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Abstract

We give presentations of the asymptotic expansions of the Kashaev invariant of hyperbolic knots
with 7 crossings. As the volume conjecture states, the leading terms of the expansions present the
hyperbolic volume and the Chern-Simons invariant of the complements of the knots. As coefficients
of the expansions, we obtain a series of new invariants of the knots.

This paper is a continuation of the previous papers [20, 21], where the asymptotic expansions
of the Kashaev invariant are calculated for hyperbolic knots with 5 and 6 crossings. A technical
difficulty of this paper is to use 4-variable saddle point method, whose concrete calculations are far
more complicated than the previous papers.

Mathematics Subject Classification (2010). Primary: 57M27. Secondary: 57M25, 57M50.

1 Introduction

This paper is a continuation of the previous papers [20, 21]. We review the background
of this paper; for details, see [20, 21]. Kashaev [12, 13, 14] defined the Kashaev invariant
(L), € Cofalink L for N =2,3,---, and conjectured that, for any hyperbolic link L,
QW” log|( L), | goes to the hyperbolic volume of S* — L as N — oo. Further, H. Murakami
and J. Murakami [18] proved that the Kashaev invariant ( L), of any link L is equal to the
N-colored Jones polynomial Jy(L; 2V =1/N ) of L evaluated at e2™V=1/N and conjectured
that, for any knot K, 2= log | Jy (K; e2™~/N)| goes to the (normalized) simplicial volume
of S8 — K. This is called the volume conjecture. As a complexification of the volume
conjecture, it is conjectured in [19] that, for a hyperbolic link L,

JN(L; 6271-\/?1/N) ~ 6N§(L)

Y
N—oo

where we put
(L) = ﬁ (es(S® = L) + v—1vol(S* — L)),

and “cs” and “vol” denote the Chern-Simons invariant and the hyperbolic volume. Fur-
thermore, it is conjectured [9] (see also [3, 10, 34]) that, for a hyperbolic knot K,

> 2mv/— 1.
JN(K;eZWH/k) o eNgNg/Qw-<1—i—Zm'(—7rN ))
uzl\;/k_:)?iiced =1
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for some scalars ¢,w, k; depending on K and w. Recently, it is shown in [20, 21] that,
when K is a hyperbolic knot with up to 6 crossings, the asymptotic expansions of the
Kashaev invariant is presented by the following form,

27r\/—_1i
)

(K, = NEN () (143 m(K) - FO(gmD): ()

for any d, where w(K) and k;(K)’s are some scalars.

The volume conjecture has been rigorously proved for some particular knots and links
such as torus knots [15] (see also [4]), the figure-eight knot (by Ekholm, see also [1])
Whitehead doubles of (2, p)-torus knots [35], positive iterated torus knots [27], the 59
knot [16, 20], the knots with 6 crossings [21], and some links [8, 11, 26, 27, 28, 35]; for
details see e.g. [17].

The aim of this paper is to extend the above formula to hyperbolic knots with 7
crossings, that is, we show the following theorem. In particular, this means that the
volume conjecture holds for these knots.

Theorem 1.1. The asymptotic expansions of the Kashaev invariant ( K ), of hyperbolic
knots K with 7 crossings are presented by the form (1) for any d, where w(K) and rk;(K)’s

are some constants depending on K.

It is shown [22] that 2v/—1w?(K) for these knots is equal to the twisted Reidemeister
torsion associated with the action on sly of the holonomy representation of the hyperbolic
structure. We also remark that Dimofte and Garoufalidis [2] define a formal power series
from an ideal tetrahedral decomposition of a knot complement, which is expected to be
equal to the asymptotic expansion of the Kashaev invariant of the knot.

There are six hyperbolic knots with 7 crossings: the 75, 73, -+, 77 knots. We show
proofs of the theorem for the 75, 73, 74, - - -, 77 knots in Sections 8, 3, 4, - - -, 7 respectively;
the proof of the 7, knot is relatively long, because of some technical difficulty unlike the
proofs of the other knots. We show the proofs following the proof for the 5, knot in [20].
An outline of the proofs is as follows. From the definition of the Kashaev invariant, the
Kashaev invariant of K is presented by a sum. We rewrite the sum as an integral via the
Poisson summation formula (Proposition 2.2). When we apply the Poisson summation
formula, the right-hand side of the Poisson summation formula consists of infinitely many
summands, and we show that we can ignore them except for the one at 0 in the sense
that they are of sufficiently small order at N — oo. Further, by the saddle point method
(Proposition 2.4), we calculate the asymptotic expansion of the integral, and obtain the
presentation of the theorem.

A non-trivial part of the proof is to apply the saddle point method, whose concrete
calculations are far more complicated than the case of knots with up to 6 crossings in
20, 21]. In this part, we need to calculate the asymptotic behavior of an integral of the
following form as N — oo,

/ exp (N(V(t, S,u,v) — g)) dt ds du dv,
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where f/(t, s,u,v) is the potential function of the hyperbolic structure of the knot comple-

ment, and ¢ is a critical value of V(t, s,u,v). The domain A’ of the integral is a compact
domain in R*, and its boundary is included in the following domain

{(t,s,u,v) e C* { Re (V(t,s,u,v) —¢) < 0}. (2)

The critical value ¢ is given by a critical point (¢, o, ug, Vo), and it is located near A’ in
C*. In order to apply the saddle point method, we need to show that we can move A’ in
the imaginary direction by a homotopy in such a way that the new domain A/ contains
(to, So, U0, Vo), and A} — {(to, So, ug, Vo) } is included in (2), and the boundary of A’ always
stays in (2) when we apply the homotopy. We note that, when we restrict the domain
(2) to a sufficiently small neighborhood of (%o, so, ug, o), the resulting space is homotopy
equivalent to a 3-sphere. The existence of the above homotopy means that the boundary
of A’ is homotopic to this 3-sphere in the domain (2). It is a non-trivial task to see that
they are homotopic in the domain (2), since it is not easy to see the topological type of
the domain (2) directly. We give such a homotopy concretely in Sections 3.5, 4.5, - -,
7.5, for the 73, 74, - - -, 77 knots respectively. Further, in the case of the 75 knot, we have
an additional difficulty; in this case, the boundary of A’ is not included in the domain
(2), and we need many additional calculations in this case.

By the method of this paper, the asymptotic behavior of the Kashaev invariant is
discussed for some hyperbolic knots with 8 crossings in [24].

The paper is organized as follows. In Section 2, we review definitions and basic prop-
erties of the notation used in this paper. In Sections 3, 4, ---, 7, 8, we show proofs of
Theorem 1.1 for the 73, 74, -+, 77, 7o knots respectively.

The authors would like to thank Kazuo Habiro, Hitoshi Murakami, Jun Murakami,
Toshie Takata and Yoshiyuki Yokota for helpful comments.

2 Preliminaries

In this section, we review definitions and basic properties of the notation used in this
paper.
2.1 Integral presentation of (q),

In this section, we review (q),, and its integral presentation and their basic properties.
Let N be an integer > 2. We put ¢ = exp(2my/—1/N), and put

(@) = L—2)(1—2%)-(1-2")
for n > 0. It is known [18] (see also [20]) that for any n,m with n < m,

(@)n(@)N-n-1= N, (3)



Following Faddeev [5], we define a holomorphic function ¢(t) on {t € C| 0 < Ret < 1}
by
00 6(21571)1:61&7
o0 = | e ,
oo 4z sinh z sinh(z/N)

noting that this integrand has poles at nmy/—1 (n € Z), where, to avoid the pole at 0, we
choose the following contour of the integral,

7 = (—o00,—1] U {z€C } |z2l=1, Imz >0} U [1,00).
It is known [7, 30] that

1 2n+1
@ = e (elgz) ~#(55) 5
N 2n+1 1
@n = exp (0(1— =) — 01— 53))
We put h = 2mwy/—1/N, and put
' d\2k—2  »
O4(2) = Liy (z) + Z B2 gy, - (z%> T
1<k<d
where we define coi by
t/2 2k
2 = £2%
sinh(¢/2) Z 2k
k>0
Then, it is known [7, 30] (see also [20]) that, for any d > 0,
N
1) = O, (e27V -1t + O(R2+! : 6
o) = 5o Bl £ O )
N d .k
(k) 1 = VP 27y/—1¢ +0 h2d+1 7
¥ () 27r\/—_1(dt) d(e ) ( )7 ( )

for each k > 0. More precisely, as for the convergence of %(p(t) as N — oo, we recall the
following proposition.

Proposition 2.1 (See [20]). We fiz any sufficiently small § > 0 and any M > 0. Let d
be any non-negative integer. Then, in the domain

{teC|d<Ret<1-6, [Imt|<M}, (8)
©(t) is presented by
0 = —
LA SOV

where O(1/N) means the error term whose absolute value is bounded by C/N for some
C' > 0, which is independent of t (but possibly dependent on 0). In particular, %gp(t)

uniformly converges to %\%Lig(e%mt) in the domain (8).

Lin(e™ ) +0(),



As for properties of ¢(t), it is a consequence of (3) and (5) (see [20]) that, for any ¢t € C
with 0 < Re t < 1,

N 1 1
1 :2\A4<—— 2 4= ——)
o(t) + ¢(1 —t) m 5 (t t+6y+%N (9)
Further, the following formulas are known (due to Kashaev, see [20]),
1 N L | -1 —1
o) = s Tt b YL L
2N 2ry/—1 6 2 4 12N (10)
1 N 7w 1 mv—1 w1
p(1-—) = T ZlogN + - .
2N 2my/—1 6 2 4 12N

2.2 Some behaviors of the dilogarithm function

In this section, we show some behaviors of the dilogarithm function.
We put

AW = Re(%\l/__l Lis(e™Y 1),

Since
N(t) = —log2sinzt, A'(t) = —mcotmt,

the behavior of A(t) is as follows.

t |0 - : : 5 1
At) |0 v AG) > 0~ —A(g) -~ 0
N(t) 0 - - - 0 o+
A'(t) - - - 0 + + +

Here, A(3) = 0.161533... .

Further, the behavior of Liy (e%H(”Xﬁ)) fixing t is presented by the following
formula. It is known [21] that for any real number ¢ with 0 < t < 1, there exists C' > 0
such that

O 1f X Z 0 _ 1 . 27T\/jl (t+X\/j1)
({%ﬂt—l)X ﬁAT<O) < Re<%¢3Jﬂﬂe )>

’ (11)
_ (o fX=0)
21(t—3)X if X <0

for any X € R.

2.3 Definition of the Kashaev invariant

In this section, we review the definition of the Kashaev invariant of oriented knots.



Following Yokota [32],! we review the definition of the Kashaev invariant. We put
N = {0,1,--- N —1}.
For i,7,k,1 € N, we put
N S 17 o 1., 7 nid
Ry = T gy NeP
(@i @D-0(@p—r—1(Dpr—a) (@i @D -0 @ —r—11(@) e

where [m] € N denotes the residue of m modulo N, and we put

gi — )1 if f—jl+j—-0+[l—-k—-1+[k—1i]=N-1,
w 0  otherwise.

Let K be an oriented knot. We consider a 1-tangle whose closure is isotopic to K such
that its string is oriented downward at its end points. Let D be a diagram of the 1-tangle.
We present D by a union of elementary tangle diagrams shown in (12). We decompose
the string of D into edges by cutting it at crossings and critical points with respect to the
height function of R2. A labeling is an assignment of an element of A/ to each edge. Here,
we assign 0 to the two edges adjacent to the end points of D. For example, see (23). We
define the weights of labeled elementary tangle diagrams by

(K )= w( (N =, w( )=

koo koo
(12)

() vy w()-s

Then, the Kashaev invariant ( K ), of K is defined by

(K), = Z H W (crossings) H W (critical points) € C.

labelings crossings critical
of D points of D

2.4 The Poisson summation formula

In this section, we review a proposition obtained from the Poisson summation formula.

Proposition 2.2 (see [20]). For (c1,ca,c3,¢4) € C* and an oriented 3-ball D' in R*, we
put

A = {(L+C1,i+02,—+03,—+04)€C4 !

. Jj k /}
klelZ, (=, =, —, — D
N N N N 1, ], K, L€ 4, (NJ N N’ N) € )
D = {(t+a, s+, ute,vta)eC ’ (t,s,u,v) € D' C R*}.

I'We make a minor modification of the definition of weights of critical points from the definition in [32], in order to make
(K )y invariant under Reidemeister moves.




Let 9(t, s,u,v) be a holomorphic function defined in a neighborhood of 0 € C* including
D. We assume that 0D is included in the domain

{(t,s,u,v) eC! ‘ Re(t, s, u,v) < —50}

for some g9 > 0. Further, we assume that 0D is null-homotopic in each of the following
domains,

{t+5\/ 1, s, u v)eC| (ts,uv)eD, §>0, Reb(t+6v—1, s, u, v <27r5}

—
w

( ) | ( ) ( ) (13)
{t-6v—1, s, u,v) e C* | (t,s,u,v) € D', § >0, Retp(t— V=1, s, u, v) < 2ms}, (14)
{(t, s+0v-1, u, v) € C* | (t,5,u,v) € D', 6 >0, Rew(t, s+0v—1, u, v) < 2w}, (15)
{(t, s—0v—1, u, v) € C* | (t,s,u,v) € D', § >0, Retp(t, s—0v/—1, u, v) < 216}, (16)
{(t, s, u+0v-1,v) € C* ’ (t,s,u,0) € D', § >0, Reyp(t, s, u+dv—1,v) <2nd}, (17)
{(t, s, u— 6v/—1,v) e C* | (t,s,u,v) € D', § >0, Retp(t, s, u—6v/—1, v) < 216}, (18)
{(t, s, u, v+ov—-1) e C* | (t,s,u,v) € D', § >0, Ret(t, s, u, v+6v-1) < 2m6}, (19)
{(t, s, u,v=0v=1) € C* | (t,s,u,v) € D', § >0, Ret(t, s, u, v—0v—1) < 2m6}. (20)
Then,

% Z eV ¥ltsun) — /Der(t’s’“’”) dtdsdudv + O(e %),
(t,s,u,0) €A

for some € > 0.
For a proof of the proposition, see [20].

Remark 2.3. Similarly as in [20, Remark 4.8], Proposition 2.2 can naturally be extended
to the case where the holomorphic function (¢, s,u,v) depends on N, if ¢(t, s, u,v)
uniformly converges to ¥y (t, s, u,v) as N — oo, and vy(t, s, u,v) satisfies the assumption
of the proposition, and |V(t, s, u, v)| is bounded by a constant which is independent of N,
where W(¢, s,u,v) is some polynomial in (at most the 6th) derivatives of ¥ (¢, s, u,v). We
note that we can choose € of the proposition independently of N in this case.

2.5 The saddle point method

In this section, we review a proposition obtained from the saddle point method.

Proposition 2.4 (see [20]). Let A be a non-singular symmetric complex 4x4 matriz, and
let (21, 22, 23, 24) and (21, 22, 23, 24) be holomorphic functions of the forms,

V(21, 29, 23,24) = 2LAZ+1(21, 20, 23, 24), (1)
(21,22, 23, 20) = Do p Digkzizize + Dy Cigmzizia o
defined in a neighborhood of 0 € C*. The restriction of the domain
{(21,22,23,24) ecCt | Re (21, 22, 23, 24) < O} (22)

7



to a neighborhood of 0 € C* is homotopy equivalent to S®. Let D be an oriented 4-ball
embedded in C* such that 0D is included in the domain (22) whose inclusion is homotopic
to a homotopy equivalence to the above S® in the domain (22). Then,

2 NPy 1
NV gy Aoy deydyy = —— (1—1— — +0(—— >,
A R v NP PE RO T

for any d, where we choose the sign of \/det(—A) as explained in [20], and \;’s are
constants presented by using coefficients of the expansion of 1(z1, 22, 23, 24); such presen-
tations are obtained by formally expanding the following formula,

T

= 0 0 (N R Y
1+Zﬁ:eXp(NT(a—m,"'aa—WDeXP(_m LA : )

W4 Wy

w1=+=w4=0
For a proof of the proposition, see [20].

Remark 2.5. As mentioned in [20, Remark 3.6], we can extend Proposition 2.4 to the
case where (21, 29, 23, 24) depends on N in such a way that ¢(z1, 29, 23, 24) is of the form

1 1
Y(z1, 22, 23, 21) = Yo(21, 22, 23, 24) +¢1(Zl,22>z3724)ﬁ +¢2(21,Z2,Z3,Z4)m
1 1
+ e (21, 22, 23, Z4)W + rm (21, 22, 23, 24)W ;

where 1;(z1, 29, 23, 24)’s are holomorphic functions independent of N, and we assume
that o (21, 22, 23, z4) satisfies the assumption of the proposition and |r,, (21, 22, 23, 24)| is
bounded by a constant which is independent of N.

3 The 75 knot

In this section, we show Theorem 1.1 for the 73 knot. We give a proof of the theorem in
Section 3.1, using lemmas shown in Sections 3.2-3.5.

3.1 Proof of Theorem 1.1 for the 7; knot

In this section, we show a proof of Theorem 1.1 for the 73 knot.



The T3 knot is the closure of the following tangle.
0

j (23)
0 k 0
0 21
3
0 1

As shown in [32], we can put the labelings of edges adjacent to the unbounded regions as
shown above. Hence, from the definition of the Kashaev invariant, the Kashaev invariant
of the 73 knot is presented by

_ e, Na: N g3+ Nt
Tl = L G O D@ @™ Dy DT

AL Ng= Ng: Ng
(Dn— (@1 D1 (DN-k@r-t(@-1 (DN1@i-m (D1 (DN (D1
— Z N5q—2
0o @i @)@ w5 D=y @r (@i (D4 D@ s ()

_ N5 q—2
_OSizgj:d\/ (D @) n-i—1(0)j=i(@) N—j =1 (@) N=j=1(@D) j=# (D1 (@) N—k—1 (D e—1(0)1 (@) N =11

_ Z N?® q72
0<iSI<N (@)@ N—j+i-1(2)i (@) N—j—1 (@D N—j=1 (@D k(@) = (@) N—j+5-1(@)1(@) j—k-1 (@) N—j+ k11

0<k,l
k+1<j

X

where we obtain the third equality by replacing i, j,k,l with ¢ + 1,7 + 1,k + 1,1 + 1
respectively, and obtain the last equality by replacing j — ¢, 7 — k, k — [ with ¢, k, [
respectively.

Proof of Theorem 1.1 for the 73 knot. By (5), the above presentation of ( 73 ), is rewritten

B _ 241 2541 2%k+1 241
7). = N2 (Nv )
(73 )x g ZeXp G ey e v )

0<i<j<N

0<k,l

k+1<j




where we put

Vi(t,s,u,v) = %(—@(s—t—%%)—¢(1—8+t—%)+90(t)—g0(s)+g0(1—s)
—gp(l—u)—kg@(s—u—f—%)+g&(1—s+u—%)—gp(l—v)
+<p(s—u—v+%)+g0(1—s+u+v—%)—6¢(%)+5¢(1—%))

= (o0 =260 + el ) — 5= T - S logN = T T
+27T\/—_1-%<(s—t+%)2—52+u2—(S—u—i—%)?—i—zﬂ
—(s—u—v+%)2+t+25—3u—22)+%).

Here, we obtain the last equality by (9) and (10). Hence, by putting

- 11
V(t = V(¢ — log N
(t,s,u,v) (,s,u,v)+2N og N,

the presentation of (75), is rewritten

S 2% +1 2j+1 2k+1 2+1
Ta)y = N2 (vv )
<3>N q Z]kzlez exXp (2N7 2N7 IN ) IN )7

2i4+1 2j+1 2k+1 20+1
(2N’2N’2N’2N)€A

where the range of (Zt!, 2L£1 2041 2Ll of the sum is given by the following domain,

A = {(t,s,u,v)€R4|0§t§s§1, 0<u,v, u+v§s}.

By Proposition 2.1, as N — oo, V/(¢,s,u,v) converges to the following V(t, s,u,v) in the
interior of A,

. 1 2
V(t,s,u,v) = Py <L12(62W\/j1t) _ 2L12(62ﬂ—\/?18) + Lig(e%ﬁ“) + Li2(62ﬂ\/jlv> _ %)

1
+27r\/—1~5((5—15)2—52—1—112—(s—u)2+v2— (s —u—v)*+t+ 25— 3u—2v).
By concrete calculation, we can check that the boundary of A is included in the domain
{(t,s,u,v) € A ‘ ReV(t, s, u,v) <g, — e} (24)

for some sufficiently small ¢ > 0, where we put ¢, = 0.730861... as in (29); we will know
later that this value is equal to the real part of the critical value of V at the critical
point of Lemma 3.2. Since the sum of the problem is of the order O(e™r), we can ignore
the sum of the problem restricted in the above domain, and hence, we can remove this
domain from A. Therefore, we can choose a new domain A’ in the interior of A such that

10



A — A" C (24); more concretely, we can choose A as

0.03<v <038, 04<s—-1<0.85, 04<s—u<0.85,

0.03<t<0.38, 0.68<s<0.95 0.03<u<0.38,
A = {(t,s,u,v)EA }
—t4+2u4+v <085 t+2s—2u—v <18

(25)
where we calculate the concrete values of the bounds of these inequalities in Section 3.2.
Hence, since A — A’ C (24), we obtain the second equality of the following formula,

73), = eNSNTV272 exp (N -V
N

i,5,k,l EZ
(2l 2j+1 2k+1 LIESRYEYN

2N 72 2N 7 2N 7 2

B 2+1 2j+1 2k+1 21+1 N
- (N P> eXp(N VSN TN TN o )_M) +O(6N)>’

%+1 2j+1 2k+1 2z+1)_N)
9N ' 2N ' 2N ' 2N °

i,5,k,l EZ
2i41 2§41 2k+1 20+1 /
(SN 3N v o an JEA

for some € > 0.
Further, by Proposition 2.2 (Poisson summation formula), the above sum is presented
by

(T3), = eN° <N7/2q_2/ exp (N - V(t,s,u,v) — N¢)dtdsdudv + O(e_N‘E)), (26)

noting that we verify the assumption of Proposition 2.2 in Lemma 3.3. Furthermore, by
Proposition 2.4 (saddle point method), there exist some x’s such that

d
(Tade = N2 (N Vit s ) - S (det(— 1) ™72 (1+ D wihi + 0(e+),

for any d > 0, noting that we verify the assumption of Proposition 2.4 in Lemma 3.9. Here,
(te, Se, Ue, v.) is the critical point of V' which corresponds to the critical point (¢, so, uo, vo)
of V of Lemma 3. 2, where V is the limit of V at N — oo whose concrete presentation is
given in Section 3.2, and H is the Hesse matrix of V' at (t., S, te, Uc).

We calculate the right-hand side of the above formula. Since t. = to + O(h), s. = so +
O(h), u. = ug+O(h) and v, = vo+ O(h), we have that V (¢, s¢, uc, v.) = V (to, So, uo, vo) +
O(h?). Hence, by comparing V (¢, S, ug, vg) and V(to, S0, U, Vg) = ¢, we have that

V(to,So,U(),U()) = C—I—O(h)

Therefore, there exist some x;’s such that
d
<73 >N _ 6N§N3/2w . (1 + Z Iiihi + O(hd+1)>,
i=1

for any d > 0. Hence, we obtain the theorem for the 75 knot. m
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3.2 Estimate of the range of A’

In this section, we calculate the concrete values of the bounds of the inequalities in (25)
so that they satisfy that A — A’ C (24).

Putting A as in Section 2.2, we have that

~

ReV(t,s,u,v) = A(t) —2A(s) + Au) + A(v).
We consider the domain
{(t,5,u,v) € A | A(t) —2A(s) + A(u) + A(v) > <.}, (27)

where we put ¢, = 0.730861... as in (29). We note that this domain is symmetric with
respect to the exchanges of ¢, u and v. The aim of this section is to show that this
domain is included in the interior of the domain A’ of (25). For this purpose, we show
the estimates of the defining inequalities of (25) for (¢, s, u,v) in (27).

