 0

−
(
1
2
− s
)
Y if Y < 0

)

−

({
0 if X + Y ≥ 0(
t+ s− 1

2

)
(X + Y ) if X + Y < 0

)
,

F2(Z,W ) =

({(
1
2
− u
)
Z if Z ≥ 0

−
(
1
2
− u
)
Z if Z < 0

)
+

({(
1
2
− v
)
W if W ≥ 0

−
(
1
2
− v
)
W if W < 0

)

−

({
0 if Z +W ≥ 0(
u+ v − 1

2

)
(Z +W ) if Z +W < 0

)
.

Since the middle term of (116) is non-negative, it is sufficient to show that F1(X, Y ) → ∞
as X2 + Y 2 → ∞, and F2(Z,W ) → ∞ as Z2 +W 2 → ∞. By the symmetry (107), it is
sufficient to show that

F1(X,Y ) → ∞ as X2 + Y 2 → ∞. (117)

We show (117), as follows. When X + Y ≥ 0,

F1(X, Y ) =

({(
1
2
− t
)
X if X ≥ 0

−
(
1
2
− t
)
X if X < 0

)
+

({(
1
2
− s
)
Y if Y ≥ 0

−
(
1
2
− s
)
Y if Y < 0

)
,

and hence, (117) holds. When X + Y < 0,

F1(X,Y ) =

({(
1
2
− t
)
X if X ≥ 0

−
(
1
2
− t
)
X if X < 0

)
+

({(
1
2
− s
)
Y if Y ≥ 0

−
(
1
2
− s
)
Y if Y < 0

)
−
(
t+ s− 1

2

)
(X + Y )

=

({(
1− 2t− s

)
X if X ≥ 0

−sX if X < 0

)
+

({(
1− t− 2s

)
Y if Y ≥ 0

−t Y if Y < 0

)
.
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Hence, when X < 0 and Y < 0, (117) holds. Further, when X > 0 and X + Y < 0,
F1(X, Y ) = (1− t− s)X − t(X + Y ), and hence, (117) holds. Furthermore, when Y > 0
and X + Y < 0, similarly, (117) holds. Therefore, (117) holds, as required.

In the fiber of the projection C4 → R4 at (t, s, u, v) ∈ ∆′, we consider the flow from
(X, Y, Z,W ) = (0, 0, 0, 0) determined by the vector field (− ∂f

∂X
,− ∂f

∂Y
,− ∂f

∂Z
,− ∂f

∂W
) in the

following four lemmas, depending on the signs of t+ s− 1
2
and u+ v − 1

2
.

Lemma 7.4. In the fiber of the projection C4 → R4 at (t, s, u, v) ∈ ∆′ satisfying that
t+ s ≥ 1

2
and u+ v ≥ 1

2
, we consider the flow from (X, Y, Z,W ) = (0, 0, 0, 0) determined

by the vector field (− ∂f
∂X
,− ∂f

∂Y
,− ∂f

∂Z
,− ∂f

∂W
). Then, f has a unique minimal point, and the

flow goes there.

Proof. Similarly as the proof of Lemma 4.5, the Hesse matrix of f is calculated as

2π


2a1 + b1 b1 0 0

b1 2a2 + b1 + b2 b2 0
0 b2 2a3 + b2 + b3 b3
0 0 b3 2a4 + b3

 ,

where we put

a1 = Im
1

1− x
, a2 = Im

1

1− y
, a3 = Im

1

1− z
, a4 = Im

1

1− w
,

b1 = Im
−1

1− xy
, b2 = Im

1

1− 1
yz

, b3 = Im
−1

1− zw
,

noting that these numbers are positive. The above matrix is equivalent, as a quadratic
form, to

2π


2a1 + b1 0 0 0

0 4a1a2+2a1b1+2a2b1
2a1+b1

+ b2 b2 0

0 b2
4a3a4+2a3b3+2a4b3

2a4+b3
+ b2 0

0 0 0 2a4 + b3

 .

Since we can verify that the trace and the determinant of the middle 2×2 submatrix are
positive, the above matrix is positive definite. Hence, the Hesse matrix of f is positive
definite, and f is a convex function. Further, since f → ∞ at infinity by Lemma 7.3, f
has a unique minimal point, and the flow of the lemma goes there, as required.

Lemma 7.5. In the fiber of the projection C4 → R4 at (t, s, u, v) ∈ ∆′ satisfying that
t+ s < 1

2
and u+ v ≥ 1

2
, we consider the flow from (X, Y, Z,W ) = (0, 0, 0, 0) determined

by the vector field (− ∂f
∂X
,− ∂f

∂Y
,− ∂f

∂Z
,− ∂f

∂W
). Then, f has a unique minimal point, and the

flow goes there.
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Proof. Similarly as the proof of Lemma 7.4, the Hesse matrix of f is presented by

2π


2a1 − b′1 −b′1 0 0
−b′1 2a2 − b′1 + b2 b2 0
0 b2 2a3 + b2 + b3 b3
0 0 b3 2a4 + b3

 ,

where we put a1, · · · , a4, b2 and b3 as in the proof of Lemma 7.4, and put

b′1 = Im
1

1− xy
,

noting that these numbers are positive. We will show below that the flow of the lemma
always goes to the domain that X ≤ 0 and Y ≤ 0, and that(

2a1 − b′1 −b′1
−b′1 2a2 − b′1

)
is positive definite in this domain. (118)

Then, we can show the lemma, in the same way as the proof of Lemma 7.4.
We show that the flow of the lemma goes to the domain that X ≤ 0 and Y ≤ 0, as

follows. When X > 0, since 0.1 ≤ t ≤ 0.4 and 0.36 ≤ t+ s < 1
2
, Arg (1− x) > −π

(
1
2
− t
)

and Arg (1−xy) < 0. Hence, by (110), ∂f
∂X

> 0, and the flow goes in a direction decreasing

X. Further, when Y > 0, we can similarly show that ∂f
∂Y

> 0, and the flow goes in a
direction decreasing Y . Therefore, the flow goes to the domain that X ≤ 0 and Y ≤ 0.

We show (118), as follows. It is sufficient to show that(
the trace of the matrix of (118)

)
= 2π(a1 + a2 − b′) > 0, (119)(

the determinant of the matrix of (118)
)

= 2a1a2b
′( 2
b′
− 1

a1
− 1

a2

)
> 0. (120)

We can show that (120) ⇒ (119), in the same way as in the proof of Lemma 4.6. We
show (120), as follows. Similarly as in the proof of Lemma 4.6, we have that

1

a1
=

e2πX + e−2πX − 2 cos 2πt

sin 2πt
,

1

a2
=

e2πY + e−2πY − 2 cos 2πs

sin 2πs
,

1

b′
=

e2π(X+Y ) + e−2π(X+Y ) − 2 cos 2π(t+ s)

sin 2π(t+ s)
.

Hence, the differential of 2
b′
− 1

a1
− 1

a2
with respect to X is given by

1

2π
· ∂

∂X

( 2
b′
− 1

a1
− 1

a2

)
= 2 · e

2π(X+Y ) − e−2π(X+Y )

sin 2π(t+ s)
− e2πX − e−2πX

sin 2πt
.

Since 0.1 ≤ t ≤ 0.4, sin 2πt ≤ sin(2π · 0.1) = 0.587785... . Hence, 2/ sin 2π(t + s) ≥ 2 >
1/ sin 2πt. Further, since X ≤ 0 and Y ≤ 0, e2π(X+Y ) − e−2π(X+Y ) ≤ e2πX − e−2πX ≤ 0.
Hence, the above formula is non-positive. Therefore, it is sufficient to show (120) when
X = 0. In a similar way, we can show that it is sufficient to show (120) when Y = 0.
When X = Y = 0, similarly as in the proof of Lemma 4.6, we have that

1

2

( 2
b′
− 1

a1
− 1

a2

)
= 2 tanπ(t+ s)− tanπt− tanπs > 0,
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since 0 < t < t+ s < 1
2
and 0 < s < t+ s < 1

2
. Hence, we obtain (120), as required.

Lemma 7.6. In the fiber of the projection C4 → R4 at (t, s, u, v) ∈ ∆′ satisfying that
t+ s ≥ 1

2
and u+ v < 1

2
, we consider the flow from (X, Y, Z,W ) = (0, 0, 0, 0) determined

by the vector field (− ∂f
∂X
,− ∂f

∂Y
,− ∂f

∂Z
,− ∂f

∂W
). Then, f has a unique minimal point, and the

flow goes there.

Proof. We obtain the lemma from Lemma 7.5 by the symmetry (107).

Lemma 7.7. In the fiber of the projection C4 → R4 at (t, s, u, v) ∈ ∆′ satisfying that
t+ s < 1

2
and u+ v < 1

2
, we consider the flow from (X, Y, Z,W ) = (0, 0, 0, 0) determined

by the vector field (− ∂f
∂X
,− ∂f

∂Y
,− ∂f

∂Z
,− ∂f

∂W
). Then, f has a unique minimal point, and the

flow goes there.

Proof. Similarly as the proof of Lemma 7.4, the Hesse matrix of f is presented by

2π


2a1 − b′1 −b′1 0 0
−b′1 2a2 − b′1 + b2 b2 0
0 b2 2a3 + b2 − b′3 −b′3
0 0 −b′3 2a4 − b′3

 ,

where we put a1, · · · , a4, b′1 and b2 as in the proofs of Lemmas 7.4 and 7.5, and put

b′3 = Im
1

1− zw
,

noting that these numbers are positive. In a similar way as the proof of Lemma 7.5, we
can show that the flow of the lemma always goes to the domain that Z ≤ 0 and W ≤ 0,
and that (

2a3 − b′3 −b′3
−b′3 2a4 − b′3

)
is positive definite in this domain.

Hence, we can show the lemma, in the same way as the proofs of Lemmas 7.4 and 7.5.

Lemma 7.8. When we apply Proposition 2.4 to (105), the assumption of Proposition 2.4
holds.

Proof. We show that there exists a homotopy ∆′
δ (0 ≤ δ ≤ 1) between ∆′

0 = ∆′ and ∆′
1

such that

(tc, sc, uc, vc) ∈ ∆′
1, (121)

∆′
1 − {(tc, sc, uc, vc)} ⊂

{
(t, s, u, v) ∈ C4

∣∣ Re V̂ (t, s, u, v) < ς
R

}
, (122)

∂∆′
δ ⊂

{
(t, s, u, v) ∈ C4

∣∣ Re V̂ (t, s, u, v) < ς
R

}
. (123)

In the fiber of the projection C4 → R4 at (t, s, u, v) ∈ ∆′, we consider the flow from
(X, Y, Z,W ) = (0, 0, 0, 0) determined by the vector field (− ∂f

∂X
,− ∂f

∂Y
,− ∂f

∂Z
,− ∂f

∂W
). Then,

by Lemmas 7.4, 7.5, 7.6 and 7.7, f has a unique minimal point, and the flow goes there.
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We put g(t, s, u, v) to be this minimal point. We define the ending of the homotopy to
be the set of these minimal points,

∆′
1 =

{
(t, s, u, v) + g(t, s, u, v)

√
−1

∣∣ (t, s, u, v) ∈ ∆′}.
Further, we define the internal part of the homotopy by setting it along the flows.

We can show (121), (122) and (122) by using Lemma 7.1 in a similar way as the proof
of Lemma 3.9.

8 The 72 knot

In this section, we show Theorem 1.1 for the 72 knot. We give a proof of the theorem in
Section 8.1, using propositions and lemmas shown in Sections 8.2–8.6.

Unlike the cases of other knots, the boundary of the domain ∆ of the integral is not
included in the domain that ReV < ς

R
in this case. By this reason, we need many

additional calculations when we use the Poisson summation formula and the saddle point
method in the proof of the theorem in this section.

8.1 Proof of Theorem 1.1 for the 72 knot

In this section, we show a proof of Theorem 1.1 for the 72 knot.
Since the Kashaev invariant of the mirror image of a knot is equal to the complex

conjugate of the Kashaev invariant of the original knot, it is sufficient to show the theorem
for the mirror image 72 of the 72 knot. The 72 knot is the closure of the following tangle.

0

0 n

0i

1

j

j−1 0

0
k

1

0l

l−1 0

m 0

10

As shown in [32], we can put the labelings of edges adjacent to the unbounded regions as
shown above. Hence, from the definition of the Kashaev invariant, the Kashaev invariant
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of the 72 knot is presented by

⟨ 72 ⟩N =
∑

q1/2 × N q−
1
2

(q)N−n(q)n−1

× N q−
1
2

(q)N−n(q)n−i(q)i−1

× N q−
1
2
+j

(q)j−i(q)i−1(q)N−j

× N q−
1
2
−j+1

(q)N−k(q)k−j(q)j−1

× N q−
1
2
+l

(q)l−k(q)k−1(q)N−l
× N q−

1
2
−l+1

(q)N−m(q)m−l(q)l−1

× N q−
1
2

(q)N−m(q)m−1

=
∑

0<i≤j≤k≤l≤N

N5 q−1

(q)i−1(q)i−1(q)j−i(q)j−1(q)N−j(q)k−j(q)k−1(q)N−k(q)l−k(q)l−1(q)N−l

=
∑

0≤i≤j≤k≤l<N

N5 q−1

(q)i(q)i(q)j−i(q)j(q)N−j−1(q)k−j(q)k(q)N−k−1(q)l−k(q)l(q)N−l−1

=
∑

0≤i1,··· ,i4
i1+···+i4<N

N5 q−1

(q)i1(q)i1(q)i2(q)j2(q)N−j2−1(q)i3(q)j3(q)N−j3−1(q)i4(q)j4(q)N−j4−1

where we obtain the third equality by replacing i, j, k, l with i + 1, j + 1, k + 1, l + 1
respectively, and obtain the last equality by putting i1 = i, i2 = j, i3 = k, i4 = l,
j1 = i1, j2 = i1 + i2, j3 = i1 + i2 + i3, j4 = i1 + · · ·+ i4.

Proof of Theorem 1.1 for the 72 knot. By (5), the above presentation of ⟨ 72 ⟩N is rewritten

⟨ 72 ⟩N = N5q−1
∑

0≤i1,··· ,i4
i1+···+i4<N

exp
(
N Ṽ

(2i1 + 1

2N
,
2i2 + 1

2N
,
2i3 + 1

2N
,
2i4 + 1

2N

))
,

where we put t = (t1, · · · , t4), s1 = t1, s2 = t1 + t2, s3 = t1 + t2 + t3, s4 = t1 + · · ·+ t4
and

Ṽ (t) =
1

N

(
φ(t1)− φ(1− t1) + φ(t2) + φ(t3) + φ(t4)

− φ
(
s2 −

1

2N

)
− φ

(
1− s2 +

1

2N

)
− φ

(
s3 −

1

N

)
− φ

(
1− s3 +

1

N

)
− φ

(
s4 −

3

2N

)
− φ

(
1− s4 +

3

2N

)
− 4φ

( 1

2N

)
+ 7φ

(
1− 1

2N

))
=

1

N

(
2φ(t1) + φ(t2) + φ(t3) + φ(t4)

)
+

1

2π
√
−1

· π
2

2
− 11

2N
logN +

3π
√
−1

4N
− π

√
−1

4N2

+ 2π
√
−1 · 1

2

(
s21+

(
s2 −

1

2N

)2
+
(
s3 −

1

N

)2
+
(
s4 −

3

2N

)2 − s1 − s2 − s3 − s4 +
3

N
+

2

3

)
.

Here, we obtain the last equality by (9) and (10). Hence, by putting

V (t) = Ṽ (t) +
11

2N
logN,

the presentation of ⟨ 72 ⟩N is rewritten

⟨ 72 ⟩N = N−1/2q−1
∑

i,j,k,l∈Z
( 2i+1

2N
, 2j+1

2N
, 2k+1

2N
, 2l+1

2N
)∈∆

exp
(
N V

(2i1 + 1

2N
,
2i2 + 1

2N
,
2i3 + 1

2N
,
2i4 + 1

2N

))
, (124)
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where the range of (2i1+1
2N

, 2i2+1
2N

, 2i3+1
2N

, 2i4+1
2N

) of the sum is given by the following domain,

∆ =
{
t ∈ R4

∣∣ 0 ≤ t1, · · · , t4 ≤ 1, t1 + · · ·+ t4 ≤ 1 +
1

N

}
.

By Proposition 2.1, (6), as N → ∞, V (t) converges to the following V̂ (t) in the interior
of ∆,

V̂ (t) =
1

2π
√
−1

(
2 Li2(e

2π
√
−1 t1) + Li2(e

2π
√
−1 t2) + Li2(e

2π
√
−1 t3) + Li2(e

2π
√
−1 t4) +

π2

2

)
+ 2π

√
−1 · 1

2

(
s21 + s22 + s23 + s24 − s1 − s2 − s3 − s4 +

2

3

)
.

t1

t2

t2 ≤ 0.7

t1 ≤ 0.5

t1 + t2 ≤ 2
3

Figure 1: The dark gray domain is the image of the projection of the domain (126) to {(t1, t2) ∈ R2}

We change ∆ in the following 4 steps; see Remark 8.1 below for the reason why we
change ∆ in such a way.

Step 1: We note that, unlike the cases of other hyperbolic knots with 7 crossings, some
parts of the boundary of ∆ is not included in the domain{

t ∈ ∆
∣∣ Re V̂ (t) < ς

R
− ε
}

(125)

for a sufficiently small ε > 0, where we put ς
R
= 0.530263... as in (147), which is the

real part of the critical value of V̂ at the critical point of Lemma 8.18. To check this, we
consider the domain {

t ∈ ∆
∣∣ Re V̂ (t) ≥ ς

R

}
. (126)

Putting Λ(t) as in Section 2.2,

Re V̂ (t) = 2Λ(t1) + Λ(t2) + Λ(t3) + Λ(t4).

73



Hence, the domain (126) is symmetric with respect to the exchanges of t2, t3 and t4.
In Figure 1, we graphically show the image of the projection of the domain (126) to
{(t1, t2) ∈ R2} as the dark gray domain in the figure. Further, for each part of the
boundary of ∆, we put

∂∆ = ∂1∆ ∪ ∂2∆ ∪ ∂3∆ ∪ ∂4∆ ∪ ∂5∆,

where we put

∂k∆ =
{
t ∈ ∂∆

∣∣ tk = 0
}

(k = 1, 2, 3, 4),

∂5∆ =
{
t ∈ ∂∆

∣∣ t1 + t2 + t3 + t4 = 1 +
1

N

}
.

By concrete calculation, we can check that ∂1∆ is included in the domain (125) for a
sufficiently small ε > 0, i.e., we can graphically observe in Figure 1 that the line {t1 = 0}
does not intersect with the dark gray domain in the figure. Hence, we can restrict the
range of t1 to t1 ≥ δ1 for a sufficiently small δ1 > 0; as shown in Section 8.2, we can choose
δ1 as δ1 = 0.003. Further, by concrete calculation, we can check that ∂2∆ is not included
in the domain (125), i.e., we can graphically observe in Figure 1 that the line {t2 = 0}
intersects with the dark gray domain in the figure. However, we note that the boundary
of ∂2∆ is included in the domain (125) by Lemma 8.2. In a neighborhood of ∂2∆, by
Proposition 8.3 in Section 8.2.1, the restriction of the sum (124) to the domain t2 < 0.003
is sufficiently small. That is, though the summand of (124) itself is not sufficiently small
on ∂2∆, we can show by the Poisson summation formula and the saddle point method that
the sum of the summand of (124) over ∂2∆ is sufficiently small. Hence, we can restrict the
range of t2 to t2 ≥ 0.003. Similarly, in neighborhoods of ∂3∆ and ∂4∆, by Propositions 8.7
and 8.11 in Sections 8.2.2 and 8.2.3, we can restrict the ranges of t3 and t4 to t3 ≥ 0.003
and t4 ≥ 0.003. Further, we can check that ∂5∆ is not included in the domain (125),
i.e., we can graphically observe in Figure 1 that the line {t1 + t2 = 2

3
} intersects with

the dark gray domain in the figure, noting that the maximal points of Λ(t3) and Λ(t4)
are t3 = 1

6
and t4 = 1

6
respectively.

(
We will extend the range of t1 + t2 + t3 + t4 to

t1 + t2 + t3 + t4 ≤ 1.45 by Proposition 8.15, later in Step 3, so that the new boundary of
the extended domain is included in (125).

)
Therefore, putting

∆′′ =
{
t ∈ R4

∣∣ 0.003 ≤ t1, · · · , t4 ≤ 1 t1 + · · ·+ t4 ≤ 1 +
1

N

}
,

we have that

⟨ 72 ⟩N = eNς

(
N−1/2q−1

∑
i,j,k,l∈Z

(
2i1+1
2N

,
2i2+1
2N

,
2i3+1
2N

,
2i4+1
2N

)∈∆′′

exp
(
N ·V

(2i1 + 1

2N
,
2i2 + 1

2N
,
2i3 + 1

2N
,
2i4 + 1

2N

)
−Nς

)
+O(e−Nε)

)
,

for a sufficiently small ε > 0. We note that, by Proposition 2.1, on ∆′′, V (t) uniformly

converges to V̂ (t) as N → ∞.

Step 2: As shown in Section 8.2.4, we can restrict ∆′′ to the domain t1 ≤ 0.5 and
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t2, t3, t4 ≤ 0.7 in such a way that the removed part is included in (125). Hence, putting

∆′′′ =

{
t ∈ R4

∣∣∣∣∣ 0.003 ≤ t1 ≤ 0.5, 0.003 ≤ t2, t3, t4 ≤ 0.7
t1 + t2 + t3 + t4 ≤ 1 + 1

N

}
,

we have that

⟨ 72 ⟩N =

eNς

(
N−1/2q−1

∑
i,j,k,l∈Z

(
2i1+1
2N

,
2i2+1
2N

,
2i3+1
2N

,
2i4+1
2N

)∈∆′′′

exp
(
N · V

(2i1 + 1

2N
,
2i2 + 1

2N
,
2i3 + 1

2N
,
2i4 + 1

2N

)
−Nς

)
+O(e−Nε)

)

(127)

for a sufficiently small ε > 0.