We calculate the minimal value ¢, and the maximal value ¢y, of t. Since |[A(-)| <

A5),

6

1
A(t) > <, _4A(6) = 0.084729... .

The minimal and maximal values of ¢ are solutions of the equality of the above formula.

By calculating a solution of the equality by Newton’s method from ¢t = 0.03, we obtain

tmin = 0.0328657... , and from ¢t = 0.4, we obtain t,,,, = 0.372797... . Therefore, we obtain

an estimate of t in A’ as

0.03 <t < 0.38.

Remark 3.1. To be precise, the above argument is not partially rigorous, since we do
not estimate the error terms of the numerical solutions of Newton’s method, though the
above argument is practically useful, since we can guess that such error terms would be
sufficiently small for the above purpose. We can obtain rigorous proofs of such estimates
(the above one and the following ones) by concrete calculations (see [20, 21]), though such
calculation might often be far longer than calculations by Newton’s method.

We obtain the estimates of u and v in A’ in the same way as above.
We calculate the minimal value sp,;, and the maximal value sy, of s. Since A(-) <

A(3),

1
—2A(s) > ¢, — 3A(6) = 0.246262... .

The minimal and maximal values of s are solutions of the equality of the above formula.

By calculating a solution of the equality by Newton’s method from s = 0.65, we obtain

Smin = 0.69634... , and from s = 0.95, we obtain s,,.x = 0.935251... . Therefore, we obtain

an estimate of s in A’ as

0.68 < s < 0.95.

Before calculating other estimates, we note that the domain (27) is a convex domain
such that the boundary is a smooth closed hypersurface whose sectional curvatures are
positive everywhere, which we show in Appendix A. In the following of this section, we
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consider the maximal and minimal value of some linear function L(¢,s,w,v) on this do-
main. The maximal and minimal values of L(t, s, u,v) are obtained when the hyperplane
L(t,s,u,v) = ¢ (where ¢ is a constant) is tangent to such a domain. Such tangent points
are given by solutions of a certain system of equations, and there are exactly two solutions
of such a system of equations, since the domain is of the shape mentioned above. We
calculate such solutions in the following of this section.

We calculate the minimal value (s — t)y, and the maximal value (s — t)yax of s — t.

Since A(-) < A(g),
1
A(t) —2A(s) > s, _QA(E) = 0.407795... .

We note that the domain {A(t) —2A(s) > ¢, —2A(%)} is a convex domain in R? such
that its boundary is a closed curve whose curvatures are non-zero everywhere. Putting
w = s — t, its minimal and maximal values are solutions of the following equations,

A(s —w) —2A(s) = ¢, —2A(3),
0
%(A(s —w) —2A(s)) = 0.
We note that there are exactly two solutions of this system of equations corresponding to
the minimal and maximal values of s —¢. By calculating a solution of these equations by
Newton’s method from (w, s) = (0.4,0.8), we obtain (s — ¢)m, = 0.429457... , and from
(w, s) = (0.85,0.9), we obtain ($ — t)max = 0.844926... . Therefore, we obtain an estimate
of s —tin A as

04 < s—t < 0.85.

We obtain the estimate of s — u in A’ in the same way as above.
We calculate the maximal value (—t42u+v)yax of —t+2u+v. Putting w’ = —t+2u+wv,
its maximal value is a solution of the system of the following equations,

((A(—w' +2u+v) —2A(s) + Alu) + A(v) = «,,
A(—w' +2u+v) —2A(s) + Alu) + A(v)) = 0,

~—~

A(—w' +2u +v) —2A(s) + Alu) + A(v)) = 0,

SN
—~

A(=w'" + 2u +v) = 2A(s) + Alu) + A(v)) = 0.

\

We note that there are exactly two solutions of this system of equations corresponding to
the maximal and minimal values of —t+2u+v. By calculating a solution of these equations
by Newton’s method from (w’, s, u,v) = (0.8,0.85,0.35,0.2), we obtain (—t+ 2u+v)pax =
0.801018... . Therefore, we obtain an estimate of —t + 2u + v in A’ as

—t4+2u+v < 0.85.

We calculate the maximal value (¢ + 2s — 2u — V)ax Of ¢ + 25 — 2u — v. Putting
w” =t + 2s — 2u — v, its maximal value is a solution of the system of the following

13



equations,

((A(w” — 254 2u+v) —2A(s) + Au) + A(v) = <,
g(/\w — 25+ 2u+v) — 2A(s) + Alu) + A(v)) = 0,
aﬁ(Aw — 254 2u+v) —2A(s) + Alu) + A(v)) = 0,

| o (AW =254 2u -+ v) = 2A(5) + A(w) + AW)) = 0.

We note that there are exactly two solutions of this system of equations corresponding
to the maximal and minimal values of ¢t + 2s — 2u — v. By calculating a solution of
these equations by Newton’s method from (w”,s,u,v) = (1.8,0.9,0.1,0.1), we obtain
(t+ 25 —2u — V)pax = 1.77226... . Therefore, we obtain an estimate of ¢t + 2s — 2u — v in
A as

t+2s—2u—v < 1.8.

3.3 Calculation of the critical value

In this section, we calculate the concrete value of a critical point of V.
The differentials of V' are presented by

g (t,s,u,v) = —log(l—x)+27r\/—_1(t—s+%),

(92 (t,s,u,v) = 2log(l —y)+2mvV/—1(—t—2s+2u+v+1),
%V(t,s,u,v) = —log(l—z)+27r\/—_l(25—u—v—;),
%V(t,s,u,v) = —log(l —w)+2rV—1(s—u—1),

where 1 = 627'('\/—1t’ Yy = 627r\/—15’ 5 = eQﬂ\/ju and w = €2F\/_1U.

Lemma 3.2. V has a unique critical point (t, so,ug, vo) in P~Y(A), where P : C* — R*
1s the projection to the real parts of the entries.

Proof. Any critical point of V is given by a solution of BQV %V = %V = %V =0,
and these equations are rewritten,

2
1—90:—{, (1—y)2:#, 1—z = -2 , Yy
y 22w zZw z

From the first formula, we have that x = y/(y — 1). Further, from the third formula, we
have that w = —y?/(z(1 — z)). By substituting them into the second formula, we have

that z = —y/(y® — 3y? + 2y — 1). Further, by substituting them into the fourth formula,
we have that

y® — 7y° 4+ 19y* — 284 +26y* — 13y +3 = 0.
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Its solutions are

y = 0.49542...£/-1-0.342767... , 0.537981...£+/—-1-1.04357... , 2.17069..., 2.7625... .

Among these, the solution 0.537981... — /=1-1.04357... gives a solution in A’, from which
we have that

2o = 0.645284... + v=1-0.801205..., t; = 0.14209... — /=1 - 0.00451074... ,
Yo = 0.537981... — /—1-1.04357...,  so = 0.825756... — v—1-0.0255418... ,
zo = 0.363612... + v=1-0.565801..., o = 0.159092... + =1 -0.0631297... ,
wy = 1.87287...+ —1-1.51178..., vo = 0.108085... — v/=1-0.139791...

where xy = 2™Vl gy = e2Volso o0 = e2mV-luwo gnd wy = 2™V 1%, These give a
unique critical point in P~1(A’). O

The critical value of V at the critical point of Lemma 3.2 is presented by

~

¢ = V(tOJ Sp, Uo, UO)

= ——— (Lia(wo) — 2Lia(go) + Liz(20) + Lia(wo) — =)
e ( ia (o) i2(y0) is(20) is(wp) ;
— 1

+ to + 280 — 3U0 — 2’00) (28)
= 0.730861... + /=1 - 0.588168... .

Further, we put its real part to be ¢, ,

¢, = Re¢ = 0.730861... . (29)

3.4 Verifying the assumption of the Poisson summation formula

In this section, we verify the assumption of the Poisson summation formula in Lemma
3.3, which is used in the proof of Theorem 1.1 for the 73 knot in Section 3.1.

By computer calculation, we can see that the maximal value of ReV — ¢, is about
0.08. Therefore, in the proof of Lemma 3.3, it is sufficient to decrease, say, Re V(t +

v —1, s, u, v) — 270 by 0.08, by moving ¢ (though we do not use this value in the proof
of the lemma).

We put

XY, ZW) = ReV(t+XvV—1,s+YV—-1,u+Zv-1, 0+ Wv-1) —¢,.
Then, we have that

of

% = Re (V—l%V(H—X\/—l, s+ Y V1, ut ZvV—1, v+ W\/—1)>

= —Im<—10g(1—$)+27T\/__1(t_8+%))
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= Arg(l—x)—i—Zﬂ(s—t—%). (30)

Similarly, we have that

2_}{ = —2Arg(1—y)—|—27r(t—|—23—2u—v—1), (31)
g—é = Arg(l—z)—QW(Zs—u—v—;), (32)
% = Arg(l—w)—Qﬂ(s—u—l). (33)

Lemma 3.3. V(t,s,u,v) — g, satisfies the assumption of Proposition 2.2.

Proof. Since V(t,s,u,v) converges uniformly to V(t, s,u,v) on A’ we show the proof
for V(t,s,u,v) instead of V(t,s,u,v). We show that 0A’ is null-homotopic in each of
(13)-(20).
As for (13), we show that we can move A’ into the following domain,
{(t+5\/—1, s, u, v) € C* } (t,s,u,v) € A", § >0, ReV(t+(5\/—1, S, Uy, V) — G, < 27T(5}.
Hence, putting
F(§) = Re f/(t +0vV—1, s, u, v) =g, —2m0 = f(4,0,0,0) — 270,

it is sufficient to show that there exists dg > 0 such that

F(é) < 0 for any (t,s,u,v) € A, and (3)
F(§) < 0 forany (t,s,u,v) € OA" and § € [0, do].

Therefore, it is sufficient to show that
d af
By - =
do (9) 0X

for some ¢’ > 0 (because, if the above formula holds, then (34) holds for a sufficiently
large dp). Hence, it is sufficient to show that

of

a—X(X,O,O,O) < 2r—¢€.

Further, as for (14), similarly as above, it is sufficient to show that

of ,
a—X(—X,O, 0,0) < 2m—¢

(6,0,0,0) — 27 < —¢,

for some &’ > 0.
Hence, as for (13) and (14), it is sufficient to show that

—(2r—¢) < g—;;(X,0,0,0) < 2mr—¢ (35)
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for some &’ > 0. Since 0.03 <t < 0.38,
1
—27?(5 —1) < Arg(1—z) < 0.

Hence, by (30),
af 1
—27T(1—S) < @_X < 27T(8—t—§)
Since 0.68 < s and s —t < 0.85,
of
—2m-0.32 — 27 - 0.35.
7032 < X < 27-0.35

Therefore, (35) is satisfied, as required.
As for (15) and (16), similarly as above, it is sufficient to show that

(36)

—(2r—¢) < g—{;((),Y,0,0) < 2 —¢

for some & > 0. Since 0.68 < s < 0.95,

0 < Arg(l—y) < 27(3—%).

Hence, by (31),
of
—27?(—t+2u—|—v) < F% < 27r(t—|—23—2u—v—1).
Since —t 4+ 2u+ v < 0.85 and t + 2s — 2u — v < 1.8,
of

—27 - 0. —_— 27 - 0.8.
7T085<8Y< 7-0.8

Therefore, (36) is satisfied, as required.

As for (17) and (18), similarly as above, it is sufficient to show that
: of :
—(277'—5) S 8—Z(O,O,Z70) S 2mr — ¢ (37)

for some & > 0. Since 0.03 < u < 0.38,
1
—27r(§ —u) < Arg(1—2) < 0.

Hence, by (32),

of 3
—2r(2s —2u—v—1) < 37 < 27(5—25+u+v).

Since 2s —2u—v =2(s—u)—v <2-0.85 = 1.7 and —2s+u+v < —2-0.6840.38+0.38 <

—0.6,
of
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Therefore, (37) is satisfied, as required.
As for (19) and (20), similarly as above, it is sufficient to show that

—(2r—¢) < S—V];(o,o, 0,W) < 27 —¢ (38)

for some &’ > 0. Since 0.03 < v < 0.38,
1
—2%(5 —v) < Arg(l—w) < 0.

Hence, by (33),

1 of
—2 —u—v— = — 27 (1 — .
7r(s U —v 2) < Bl < 7r( S—i—u)
Since 0.4 < s —u < 0.85 and v > 0,
of
—2m-0.35 — 2w - 0.6.
T < oW < 4m
Therefore, (38) is satisfied, as required. ]

3.5 Verifying the assumption of the saddle point method

In this section, we verify the assumption of the saddle point method in Lemma 3.9. In
order to show this lemma, we show Lemmas 3.4-3.8 in advance.

Lemma 3.4. Fixing Y, Z and W, we regard [ as a function of X.

(1) If s—t < %, then f is monotonically decreasing as a function of X.

(2) If s—t > %, then [ has a unique minimal point as a function of X. In particular,
this minimal point goes to oo as s —t — % + 0.

Proof. Since x = e2™V=10+XV=1) 4nd 0.03 < ¢ < 0.38,

—27?(%—15) < Arg(l—2) < 0,

and Arg (1 — z) is monotonically increasing as a function of X. Hence, by (30), % is also
monotonically increasing as a function of X. Further,

or| 1
DX o = 2751 5)

of B

8_X X_>_oo_ —27T(]_—8) < 0

If s —t < 3, then % is always negative, and (1) holds.
Ifs—t> %, then there is a unique zero of %’ which gives a unique minimal point of

f, and (2) holds. O
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Lemma 3.5. Fixing X, Z and W, we regard f as a function of Y.

(1) If t = 2u — v > 0, then f is monotonically increasing as a function of Y.

(2) If t + 25 — 2u — v < 1, then f is monotonically decreasing as a function of Y.

(3) Ift—2u—v <0 andt+2s—2u—wv > 1, then f has a unique minimal point as a
function of Y. In particular, this minimal point goes to —oo as t —2u — v — —0, and
goes tooo ast+2s —2u—v—140.

Proof. Since y = ¢*™V=16HYV=D and 0.68 < s < 0.95,
1
0 < Arg(l—vy) < 271'(8—5),

and Arg (1 — y) is monotonically decreasing as a function of Y. Hence, by (31), g—{; is
monotonically increasing as a function of Y. Further,

af B

8_Y Y_}()O— 27T(t+25—2U—U—1)7
of B

a_Y Y_>_Oo_ —271‘(—t—|—2u—{—v)

If t —2u—wv >0, then g—{i is always positive, and (1) holds.
Ift +2s—2u—wv <1, then % is always negative, and (2) holds.
Ift —2u—v < 0 and ¢t +2s — 2u—ov > 1, then there is a unique zero of 2L, which gives

oYy’
a unique minimal point of f, and (3) holds. m

Lemma 3.6. Fizing X, Y and W, we regard f as a function of Z.
(1) If 2s — 2u — v < 1, then f is monotonically increasing as a function of Z.
(2) If2s —u—v > g, then f is monotonically decreasing as a function of Z.
(3) If2s—2u—v > 1 and 2s—u—v < 3, then f has a unique minimal point as a function
of Z. In particular, this minimal point goes to —oo as 2s —2u —v — 1 + 0, and goes to
00 ast—u—v—)%—O.
Proof. Since z = 2™V-1+2V=1 and 0.03 < u < 0.38,
1
—27r(§ —u) < Arg(l—2z) < 0,

and Arg (1 — z) is monotonically increasing as a function of Z. Hence, by (32), % is also
monotonically increasing as a function of Z. Further,

of 3

8_ZZ_>OO_ 27T(§—28+U+’U),
af B

AP —27T<2$—2U—U— 1).

If 2s — 2u — v < 1, then % is always positive, and (1) holds.
If 2s —u —v > 2, then % is always negative, and (2) holds.

[f2s—2u—v>1land2s—u—v < %, then there is a unique zero of g—é, which gives a

unique minimal point of f, and (3) holds. O
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Lemma 3.7. Fixing X, Y and Z, we regard f as a function of W.

() Ifs—u—v< %, then f is monotonically increasing as a function of W.

(2) If s—u—v > %, then f has a unique minimal point as a function of W. In particular,
this minimal point goes to —oo as s —u — v — % +0.

Proof. Since w = 2™V=1(+Wv=1) and 0.03 < v < 0.38,

1
—27r(§ —v) < Arg(1—w) < 0,
and Arg (1 — w) is monotonically increasing as a function of W. Hence, by (33), % is
also monotonically increasing as a function of W. Further,

af B B

W W%OO— 27T(1 S+U) > 0,

af B 1

Wl o~ 2 mumv=3),

If s —u—wv< 3, then % is always positive, and (1) holds.

Ifs—u—v> %, then there is a unique zero of %, which gives a unique minimal point

of f, and (2) holds. O

Lemma 3.8. In the fiber of the projection C* — R* at (t,s,u,v) € A, we consider the
flow from (X, Y, Z W) = (0,0,0,0) determined by the vector field (—g—g;, —g—{;, —g—é, —aa—vj[c/).
(1) If s—t> %, t—2u—v<0, t+2s—2u—v>1, 2s—2u—v>1, 23—u—v<%
and s —u—v > %, then f has a unique minimal point, and the flow goes to this minimal
point.

(2) Otherwise, the flow goes to infinity.
Proof. From the definition of f, we have that
1
2y —1

1
— 2R
e27n/—1

1 3
<Lig(627r\/jl(u+z\/jl)>> +2r(—2s+u+v+-)Z

2y —1 2
1

R’
and the contributions from X, Y, Z, W to f are independent. Hence, by Lemmas 3.4,
3.5, 3.6 and 3.7, if the assumption of (1) holds, then f has a unique minimal point, and
(1) holds. Otherwise, at least one of X, Y, Z, W goes to infinity by the flow, and (2)
holds. O]

f(X,Y,Z, W) = Re (Liz(e%ﬁ “*Xﬁb) +2m(s —t — 1)X

2
(Lis(*™TT V) 4 om (25 + £ — 20— v — 1)Y

+ Re

+ Re

Lemma 3.9. When we apply Proposition 2.4 to (26), the assumption of Proposition 2.}
holds.
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Proof. We show that there exists a homotopy Aj (0 < ¢ < 1) between Aj = A’ and A]
such that

(to, 50, uo, vo) € AT, (39)
A —{(to, s0,u0,v0)} C {(t,s,u,v) eCt ! ReV(t,s,u,v) < gR}, (40)
A5 c {(t,s,u,v) € C* | Re V(t,s,u,v) < Snt- (41)

We put g1 (t, s, u,v), got, s,u,v), gs3(t, s, u,v), g4(t, s, u,v) to be the minimal points of
Lemmas 3.4, 3.5, 3.6, 3.7 respectively. For a sufficiently large R > 0, we put

it ) R if s—t<1,
LS, U, V) = _ .

& min{R, ¢:(t, s,u,v)} if s—t> %,
(R if t+2s—2u—v <1,

G2(t, s,u,v) = < min{R, max {—R, gg(t,s,u,v)}} if t—2u—v <0, t+2s—2u—v > 1,
| —R if t—2u—v >0,
(R if 2s—u—v > %,

g3(t, s,u,v) = min{R, max {—R, gg(t,s,u,v)}} if 2s—2u—v >1, 2s—u—v < %,
—R if 2s—2u—v <1,

\
Gt 5, u,v) = max {—R, g4(t, s,u,v)} ?f S—u—uv > %,

—R if s—u—v< T
g(ta S, U, U) = (g1<t7 S, u, U)7 92<t, S, U, U)J 93(t7 S, U, U)7 g4<t7 S, U, U))7
g(ta S, U, U) = (gl(ta S, U, U): g?(t7 S, U, U)a g3(t7 S, U, U)7 §]4<t, S, U, U))
We note that, since g;(¢,s,u,v) — oo as s —t — % + 0, g1(t,s,u,v) is continuous, and
similarly, we can check that go(t, s, u,v), gs(t, s, u,v), gs(t, s,u,v) and g(t, s, u, v) are also
continuous. We set the ending of the homotopy by

Ay = {ts,u,0) +g(t,s,u,0)V =1 € C | (t,5,u,0) € A'}.

Further, we define the internal part A (0 < 0 < 1) of the homotopy by setting it along

the flow from (t, s, u, v) determined by the vector field ( — 2 —%, —%, —%).

We show (41), as follows. From the definition of A’
oA C {(t,s,u,v) ect | ReV(t,s,u,v) < gR}.

Further, by the construction of the homotopy, Re 1% monotonically decreases by the ho-
motopy. Hence, (41) holds.
We show (39) and (40), as follows. Consider the following functions

F(t,s,u,v, X,Y,Z,W) = ReV(t+ Xv~1, s +YV~1, u+ Zv—1, v+ Wy~1),
h(t,s,u,v) = F(t, S, u, v, g(t,s,u,v)).
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When the assumption of (1) of Lemma 3.8 does not hold, the flow goes to infinity
by Lemma 3.8 (2), and —h(t,s,u,v) is sufficiently large (because we let R be suffi-
ciently large), and hence, (40) holds in this case. The remaining case is the case where
g(t,s,u,v) = g(t,s,u,v). In this case, we show (40), as follows. It is shown from the
definition of g(¢, s, u,v) that

OF OF oF OF

8_X = 8_Y = 6_Z = W =0 at (X,Y,Z,W):g(t,s,u,v).

Hence,
ov oV ov ov
Img = Img = Im% = Im% = O, at (t,S,U,'U) +g<t,S,U,U)\/ —1.
Further,
oh oV oh oV Oh oV Oh ov
o R8s T Rehe aw T Rear @ T Ry

at (t,s,u,v)+ g(t,s,u,v)v—1.

Therefore, when (t, s, u,v) is a critial point of h(t, s, u,v), ((t, s,u,v) + gl(t, s, u, v)\/—l)
is a critical point of V. Hence, by Lemma 3.2, h(t, s, u,v) has a unique maximal point at
(t,s,u,v) = (Rety, Re sg, Reug, Rewvy). Therefore, (39) and (40) hold. O

4 The 7, knot

In this section, we show Theorem 1.1 for the 74 knot. We give a proof of the theorem in
Section 4.1, using lemmas shown in Sections 4.2-4.5.

4.1 Proof of Theorem 1.1 for the 7, knot

In this section, we show a proof of Theorem 1.1 for the 7, knot.
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The 74 knot is the closure of the following tangle.

As shown in [32], we can put the labelings of edges adjacent to the unbounded regions as
shown above. Hence, from the definition of the Kashaev invariant, the Kashaev invariant
of the 7, knot is presented by

qu% qu%ﬂ' qu%fz#l
(Ta)y = q"/* x — X ——— X — —
o Z (Q)N—n(Q)n—l (Q)i—n(Q)n—l(Q)N—i (Q)N—j(Q)j—i(Q)i—l
Ng3 N g3t N g3+ Ng 3
X g X 9 X 9 X g

(ON—j(@Dj-r(@Dr—1 (D@Dt @DN-t (DON-m(Dm—t(@Di=1 (O N (D)1

B NS q—l
B Z (@)i—1(@)v=i(0)j—i(@) N—5 (D) N=5 (D) j=1 (D) k=1 (D k=1 (@) 1=1(T)1=1 (@) N

0<i<j<N
0<k<I<N
k<j

_ Z N?° q—l
o<izron @i @DN-i-1(0);-i(@)N—-1@) N5 -1(@) ;-1 (@D r @ (@)1-1@1 (@) v 11

0<k<I<N
k<j

_ Z N5 qfl

e @i @n-im1(9)i(@);(@); (@D N5 11 (Os (DD Dbt @D N pr1

0<j,k, j+k<N
0<I<N-—k

where we obtain the third equality by replacing i, 7, k,l with ¢ + 1,57 + 1,k 4+ 1,1 + 1
respectively, and obtain the last equality by replacing i, j and [ with N —i — j — 1,
N —j — 1 and k + [ respectively.
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Proof of Theorem 1.1 for the 74 knot. By (5), the above presentation of (7, ), is rewritten

(T = Nog! 3 exp(Nf/(QH—l 2j+1 2k+1 2+1
N

— 2N’2N’2N’2N)>’
0<i<N-—j
0<jik, jHk<N
0<I<N—Fk
where we put
V(t,s,u,v) = l(—go(zf—i—s—i)—go(l—zf—s%—i)—|—go(zf)—|—90(s)—90(1—5)
T N 2N 2N
1 1
—go(s—i—u—ﬁ)—i—go(u)—go(l—u)—f-gp(v)—cp(u—i-v—W)
1 1 1
—o(l—u—v4 =) —dp(— 1——)
pll-u—vtgg) —4e(gy) +7e(l - 55)
1 1
() +20(5) = (s +u— 57) + 20(w) + p(v))
1 2 11 v—1 v—1
+ 7T———logN—i—?m I
2my/—1 2 2N AN 4N?