Step 3: By Proposition 8.15 in Section 8.2.5, we can extend ∆′′′ to the domain t1 + t2 +
t3 + t4 ≤ 1.45 so that the new boundary of the extended domain is included in (125).
Hence, putting

∆′′′′ =

{
t ∈ R4

∣∣∣∣∣ 0.003 ≤ t1 ≤ 0.5, 0.003 ≤ t2, t3, t4 ≤ 0.7
t1 + t2 + t3 + t4 ≤ 1.45

}
,

we have that

⟨ 72 ⟩N = eNς

(
N−1/2q−1

∑
i,j,k,l∈Z

(
2i1+1
2N

,
2i2+1
2N

,
2i3+1
2N

,
2i4+1
2N

)∈∆′′′′

exp
(
N ·V

(2i1 + 1

2N
,
2i2 + 1

2N
,
2i3 + 1

2N
,
2i4 + 1

2N

)
−Nς

)
+O(e−Nε)

)
,

for a sufficiently small ε > 0. We note that, now, the domain (126) is included in the
interior of ∆′′′′, and the boundary of ∆′′′′ is included in the domain (125), except for
neighborhoods of ∂2∆, ∂3∆ and ∂4∆.

Step 4: As shown in Section 8.2.6, we can restrict this domain to the domain t1+t2 ≤ 0.9,
t1 + t2 + t3 ≤ 1.2 and t1 + t2 + t4 ≤ 1.2 in such a way that the removed part is included
in (125). Therefore, putting

∆′ =

t ∈ R4

∣∣∣∣∣ 0.003 ≤ t1 ≤ 0.5, 0.003 ≤ t2, t3, t4 ≤ 0.7
t1 + t2 + t3 + t4 ≤ 1.45
t1 + t2 ≤ 0.9, t1 + t2 + t3 ≤ 1.2, t1 + t2 + t4 ≤ 1.2

 ,

we have that

⟨ 72 ⟩N = eNς

(
N−1/2q−1

∑
i,j,k,l∈Z

(
2i1+1
2N

,
2i2+1
2N

,
2i3+1
2N

,
2i4+1
2N

)∈∆′

exp
(
N ·V

(2i1 + 1

2N
,
2i2 + 1

2N
,
2i3 + 1

2N
,
2i4 + 1

2N

)
−Nς

)
+O(e−Nε)

)
,

for some sufficiently small ε > 0. We note that we need the restriction of this step when
we apply the Poisson summation formula and the saddle point method later.
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Further, by Proposition 8.19 (Poisson summation formula), the above sum is presented
by

⟨ 72 ⟩N = eNς

(
N7/2q−1

∫
∆′

exp
(
N · V (t)−Nς

)
dt +O(e−Nε)

)
. (128)

Furthermore, by Proposition 2.4 (saddle point method), there exist some κ′i’s such that

⟨ 72 ⟩N = N7/2 exp
(
N · V (tc)

)
· (2π)

2

N2

(
det(−H)

)−1/2
(
1 +

d∑
i=1

κ′iℏi +O(ℏd+1)
)
,

for any d > 0, noting that we verify the assumption of Proposition 2.4 in Proposition
8.28. Here, tc is the critical point of V which corresponds to the critical point t0 of V̂ of
Lemma 8.18, where V̂ is the limit of V at N → ∞ whose concrete presentation is given
in Section 8.2, and H is the Hesse matrix of V at tc.

We calculate the right-hand side of the above formula. Since tc = t0 + O(ℏ), we have

that V (tc) = V (t0) +O(ℏ2). Hence, by comparing V (t0) and V̂ (t0) = ς, we have that

V (t0) = ς +O(ℏ).

Therefore, there exist some κi’s such that

⟨ 72 ⟩N = eNςN3/2 ω ·
(
1 +

d∑
i=1

κiℏi +O(ℏd+1)
)
,

for any d > 0. Hence, we obtain the theorem for the 72 knot.

Remark 8.1. In the above proof of Theorem 1.1, we changed ∆ in the 4 steps. In this
remark, we explain the reason why we changed ∆ in such a way.

In Step 1, we changed ∆ to ∆′′ in order that we can use Proposition 2.1 on ∆′′ to
show that V (t) uniformly converges to V̂ (t). Further, to apply the saddle point method
later, it is a problem that the boundary {t1 + t2 + t3 + t4 = 1 + 1

N
} of ∆′′ intersects with

the domain {Re V̂ (t) ≥ ς
R
}, i.e., we can graphically observe that the line {t1 + t2 = 2

3
}

intersects with the dark gray domain in Figure 1. To avoid this intersection, we want
to move the boundary {t1 + t2 + t3 + t4 = 1 + 1

N
} to {t1 + t2 + t3 + t4 = 1.45}. If we

moved this boundary from ∆′′, the above mentioned line would intersect with the light
gray domain in Figure 1 during we move it. Hence, before that, we restrict ∆′′ to ∆′′′ in
Step 2, and extend ∆′′′ to ∆′′′′ in Step 3 moving the boundary {t1 + t2 + t3 + t4 = 1+ 1

N
}

to {t1 + t2 + t3 + t4 = 1.45}. After that, we restrict ∆′′′′ to ∆′ in order that we can use
the new defining inequality of ∆′ in the proofs of the Poisson summation formula and the
saddle point method later. This is the reason why we changed ∆ in the above 4 steps.

8.2 Changing ∆ to ∆′

In this section, we show that the change of the sum (124) is sufficiently small when we
change the range of the sum from ∆ to ∆′. We show that we can change ∆ to ∆′′ in
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Sections 8.2.1–8.2.3, and can change ∆′′ to ∆′′′ in Section 8.2.4, and can change ∆′′′ to
∆′′′′ in Section 8.2.5, and can change ∆′′′′ to ∆′ in Section 8.2.6.

To consider the difference between ∆ and ∆′, we put

∆−∆′ = ∆1 ∪ ∆2 ∪ ∆3 ∪ ∆4

where we put
∆k = {t ∈ ∆ | tk < 0.003} (k = 1, 2, 3, 4).

Lemma 8.2.

∆1 ⊂ {t ∈ ∆ | Re V̂ (t) < ς
R
},

∆i ∩∆j ⊂ {t ∈ ∆ | Re V̂ (t) < ς
R
} i, j ∈ {2, 3, 4}.

Proof. As mentioned before, Re V̂ (t) is presented by

Re V̂ (t) = 2Λ(t1) + Λ(t2) + Λ(t3) + Λ(t4).

We recall that the behavior of Λ(t) is as mentioned in Section 2.2.
For any t ∈ ∆1,

Re V̂ (t)− ς
R

≤ 3Λ
(1
6

)
+ 2Λ(0.003)− ς

R

= 3 · 0.1615329...+ 2 · 0.0149138...− 0.530263...

= −0.0158375... < 0.

Hence, the first formula of the lemma holds.
For any t ∈ ∆i ∩∆j (i, j ∈ {2, 3, 4}),

Re V̂ (t)− ς
R

≤ 3Λ
(1
6

)
+ 2Λ(0.003)− ς

R

= −0.0158375... < 0.

Hence, the second formula of the lemma holds.

Lemma 8.2 guarantees that, when we consider the change of the sum (124) on ∆ and
∆′′, it is sufficient to consider the partial sums of (124) on ∆2, ∆3, ∆4 respectively. We
show that such partial sums are sufficiently small in the following three subsections.

8.2.1 Restriction of the sum to t2 ≤ 0.003

In this section, we show that we can restrict ∆ to the domain t2 ≤ 0.003. That is, the
aim of this section is to show the following proposition.

Proposition 8.3. The restriction of the sum (124) to the range i2/N < 0.003 is estimated
as follows,∑

0≤i1,··· ,i4
i1+···+i4<N
i2/N < 0.003

exp
(
N V

(2i1 + 1

2N
,
2i2 + 1

2N
,
2i3 + 1

2N
,
2i4 + 1

2N

))
= O(eN(ς

R
−ε)).
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Proof. Fixing i2 < N · 0.003, it is sufficient to show that∑
0≤i1,i3,i4

i1+i3+i4<N(1−0.003)

exp
(
N V

(2i1 + 1

2N
,
2i2 + 1

2N
,
2i3 + 1

2N
,
2i4 + 1

2N

))
(129)

is of order O(eN(ς
R
−ε)).

We can calculate (129) in a similar way as the proof of Theorem 1.1 in Section 8.1,
by using the Poisson summation formula and the saddle point method, noting that the
boundary of the range of the sum (129) is included in the domain {t | Re V̂ (t) < ς

R
} by

Lemma 8.2. We show a sketch proof of this calculation in the following of this subsection.
We fix t2 < 0.003, and put

U2(t1, t3, t4) = V̂ (t1, t2, t3, t4)

=
1

2π
√
−1

(
2 Li2(e

2π
√
−1 t1) + Li2(e

2π
√
−1 t2) + Li2(e

2π
√
−1 t3) + Li2(e

2π
√
−1 t4) +

π2

2

)
+ 2π

√
−1 · 1

2

(
s21 + s22 + s23 + s24 − s1 − s2 − s3 − s4 +

2

3

)
,

where we put s1 = t1, s2 = t1 + t2, s3 = t1 + t2 + t3, s4 = t1 + t2 + t3 + t4. Similarly as
the proof of Theorem 1.1, we can restrict the domain of the sum (129) to

∆′
2 =

{
(t1, t3, t4)

∣∣∣∣∣ 0.03 ≤ t1 ≤ 0.4, 0.005 ≤ t3 ≤ 0.47, 0.005 ≤ t4 ≤ 0.47
0.1 ≤ t1 + t3 ≤ 0.7, 0.15 ≤ t1 + t3 + t4 ≤ 0.95

}
,

where we omit concrete computations of the bounds of these inequalities. Hence, by the
Poisson summation formula and Lemma 8.4, (129) is approximated by∫

∆′
2

eN U2(t1,t3,t4) dt1 dt3 dt4 +

∫
∆′

2

eN
(
U2(t1,t3,t4)+2π

√
−1 t1

)
dt1 dt3 dt4.

Further, by Lemmas 8.6 and 8.5, the first and second summands are of order O(eN(ς
R
−ε)).

Hence, we obtain the proposition.

Lemma 8.4.∑
(m1,m3,m4)

∫
∆′

2

exp
(
N
(
U2(t1, t3, t4)−2π

√
−1 (m1t1+m3t3+m4t4)

))
dt1 dt3 dt4 = O(eN(ς

R
−ε)),

where the sum runs over (m1,m3,m4) ∈ Z3 − {(0, 0, 0), (−1, 0, 0)}.

Proof. We can show the lemma similarly as the proof of Proposition 2.2 (see [20]). In the
case of this lemma, it is sufficient to show that

when m4 ̸= 0, −(2π − ε) < Re
( ∂
∂δ

U2(t1, t3, t4 + δ
√
−1)

)
< 2π − ε, (130)

when m3 ̸= 0, −(2π − ε) < Re
( ∂
∂δ

U2(t1, t3 + δ
√
−1, t4)

)
< 2π − ε, (131)
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when m1 ̸= 0,−1, −(2π − ε) < Re
( ∂
∂δ

U2(t1 + δ
√
−1, t3, t4)

)
< 4π − ε, (132)

for some ε > 0.

We show (130), as follows. The middle term is calculated as

Re
( ∂
∂δ

U2(t1, t3, t4 + δ
√
−1)

)
= Re

(√
−1 · ∂

∂t4
U2(t1, t3, t4 + δ

√
−1)

)
= −Im

(
− log(1− x4) + 2π

√
−1
(
s4 −

1

2

))
= Arg (1− x4)− 2π

(
s4 −

1

2

)
,

where x4 = e2π
√
−1 (t4+δ

√
−1). Since 0 < t4 < 0.5,

−2π
(1
2
− t4

)
< Arg (1− x4) < 0.

Hence,

−2πs3 < Re
( ∂
∂δ

U2(t1, t3, t4 + δ
√
−1)

)
< 2π

(1
2
− s4

)
.

Therefore, since s3 ≤ 0.7 + 0.003 and s4 ≥ 0.15, (130) is satisfied.

We show (131), as follows. The middle term is calculated as

Re
( ∂
∂δ

U2(t1, t3 + δ
√
−1, t4)

)
= Arg (1− x3)− 2π(s3 + s4 − 1),

where x3 = e2π
√
−1 (t3+δ

√
−1). Since 0 < t3 < 0.5,

−2π
(1
2
− t3

)
< Arg (1− x3) < 0.

Hence,

−2π
(
s2 + s4 −

1

2

)
< Re

( ∂
∂δ

U2(t1, t3 + δ
√
−1, t4)

)
< 2π(1− s3 − s4).

Therefore, since s2 ≤ 0.4 + 0.003, s4 ≤ 0.95 + 0.003 and s3 ≥ 0.1, s4 ≥ 0.15, (131) is
satisfied.

We show (132), as follows. The middle term is calculated as

Re
( ∂
∂δ

U2(t1 + δ
√
−1, t3, t4)

)
= 2Arg (1− x1)− 2π(s1 + s2 + s3 + s4 − 2),

where x1 = e2π
√
−1 (t1+δ

√
−1). Since 0 < t1 < 0.5,

−2π
(1
2
− t1

)
< Arg (1− x1) < 0.

Hence,

−2π(s3 + s4 − 1 + 0.003) < Re
( ∂
∂δ

U2(t1 + δ
√
−1, t3, t4)

)
< 2π(2− s1 − s2 − s3 − s4).

Therefore, since s3 ≤ 0.703, s4 ≤ 0.953 and si ≥ 0, (132) is satisfied.
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Lemma 8.5. ∫
∆′

2

eN
(
U2(t1,t3,t4)+2π

√
−1 t1

)
dt1 dt3 dt4 = O(eN Re v2),

where v2 = 0.464948...− √
−1 · 0.753795... .

Proof. We can show the lemma similarly as the proof of Theorem 1.1, by using the saddle
point method. We show a sketch proof in this proof.

We put
U ′
2(t1, t3, t4) = U2(t1, t3, t4) + 2π

√
−1 t1,

and we fix t2 = 0.003. The differentials of U ′
2 are presented by

∂

∂t1
U ′
2(t1, t3, t4) = −2 log(1− x1) + 2π

√
−1
(
s1 + s2 + s3 + s4 − 1

)
,

∂

∂t3
U ′
2(t1, t3, t4) = − log(1− x3) + 2π

√
−1
(
s3 + s4 − 1

)
,

∂

∂t4
U ′
2(t1, t3, t4) = − log(1− x4) + 2π

√
−1
(
s4 −

1

2

)
,

where xk = e2π
√
−1 tk . Hence, any critical point of U ′

2 is a solution of the following equa-
tions,

(1− x1)
2 = e2π

√
−1 (s1+s2+s3+s4−2) = x41 x

3
2 x

2
3 x4 ,

1− x3 = e2π
√
−1 (s3+s4−1) = x21 x

2
2 x

2
3 x4 ,

1− x4 = e2π
√
−1 (s4− 1

2
) = −x1 x2 x3 x4 .

By concrete calculation, it is shown that they have a unique solution on ∆′
2, which is

given by

x1 = 0.386143...+
√
−1 · 0.407062... , t1 = 0.129196...+

√
−1 · 0.0919756... ,

x3 = 2.6314...+
√
−1 · 0.555382... , t3 = 0.0331053...− √

−1 · 0.157453... ,
x4 = 0.134251...+

√
−1 · 0.74488... , t4 = 0.22162...+

√
−1 · 0.0443324... .

Hence, the critical value of U ′
2 at this critical point is given by

v2 = 0.464948...− √
−1 · 0.753795... .

Therefore, by the saddle point method, we can show that the left-hand side of the formula
of the lemma is of order eN Re v2 , and we obtain the lemma.

Lemma 8.6. ∫
∆′

2

eN U2(t1,t3,t4) dt1 dt3 dt4 = O(eN(ς
R
−ε)).

Proof. By concrete calculation, we can show that, unlike Lemma 8.5, there is no critical
point of U2 on ∆′

2. Similarly as the proof of the saddle point method, we can show the
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lemma by moving ∆′
2 in each fiber of the projection C3 → R3 ⊃ ∆′

2. We show a sketch
proof in this proof. In the fiber at (t1, t3, t4), we put

f(X,Z,W ) = ReU2(t1 +X
√
−1, t3 + Z

√
−1, t4 +W

√
−1)− ς

R
.

It is sufficient to show that f → −∞ as we move (X,Z,W ) appropriately.

Regarding f as a function of X,

∂f

∂X
= 2Arg (1− x1)− 2π(s1 + s2 + s3 + s4 − 2),

where x1 = e2π
√
−1 (t1+X

√
−1). Since 0 < t1 < 0.5,

−2π
(1
2
− t1

)
< Arg (1− x1) < 0.

Hence,

−2π(s3 + s4 − 1 + 0.003) <
∂f

∂X
< 2π(2− s1 − s2 − s3 − s4).

Therefore, when s3 + s4 < 1 − 0.003, ∂f
∂X

≥ ε′ for some ε′ > 0, and hence, f → −∞ as
X → −∞.

Regarding f as a function of W ,

∂f

∂W
= Arg (1− x4)− 2π

(
s4 −

1

2

)
,

where x4 = e2π
√
−1 (t4+W

√
−1). Since 0 < t4 < 0.5,

−2π
(1
2
− t4

)
< Arg (1− x4) < 0.

Hence,

−2πs3 <
∂f

∂W
< 2π

(1
2
− s4

)
.

Therefore, when s4 > 0.5, ∂f
∂W

≤ −ε′′ for some ε′′ > 0, and hence, f → −∞ as W → ∞.

The remaining case is the case where 1− 0.003 ≤ s3+ s4 and s4 ≤ 0.5. Since s3+ s4 =
2s4 − t4 ≤ 1 − t4 ≤ 1 − 0.005, this case is the empty case. Therefore, we obtain the
lemma.

8.2.2 Restriction of the sum to t3 ≤ 0.003

In this section, we show that we can restrict ∆ to the domain t3 ≤ 0.003. That is, the
aim of this section is to show the following proposition.

Proposition 8.7. The restriction of the sum (124) to the range i3/N < 0.003 is estimated
as follows,∑

0≤i1,··· ,i4
i1+···+i4<N
i3/N < 0.003

exp
(
N V

(2i1 + 1

2N
,
2i2 + 1

2N
,
2i3 + 1

2N
,
2i4 + 1

2N

))
= O(eN(ς

R
−ε)).
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Proof. Fixing i3 < N · 0.003, it is sufficient to show that∑
0≤i1,i2,i4

i1+i2+i4<N(1−0.003)

exp
(
N V

(2i1 + 1

2N
,
2i2 + 1

2N
,
2i3 + 1

2N
,
2i4 + 1

2N

))
(133)

is of order O(eN(ς
R
−ε)).

We can calculate (133) in a similar way as the proof of Theorem 1.1 in Section 8.1,
by using the Poisson summation formula and the saddle point method, noting that the
boundary of the range of the sum (133) is included in the domain {t | Re V̂ (t) < ς

R
} by

Lemma 8.2. We show a sketch proof of this calculation in the following of this subsection.
We fix t3 < 0.003, and put

U3(t1, t2, t4) = V̂ (t1, t2, t3, t4)

=
1

2π
√
−1

(
2 Li2(e

2π
√
−1 t1) + Li2(e

2π
√
−1 t2) + Li2(e

2π
√
−1 t3) + Li2(e

2π
√
−1 t4) +

π2

2

)
+ 2π

√
−1 · 1

2

(
s21 + s22 + s23 + s24 − s1 − s2 − s3 − s4 +

2

3

)
,

where we put s1 = t1, s2 = t1 + t2, s3 = t1 + t2 + t3, s4 = t1 + t2 + t3 + t4. Similarly as
the proof of Theorem 1.1, we can restrict the domain of the sum (133) to

∆′
3 =

{
(t1, t2, t4)

∣∣∣∣∣ 0.03 ≤ t1 ≤ 0.4, 0.005 ≤ t2 ≤ 0.47, 0.005 ≤ t4 ≤ 0.47
0.1 ≤ s2 ≤ 0.7, 0.15 ≤ s4 ≤ 0.95, t1 + s3 + s4 ≤ 1.9

}
,

where we omit concrete computations of the bounds of these inequalities. Hence, by the
Poisson summation formula and Lemma 8.8, (133) is approximated by∫

∆′
3

eN U3(t1,t2,t4) dt1 dt2 dt4 +

∫
∆′

3

eN
(
U3(t1,t2,t4)+2π

√
−1 (t1+t2)

)
dt1 dt2 dt4 .

Further, by Lemmas 8.9 and 8.10, the first and second summands are bounded by
O(eN(ς

R
−ε)). Hence, we obtain the proposition.

Lemma 8.8.∑
(m1,m2,m4)

∫
∆′

3

exp
(
N
(
U3(t1, t2, t4)−2π

√
−1 (m1t1+m2t2+m4t4)

))
dt1 dt2 dt4 = O(eN(ς

R
−ε)),

where the sum runs over (m1,m2,m4) ∈ Z3 − {(0, 0, 0), (−1,−1, 0)}.

Proof. We can show the lemma similarly as the proof of Lemma 8.4. In the case of this
lemma, it is sufficient to show that

when m4 ̸= 0, −(2π − ε) < Re
( ∂
∂δ

U3(t1, t2, t4 + δ
√
−1)

)
< 2π − ε, (134)

when m2 ̸= 0,−1, −(2π − ε) < Re
( ∂
∂δ

U3(t1, t2 + δ
√
−1, t4)

)
< 4π − ε, (135)
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when m1 ̸= m2, −(2π − ε) < Re
( ∂
∂δ

U3(t1 + δ
√
−1, t2 − δ

√
−1, t4)

)
< 2π − ε, (136)

for some ε > 0.

We can show (134) in the same way as in the proof of Lemma 8.4.

We show (135), as follows. The middle term is calculated as

Re
( ∂
∂δ

U3(t1, t2 + δ
√
−1, t4)

)
= Arg (1− x2)− 2π

(
s2 + s3 + s4 −

3

2

)
,

where x2 = e2π
√
−1 (t2+δ

√
−1). Since 0 < t2 < 0.5,

−2π
(1
2
− t2

)
< Arg (1− x2) < 0.

Hence,

−2π(t1 + s3 + s4 − 1) < Re
( ∂
∂δ

U3(t1, t2 + δ
√
−1, t4)

)
< 2π

(3
2
− s2 − s3 − s4

)
.

Therefore, since t1 + s3 + s4 ≤ 1.9 and 0 ≤ si, (135) is satisfied.

We show (136), as follows. The middle term is calculated as

Re
( ∂
∂δ

U3(t1 + δ
√
−1, t2 − δ

√
−1, t4)

)
= 2Arg (1− x1)− Arg (1− x2)− 2π

(
s1 −

1

2

)
,

where x1 = e2π
√
−1 (t1+δ

√
−1) and x2 = e2π

√
−1 (t2−δ

√
−1). Since 0 < t1 < 0.5,

−2π
(1
2
− t1

)
< Arg (1− x1) < 0.

Hence,

−2π
(1
2
− t1

)
< 2Arg (1− x1)− 2π

(
s1 −

1

2

)
< 2π

(1
2
− t1

)
.

Further, since −π < Arg (1− x2) < π,

−2π(1− t1) < Re
( ∂
∂δ

U3(t1 + δ
√
−1, t2 − δ

√
−1, t4)

)
< 2π(1− t1).

Therefore, since t1 ≥ 0.03, (136) is satisfied.

The remaining case is the case where m1 = m2 = 0,−1 and m4 = 0. The concrete
values of (m1,m2,m4) are (0, 0, 0), (−1,−1, 0), which are excluded from the range of the
sum of the formula of the lemma. Hence, we obtain the lemma.

Lemma 8.9. ∫
∆′

3

eN U3(t1,t2,t4) dt1 dt2 dt4 = O(eN Re v3),

where v3 = 0.479418...− √
−1 · 2.13181... .
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Proof. We can show the lemma similarly as the proof of Lemma 8.5 by using the saddle
point method. We show a sketch proof in this proof.

We fix t3 = 0.003. The differentials of U3 are presented by

∂

∂t1
U3(t1, t2, t4) = −2 log(1− x1) + 2π

√
−1
(
s1 + s2 + s3 + s4 − 2

)
,

∂

∂t2
U3(t1, t2, t4) = − log(1− x2) + 2π

√
−1
(
s2 + s3 + s4 −

3

2

)
,

∂

∂t4
U3(t1, t2, t4) = − log(1− x4) + 2π

√
−1
(
s4 −

1

2

)
,

where xk = e2π
√
−1 tk . Hence, any critical point of U3 is a solution of the following equa-

tions,

(1− x1)
2 = e2π

√
−1 (s1+s2+s3+s4−2) = x41 x

3
2 x

2
3 x4 ,

1− x2 = e2π
√
−1 (s2+s3+s4− 3

2
) = −x31 x32 x23 x4 ,

1− x4 = e2π
√
−1 (s4− 1

2
) = −x1 x2 x3 x4 .

By concrete calculation, it is shown that they have a unique solution on ∆′
3, which is

given by

x1 = 0.65433...+
√
−1 · 1.49642... , t1 = 0.184394...− √

−1 · 0.0780744... ,
x2 = −0.100364...+

√
−1 · 0.935416... , t2 = 0.267011...+

√
−1 · 0.00971496...

x4 = 0.392143...+
√
−1 · 0.0688233... , t4 = 0.027651...+

√
−1 · 0.146575... .

Hence, the critical value of U3 at this critical point is given by

v3 = 0.479418...− √
−1 · 2.13181... .

Therefore, by the saddle point method, we can show that the left-hand side of the formula
of the lemma is of order eN Re v3 , and we obtain the lemma.

Lemma 8.10. ∫
∆′

3

eN
(
U3(t1,t2,t4)+2π

√
−1 (t1+t2)

)
dt1 dt2 dt4 = O(eN Re v′3),

where v′3 = 0.478116...− √
−1 · 0.490192... .

Proof. We can show the lemma similarly as the proof of Lemma 8.5 by using the saddle
point method. We show a sketch proof in this proof.

We put
U ′
3(t1, t2, t4) = U3(t1, t2, t4) + 2π

√
−1 (t1 + t2),
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and we fix t3 = 0.003. The differentials of U ′
3 are presented by

∂

∂t1
U ′
3(t1, t2, t4) = −2 log(1− x1) + 2π

√
−1
(
s1 + s2 + s3 + s4 − 2

)
,

∂

∂t2
U ′
3(t1, t2, t4) = − log(1− x2) + 2π

√
−1
(
s2 + s3 + s4 −

3

2

)
,

∂

∂t4
U ′
3(t1, t2, t4) = − log(1− x4) + 2π

√
−1
(
s4 −

1

2

)
,

where xk = e2π
√
−1 tk . Hence, any critical point of U ′

3 is a solution of the following equa-
tions,

(1− x1)
2 = e2π

√
−1 (s1+s2+s3+s4−2) = x41 x

3
2 x

2
3 x4 ,

1− x2 = e2π
√
−1 (s2+s3+s4− 3

2
) = −x31 x32 x23 x4 ,

1− x4 = e2π
√
−1 (s4− 1

2
) = −x1 x2 x3 x4 .

By concrete calculation, it is shown that they have a unique solution on ∆′
3, which is

given by

x1 = 0.850268...+
√
−1 · 0.628312... , t1 = 0.101286...− √

−1 · 0.00885708... ,
x2 = 0.610976...+

√
−1 · 0.0661802... , t2 = 0.0171725...+

√
−1 · 0.077487... ,

x4 = 1.09811...+
√
−1 · 0.929638... , t4 = 0.111807...− √

−1 · 0.0578993... .

Hence, the critical value of U ′
3 at this critical point is given by

v′3 = 0.478116...− √
−1 · 0.490192... .

Therefore, by the saddle point method, we can show that the left-hand side of the formula
of the lemma is of order eN Re v′3 , and we obtain the lemma.

8.2.3 Restriction of the sum to t4 ≤ 0.003

In this section, we show that we can restrict ∆ to the domain t4 ≤ 0.003. That is, the
aim of this section is to show the following proposition.

Proposition 8.11. The restriction of the sum (124) to the range i4/N < 0.003 is esti-
mated as follows,∑

0≤i1,··· ,i4
i1+···+i4<N
i4/N < 0.003

exp
(
N V

(2i1 + 1

2N
,
2i2 + 1

2N
,
2i3 + 1

2N
,
2i4 + 1

2N

))
= O(eN(ς

R
−ε)).

Proof. Fixing i4 < N · 0.003, it is sufficient to show that∑
0≤i1,i2,i3

i1+i2+i3<N(1−0.003)

exp
(
N V

(2i1 + 1

2N
,
2i2 + 1

2N
,
2i3 + 1

2N
,
2i4 + 1

2N

))
(137)
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is of order O(eN(ς
R
−ε)).

We can calculate (137) in a similar way as the proof of Theorem 1.1 in Section 8.1,
by using the Poisson summation formula and the saddle point method, noting that the
boundary of the range of the sum (137) is included in the domain {t | Re V̂ (t) < ς

R
} by

Lemma 8.2. We show a sketch proof of this calculation in the following of this subsection.
We fix t4 < 0.003, and put

U4(t1, t2, t3) = V̂ (t1, t2, t3, t4)

=
1

2π
√
−1

(
2 Li2(e

2π
√
−1 t1) + Li2(e

2π
√
−1 t2) + Li2(e

2π
√
−1 t3) + Li2(e

2π
√
−1 t4) +

π2

2

)
+ 2π

√
−1 · 1

2

(
s21 + s22 + s23 + s24 − s1 − s2 − s3 − s4 +

2

3

)
,

where we put s1 = t1, s2 = t1 + t2, s3 = t1 + t2 + t3, s4 = t1 + t2 + t3 + t4. Similarly as
the proof of Theorem 1.1, we can restrict the domain of the sum (137) to

∆′
4 =

{
(t1, t2, t3)

∣∣∣∣∣ 0.03 ≤ t1 ≤ 0.4, 0.005 ≤ t2 ≤ 0.47, 0.005 ≤ t3 ≤ 0.47
0.1 ≤ s2 ≤ 0.7, 0.15 ≤ s3 ≤ 0.95, s2 + s3 ≤ 1.7

}
,

where we omit concrete computations of the bounds of these inequalities. Hence, by the
Poisson summation formula and Lemma 8.12, (137) is approximated by∫

∆′
4

eN U4(t1,t2,t3) dt1 dt2 dt3 +

∫
∆′

4

eN
(
U4(t1,t2,t3)−2π

√
−1 (t1+t2+t3)

)
dt1 dt2 dt3 .

Further, by Lemmas 8.13 and 8.14, the first and second summands are bounded by
O(eN(ς

R
−ε)). Hence, we obtain the proposition.

Lemma 8.12.∑
(m1,m2,m3)

∫
∆′

4

exp
(
N
(
U4(t1, t2, t3)−2π

√
−1 (m1t1+m2t2+m3t3)

))
dt1 dt2 dt3 = O(eN(ς

R
−ε)),

where the sum runs over (m1,m2,m3) ∈ Z3 − {(0, 0, 0), (1, 1, 1)}.

Proof. We can show the lemma similarly as the proof of Lemma 8.4. In the case of this
lemma, it is sufficient to show that

when m3 ̸= 0, 1, −(4π − ε) < Re
( ∂
∂δ

U4(t1, t2, t3 + δ
√
−1)

)
< 2π − ε, (138)

when m1 ̸= m2, −(2π − ε) < Re
( ∂
∂δ

U4(t1 + δ
√
−1, t2 − δ

√
−1, t3)

)
< 2π − ε (139)

when m2 ̸= m3, −(2π − ε) < Re
( ∂
∂δ

U4(t1, t2 + δ
√
−1, t3 − δ

√
−1)

)
< 2π − ε, (140)

for some ε > 0.

86



We show (138), as follows. The middle term is calculated as

Re
( ∂
∂δ

U4(t1, t2, t3 + δ
√
−1)

)
= Arg (1− x3)− 2π(s3 + s4 − 1),

where x3 = e2π
√
−1 (t3+δ

√
−1). Since 0 < t3 < 0.5,

−2π
(1
2
− t3

)
< Arg (1− x3) < 0.

Hence,

−2π
(
s2 + s4 −

1

2

)
< Re

( ∂
∂δ

U4(t1, t2, t3 + δ
√
−1)

)
< 2π(1− s3 − s4).

Therefore, since s2 + s4 ≤ 1.7 + 0.003 and 0 ≤ si, (138) is satisfied.

We can show (139) in the same way as in the proof of Lemma 8.8.

We show (140), as follows. The middle term is calculated as

Re
( ∂
∂δ

U4(t1, t2 + δ
√
−1, t3 − δ

√
−1)

)
= Arg (1− x2)− Arg (1− x3)− 2π

(
s2 −

1

2

)
,

where x2 = e2π
√
−1 (t2+δ

√
−1) and x3 = e2π

√
−1 (t3−δ

√
−1). Since 0 < t2 < 0.5,

−2π
(1
2
− t2

)
< Arg (1− x2) < 0.

Hence,

−2π · 0.4 ≤ −2π · t1 < Arg (1− x2)− 2π
(
s2 −

1

2

)
< 2π

(1
2
− s2

)
≤ 2π · 0.4.

Further, since −π < Arg (1− x3) < π,

−2π · 0.9 < Re
( ∂
∂δ

U4(t1, t2 + δ
√
−1, t3 − δ

√
−1)

)
< 2π · 0.9.

Therefore, (140) is satisfied.

The remaining case is the case where m1 = m2 = m3 = 0, 1. The concrete values of
(m1,m2,m3) are (0, 0, 0), (1, 1, 1), which are excluded from the range of the sum of the
lemma. Hence, we obtain the lemma.

Lemma 8.13. ∫
∆′

4

eN U4(t1,t2,t3) dt1 dt2 dt3 = O(eN Re v4),

where v4 = 0.525499...− √
−1 · 2.12671... .

Proof. We can show the lemma similarly as the proof of Lemma 8.5 by using the saddle
point method. We show a sketch proof in this proof.
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We fix t4 = 0.003. The differentials of U4 are presented by

∂

∂t1
U4(t1, t2, t3) = −2 log(1− x1) + 2π

√
−1
(
s1 + s2 + s3 + s4 − 2

)
,

∂

∂t2
U4(t1, t2, t3) = − log(1− x2) + 2π

√
−1
(
s2 + s3 + s4 −

3

2

)
,

∂

∂t3
U4(t1, t2, t3) = − log(1− x3) + 2π

√
−1
(
s3 + s4 − 1

)
,

where xk = e2π
√
−1 tk . Hence, any critical point of U4 is a solution of the following equa-

tions,

(1− x1)
2 = e2π

√
−1 (s1+s2+s3+s4−2) = x41 x

3
2 x

2
3 x4 ,

1− x2 = e2π
√
−1 (s2+s3+s4− 3

2
) = −x31 x32 x23 x4 ,

1− x3 = e2π
√
−1 (s3+s4−1) = x21 x

2
2 x

2
3 x4 .

By concrete calculation, it is shown that they have a unique solution on ∆′
4, which is

given by

x1 = 0.889267...+
√
−1 · 1.60022... , t1 = 0.169273...− √

−1 · 0.0962416... ,
x2 = 0.154601...+

√
−1 · 1.12276... , t2 = 0.228222...− √

−1 · 0.0199232... ,
x3 = 0.349254...+

√
−1 · 0.18807... , t3 = 0.0786168...+

√
−1 · 0.147162... .

Hence, the critical value of U4 at this critical point is given by

v4 = 0.525499...− √
−1 · 2.12671... .

Therefore, by the saddle point method, we can show that the left-hand side of the formula
of the lemma is of order eN Re v4 , and we obtain the lemma.

Lemma 8.14. ∫
∆′

4

eN
(
U4(t1,t2,t3)−2π

√
−1 (t1+t2+t3)

)
dt1 dt2 dt3 = O(eN Re v′4),

where v′4 = 0.488837...− √
−1 · 6.50435... .

Proof. We can show the lemma similarly as the proof of Lemma 8.5 by using the saddle
point method. We show a sketch proof in this proof.

We put
U ′
4(t1, t2, t3) = U4(t1, t2, t3)− 2π

√
−1 (t1 + t2 + t3),

and we fix t4 = 0.003. The differentials of U ′
4 are presented by

∂

∂t1
U4(t1, t2, t3) = −2 log(1− x1) + 2π

√
−1
(
s1 + s2 + s3 + s4 − 2

)
,

∂

∂t2
U4(t1, t2, t3) = − log(1− x2) + 2π

√
−1
(
s2 + s3 + s4 −

3

2

)
,

∂

∂t3
U4(t1, t2, t3) = − log(1− x3) + 2π

√
−1
(
s3 + s4 − 1

)
,
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where xk = e2π
√
−1 tk . Hence, any critical point of U ′

4 is a solution of the following equa-
tions,

(1− x1)
2 = e2π

√
−1 (s1+s2+s3+s4−2) = x41 x

3
2 x

2
3 x4 ,

1− x2 = e2π
√
−1 (s2+s3+s4− 3

2
) = −x31 x32 x23 x4 ,

1− x3 = e2π
√
−1 (s3+s4−1) = x21 x

2
2 x

2
3 x4 .

By concrete calculation, it is shown that they have a unique solution on ∆′
4, which is

given by

x1 = 0.215852...+
√
−1 · 1.09531... , t1 = 0.219032...− √

−1 · 0.0175211... ,
x2 = −0.610953...+

√
−1 · 0.216459... , t2 = 0.445808...+

√
−1 · 0.0690111... ,

x3 = 0.122125...+
√
−1 · 2.06768... , t3 = 0.240611...− √

−1 · 0.115892... .

Hence, the critical value of U ′
4 at this critical point is given by

v′4 = 0.488837...− √
−1 · 6.50435... .

Therefore, by the saddle point method, we can show that the left-hand side of the formula
of the lemma is of order eN Re v′4 , and we obtain the lemma.

8.2.4 Restriction of the sum to t1 ≤ 0.5 and t2, t3, t4 ≤ 0.7

In this section, we show that we can restrict ∆′′ to the domain t1 ≤ 0.5 and t2, t3, t4 ≤ 0.7
in such a way that the removed part is included in the domain (125). That is, assuming
that

2Λ(t1) + Λ(t2) + Λ(t3) + Λ(t4) ≥ ς
R
,

we show that t1 ≤ 0.5 and t2, t3, t4 ≤ 0.7 in this section.

We calculate an upper bound of t1. Since Λ(t) has a maximal value at t = 1/6,

2Λ(t1) ≥ ς
R
− 3Λ

(1
6

)
= 0.530263...− 3 · 0.161533... = 0.045664... > 0.

Hence, noting that the behavior of Λ(t) is as mentioned in Section 2.2, we have that

t1 ≤ 0.5.

We calculate the maximal value t2max of t2. Since Λ(t) has a maximal value at t = 1/6,

Λ(t2) ≥ ς
R
− 4Λ

(1
6

)
= 0.530263...− 4 · 0.161533... = −0.115869... .

Hence, t2max is a solution of the following equation,

Λ(t2) = ς
R
− 4Λ

(1
6

)
.
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By calculating a solution of this equation by Newton’s method from t2 = 0.7, we obtain
t2max = 0.681959... . In fact,

Λ(0.7) = −0.124907 < −0.115869... = ς
R
− 4Λ

(1
6

)
.

Therefore, since the behavior of Λ(t) is as mentioned in Section 2.2, we obtain an estimate
of t2 as

t2 ≤ 0.7.

We obtain
t3 ≤ 0.7 and t4 ≤ 0.7

in the same way as above.

8.2.5 Extension of the sum to t1 + t2 + t3 + t4 ≤ 1.45

In this section, we show that we can extend ∆′′′ to the domain t1 + t2 + t3 + t4 ≤ 1.45.
That is, the aim of this section is to show the following proposition.

Proposition 8.15. The extension of the sum (127) to the range 1 ≤ (i1+i2+i3+i4)/N ≤
1.45 is estimated as follows,∑
(
2i1+1
2N

,
2i2+1
2N

,
2i3+1
2N

,
2i4+1
2N

)∈∆′

N≤i1+···+i4≤N ·1.45

exp
(
N V

(2i1 + 1

2N
,
2i2 + 1

2N
,
2i3 + 1

2N
,
2i4 + 1

2N

))
= O(eN(ς

R
−ε)).

Proof. Fixing j4 = i1 + i2 + i3 + i4 with N ≤ j4 ≤ N · 1.45, it is sufficient to show that∑
(
2i1+1
2N

,
2i2+1
2N

,
2i3+1
2N

,
2i4+1
2N

)∈∆′

i1+···+i4=j4

exp
(
N V

(2i1 + 1

2N
,
2i2 + 1

2N
,
2i3 + 1

2N
,
2i4 + 1

2N

))
(141)

is of order O(eN(ς
R
−ε)).

We can calculate (141) in a similar way as the proof of Theorem 1.1 in Section 8.1,
by using the Poisson summation formula and the saddle point method, noting that the
boundary of the range of the sum (141) is included in the domain {t | Re V̂ (t) < ς

R
}.

We show a sketch proof of this calculation in the following of this subsection. We fix
s4 = t1 + t2 + t3 + t4 with 1 ≤ s4 ≤ 1.45, and put

U5(t2, t3, t4) = V̂ (t1, t2, t3, t4)

=
1

2π
√
−1

(
2 Li2(e

2π
√
−1 (s4−t2−t3−t4)) + Li2(e

2π
√
−1 t2) + Li2(e

2π
√
−1 t3)

+ Li2(e
2π

√
−1 t4) +

π2

2

)
+ 2π

√
−1 · 1

2

(
s21 + s22 + s23 − s1 − s2 − s3 +

1

2

)
,

where we put s1 = s4 − t2 − t3 − t4, s2 = s4 − t3 − t4, s3 = s4 − t4. Similarly as the proof
of Theorem 1.1, we can restrict the domain of the sum (141) to

∆′
5 =

{
(t2, t3, t4)

∣∣∣∣∣ 0.01 ≤ t2, t3, t4 ≤ 0.7, 0.03 ≤ s1 ≤ 0.5
0.15 ≤ s2 ≤ 0.9, 0.3 ≤ s3 ≤ 1.2, 1 ≤ s4 ≤ 1.45
s2 + t4 ≤ 1.2

}
,
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where we omit concrete computations of the bounds of these inequalities. Hence, by the
Poisson summation formula and Lemma 8.16, (141) is approximated by∫

∆′
5

exp
(
N
(
U5(t2, t3, t4)

)
dt2 dt3 dt4 .

Further, by Lemma 8.17, this integral is of order O(eN(ς
R
−ε)). Hence, we obtain the

proposition.

The differentials of U5 are presented by

∂

∂t2
U5 = 2 log(1− x1)− log(1− x2)− 2π

√
−1
(
s1 −

1

2

)
,

∂

∂t3
U5 = 2 log(1− x1)− log(1− x3)− 2π

√
−1 (s1 + s2 − 1),

∂

∂t4
U5 = 2 log(1− x1)− log(1− x4)− 2π

√
−1
(
s1 + s2 + s3 −

3

2

)
,

where xk = e2π
√
−1 tk .

Lemma 8.16.∑
(m2,m3,m4)

∫
∆′

5

exp
(
N
(
U5(t2, t3, t4)−2π

√
−1 (m2t2+m3t3+m4t4)

))
dt2 dt3 dt4 = O(eN(ς

R
−ε)),

where the sum runs over (m2,m3,m4) ∈ Z3 − {(0, 0, 0)}.

Proof. We can show the lemma similarly as the proof of Proposition 2.2 (see [20]). In the
case of this lemma, it is sufficient to show that

when m2 ̸= 0, −(2π − ε) < Re
( ∂
∂δ

U5(t2 + δ
√
−1, t3, t4)

)
< 2π − ε, (142)

when m2 ̸= m3, −(2π − ε) < Re
( ∂
∂δ

U5(t2 + δ
√
−1, t3 − δ

√
−1, t4)

)
< 2π − ε, (143)

when m3 ̸= m4, −(2π − ε) < Re
( ∂
∂δ

U5(t2, t3 + δ
√
−1, t4 − δ

√
−1)

)
< 2π − ε, (144)

for some ε > 0.

We show (142), as follows. The middle term is calculated as

Re
( ∂
∂δ

U5(t2 + δ
√
−1, t3, t4)

)
= Re

(√
−1 · ∂

∂t2
U5(t2 + δ

√
−1, t3, t4)

)
= −Im

(
2 log(1− x1)− log(1− x2)− 2π

√
−1
(
s1 −

1

2

))
= −2Arg (1− x1) + Arg (1− x2) + 2π

(
s1 −

1

2

)
,

91



where x1 = e2π
√
−1 (s1−δ

√
−1) and x2 = e2π

√
−1 (t2+δ

√
−1). Since 0 < s1 < 0.5,

0 < −2Arg (1− x1) ≤ 2π(1− 2s1).