N Ly e e _ L
+ 27 12<(t—|—3 o) T+ (ut )

2 2 1
2% —2u—v4 = )
ON t S u—v+ 3 + N
Here, we obtain the last equality by (9) and (10). Hence, by putting
~ 11
t = t — log N
V(t,s,u,v) V(,s,u,v)+2N og N,

the presentation of (74), is rewritten

<74 >N

1o 20+1 25+1 2k+1 20+1
N-1/2,-1 (N >
q ”%:GZ exp (NV(Zx— 5 v )),

2N
2i41 2541 2k+1 2141
(N8 on v JEA

where the range of (Zt!, 21 2ktl 20t

) of the sum is given by the following domain,
A = {(t,s,u,v)eRA“Ogtgl—s, 0<s,u, s+u<l, Ogvgl—u}.

By Proposition 2.1, as N — oo, V/(t,s,u,v) converges to the following V (¢, s, u,v) in the
interior of A,
~ 1
V(t,s,u,v) = <Li 2V 7L 4 9Ty (27 718) _ Ljy(e27V 1 (5Fu)
( ) = grg b ) + 2 Liy ) — Liy( )

2
+ 2L12(e27r\/?1u) + Li2<€2ﬂ\/?lv) + ﬂ-_)

2
1 2
+27r\/—1~5((t—|—3)2+32+u2+(u+v)2—t—23—2u—v—|—5).
By concrete calculation, we can check that the boundary of A is included in the domain
{(t,s,u,v) € A| Re V(t,s,u,v) <, — e} (42)
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for some sufficiently small ¢ > 0, where we put ¢, = 0.817729... as in (48); we will know
later that this value is equal to the real part of the critical value of V' at the critical point

of Lemma 4.1. Hence, similarly as in Section 3.1, we choose a new domain A’, which
satisfies that A — A’ C (42), as

(43)

[
A= {(t’s’“’”>€A 0.1<u<045 0.02<uv <045

0.02<t<045 0.1<s<0.45 }

where we calculate the concrete values of the bounds of these inequalities in Section 4.2.
Hence, since A — A’ C (42), we obtain the second equality of the following formula,

_ _ 2t +1 2541 2k+1 2[+1
7 — N{N 1/2 1 <NV _N>
(Ta)y = ¢ q WZZGZ@XP v "ov oy oy ) e

2i+1 2541 2k+1 2041
(2N’2N’2N’2 )GA

20+1 2 1 2k+1 20+1
= 6N<<N_1/2q_1 Z exp(N V( Z+ y j+ ) i ) i )_N§> +O(€_N6)>J

2N 2N 2N 2N

for some ¢ > 0.
Further, by Proposition 2.2 (Poisson summation formula), the above sum is presented

by
(T4), = N <N7/2q_1/ exp (N - V(t,s,u,v) — N¢) dtdsdudv + O(e_Na)>, (44)

noting that we verify the assumption of Proposition 2.2 in Lemma 4.2. Furthermore, by
Proposition 2.4 (saddle point method), there exist some x’s such that

P (et (143w O(E),

i=1

(Ty4)y = N7/ exp (N . V(tc,sc,uc,vc)) .

for any d > 0, noting that we verify the assumption of Proposition 2.4 in Lemma 4.7. Here,
(te, Se, Ue, v.) is the critical point of V' which corresponds to the critical point (¢, so, uo, vo)
of V of Lemma 4. 1, where V is the limit of V at N — oo whose concrete presentation is
given in Section 4.2, and H is the Hesse matrix of V' at (., S, te, vc).
We calculate the right-hand side of the above formula. Similarly as in Section 3.1, we
have that
V(to, So, Ug, ’Uo) = ¢+ O(h)

Therefore, there exist some k;’s such that

d
(T = SNPw (143 kil + O(R)),

i=1

for any d > 0. Hence, we obtain the theorem for the 7, knot. O]
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4.2 Estimate of the range of A’
In this section, we calculate the concrete values of the bounds of the inequalities in (43)
so that they satisfy that A — A’ C (42).

Putting A as in Section 2.2, we have that

ReV(t,s,u,v) = A(t) +2A(s) — A(s +u) +2A(u) + A(v).
We consider the domain
{(t,s,u,v) € A | A(t) +2A(s) — A(s +u) + 2A(u) + A(v) > g, }, (45)

where we put ¢, = 0.817729... as in (48). The aim of this section is to show that this
domain is included in the interior of the domain A’ of (43). For this purpose, we show
the estimates of the defining inequalities of (43) for (¢, s, u,v) in (45).
Since A(v) < A(3),
1

At) +2A(s) — A(s+u) +2A(u) > gR—A(g).

Further, since A(t) < A(3),

DA(s) = Als+u) +2A(u) > s, —2A(é).

We calculate the minimal value ?,,;, and the maximal value t,,,, of . They are solutions
of the system of the following equations,

A(t)+2A(s) —A(s+u) +2A(u) = ¢, — A(%),
0
%(A(t) +2A(s) — A(s+u) +2A(u)) = 0,
0

%(A(t) +2A(s) = A(s+u) +2A(u)) = 0.

We note that there are exactly two solutions of this system of equations corresponding
to the maximal and minimal values of ¢ (see Appendix A). By calculating a solution of
these equations by Newton’s method from (t,s,u) = (0.03,0.2,0.2), we obtain t.;, =

0.0259764... , and from (¢, s,u) = (0.4,0.2,0.2), we obtain t,,x = 0.391511... . Therefore,
we obtain an estimate of ¢ in A’ as

0.02 < ¢t < 045.

We calculate the minimal value s.;, and the maximal value s., of s. They are
solutions of the following equations,

2A(s) — A(s +u) +2A(w) = g, —2A(2),
)

%(2 A(s) — A(s+u) + 2A(u)) = 0.
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By calculating a solution of these equations by Newton’s method from (s,u) = (0.1,0.2),

we obtain Sy, = 0.104088... | and from (s,u) = (0.4,0.2), we obtain Sya, = 0.441784... .
Therefore, we obtain an estimate of s in A’ as

0.1 < s < 045.

We obtain the estimates of v and v from the above estimates by the symmetry (46).

4.3 Calculation of the critical value

In this section, we calculate the concrete value of a critical point of V.
The differentials of V' are presented by

%f/(t, s,u,v) = —log(l—x) +2rv—1(t+s— %),
%V(t, s,u,v) = —2log(1 —y) +log(l —yz) + 2mv/—1 (t + 25 — 1),
%f/(t, s,u,v) = —2log(l — 2) +log(l — y2) + 27V —1 (2u + v — 1),
%V(t, s,u,v) = —log(l —w) + 2mv/—1 (u+v— %),

where © = 2™Vl = 2TVols p = 2TVTU apd g = 27V1Y,

Lemma 4.1. V has a unique critical point (to, S0, Ug, vo) in P~H(A'), where P: C* — R*
1s the projection to the real parts of the entries.

Proof. Any critical point of V is given by a solution of %\7 = %f/ = 8%‘7 =

2y =0
ov -

and these equations are rewritten,
l—2 = —ay, (1-y)? = 2*(1—yz2), (1-2)7° = 2wl —yz), 1-w = —zw.

From the first formula, we have that x = 1/(1 — y). By substituting this into the second
formula, we have that z = (y® — 2y?+ 3y — 1) /y. Further, by the fourth formula, we have
that w = 1/(1 — z). By substituting these into the third formula, we have that

(y3+2y—1)(y4—4y3+8y2—5y—|—1) = 0.

Its solutions are

y = —0.226699... = v—1-1.46771..., 0.453398...
0.429304... + v=1-0.10728... , 1.5707... £ v=1- 1.62477... .

Among these, the first solution gives a solution in A’, from which we have that

xg = 0.335258... +/—=1-0.401127... | to = 0.139198... + v/-1-0.103226... ,
Yo = —0.226699... +/—1-1.46771... | so = 0.27439... — /-1-0.0629445... ,
20 = Yo, Up = S0,
Wo = To, vo = to,
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where zq = 2™V o gy = e2TVlso 0 = e2mVoluwo gnd wy = 2™V These give a

unique critical point in P~1(A’). O

We note that V and the set of critical points of V have the following symmetry,
(t,s,u,v) — (v,u,s,t). (46)

The critical value of V at the critical point of Lemma 4.1 is presented by

¢ = V(t[b 50, Uo, UO)
2

1
/1 (Li2($0) + 2 Lig(yo) — Liz(yo20) + 2 Lia(20) + Lia(wo) + %)

1 2
+ 27V —1- 5((150 + 50)% 4 52+ ud + (ug + v9)* — to — 250 — 2ug — Vo + 5) (47)
= 0.817729... — /—1-1.50254... .

Further, we put its real part to be ¢, ,

¢, = Re¢ = 0.817729... . (48)

4.4 Verifying the assumption of the Poisson summation formula

In this section, we verify the assumption of the Poisson summation formula in Lemma
4.2, which is used in the proof of Theorem 1.1 for the 7, knot in Section 4.1.

By computer calculation, we can see that the maximal value of ReV — ¢, is about
0.09. Therefore, in the proof of Lemma 4.2, it is sufficient to decrease, say, Re V(t +
5v/—1, s, u, v) — 276 by 0.09, by moving 6 (though we do not use this value in the proof
of the lemma).

We put

XY, ZW) = ReV(t+XvV—-1,s+YV—-1, u+Zv-1, 0+ WvV-1) —¢,.

Then, we have that

g—)]; = Arg(l—a:)—27r(t—|—s—%), (49)
g—}{ = 2Arg(1—y) — Arg (1 —yz) — 2w (¢t +2s — 1), (50)
g—é = 2Arg(1—z)—Arg(l—yz)—Qﬂ(2u+v—1), (51)
0

% = Arg(l—w)—Qﬂ(uij—%). (52)

Lemma 4.2. V(t,s,u,v) —, satisfies the assumption of Proposition 2.2.
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Proof. Since V(t,s,u,v) converges uniformly to V(t, s,u,v) on A’ we show the proof
for V(t,s,u,v) instead of V(t,s,u,v). We show that 0A’ is null-homotopic in each of

(13)-(20).
As for (13) and (14), similarly as in the proof of Lemma 3.3, it is sufficient to show
that
_@r—e) < X x000) < 2m_e (53)
aX ) Y Y

for some &’ > 0. Since 0.02 <t < 0.45,

—27r(%—t) < Arg(l—2) < 0.

Hence, by (49),

0 1
215 < (9_)J; < 27?(5—25—5).
Since s < 0.45 and t,s > 0,
of
—27-0.4 — 27 - 0.5.
m-045 < X < 2m-0.5

Therefore, (53) is satisfied, as required.
As for (15) and (16), similarly as above, it is sufficient to show that

—2r—€) < g—){(O,Y,0,0) < 2 —¢ (54)

for some & > 0. Since 0.1 < s < 0.45,
—2#(% —s) < Arg(l—y) < 0.
Further, since 0.2 < s+ u < 0.9,
min { — 271'(% —s—u), 0} < Arg(l—yz) < max{0, 2n(s+u— %)}
Hence, by (50),
of

) 1
L > win{ —2n(1-29), —2n(u—s+3)}

2
> min{ — 2708, —27-0.85} = —2m-0.85,
0 1
—f < max{27r(— —s—u), 0} < max{27r 0.3, 0} = 27-0.3,
)% 2
since 0.1 < s and 0.1 < u < 0.45. Therefore, (54) is satisfied, as required.
We obtain (17), (18), (19) and (20) from the above cases by the symmetry (46). [
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4.5 Verifying the assumption of the saddle point method

In this section, we verify the assumption of the saddle point method in Lemma 4.7. In
order to show this lemma, we show Lemmas 4.3-4.6 in advance.
From the definition of f, we have that

F(X,Y,Z,W) = Re

27;—_1 (Liz(x) + 2 Lis(y) — Lis(yz) + 2Lis(2) + Li2(w)>

—27r(s—|—t—%)X—27r(t+2s—1)Y—27T(2u+v—1)Z—27r(u+v—E)W’,

2
where 7 — e2wﬁ(t+Xﬁ)’ y = eznﬁ(erYﬁ)’ 5 — 2V (ut+ZV=T) g o = 27V -1 (vHWV=T)

Hence, since the contributions to f from X, W and (Y, Z) are independent, we consider
each of the contributions independently.

Lemma 4.3. Fixing Y, Z and W, we regard [ as a function of X.

(1) Ift+s > %, then f is monotonically decreasing as a function of X.

(2) Ift+s < %, then f has a unique minimal point as a function of X. In particular,
this minimal point goes to oo as t + s — % —0.

Proof. Since x = 2™V ~1tHXV=1) and 0.02 < ¢ < 0.45,

—27?(%—15) < Arg(l—2) < 0,

and Arg (1 — z) is monotonically increasing as a function of X. Hence, by (49), 5y 1s also

monotonically increasing as a function of X. Further,

X

of 1
=L = o9r(= —t—
0X | x—00 7T(2 t 8>’
of

DYFTEE

Ift + s> 1, then ; af is always negative, and ( ) holds.

Ift+s < , then there is a unique zero of 2L ax X, which gives a unique minimal point of
f, and (2) holds. O

Lemma 4.4. Fizing X, Y and Z, we regard f as a function of W.

(1) Ifu+w > then f 8 monotomcally decreasing as a function of W.

(2) If u+ v < , then f has a unique minimal point as a function of W. In particular,
this minimal pomt goes to o0 as u+ v — % —0.

Proof. The lemma is obtained from Lemma 4.3 by the symmetry (46). O
In order to calculate the contribution to f from (Y, Z), we put

f(V.Z) = Re——— <2Li2(y)—LiQ(yz)—i—QLig(z))—27r(t+23—1)Y—27r(2u—|—v—1)Z,

7r\/_
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where y = e2™V=1HYV=D and z = 27V 1w+2V=1) By (50) and (51),

g—}{ = 2Arg(1—y)—Arg(1—yz)—27r(t—l—2s—1), (55)
g—é = 2Arg(1—z)—Arg(l—yz)—QW(2u+U—1)- (56)

We consider the behavior of f in the following two lemmas, depending on the sign of

1
s+u—2

Lemma 4.5. In the fiber of the projectz’on C* - R* at (t,s,u,v) € A’ satisfying that
stu>1, t+s<i and u—+v < 3, we consider the flow from (Y, Z) = (0,0) determined

by the vector field (—2L, _aly, Then, f has a unique minimal point, and the flow goes
;. oY 0z
there.

Proof. Since y = e2™V-1HYV-D) 4 —27rydiy. Hence,

ay
o f ]
8_}/é = 2wy y <Im (2 log(1 —y) — log(1 — yz)))
2 2 1
= 27T1m< y v ) = 27r1m( — )
1—y 1-—yz 11—y 1—-yz
Therefore, by calculating other entries similarly, the Hesse matrix of f is presented by
2&1 + b b
2 ( b 2a24—b) (57)
where we put
1 1 -1
“ ml—y 2 T ml—yz’

noting that there numbers are positive. Since we can verify that the trace and the deter-
minant of this matrix are positive, the Hesse matrix of f is positive definite, and f is a
convex function. R R

We consider the behavior of f at infinity. By (11), % f is approximated by the following
function,

0 ity >0 0 (Y +2>0
mxz)=2<{®_%ﬂ,ﬁy<o>-—<{@+u__yy+z)ﬁY+Z<o>

0 if Z>0
2 (25— 1Y — Qutov—1)Z
" ({@——ﬂ?ﬁ2<0) (25 — ¥ = Quto—1)

2

(Ja—t=2)Y ifY=0) [ ]o0 ifY +2>0
B —tY if Y <0 (s+u—3)Y+2) f Y +2Z<0
(1-2u—v)Z fZ>0

—vZ if Z<0)
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Since t >0, t+2s <1 +045=095 s+u >3, 2u+v <3+ 0.45=0.95and v > 0,
F(Y,Z) — oo as Y? + Z? — oco. Since f is convex, f has a unique minimal point, and

the flow goes there, as required. O

Lemma 4.6. In the fiber of the projection C* — R* at (t,s,u,v) € A’ satisfying that
(

stu<s, t+s5<iandu+v <3, we consider the flow from (Y, Z) = (0,0) determined

of _ of
by the vector field (1—8—Y, —57)- 1 A
(1) Ift+s+u>35 ands+u+v >3, then f has a unique minimal point, and the flow
goes there.

(2) Otherwise, the flow goes to infinity.

Proof. When Y > 0, we show that the flow goes in a direction decreasing Y, as follows.
Since y = 2™V 1EHYV-D 01 < s <045 and Y > 0,

—W(% —s) < Arg(1—y).

Further, since s +u < %,
Arg (1 —yz) <0.

Hence, by (55),

2—3{ > —27r(%—3) —2m(t+2s—1) = 27(%4—5) > 0.
Therefore, the flow goes in a direction decreasing Y.

When Z > 0, it follows from the above case by the symmetry (46) that the flow goes
in a direction decreasing Z.

Hence, we can assume that the flow is in the domain that Y < 0 and Z < 0. In this
domain, by (11), % f is approximated by

2(3—%)}/—(3+u—%)(Y—FZ)—FQ(U—%)Z—(t—l—Qs—l)Y—(?u—i—v—l)Z
= (%—t—s—u)Y—l—(%—s—u—v)Z.

Hence, since we will show below that f is convex in this domain, we obtain the lemma
similarly as the proof of Lemma 4.5. .

Therefore, it is sufficient to show that the Hesse matrix of f is positive definite when
Y <0and Z < 0. Similarly as the proof of Lemma 4.5, the Hesse matrix of f is presented

by
2@1 — b/ —b/
o (5" ) (53)
where we put
1 1 1

a = Im—, ay = Im , UV = Im
1—y 1—=z 1—yz

)
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noting that there numbers are positive. It is sufficient to show that

(the trace of (58)) = 4m(a1 +ax — ') > 0, (59)
(the determinant of (58)) = 47*((2a; — V')(2as — b') — b’2)
2 1 1
= 87r2a1a2b'(—/ - — —) > 0. (60)

b aq Qo

We show that (60) = (59), as follows. Suppose that (60) holds. Then, & > 1(L +1).

’ Y al as
1

Since a1, ap and V' are positive, ;; > % or % > é Hence, V' < aq or b’ < ay. Therefore,

(59) holds.
We show (60), as follows. Since y = 2™V~16+YV=D "4 is presented by
1 1-7 e~ sin 27s

a1 = Im— = Im—— =
1 1—y ‘1 . y|2 (1 _ e2wﬁse—27ry>(1 _ €—2wﬁse—2ﬂ/)

sin 27s
e2mY 4 e=2mY _ 9 cos2ms

Hence,
1 e e ™ —2cos2ms
a; sin 27s
Similarly, we have that
1 e 4 e —2 cos2mu 1 0D g o2 () — 2 cos 2m(s + u)
as sin 27w ’ Voo sin 27 (s + u) '
Therefore, the differential of % — a—ll — % with respect to Y is given by
1 o 2 1 1 627r(Y+Z) _ 6727r(Y+Z) e2mY _ p—2mY
(2 ) = 9. _
2r 9Y (b’ ap a2> sin 27 (s + u) sin 27s

Since 0.1 < s < $—u < 0.4, sin2ms > sin(2m-0.1) = 0.587785... . Hence, 2/ sin 27 (s+u) >
2 > 1/sin27s. Further, since Y < 0and Z <0, e?7(Y+2) _=2n(Y+2) < 027V _ =27V < ),
Hence, the above formula is non-positive. Therefore, it is sufficient to show (60) when
Y = 0. Further, by the symmetry (46), it is sufficient to show (60) when Z = 0. When
Y =2=0,

1(2 1 1) _ 1 —cos2m(s+u) 1—cos2ms 1 —cos2mu

2\0  ay  a sin 27 (s + u) sin 27s sin 27w
F h : 1—cos2ma 2 sin? ra _
urther, since — = = tan T
) sin 2o 2 sin T cos T ’

1/2 1 1
_<_____> = 2tan7(s+u) —tanws — tanwu > 0.

Hence, we obtain (60), as required. O
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Lemma 4.7. When we apply Proposition 2.4 to (44), the assumption of Proposition 2.}
holds.

Proof. We show that there exists a homotopy A5 (0 < 0 < 1) between Ay = A" and A}
such that

(tca Smumvc) € A?[? (61>
A = {(te, sesue,ve)} C {(ts,u,0) € CH| ReV(E,s,u,0) <}, (62)
OAs C {(t,s,u,v) € C* ‘ ReV(t,s,u,v) < Sp} (63)

In the fiber of the projection C* — R* at (¢,s,u,v) € A, we consider the flow from
(X,Y,Z, W) =1(0,0,0,0) determined by the vector field (—%, —%, —%, —%). We put
a neighborhood U of (g, so, ug, vo) by

1 1 1 1
U = {(t,s,u,v)eA’ ‘ §—u<t+3< 3 §—s<u—|—v< 5}

Then, by Lemmas 4.3, 4.4, 4.5 and 4.6, the following (1) and (2) holds.
(1) If (¢,s,u,v) € U, then f has a unique minimal point, and the flow goes there.
(2) If (¢, s,u,v) ¢ U, then the flow goes to infinity.

We put g(t,s,u,v) to be the minimal point of (1). In particular, |g(¢,s,u,v)| — oo,
as (t,s,u,v) goes to OU. Further, for a sufficiently large R > 0, we stop the flow when
|g(t,s,u,v)| = R. We put g(t,s,u,v) to be the destination of this revised flow. In
particular, when | g(t,s,u,v)| < R, g(t,s,u,v) = g(t,s,u,v). We define the ending of
the homotopy to be the set of the destinations of these revised flows,

All = {(t7 S,U,U) +g(t7 S,U,U)\, -1 ‘ (t, S,U,U) - A/}

Further, we define the internal part of the homotopy by setting it along the flows.
We can show (61), (62) and (62) by using Lemma 4.1 in a similar way as the proof of
Lemma 3.9. [l

5 The 75 knot

In this section, we show Theorem 1.1 for the 75 knot. We give a proof of the theorem in
Section 5.1, using lemmas shown in Sections 5.2-5.5.

5.1 Proof of Theorem 1.1 for the 75 knot

In this section, we show a proof of Theorem 1.1 for the 75 knot.
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The 75 knot is the closure of the following tangle.