Hence,

−2π
(1
2
− s1

)
< −2Arg (1− x1) + 2π

(
s1 −

1

2

)
< 2π

(1
2
− s1

)
.

Further,

min
{
− 2π

(1
2
− t2

)
, 0
}

≤ Arg (1− x2) ≤ max
{
0, 2π

(
t2 −

1

2

)}
.

Hence,

min
{
− 2π(1− s2), −2π

(1
2
− s1

)}
≤ Re

( ∂
∂δ

U5(t2 + δ
√
−1, t3, t4)

)
≤ max

{
2π
(1
2
− s1

)
, 2π(t2 − s1)

}
.

Therefore, since s1 ≥ 0, s2 ≥ 0.15 and t2 ≤ 0.7,

−2π · 0.85 ≤ Re
( ∂
∂δ

U5(t2 + δ
√
−1, t3, t4)

)
≤ 2π · 0.7,

and hence, (142) is satisfied.

We show (143), as follows. The middle term is calculated as

Re
( ∂
∂δ

U5(t2 + δ
√
−1, t3 − δ

√
−1, t4)

)
= Re

(√
−1 ·

( ∂
∂t2

− ∂

∂t3

)
U5(t2 + δ

√
−1, t3 − δ

√
−1, t4)

)
= −Im

(
− log(1− x2) + log(1− x3) + 2π

√
−1
(
s2 −

1

2

))
= Arg (1− x2)− Arg (1− x3)− 2π

(
s2 −

1

2

)
,

where x2 = e2π
√
−1 (t2+δ

√
−1) and x3 = e2π

√
−1 (t3−δ

√
−1). Since

min
{
− 2π

(1
2
− t2

)
, 0
}

≤ Arg (1− x2) ≤ max
{
0, 2π

(
t2 −

1

2

)}
,

we have that

min
{
− 2π · s1, −2π

(
s2 −

1

2

)}
≤ Arg (1− x2)− 2π

(
s2 −

1

2

)
≤ max

{
2π
(1
2
− s2

)
, −2π · s1

}
.

Hence, since s1 ≤ 0.5 and 0.15 ≤ s2 ≤ 0.9,

−2π · 0.5 ≤ Arg (1− x2)− 2π
(
s2 −

1

2

)
≤ 2π · 0.35.
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Further,

min
{
0, −2π

(
t3 −

1

2

)}
≤ −Arg (1− x3) ≤ max

{
2π
(1
2
− t3

)
, 0
}
.

Hence, since 0 ≤ t3 ≤ 0.7,

−2π · 0.2 ≤ −Arg (1− x3) ≤ 2π · 0.5.

Therefore,

−2π · 0.7 ≤ Re
( ∂
∂δ

U5(t2 + δ
√
−1, t3 − δ

√
−1, t4)

)
≤ 2π · 0.85,

and hence, (143) is satisfied.

We show (144), as follows. The middle term is calculated as

Re
( ∂
∂δ

U5(t2, t3 + δ
√
−1, t4 − δ

√
−1)

)
= Re

(√
−1 ·

( ∂
∂t3

− ∂

∂t4

)
U5(t2, t3 + δ

√
−1, t4 − δ

√
−1)

)
= −Im

(
− log(1− x3) + log(1− x4) + 2π

√
−1
(
s3 −

1

2

))
= Arg (1− x3)− Arg (1− x4)− 2π

(
s3 −

1

2

)
,

where x3 = e2π
√
−1 (t3+δ

√
−1) and x4 = e2π

√
−1 (t4−δ

√
−1). Since

min
{
− 2π

(1
2
− t3

)
, 0
}

≤ Arg (1− x3) ≤ max
{
0, 2π

(
t3 −

1

2

)}
,

we have that

min
{
− 2π · s2, −2π

(
s3 −

1

2

)}
≤ Arg (1− x3)− 2π

(
s3 −

1

2

)
≤ max

{
2π
(1
2
− s3

)
, −2π · s2

}
≤ 2π · 0.2.

Further, since

min
{
0, −2π

(
t4 −

1

2

)}
≤ −Arg (1− x4) ≤ max

{
2π
(1
2
− t4

)
, 0
}

≤ π,

we have that

Re
( ∂
∂δ

U5(t2, t3 + δ
√
−1, t4 − δ

√
−1)

)
≥ min

{
− 2π · s2, −2π

(
s3 −

1

2

)
, −2π

(
s2 + t4 −

1

2

)
, −2π(s4 − 1)

}
≥ min

{
− 2π · 0.9, −2π · 0.7, −2π · 0.7, −2π · 0.45

}
≤ −2π · 0.9,

Re
( ∂
∂δ

U5(t2, t3 + δ
√
−1, t4 − δ

√
−1)

)
≤ 2π · 0.7,

since s2 ≤ 0.9, s3 ≤ 1.2, s2 + t4 ≤ 1.2, s4 ≤ 1.45. Therefore, (144) is satisfied.
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Lemma 8.17. ∫
∆′

5

exp
(
N
(
U5(t2, t3, t4)

)
dt2 dt3 dt4 = O(eN(ς

R
−ε)).

Proof. Similarly as the proof of the saddle point method, we can show the lemma by
moving ∆′

5 in each fiber of the projection C3 → R3 ⊃ ∆′
5. We show a sketch proof in this

proof. In the fiber at (t2, t3, t4), we put

F (δ) = ReU5(t2, t3 + δ
√
−1, t4 − δ

√
−1)− ς

R
.

It is sufficient to show that

F (δ) < 0 for any sufficiently large δ. (145)

We have that

dF

dδ
= Arg (1− x3)− Arg (1− x4)− 2π

(
s3 −

1

2

)
,

where x3 = e2π
√
−1 (t3+δ

√
−1) and x4 = e2π

√
−1 (t4−δ

√
−1). Hence,

dF

dδ

∣∣
δ→∞ = 0− 2π

(
t4 −

1

2

)
− 2π

(
s3 −

1

2

)
= −2π(s4 − 1) ≤ 0,

dF

dδ

∣∣
δ→−∞ = 2π

(
t3 −

1

2

)
− 0− 2π

(
s3 −

1

2

)
= −2π · s2 < 0.

Since Arg (1− x3)−Arg (1− x4) is a monotonic function of δ, dF
dδ
< 0 for any δ ∈ R, and

F is monotonically decreasing. Recall that s4 ≥ 1 in this section. If s4 > 1, dF
dδ
< −ε for

some ε > 0, and hence, (145) is satisfied. If s4 = 0, we have that

lim
δ→∞

F (δ) = lim
δ→∞

Re
( 1

2π
√
−1

(
2 Li2(e

2π
√
−1 t1) + Li2(e

2π
√
−1 t2) + Li2(e

2π
√
−1 (t3+δ

√
−1))

+ Li2(e
2π

√
−1 (t4−δ

√
−1))

)
+ 2π

√
−1 · 1

2

(
(s3 + δ

√
−1)2 − (s3 + δ

√
−1)

))
− ς

R

= Re
( 1

2π
√
−1

(
2 Li2(e

2π
√
−1 t1) + Li2(e

2π
√
−1 t2)

))
− ς

R

+ lim
δ→∞

Re
( 1

2π
√
−1

Li2(e
2π

√
−1 (t4−δ

√
−1))

)
+ 2π

(
t4 −

1

2

)
δ

= Re
( 1

2π
√
−1

(
2 Li2(e

2π
√
−1 t1) + Li2(e

2π
√
−1 t2)

))
− ς

R
.

Since ImLi2(e
2π

√
−1 t) has a maximal value at t = 1/6,

lim
δ→∞

F (δ) ≤ Re
( 1

2π
√
−1

(
2 Li2(e

π
√
−1/3) + Li2(e

π
√
−1/3)

))
− ς

R

= 3 · 0.161533...− 0.530263... = −0.045664... < 0,

and hence, (145) is satisfied.
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8.2.6 Restriction of the sum to t1 + t2 ≤ 0.9, t1 + t2 + t3 ≤ 1.2 and t1 + t2 + t4 ≤ 1.2

In this section, we show that we can restrict the domain ∆′′′′ to the domain t1 + t2 ≤ 0.9,
t1 + t2 + t3 ≤ 1.2 and t1 + t2 + t4 ≤ 1.2 in such a way that the removed part is included
in the domain (125). That is, assuming that t ∈ ∆′′, t1 ≤ 0.5, t2, t3, t4 ≤ 0.7 and

2Λ(t1) + Λ(t2) + Λ(t3) + Λ(t4) ≥ ς
R
,

we show that t1 + t2 ≤ 0.9, t1 + t2 + t3 ≤ 1.2 and t1 + t2 + t4 ≤ 1.2 in this section.

We calculate the maximal value s2max of s2 = t1 + t2. Since Λ(t) has a maximal value
at t = 1/6,

2Λ(t1) + Λ(t2) ≥ ς
R
− 2Λ

(1
6

)
= 0.207197... .

Hence, s2max is a solution of the following equations,
2Λ(s2 − t2) + Λ(t2) = ς

R
− 2Λ

(1
6

)
,

∂

∂t2

(
2Λ(s2 − t2) + Λ(t2)

)
= 0.

By calculating a solution of these equations by Newton’s method from (s2, t2) = (0.9, 0.6),
we obtain s2max = 0.877703... . Therefore, we obtain an estimate of s2 = t1 + t2 as

t1 + t2 ≤ 0.9.

To be precise, the above argument is not partially rigorous, since we do not show the
uniqueness of the solution, though the above argument is practically useful, since we can
obtain a concrete estimate of t1+ t2. We give a rigorous proof that t1+ t2 ≤ 0.9 in Section
A.7.

We calculate the maximal value s3max of s3 = t1 + t2 + t3. Since Λ(t) has a maximal
value at t = 1/6,

2Λ(t1) + Λ(t2) + Λ(t3) ≥ ς
R
− Λ

(1
6

)
= 0.36873... .

Hence, s3max is a solution of the following equations,
2Λ(s3 − t2 − t3) + Λ(t2) + Λ(t3) = ς

R
− Λ

(1
6

)
,

∂

∂t2

(
2Λ(s3 − t2 − t3) + Λ(t2) + Λ(t3)

)
= 0,

∂

∂t3

(
2Λ(s3 − t2 − t3) + Λ(t2) + Λ(t3)

)
= 0.

By calculating a solution of these equations by Newton’s method from (s3, t2, t3) =
(1.2, 0.4, 0.4), we obtain s3max = 1.13786... . Therefore, we obtain an estimate of s3 =
t1 + t2 + t3 as

t1 + t2 + t3 ≤ 1.2.

To be precise, the above argument is not partially rigorous similarly as the above case.
We give a rigorous proof that t1 + t2 + t3 ≤ 1.2 in Section A.7.
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We obtain that
t1 + t2 + t4 ≤ 1.2

in the same way as above.

8.3 Calculation of the critical value

In this section, we calculate the concrete value of a critical point of V̂ .
The differentials of V̂ are presented by

∂

∂t1
V̂ (t) = −2 log(1− x1) + 2π

√
−1
(
s1 + s2 + s3 + s4 − 2

)
,

∂

∂t2
V̂ (t) = − log(1− x2) + 2π

√
−1
(
s2 + s3 + s4 −

3

2

)
,

∂

∂t3
V̂ (t) = − log(1− x3) + 2π

√
−1
(
s3 + s4 − 1

)
,

∂

∂t4
V̂ (t) = − log(1− x4) + 2π

√
−1
(
s4 −

1

2

)
,

where xk = e2π
√
−1 tk (k = 1, 2, 3, 4).

Lemma 8.18. V̂ has a unique critical point t0 in P−1(∆′), where P : C4 → R4 is the
projection to the real parts of the entries.

Proof. Any critical point of V̂ is given by a solution of ∂
∂t1
V̂ = ∂

∂t2
V̂ = ∂

∂t3
V̂ = ∂

∂t4
V̂ = 0,

and these equations are rewritten,

(1− x1)
2 = e2π

√
−1 (s1+s2+s3+s4−2) = x41 x

3
2 x

2
3 x4,

1− x2 = e2π
√
−1 (s2+s3+s4− 3

2
) = −x31 x32 x23 x4,

1− x3 = e2π
√
−1 (s3+s4−1) = x21 x

2
2 x

2
3 x4,

1− x4 = e2π
√
−1 (s4− 1

2
) = −x1 x2 x3 x4.

Putting y2 = x1x2, y3 = x1x2x3, y4 = x1x2x3x4, the above equations are rewritten,

(1− x1)
2 = x1y2y3y4, 1− y2

x1
= −y2y3y4, 1− y3

y2
= y3y4, 1− y4

y3
= −y4.

From the fourth equation, we have that y3 = y4/(1+y4). Further, from the third equation,
we have that y2 = −y4/(y24 − y4 − 1). Furthermore, from the second equation, we have
that x1 = y4(y4 + 1)/(2y4 + 1). By substituting them into the first equation, we obtain
that

y54 − 2y44 + 3y34 + 2y24 − 2y4 − 1 = 0.

Its solutions are

y4 = −0.532511...± √
−1 · 0.0564334..., 1.10636...± √

−1 · 1.69341..., 0.852303... .
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Among these, the solution −0.532511... +
√
−1 · 0.0564334... gives a solution in ∆′, from

which we have that

x1 = 0.941819...+
√
−1 · 1.69128... , t1 = 0.169133...− √

−1 · 0.105128... ,
x2 = 0.193141...+

√
−1 · 1.23996... , t2 = 0.225407...− √

−1 · 0.0361386... ,
x3 = 0.424148...+

√
−1 · 0.19808... , t3 = 0.0695358...+

√
−1 · 0.120803... ,

x4 = 0.467489...+
√
−1 · 0.0564334... , t4 = 0.01912...+

√
−1 · 0.119867... .

These give a unique critical point in P−1(∆′).

The critical value of V̂ at the critical point of Lemma 8.18 is presented by

ς = V̂ (t0) = 0.530263...− √
−1 · 1.74407... . (146)

Further, we put its real part to be ς
R
,

ς
R

= Re ς = 0.530263... . (147)

8.4 Calculation by the Poisson summation formula

In this section, we show Proposition 8.19 below, which is used in the proof of Theorem
1.1 for the 72 knot in Section 8.1.

Proposition 8.19. For the notation in Section 8.1,∑
i1,i2,i3,i4 ∈Z

(i1/N,i2/N,i3/N,i4/N)∈∆′

exp
(
N · V

(2i1 + 1

2N
,
2i2 + 1

2N
,
2i3 + 1

2N
,
2i4 + 1

2N

))

=

∫
∆′

exp
(
N · V (t)

)
dt +O(eN(ς

R
−ε))

for some ε > 0.

Proof. We put a function g : R4 → R by

g(t) =

{
1 if t ∈ ∆′,

0 if t /∈ N(∆′),

0 ≤ g(t) ≤ 1 if t ∈ N(∆′)−∆′,

for t = (t1, t2, t3, t4) ∈ R4, such that g depends only on tk (independently of other tj
(j ̸= k)) in a neighborhood of ∂k∆ for each k = 2, 3, 4. By applying the Poisson summation
formula to g(t)V (t), the sum of the proposition is presented by∑
m1,m2,m3,m4∈Z

∫
∆′

exp
(
N
(
V̂ (t1, t2, t3, t4)−2π

√
−1 (m1t1+m2t2+m3t3+m4t4)

))
dt1 dt2 dt3 dt4 .

By Lemmas 8.20–8.23 below, the summand at (m1,m2,m3,m4) is of the orderO(e
N(ς

R
−ε))

for some ε > 0 in the cases where m4 ̸= 0, 1, m1 ̸= m2, m2 ̸= m3 or m3 ̸= m4. Namely,
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the summand is of the order O(eN(ς
R
−ε)) when (m1,m2,m3,m4) ̸= (0, 0, 0, 0), (1, 1, 1, 1).

(To be precise, it is necessary to show that the sum of such summands is of this order; we
can show it in a similar way as in [20].) Further, by Proposition 8.32, the summand at
(m1,m2,m3,m4) = (1, 1, 1, 1) is of the order O(e−Nε) for some ε > 0. Hence, we obtain
the proposition.

Lemma 8.20. When m4 ̸= 0, 1,∫
∆′

exp
(
N
(
V̂ (t1, t2, t3, t4)− 2π

√
−1 (m1t1 +m2t2 +m3t3 +m4t4)

))
dt1 dt2 dt3 dt4

= O(eN(ς
R
−ε)).

Proof. We put

V̂ ′(t1, t2, t3, t4) = V̂ (t1, t2, t3, t4)− 2π
√
−1 (m1t1 +m2t2 +m3t3 +m4t4).

We show the lemma by moving ∆′ into the imaginary direction of t4. When m4 > 1, it is
sufficient to show that

Re
(
V̂ ′(t1, t2, t3, t4 − δ0

√
−1)

)
< ς

R
for any (t1, t2, t3, t4) ∈ ∆′, (148)∫

∂∆′×[0,δ0]

eN V̂ ′(t1,t2,t3,t4−δ
√
−1) dt1 dt2 dt3 dt4 = O(eN(ς

R
−ε)), (149)

for some δ0 > 0. When m4 < 0, it is sufficient to show that

Re
(
V̂ ′(t1, t2, t3, t4 + δ0

√
−1)

)
< ς

R
for any (t1, t2, t3, t4) ∈ ∆′, (150)∫

∂∆′×[0,δ0]

eN V̂ ′(t1,t2,t3,t4+δ
√
−1) dt1 dt2 dt3 dt4 = O(eN(ς

R
−ε)), (151)

for some δ0 > 0.

We show (148) and (150) for some sufficiently large δ0, as follows. It is sufficient to
show that

if m4 > 1,
∂

∂δ
Re
(
V̂ ′(t1, t2, t3, t4 − δ

√
−1)

)
< −ε′ for any δ ≥ 0, (152)

if m4 < 0,
∂

∂δ
Re
(
V̂ ′(t1, t2, t3, t4 + δ

√
−1)

)
< −ε′ for any δ ≥ 0, (153)

for some ε′ > 0. Hence, since Re
(
V̂ ′(t1, t2, t3, t4+δ

√
−1)

)
= Re

(
V̂ (t1, t2, t3, t4+δ

√
−1)

)
+

2πm4δ, it is sufficient to show that

−(4π − ε′) < Re
( ∂
∂δ
V̂ (t1, t2, t3, t4 + δ

√
−1)

)
< 2π − ε′ (154)

for some ε′ > 0. The middle term is calculated as

Re
( ∂
∂δ
V̂ (t1, t2, t3, t4 + δ

√
−1)

)
= Re

(√
−1 · ∂

∂t4
V̂ (t1, t2, t3, t4 + δ

√
−1)

)
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= −Im
(
− log(1− x4) + 2π

√
−1
(
s4 −

1

2

))
= Arg (1− x4)− 2π

(
s4 −

1

2

)
,

where x4 = e2π
√
−1 (t4+δ

√
−1). If 0 < t4 ≤ 1

2
,

−2π
(1
2
− t4

)
≤ Arg (1− x4) ≤ 0.

Hence,

−2πs3 ≤ Re
( ∂
∂δ
V̂ (t1, t2, t3, t4 + δ

√
−1)

)
≤ 2π

(1
2
− s4

)
.

Therefore, since s3 ≤ 1.2 and s4 ≥ 0, (154) is satisfied. If 1
2
< t4 < 1,

0 < Arg (1− x4) < 2π
(
t4 −

1

2

)
.

Hence,

−2π
(
s4 −

1

2

)
< Re

( ∂
∂δ
V̂ (t1, t2, t3, t4 + δ

√
−1)

)
< −2πs3.

Therefore, since s4 ≤ 1.45 and s3 ≥ 0, (154) is satisfied.

We show (149) and (151), as follows. Since ∂∆′ is the union of ∂1∆
′, · · · , ∂5∆′, it is

sufficient to show that

if m4 > 1,

∫
∂i∆′×[0,δ0]

eN V̂ ′(t1,t2,t3,t4−δ
√
−1) dt1 dt2 dt3 dt4 = O(eN(ς

R
−ε)), (155)

if m4 < 0,

∫
∂i∆′×[0,δ0]

eN V̂ ′(t1,t2,t3,t4+δ
√
−1) dt1 dt2 dt3 dt4 = O(eN(ς

R
−ε)), (156)

for any δ0 ≥ 0 and any i = 1, · · · , 5.
When i = 1, ∂1∆

′ is included in the domain that Re V̂ < ς
R
. When m4 > 1,

Re V̂ ′(t1, t2, t3, t4 − δ
√
−1) is monotonically decreasing with respect to δ by (152), and

hence, (155) holds. When m4 < 0, Re V̂ ′(t1, t2, t3, t4+ δ
√
−1) is monotonically decreasing

with respect to δ by (153), and hence, (156) holds.

When i = 5, ∂5∆
′ is included in the domain that Re V̂ < ς

R
. Hence, (155) and (156)

hold in the same way as the above case.
When i = 2, since t2 is fixed to be 0.003, the 4-form dt1 dt2 dt3 dt4 vanishes on ∂2∆

′ ×
[0, δ0]. Hence, (155) and (156) hold.

When i = 3, since t3 is fixed to be 0.003, (155) and (156) hold in the same way as the
above case.

When i = 4, in order to show (155) and (156), it is sufficient to show that∫
∂4∆′

eN V̂ ′(t1,t2,t3,0.003+δ
√
−1) dt1 dt2 dt3 = O(eN(ς

R
−ε)),
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where we fix δ such that δ ≤ 0 when m4 > 1, and δ ≥ 0 when m4 < 0. Noting that
Re V̂ ′(t1, t2, t3, 0.003) > Re V̂ ′(t1, t2, t3, 0.003 + δ

√
−1) by (152) and (153), it is sufficient

to show that ∫
∆′

4

eN V̂ ′(t1,t2,t3,0.003+δ
√
−1) dt1 dt2 dt3 = O(eN(ς

R
−ε)), (157)

where we recall that ∆′
4 is defined in Section 8.2.3. We put

Û4(t1, t2, t3) =
1

2π
√
−1

(
2 Li2(e

2π
√
−1 t1) + Li2(e

2π
√
−1 t2) + Li2(e

2π
√
−1 t3)

)
+ 2π

√
−1 · 1

2

(
s21 + s22 + s23 + s24 − s1 − s2 − s3 − s4 +

2

3

)
,

where s1 = t1, s2 = t1 + t2, s3 = t1 + t2 + t3, s4 = t1 + t2 + t3 + 0.003. It is sufficient to
show that, for any (m1,m2,m3) ∈ Z3,∫

∆′
4

exp
(
N
(
Û4(t1, t2, t3)− 2π

√
−1 (m1t1 +m2t2 +m3t3)

))
dt1 dt2 dt3 = O(eN(ς

R
−ε)).

We can show this formula by Lemmas 8.12, 8.13 and 8.14. Therefore, (157) holds.

Lemma 8.21. When m1 ̸= m2,∫
∆′

exp
(
N
(
V̂ (t1, t2, t3, t4)− 2π

√
−1 (m1t1 +m2t2 +m3t3 +m4t4)

))
dt1 dt2 dt3 dt4

= O(eN(ς
R
−ε)).

Proof. We put V̂ ′ as in the proof of Lemma 8.20. When m1 > m2, it is sufficient to show
that

Re
(
V̂ ′(t1 − δ0

√
−1, t2 + δ0

√
−1, t3, t4)

)
< ς

R
for any (t1, t2, t3, t4) ∈ ∆′, (158)∫

∂∆′×[0,δ0]

eN V̂ ′(t1−δ
√
−1,t2+δ

√
−1,t3,t4) dt1 dt2 dt3 dt4 = O(eN(ς

R
−ε)), (159)

for some δ0 > 0. When m1 < m2, it is sufficient to show that

Re
(
V̂ ′(t1 + δ0

√
−1, t2 − δ0

√
−1, t3, t4)

)
< ς

R
for any (t1, t2, t3, t4) ∈ ∆′, (160)∫

∂∆′×[0,δ0]

eN V̂ ′(t1+δ
√
−1,t2−δ

√
−1,t3,t4) dt1 dt2 dt3 dt4 = O(eN(ς

R
−ε)), (161)

for some δ0 > 0.

We show (158) and (160) for some sufficiently large δ0, as follows. It is sufficient to
show that

if m1 > m2,
∂

∂δ
Re
(
V̂ ′(t1 − δ

√
−1, t2 + δ

√
−1, t3, t4)

)
< −ε′ for any δ ≥ 0, (162)

if m1 < m2,
∂

∂δ
Re
(
V̂ ′(t1 + δ

√
−1, t2 − δ

√
−1, t3, t4)

)
< −ε′ for any δ ≥ 0, (163)
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for some ε′ > 0. Hence, since Re
(
V̂ ′(t1+δ

√
−1, t2−δ

√
−1, t3, t4)

)
= Re

(
V̂ (t1+δ

√
−1, t2−

δ
√
−1, t3, t4)

)
+ 2π(m1 −m2)δ, it is sufficient to show that

−(2π − ε) < Re
( ∂
∂δ
V̂ (t1 + δ

√
−1, t2 − δ

√
−1, t3, t4)

)
< 2π − ε (164)

for some ε > 0. The middle term is calculated as

Re
( ∂
∂δ
V̂ (t1 + δ

√
−1, t2 − δ

√
−1, t3, t4)

)
= 2Arg (1− x1)− Arg (1− x2)− 2π

(
s1 −

1

2

)
,

where x1 = e2π
√
−1 (t1+δ

√
−1) and x2 = e2π

√
−1 (t2−δ

√
−1). Since 0 < t1 ≤ 1

2
,

−2π
(1
2
− t1

)
≤ Arg (1− x1) ≤ 0.

Hence,

−2π
(1
2
− t1

)
≤ 2Arg (1− x1)− 2π

(
s1 −

1

2

)
≤ 2π

(1
2
− t1

)
.

Therefore, since t1 ≥ 0.003,

−2π · 0.497 ≤ 2Arg (1− x1)− 2π
(
s1 −

1

2

)
≤ 2π · 0.497.

Further, since −π < Arg (1− x2) < π, (164) is satisfied.

We show that (159) and (161), as follows. Since ∂∆′ is the union of ∂1∆
′, · · · , ∂5∆′, it

is sufficient to show that

if m1 > m2,

∫
∂i∆′×[0,δ0]

eN V̂ ′(t1−δ
√
−1,t2+δ

√
−1,t3,t4) dt1 dt2 dt3 dt4 = O(eN(ς

R
−ε)), (165)

if m1 < m2,

∫
∂i∆′×[0,δ0]

eN V̂ ′(t1+δ
√
−1,t2−δ

√
−1,t3,t4) dt1 dt2 dt3 dt4 = O(eN(ς

R
−ε)), (166)

for any δ0 ≥ 0 and any i = 1, · · · , 5.
When i = 1, 3, 4, 5, we can show (165) and (166) in a similar way as in the proof of

Lemma 8.20.
When i = 2, in order to show (165) and (166), it is sufficient to show that∫

∂2∆′
eN V̂ ′(t1+δ

√
−1,0.003−δ

√
−1,t3,t4) dt1 dt3 dt4 = O(eN(ς

R
−ε)),

where we fix δ such that δ ≤ 0 when m1 > m2, and δ ≥ 0 when m1 < m2. Noting that
Re V̂ ′(t1, 0.003, t3, t4) > Re V̂ ′(t1 + δ

√
−1, 0.003 − δ

√
−1, t3, t4) by (162) and (163), it is

sufficient to show that∫
∆′

2

eN V̂ ′(t1+δ
√
−1,0.003−δ

√
−1,t3,t4) dt1 dt3 dt4 = O(eN(ς

R
−ε)), (167)

where we recall that ∆′
2 is defined in Section 8.2.1. We put

Û2(t1, t3, t4) =
1

2π
√
−1

(
2 Li2(e

2π
√
−1 t1) + Li2(e

2π
√
−1 t3) + Li2(e

2π
√
−1 t4)

)
+ 2π

√
−1 · 1

2

(
s21 + s22 + s23 + s24 − s1 − s2 − s3 − s4 +

2

3

)
,
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where s1 = t1, s2 = t1 + 0.003, s3 = t1 + t3 + 0.003, s4 = t1 + t3 + t4 + 0.003. It is
sufficient to show that, for any (m1,m3,m4) ∈ Z3,∫
∆′

2

exp
(
N
(
Û2(t1 + δ

√
−1, t3, t4)− 2π

√
−1 (m1(t1 + δ

√
−1) +m3t3 +m4t4)

))
dt1 dt3 dt4

= O(eN(ς
R
−ε)).

We can show this formula by Lemmas 8.4, 8.5 and 8.6. Therefore, (167) holds.

Lemma 8.22. When m2 ̸= m3,∫
∆′

exp
(
N
(
V̂ (t1, t2, t3, t4)− 2π

√
−1 (m1t1 +m2t2 +m3t3 +m4t4)

))
dt1 dt2 dt3 dt4

= O(eN(ς
R
−ε)).

Proof. We put V̂ ′ as in the proof of Lemma 8.20. Similarly as the proof of Lemma 8.21,
it is sufficient to show that

−(2π − ε′) < Re
( ∂
∂δ
V̂ (t1, t2 + δ

√
−1, t3 − δ

√
−1, t4)

)
< 2π − ε′ (168)

for some ε′ > 0, and that

if m2 > m3,

∫
∂i∆′×[0,δ0]

eN V̂ ′(t1,t2−δ
√
−1,t3+δ

√
−1,t4) dt1 dt2 dt3 dt4 = O(eN(ς

R
−ε)), (169)

if m2 < m3,

∫
∂i∆′×[0,δ0]

eN V̂ ′(t1,t2+δ
√
−1,t3−δ

√
−1,t4) dt1 dt2 dt3 dt4 = O(eN(ς

R
−ε)), (170)

for any δ0 ≥ 0 and any i = 1, · · · , 5.
We show (168), as follows. The middle term of (168) is calculated as

Re
( ∂
∂δ
V̂ (t1, t2 + δ

√
−1, t3 − δ

√
−1, t4)

)
= Arg (1− x2)− Arg (1− x3)− 2π

(
s2 −

1

2

)
,

where x2 = e2π
√
−1 (t2+δ

√
−1) and x3 = e2π

√
−1 (t3−δ

√
−1). Since

min
{
− 2π

(1
2
− t2

)
, 0
}

≤ Arg (1− x2) ≤ max
{
0, 2π

(
t2 −

1

2

)}
,

we have that

min
{
−2π ·t1, −2π

(
s2−

1

2

)}
≤ Arg (1−x2)−2π

(
s2−

1

2

)
≤ max

{
2π
(1
2
−s2

)
, −2π ·t1

}
.

Hence, since 0.003 ≤ t1 ≤ 0.5 and 0.003 ≤ t1 < s2 ≤ 0.9,

−π ≤ Arg (1− x2)− 2π
(
s2 −

1

2

)
≤ 2π · 0.497.
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Further,

min
{
0, −2π

(
t3 −

1

2

)}
≤ −Arg (1− x3) ≤ max

{
2π
(1
2
− t3

)
, 0
}
.

Hence, since 0 < t3 ≤ 0.7,

−2π · 0.2 ≤ −Arg (1− x3) ≤ π.

Therefore,

−2π · 0.7 ≤ Re
( ∂
∂δ
V̂ (t1, t2 + δ

√
−1, t3 − δ

√
−1, t4)

)
≤ 2π · 0.997,

and hence, (168) is satisfied.

We show (169) and (170) for i = 1, · · · , 5, as follows.
When i = 1, 4, 5, we can show (169) and (170) in a similar way as in the proof of

Lemma 8.20.
When i = 2, in order to show (169) and (170), it is sufficient to show that∫

∂2∆′
eN V̂ ′(t1,0.003+δ

√
−1,t3−δ

√
−1,t4) dt1 dt3 dt4 = O(eN(ς

R
−ε)),

where we fix δ such that δ ≤ 0 when m2 > m3, and δ ≥ 0 when m2 < m3. We can show
this formula in a similar way as in the proof of Lemma 8.21.

When i = 3, in order to show (169) and (170), it is sufficient to show that∫
∂3∆′

eN V̂ ′(t1,t2+δ
√
−1,0.003−δ

√
−1,t4) dt1 dt2 dt4 = O(eN(ς

R
−ε)),

where we fix δ such that δ ≤ 0 when m2 > m3, and δ ≥ 0 when m2 < m3. We can
show this formula by Lemmas 8.8, 8.9 and 8.10 in a similar way as in the proof of Lemma
8.21.

Lemma 8.23. When m3 ̸= m4,∫
∆′

exp
(
N
(
V̂ (t1, t2, t3, t4)− 2π

√
−1 (m1t1 +m2t2 +m3t3 +m4t4)

))
dt1 dt2 dt3 dt4

= O(eN(ς
R
−ε)).

Proof. We put V̂ ′ as in the proof of Lemma 8.20. Similarly as the proof of Lemma 8.21,
it is sufficient to show that

−(2π − ε′) < Re
( ∂
∂δ
V̂ (t1, t2, t3 + δ

√
−1, t4 − δ

√
−1)

)
< 2π − ε′ (171)

for some ε′ > 0, and that

if m3 > m4,

∫
∂i∆′×[0,δ0]

eN V̂ ′(t1,t2,t3−δ
√
−1,t4+δ

√
−1) dt1 dt2 dt3 dt4 = O(eN(ς

R
−ε)), (172)
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if m3 < m4,

∫
∂i∆′×[0,δ0]

eN V̂ ′(t1,t2,t3+δ
√
−1,t4−δ

√
−1) dt1 dt2 dt3 dt4 = O(eN(ς

R
−ε)), (173)

for any δ0 ≥ 0 and any i = 1, · · · , 5.
We show (171), as follows. The middle term of (171) is calculated as

Re
( ∂
∂δ
V̂ (t1, t2, t3 + δ

√
−1, t4 − δ

√
−1)

)
= Arg (1− x3)− Arg (1− x4)− 2π

(
s3 −

1

2

)
,

where x3 = e2π
√
−1 (t3+δ

√
−1) and x4 = e2π

√
−1 (t4−δ

√
−1). Since

min
{
− 2π

(1
2
− t3

)
, 0
}

≤ Arg (1− x3) ≤ max
{
0, 2π

(
t3 −

1

2

)}
,

we have that

min
{
− 2π · s2, −2π

(
s3 −

1

2

)}
≤ Arg (1− x3)− 2π

(
s3 −

1

2

)
≤ max

{
2π
(1
2
− s3

)
, −2π · s2

}
≤ 2π · 0.497,

since 0.003 ≤ t1 < s3 and 0 < s2. Further,

min
{
0, −2π

(
t4 −

1

2

)}
≤ −Arg (1− x4) ≤ max

{
2π
(1
2
− t4

)
, 0
}

≤ π,

since t4 > 0. Therefore,

Re
( ∂
∂δ
V̂ (t1, t2, t3 + δ

√
−1, t4 − δ

√
−1)

)
≤ 2π · 0.97,

Re
( ∂
∂δ
V̂ (t1, t2, t3 + δ

√
−1, t4 − δ

√
−1)

)
≥ −2π ·max

{
s2, s3 −

1

2
, s2 + t4 −

1

2
, s4 − 1

}
≥ −2π ·max

{
0.9, 0.7, 0.7, 0.45

}
≥ −2π · 0.9,

and hence, (171) is satisfied.

We show (172) and (173) for i = 1, · · · , 5, as follows.
When i = 1, 2, 5, we can show (172) and (173) in a similar way as in the proof of

Lemma 8.20.
When i = 3, in order to show (172) and (173), it is sufficient to show that∫

∂3∆′
eN V̂ ′(t1,t2,0.003+δ

√
−1,t4−δ

√
−1) dt1 dt2 dt4 = O(eN(ς

R
−ε)),

where we fix δ such that δ ≤ 0 when m3 > m4, and δ ≥ 0 when m3 < m4. We can show
this formula in a similar way as in the proof of Lemma 8.21.

When i = 4, in order to show (172) and (173), it is sufficient to show that∫
∂4∆′

eN V̂ ′(t1,t2,t3+δ
√
−1,0.003−δ

√
−1) dt1 dt2 dt3 = O(eN(ς

R
−ε)),

where we fix δ such that δ ≤ 0 when m3 > m4, and δ ≥ 0 when m3 < m4. We can show
this formula by Lemmas 8.12, 8.13 and 8.14 in a similar way as in the proof of Lemma
8.21.
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8.5 Verifying the assumption of the saddle point method

In this section, we verify the assumption of the saddle point method in Proposition 8.28.
In order to show this proposition, we show Lemmas 8.24–8.27 in advance.

We put

f(X, Y, Z,W ) = Re V̂ (t1 +X
√
−1, t2 + Y

√
−1, t3 + Z

√
−1, t4 +W

√
−1)− ς

R
.

Then, we have that

∂f

∂X
= 2Arg (1− x1)− 2π(s1 + s2 + s3 + s4 − 2),

∂f

∂Y
= Arg (1− x2)− 2π

(
s2 + s3 + s4 −

3

2

)
,

∂f

∂Z
= Arg (1− x3)− 2π(s3 + s4 − 1),

∂f

∂W
= Arg (1− x4)− 2π

(
s4 −

1

2

)
,

where x1 = e2π
√
−1 (t1+X

√
−1), x2 = e2π

√
−1 (t2+Y

√
−1), x3 = e2π

√
−1 (t3+Z

√
−1) and x4 =

e2π
√
−1 (t4+W

√
−1).

Lemma 8.24. Fixing X, Y , Z, we regard f as a function of W .
(1) If s4 ≥ 1

2
, then f is monotonically decreasing as a function of W .

(2) If s4 <
1
2
, then f has a unique minimal point as a function of W . In particular, this

minimal point goes to ∞ as s4 → 1
2
− 0.

Proof. If 0 < t4 <
1
2
, we have that

−2π
(1
2
− t4

)
< Arg (1− x4) < 0,

and Arg (1− x4) is monotonically increasing as a function of W . Further,

∂f

∂W

∣∣∣
W→∞

= −2π
(
s4 −

1

2

)
,

∂f

∂W

∣∣∣
W→−∞

= −2π
(1
2
− t4

)
− 2π

(
s4 −

1

2

)
= −2π · s3 < 0.

If s4 <
1
2
, there is a unique zero of ∂f

∂W
, which gives a unique minimal point of f , and

hence, (2) holds. If s4 ≥ 1
2
, ∂f
∂W

is always negative, and (1) holds.

If 1
2
≤ t4 < 1, Arg (1 − x4) is monotonically decreasing as a function of W . Since

∂f
∂W

∣∣∣
W→−∞

is negative, ∂f
∂W

is always negative, and (1) holds.

Lemma 8.25. Fixing X, Y , W , we regard f as a function of Z.
(1) If s3 + s4 ≥ 1, then f is monotonically decreasing as a function of Z.
(2) If s3 + s4 < 1 and s2 + s4 >

1
2
, then f has a unique minimal point as a function of
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Z. In particular, this minimal point goes to ∞ as s3 + s4 → 1 − 0, and goes to −∞ as
s2 + s4 → 1

2
+ 0.

(3) If s2 + s4 ≤ 1
2
, then f is monotonically increasing as a function of Z.

Proof. If 0 < t3 <
1
2
, we have that

−2π
(1
2
− t3

)
< Arg (1− x3) < 0,

and Arg (1− x3) is monotonically increasing as a function of Z. Further,

∂f

∂Z

∣∣∣
Z→∞

= −2π(s3 + s4 − 1),

∂f

∂Z

∣∣∣
Z→−∞

= −2π
(1
2
− t3

)
− 2π(s3 + s4 − 1) = −2π

(
s2 + s4 −

1

2

)
.

If s3 + s4 ≥ 1, ∂f
∂Z

is always negative, and (1) holds. If s3 + s4 < 1 and s2 + s4 >
1
2
, there

is a unique zero of ∂f
∂Z

, which gives a unique minimal point of f , and hence, (2) holds. If

s2 + s4 ≤ 1
2
, then ∂f

∂Z
is always positive, and (3) holds.

If 1
2
≤ t3 < 1, Arg (1 − x3) is monotonically decreasing as a function of Z. Since

s3+ s4 > 2 t3 ≥ 1, ∂f
∂Z

∣∣∣
Z→−∞

is negative, and ∂f
∂Z

is always negative. Hence, (1) holds.

Lemma 8.26. Fixing X, Z, W , we regard f as a function of Y .
(1) If s2 + s3 + s4 ≥ 3

2
, then f is monotonically decreasing as a function of Y .

(2) If s2 + s3 + s4 <
3
2
and t1 + s3 + s4 > 1, then f has a unique minimal point as a

function of Y . In particular, this minimal point goes to ∞ as s2 + s3 + s4 → 3
2
− 0, and

goes to −∞ as t1 + s3 + s4 → 1 + 0.
(3) If t1 + s3 + s4 ≤ 1, then f is monotonically increasing as a function of Y .

Proof. We can prove the lemma, similarly as the proof of Lemma 8.25.

Lemma 8.27. Fixing Y , Z, W , we regard f as a function of X.
(1) If s1 + s2 + s3 + s4 ≥ 2, then f is monotonically decreasing as a function of X.
(2) If s1 + s2 + s3 + s4 < 2 and t2 + s3 + s4 > 1, then f has a unique minimal point as a
function of X. In particular, this minimal point goes to ∞ as s1 + s2 + s3 + s4 → 2− 0,
and goes to −∞ as t2 + s3 + s4 → 1 + 0.
(3) If t2 + s3 + s4 ≤ 1, then f is monotonically increasing as a function of X.

Proof. We can prove the lemma, similarly as the proof of Lemma 8.25.

Proposition 8.28. When we apply the saddle point method to (128), the assumption of
the saddle point method holds.

Proof. We show that there exists a homotopy ∆′(δ) (0 ≤ δ ≤ 1) between ∆′(0) = ∆′ and
∆′(1) such that

(t1c, t2c, t3c, t4c) ∈ ∆′(1), (174)
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∆′(1)− {(t1c, t2c, t3c, t4c)} ⊂
{
(t1, t2, t3, t4) ∈ C4

∣∣ Re V̂ (t1, t2, t3, t4) < ς
R

}
, (175)∫

∪
∂∆′(δ)

V̂ (t1, t2, t3, t4) dt1 dt2 dt3 dt4 = O(eN(ς
R
−ε)) for some ε > 0. (176)

We make the homotopy, as follows. We note that the behavior of f(X, Y, Z,W ) as a
function ofX does not depend on Y , Z,W , and the behavior of f(X, Y, Z,W ) as a function
of Y does not depend on X, Z, W , and the behavior of f(X, Y, Z,W ) as a function of Z
does not depend on X, Y , W , and the behavior of f(X, Y, Z,W ) as a function of W does
not depend on X, Y , Z. We make the homotopy by taking (t1, t2, t3, t4) to the minimal
point (or infinity) of Lemmas 8.24–8.27 in each fiber of the projection C4 → R4. We note
that we can choose any order of moving variables to the minimal points (or infinity) in a
general fiber. In each fiber on ∂2∆

′, we take X, Z,W to the minimal points (or infinity) in
advance, and take Y to the minimal point (or infinity) later. In each fiber on ∂3∆

′, we take
X, Y , W to the minimal points (or infinity) in advance, and take Z to the minimal point
(or infinity) later. In each fiber on ∂4∆

′, we takeX, Y , Z to the minimal points (or infinity)
in advance, and takeW to the minimal point (or infinity) later. When s4 <

1
2
, s2+s4 >

1
2
,

t1+s3+s4 > 1 and t2+s3+s4 > 1, f has a unique minimal point by Lemmas 8.24–8.27; we
put it to be (X, Y, Z,W ) =

(
g1(t1, t2, t3, t4), g2(t1, t2, t3, t4), g3(t1, t2, t3, t4), g4(t1, t2, t3, t4)

)
.

We show (176), as follows. It is sufficient to show that∫
∪
∂i∆′(δ)

V̂ (t1, t2, t3, t4) dt1 dt2 dt3 dt4 = O(eN(ς
R
−ε)) (177)

for each i = 1, · · · , 5. When i = 1, ∂1∆
′ is included in the domain that Re V̂ < ς

R
. Further,

by the construction of the homotopy, Re V̂ monotonically decreases by the homotopy.
Hence, (177) holds. When i = 5, ∂5∆

′ is also included in the domain that Re V̂ < ς
R
,

and hence, (177) holds, similarly as the above case. When i = 2, in a fiber on ∂2∆
′, the

homotopy moves X, Z, W in advance, fixing t2 and Y . In this range of δ, the restriction
of the 4-form dt1 dt2 dt3 dt4 to

∪
∂2∆

′(δ) vanishes, and the integral of (177) is 0. Further,

when the homotopy moves Y later, ∂2∆
′(δ) is included in the domain that Re V̂ < ς

R
by

Lemma 8.29 below. Hence, (177) holds. When i = 3, 4, (177) holds similarly, by Lemmas
8.30 and 8.31 below.