¥
As shown in [32], we can put the labelings of edges adjacent to the unbounded regions as

shown above. Hence, from the definition of the Kashaev invariant, the Kashaev invariant
of the 75 knot is presented by

Nq%—n N q%—i-n—i N q%—i-z‘—l
(T5)y = g g% x — X — - X —
v ( N—n(Q)n—l (Q)N—n(Q)n—i(Q)i—l <Q)j—i<Q)i—1(Q)N—j
N qéﬂcfl N q%+l7m N q%erfl

)
x> —

DNt @eg (@1 @D Det@it - @Dt D@t @ 5 (@t

_ Z NO q2
ociTe, (@i-1(@)i-1(@)-i(0) 1 (DN (@D r—5 (DN 4D N -1 (@) -1(@)1-1 (@) v
0<I<kE<N

_ Z N® q2
o<iser (@i@i@);-i( D) (@) -1 (D (DN -1 (@D N1 (Dt (D1(T) w11

B N?° q2
N Ogggk (@)i(@i(@); (@) (DN 1@ s (D N1 (DN 51 (D (Drt (@D k11

where we obtain the third equality by replacing i, 7, k,l with ¢« + 1,57 + 1,k 4+ 1,1 + 1
respectively, and obtain the last equality by replacing [ with k —[.

Proof of Theorem 1.1 for the Ts knot. By (5), the above presentation of (75 ), is rewritten

2i+1 2j+1 2k+1 2l+1)>

7o) = NOG (Nf/
(T quXp S8 v v aw
0<i<j<k
0<I<k<N
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where we put

V(t,5,0,0) = 3 (900 = o= 1) = p(1 = 5 £ = ) + pls) + (1~ 5)
—gp(l—qus—%)—cp(u)+g0(1—u)+g0(v)—gp(u—er%)
—go(l—u—l—v—%)—5¢(%)+6g@(1—%))

- %(2@@)—@(1—34—25—%)—gp(l—u—i—s—%)—Qgp(u)ngo(v))
e Lt LR
+27r\/—_1~%<t2—32—u2+(u—v—i—%)Q—t—i—s—i—v—%).

Here, we obtain the last equality by (9) and (10). Hence, by putting

- 11
t = t —log N
V(t,s,u,v) V(,s,u,v)—i—QN og N,

the presentation of (75 ), is rewritten

) 2% +1 2j+1 2k+1 20+1
Ts)y = N2 (Vv )
< 5>N q ijkzlez exXp ( IN IN IN ’ 9N ) )

2141 2j+1 2k+4+1 2041
2N’2N’2N’2N)GA

where the range of (2;;1, 2%;{,1, 2’2“;1, 2;—;1) of the sum is given by the following domain,
A = {(t,s,u,v)€R4|O§t§s§u, Ogvgugl}.

By Proposition 2.1, as N — oo, V(t,s,u,v) converges to the following V(t, s,u,v) in the
interior of A,
- 1

V(t,s,u,v) = /T

(2Lie™VT1) = Lifet™VT-2) — Liy(e2nv=T0-w)

2
_2L12(62Wmu)+Li2(62wﬁv)+%)

1
+27r\/—1~5(152—32—u2+(u—v)2—t+s+v).
By concrete calculation, we can check that the boundary of A is included in the domain
{(t,s,u,v) € A ‘ ReV(t, s, u,v) <, — e} (64)

for some sufficiently small ¢ > 0, where we put ¢, = 1.02552... as in (69); we will know

later that this value is equal to the real part of the critical value of V at the critical point

of Lemma 5.1. Hence, similarly as in Section 3.1, we choose a new domain A’, which
satisfies that A — A’ C (64), as

A = {(t,s,u,v) €A

01<t<0.33, 067<u<0.9, 005<v<0.3 (65)
0.15<s—-t<045, 015<u—-s<045 ’
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where we calculate the concrete values of the bounds of these inequalities in Section 5.2.
Hence, since A — A’ C (64), we obtain the second equality of the following formula,
20+1 25+1 2k+1 2l+1) N>

2N ' 2N ' 2N ' 2N °

(T5)y = NS N-1/22 Z exp (N-V(
ijkl €L

2i+1 2j+1 2k+1 20+1
2N72N’2N’2N)EA

. 2% +1 2j+1 2k+1 20+1 B
_ Ne| N-1/2,2 <N~V —N) O(e—Ne
¢ ( q ijkzl:EZeXp (S v e v )~ Ns) +0Ee™) ).

2041 25+1 2k41 2141 /
(2N’2N’2N’2N)EA

for some € > 0.
Further, by Proposition 2.2 (Poisson summation formula), the above sum is presented
by

(75), = e° (N7/2q2/ exp (N - V(t,s,u,v) — N¢) dtdsdudv + O(e_N€)>, (66)

noting that we verify the assumption of Proposition 2.2 in Lemma 5.2. Furthermore, by
Proposition 2.4 (saddle point method), there exist some ks such that

(27?)2 —-1/2 : 3
(T5)y = N7/2 exp (N -V (te, Se, Ue, vc)) . W(det(—H)) (1 + Zz_; K;h' + O(hd+1)>,

for any d > 0, noting that we verify the assumption of Proposition 2.4 in Lemma 5.5. Here,
(tey Se, Ue, ve) is the critical point of V' which corresponds to the critical point (g, so, ug, Vo)
of V of Lemma 5.1, where V is the limit of V at N — oo whose concrete presentation is
given in Section 5.2, and H is the Hesse matrix of V' at (., S¢, U, Ve).
We calculate the right-hand side of the above formula. Similarly as in Section 3.1, we
have that
V(t07 S0, Up, UO) = ¢+ O(h)

Therefore, there exist some k;’s such that

d
(75), = eNSN32y. (1 +3 ki + O(hd“)),

i=1

for any d > 0. Hence, we obtain the theorem for the 75 knot. O

5.2 Estimate of the range of A’

In this section, we calculate the concrete values of the bounds of the inequalities in (65)
so that they satisfy that A — A’ C (64).

Putting A as in Section 2.2, we have that

N

ReV(t,s,u,v) = 2A(t)+A(s—1t)+ Au—s) —2A(u) + Av).
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We consider the domain
{(t,s,u,v) € A | 2A() +A(s —t) + Alu—s) —2A(u) + A(v) > <.}, (67)

where we put ¢, = 1.02552... as in (69). The aim of this section is to show that this
domain is included in the interior of the domain A’ of (65). For this purpose, we show
the estimates of the defining inequalities of (65) for (¢, s, u,v) in (67).
Since A(v) < A(3),
1
2A) +A(s—t)+Au—s) —2A(u) > g, — A(E)
We calculate the minimal value t,,;;, and the maximal value t,,., of t. They are solutions
of the system of the following equations,

2A(H) + A(s —t) + Alu—s) —2A(u) = ¢, —A(3),

%(2A(t)+/\(8—t)+/\(u—3)—QA(U)) = 0,
QM)+ A — 1)+ Alu—5) ~2A(u)) = 0.

We note that there are exactly two solutions of this system of equations corresponding to
the maximal and minimal values of ¢ (see Appendix A). By calculating a solution of these
equations by Newton’s method from (¢, s, u) = (0.15,0.5,0.8), we obtain ¢, = 0.147538...
, and from (t,s,u) = (0.3,0.5,0.8), we obtain t,,x = 0.291380... . Therefore, we obtain
an estimate of ¢ in A’ as

0.1 <t < 0.33.

We obtain the estimate of w in A’ from the above estimate of ¢ by replacing (¢, s, u)
with (1 —u, 1 —s, 1 —1t).

We calculate the minimal value (s — )y, and the maximal value (s — ¢)pax of 5 — t.
Putting w = s — ¢, its minimal and maximal values are solutions of the system of the
following equations,

2A(s —w) + Aw) + Au—s) —2A(u) = ¢, —A(}),

0
8_<2 Als —w) + A(w) + A(u—s) —2A(u)) = 0,
s
0
8_(2 Als —w) + A(w) + A(u—s) —2A(u)) = 0.
u
We note that there are exactly two solutions of this system of equations corresponding to
the maximal and minimal values of s — ¢ (see Appendix A). By calculating a solution of
these equations by Newton’s method from (w, s,u) = (0.2,0.4,0.75), we obtain (s—) i, =
0.184286... , and from (w,s,u) = (0.4,0.6,0.8), we obtain (s — t)n.x = 0.397155... .

Therefore, we obtain an estimate of s — ¢ in A’ as
0.15 < s—t < 0.45.
We obtain the estimate of u — s in A’ from the above estimate of s — ¢ by replacing

(t,s,u) with (1 —u, 1 —s, 1 —1).
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We calculate the minimal value v,;, and the maximal value v, of v. They are
solutions of the system of the following equations,

( 2A()—i—A(s—t)—l—A(u—s)—2A(u)+A(v) = <.,
£+ A(s—t) +Alu—s) —2A(u) + A(v)) = 0,

|Q>Q>|Q>Q>|Q>

;24
( +As—t)+A(u—s)—2A()—|—A(v)) = 0,
5q 20

t)+A(s—t) + Au—s) —2A(u) + A(v)) = 0.

\

We note that there are exactly two solutions of this system of equations corresponding
to the maximal and minimal values of v (see Appendix A). By calculating a solution
of these equations by Newton’s method from (¢, s, u,v) = (0.2,0.5,0.75,0.1), we obtain

Umin = 0.0846896... , and from (¢, s, u,v) = (0.2,0.5,0.8,0.3), we obtain vy, = 0.26949... .
Therefore, we obtain an estimate of v in A’ as

0.06 < v < 0.3.

5.3 Calculation of the critical value

In this section, we calculate the concrete value of a critical point of V.
The differentials of V' are presented by

g (t,s,u,v) = —2log(l—z)+log (1 — g) +2mv/—1 (t - %),
a ~ . X y 1
gV(t, s,u,v) = —log (1 — 5) + log (1 — ;) —2m/—1 (s — 5),
%f/(t,s,u,v) = 2log(l—2z)—log (1 — g) — 27V =1,

%V(t, s,u,v) = —log(l—w)+2mv—1(v—u+ %),

where z = 2™V "1ty = 27V -1s o — 2Vl g gy = 27V 1Y,

Lemma 5.1. V has a unique critical point (to, S0, Ug, Vo) in P~H(A'), where P : C* — R*
1s the projection to the real parts of the entries.

Proof. Any critical point of V is given by a solution of ‘9 V = gv = %V 83‘7 0,
and these equations are rewritten,

x Yy T 5 Yy w
l—2)? = —2(1-=), 1-2 = —y(1-% 1—2)?% = w(1l-2%), 1-w = ——.
e = —a(1-5), 1= = (-0, g = w(-Y), 1w =
From the first formula, we have that y = 2?/(2* — x + 1). By substituting this into the
second formula, we have that z = —z?/(23 — 32% + 2z — 1). Further, from the fourth

formula, we have that w = z/(z — 1). By substituting these into the third formula, we
have that

22+ 2" — 1228 + 252° — 312% + 252 — 1422 + 52 —1 = 0.

39



Its solutions are

r = —4.85443..., 1.57227..., 0.18596... = /=1-0.689115... ,
0.39462... &+ /-1-0.631293... , 0.560504... £ /-1 -0.387082... .

Among these, the third solution gives a solution in A’, from which we have that

xo = 0.18596... +/—-1-0.689115... , to = 0.208051... ++/—1-0.0536673... ,
yo = —0.842429... — /-1-0.289836... , s = 0.552738... +/-1-0.0183872... ,
2o = 0.320754... — v/-1-0.851242... , up = 0.807352... + /=1-0.0150681... ,
wy = 0.427274... +/—-1-0.717749... , vg = 0.164541... ++/-1-0.0286421... ,

where zq = €™V gy = e2TVlso oo — e2mV-luwo gnd wy = 2™V These give a
unique critical point in P~1(A’). O

The critical value of V at the critical point of Lemma 5.1 is presented by
¢ = V(t07 S0, Uo, UO)

1 . . T . Yo : . w2

= 2 Lig(xg) — Lisg(—) — Lig (=) — 2 Lis(zg) + Lis(w —|——>

o (2Lin(r0) = Lia(72) —~ Lia(£2) 2 Lia(a0) + Lin(u) +

1
+27r\/—1-E(tg—sg—ug—ir(uo—vo)z—to+80+vo) (68)
= 1.02552... — /—1-0.378738... .

Further, we put its real part to be ¢, ,

¢, = Reg = 1.02552... . (69)

5.4 Verifying the assumption of the Poisson summation formula

In this section, we verify the assumption of the Poisson summation formula in Lemma
5.2, which is used in the proof of Theorem 1.1 for the 75 knot in Section 5.1.

By computer calculation, we can see that the maximal value of ReV — ¢, is about
0.02. Therefore, in the proof of Lemma 5.2, it is sufficient to decrease, say, Re V(t +
5v—1, s, u, v) — 276 by 0.02, by moving 6 (though we do not use this value in the proof
of the lemma).

We put

XY, ZW) = ReV(t+XvV—1, s+ YV—1, u+Zv—1, 0+ Wv-1) —¢, .
Then, we have that

g—){, = 2Arg(1—:z:)—Arg(1—§)—27r(t—%), (70)
o 1
6_1{ = Arg (1—%)—Arg(1—g)—l—2ﬂ(s—§), (71)
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0

a—é = —2Arg(1—2)+ Arg (1—%)—%2%% (72)
) 1

a_f = Arg(l—w)+2m(u—v- 7). (73)

Lemma 5.2. V(t,s,u,v) —, satisfies the assumption of Proposition 2.2.

Proof. Since V' (t,s,u,v) converges uniformly to V(t,s,u,v) on A’, we show the proof
for V(t,s,u,v) instead of V(t,s,u,v). We show that 0A’ is null-homotopic in each of

(13)—(20).
As for (13) and (14), similarly as in the proof of Lemma 3.3, it is sufficient to show
that
—(2r—¢€') < ﬁ(X 0,0,0) < 27 —¢ (74)
aX 9 Y Y

for some &' > 0. Since 0.1 <t < 0.33,
1
—27?(5 —t) < Arg(l—z) < 0.
Further, since 0.15 < s —t < 0.45,
T 1
0 < Arg(l——) < 27T(§—8—|-t).
Yy

Hence, by (70),

—21(l—3s) < g—)f( < 2%(%—t).

Further, since s =t + (s —t) > 0.1 +0.15 = 0.25 and 0.1 < ¢,

of
—27 - 0. — 27 - 0.4.
2 -0.75 < X < 270

Therefore, (74) is satisfied, as required.
As for (15) and (16), similarly as above, it is sufficient to show that

—@2r—¢) < %(O,Y,O,O) < 2 —¢ (75)

for some & > 0. Since 0.15 < s —t < 0.45,
1
0 < Arg(l—g) < 27T(§—S—|—t).
Yy
Further, since 0.15 < u — s < 0.45,
Y 1
0 < Arg(l——) < 27(§—u+s).
z

Hence, by (71),
—2m(l—u) < S_{j < 2mt.
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Further, since 0.67 < v and t < 0.33,

of
—2m-0.33 < o5 < 2m-0.33

Therefore, (75) is satisfied, as required.
As for (17) and (18), similarly as above, it is sufficient to show that

—2r—¢) < %(O’O’Z’O) < 2 —¢ (76)

for some & > 0. Since 0.67 < u < 0.9,
1
0 < Arg(l—2) < 27T(u—§).
Further, since 0.15 < u — s < 0.45,

0 < Arg(1-Y) < o5 —uts)

Hence, by (72),

of 1
—2m2u—v—1) < 27 < 27r(s—u+v+§).
Since 2u —v <2u<2-09=18 and s—u+v=v—(u—s)<0.3—0.15=0.15,
of
=27 - 0. — 27 - 0.65.
m-0.8 < 57 < 27 -0.65

Therefore, (76) is satisfied, as required.
As for (19) and (20), similarly as above, it is sufficient to show that

—@2r—¢) < g—vj;(o,o, 0,W) < 21— ¢ (77)
for some & > 0. Since 0.05 < v < 0.3,
1

—2#(5—2)) < Arg(1—w) < 0.

Hence, by (73),

1
—27?(1 —u) < % < 27T(U—U — 5)
Since 0.67 < u and u — v < 0.9 — 0.05 = 0.85,
of
—27-033 < == < 27-0.35.
T el T
Therefore, (77) is satisfied, as required. ]
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5.5 Verifying the assumption of the saddle point method

In this section, we verify the assumption of the saddle point method in Lemma 5.5. In
order to show this lemma, we show Lemmas 5.3 and 5.4 in advance.
From the definition of f, we have that

F(X,Y,Z,W) = Re 277\1/__1 (2Lis(x) - Lig(g) — Lia(¥) — 2Lia(2) + Liz(w))
1

1 1
— 27T(t — §)X + 27r(5 — §)Y + 2mvZ + 27T(u —v— §)W’
where z = e27rﬁ(t+X\/—T)’ y = e2nﬁ(s+Yﬁ)’ 5 — 2V =1 (ut+ZV=1) g1 q w = 2™V -1 (v+WV-1)
Hence, since the contributions to f from (X,Y,Z) and W are independent, we consider
each of the contributions independently.

Lemma 5.3. Fizing X, Y and Z, we regard [ as a function of W.

(1) Ifu—v < %, then f is monotonically decreasing as a function of W.

(2) If u—v > %, then f has a unique minimal point as a function of W. In particular,
this minimal point goes to 0o as u — v — % + 0.

Proof. Since w = e2V=L+WV=D) and 0.05 < v < 0.3,

—27?(%—1}) < Arg(l—w) < 0,

af

and Arg (1 — w) is monotonically increasing as a function of W. Hence, by (73), g is

also monotonically increasing as a function of W. Further,

of 1

O e = 2700 = 5).
af B
W W_>_OO_ —27T(1—U) < 0

If u—v <1 then % is always negative, and (1) holds.

fu—v> %, then there is a unique zero of aa—vj;, which gives a unique minimal point of

f, and (2) holds. O

In order to consider the contribution to f from (X,Y, Z), we put

f(X,Y,Z) = Re le/__l (2 Liz(z) — Li2(§) - Li2(%) -2 Liz(Z))

1 1
— 27T(t — Q)X + 27T(s — §)Y + 2mvZ,
where 1 = e2™VIEHXV=D = 20V=T(sHYV=D) g 5 = 27V -T(w+2V=1),

Lemma 5.4. In the fiber of the projection C* — R* at (t,s,u,v) € A, we consider the

flow from (X,Y,Z) = (0,0,0) determined by the vector field (—g—j;, —g—{i,—g—é). Then,
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there exists a convex neighborhood U of (to, so, uo, Vo) such that the following (1) and (2)

holds.
(1) If (t,s,u,v) € U, then f has a unique minimal point, and the flow goes there.

(2) If (t,s,u,v) ¢ U, then the flow goes to infinity.

Proof. 1t is shown by concrete calculation that the Hesse matrix of f is presented by

14+ f %
l—2z 1-2 1-2 0
y y
z L Yy Y
27 Im Y S — £
1-2 1-2 1—% 1—%
Oy y % o, %
1—% 1—-2 1-%
a1+b1 —b1 0
= 27 —bl b1+bg —bg s
0 —bg a2+b2
where we put
I —2 Im — b Tm — b fm ——
ap = Im as = Im = Im = Im
1 _$7 2 _27 1 1 57 2 1 %7

noting that these numbers are positive. Further, the above matrix is equivalent, as a

quadratic form, to

a; + bl 0 0
or| o b, abh
a; + b1 as + bg
0 0 ag + bg

Hence, the Hesse matrix of f is always positive definite, and f is a convex function.
We consider the behavior of f at infinity. By (11), % f is approximated by the following

F(X,Y, Z),

0 ifX=0) (]o ifX>Y
—(3—s+1)(X-Y) if X <Y

F(X.)Y,Z) = ({—(1—275)X if X <0

0 ity > 7 0 it 2>0
TG eurgv—gitv<z) T\l c@u-1z £z <0

2

+ (%—t)X + (3—%)5/ + vZ.

Hence, if
F(X,Y,Z) s 00 as X*+Y?+ 7% — o, (78)

then the conclusion of (1) holds, since f is convex. Otherwise, the conclusion of (2) holds.
Therefore, we consider the condition of (78). Since F' is piecewise linear, this condition
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can be presented by a system of inequalities of ¢, s, u, v of degree 1. Hence, U of the lemma
is convex.

In order to complete the proof of the lemma, it is sufficient to show (78) in a neigh-
borhood of (g, so, 1o, vo). We show that, if s > %, then (78) holds, as follows. We rewrite
F(X,Y,Z) as

B (2 —1) if X >0 0 ifX>Y
F(X,Y,Z) = ({_( —t)X ifX<0> T ({_(%—3+t)(X—Y) ifX<Y>

(s—-HY-2) iYy>Z (s+v—13) it Z>0
+ ? + 2 .
—1-uw)(Y-2) iftY <Z —2u—s—v—3)Z ifZ <0

2

Since s > % by the assumption and ¢ < 0.33, s —t < 045, v <09, 2u—s—v =
(u—s)+u—wv>0.15+0.67— 0.3 = 0.52, each of the summands of the right-hand side
of the above formula is positive. Hence, there exists some constant C' such that

F(X,Y,Z) > C(|X|+|X=Y|+|Y-Z|+ |Z]).
Therefore, (78) holds in a neighborhood of (g, s¢, ug, vo), as required. O]
Lemma 5.5. When we apply Proposition 2.4 to (66), the assumption of Proposition 2.4
holds.

Proof. We show that there exists a homotopy Aj (0 < ¢ < 1) between Aj = A" and A]
such that

(tca SC7UC7UC) S All? (79)
A} = {(te, se,ue,ve)} € {(t, s,u,v) € C* ‘ ReV(t,s,u,v) < Sr s (80)
oAy < {(t, s, u,v) € C*| ReV(t,s,u,v) < Sn}- (81)

In the fiber of the projection C* — R* at (¢,s,u,v) € A/, we consider the flow from
(X,Y,Z, W) = (0,0,0,0) determined by the vector field (—%,—%,—%,—%). As
mentioned at the beginning of this section, the contributions to f from (XY, 7) and W
are independent. Hence, by Lemmas 5.3 and 5.4, there exists a convex neighborhood U’

of (to, So, g, Vo) such that the following (1) and (2) holds.
(1) If (¢, s,u,v) € U’, then f has a unique minimal point, and the flow goes there.
(2) If (¢, s,u,v) ¢ U’, then the flow goes to infinity.

We put the homotopy Aj in a similar way as in the proof of Lemma 4.7.
We can show (79), (80) and (80) by using Lemma 5.1 in a similar way as the proof of
Lemma 3.9. [l

6 The 75 knot

In this section, we show Theorem 1.1 for the 74 knot. We give a proof of the theorem in
Section 6.1, using lemmas shown in Sections 6.2-6.5.
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6.1 Proof of Theorem 1.1 for the 74 knot

In this section, we show a proof of Theorem 1.1 for the 75 knot.
The 7¢ knot is the closure of the following tangle.

As shown in [32], we can put the labelings of edges adjacent to the unbounded regions as
shown above. Hence, from the definition of the Kashaev invariant, the Kashaev invariant

of the 75 knot is presented by

_ ~1/2 N gz Ng N gz
ol = 2 X o B @@ Ea @@
» Nq%_k " Nq_%"‘k " Nq% " Nq%

(ON-k(@Dr-1-1(0)1  (Dr—( @D i1 @D Nt @1 @DN-m-1(Dm—t  ( @Dm(@) N=m—1

_ N°g
o<icick ()i(@i(0)j—i-1(D) ;-1 (@D N5 (D k-5 (D) N+ (@) N (D r—1-1(0)1(D)s
0<I<k<N

. N°g
o< (0)i(@)i(0)j-i(@); @D N-j-1 (D) N=j—k-1(D)k( @Dk (@) N——1-1(0)1 (@)1’
0<I<k<N

where we obtain the last equality by replacing j with j 4+ 1 and replacing k£ with N — k.

Proof of Theorem 1.1 for the 7 knot. By (5), the above presentation of ( 7¢ ), is rewritten

_ - 2i+1 27+1 2k+1 2[+1
To)y = Nt Y (NV )
0<i<N—j
0<4,k, j+k<N
0<I<N-—k
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where we put

V(t.s.w0) = (0t = (1= 1)+ (s — t 4+ o) — () = (1~ 5)
+¢@—s—u+§%)+¢@%—ﬂ1—UMﬂMU+U—§%)+¢@)
— o= ) = 5p(55) +66(1— 51)
— %<2¢(t)+gp(s—t+%)+50(1—S—U+%>+290(u)
—¢(u+v—%)+2¢(v))+27T—\1/__1%2—%10g1\f+w§—7;2\/$
~|—27r\/—_1-%(t2+52+u2+02—t—3—u—v+;).