We show (174) and (175), as follows. In a similar way as the cases of other knots, we can
show that, when (t1, t2, t3, t4) is a critical point of h(t1, t2, t3, t4),

(
t1+g1(t1, t2, t3, t4)

√
−1, t2+

g2(t1, t2, t3, t4)
√
−1, t3+ g3(t1, t2, t3, t4)

√
−1, t4+ g4(t1, t2, t3, t4)

√
−1
)
is a critical point of

V̂ . It follows that h(t1, t2, t3, t4) has a unique maximal point at (t1, t2, t3, t4) = (Re t1c,Re t2c,
Re t3c,Re t4c). Therefore, (174) and (175) hold.

Lemma 8.29. When the homotopy moves X, Z, W to the minimal points (or infinity)

in each fiber on ∂2∆
′, the homotopy moves ∂2∆

′ into the domain that Re V̂ < ς
R
.

Proof. As shown in the proof of Lemma 8.6, we can take X → −∞ or W → ∞ in every
fiber on ∂2∆

′. Hence, f → −∞ in every fiber. Therefore, we obtain the lemma.
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Lemma 8.30. When the homotopy moves X, Y , W to the minimal points (or infinity)

in each fiber on ∂3∆
′, the homotopy moves ∂3∆

′ into the domain that Re V̂ < ς
R
.

Proof. As calculated in the proof of Lemma 8.9, when we move X, Y , W to the minimal
points (or infinity), ∂3∆

′ is moved to the position of the saddle point method of Lemma
8.9. Then, f is bounded by the critical value of Lemma 8.9, and it follows that ∂3∆

′ (after

the move) is included in the domain that Re V̂ < ς
R
.

Lemma 8.31. When the homotopy moves X, Y , Z to the minimal points (or infinity)

in each fiber on ∂4∆
′, the homotopy moves ∂4∆

′ into the domain that Re V̂ < ς
R
.

Proof. As calculated in the proof of Lemma 8.13, when we move X, Y , Z to the minimal
points (or infinity), ∂4∆

′ is moved to the position of the saddle point method of Lemma
8.13. Then, f is bounded by the critical value of Lemma 8.13, and it follows that ∂4∆

′

(after the move) is included in the domain that Re V̂ < ς
R
.

8.6 Estimate of the integral at (m1,m2,m3,m4) = (1, 1, 1, 1)

In this section, we show Proposition 8.32 below, which is used in the proof of Proposition
8.19 in Section 8.4.

Proposition 8.32. For the notation of Proposition 8.19,∫
∆′

exp
(
N
(
V̂ (t1, t2, t3, t4)− 2π

√
−1 (t1 + t2 + t3 + t4)

))
dt1 dt2 dt3 dt4 = O(eN(ς

R
−ε)).

Before showing a proof of the proposition, we show some lemmas. We put

V̂ ′(t1, t2, t3, t4) = V̂ (t1, t2, t3, t4)− 2π
√
−1 (t1 + t2 + t3 + t4),

f ′(X, Y, Z,W ) = Re V̂ ′(t1 +X
√
−1, t2 + Y

√
−1, t3 + Z

√
−1, t4 +W

√
−1)− ς

R

= f(X, Y, Z,W ) + 2π(X + Y + Z +W ).

It is sufficient to show that, in the fiber of the projection C4 → R4 at each (t1, t2, t3, t4) ∈
∆′, we can move X,Y, Z,W in such a way that f ′ becomes negative. We will show this
actually by moving X and W , fixing Y and Z. We have that

∂f ′

∂X
=

∂f

∂X
+ 2π = 2Arg (1− x1)− 2π(s1 + s2 + s3 + s4 − 3),

∂f ′

∂W
=

∂f

∂W
+ 2π = Arg (1− x4)− 2π

(
s4 −

3

2

)
,

where x1 = e2π
√
−1 (t1+X

√
−1) and x4 = e2π

√
−1 (t4+W

√
−1).

Lemma 8.33. Fixing X, Y , Z, we regard f ′ as a function of W .
(1) If s3 ≤ 1, then f ′ is monotonically increasing as a function of W .
(2) If s3 > 1, then f ′ has a unique minimal point at W = g4(t1, t2, t3, t4), where

g4(t1, t2, t3, t4) =
1

2π
log

sin 2π(s3 − 1)

sin 2π
(
3
2
− s4

) .
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In particular, this minimal point goes to −∞ as s3 → 1 + 0.

Proof. If 0 < t4 <
1
2
, we have that

−2π
(1
2
− t4

)
< Arg (1− x4) < 0,

and Arg (1− x4) is monotonically increasing as a function of W . Further,

∂f ′

∂W

∣∣∣
W→∞

= 2π
(3
2
− s4

)
> 0,

∂f ′

∂W

∣∣∣
W→−∞

= −2π
(1
2
− t4

)
− 2π

(
s4 −

3

2

)
= −2π(s3 − 1).

If s3 > 1, there is a unique zero of ∂f ′

∂W
, which gives a unique minimal point of f ′, and

hence, (2) holds. If s3 ≤ 1, ∂f ′

∂W
is always positive, and (1) holds.

If 1
2
≤ t4 < 1, Arg (1 − x4) is monotonically decreasing as a function of W . Since

∂f ′

∂W

∣∣∣
W→∞

is positive, ∂f ′

∂W
is always positive, and (1) holds.

Lemma 8.34. Fixing Y , Z, W , we regard f ′ as a function of X.
(1) If s1 + s2 + s3 + s4 ≥ 3, then f ′ is monotonically decreasing as a function of X.
(2) If s1 + s2 + s3 + s4 < 3 and t2 + s3 + s4 > 2, then f ′ has a unique minimal point at
X = g1(t1, t2, t3, t4), where

g1(t1, t2, t3, t4) =
1

2π
log

sin π(t2 + s3 + s4 − 2)

sinπ(3− s1 − s2 − s3 − s4)
.

In particular, this minimal point goes to ∞ as s1 + s2 + s3 + s4 → 3− 0, and goes to −∞
as t2 + s3 + s4 → 2 + 0.
(3) If t2 + s3 + s4 ≤ 2, then f ′ is monotonically increasing as a function of X.

Proof. Since 0 < t1 <
1
2
, we have that

−2π
(1
2
− t1

)
< Arg (1− x1) < 0,

and Arg (1− x1) is monotonically increasing as a function of X. Further,

∂f ′

∂X

∣∣∣
X→∞

= −2π(s1 + s2 + s3 + s4 − 3),

∂f ′

∂X

∣∣∣
X→−∞

= −2π(1− 2 t1)− 2π(s1 + s2 + s3 + s4 − 3) = −2π(t2 + s3 + s4 − 2).

Hence, we can show the lemma similarly as the proof of Lemma 8.33.

We now show a proof of Proposition 8.32 by using the above lemmas.
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Proof of Proposition 8.32. We show that∫
∆′
eN V̂ ′(t1,t2,t3,t4) dt1 dt2 dt3 dt4 = O(eN(ς

R
−ε)).

It is sufficient to show that there exists a homotopy ∆′(δ) (0 ≤ δ ≤ 1) between ∆′(0) = ∆′

and ∆′(1) such that

∆′(1) ⊂
{
(t1, t2, t3, t4) ∈ C4

∣∣ Re V̂ ′(t1, t2, t3, t4) < ς
R

}
, (178)∫

∪
∂∆′(δ)

eN V̂ ′(t1,t2,t3,t4) dt1 dt2 dt3 dt4 = O(eN(ς
R
−ε)) for some ε > 0. (179)

We make the homotopy, as follows. We note that the behavior of f ′(X,Y, Z,W ) as a
function of X does not depend on W , and the behavior of f ′(X, Y, Z,W ) as a function of
W does not depend on X. We define the homotopy by taking X and W to the minimal
points (or infinity) of Lemmas 8.33 and 8.34 in each fiber of the projection C4 → R4 at
(t1, t2, t3, t4). We note that we can choose any order of moving X and W to the minimal
points (or infinity) in a general fiber. In each fiber on ∂4∆

′, noting that f ′ → −∞ as
W → −∞ by Lemma 8.33 since s3 ≤ 0.95, we move (t1, t2, t3, t4) to (t1, t2, t3, t4 − δ′

√
−1)

for a sufficiently large δ′ in advance, and move X later.

We show (179), as follows. It is sufficient to show that∫
∪
∂i∆′(δ)

eN V̂ ′(t1,t2,t3,t4) dt1 dt2 dt3 dt4 = O(eN(ς
R
−ε)) (180)

for each i = 1, · · · , 5. When i = 1, ∂1∆
′ is included in the domain that Re V̂ ′ < ς

R
.

Further, by the construction of the homotopy, Re V̂ monotonically decreases by the ho-
motopy. Hence, (180) holds. When i = 5, ∂5∆

′ is also included in the domain that

Re V̂ ′ < ς
R
, and (180) holds similarly as the above case. When i = 2, since the homotopy

fixes t2 and Y , the restriction of the 4-form dt1 dt2 dt3 dt4 to
∪
∂2∆

′(δ) vanishes, and the
integral of (180) is 0. Hence, (180) holds. When i = 3, (180) holds similarly as the above
case. When i = 4, we have that∫
∪
∂4∆′(δ)

eN V̂ ′(t1,t2,t3,t4) dt1 dt2 dt3 dt4 = −
√
−1

∫
dδ′
∫
∆′

4

eN V̂ ′(t1,t2,t3,0.003−δ′
√
−1) dt1 dt2 dt3,

and (180) holds by Lemma 8.35 below.

We show (178), as follows. When s3 ≤ 1, since f ′ → −∞ as W → −∞ by Lemma
8.33, (178) holds. When t2 + s3 + s4 ≤ 2, since f ′ → −∞ as X → ∞ by Lemma 8.34,
(178) holds. When s1 + s2 + s3 + s4 ≥ 3, since f ′ → −∞ as X → −∞ by Lemma
8.34, (178) holds. The remaining case is the case where s3 > 1, t2 + s3 + s4 > 2 and
s1 + s2 + s3 + s4 < 3. In this case, we show (178), as follows. We put

F (t1, t2, t3, t4, X,W ) = Re
(
V̂ ′(t1 +X

√
−1, t2, t3, t4 +W

√
−1
))
,

h(t1, t2, t3, t4) = F
(
t1, t2, t3, t4, g1(t1, t2, t3, t4), g4(t1, t2, t3, t4)

)
,
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where g1 and g4 are as in Lemmas 8.33 and 8.34. Let (t1, t2, t3, t4) be a critical point of
h(t1, t2, t3, t4), and putX = g1(t1, t2, t3, t4) andW = g4(t1, t2, t3, t4). Then, (t1, t2, t3, t4, X,W )
is a critical point of F . Hence,

∂

∂t1
V̂ ′ = 0, Re

( ∂

∂t2
V̂ ′
)

= 0, Re
( ∂

∂t3
V̂ ′
)

= 0,
∂

∂t4
V̂ ′ = 0.

Therefore,

− 2 log(1− x1) + 2π
√
−1
(
s1 + s2 + s3 + s4 − 3

)
= 0,

Re
(
− log(1− x2) + 2π

√
−1
(
s2 + s3 + s4 −

5

2

))
= 0,

Re
(
− log(1− x3) + 2π

√
−1
(
s3 + s4 − 3

))
= 0,

− log(1− x4) + 2π
√
−1
(
s4 −

3

2

)
= 0.

Hence, F has a unique critical point given by

x1 = 0.233604...+
√
−1 · 0.706749... , t1 = 0.199193...+

√
−1 · 0.0469884... ,

x2 = −0.0659927...+
√
−1 · 0.99782... , t2 = 0.260511... ,

x3 = −0.92395...− √
−1 · 0.382514... , t3 = 0.562471... ,

x4 = 3.29476...+
√
−1 · 1.29574... , t4 = 0.0596343...− √

−1 · 0.20121... ,

and its critical value is given by

v′0 = 0.454575... .

This critical point gives a maximal point of h, and hence, h(t1, t2, t3, t4) is bounded by v′0.
Since v′0 is less than ς

R
= 0.530263..., (178) holds.

Lemma 8.35. For an arbitrarily fixed δ′ ≥ 0,∫
∆′

4

eN V̂ (t1,t2,t3,0.003−δ′
√
−1) dt1 dt2 dt3 = O(eN(ς

R
−ε)).

Proof. ∂∆′
4 is originally included in the domain that Re V̂ ′ < ς

R
. Further, since s3 ≤ 0.95

in ∂∆′
4, Re V̂

′(t1, t2, t3, 0.003 − δ′
√
−1) is monotonically decreasing with respect to δ′ by

Lemma 8.33. Hence, ∂∆′
4 is included in the domain that Re V̂ ′(t1, t2, t3, 0.003−δ′

√
−1) <

ς
R
. Further, since Re V̂ ′(t1, t2, t3, 0.003− δ′

√
−1− δ′′

√
−1) → −∞ as δ′′ → ∞ by Lemma

8.33, we can show the lemma by taking the domain of the integral as δ′′ → ∞.

A The domain {Re V̂ ≥ ς
R
} is convex

In Sections 3.2, 4.2, 5.2, 6.2 and 7.2, we estimate the maximal and minimal values of some
linear function L(t, s, u, v) on the domain

{
(t, s, u, v)

∣∣ Re V̂ (t, s, u, v) ≥ ς
R

}
. In this sec-

tion, we explain that this domain is a convex domain such that its boundary is a smooth
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closed hypersurface whose sectional curvatures are positive everywhere. Then, the maxi-
mal and minimal values of L(t, s, u, v) are obtained when the hyperplane L(t, s, u, v) = c
(where c is a constant) is tangent to this domain, and there are exactly two such tangent
points corresponding to the maximal and minimal values of L(t, s, u, v). Such tangent
points are given by solutions of a certain system of equations given in Sections 3.2, 4.2,
5.2, 6.2 and 7.2. Hence, such a system of equations has exactly two solutions; we use this
fact in these sections.

So, the aim of this section is to show that the domain
{
(t, s, u, v)

∣∣ Re V̂ (t, s, u, v) ≥ ς
R

}
is a convex domain such that its boundary is a smooth closed hypersurface whose sectional
curvatures are positive everywhere. We show this for the 73, 74, 75, 76, 77 knots in Sections
A.2, A.3, A.4, A.5, A.6, respectively. In Section A.1, we prepare some lemmas. In Section
A.7, we give rigorous proofs of such estimates for the 72 knot in another way.

A.1 Some lemmas

In this section, we give some lemmas, which we use in the following sections.

Let F (x, y, z, w) be a smooth concave function whose maximal value is positive. Then,
the domain

{
(x, y, z, w) ∈ R4

∣∣ F (x, y, z, w) ≥ 0
}
is a convex domain and its boundary is

a smooth surface.

Lemma A.1. Let F (x, y, z, w) be a smooth concave function whose maximal value is posi-
tive and Hesse matrix is negative definite. Then, the domain

{
(x, y, z, w) ∈ R4

∣∣ F (x, y, z, w) ≥
0
}
is a convex domain and its boundary is a smooth hypersurface whose sectional curva-

tures are positive everywhere.

We can show the lemma in a similar way as in [21, Appendix B].

Lemma A.2. We put G(t, s) = 2Λ(t)− Λ(t+ s) + 2Λ(s).
(1) On the domain

{
(t, s) ∈ R2

∣∣ 0 < t, s < 0.5
}
, G(t, s) is a concave function whose

Hesse matrix is negative definite.
(2) On the domain

{
(t, s) ∈ R2

∣∣ 0 ≤ t, s, t+s ≤ 1
}
, the upper bound of G(t, s) is given

by G(t, s) ≤ G(1
4
, 1
4
) = 4Λ(1

4
) = 0.583122... .

Proof. We show (1) of the lemma, as follows. The differentials of G are given by

∂G

∂t
= 2Λ′(t)− Λ′(t+ s) = −2 log 2 sin πt+ log 2 sin π(t+ s),

∂G

∂s
= 2Λ′(s)− Λ′(t+ s) = −2 log 2 sin πs+ log 2 sin π(t+ s).

Further, their differentials are given by

∂2G

∂t2
= 2Λ′′(t)− Λ′′(t+ s) = −2π cotπt+ π cotπ(t+ s),

∂2G

∂t ∂s
= −Λ′′(t+ s) = π cotπ(t+ s),

∂2G

∂s2
= 2Λ′′(s)− Λ′′(t+ s) = −2π cot πs+ π cotπ(t+ s).
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We put a = cotπt and b = cotπs, noting that they are positive since 0 < t, s < 0.5.
Further, noting that cot(α+β) = (cotα cot β − 1)/(cotα + cot β), we have that

1

π
· ∂

2G

∂t2
= −2a+

ab− 1

a+ b
,

1

π
· ∂

2G

∂t ∂s
=

ab− 1

a+ b
,

1

π
· ∂

2G

∂s2
= −2b+

ab− 1

a+ b
.

We put the Hesse matrix of G to be H. Then,

1

π
·traceH = −2a−2b+2·ab−1

a+ b
= −

2
(
(a+b)2 − ab+ 1

)
a+ b

= −
2
(
a2 + b2 + ab+ 1

)
a+ b

< 0.

Further,
1

π2
· detH = 4ab− (2a+ 2b) · ab− 1

a+ b
= 2(ab+ 1) > 0.

Hence, the two eigenvalues of H are negative, and H is negative definite. Therefore, G is
a concave function on

{
(t, s)

∣∣ 0 < t, s < 0.5
}
, whose Hesse matrix is negative definite, as

required.

We show (2) of the lemma, as follows. A maximal point of G is whether a solution
of ∂G

∂t
= ∂G

∂s
= 0 or a point on the boundary of the domain {0 ≤ t, s, t+s ≤ 1}. We

can show by concrete calculation that the solutions of the above equation are (t, s) =
(1
4
, 1
4
), (1, 0), (0, 1), and at these points the values of G is bounded by G(1

4
, 1
4
) = 4Λ(1

4
).

Further, the boundary of the domain {0 ≤ t, s, t+s ≤ 1} consists of {t = 0}, {s = 0}
and {t+ s = 1}. On the boundary {t = 0}, the upper bound of G is given by G = Λ(s) ≤
Λ(1

6
) ≤ 4Λ(1

4
). On the boundary {s = 0}, the upper bound of G is given by 4Λ(1

4
) in the

same way. On the boundary {t+s = 1}, the upper bound of G is given by G = 0 ≤ 4Λ(1
4
).

Therefore, the upper bound of G is given by 4Λ(1
4
) on the domain of (2), as required.

Lemma A.3.
(1) We put G1(t, s, u) = 2Λ(t) + Λ(s− t) + Λ(u− s)− 2Λ(u). On the domain{

(t, s, u) ∈ R3
∣∣ 0 < t, s < 0.5 < u < 1, 0 < s− t < 0.5, 0 < u− s < 0.5

}
, (181)

G1(t, s, u) is a concave function whose Hesse matrix is negative definite.
(2) We put G2(t, s, u) = 2Λ(t) + Λ(s− t)− Λ(s+ u) + 2Λ(u). On the domain{

(t, s, u) ∈ R3
∣∣ 0 ≤ t ≤ s ≤ 1− u, 0 ≤ u

}
, (182)

the upper bound of G2(t, s, u) is given by

G2

( 1
π
arccos

√
17− 1

4
,
1

2
,
1

π
arccos

√
17− 1

4

)
= 0.887067... .

Proof. We show (1) of the lemma, as follows. The differentials of G1 are given by

∂G1

∂t
= 2Λ′(t)−Λ′(s− t), ∂G1

∂s
= Λ′(s− t)−Λ′(u−s), ∂G1

∂u
= −2Λ′(u)+Λ′(u−s).

Further, their differentials are given by

∂2G1

∂t2
= 2Λ′′(t) + Λ′′(s− t),

∂2G1

∂t ∂s
= −Λ′′(s− t)
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∂2G1

∂s2
= Λ′′(s− t) + Λ′′(u− s),

∂2G1

∂s ∂u
= −Λ′′(u− s),

∂2G1

∂u2
= −2Λ′′(u) + Λ′′(u− s).

We put a1 = −2Λ′′(t), b1 = −Λ′′(s − t), b2 = −Λ′′(u − s) and a2 = 2Λ′′(u), noting that
they are positive on the domain of (1). The Hesse matrix of G1 is given by

−

a1 + b1 −b1 0
−b1 b1 + b2 −b2
0 −b2 a2 + b2

 .

As we show in the proof of Lemma 5.4, (−1) times the above matrix is positive definite.
Hence, the Hesse matrix of G1 is negative definite on the domain of (1), as required.

We show (2) of the lemma, as follows. We note that G2(t, s, u) = G1(t, s, 1 − u). A
maximal point of G2 is whether a solution of ∂G2

∂t
= ∂G2

∂s
= ∂G2

∂u
= 0 or a point on the

boundary of the domain (182). We calculate a solution of the equation in the interior of
the domain (182). The differentials of G2 are given by

∂G2

∂t
= 2Λ′(t)− Λ′(s− t) = −2 log 2 sin πt+ log 2 sin π(s− t),

∂G2

∂s
= Λ′(s− t)− Λ′(s+ u) = −2 log 2 sin π(s− t) + log 2 sin π(s+ u),

∂G2

∂u
= 2Λ′(u)− Λ′(s+ u) = −2 log 2 sinπu+ log 2 sin π(s+ u).

Hence, the above mentioned equation is rewritten

2 sin2 πt = sin π(s− t) = sin π(s+ u) = 2 sin2 πu.