Here, we obtain the last equality by (9) and (10). Hence, by putting

- 11
Vit = V(¢ — log N
(t,s,u,v) (,s,u,v)+2N og N,

the presentation of (74 ), is rewritten

(To)y = NV Y <xp(vi

ik lET
2i4+1 2541 2k+4+1 2141
(&4 55 5 ea

2%i+1 2j+1 %+12H¢D
2N’ 2N ' 2N ' 2N /)

where the range of (Zt!, 2L£1 2041 2Ll of the sum is given by the following domain,

A = {(t,s,u,v)€R4|0§t§s§1—u, 0 <u,v, u+v§1}.

By Proposition 2.1, as N — oo, V/(t,s,u,v) converges to the following V(t, s,u,v) in the
interior of A,

- 1
Vit,suv) = :T(2Lh@¥“ﬁjﬂ-%LQQQMPJ“*D—+Lh@*%vfﬂﬁﬂb
2
+ 2Lip(e™7TH) — Lip(e™ 7T 04) 12 Lip (2V717) + )
1 2
+27r\/—1-§(t2+32+u2+02—t—s—u—v+§).

By concrete calculation, we can check that the boundary of A is included in the domain
{(t, s,u,v) € A ‘ ReV(t, S, U, V) < G — 5} (82)

for some sufficiently small £ > 0, where we put ¢, = 1.1276... as in (87); we will know

later that this value is equal to the real part of the critical value of V at the critical point
of Lemma 6.1. Hence, similarly as in Section 3.1, we choose a new domain A’ which
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satisfies that A — A’ C (82), as

A = {(t,s,u,v) €A

0.056<t<0.34, 025<s5<0.64, 0.15<u <048
01 <v <045, 01<s—-t<0.45, 055<s4+u<09

(83)
where we calculate the concrete values of the bounds of these inequalities in Section 6.2.
Hence, since A — A’ C (82), we obtain the second equality of the following formula,

(Te)y = VN2 3 exp(N'V(
i,5,k,lEZL

2i+1 2j+1 2k+1 2041
(2N’2N72N’ JeA

B 2% 4+1 2j+1 2k+1 241 B
— N[ N2 (N-V —N> O(e=Ne
¢ ( QHZMEZQXP v an ey aw )~ Ns) +H0E™) ),

2i+1 2j+1 2k+1 2l 1
( /L+ 2 J+ ) 2;’\; ’ + )EAI

%+1 2 +1 2k+1 2z+1)_N>
9N ' 2N ' 2N ' 2N o

for some ¢ > 0.

Further, by Proposition 2.2 (Poisson summation formula), the above sum is presented
by

(T6), = eN* (N7/2q/ exp (N -V (t,s,u,v) — N¢)dtdsdudv + O(e_N5)>, (84)

noting that we verify the assumption of Proposition 2.2 in Lemma 6.2. Furthermore, by
Proposition 2.4 (saddle point method), there exist some ks such that

d
(76)y = N7%exp (N - V(te, Ses e, vc)) - (3\[3 (det(— H)>—1/2 <1 +Zﬂghi+0(hd+l)>7

for any d > 0, noting that we verify the assumption of Proposition 2.4 in Lemma 6.6. Here,
(te, Se, Ue, v.) is the critical point of V' which corresponds to the critical point (o, so, uo, vo)

of V of Lemma 6.1, where V is the limit of V at N — oo whose concrete presentation is
given in Section 6.2, and H is the Hesse matrix of V' at (., S, Ue, Uc).
We calculate the right-hand side of the above formula. Similarly as in Section 3.1, we
have that
V(to, So, Ug, ’Uo) = ¢+ O(h)

Therefore, there exist some k;’s such that
d
<76 >N _ 6N§N3/2w . (1 + Z Iiihi + O(hd+1)>7
i=1

for any d > 0. Hence, we obtain the theorem for the 74 knot. O]
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6.2 Estimate of the range of A’

In this section, we calculate the concrete values of the bounds of the inequalities in (83)
so that they satisfy that A — A’ C (82).

Putting A as in Section 2.2, we have that
ReV(t,s,u,v) = 2A(t) +Als —t) — A(s +u) + 2Au) — Au+v) +2A(v).
We consider the domain
{(t,s,u,v) € A| 2A(t) + A(s —t) — A(s +u) + 2A(u) — Alu+v) +2A(v) > ¢, }, (85)

where we put ¢, = 1.1276... as in (87). The aim of this section is to show that this
domain is included in the interior of the domain A’ of (83). For this purpose, we show
the estimates of the defining inequalities of (83) for (¢, s, u,v) in (85).

We calculate the minimal value t,,;;, and the maximal value ¢, of t. They are solutions
of the system of the following equations,

((2A() + A(s —t) = (s +u) +2A(u) — Alu+0) +2A(v) = o,
%(2/\(15)4-/\(3—15)—A(s+u)+2A(u)—A(u—i—v)—i—QA(U)) = 0,
%(QA(t)JrA(s—t)—A(s+u)+2/\(u)—A(U+U)+2A(U)) = 0,
9 QA + Als — 1) = A(s+ 1) + 2A(u) — A(u+0) +2A(0)) = 0.

\ Ov

We note that there are exactly two solutions of this system of equations corresponding
to the maximal and minimal values of ¢ (see Appendix A). By calculating a solution of
these equations by Newton’s method from (¢,s,u,v) = (0.1,0.35,0.35,0.25), we obtain
tmin = 0.103312... ; and from (¢, s, u,v) = (0.3,0.5,0.3,0.25), we obtain ¢, = 0.319994... .
Therefore, we obtain an estimate of ¢t in A’ as

0.06 <t < 0.34.

We calculate the minimal value sp;, and the maximal value sp., of s. They are
solutions of the system of the following equations,

(2A(t) +A(s —t) — A(s +u) +2A(u) — Alu+v) +2A(0) = s,
(2A() + A(s —t) = A(s+u) + 2A(u) — Alu+v) +2A(v)) = 0,

(2A() + A(s —t) = A(s+u) + 2A(u) — Alu+v) +2A(v)) = 0,

SOSJ RSO ESS

\ %(QA(t)%—A(s—t)—A(s+u)—|—2A(u)—A(u+v)+2A(U)) = 0.

We note that there are exactly two solutions of this system of equations corresponding to
the maximal and minimal values of s (see Appendix A). By calculating a solution of these
equations by Newton’s method from (¢, s, u,v) = (0.15,0.3,0.35,0.25), we obtain Sy, =

49



0.286689... , and from (¢, s,u,v) = (0.25,0.6,0.25,0.25), we obtain sy., = 0.610894... .
Therefore, we obtain an estimate of s in A’ as

025 < s < 0.64.

We calculate the minimal value uy;, and the maximal value uy., of u. They are
solutions of the system of the following equations,

;

2A(8) + A(s — 1) = Als +u) +2A(u) = Alu+v) +2A0) = g,
%(QA(t)—i—A(s—t)—A(s+u)—|—2A(u)—A(u+v)+2A(U)) — 0,

) %(2A(t)+/\(s—t)—A(s+u)—i—2A(u)—A(u+v)+2A(v)) = 0,

\%(2A(t)+A(s—t)—A(s+u)+2A(u)—A(u+v)+2A(U)) = 0.

We note that there are exactly two solutions of this system of equations corresponding to
the maximal and minimal values of u (see Appendix A). By calculating a solution of these
equations by Newton’s method from (¢,s,u,v) = (0.2,0.5,0.2,0.25), we obtain uy;, =
0.182665... , and from (t,s,u,v) = (0.2,0.35,0.45,0.2), we obtain uy., = 0.455212... .
Therefore, we obtain an estimate of u in A’ as

0.15 < uw < 0.48.

We calculate the minimal value vy, and the maximal value vy, of v. They are
solutions of the system of the following equations,

)—i—A(s—t)—A(s—l—u)—i-QA(u)—A(u+v)+2/\(v) = Sn
£+ A(s —t) = A(s+u) +2A(u) — A(u+v) +2A(v)) = 0,

|Q>Q’|Q>SB|Q>

2A(t
(2A
( )+ A(s—1t)— A(s+u)+2A(u)—A(u+v)+2A(v)) = 0,
50 (24

\ )+ As—t) = A(s+u) +2Au) — Au+v) +2A(v)) = 0.

We note that there are exactly two solutions of this system of equations corresponding
to the maximal and minimal values of v (see Appendix A). By calculating a solution
of these equations by Newton’s method from (¢,s,u,v) = (0.2,0.45,0.3,0.1), we obtain

Umin = 0.13126... , and from (¢, s, u,v) = (0.2,0.45,0.3,0.4), we obtain vy, = 0.390199... .
Therefore, we obtain an estimate of v in A’ as

0.1 < v < 045.

We calculate the minimal value (s — t)y,;, and the maximal value (s — t)yay of s — t.
Putting w = s — ¢, its minimal and maximal values are solutions of the system of the
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following equations,
2A(s —w) + Aw) —A(s+u) +2A(u) — Alu+v) +2A(v) = g,
(2 w) + Aw) — A(s +u) +2A(uw) — A(u+v) +2A(v)) = 0,

(2A3— )+ Alw) — A(s +u) + 2A(u) — A(u+v) +2A(v)) = 0,

SRS RSIRS

\ (2/\(5 —w) + Aw) — A(s+u) + 2A(u) — A(u+v) +2A(v)) = 0.

We note that there are exactly two solutions of this system of equations corresponding
to the maximal and minimal values of s — ¢ (see Appendix A). By calculating a solution
of these equations by Newton’s method from (w, s, u,v) = (0.1,0.3,0.35,0.25), we obtain
($—t)min = 0.105664... , and from (w, s, u,v) = (0.4, 0.6,0.25,0.25), we obtain (s —1)max =
0.411943... . Therefore, we obtain an estimate of s — ¢ in A’ as

0.1 < s—t < 045.

We calculate the minimal value (s + ©)n;, and the maximal value (s + @) pax of s+ .
Putting w’ = s + u, its minimal and maximal values are solutions of the system of the
following equations,

(2A(t) + A(w' —u—1t) — Aw') +2A(u) — A(u+v) +2A0) = s,

g(Z At) + A" —u—1t) — A(w') + 2A(u) — Alu+v) +2A(v)) = 0,
0

ou
0

L v

We note that there are exactly two solutions of this system of equations corresponding to
the maximal and minimal values of s + u (see Appendix A). By calculating a solution of
these equations by Newton’s method from (w',t,u,v) = (0.6,0.15,0.25,0.25), we obtain
($+u)min = 0.588057... , and from (w', t, u,v) = (0.9,0.2,0.35,0.25), we obtain (s+u)max =
0.894336... . Therefore, we obtain an estimate of s +u in A’ as

Ny

— (2A(t) + AW —u—1t) = Aw') + 2A(u) — A(u+v) +2A(v)) = 0,

—(2A(t) + A(w' —u—1t) — Aw') + 2A(u) — A(u+v) +2A(v)) = 0.

0.5 < s+u < 0.9.

6.3 Calculation of the critical value

In this section, we calculate the concrete value of a critical point of V.
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The differentials of V' are presented by

D ¥ts.u) = ~2log(1— ) +log (1~ L) 22V (1- 1),

oy ~ log(1-Y 1 (s L

%V(t,s,u, v) = —log (1 $) + log (1 yz) +2m/—1 (s 2),

0 ~ 1 1
%V(t, s,u,v) = —2log(l—z)+log (1 — %) +log(1 — zw) + 2mv/—1 (u — 5),
(%V(t, s,u,v) = —2log(l —w) +log(1 — zw) + 2mv—1 (v — %),

where x = 2™Vl gy = 2™V 5 = 2V and o = 27V1Y,

Lemma 6.1. V has a unique critical point (Lo, so, ug, vo) in P~1(A'), where P : C* — R*
is the projection to the real parts of the entries.

o . . N . . . o ", o Y o ", o %
Proof. Any critical point of V' is given by a solution of 5,V = -V = &=V = -V = 0,
and these equations are rewritten,
)
1-2)? = —2(1-2
-2y = —(1-Y),
Y 1
1—-=2 = —y(l——
, y( yz),
1
1-2)? = —2(1—-—)(1 -
(122 = —=(1= —)(1—zu),
(1—-w)? = —w(l - zw).

From the first formula, we have that y = 22 — 2 + 1. Hence, from the second formula,
we have that z = z/(2® — 22? + 3z — 1). Further, from the third formula, we have that

w = z(2? — 2x + 2)(2? — x + 2). By substituting these into the fourth formula, we have

that
2% — 6% + 2027 — 4325 + 652° — 692* + 502° — 2322 +H5r —1 = 0.

Its solutions are

x = 0.0848864... £ —1-0.271383... , 0.558614... £ /—-1-1.43795... |
0.629127... £/-1-1.09993... , 1.09612... £/-1-1.16718... ; 1.26251... .

Among these, the solution 0.558614... +/—1-1.43795... gives a solution in A’ from which
we have that

xo = 0.558614... + /—1-1.43795... , to = 0.191027... — v/=1-0.0689933... ,
Yo = —1.31426... +/—1-0.168567... , so = 0.479698... — /—1-0.0447913... |
zo = —0.23704... + /=1 -1.46509... , up = 0.275529... — /=1-0.0628402... ,
wy = —0.0892864... +/—-1-0.842785... , vg = 0.266799... + /-1 -0.0263342... ,

where xy = 2™Vl gy = e2Volso oo = e2mV-luwo gand wy = 2™V 1%, These give a
unique critical point in P~1(A’). O
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The critical value of V at the critical point of Lemma 6.1 is presented by

¢ = v(t07 S0, Uo, UD)
2

= ﬁ (2 Lig(z0) + Lig(i—z) + Lig(ﬁ) + 2 Lig(20) — Lia(2owo) + 2 Lia(wp) + %)
2mV/TT (4 sl o~ s~ ) (86)
= 1.1276... — /=1 - 0.57266... .
Further, we put its real part to be ¢, ,
¢, = Re¢ = 1.1276... . (87)

6.4 Verifying the assumption of the Poisson summation formula

In this section, we verify the assumption of the Poisson summation formula in Lemma
6.2, which is used in the proof of Theorem 1.1 for the 7¢ knot in Section 6.1.

By computer calculation, we can see that the maximal value of ReV — ¢, is about
0.06. Therefore, in the proof of Lemma 6.2, it is sufficient to decrease, say, Re V(t +
5v—1, s, u, v) — 276 by 0.06, by moving 6 (though we do not use this value in the proof
of the lemma).

We put

FX,Y,Z,W) = ReV(t+ X1, s+ YV=1,u+ ZV—1,0+Wv=1) —¢,.

Then, we have that

(%’; = 2Arg(1—x)—Arg(1—%)—QW(t—%), (88)
o~ mg(1-Y) - A (1- ) 25— ), (59)
o~ 2a-2)-Am(- D) A —2mu—g). (0
g_va - 2Arg(1—w)—Arg(l—zw)—%r(v—%), (91)

where 7 — 62#\/j1(t+X\/j1)’ y = 627T\E(s+Y\ﬁ)7 5 — 2VL(utZV=T) gnd w = 27V -1 (+WV=I)

Lemma 6.2. V(t,s,u,v) — g, satisfies the assumption of Proposition 2.2.

Proof. Since V(t,s,u,v) converges uniformly to V(t, s,u,v) on A’ we show the proof
for V(t,s,u,v) instead of V (¢, s,u,v). We show that JA’ is null-homotopic in each of

(13)-(20).
As for (13) and (14), similarly as in the proof of Lemma 3.3, it is sufficient to show
that
_@r—2) < Y x000) < 2m—e (92)
aX 7 Y Y
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for some &’ > 0. Since 0.05 <t < 0.34,
1
—27r(§ —1) < Arg(1—z) < 0.

Further, since 0.1 < s —1t < 0.45,

1 Yy

—27r(— —3+t) < Arg (1 — —) < 0.

2 T

Hence, by (88),

1 of
Since 0.05 <t and 0.25 < s,
of
—2m-0.45 —_— 27 - 0.75.
s < X < Zm

Therefore, (92) is satisfied, as required.
As for (15) and (16), similarly as above, it is sufficient to show that

of

—(27T — 5/) < 8—Y(O, Y, 0, O) < 2mr—¢ (93)
for some &' > 0. Since 0.1 < s —¢ < 0.45,
1 Yy
—27r(§ —3+t) < Arg (1 — —) < 0.
x

Further, since 0.55 < s+ u < 0.9,

1 1
—2m(s+u— 5) < Arg(l—%) < 0.
Hence, by (89),
of

8_Y < 27u.

=21t <
Since t < 0.34 and u < 0.48,

of

97034 <
i B%

< 27 -0.48.

Therefore, (93) is satisfied, as required.
As for (17) and (18), similarly as above, it is sufficient to show that

—@r—¢) < g—é(o,o,z,()) < ¢ (94)

for some &’ > 0. Since 0.15 < u < 0.48,

—27r(%—u) < Arg(l—2) < 0.
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Further, since 0.55 < s+ u < 0.9,

1 1
—27r(s+u—§) < Arg(l—ﬁ) < 0.

Furthermore, since 0.25 < u + v < 0.93,

min { — 27?(% —u—v), 0} < Arg(l —zw) < max{0, 2r(u+v— %)}
Hence, by (90),
of , 1 .
3z min { —27r(§—u), —2rv} > min{ —27-0.35, —27-0.45} = —2m-0.45,
of

57 < nlax{Qﬁ(%—i—s—u—v), 2rs} < max {27 -0.89, 27-0.64} = 27 -0.89,

since 0.15 < wu, 0.1 <v <0.45 and s < 0.64. Therefore, (94) is satisfied, as required.
As for (19) and (20), similarly as above, it is sufficient to show that

—(2r—¢) < g—vj;(o,o, 0,W) < 2r—¢ (95)

for some &’ > 0. Since 0.15 < u < 0.48,
1
—27r(§ —u) < Arg(l—2) < 0.

Further, since 0.25 < u + v < 0.93,

min{—ZW(%—u—v), 0} < Arg(l—zw) < max {0, 27T(u+v—%)}.

Hence, by (91),

0 1

% > min { — 27r(5 —v), —27u} > min{ —27-04, —27-048} = —27-0.48,

0 1

ﬁ < max {27r(1 —Uu — 22}), 27?(5 — U)} < max {27r -0.65, 27 - 0.4} = 27 -0.65,
since 0.1 < v and 0.15 < u < 0.48. Therefore, (95) is satisfied, as required. O

6.5 Verifying the assumption of the saddle point method

In this section, we verify the assumption of the saddle point method in Lemma 6.6. In
order to show this lemma, we show Lemmas 6.3-6.5 in advance.

Lemma 6.3. In the fiber of the projection C* — R* at (t,s,u,v) € A’ satisfying that
s<sandu+v>3, f—o00as X?+Y2+ 22+ W? - 0.
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Proof. By (11), f is approximated by the following function,

B G-0)X ifX>0 0 ify >X
FXY.2W) = ({—(%—t)X ifX<0> * ({(s—t——)( - X) ifY<X>
1 0 if Y+Z >0 (3-uw)Z ifZ>0
TGy _<{(s+u——)(Y+Z) ifY+Z<O> +({—( —u)Z ifZ<O>
0 if Z+W >0 (—v)W HW=>0
- (utv—3)Z+W) f Z4+W <0 " —(3 o)W ifW <0 )

We note that all summands of the right-hand side except for the third summand are
non-negative. Further, the sum of the first three summands are rewritten,

(1-t—s)X if X>0 3—s)(Y—-X) ifY > X
+ 2
—(s—t)X ifX<0 —t(Y — X) ifYy <X |

Ll

Hence,

F(X,Y,Z,W) > (

1—t—s)X ifX20> . <{(§—s)(Y—X) iszX)

{—(s—t)X if X <0 -t (Y - X) ity <X

s5—uwZ ifZ>0 (3—v)W HW=>0
: , + ! .
~(i-uw)Z ifZ<0 —(3—v)W if W <0
> C(IX]+ X = Y] +]2]+[W]),

+

for some constant C' > 0. Therefore, we obtain the lemma. O

In the fiber of the projection C* — R* at (¢, s,u,v) € A/, we consider the flow from
(X,Y, Z, W) = (0,0,0,0) determined by the vector ﬁeld1 (—8—X, —g—{i, —g—é, —88—‘/{/) in the

following two lemmas, depending on the sign of u + v — 3.

Lemma 6.4. In the fiber of the projection C* — R* at (t,s,u,v) € A, we consider the
flow from (X, Y, Z,W) = (0,0,0,0) determined by the vector field (—a—X, —g—{;, —g—é, —aa—VJ;/).
There exists a convex neighborhood U of (ty, So, uo, vo) Such that the following (1) and (2)
holds.

(1) If (t,s,u,v) € U and u +v > %, then f has a unique minimal point, and the flow
goes there.

(2) If (t,s,u,v) ¢ U and u+v > 5, then the flow goes to infinity.

Proof. Similarly as the proof of Lemma 4.5, the Hesse matrix of f is calculated as

2&1 + bl _bl 0 0
o —b; by + by by 0
0 bg 2@3 + b2 + bg bg ’
0 0 bg 261,4 + b3
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where we put

1 1 1
a; = Im , az = Im , ay = Im ,
11—z —z —w
1 1 —1
by =1 by =1 bsy =1
1 ml ga 2 ml_ia 3 m]_—Z’I,U’

noting that these numbers are positive. The above matrix is equivalent, as a quadratic
form, to

2&1 + bl 0 0 0
o 0 2@2 -+ b2 b2 0
0 bz 2@3 + bg + b3 b3 ’
0 0 b3 2(14 + b3

where we put as = aib1/(2a; + by). Further, this matrix is equivalent, as a quadratic
form, to

2&1 + b1 0 0 0
o 0 2&2 + b2 0 0
0 0 2&% + 2CL3 + b3 bg ’
0 0 bg 2&4 + b3

where we put a} = asby/(2as + by). Furthermore, the following matrix is positive definite,

2(13 + bg b3
bs 2a4 + b3 )’
since we can verify that its trace and determinant are positive. Therefore, the Hesse

matrix of f is positive definite, and f is a convex function.
Hence, since % f is approximated by F' as in the proof of Lemma 6.3, if

F(X,Y,Z W) =00 as X*+Y*+ 722+ W? = oo, (96)

then the conclusion of (1) holds, since f is convex. Otherwise, the conclusion of (2) holds.
Therefore, we consider the condition of (96). Since F' is piecewise linear, this condition
can be presented by a system of inequalities of ¢, s, u,v of degree 1. Hence, U of the
lemma is convex. Further, by Lemma 6.3, (96) holds in a neighborhood of (g, so, ug, vo).
Therefore, we obtain the lemma. O

Lemma 6.5. In the fiber of the projection C* — R* at (t,s,u,v) € A, we consider the
flow from (X, Y, Z W) = (0,0,0,0) determined by the vector field (—g—)’;, —g—{;, —g—é, —aa—vj[c,).
There exists a convex neighborhood U of (ty, So, uo, vo) such that the following (1) and (2)
holds.

(1) If (t,s,u,v) € U and u+v < %, then f has a unique minimal point, and the flow
goes there.

(2) If (t,s,u,v) ¢ U and u+v < %, then the flow goes to infinity.
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Proof. Similarly as the proof of Lemma 6.4, the Hesse matrix of f is calculated as

2a1 + bl —b1 0 0
o —b; by + by by 0
0 bg 2(13 + bg - bé —bg ’
0 0 —bé 2&4 — bé

where we put aq, as, a4, by, by as in the proof of Lemma 6.4, and put

by, = 1

3 T e

noting that these numbers are positive. We will show below that the flow of the lemma
always goes to the domain that Z < 0 and W < 0, and that

" 5 , | is positive definite in this domain. (97)
—03 as — by
Then, we can show the lemma, in the same way as the proof of Lemma 6.4.

We show that the flow of the lemma goes to the domain that Z < 0 and W < 0, as

follows. When Z > 0, since 0.15 < u < 0.48 and 0.25 < u+v < %, Arg (1—2) > —ﬂ(%—u)
and Arg (1 —zw) < 0. Hence, by (90), % > 0, and the flow goes in a direction decreasing
7. Further, when W > 0, we can similarly show that g_v{/ > 0, and the flow goes in a
direction decreasing W. Therefore, the flow goes to the domain that Z < 0 and W < 0.

We show (97), as follows. It is sufficient to show that

(the trace of the matrix of (97)) = 2w (a3 + as —b3) > 0, (98)

2 1 1
(the determinant of the matrix of (97)) = 2azasbs(— — — ——) > 0. (99)
bg as ay
We can show that (99) = (98), in the same way as in the proof of Lemma 4.6. We show
(99), as follows. Similarly as in the proof of Lemma 4.6, we have that

r e?™? 4 e72m% _ 2 cos 2mu L W =W _ 9 cos 27v
as sin 27w ’ ay sin 27v ’
B 627r(Z+W) 4 6727r(Z+W) — 9 cos 27T(U + U)
v, sin 27 (u + v)
Hence, the differential of bl, — é — i with respect to Z is given by
3
1 o .2 1 1 627r(Z+W) _ e—27r(Z+W) 272 _ o272
S - 9. _
2r 07 (bg as a4) sin 27 (u + v) sin 27w

Since 0.15 < u < £ — v < 0.4, sin 27w < sin(27 - 0.1) = 0.587785... . Hence, 2/ sin 27 (u +
v) > 2 > 1/sin27ru. Further, since Z < 0 and W < 0, e*Z+W) _ o=2n(Z+W) <
e?™? — ¢=27Z < (). Hence, the above formula is non-positive. Therefore, it is sufficient to
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show (99) when Z = 0. In a similar way, we can show that it is sufficient to show (99)
when W = 0. When Z = W = 0, similarly as in the proof of Lemma 4.6, we have that

1/2 1 1
_<_____> = 2tanm(u+v) — tan7u — tanmv > 0,
2 bé as ay

since 0 <u<u+wv< % and 0 <v<u+v< % Hence, we obtain (99), as required. [

Lemma 6.6. When we apply Proposition 2.4 to (84), the assumption of Proposition 2.}
holds.

Proof. We show that there exists a homotopy A5 (0 < 6 < 1) between Ay = A" and A}
such that

(tca SC,UC,UC) € All? (100)
AL —{(te sesue,ve)} C {(ts,u,0) € CH| ReV(t,s,u,0) <}, (101)
OA; C {(t,s,u,v) ecCt ‘ ReV(t,s,u,v) < gR}. (102)

(X,Y,Z, W) = (0,0,0,0) determined by the vector field (—%,—%,—%,—%). By

Lemmas 6.3, 6.4 and 6.5, there exists a convex neighborhood U’ of (g, so, ug, vg) such
that the following (1) and (2) holds.

(1) If (¢, s,u,v) € U’, then f has a unique minimal point, and the flow goes there.

(2) If (¢, s,u,v) ¢ U’, then the flow goes to infinity.

We put the homotopy Aj in a similar way as in the proof of Lemma 4.7.
We can show (100), (101) and (101) by using Lemma 6.1 in a similar way as the proof
of Lemma 3.9. [

7 The 7; knot

In this section, we show Theorem 1.1 for the 7; knot. We give a proof of the theorem in
Section 7.1, using lemmas shown in Sections 7.2-7.5.

7.1 Proof of Theorem 1.1 for the 7; knot

In this section, we show a proof of Theorem 1.1 for the 7; knot.
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The 77 knot is the closure of the following tangle.

As shown in [32], we can put the labelings of edges adjacent to the unbounded regions as
shown above. Hence, from the definition of the Kashaev invariant, the Kashaev invariant

of the 77 knot is presented by

1/2 qu% Nq%ﬂ' quéﬂ'
(T = 2 ax @vnos D@ 1@ @@
N g3 Nqg 3! N g3+ Nq>
D@D @Dr . @D D@1 @@ @DN 1 (DN (@1
_ N5
- 0<§<N (ON=i( D N=i(@)i—j=1(0);( @) (D k= (@) N1 (@) N—b—1 (@D -1 (q)1(T):
J N5

:Qgi’j’,;ﬂw (@)i(@i(Dy-i—5-1(0) (D (D541 (D 1@k (D) v —k-1-1(0)1 (@)

Y

where we obtain the last equality by replacing ¢ and k& with N —¢ and N —k—1 respectively.

Proof of Theorem 1.1 for the T; knot. By (5), the above presentation of (77 ),, is rewritten

241 2j+1 2%+1 2+1
_ 5
(Tr)y = N° ), eXp(NV< 9N ° 2N ' 2N ' 2N >>’

0<i,j,k,l i+j<N
JFE<N, k+I<N

where we put

Vit5,m0) = (90— o1 1) = ot 5~ 52) +(s) — 91— 5)
+cp(1—s—u+%)+go(u)—cp(1—u)—g0(u+v—%)%—w(v)

— (1 — ) —5¢(%) +6p(1— %))
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ON ON

w2 11 T —1 T —1
_ R ) ) T 1oe N _
plutv=gy) +2000)) + 5= o~ gyl N + 5~ o

2
+ 2my/— (t2+s +u’ 4 v? t—s—u—v+§).

= (2000 ot +5 - 5) +20(s) +o(1 — 5 —ut o) + 200
1

Here, we obtain the last equality by (9) and (10). Hence, by putting
11
V(t,s,u,v) = V(t,s,u, v)+ﬁlogN

the presentation of (7;), is rewritten

_ 21+1 29+1 2k+1 20+1
Trhy = N71/2 (Vv )
{7y MZZEZ exp v Tav o Tav o aw )

2i41 2j+1 2k+1 20+1
(2N’2N’2N’2N)€A

where the range of (%t 2L 2kl 1251 of the sum is given by the following domain,

A = {(t,s,u,v)éRﬂOSt,s,u,v, t+s<1, s+u<l, u+v§1}.

By Proposition 2.1, as N — oo, V/(¢,s,u,v) converges to the following V(t, s,u,v) in the
interior of A,

1
2my/—1

2
+ Liy (e—Qanl(s+u)) +9 LiQ(QQW\/?lu) _ Li2(e2wﬁ(u+v)) +9 L12(62ﬂ\/j1v) + %)

V(t, S, u,v) =

(2Lia(e711) = Lip(e2V=10H) 4 2 Lig (27 71%)

2
+ 27V — (t2+s +u? +v? —t—s—u—v+3)
By concrete calculation, we can check that the boundary of A is included in the domain
{(t, s,u,v) € A ‘ Re V(t, S, U, V) < G — 5} (103)

for some sufficiently small ¢ > 0, where we put ¢, = 1.21648... as in (109); we will know
later that this value is equal to the real part of the critical value of V' at the critical point
of Lemma 7.1. Hence, similarly as in Section 3.1, we choose a new domain A’, which

satisfies that A — A" C (103), as

(104)

/o
A= {(1@37“7”6A 0.26 < u < 0.45, 0.1<v<0.4

0.1 <t<04, 0.26<s<0.45 }

where we calculate the concrete values of the bounds of these inequalities in Section 7.2.
Hence, since A — A’ C (103), we obtain the second equality of the following formula,

) 2%+1 2+1 2k+1 2+1
7 — NenN—1/2 (N.V —N)
(Tr)y = ¢ ij%lzezexp Cov o o e )

2i4+1 2541 2k+4+1 2i+1
(2N’2N’2N’2N)EA
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B %+1 2+1 2%k+1 2+1 B
— eNs N1/2 (NV _N> 9] Ne
¢ ( ij%:EZeXp (G 2w v o)~ M) T0E™)

2i4+1 2j+1 2k+1 20+1 ’
(2N’2N72N’2N)6A

for some ¢ > 0.
Further, by Proposition 2.2 (Poisson summation formula), the above sum is presented
by

(T7), = eN° <N7/2/ exp (N - V(t, s,u,v) — N¢)dtdsdudv + O(e_Ng)), (105)

noting that we verify the assumption of Proposition 2.2 in Lemma 7.2. Furthermore, by
Proposition 2.4 (saddle point method), there exist some ks such that

9 d
(3\2 (det(—H))™"* (1 + Zl kiR 4 O(hd“)),

<77 >N = N7/2 exp (N ’ V(tc,sc,uc,vc)) :

for any d > 0, noting that we verify the assumption of Proposition 2.4 in Lemma 7.8. Here,
(tey Ses Ue, Ve ) is the critical point of V' which corresponds to the critical point (¢, so, ug, vo)
of V of Lemma 7.1, where V is the limit of V at N — co whose concrete presentation is
given in Section 7.2, and H is the Hesse matrix of V' at (., s¢, e, Ve).
We calculate the right-hand side of the above formula. Similarly as in Section 3.1, we
have that
V(to, So, Ug, ’Uo) = ¢+ O(h)

Therefore, there exist some k;’s such that

d
(77), = eV N32u. <1+Zliihi+0<ﬁd+1)>,

i=1

for any d > 0. Hence, we obtain the theorem for the 7; knot. m

7.2 Estimate of the range of A’

In this section, we calculate the concrete values of the bounds of the inequalities in (104)
so that they satisfy that A — A" C (103).

Putting A as in Section 2.2, we have that
ReV(t,s,u,v) = 2A(t) — At +5)+2A(s) — A(s +u) + 2A(u) — Alu+v) +2A(v).
We consider the domain
{(t,s,u,v) € A 2A(t) = A(t+5)+2A(s) = A(s+u)+2A(u) — A(u+v) +2A(v) > g},
(106)
where we put ¢, = 1.21648... as in (109). The aim of this section is to show that this

domain is included in the interior of the domain A’ of (104). For this purpose, we show
the estimates of the defining inequalities of (104) for (¢, s,u,v) in (106).
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We calculate the minimal value t,,;, and the maximal value t,,,, of . They are solutions
of the system of the following equations,

2A() —A(t+s)+2A(s) —A(s+u) +2A(u) — Au+v) +2A(v) = g,
g(m At +s)+2A(s) = A(s+u) + 2A(u) — Au+v) +2A(v)) = 0,
aﬁ( () = A(t+s)+2A(s) — Al(s +u) + 2A(u) — Alu+v) +2A(v)) = 0,

\ ;}(2/\() At +s)+2A(s) = A(s+u) + 2A(u) — Au+v) +2A(v)) = 0.

We note that there are exactly two solutions of this system of equations corresponding to
the maximal and minimal values of ¢ (see Appendix A). By calculating a solution of these
equations by Newton’s method from (¢,s,u,v) = (0.2,0.35,0.35,0.25), we obtain t,;, =
0.173218... , and from (¢,s,u,v) = (0.3,0.35,0.35,0.25), we obtain t,., = 0.322858... .
Therefore, we obtain an estimate of ¢t in A’ as

0.1 <t < 04

We calculate the minimal value s.;, and the maximal value s,., of s. They are
solutions of the system of the following equations,

(2A(t) — A(t+8) +2A(s) — Als +u) +2A(u) — Alu+v) +2A(v) = <,
(2A(t) = At +5) +2A(s) = A(s +u) + 2A(u) — A(u+v) +2A(v)) = 0,

| 0| @

" — (2A(t) = A(t+s) +2A(s) — A(s+u) + 2A(u) — Alu+v) +2A(v)) = 0,

u

S (2A() ~ Alt-+5) +2A() = Als ) +2A() ~ Au+v) +2A0)) = 0.

\

We note that there are exactly two solutions of this system of equations corresponding to
the maximal and minimal values of s (see Appendix A). By calculating a solution of these
equations by Newton’s method from (¢, s, u,v) = (0.25,0.25,0.35,0.25), we obtain Sy, =
0.264013... , and from (¢,s,u,v) = (0.2,0.4,0.3,0.25), we obtain Sy., = 0.436051... .
Therefore, we obtain an estimate of s in A’ as

026 < s < 0.45.

We obtain the estimates of u and v from the above estimates by the symmetry (107).

7.3 Calculation of the critical value

In this section, we calculate the concrete value of a critical point of V.
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The differentials of V' are presented by

%V(t, s,u,v) = —2log(l —z) +log(l — zy) + 2mv/—1 (t — %),

N 1 1
%V(t, s,u,v) = —2log(l—y) +log(l — zy) + log (1 — y_z> + 21y —1 (s — 5),
3V(i&, s,u,v) = —2log(1l — 2) 4 log(1 — zw) + log (1 — i) + 21V =1 (u — 1),
ou Yz 2
82‘7(15, s,u,v) = —2log(l —w) + log(1l — zw) + 27V —1 (v — %),

v

where z = 2™V 71ty = 2TV=Ts o — @21V=Tu gpd g = 27V1Y,
Lemma 7.1. V has a unique critical point (to, S0, Ug, Vo) in P~H(A'), where P: C* — R*
15 the projection to the real parts of the entries.

Proof. Any critical point of V is given by a solution of %\7 = %V = 8%‘7 = %V =0,
and these equations are rewritten,

1-2) = —2(l—ay),
2 _ ol — o) (1— L
1=y)" = —y(—zy)(1 - 7).
2= —2(1- 2w L
(=2 = —(1-zw)(1- 1),
(1—-w)?* = —w(l - zw).

From the first formula, we have that y = (2> —x+1)/2%. Hence, from the second formula,
we have that z = 2%/((z — 1)(2® + 1)). Further, from the third formula, we have that
w = (2% — 225 + 5ot — 623 + 52% — 3z + 1)/2°. By substituting these into the fourth
formula, we have that

(22* —32% +32° — 20+ 1) (2° — 2° + 32" — 42 + 42® = 3z + 1) = 0.

Its solutions are

x = 0.0287264... = v/-1-0.813859... , 0.721274... & /=1 -0.48342... ,
—0.377439... £ /-1-1.47725... ; 0.232606... = /-1 -0.943705... ,
0.644833... £ v/—1-0.198843... .

Among these, the first solution gives a solution in A’, from which we have that

ro = 0.0287264... + /—1-0.813859... , to = 0.244385... + /—1-0.0326818... ,
Yo = —0.547424... + /—1-1.12087... , so = 0.322307... — /—1-0.0351838... ,
Z20 = Yo, Up = So,
wy = g, vg = to,

where xy = 2™Vl gy = e2Volso oo = e2mV-luwo gnd wy = 2™V 1%, These give a
unique critical point in P~1(A’). O
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We note that V and the set of critical points of V have the following symmetry,
(t,s,u,v) — (v,u,s,t). (107)

The critical value of V at the critical point of Lemma 7.1 is presented by

~

s = V(to, S0, uo, Vo)

1 1
T (2 Liy(20) — Liz(zoy0) + 2 Lia(yo) + LiQ(ﬁ) + 2 Liy(20) — Lia(zowp)

. w2 1 2
+ 2 Liy(wp) + E) +2mv/—1- 5@3 + 82+ ud +vi —tg — 80 — up — v + §) (108)
= 1.21648... — /=1-0.417787... .
Further, we put its real part to be ¢, ,

¢, = Re¢ = 1.21648... (109)

7.4 Verifying the assumption of the Poisson summation formula

In this section, we verify the assumption of the Poisson summation formula in Lemma
7.2, which is used in the proof of Theorem 1.1 for the 77 knot in Section 7.1.

By computer calculation, we can see that the maximal value of ReV — ¢, is about
0.02. Therefore, in the proof of Lemma 7.2, it is sufficient to decrease, say, Re V(t +
5v/—1, s, u, v) — 276 by 0.02, by moving & (though we do not use this value in the proof
of the lemma).

We put

FX,)Y,ZW) = ReV(t+ XV—1, s+ YV—=1, u+ Zv—1, v+ Wv=1) —¢,.

Then, we have that

g—)“é = 2Arg(1—af)—Arg(l—wy)—%(t—%)a (110)
A~ oam(-y) - A0 -y - Arg (1= ) ~2e(s—3), (1D
g_g - 2Arg(1—z)—Arg(l—zw)—Arg(l—yiz)—QW(“—%)> (112)
g_va _ 2Arg(1—w)—Arg(l—zw)—27r(v—%), (113)

where 1 = 627r\/—71(t+X\/—71)7 y = 627“/?1(8—’_}/\/?1), 5 = 627r\/—71(u+Z\/—71) and w = 627T\/—71(U+W\/—71).

Lemma 7.2. V(t,s,u,v) — g, satisfies the assumption of Proposition 2.2.

Proof. Since V(t,s,u,v) converges uniformly to V(t, s,u,v) on A’ we show the proof
for V(t,s,u,v) instead of V(¢,s,u,v). We show that A’ is null-homotopic in each of
(13)—(20).
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As for (13) and (14), similarly as in the proof of Lemma 3.3, it is sufficient to show
that
of

—(271'—5,) < a—X(X,O,O,O> < 2r—¢ (114)

for some & > 0. Since 0.1 <t <04,
—27?(% —t) < Arg(l—z) < 0.
Further, since 0.36 <t + s < 0.85,
min { — 27r(% —t—s), 0} < Arg(l—ay) < max{0, 27w (t+s— 1)}

2
Hence, by (110),

of _ 1 :
ax > n11n{—27r(§—t), —27r-s} > min{ —27-04, —27-045} = —2m-0.45,
of

ax < max {27 (1 — 2t — s), 2#(%—15)} < max {27 -0.54, 2r- 04} = 27 -0.54,

since 0.1 <t and 0.26 < s < 0.45. Therefore, (114) is satisfied, as required.
As for (15) and (16), similarly as above, it is sufficient to show that

—(2r—¢) < g—){(O,Y,0,0) < 2m—¢ (115)

for some & > 0. Since 0.26 < s < 0.45,
1
—27r(§ —s) < Arg(l—y) < 0.
Further, since 0.36 <t + s < 0.85,

min{ — QW(% —t— s), 0} < Arg(1—uzy) < maX{O, 27r(t—|— s — %)}
Furthermore, since 0.52 < s+ u < 0.9,
1 1
—2m(s+u— 5) < Arg(1- y—z) < 0.
Hence, by (111),

of : 1
7y > m1n{—27r~u, —27T(t+s+u—§)}
> min{ — 27 -0.45, —27-0.8} = —27-0.8,
g—}{ < max {27(1 —t — 2s), 27r(%—s)} < max {27 -0.5, 27 - 0.3} = 2m-0.5,

since 0.1 < ¢ and 0.26 < s < 0.45. Therefore, (115) is satisfied, as required.
We obtain (17), (18), (19) and (20) from the above cases by the symmetry (107). O
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7.5 Verifying the assumption of the saddle point method

In this section, we verify the assumption of the saddle point method in Lemma 7.8. In
order to show this lemma, we show Lemmas 7.3-7.7 in advance.

Lemma 7.3. In the fiber of the projection C* — R* at (t,s,u,v) € A, f — oo as
X24+Y2 4+ 7224+ W? — o0,

Proof. By (11), % is approximated by the following function,
0 iftY+2<0
F(X,Y) + =) & B(zwW), 116
WX Y) ({(s+u—§)(Y+Z) ifY+Z>O> 22 W) (116)

where we put

B -t)X fX>0 (3-s)Y Y >0
RXY) = ({—(%—t)X ifX<0) * ({—(g—s)y ifY<0)
0 if X+Y >0

S\ trs- DX +Y) X +Y <0 )

([ JG-wz z=>0 (3-—0)W fW=0
R(2,W) = ({_(%—u)z ifZ<O> * ({—(l—v)w ifW<0)

N =

2
B 0 it Z+W >0
(utv—3)(Z+W) fZ+W <0 )
Since the middle term of (116) is non-negative, it is sufficient to show that F;(X,Y) — oo

as X? +Y? = oo, and F5(Z, W) — oo as Z? + W? — oo. By the symmetry (107), it is
sufficient to show that

Fi(X,)Y) =00 as X*+Y? = . (117)
We show (117), as follows. When X +Y > 0,

F(X.Y) = G-1)X X>0 N (3-s)Y Y >0
’ —(3-t)X if X <0 —(3-s)Y ifY <o)
and hence, (117) holds. When X +Y <0,
F(X.Y) 3-1)X X>0 N (3 -s)Y ifY >0
’ —(3-t)X fX <0 —(3-s)Y ifY <0

—(t+s—%)(X—i—Y)

B (1-2t—5)X if X >0 N (1-t—28)Y ifY >0
o\ | -sX if X <0 —tY ify <0 )
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Hence, when X < 0 and Y < 0, (117) holds. Further, when X > 0 and X +Y < 0,
F(X,)Y)=(1-t—s)X —t(X+Y), and hence, (117) holds. Furthermore, when ¥ > 0
and X +Y <0, similarly, (117) holds. Therefore, (117) holds, as required. ]

In the fiber of the projection C* — R* at (¢,s,u,v) € A/, we consider the flow from
(X,Y,Z, W) = (0,0,0,0) determined by the vector field (—g—;;, —g—{;, —g—;, —%) in the
following four lemmas, depending on the signs of ¢t + s — % and u + v — %

Lemma 7.4. In the fiber of the projection C* — R* at (t,s,u,v) € A’ satisfying that
t+s> % and u+v > L we consider the flow from (X,Y,Z, W) = (0,0,0,0) determined
by the vector field (—g—g;, —%7 —g—é, —g—V{,). Then, f has a unique minimal point, and the
flow goes there.

Proof. Similarly as the proof of Lemma 4.5, the Hesse matrix of f is calculated as

2CL1 + bl b1 0 0
9 bl 2(12 + b1 + b2 b2 0
T 0 bg 2(13 + bg + b3 b3 ’
0 0 b3 2&4 + b3
where we put
1 1 1 1
al:Iml—x’ azzlmm, agzlml_z, a4zlmm,
—1 1 —1
bl = Im y b2 = Im 1 bg = Im y
1 —ay — s 1—zw

noting that these numbers are positive. The above matrix is equivalent, as a quadratic
form, to

2@1 + b1 0 0 0
2w 0 4‘11“2';?1?{;’;1‘*‘2@2171 + bz 4 +2 bb—%-Q b 0
0 by seatdoshatlonds |, Q)

0 0 0 2&4 + b3

Since we can verify that the trace and the determinant of the middle 2x2 submatrix are
positive, the above matrix is positive definite. Hence, the Hesse matrix of f is positive
definite, and f is a convex function. Further, since f — oo at infinity by Lemma 7.3, f
has a unique minimal point, and the flow of the lemma goes there, as required. O

Lemma 7.5. In the fiber of the projection C* — R* at (t,s,u,v) € A’ satisfying that
t+s< % and u+v > %, we consider the flow from (X,Y,Z, W) = (0,0,0,0) determined
by the vector field (—g—g;, —g—{;, —g—é, —%). Then, f has a unique minimal point, and the
flow goes there.
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Proof. Similarly as the proof of Lemma 7.4, the Hesse matrix of f is presented by

2a1 — b =V 0 0

o —bll 2&2 — bll + bQ bg 0
0 bg 2&3 + bg + bg bg ’

0 0 b3 2&4 + bg
where we put aq,--- , a4, by and b3 as in the proof of Lemma 7.4, and put
1
by = Im )
1—ay

noting that these numbers are positive. We will show below that the flow of the lemma
always goes to the domain that X <0 and Y < 0, and that

_y oqn — b | 18 positive definite in this domain. (118)
1 az 1
Then, we can show the lemma, in the same way as the proof of Lemma 7.4.
We show that the flow of the lemma goes to the domain that X < 0 and Y < 0, as
follows. When X > 0, since 0.1 <t <04 and 0.36 <t+s < %, Arg(1—2x) > —7'('(% — t)
and Arg (1—zy) < 0. Hence, by (110), 2L > 0, and the flow goes in a direction decreasing

19X
X. Further, when Y > 0, we can similarly show that % > 0, and the flow goes in a
direction decreasing Y. Therefore, the flow goes to the domain that X <0 and Y < 0.