Since sin πt = sin πu, we have that t = u or t + u = 1; we choose that t = u, since we
consider a solution in the interior of (182). Further, since sin π(s− t) = sin π(s+ u) and
t = u, we have that s = 1

2
. Hence, 2 sin2 πt = sin π(1

2
− t) = cos πt. Therefore, putting

x = cos πt, we have that 2(1 − x2) = x. Hence, x =
√
17−1
4

and t = 1
π
arccos

(√
17−1
4

)
=

0.214823... . Putting t0 = u0 = 1
π
arccos

(√
17−1
4

)
and s0 = 1

2
, (t0, s0, u0) is a unique

critical point of G2 in the interior of (182). It follows by (1) that (t0, s0, 1−u0) is a unique
maximal point of G1 in the domain (181). Hence, (t0, s0, u0) is a unique maximal point
of G2, and its maximal value is G2(t0, s0, u0) = 0.887067... . Further, we see that G2 is
bounded by this value on the boundary of the domain (182). This boundary consists of
{t = 0}, {t = s}, {s+ u = 1} and {u = 0}. On the boundary {t = 0},

G2(0, s, u)−G2(t0, s0, u0) = Λ(s)− Λ(s+ u) + 2Λ(u)−G2(t0, s0, u0)

≤ Λ
(1
6
) + 4Λ

(1
4
)−G2(t0, s0, u0) = −0.142413... < 0,

by Lemma A.2. On the boundary {t = s},

G2(t, t, u)−G2(t0, s0, u0) = 2Λ(t)− Λ(t+ u) + 2Λ(u)−G2(t0, s0, u0)
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≤ 4Λ
(1
4
)−G2(t0, s0, u0) = −0.303946... < 0,

by Lemma A.2. On the boundary {s+ u = 1},

G2(t, 1− u, u)−G2(t0, s0, u0) = 2Λ(t)− Λ(t+ u) + 2Λ(u)−G2(t0, s0, u0) < 0,

in the same way as above. On the boundary {u = 0},

G2(t, s, 0)−G2(t0, s0, u0) = 2Λ(t) + Λ(s− t)− Λ(s)−G2(t0, s0, u0)

≤ 4Λ
(1
6
)−G2(t0, s0, u0) = −0.240936... < 0,

since |Λ( · )| ≤ Λ(1
6
). Hence, G2 is bounded by G2(t0, s0, u0) on the boundary of (182).

Therefore, the upper bound of G2 is given by G2(t0, s0, u0), as required.

A.2 The domain {Re V̂ ≥ ς
R
} is convex for the 73 knot

For the 73 knot, we recall that

Re V̂ (t, s, u, v) = Λ(t)− 2Λ(s) + Λ(u) + Λ(v),

ς
R
= 0.730861...

(
given in (29)

)
,

∆ =
{
(t, s, u, v) ∈ R4

∣∣ 0 ≤ t ≤ s ≤ 1, 0 ≤ u, v, u+ v ≤ s
}
,

as we put in Section 3. The aim of this section is to show Lemma A.4 below, without
using results in Section 3.2. As we mentioned at the beginning of Appendix A, we can
show by this lemma that each system of equations in Section 3.2 has exactly two solutions;
we use this fact in Section 3.2.

Lemma A.4. The domain
{
(t, s, u, v) ∈ ∆

∣∣ Re V̂ (t, s, u, v) ≥ ς
R

}
is a compact convex

domain in the interior of ∆ such that its boundary is a smooth closed hypersurface whose
sectional curvatures are positive everywhere.

Proof. We restrict ∆ to

∆′′ =
{
(t, s, u, v) ∈ ∆

∣∣ 0 < t, u, v < 0.5 < s < 1
}

in such a way that ∆′′ includes the domain
{
Re V̂ ≥ ς

R

}
in Step 1 below. Further, in Step

2 below, we show that, on ∆′′, Re V̂ is a smooth concave function whose Hesse matrix
negative definite. Furthermore, we can verify by concrete calculation that Re V̂ < ς

R
on

the boundary of ∆′′. Hence, by Lemma A.1, we obtain the lemma. So, we show Steps 1
and 2 below in the following of this proof.

Step 1: In this step, we show that the domain
{
Re V̂ ≥ ς

R

}
is included in ∆′′. Assuming

that Re V̂ (t, s, u, v) ≥ ς
R
for (t, s, u, v) ∈ ∆, we calculate ranges of t, s, u and v.

We calculate a range of t, as follows. Since |Λ( · )| ≤ Λ(1
6
),

Λ(t) ≥ ς
R
− 4Λ

(1
6

)
= 0.084729... > 0.
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Hence, we obtain that 0 < t < 0.5.
We obtain ranges of u and v as 0 < u, v < 0.5 in the same way as above.
We calculate a range of s, as follows. Since Λ( · ) ≤ Λ(1

6
),

−2Λ(s) ≥ ς
R
− 3Λ

(1
6

)
= 0.246262... > 0.

Hence, we obtain that 0.5 < s < 1.
Therefore, the domain

{
Re V̂ ≥ ς

R

}
is included in ∆′′, as required.

Step 2: In this step, we show that Re V̂ is a smooth concave function whose Hesse
matrix is negative definite on ∆′′. We note that Λ(t), −2Λ(s), Λ(u) and Λ(v) are smooth
concave functions whose second derivatives are negative on ∆′′. Since the Hesse matrix of
Re V̂ is equal to their direct sum, Re V̂ is a smooth concave function whose Hesse matrix
is negative definite on ∆′′, as required.

A.3 The domain {Re V̂ ≥ ς
R
} is convex for the 74 knot

For the 74 knot, we recall that

Re V̂ (t, s, u, v) = Λ(t) + 2Λ(s)− Λ(s+ u) + 2Λ(u) + Λ(v),

ς
R
= 0.817729...

(
given in (48)

)
,

∆ =
{
(t, s, u, v) ∈ R4

∣∣ 0 ≤ t ≤ 1− s, 0 ≤ s, u, s+ u ≤ 1, 0 ≤ v ≤ 1− u
}
,

as we put in Section 4. The aim of this section is to show Lemma A.5 below, without
using results in Section 4.2. As we mentioned at the beginning of Appendix A, we can
show by this lemma that each system of equations in Section 4.2 has exactly two solutions;
we use this fact in Section 4.2.

Lemma A.5. The domain
{
(t, s, u, v) ∈ ∆

∣∣ Re V̂ (t, s, u, v) ≥ ς
R

}
is a compact convex

domain in the interior of ∆ such that its boundary is a smooth closed hypersurface whose
sectional curvatures are positive everywhere.

Proof. Assuming that Re V̂ (t, s, u, v) ≥ ς
R
for (t, s, u, v) ∈ ∆, we calculate ranges of t, s,

u and v.
We calculate a range of s, as follows. Since |Λ( · )| ≤ Λ(1

6
),

Λ(s) ≥ ς
R
− 5Λ

(1
6

)
= 0.010064... > 0.

Hence, we obtain that 0 < s < 0.5.
We obtain that 0 < u < 0.5 in the same way as above.
We calculate a range of t, as follows. Since 2Λ(s) − Λ(s + u) + 2Λ(u) ≤ 4Λ(1

4
) by

Lemma A.2, and Λ( · ) ≤ Λ(1
6
),

Λ(t) ≥ ς
R
− 4Λ

(1
4

)
− Λ

(1
6

)
= 0.0730742... > 0.

Hence, we obtain that 0 < t < 0.5.
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We obtain that 0 < v < 0.5 in the same way as above.
Therefore, the domain {Re V̂ ≥ ς

R
} is included in

∆′′ =
{
(t, s, u, v) ∈ ∆

∣∣ 0 < t, s, u, v < 0.5
}
.

We note that Λ(t), F (s, u) and Λ(v) are smooth concave functions whose Hesse matrices

are negative definite on ∆′′. Since the Hesse matrix of Re V̂ is equal to their direct
sum, Re V̂ is a smooth concave function whose Hesse matrix is negative definite on ∆′′.
Therefore, by Lemma A.1, we obtain the lemma.

A.4 The domain {Re V̂ ≥ ς
R
} is convex for the 75 knot

For the 75 knot, we recall that

Re V̂ (t, s, u, v) = 2Λ(t) + Λ(s− t) + Λ(u− s)− 2Λ(u) + Λ(v),

ς
R
= 1.02552...

(
given in (69)

)
,

∆ =
{
(t, s, u, v) ∈ R4

∣∣ 0 ≤ t ≤ s ≤ u, 0 ≤ v ≤ u ≤ 1
}
,

as we put in Section 5. The aim of this section is to show Lemma A.6 below, without
using results in Section 5.2. As we mentioned at the beginning of Appendix A, we can
show by this lemma that each system of equations in Section 5.2 has exactly two solutions;
we use this fact in Section 5.2.

Lemma A.6. The domain
{
(t, s, u, v) ∈ ∆

∣∣ Re V̂ (t, s, u, v) ≥ ς
R

}
is a compact convex

domain in the interior of ∆ such that its boundary is a smooth closed hypersurface whose
sectional curvatures are positive everywhere.

Proof. We restrict ∆ to

∆′′ =
{
(t, s, u, v) ∈ ∆

∣∣ 0 < t, v < 0.5 < u < 1, 0 < s− t < 0.5, 0 < u− s < 0.5
}

in such a way that ∆′′ includes the domain
{
Re V̂ ≥ ς

R

}
in Step 1 below. Further, in Step

2 below, we show that, on ∆′′, Re V̂ is a smooth concave function whose Hesse matrix
negative definite. Furthermore, we can verify by concrete calculation that Re V̂ < ς

R
on

the boundary of ∆′′. Hence, by Lemma A.1, we obtain the lemma. So, we show Steps 1
and 2 below in the following of this proof.

Step 1: In this step, we show that the domain
{
Re V̂ ≥ ς

R

}
is included in ∆′′. Assuming

that Re V̂ (t, s, u, v) ≥ ς
R
for (t, s, u, v) ∈ ∆, we calculate ranges of t, u, v, s−t and u−s.

We calculate a range of v, as follows. Since |Λ( · )| ≤ Λ(1
6
),

Λ(v) ≥ ς
R
− 6Λ

(1
6

)
= 0.056322... > 0.

Hence, we obtain that 0 < v < 0.5.
In the same way, we obtain that 0 < t < 0.5 < u < 1 and 0 < s − t < 0.5 and

0 < u− s < 0.5.
Therefore, the domain

{
Re V̂ ≥ ς

R

}
is included in ∆′′, as required.
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Step 2: In this step, we show that Re V̂ is a smooth concave function whose Hesse
matrix is negative definite on ∆′′.

We note that, by Lemma A.3, G1(t, s, u) = 2Λ(t) + Λ(s − t) + Λ(u − s) − 2Λ(u) is
a concave function whose Hesse matrix is negative definite on ∆′′. Further, Λ(v) is a
concave function whose second derivative is negative on ∆′′. Since the Hesse matrix of
Re V̂ is equal to the direct sum of Λ′′(v) and the Hesse matrix of G1, Re V̂ is a smooth
concave function whose Hesse matrix is negative definite on ∆′′, as required.

A.5 The domain {Re V̂ ≥ ς
R
} is convex for the 76 knot

For the 76 knot, we recall that

Re V̂ (t, s, u, v) = 2Λ(t) + Λ(s− t)− Λ(s+ u) + 2Λ(u)− Λ(u+ v) + 2Λ(v),

ς
R
= 1.1276...

(
given in (87)

)
,

∆ =
{
(t, s, u, v) ∈ R4

∣∣ 0 ≤ t ≤ s ≤ 1− u, 0 ≤ u, v, u+ v ≤ 1
}
,

as we put in Section 6. The aim of this section is to show Lemma A.7 below, without
using results in Section 6.2. As we mentioned at the beginning of Appendix A, we can
show by this lemma that each system of equations in Section 6.2 has exactly two solutions;
we use this fact in Section 6.2.

Lemma A.7. The domain
{
(t, s, u, v) ∈ ∆

∣∣ Re V̂ (t, s, u, v) ≥ ς
R

}
is a compact convex

domain in the interior of ∆ such that its boundary is a smooth closed hypersurface whose
sectional curvatures are positive everywhere.

Proof. We restrict ∆ to

∆′′ =
{
(t, s, u, v) ∈ ∆

∣∣ 0 < t, u, v < 0.5, 0 < s− t < 0.5 < s+ u < 1
}

in such a way that ∆′′ includes the domain
{
Re V̂ ≥ ς

R

}
in Step 1 below. Further, in Step

2 below, we show that, on ∆′′, Re V̂ is a smooth concave function whose Hesse matrix
negative definite. Furthermore, we can verify by concrete calculation that Re V̂ < ς

R
on

the boundary of ∆′′. Hence, by Lemma A.1, we obtain the lemma. So, we show Steps 1
and 2 below in the following of this proof.

Step 1: In this step, we show that the domain
{
Re V̂ ≥ ς

R

}
is included in ∆′′. Assuming

that Re V̂ (t, s, u, v) ≥ ς
R
for (t, s, u, v) ∈ ∆, we calculate ranges of t, u, v, s−t and s+u.

We calculate a range of t, as follows. Since 2Λ(u) − Λ(u + v) + 2Λ(v) ≤ 4Λ(1
4
) by

Lemma A.2, and |Λ( · )| ≤ Λ(1
6
),

Λ(t) ≥ ς
R
− 3Λ

(1
6

)
− 4Λ

(1
4

)
= 0.059879... > 0.

Hence, we obtain that 0 < t < 0.5.
We obtain that 0 < s− t < 0.5 < s+ u < 1 in the same way.
We calculate a range of v, as follows. Since G2(t, s, u) ≤ G2(t0, s0, u0) by Lemma A.3

(2), and |Λ( · )| ≤ Λ(1
6
),

2 Λ(v) ≥ ς
R
−G2(t0, s0, u0)− Λ

(1
6

)
= 0.078999... > 0.
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Hence, we obtain that 0 < v < 0.5.
We calculate a range of u, as follows. By Lemma A.8 below,

2Λ(u) ≥ ς
R
− 1.12 = 0.0076... > 0.

Hence, we obtain that 0 < u < 0.5.
Therefore, the domain

{
Re V̂ ≥ ς

R

}
is included in ∆′′, as required.

Step 2: In this step, we show that Re V̂ is a smooth concave function whose Hesse
matrix is negative definite on ∆′′.

We put

F (t, s, u, v) = Re V̂ (t, s, u, v) = 2Λ(t)+Λ(s− t)−Λ(s+u)+2Λ(u)−Λ(u+v)+2Λ(v).

The second derivatives of F are given by

∂2F

∂t2
= 2Λ′′(t) + Λ′′(s− t) = −π(a1 + b1),

∂2F

∂t ∂s
= −Λ′′(s− t) = πb1,

∂2F

∂s2
= Λ′′(s− t)− Λ′′(s+ u) = −π(b1 + b2),

∂2F

∂s ∂u
= −Λ′′(s+ u) = −πb2,

∂2F

∂u2
= −Λ′′(s+ u) + 2Λ(u)− Λ′′(u+ v), = −π(b2 + 2c− b3),

∂2F

∂u ∂v
= −Λ′′(u+ v) = πb3,

∂2F

∂v2
= 2Λ′′(v)− Λ′′(u+ v) = −π(2d+ b3),

where we put

a1 = 2 cotπt, b1 = cot π(s− t), b2 = − cotπ(s+ u), c = cot πu, d = cot πv,

(which are positive on ∆′′) and b3 = cot π(u+ v) = (cd− 1)/(c+ d). Hence, − 1
π
times the

Hesse matrix of F is given by
a1 + b1 −b1 0 0
−b1 b1 + b2 b2 0
0 b2 2c+ b2 − b3 −b3
0 0 −b3 2d− b3

 . (183)

It is sufficient to show that this matrix is positive definite on ∆′′.
This matrix is related by elementary transformation as a quadratic form to the direct

sum of
(
a1 + b1

)
and the following matrix,a2 + b2 b2 0

b2 2c+ b2 − b3 −b3
0 −b3 2d− b3

 ,

119



where we put

a2 = b1 −
b21

a1 + b1
=

a1b1
a1 + b1

> 0.

Further, the above matrix is related by elementary transformation as a quadratic form to
the direct sum of

(
a2 + b2

)
and the following matrix,(

a3 + 2c− b3 −b3
−b3 2d− b3

)
, (184)

where we put

a3 = b2 −
b22

a2 + b2
=

a2b2
a2 + b2

> 0.

Furthermore,

trace
(
the matrix (184)

)
= a3 + 2(c+ d)− 2b3 = a3 +

2

c+ d
(c2 + d2 + cd+ 1) > 0,

det
(
the matrix (184)

)
= a3(2d− b3) + 4cd+ 2(c+ d)b3 = a3

cd+ 2d2 + 1

c+ d
+ 2cd+ 2 > 0.

Therefore, the two eigenvalues of the matrix (184) are positive, and the matrix (184) is
positive definite. Hence, the matrix (183) is positive definite, as required.

The following lemma is used in the above proof of Lemma A.7.

Lemma A.8. We put G(t, s, u, v) = 2Λ(t)+Λ(s− t)−Λ(s+ u)−Λ(u+ v)+ 2Λ(v). On
the domain

∆ =
{
(t, s, u, v) ∈ R4

∣∣ 0 ≤ t ≤ s ≤ 1− u, 0 ≤ u, v, u+ v ≤ 1
}
,

an upper bound of G is given by G(t, s, u, v) ≤ 1.12.

Proof. A maximal point of G is whether a solution of ∂G
∂t

= ∂G
∂s

= ∂G
∂u

= ∂G
∂v

= 0 or a point
on the boundary of ∆. We show that G is bounded by 1.12 at such a critical point and
at the boundary of ∆.

We show that G is bounded by 1.12 at a critical point of G in the interior of ∆, as
follows. We calculate a solution of the above mentioned equation. The differentials of G
are given by

∂G

∂t
= 2Λ′(t)− Λ′(s− t) = −2 log 2 sin πt+ log 2 sinπ(s− t),

∂G

∂s
= Λ′(s− t)− Λ′(s+ u) = −2 log 2 sin π(s− t) + log 2 sin π(s+ u),

∂G

∂u
= −Λ′(s+ u)− Λ′(u+ v) = 2 log 2 sinπ(s+ u) + log 2 sin π(u+ v),

∂G

∂v
= 2Λ′(v)− Λ′(u+ v) = −2 log 2 sin πv + log 2 sin π(u+ v).
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Hence, the above mentioned equation is rewritten

2 sin2 πt = sin π(s− t) = sin π(s+ u),

4 sin π(s+ u) sin π(u+ v) = 1, 2 sin2 πv = sinπ(u+ v).
(185)

Since sinπ(s− t) = sin π(s+ u), we have that s− t = s+ u or 2s− t+ u = 1; we choose
2s− t+ u = 1, since we consider a solution in the interior of ∆. We put

a = tan
πt

2
, b = tan

πs

2
, c = tan

πu

2
, d = tan

πv

2
.

Then, we have that sin πt = 2a
1+a2

, cos πt = 1−a2
1+a2

, · · · , and so on. Since 2 sin2 πt =

sinπ(s− t), we have that 2
(

2a
1+a2

)2
= 2b

1+b2
· 1−a2
1+a2

− 1−b2
1+b2

· 2a
1+a2

. Hence,

4a2(1 + b2) =
(
b(1− a2)− a(1− b2)

)
(1 + a2).

Similarly, since 2 sin2 πv = sin π(u+ v), we have that

4d2(1 + c2) =
(
c(1− d2) + d(1− c2)

)
(1 + d2).

Further, since 16 sin2 πt sin2 πv = 4 sin π(s+u) sin π(u+v) = 1, we have that 4 sin πt sin πv =
1. Hence,

16ad = (1 + a2)(1 + d2).

Furthermore, since 2s− t+u = 1, we have that 2b
1+b2

= cot πs = tan
(
π
2
−πs

)
= tan

(
πu
2
−

πt
2

)
= c−a

1+ac
. Hence,

(1− b2)(1 + ac) = 2b(c− a).

Therefore, the system of equations (185) is rewritten

4a2(1 + b2) =
(
b(1− a2)− a(1− b2)

)
(1 + a2), (1− b2)(1 + ac) = 2b(c− a),

4d2(1 + c2) =
(
c(1− d2) + d(1− c2)

)
(1 + d2), 16ad = (1 + a2)(1 + d2).

(186)

By Lemma A.9 below, this system of equations has the following unique solution in the
interior of ∆,

a = 0.23500046... , b = 0.46445467... , c = 1.34645751... , d = 0.30711467... ,

t = 0.14693973... , s = 0.27680813... , u = 0.59332346... , v = 0.18969433... .

Its critical value is bounded by G = 1.11152546... ≤ 1.12, as required.
We show that G is bounded by 1.12 on the boundary of ∆, as follows. The boundary

of ∆ consists of {t = 0}, {t = s}, {s+u = 1}, {u = 0}, {v = 0} and {u+v = 1}. On the
boundary {t = 0},

G = Λ(s)− Λ(s+ u)− Λ(s+ v) + 2Λ(v) ≤ 5Λ
(1
6

)
= 0.807665... ≤ 1.12.

On the boundary {t = s},

G = 2Λ(t)− Λ(t+ u)− Λ(u+ v) + 2Λ(v) ≤ 6Λ
(1
6

)
= 0.969198... ≤ 1.12.

On the other parts of the boundary, we can verify that G is bounded by 1.12 in similar
ways. Therefore, G is bounded by 1.12 on the boundary of ∆, as required.
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Lemma A.9. The system of equations (186) is rewritten as the following single equation,

α24 − 8α23 + 36α22 − 120α21 + 330α20 − 696α19 + 1156α18 − 1416α17 − 1561α16

+ 10160α15 − 28664α14 + 69712α13 − 84756α12 + 88464α11 − 187032α10

− 213776α9 + 512991α8 − 472872α7 + 3604052α6 − 64088α5 − 1782934α4

+ 333992α3 − 11718764α2 + 168728α+ 9803929 = 0,

where we put α = (a − 1
a
)/2. In particular, there is a unique solution a = 0.23500046...

such that the corresponding (t, s, u, v) is in the interior of ∆.

Proof. We rewrite the system of equations (186) as a single polynomial equation of a, as
follows. The first and second equations of (186) are quadratic polynomial equations of b.
So, we can remove the term b2 as a linear sum of these equations, and we can present b
by a rational function of a and c. By substituting this rational function into the first (or
second) equation of (186), we obtain a polynomial equation of a and c as the numerator
of the resulting equation. By calculating concretely, this polynomial equation is given by

c2
(
a8 + 3a6 − 61a4 + a2

)
− c

(
2a7 + 6a5 + 6a3 + 2a

)
+ a6 − 61a4 + 3a2 + 1 = 0.

This equation and the third equation of (186) are quadratic polynomial equations of c.
Hence, we can remove c from these equation in a similar way as above, and obtain a
polynomial equation of a and d. By using the fourth equation of (186) linearly, we can
remove the term aidj for i, j ≥ 2 from this equation. By calculating concretely, the
resulting equation is given by

f(a, d) = −3974889215 + 13107208 a− 4160749800 a2 + 4192680 a3 − 117444612 a4

− 4232248 a5 + 66997288 a6 + 4307752 a7 − 1267066 a8 − 400680 a9 + 144424 a10

− 23752 a11 − 7172 a12 + 2392 a13 − 232 a14 − 8 a15 + a16

− 262144 d− 3891657728 d2 − 262144 d3 + 82839040 d4 − 392192 d6 − 16384 a d7 + 256 d8

+ d
(
63342362592 a− 209715440 a2 + 2709523808 a3 + 142629984 a4 − 1098853344 a5

− 74910736 a6 + 26818592 a7 + 6238528 a8 − 2476256 a9 + 392688 a10 + 119456 a11

− 39840 a12 + 3296 a13 + 272 a14 − 32 a15
)

+ a
(
17301504 d2 − 1583398912 d3 + 10436608 d5

)
= 0.

We consider to remove d from this equation and the fourth equation of (186). The fourth
equation of (186) is a quadratic polynomial equation of d. Let d1 and d2 be its solutions.
Then,

d1 + d2 =
16 a

1 + a2
, d1d2 = 1.

Further, f(a, d1)f(a, d2) is a symmetric polynomial in d1 and d2, i.e., a polynomial in
d1 + d2 and d1d2. By substituting above formulas, we can remove d1 + d2 and d1d2 from
this polynomial, and obtain a polynomial equation of a as the numerator of the resulting
formula. By calculating concretely, we obtain the equation of the lemma.
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We consider a solution of this equation. By calculating concretely, the positive solutions
are given by

a = 0.23500046... , 0.31673729... , 0.38876234... , 0.39875987... ,

2.42024595... , 2.90127305... , 4.82771874... , 5.46433094... .

Further, by calculating the corresponding (t, s, u, v) concretely, we can verify that the
corresponding (t, s, u, v) is in the interior of ∆ only when a = 0.23500046... . Hence, we
obtain the lemma.

Remark A.10. In the above argument, we use a numerical solution of Lemma A.9 in
the proof of Lemma A.8. This argument is practically useful, though it is not rigorous.
To be precise, we can estimate this solution concretely as precisely as we need, and we
can rewrite this argument by using such an estimate in a rigorous way.

A.6 The domain {Re V̂ ≥ ς
R
} is convex for the 77 knot

For the 77 knot, we recall that

Re V̂ (t, s, u, v) = 2Λ(t)− Λ(t+ s) + 2Λ(s)− Λ(s+ u) + 2Λ(u)− Λ(u+ v) + 2Λ(v),

ς
R
= 1.21648...

(
given in (109)

)
,

∆ =
{
(t, s, u, v) ∈ R4

∣∣ 0 ≤ t, s, u, v, t+ s ≤ 1, s+ u ≤ 1, u+ v ≤ 1
}
,

as we put in Section 7. The aim of this section is to show Lemma A.11 below, without
using results in Section 7.2. As we mentioned at the beginning of Appendix A, we can
show by this lemma that each system of equations in Section 7.2 has exactly two solutions;
we use this fact in Section 7.2.

Lemma A.11. The domain
{
(t, s, u, v) ∈ ∆

∣∣ Re V̂ (t, s, u, v) ≥ ς
R

}
is a compact convex

domain in the interior of ∆ such that its boundary is a smooth closed hypersurface whose
sectional curvatures are positive everywhere.

Proof. We restrict ∆ to

∆′′ =
{
(t, s, u, v) ∈ ∆

∣∣ 0 < t, s, u, v < 0.5 < s+ u < 1
}

in such a way that ∆′′ includes the domain
{
Re V̂ ≥ ς

R

}
in Step 1 below. Further, in Step

2 below, we show that, on ∆′′, Re V̂ is a smooth concave function whose Hesse matrix
negative definite. Furthermore, we can verify by concrete calculation that Re V̂ < ς

R
on

the boundary of ∆′′. Hence, by Lemma A.1, we obtain the lemma. So, we show Steps 1
and 2 below in the following of this proof.

Step 1: In this step, we show that the domain
{
Re V̂ ≥ ς

R

}
is included in ∆′′. Assuming

that Re V̂ (t, s, u, v) ≥ ς
R
for (t, s, u, v) ∈ ∆, we calculate ranges of t, s, u, v and s+u.

We calculate a range of s+ u, as follows. Since 2Λ(t)− Λ(t+ s) + 2Λ(s) ≤ 4Λ(1
4
) and

2Λ(u)− Λ(u+ v) + 2Λ(v) ≤ 4Λ(1
4
) by Lemma A.2,

−Λ(s+ u) ≥ ς
R
− 2 · 4Λ

(1
4

)
= 0.0502364... > 0.
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Hence, we obtain that 0.5 < s+ u < 1.
We calculate a range of v, as follows. Since 2Λ(t) − Λ(t + s) + Λ(s) ≤ 0.46 and

Λ(s)− Λ(s+ u) + 2Λ(u) ≤ 0.46 by Lemma A.12 below and |Λ( · )| ≤ Λ(1
6
),

2 Λ(v) = ς
R
− 2 · 0.46− Λ

(1
6

)
= 0.134947... > 0.

Hence, we obtain that 0 < v < 0.5.
We obtain that 0 < t < 0.5 in the same way as above.
We calculate a range of s, as follows. If s satisfied that 0.5 ≤ s ≤ 1, then Re V̂ (t, s, u, v) =

F1(t, s) + F2(s, u, v) ≤ 0.46 + 0.74 = 1.2 < ς
R
by Lemmas A.12 and A.13 below, and this

is a contradiction. If s was 0, then

Re V̂ (t, s, u, v) = Λ(t) + Λ(u)− Λ(u+ v) + 2Λ(v) ≤ 5Λ
(1
6

)
= 0.807665... < ς

R
,

and this is a contradiction. Hence, we obtain that 0 < s < 0.5.
We obtain that 0 < u < 0.5 in the same way.
Therefore, the domain

{
Re V̂ ≥ ς

R

}
is included in ∆′′, as required.

Step 2: In this step, we show that Re V̂ is a smooth concave function whose Hesse
matrix is negative definite on ∆′′.

We recall that

Re V̂ (t, s, u, v) =
(
2Λ(t)−Λ(t+ s) + 2Λ(s)

)
−Λ(s+ u) +

(
2Λ(u)−Λ(u+ v) + 2Λ(v)

)
.

Its Hesse matrix is equal to the sum of the Hesse matrix of −Λ(s+ u) (whose entries are
negative on ∆′′) and the direct sum of the Hesse matrices of 2 Λ(t)−Λ(t+ s)+2Λ(s) and
2Λ(u)−Λ(u+ v)+2Λ(v) (which are negative definite on ∆′′ by Lemma A.2). Therefore,

Re V̂ is a smooth concave function whose Hesse matrix is negative definite on ∆′′, as
required.

The following two lemmas are used in the above proof of Lemma A.11.

Lemma A.12. We put F1(t, s) = 2Λ(t)− Λ(t+ s) + Λ(s). On the domain

∆1 =
{
(t, s) ∈ R2

∣∣ 0 ≤ t, s, t+ s ≤ 1
}
,

an upper bound of F1 is given by F1(t, s) ≤ 0.46.

Proof. A maximal point of F1 is whether a solution of ∂F1

∂t
= ∂F1

∂s
= 0 or a point on the

boundary of ∆1. We show that F1 is bounded by 0.46 at such critical points and at the
boundary of ∆1.

We show that F1 is bounded by 0.46 at critical points of F1 in the interior of ∆1, as
follows. We calculate a solution of the above mentioned equation. The differentials of F1

are given by

∂F1

∂t
= 2Λ′(t)− Λ′(t+ s) = −2 log 2 sin πt+ log 2 sinπ(t+ s),
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∂F1

∂s
= Λ′(s)− Λ′(t+ s) = − log 2 sinπs+ log 2 sin π(t+ s).

Hence, the above mentioned equation is rewritten

2 sin2 πt = sin π(t+ s) = sin πs.

Since sin π(t + s) = sin πs, we have that t = 0 or t + 2s = 1; we choose t + 2s = 1, since
we consider solutions in the interior of ∆1. Putting t = 1− 2s,

sin πs = 2 sin2 π(1− 2s) = 2 sin2 2πs = 8 sin2 πs cos2 πs.

Hence, 8 sin πs cos2 πs = 1. Further, putting x = sin πs, we have that 8x(1− x2) = 1. We
have the following two positive solutions of this equation,

x = 0.1270508... , 0.9304029... .

The corresponding values of (t, s) are given by

(t, s) = (0.9188977... , 0.0405511...), (0.2389143... , 0.3805428...).

Further, the corresponding values of F1 are given by

F1 = −0.0800755... , 0.4587632... .

They are bounded by 0.46, as required.
We show that F1 is bounded by 0.46 on the boundary of ∆1. The boundary of ∆1

consists of {t = 0}, {s = 0} and {t+s = 1}. On the boundary {t = 0}, we have that F1 =
0 ≤ 0.46. On the boundary {s = 0}, we have that F1 = Λ(t) ≤ Λ(1

6
) = 0.161533... < 0.46.

On the boundary {t+s = 1}, we have that F1 = Λ(t) < 0.46 in the same way as above.
Therefore, F1 is bounded by 0.46 on the boundary of ∆1, as required.

Lemma A.13. We put F2(s, u, v) = Λ(s) − Λ(s + u) + 2Λ(u) − Λ(u + v) + 2Λ(v). On
the domain

∆2 =
{
(s, u, v) ∈ R3

∣∣ 0 ≤ u, v, 0.5 ≤ s, s+ u ≤ 1, u+ v ≤ 1
}
,

an upper bound of F2 is given by F2(s, u, v) ≤ 0.74.

Proof. A maximal point of F2 is whether a solution of ∂F2

∂s
= ∂F2

∂u
= ∂F2

∂v
= 0 or a point on

the boundary of ∆2. We show that F2 is bounded by 0.74 at such critical points and at
the boundary of ∆2.

We show that F2 has no critical points in the interior of ∆2, as follows. We calculate
a solution of the above mentioned equation. The differential of F2 by s is given by

∂F2

∂s
= Λ′(s)− Λ′(s+ u) = − log 2 sin πs+ log 2 sin π(s+ u).

Hence, the equation ∂F2

∂s
= 0 is rewritten

sinπs = sinπ(s+ u).
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Since 0.5 ≤ s ≤ s + u ≤ 1, the above equation has no solution in the interior of ∆2.
Therefore, F2 has no critical points in the interior of ∆2.

We show that F2 is bounded by 0.74 on the boundary of ∆2, as follows. The boundary
of ∆2 consists of the boundary {u = 0}, {v = 0}, {s = 0.5}, {s+u = 1} and {u+v = 1}.
On the boundary {u = 0},

F2 = Λ(v) ≤ Λ
(1
6

)
= 0.161533... ≤ 0.74.

On the boundary {v = 0},

F2 = Λ(s)− Λ(s+ u) + Λ(u) ≤ 3Λ
(1
6

)
= 0.484599... ≤ 0.74.

On the boundary {s = 0.5}, we have that F2 ≤ 0.74 by Lemma A.14 below. On the
boundary {s+ u = 1},

F2 = Λ(u)− Λ(u+ v) + 2Λ(v) ≤ 4Λ
(1
6

)
= 0.646132... ≤ 0.74.

On the boundary {u+ v = 1},

F2 = Λ(s)− Λ(s+ u) ≤ 2Λ
(1
6

)
= 0.323066... ≤ 0.74.

Therefore, F2 is bounded by 0.74 on the boundary of ∆2, as required.

The following lemma is used in the above proof of Lemma A.13.

Lemma A.14. We put G2(u, v) = −Λ(u + 0.5) + 2Λ(u) − Λ(u + v) + 2Λ(v). On the
domain

{
(u, v) ∈ R2

∣∣ 0 ≤ u ≤ 0.5, 0 ≤ v ≤ 1 − u
}
, an upper bound of G2 is given by

G2(u, v) ≤ 0.74.

Proof. A maximal point of G2 is whether a solution of ∂F2

∂u
= ∂F2

∂v
= 0 or a point on the

boundary of the domain of the lemma. We can see that G2 is bounded by 0.74 on the
boundary of the domain of the lemma as a special case of the proof of Lemma A.13.
Hence, it is sufficient to show that G2 is bounded by 0.74 at critical points of G2 in the
interior of the domain of the lemma.

We show that G2 is bounded by 0.74 at critical points of G2 in the interior of the
domain of the lemma, as follows. The differentials of G2 are given by

∂G2

∂u
= 2Λ′(u)− Λ′(u+ 0.5)− Λ′(u+ v)

= −2 log 2 sin πu+ log 2 sin π(u+ 0.5) + log 2 sinπ(u+ v),

∂G2

∂v
= 2Λ′(v)− Λ′(u+ v) = − log 2 sin πv + log 2 sin π(u+ v).

Hence, the equation ∂G2

∂u
= ∂G2

∂v
= 0 is rewritten

sin2 πu = sin π
(
u+

1

2

)
sinπ(u+ v), 2 sin2 πv = sinπ(u+ v). (187)
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We put y = cos πu = sin π(u+ 1
2
). Then, sin2 πu = 1− y2. Hence, from the first equation

of (187), we have that sin π(u+ v) = 1−y2
y

. Therefore, from the second equation of (187),

we have that sin2 πv = 1−y2
2y

. Hence, from the second equation of (187), we have that

1− y2

y
= sinπ(u+ v) = sin πu cosπv + cos πu sinπv

=
√
1− y2

√
y2 + 2y − 1

2y
+ y

√
1− y2

2y
.

Therefore, we can show by some concrete calculation that

8 y5 + 16 y4 − 16 y3 − 15 y2 + 4 y + 4 = 0.

This equation has the following two positive real solutions,

y = 0.6198210... , 0.9612566... .

The corresponding values of (u, v) are given by

(u, v) = (0.2872051... , 0.2489731...), (0.0888946... , 0.0637065...).

Further, the corresponding values of G2 are given by

G2 = 0.7353326... , 0.4259419... ,

which are bounded by 0.74. Hence, G2 is bounded by 0.74 at critical points of G2 in the
interior of the domain of the lemma, as required.

A.7 Proofs of estimates for the 72 knot in Section 8.2.6

For the 72 knot, in Section 8.2.6, we give estimates that t1+ t2 ≤ 0.9 and t1+ t2+ t3 ≤ 1.2
assuming that

Re V̂ (t) = 2Λ(t1) + Λ(t2) + Λ(t3) + Λ(t4) ≥ ς
R

(188)

in the domain {
t ∈ ∆′′ ∣∣ t1 ≤ 0.5, t2, t3, t4 ≤ 0.7

}
, (189)

where we recall that ς
R
= 0.530263... as given in (147). In this section, we show rigorous

proofs of these estimates in Sections A.7.1 and A.7.2 respectively. Unlike the previous
sections, we give direct proofs of them in this section.

A.7.1 Proof of the estimate that t1 + t2 ≤ 0.9

In this section, we show that t1 + t2 ≤ 0.9 assuming (188) in the domain (189). That
is, we show that we can restrict the domain (189) to the domain t1 + t2 ≤ 0.9 in such a

way that the removed part is included in the domain {Re V̂ (t) < ς
R
}. We recall that, by

(188),

2 Λ(t1) + Λ(t2) ≥ ς
R
− 2Λ

(1
6

)
= 0.207197... .

Hence, it is sufficient to show the following lemma.

127



Lemma A.15. The domain{
(t1, t2) ∈ R2

∣∣ t1 ≤ 0.5, t2 ≤ 0.7, t1 + t2 ≥ 0.9
}

(190)

is included in the domain {2Λ(t1) + Λ(t2) ≤ 0.2}.
Proof. It is sufficient to show that, in the domain (190), the value of 2Λ(t1) + Λ(t2) is
bounded by 0.2. We note that 0.2 ≤ t1 ≤ 0.5 and 0.4 ≤ t2 ≤ 0.7 in the domain (190).
Since the behavior of Λ(t) is as mentioned in Section 2.2, in these ranges, Λ(t1) and Λ(t2)
are monotonically decreasing with respect to t1 and t2 respectively. Hence, it is sufficient
to show that, on the interval{

(t1, t2) ∈ R2
∣∣ t1 ≤ 0.5, t2 ≤ 0.7, t1 + t2 = 0.9

}
,

the value of 2Λ(t1)+Λ(t2) is bounded by 0.2. Therefore, putting f(t) = 2Λ(t)+Λ(0.9−t),
it is sufficient to show that f(t) ≤ 0.2 for 0.2 ≤ t ≤ 0.5.

We show that f(t) ≤ 0.2 for 0.2 ≤ t ≤ 0.5, as follows. We consider a maximal point of
f(t). It is given by

f ′(t) = 2Λ′(t)− Λ′(0.9− t) = 0.

Since Λ′(t) = − log 2 sin πt, we have that

2 log 2 sin πt = log 2 sin π(0.9− t).

Hence,
2 sin2 πt = sin π(0.9− t) = sin π · 0.9 cos πt − cos π · 0.9 sin πt.

Therefore, by putting a = sin πt,

2a2 =
√
1− a2 sin π · 0.9 − a sin π · 0.9.

Hence,

a2
(
2a+ cos π · 0.9

)2
= (1− a2) sin2 π · 0.9.

This equation has the following unique positive real solution,

a0 = 0.65417005... .

The corresponding values of t and f(t) are given by

t0 = 0.22698193... , f(t0) = 0.19462761... ≤ 0.2.

Further, we can verify this t0 is the maximal point of f(t) in 0.2 ≤ t ≤ 0.5. Therefore,
f(t) ≤ 0.2 for 0.2 ≤ t ≤ 0.5, as required.

A.7.2 Proof of the estimate that t1 + t2 + t3 ≤ 1.2

In this section, we show that t1 + t2 + t3 ≤ 1.2 assuming (188) in the domain (189). That
is, we show that we can restrict the domain (189) to the domain t1 + t2 + t3 ≤ 1.2 in such

a way that the removed part is included in the domain {Re V̂ (t) < ς
R
}. We recall that,

by (188),

2 Λ(t1) + Λ(t2) + Λ(t3) ≥ ς
R
− Λ

(1
6

)
= 0.36873... .

Hence, it is sufficient to show the following lemma.
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Lemma A.16. The domain{
(t1, t2, t3) ∈ R3

∣∣ t1 ≤ 0.5, t2, t3 ≤ 0.7, t1 + t2 + t3 ≥ 1.2
}

(191)

is included in the domain
{
2Λ(t1) + Λ(t2) + Λ(t3) ≤ 0.35

}
.

Proof. It is sufficient to show that, in the domain (191), the value of 2Λ(t1)+Λ(t2)+Λ(t3)
is bounded by 0.35. A maximal point of 2Λ(t1)+Λ(t2)+Λ(t3) is whether a maximal point
of 2 Λ(t1)+Λ(t2)+Λ(t3) in the interior of the domain (191) or a point on the boundary of
the domain (191). Since the maximal points of Λ(t1), Λ(t2) and Λ(t3) are t1 =

1
6
, t2 =

1
6

and t3 =
1
6
respectively, there is no maximal point of 2Λ(t1)+Λ(t2)+Λ(t3) in the interior

of the domain (191). Further, as shown in Section 8.2.4, the parts {t1 = 0.5}, {t2 = 0.7}
and {t3 = 0.7} are included in the domain {Re V̂ (t) < ς

R
}. Hence, it is sufficient to show

that, on the domain{
(t1, t2, t3) ∈ R3

∣∣ t1 ≤ 0.5, t2, t3 ≤ 0.7, t1 + t2 + t3 = 1.2
}
,

the value of 2Λ(t1) + Λ(t2) + Λ(t3) is bounded by 0.35. Therefore, putting

g(t2, t3) = 2Λ(1.2− t2 − t3) + Λ(t2) + Λ(t3),

it is sufficient to show that g(t2, t3) ≤ 0.35 in the domain{
(t2, t3) ∈ R2

∣∣ 0 ≤ t2, t3 ≤ 0.7, 0.7 ≤ t2 + t3 ≤ 1.2
}
. (192)

We show that g(t2, t3) ≤ 0.35 in the domain (192), as follows. A maximal point of
g(t2, t3) is whether a maximal point of g(t2, t3) in the interior of the domain (192), or a
point on the boundary of the domain (192). The boundary of (192) consists of {t2 = 0.7},
{t3 = 0.7}, {t2 + t3 = 0.7}, {t2 + t3 = 1.2}, and we can verify by concrete calculation
that g(t2, t3) ≤ 0.35 on this boundary. We show that g(t2, t3) ≤ 0.35 at any critical point
of g(t2, t3) in the interior of the domain (192), as follows. The differentials of g are given
by The differentials of G2 are given by

∂g

∂t2
= −2Λ′(1.2− t2 − t3) + Λ′(t2) = 2 log 2 sin π(1.2− t2 − t3)− log 2 sin πt2 ,

∂g

∂t3
= −2Λ′(1.2− t2 − t3) + Λ′(t3) = 2 log 2 sin π(1.2− t2 − t3)− log 2 sin πt3 .

Hence, a critical point of g is given by

sinπt2 = 2 sin2 π(1.2− t2 − t3) = sin πt3 .

Since sin πt2 = sin πt3, we have that t2 = t3 or t2 + t3 = 1. If t2 + t3 = 1, we have that
sinπt2 = sinπt3 = 2 sin2 π·0.2, and we can verify by concrete calculation that this equation
has no solution in the domain (192). If t2 = t3, we have that 2 sin2 π(1.2− 2t2) = sin πt2.
By putting t = 0.6− t2, this equation is rewritten 2 sin2 2πt = sinπ(0.6− t). Hence,

8 sin2 πt cos2 πt = sinπ · 0.6 cos πt − cosπ · 0.6 sin πt.
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Putting a = tan πt
2
, we have that sin πt = 2a

1+a2
and cos πt = 1−a2

1+a2
. Therefore, the above

equation is rewritten

8(2a)2(1− a2)2 = (1 + a2)3
(
(1− a2) sin π · 0.6 − 2a cos π · 0.6

)
.

This equation has the following three positive real solutions,

a = 0.1985194... , 0.7542454... , 1.1583976... .

We can verify by concrete calculation that, only from the first solution, we obtain a
solution t2 = t3 = 0.4752406... in the domain (192), and the corresponding critical value
is given by g(t2, t2) = 0.3261675... ≤ 0.35. Therefore, we obtain that g(t2, t3) ≤ 0.35 in
the domain (192), as required.
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