We show (118), as follows. It is sufficient to show that

(the trace of the matrix of (118)) = 27(a; +as — ') > 0, (119)

2 1 1

(the determinant of the matrix of (118)) = 2ajasb' (= — — — —

Vo oar a9

We can show that (120) = (119), in the same way as in the proof of Lemma 4.6. We
show (120), as follows. Similarly as in the proof of Lemma 4.6, we have that

) > 0. (120)

I e?™X 4 727X _ 2 cos 27t r ™ e _ 92 cos2ns
a; sin 27t ’ as sin 27s '
1 X g o2 (XHY) 9 cos 27 (t + s)
v sin 27 (t + s)
Hence, the differential of % — % — a—12 with respect to X is given by
1 o .2 1 1 ) 6271'(X+Y) _ 6727r(X+Y) e2rX _ o—2rX
o XY w2 smziis smon

Since 0.1 <t < 0.4, sin27t < sin(27 - 0.1) = 0.587785... . Hence, 2/sin27(t +s) > 2 >
1/sin27t. Further, since X < 0 and Y < 0, 2(X+Y) _ o=2n(X+Y) < 20X _ =27 < (),
Hence, the above formula is non-positive. Therefore, it is sufficient to show (120) when
X = 0. In a similar way, we can show that it is sufficient to show (120) when Y = 0.
When X =Y =0, similarly as in the proof of Lemma 4.6, we have that

1/2 1 1
_<_____> = 2 tann(t+ s) —tan7wt — tanws > 0,
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since 0 <t <t+s<1and0<s<t+s< 3. Hence, we obtain (120), as required. [

Lemma 7.6. In the fiber of the projection C* — R* at (t,s,u,v) € A’ satisfying that
t+s> % and u+v < %, we consider the flow from (X,Y,Z, W) = (0,0,0,0) determined

by the vector field (—ﬂ _of 9 —ﬁ). Then, f has a unique minimal point, and the

oxX: oy 0z oW
flow goes there.

Proof. We obtain the lemma from Lemma 7.5 by the symmetry (107). O

Lemma 7.7. In the fiber of the projection C* — R* at (t,s,u,v) € A’ satisfying that
t+s< % and u+v < %, we consider the flow from (X,Y,Z, W) = (0,0,0,0) determined
by the vector field (—ﬂ —or _9f —ﬁ). Then, f has a unique minimal point, and the

oX* Y 020 oW
flow goes there.

Proof. Similarly as the proof of Lemma 7.4, the Hesse matrix of f is presented by

2ay — b} —b) 0 0
o —bll 2&2 — bll + bg bz 0
0 bg 20,3 + bg - bé —bg ’
0 0 Ul 2a4 — b
where we put ay,--- , a4, b} and by as in the proofs of Lemmas 7.4 and 7.5, and put
by =1
3 1

noting that these numbers are positive. In a similar way as the proof of Lemma 7.5, we
can show that the flow of the lemma always goes to the domain that Z < 0 and W < 0,

and that
2(1,3 - bg —bg
—bg 2@4 — bé

Hence, we can show the lemma, in the same way as the proofs of Lemmas 7.4 and 7.5. [

) is positive definite in this domain.

Lemma 7.8. When we apply Proposition 2.4 to (105), the assumption of Proposition 2.4
holds.

Proof. We show that there exists a homotopy A5 (0 < 6 < 1) between Ay = A" and A}
such that

(tey Ses e, Vo) € Al (121)
AL = {(te, Se,ue,ve)} C {(t,s,u,v) € C* | Re V(t,s,u,v) < Snt (122)
OA; C {(t,s,u,v) ecCt ‘ ReV(t,s,u,v) < gR}. (123)

In the fiber of the projection C* — R* at (¢,s,u,v) € A, we consider the flow from
(X,Y,Z, W) = (0,0,0,0) determined by the vector field (—%, —%, —%, —%). Then,
by Lemmas 7.4, 7.5, 7.6 and 7.7, f has a unique minimal point, and the flow goes there.
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We put g(t, s, u,v) to be this minimal point. We define the ending of the homotopy to
be the set of these minimal points,

Al = {(t,s,u,v) +g(t,s,u,v)vV—1 ‘ (t,s,u,v) € A’},

Further, we define the internal part of the homotopy by setting it along the flows.
We can show (121), (122) and (122) by using Lemma 7.1 in a similar way as the proof
of Lemma 3.9. O

8 The 75 knot

In this section, we show Theorem 1.1 for the 75 knot. We give a proof of the theorem in
Section 8.1, using propositions and lemmas shown in Sections 8.2-8.6.

Unlike the cases of other knots, the boundary of the domain A of the integral is not
included in the domain that ReV < ¢, in this case. By this reason, we need many
additional calculations when we use the Poisson summation formula and the saddle point
method in the proof of the theorem in this section.

8.1 Proof of Theorem 1.1 for the 7, knot

In this section, we show a proof of Theorem 1.1 for the 7, knot.

Since the Kashaev invariant of the mirror image of a knot is equal to the complex
conjugate of the Kashaev invariant of the original knot, it is sufficient to show the theorem
for the mirror image 75 of the 7, knot. The 7o knot is the closure of the following tangle.

As shown in [32], we can put the labelings of edges adjacent to the unbounded regions as
shown above. Hence, from the definition of the Kashaev invariant, the Kashaev invariant
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of the 7, knot is presented by

_ Nq_% Nq_% Nq_%""j
(o) = ¢ x = X — X ——
N Z (Q)N—n(Q)n—l (Q)N—n(Q>n—i(Q)i—1 <Q)j—i(Q)i—1(Q)N—j
Ng3-i+1 Ng 3t N g—5-U+1 Nao 3
X g X g X q - X g

(DNt @D @Dj—1 (D= D1 DNt (DN Dm—1(@1=1 (@) N=m (D)1

_ Z N5 q—l

ociziTraren Di-1(@)i-1(0);-i(D) 1 (@D N5 (Dr—5 (@ k1 (@D N 421 (@)1 (D) N

_ Z N5 qfl

o<iz Treren Di@i(@)j=( @i (@ N5 -1(@0)r—5 @1 (@) N 11 (D1-4(De(@D) N -11

_ Z N5 qfl

o< i, @i (@i (@i (Do (DN —32-1(Dis (D s (D V51 (D)ia (D (D V-1
114+ Fig <N

where we obtain the third equality by replacing ¢,7,k, 0 with ¢ +1, j+ 1, k+ 1, [+ 1
respectively, and obtain the last equality by putting i1 = i, 4o = j, 13 =k, 14 = [,
J1=1l1, Ja=1l1+1i2, Jz=1i1+ia+1i3, Ja=1i1+ - +is

Proof of Theorem 1.1 for the T, knot. By (5), the above presentation of (7, ), is rewritten

_ ) 2+ 1 2ip+1 203+1 2ig+1
) = N <NV )
(72)y ' ) e o v v v )

0<iy, g
i1+ Fia<N
Whereweputt:(tl,---,t4), Slztl, 82:t1+t2, 83:t1+t2+t3, 84:t1+"'+t4
and
~ 1
V(t) = +(#h) = (1 = 1) + (1) +0(ts) + o(ta)
1 1 1 1
_ Y~ (1= ) = ) — (1= -
sz =) —p(l=sat gip) —olss = ) (I = s+ )

— p(ss— %) — (1 —54—1—%) —490(%) +70(1- %))

1 1 7 1 3mv/—1  m/—1
= v ) L —logN _
N( p(t) +p(ta) + olts) +p(ta) ) + 5= 5 = g loa N b =5 P
+27T\/—1-1<32+(3 _ 1 )2—|—(S _i)Q—f-(S _1)2_8 e s +i+2>
2 "2 oN TN T AN L2 TS TSt T

Here, we obtain the last equality by (9) and (10). Hence, by putting

- 11
V(t) = V(t)+ ﬁlog]\/,

the presentation of (7, ), is rewritten
_ e 210 4+1 20+1 2ig4+1 204+1
Ty = NVt Y (Vv ). (124
< 2>N q S exXp ( IN IN IN IN ) ) ( )

2i4+1 25+1 2k41 2141
(2N’2N’2N’2 )EA
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2i1+1 2i2+1 2i34+1 24441
2N 2N 7 2N 7 2N

where the range of ( ) of the sum is given by the following domain,

1
A= {teR"|0< by, 1y <1, t1+~~+t4§1+ﬁ}.
By Proposition 2.1, (6), as N — oo, V(t) converges to the following V(t) in the interior
of A,
~ 1
V(t) =
(®) 2my/—1

1 2
+27r\/—1~5(s%—ks%—i—s%—l—si—sl—32—33—34+§).

2
(2Lia(2™ ) - Lig(eVT1) 4 Lig(e2V10) 4 Lin(et™ 1) 4 T)

to

08

0.6

04

0.2

ty

0.0

0.0 0.2 04 0.6 0.8 1.0

Figure 1: The dark gray domain is the image of the projection of the domain (126) to {(t1,t2) € R?}

We change A in the following 4 steps; see Remark 8.1 below for the reason why we
change A in such a way.

Step 1: We note that, unlike the cases of other hyperbolic knots with 7 crossings, some
parts of the boundary of A is not included in the domain

{te A|ReV(t)<s, —¢} (125)

for a sufficiently small € > 0, where we put ¢, = 0.530263... as in (147), which is the

real part of the critical value of V at the critical point of Lemma 8.18. To check this, we

consider the domain R
{te A|ReV(t) >¢,}. (126)

Putting A(t) as in Section 2.2,

ReV(t) = 2A(t1) + A(ty) + A(ts) + A(ty).
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Hence, the domain (126) is symmetric with respect to the exchanges of t5, t3 and ty.
In Figure 1, we graphically show the image of the projection of the domain (126) to
{(t1,t3) € R?} as the dark gray domain in the figure. Further, for each part of the
boundary of A, we put

0A = 01A U LA U 03A U 9,A U O5A,
where we put
KA = {t oA |t =0} (k=1,2,3,4),
A = {te@A\t1+t2+t3+t4:1+%}.

By concrete calculation, we can check that 0;A is included in the domain (125) for a
sufficiently small € > 0, i.e., we can graphically observe in Figure 1 that the line {¢; = 0}
does not intersect with the dark gray domain in the figure. Hence, we can restrict the
range of t; to t; > 0, for a sufficiently small §; > 0; as shown in Section 8.2, we can choose
01 as 01 = 0.003. Further, by concrete calculation, we can check that d,A is not included
in the domain (125), i.e., we can graphically observe in Figure 1 that the line {t, = 0}
intersects with the dark gray domain in the figure. However, we note that the boundary
of A is included in the domain (125) by Lemma 8.2. In a neighborhood of 0;A, by
Proposition 8.3 in Section 8.2.1, the restriction of the sum (124) to the domain t5 < 0.003
is sufficiently small. That is, though the summand of (124) itself is not sufficiently small
on 0, A, we can show by the Poisson summation formula and the saddle point method that
the sum of the summand of (124) over ;A is sufficiently small. Hence, we can restrict the
range of t5 to to > 0.003. Similarly, in neighborhoods of d3A and 0,A, by Propositions 8.7
and 8.11 in Sections 8.2.2 and 8.2.3, we can restrict the ranges of t3 and ¢4 to t3 > 0.003
and t4 > 0.003. Further, we can check that dsA is not included in the domain (125),
i.e., we can graphically observe in Figure 1 that the line {t; + t» = %} intersects with
the dark gray domain in the figure, noting that the maximal points of A(t3) and A(ty)
are t3 = % and t; = % respectively. (We will extend the range of t; + t5 + t3 + t4 to
t1 + to + t3 + t4 < 1.45 by Proposition 8.15, later in Step 3, so that the new boundary of

the extended domain is included in (125).) Therefore, putting

1
A" = {teR*"[0.003 < t1,--- ,ty <1 t1+~~~+t4§1+ﬁ},

we have that

_ _ B 201+ 1 2i504+1 2i5+1 204+1 _
7 — Ng¢ N 1/2 1 (NV —N ) O Ne

(2i1+1 2ig+1 2ig+1 2i4+1)€A,,
2N 2N ' 2N ' 2N

for a sufficiently small € > 0. We note that, by Proposition 2.1, on A”, V(t) uniformly
converges to V(t) as N — oo.

Step 2: As shown in Section 8.2.4, we can restrict A” to the domain t; < 0.5 and
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to,t3,t4 < 0.7 in such a way that the removed part is included in (125). Hence, putting

mo_ 4| 0.003<t; <0.5, 0.003 < ty,t3,ty <0.7
AT = {tGR t1+t2+t3—|—t4§1—|—% !
we have that
(Ta)y =
200+ 1 2ip+1 2i3+1 294+ 1
Ne[ n-1/2,-1 (N~V 1 2 3 4 —N) O(e—Ne
‘ qij%:EZeXp vy ) NS o)

(2i1+1 2ig+1" 2i3+1 2i4+1)EA,,,
2N 2N ' 2N ' 2N

(127)

for a sufficiently small ¢ > 0.

Step 3: By Proposition 8.15 in Section 8.2.5, we can extend A" to the domain t; + 5 +
ts + t4 < 1.45 so that the new boundary of the extended domain is included in (125).
Hence, putting

0.003 <t < 0.5, 0.003 < ty,ts ts <0.7 }

mn__ 4
A _{teR 4ty + s+t < 1.45

we have that

(Ta)y = (N2 37 e (N
i,5,k,lEZ

(2i1+1 2ig+1 2ig+1 2¢4+1)EA,,,,
2N 2N ° 2N ' 2N

9% +1 2ig+1 2is+1 2y +1 N
—N> O(eNe
N aN 0 aN 0 aw ) Ns) TOte )>’

for a sufficiently small e > 0. We note that, now, the domain (126) is included in the
interior of A" and the boundary of A" is included in the domain (125), except for
neighborhoods of LA, 0;A and 0,A.

Step 4: As shown in Section 8.2.6, we can restrict this domain to the domain ¢+, < 0.9,
ty+to+1t3 < 1.2 and t; +t +t4 < 1.2 in such a way that the removed part is included
in (125). Therefore, putting

0.003 <t < 0.5, 0.003< tg,ts,t, < 0.7
t1+t2—|—t3+t4§145 y
B te <09, t ttotts <12, t +tg+ty <12

A =<_teR?

we have that

2N 7 2N ' 2N 2N

(T3), = o< N—l/zq—l Z exp (N-V(

i,5,k,l €L
2i1+1 2ig+1 2ig+1 2ig+1 /
(SN 3N N an JEA

)-No) +0(e—N€)) ,

for some sufficiently small ¢ > 0. We note that we need the restriction of this step when
we apply the Poisson summation formula and the saddle point method later.
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Further, by Proposition 8.19 (Poisson summation formula), the above sum is presented
by

(To)y, = eV <N7/2q_1 // exp (N -V (t) — N¢)dt + O(e_NE)>. (128)

Furthermore, by Proposition 2.4 (saddle point method), there exist some «!’s such that

9 d
(Ta)e = N"exp (N-V(t.)) - %ﬁj (det(—)) (14 32 win + 0,
i=1

for any d > 0, noting that we verify the assumption of Proposition 2.4 in Proposition
8.28. Here, t. is the critical point of V' which corresponds to the critical point ty of V' of
Lemma 8.18, where V' is the limit of V' at N — oo whose concrete presentation is given
in Section 8.2, and H is the Hesse matrix of V at t..

We calculate the right-hand side of the above formula. Since t. = to + O(h), we have

that V(t.) = V(to) + O(h?). Hence, by comparing V (to) and V (tg) = <, we have that
V(to) = §+O(h).

Therefore, there exist some k;’s such that

d
(o) = SNPw (143 kil + O(R)),

i=1

for any d > 0. Hence, we obtain the theorem for the 75 knot. O

Remark 8.1. In the above proof of Theorem 1.1, we changed A in the 4 steps. In this
remark, we explain the reason why we changed A in such a way.

In Step 1, we changed A to A” in order that we can use Proposition 2.1 on A” to
show that V(t) uniformly converges to V'(t). Further, to apply the saddle point method
later, it is a problem that the boundary {t; + ¢, +t3+t, =1+ %} of A" intersects with
the domain {ReV(t) > ¢,}, i.e., we can graphically observe that the line {t; + t, = 2}
intersects with the dark gray domain in Figure 1. To avoid this intersection, we want
to move the boundary {t; +to +t3+1t4, = 1+ %} to {t; +to +t3 +ty = 1.45}. If we
moved this boundary from A”, the above mentioned line would intersect with the light
gray domain in Figure 1 during we move it. Hence, before that, we restrict A” to A” in
Step 2, and extend A” to A" in Step 3 moving the boundary {t; +to +t3+t, =1+ %}
to {t1 +ta + t3 + t4 = 1.45}. After that, we restrict A" to A’ in order that we can use
the new defining inequality of A’ in the proofs of the Poisson summation formula and the
saddle point method later. This is the reason why we changed A in the above 4 steps.

8.2 Changing A to A’

In this section, we show that the change of the sum (124) is sufficiently small when we
change the range of the sum from A to A’. We show that we can change A to A” in
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Sections 8.2.1-8.2.3, and can change A” to A" in Section 8.2.4, and can change A" to
A" in Section 8.2.5, and can change A”” to A’ in Section 8.2.6.

To consider the difference between A and A’, we put
A—A = AL UA UA3 U A,
where we put
Ay = {te At <0.003} (k=1,2,3,4).
Lemma 8.2.
Ay € {teA|ReV(t) <,
AiNA; € {teA|ReV(t)<s,}  i,j€{23,4}.
Proof. As mentioned before, Re V(t) is presented by
ReV(t) = 2A(L) + Aty) + A(ts) + A(ty).

We recall that the behavior of A(t) is as mentioned in Section 2.2.
For any t € Ay,

~

1
ReV(t) —¢, < 3A(6) +2A(0.003) — ¢,

= 3-0.1615329... +2 - 0.0149138... — 0.530263...
= —0.0158375... < 0.

Hence, the first formula of the lemma holds.
Forany t € A, NA; (4,5 € {2,3,4}),

~

1
ReV(t) —¢, < 3A(6) +2A(0.003) — ¢,
= —0.0158375... < 0.
Hence, the second formula of the lemma holds. n

Lemma 8.2 guarantees that, when we consider the change of the sum (124) on A and
A" it is sufficient to consider the partial sums of (124) on Ay, Az, Ay respectively. We
show that such partial sums are sufficiently small in the following three subsections.

8.2.1 Restriction of the sum to ¢, < 0.003

In this section, we show that we can restrict A to the domain t, < 0.003. That is, the
aim of this section is to show the following proposition.

Proposition 8.3. The restriction of the sum (124) to the range ia/N < 0.003 is estimated

as follows,
200+ 1 2ip+1 2i3+1 2ig+1 Nco —
N ) — (sp—e)).
Z.eXp(V(2N’2N’2N’2N) Oe™n7)
0<i1,+ ,iq
i1+ +ig <N
in /N < 0.003
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Proof. Fixing i, < N -0.003, it is sufficient to show that

2 +1 2ip+1 2is+1 2ig+1
NV , : , ) 129
2 eXp( v v v v ) (129)

0<41,i3,i4
i1+i3+ia<N(1—0.003)

is of order O(eN(r=2)),

We can calculate (129) in a similar way as the proof of Theorem 1.1 in Section 8.1,
by using the Poisson summation formula and the saddle point method, noting that the
boundary of the range of the sum (129) is included in the domain {t | Re V (t) < ,} by
Lemma 8.2. We show a sketch proof of this calculation in the following of this subsection.
We fix t5 < 0.003, and put

~

Us(ti,ts,ta) = V(t1,ta,t3,t4)

2
(2 Li2(e2ﬂ'\/jtl> —|—Lig<€2ﬂ-\/jlt2> +Li2(e27r\/jlt3) +L12<€2ﬂ\/j1t4) + 77_)

1
2w/ —1 2

1 2
+27r\/—1-5(3%+s§+s§+si—sl—32—33—s4+§),

where we put s; =t1, so =1t +ta, S3 =11+t +1t3, S4 =11+ 1ty + t3+ ty. Similarly as
the proof of Theorem 1.1, we can restrict the domain of the sum (129) to

01 <t +t3<0.7, 015 <t +t3+1t4 <095

A/Q = {(tlu t37 t4)

0.03 <t <04, 0.005<ts<047, 0.005<t, < 0.47 }

where we omit concrete computations of the bounds of these inequalities. Hence, by the
Poisson summation formula and Lemma 8.4, (129) is approximated by

/.

Further, by Lemmas 8.6 and 8.5, the first and second summands are of order O(e™(r=9)).
Hence, we obtain the proposition. O]

eN Ua(t1,t3,t4) dt, dtg dty + / €N (Uz(t1,t3,t4)+2w¢j1t1)dt1 dtg dty.

/ /
2 A2

Lemma 8.4.

Z / exXp (N(UQ(t]_, tg, t4)—27T V4 -1 (m1t1+m3t3—|—m4t4))) dtl dt3 dt4 = O(eN(gR*S))’

!
(m1,m3,m4) A2

where the sum runs over (my,ms,my) € Z3 —{(0,0,0),(=1,0,0)}.

Proof. We can show the lemma similarly as the proof of Proposition 2.2 (see [20]). In the
case of this lemma, it is sufficient to show that

when my #0, —(2m—¢) < Re (% Us(ty, ta, ts + 5\/—1)) < or—e  (130)
when ms # 0, —(2r —¢) < Re (% Us(ty, ts +0v—1, t4)> < 21 —¢, (131)
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when m; #£0,—-1, —(27—¢) < Re (% Ug(t1+5\/—1,t3,t4)> < 4dm—e, (132)

for some € > 0.

We show (130), as follows. The middle term is calculated as

0 0
Re <— Ug(tl,tg,t4 + 5\/ —1)> = Re <\/ —-1-— UQ(tl,tg,t4 + 5\/ —1))

a6 Oty
1
= —Im ( —log(1l —xy4) + 27?\/—1(84 - 5))
1
= Arg (1 —zy) — 2m(s4 — 5),

where 1, = 2™V 1(ta+3V=1) GQince (0 < t, < 0.5,
1
—27r(§ —t4) < Arg(l—xz4) < O.

Hence,

0 1
—271'83 < Re <% UQ(tl,tg,t4+5\/—1)> < 27T(§ —84).
Therefore, since s3 < 0.7+ 0.003 and s4 > 0.15, (130) is satisfied.

We show (131), as follows. The middle term is calculated as

0 —
Re (% U2<t17t3+6 _17t4)) = Arg(l—:cg)—Qﬂ(83+S4—1)7

where 23 = 2™V -1(ts+0V=D GQince (0 < t3 < 0.5,
1
—27(5 —t3) < Arg(l—a3) < 0.

Hence,

1 0
—27T(82+54—§) < Re <%U2(t1,t3+5\/—1,t4)) < 271'(1—83—54).

Therefore, since sy < 0.4 + 0.003, s4 < 0.95+ 0.003 and s3 > 0.1, s4 > 0.15, (131) is
satisfied.

We show (132), as follows. The middle term is calculated as

0
Re <% Us(t; + 6v —1, t3, t4)> = 2Arg(1 —21) — 27(s1 + 2+ s3+ 54 — 2),
where 21 = 2™V-1(t1+V=D GQince (0 < ¢; < 0.5,
1
—27r(§ —tl) < Arg(1—xz1) < 0.

Hence,

0
—27T(83+S4—1+0.003) < Re (% U2<t1+5\/_17t37t4)) < 27’(’(2—81—82—83—84).

Therefore, since s3 < 0.703, s4 < 0.953 and s; > 0, (132) is satisfied. O

79



Lemma 8.5.
/ 6J\/V (Ug(t17t37t4)+2wx/j1t1) dtl dtg dt4 — O(eNRevz),
Ag
where vy = 0.464948... — /=1 -0.753795... .
Proof. We can show the lemma similarly as the proof of Theorem 1.1, by using the saddle
point method. We show a sketch proof in this proof.
We put
Ué(tl, t3, t4) = Ug(tl, t3, t4) + 27T\/ —1 tl,

and we fix to = 0.003. The differentials of U) are presented by
0

8_15 Ué(tl,t3,t4) = —210g(1 — xl) + 277'\/ -1 (51 + So + S3+ S4 — 1),
1
0
% Ué(tl,tg,t4) = —log(l — 273) + 27T\/ -1 (83 + S84 — 1),
3
0 1
@_t Ué(tl,t37t4) = —log(l — .T4) + 27T\/ -1 (84 — 5),
4

where z), = ¢2™V~1%_ Hence, any critical point of U} is a solution of the following equa-
tions,

2 2my/—1(s1+82+s3+s4—2) __ 4 32
(1—mz)° = ¢ (s1tsatsatsa=2) — gdo3420,,

1— 23 = 627r\/—1(83+s4—1) _ ZE%ZL‘% :E§$4,

ST (sa—L
11—y = V73 = g o mamy.

By concrete calculation, it is shown that they have a unique solution on A, which is
given by

r1 = 0.386143... + v/—1-0.407062... , t; = 0.129196... + /=1 -0.0919756... ,
r3 = 2.6314... 4+ /—1-0.555382... , t3 = 0.0331053... — /—1-0.157453... ,
xqg = 0.134251... 4+ /—1-0.74488... , ty = 0.22162... +/-1-0.0443324... .

Hence, the critical value of Uj at this critical point is given by
vy = 0.464948... — /=1-0.753795... .

Therefore, by the saddle point method, we can show that the left-hand side of the formula
of the lemma is of order eV ®¢¥2 and we obtain the lemma. O

Lemma 8.6.
/ eN2tsta) gy dty dty, = O(eNr™9).
A
Proof. By concrete calculation, we can show that, unlike Lemma 8.5, there is no critical
point of Uy on A}. Similarly as the proof of the saddle point method, we can show the
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lemma by moving A} in each fiber of the projection C* — R?® D Al,. We show a sketch
proof in this proof. In the fiber at (t1,3,%4), we put

f(X, Z, W) = Re Ug(tl + X\/ —]_,tg + Z\/ —]_, t4 + W\/ —1) — SR -
It is sufficient to show that f — —oo as we move (X, Z, W) appropriately.

Regarding f as a function of X,
of
0X

where z; = 2™V-1+XV=D Qince 0 < ¢ < 0.5,

= 2Arg(1—x1)—27?(51—1—524—83—1-54—2),

—277(%—&) < Arg(1—xz1) < 0.

Hence,
—2m(s3 +s4 —140.003) < g—)]; < 2m(2 — 81 — S92 — S3 — S4).
Therefore, when s3 + s4 < 1 — 0.003, % > ¢’ for some ¢’ > 0, and hence, f — —o0 as
X — —o0.
Regarding f as a function of W,

of
ow
where x, = 2™V-1t+tWV=D) GQince 0 < ¢, < 0.5,

1
= Arg (1 —xq) — 2m(s4 — 5),

—277(1—254) < Arg(1—xz4) < 0.

2
Hence,
af 1
—2 < == < 2m(= — s4).
TS3 oW 7T(2 54)
Therefore, when s4 > 0.5, % < —¢” for some &’ > 0, and hence, f — —o0 as W — o0.

The remaining case is the case where 1 —0.003 < s34+ s4 and s4 < 0.5. Since s34 s4 =
25y —ty < 1 —1t4 < 1—0.005, this case is the empty case. Therefore, we obtain the
lemma. O

8.2.2 Restriction of the sum to ¢t3 < 0.003
In this section, we show that we can restrict A to the domain t3 < 0.003. That is, the
aim of this section is to show the following proposition.

Proposition 8.7. The restriction of the sum (124) to the range i3/N < 0.003 is estimated
as follows,

% +1 241 s+1 2g+1 e
N ) >: O (g E).
2 eXp( V(N v an 0 aw ) (775

0<i1,+ 14
i1 tia<N
i3/N <0.003
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Proof. Fixing i3 < N -0.003, it is sufficient to show that

% +1 2p+1 2ig+1 2,41
NV , , , ) 133
)3 eXp( ( oN oN N N ) (133)

0<i1,i2,i4
i1-+io+ig<N(1—0.003)

is of order O(eN(r=2)),

We can calculate (133) in a similar way as the proof of Theorem 1.1 in Section 8.1,
by using the Poisson summation formula and the saddle point method, noting that the
boundary of the range of the sum (133) is included in the domain {t | Re V/(t) <,} by
Lemma 8.2. We show a sketch proof of this calculation in the following of this subsection.
We fix t3 < 0.003, and put

Us(ty,ta,ty) = V(ty,ta,ts,ts)

1 2
= 2 Lip (€714 + Lige2™ 7T1) o Lin(e™711) + Lin(e2™T4) + T
(2 Laa(e 71 o L6771 4 L6 710) o Li(e 10 4 2

1 2
+27T\/—1~5(s%+s§+s§+si—51—52—53—54+§),

where we put s = t1, so =11 +ty, s3 =11 +to+1t3, S4 =1t +ty +t3+ ty. Similarly as
the proof of Theorem 1.1, we can restrict the domain of the sum (133) to

Aé = {(tla t27 t4)

0.03 <t <04, 0.005 <ty <047, 0.005 <14 <047
01<5,<0.7, 015<54<095, t1+s3+54<19 ’

where we omit concrete computations of the bounds of these inequalities. Hence, by the
Poisson summation formula and Lemma 8.8, (133) is approximated by

I

Further, by Lemmas 8.9 and 8.10, the first and second summands are bounded by
O(eNr=9)). Hence, we obtain the proposition. H

N Usltytzita) dty dty dty + / e (U3(t17t2’t4)+2m/_71(t1+t2)) dty dty diy .

/ /
3 A3

Lemma 8.8.

Z / exp (N(Ug(tl, tQ, t4>—271' V —1 (m1t1+m2t2—|—m4t4))) dtl dtg dt4 = O(eN(<I%_‘S))7

!
(m1,ma,my4) Ay

where the sum runs over (my,mg,my) € Z> —{(0,0,0),(—=1,—1,0)}.

Proof. We can show the lemma similarly as the proof of Lemma 8.4. In the case of this
lemma, it is sufficient to show that

when my # 0, —(2r —¢) < Re (% Us(ty, ta,ty + (5\/—1)) < 21 —¢, (134)
when my #0,—1, —(2r—¢) < Re (% Us(ty,ta + 6\/—1,154)) < Am — e, (135)
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when my # my, —(2mr—¢) < Re (% Us(ti +6v—1,ty — 5\/—1,t4)> < 2w —e, (136)

for some € > 0.
We can show (134) in the same way as in the proof of Lemma 8.4.
We show (135), as follows. The middle term is calculated as

0 3
Re <%U3(t1,t2+5\/—1,t4)> = Arg(l—xg)—27T(82+83+S4—§),

where 25 = 2™V-1(2+0V=D GQince ( < ¢y < 0.5,
1
—271'(5 — tg) < AI’g (1 — 132) < 0.

Hence,
0 3
—27T(t1 + S3+ 854 — ].) < Re <% Ug(tl,tg + 5\/ —1,t4)> < 27'('(5 — 89 — 83 — 84).
Therefore, since t; + s34+ s4 < 1.9 and 0 < s;, (135) is satisfied.
We show (136), as follows. The middle term is calculated as

0 1
Re (& Ug(tl + 5\/ —1,t2 - (5\/ —17t4)> = 2AI‘g (1 - Il) - Arg(l — 1’2) — 27'('(81 — 5)7

where z; = e2™V-10HV=D gand g4 = 2™V-1(2=0V=D Gince 0 < ¢, < 0.5,

—277(%—t1) < Arg(1—xz1) < 0.

Hence,

—27?(% - tl) < 2Arg(1 — ) — 27r(31 — %) < 2#(% — tl).

Further, since —7 < Arg (1 —zy) <,
—27T<1 — t1> < Re (% Ug(tl + 0V —1,t2 — 0V —1,t4)> < 27?(1 — tl)
Therefore, since ¢; > 0.03, (136) is satisfied.

The remaining case is the case where m; = mo = 0, —1 and my = 0. The concrete
values of (my, mg, my) are (0,0,0),(—1,—1,0), which are excluded from the range of the
sum of the formula of the lemma. Hence, we obtain the lemma. O

Lemma 8.9.
/ €N Us(t1,t2,ta) dtl dtQ dt4 _ C)(GNRevg)7
A

/
3

where vg = 0.479418... — /-1 -2.13181... .
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Proof. We can show the lemma similarly as the proof of Lemma 8.5 by using the saddle
point method. We show a sketch proof in this proof.
We fix t3 = 0.003. The differentials of Us are presented by

0

_at U3(t1,t2,t4) = —210g(1 — I’l) + 27‘(‘\/—1 (31 + S9 + S3 + Sy — 2)7
1

_a 3

BN Us(t1,ta,ts) = —log(l — z2) + 27/ =1 (52 + s34 54 — 5)’
2

0 1

2 Uttt = —loa(1— 2 + 20v7T (51 1),
4

where z; = ¢*™V 1% Hence, any critical point of Us is a solution of the following equa-
tions,

2 _ 2m/—1(s1+sa+s3+s4—2) _ 4.3 .2
(1—x1)" = e = 2] Tyr5Ty,
— _3
1 — o = 2V llmatsstsa—y) — —xi’x%mgm,
ST (sa—L
1—374 = 627T 1(s4 2) = —T1X9T3%4.

By concrete calculation, it is shown that they have a unique solution on Af, which is
given by

x1 = 0.66433... + v/-1-1.49642... t1 = 0.184394... — /-1-0.0780744... ,
r9 = —0.100364... +v/-1-0.935416... , to 0.267011... +/—1-0.00971496...
ry = 0.392143... + v/—1-0.0688233... , ty = 0.027651... + /=1 0.146575... .

Hence, the critical value of Us at this critical point is given by
vy = 0.479418... —/-1-2.13181... .

Therefore, by the saddle point method, we can show that the left-hand side of the formula
of the lemma is of order eV R and we obtain the lemma. O

Lemma 8.10.
/ €N (U3(t1,t2,t4)+27r\/—71(t1+t2)) dtl dtg dt4 _ O(eNRevé),
Ay
where vy = 0.478116... — /=1 -0.490192... .

Proof. We can show the lemma similarly as the proof of Lemma 8.5 by using the saddle
point method. We show a sketch proof in this proof.
We put
Us(ty,ta, ta) = Us(ty, to, ts) + 20V =1 (8 + ta),
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and we fix t3 = 0.003. The differentials of U} are presented by
0

6_tU?/’(t1’t27t4) = —2log(1l — x1) + 2mv/—1 (81+52+33+s4—2),
1
9 3
5 Usltnta, ta) = —log(l — o) +2mv/—1 (52 + 53+ 54 — ),
2
9 1
%Ué(thtmh) = —log(l —ax4) +271vV—1 (34—5),
4

where z), = e?™V~1%_ Hence, any critical point of Uj is a solution of the following equa-
tions,

2 2m/—1(s1+s2+s3+s4—2) __ 4 3 2
(1—mz)° = ¢ = 2] Tyx5Ty,
_ 27/ —1 82—%-83—&—84—§ _ 3,..3,..2

l—2y = ¢ ( 2 = —X| TH T3 Ty,

/=T (s4—1
1l—x, = ¥ T(sa=3) — —T1 XTo X3 Xy .

By concrete calculation, it is shown that they have a unique solution on Af, which is

given by
x; = 0.850268... + /—1-0.628312... , t; = 0.101286... — /=1 -0.00885708... ,
T 0.610976... + /-1 -0.0661802... , 123 0.0171725... ++/—1-0.077487... ,
xgy = 1.09811... ++/—1-0.929638... , ty = 0.111807... — v/=1-0.0578993... .

Hence, the critical value of U} at this critical point is given by
vy = 0.478116... — v/—1-0.490192... .

Therefore, by the saddle point method, we can show that the left-hand side of the formula
of the lemma is of order eV B¢%_ and we obtain the lemma. O

8.2.3 Restriction of the sum to ¢4 < 0.003

In this section, we show that we can restrict A to the domain #, < 0.003. That is, the
aim of this section is to show the following proposition.

Proposition 8.11. The restriction of the sum (124) to the range is/N < 0.003 is esti-
mated as follows,

% +1 p+1 s+l 2ig+1 e
NV ) ) >: O (§ E).
> eXp( (SN o ON o) CR

0<i1,+ 14
i1+ +ig <N
ia/N <0.003

Proof. Fixing i4 < N -0.003, it is sufficient to show that

2% +1 2ip+1 2ig+1 2ig+1
NV , , , ) 137
> e (Vv N N aN N ) (137)

0<41,i2,i3
i1-+iz+iz<N(1—0.003)
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is of order O(eN(r=2)).

We can calculate (137) in a similar way as the proof of Theorem 1.1 in Section 8.1,
by using the Poisson summation formula and the saddle point method, noting that the
boundary of the range of the sum (137) is included in the domain {t | Re V (t) <.} by
Lemma 8.2. We show a sketch proof of this calculation in the following of this subsection.
We fix t4, < 0.003, and put

U4(t17 t27 t3) - V(tla t27 t3a t4>

1 2
_ <2 LiQ(GQW\/—Ttl) +L12(62wﬁt2) +L12(62wﬁt3) +L12(e2”ﬁt4) + 7_)

2w/ —1 2
2

1
+27T\/—1-5(s%—l—sg%—sg#—si—sl—32—53—84+§),
where we put s; =t1, so =1t +ty, S3 =11+t +1t3, S4 =11+ 1ty +t3+ty. Similarly as
the proof of Theorem 1.1, we can restrict the domain of the sum (137) to

0.03 < t; < 0.4, 0.005<t, <047, 0.005< t5<0.47
0.1 < s, <0.7, 0.15< 53 <095, 89+ 83<17 )

Ai; - {(tb t27 t3>

where we omit concrete computations of the bounds of these inequalities. Hence, by the
Poisson summation formula and Lemma 8.12, (137) is approximated by

I

Further, by Lemmas 8.13 and 8.14, the first and second summands are bounded by

eNUI25) Gt it dty + / e (Uattntats)-2m/ T (tveatta)) gy it

/ l
4 A4

O(eN(r=9)). Hence, we obtain the proposition. O
Lemma 8.12.
Z exXp (N(U4<t1, t2, t3)-271' V —1 (m1t1+m2t2—|—m3t3))> dtl dtz dtg = O(BN(gR_E)),

!
(m1,ma,m3) AL

where the sum runs over (my,ma,m3) € Z* — {(0,0,0),(1,1,1)}.

Proof. We can show the lemma similarly as the proof of Lemma 8.4. In the case of this
lemma, it is sufficient to show that

when ms #0,1, —(41 —¢) < Re (8% Us(ty, to, ts + 5\/—1)> < 2 —¢, (138)
when my # my, —(2m —¢) < Re (% U4(t1+5\/—1,t2—5\/—1,753)) < 2m—e (139)
when my # m3, —(2mr —¢) < Re (% U4(t1,t2+5\/—1,t3—5\/—1)) < 2w —e, (140)

for some € > 0.
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We show (138), as follows. The middle term is calculated as

0
Re (% U4(t1,t2, t3 + 5\/ —1)) = AI‘g (1 — .T3) - 27'('(83 + S84 — 1),

where 23 = 2™V -1(t+0V=1 GQince 0 < t3 < 0.5,
1
—271'(5 — tg) < Al"g (1 — fﬂg) < 0.
Hence,

1
—27T(82—|—84—§) < Re (%U4(t1,t2,t3+5\/—1)> < 271'(1—83—84).

Therefore, since s3 + s4 < 1.7+ 0.003 and 0 < s;, (138) is satisfied.
We can show (139) in the same way as in the proof of Lemma 8.8.

We show (140), as follows. The middle term is calculated as

0 1
Re <% Uty te +0vV—1,t3 — (5\/—1)) = Arg (1 —x5) — Arg (1 — z3) — 27 (s2 — 5),
where z = 2™V -1(2H0V=D) gnd g4 = 2™V-1=0V=1  Gince 0 < ¢y < 0.5,
1
—27T(§ — tg) < Arg (1 — $2) < 0.
Hence,
1 1
—21-04 < —271-t; < Arg(l —ax9) — 27?(52 — 5) < 271'(5 — 52) < 27 -0.4.

Further, since —m < Arg (1 — z3) <,
0
—27-0.9 < Re (5 Uty ts + 6v/—1, 15 — 5\/—1)> < 27-0.9.
Therefore, (140) is satisfied.

The remaining case is the case where m; = my = mg = 0,1. The concrete values of
(my, mg, mg) are (0,0,0),(1,1,1), which are excluded from the range of the sum of the
lemma. Hence, we obtain the lemma. O]

Lemma 8.13.
/ 6N Ua(t1,t2,t3) dty dts dtg — O(eNlllem)7
Ay
where vy = 0.525499... — /—1-2.12671... .

Proof. We can show the lemma similarly as the proof of Lemma 8.5 by using the saddle
point method. We show a sketch proof in this proof.
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We fix t, = 0.003. The differentials of U, are presented by

0
8—tU4(t1,t2,t3) = —210g(1—l‘1)—|—2ﬂ'\/—1 (81+82+83—|—S4—2),
1
0 3
§U4(t17t27t3) = —log(l —xq) + 271V -1 (82+83+84—§)7
2
0
a—tU4(t1,t2,t3) = —10g(1—$3)+2ﬂ'\/—1 (53—|—S4—1),
3

where z; = e?™V 1% Hence, any critical point of Uy is a solution of the following equa-
tions,

2 2m/—1(s1+s2+s3+s4—2) __ 4 3 2
(1—mz)° = ¢ = 2] Tyx5Ty,
. 27/ —1 82+S3+S4—§ _ 3,3 ,..2
l—2y = ¢ ( 2 = —T] TH T3 Ta
2w/ —1(s3+sa—1) __ 2 2 2

l—23 = e = X]T5T5T4.

By concrete calculation, it is shown that they have a unique solution on A/, which is
given by

r; = 0.889267... +—1-1.60022... , t1 = 0.169273... — /—1-0.0962416... ,
xy = 0.154601... + /—1-1.12276... , to = 0.228222... — /=1-0.0199232... ,
x3 = 0.349254... +/-1-0.18807... , ts = 0.0786168... + /—1-0.147162... .

Hence, the critical value of U, at this critical point is given by
vy = 0.525499... — /—1-2.12671... .

Therefore, by the saddle point method, we can show that the left-hand side of the formula
of the lemma is of order eV ®e¥ and we obtain the lemma. O

Lemma 8.14.

/ N (U4(t1,t2,t3)—2mﬁ(t1+t2+t3))dtl dty dt; = O(eNRevjl)’
Al

where v, = 0.488837... — /—1-6.50435... .

Proof. We can show the lemma similarly as the proof of Lemma 8.5 by using the saddle

point method. We show a sketch proof in this proof.
We put

Ui(tl, tz, tg) = U4<t1, ng, tg) — 2’/T\/ —1 (tl + t2 + tg),
and we fix t4 = 0.003. The differentials of U} are presented by

0
§U4(t1>t2,t3) = —2log(l —x) +27v -1 (31+52+S3+S4—2),
1
0 3
a—tU4(t1,t2,t3) = —log(l —xs) + 27V —1 (52+33+s4—§),
2
0
§U4(t1,t2,t3) == —10g(1—$3)+27rv—1 (33+S4—1),
3

88



where z;, = e2™V =1 Hence, any critical point of U. 1 1s a solution of the following equa-
tions,

2 27/ —1(s1+82+83+84—2) __ 4 3 2
(1—mz)" = ¢ (s1+s2+s3 ) = aladalay,
o 2w/ —1 32+33+347§ _ 3..3,..2
l—2z9 = ¢ ( 2 = —X] Ty T3 Xy,
_ 27/—1(s3+sa—1) __ 2 2.2

l—23 = e = X]THT5T4.

By concrete calculation, it is shown that they have a unique solution on A/, which is
given by

r1 = 0.215852... +/-1-1.09531... , t; = 0.219032... — v/=1-0.0175211... ,
x9 = —0.610953... +/-1-0.216459... , tos = 0.445808... + v/—1-0.0690111... |
x3 = 0.122125... + /=1 - 2.06768... , ts = 0.240611... — /=1-0.115892... .

Hence, the critical value of U} at this critical point is given by
vy = 0.488837... — v/=1-6.50435... .

Therefore, by the saddle point method, we can show that the left-hand side of the formula
of the lemma is of order eV Be%i and we obtain the lemma. O

8.2.4 Restriction of the sum to t; < 0.5 and ts,t3,t4 < 0.7

In this section, we show that we can restrict A” to the domain t; < 0.5 and o, t3,t4, < 0.7
in such a way that the removed part is included in the domain (125). That is, assuming
that

2 A(tl) + A(tg) + A(tg) =+ A(t4) Z §R y
we show that ¢; < 0.5 and 5, t3,t4 < 0.7 in this section.

We calculate an upper bound of ¢;. Since A(t) has a maximal value at ¢t = 1/6,

1
2A(t;) > §3_3A(6) = 0.530263... — 3-0.161533... = 0.045664... > 0.

Hence, noting that the behavior of A(t) is as mentioned in Section 2.2, we have that

1 < 0.5.

We calculate the maximal value t5 . Of t5. Since A(t) has a maximal value at t = 1/6,

1
Alt) > ¢, — 4A(6) = 0.530263... — 4-0.161533... = —0.115869... .
Hence, t9,ax is a solution of the following equation,

M) = 5, —4A(3).
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By calculating a solution of this equation by Newton’s method from t, = 0.7, we obtain
tomax = 0.681959... . In fact,

1
A0.7) = —0.124907 < —0.115869... = gR—4A(6).

Therefore, since the behavior of A() is as mentioned in Section 2.2, we obtain an estimate
of ty as

We obtain

in the same way as above.

8.2.5 Extension of the sum to t; +ty +t3 +t4 < 1.45

In this section, we show that we can extend A" to the domain ¢, + to + t3 + t4 < 1.45.
That is, the aim of this section is to show the following proposition.

Proposition 8.15. The extension of the sum (127) to the range 1 < (i1 +ig+iz+i4)/N <
1.45 is estimated as follows,

%i+1 2p+1 s+l 2p+1 e
NV bl ) Y ): O (§ 6).
> eXp( (=w OIN 9N N (e™ ™)

20141 2ip41 2ig+1 2ig+ly A
(2N’2N’2‘N’2N)€
N§11+~~~+14SN~1.45

Proof. Fixing j, = i1 + 1o + i3 + 14 with N < j4 < N - 1.45, it is sufficient to show that

% 4+1 2ip+1 2g+1 24+1
NV , , : ) 141
) eXp( ( 2N oN oN N ) (141)

(2i1+1 2io+1 2ig+1 2i4+1)€A,
2N °"2N ' 2N 2N
11+t =J4

is of order O(eN(r=2)),

We can calculate (141) in a similar way as the proof of Theorem 1.1 in Section 8.1,
by using the Poisson summation formula and the saddle point method, noting that the
boundary of the range of the sum (141) is included in the domain {t | Re V/(t) < ¢,}.
We show a sketch proof of this calculation in the following of this subsection. We fix
S4 =11+t +t3+ty with 1 < s4 < 1.45, and put

U5(t27 t37 t4) = V(t17 t27 t37 t4)

1
B (2 Lig (27T Camtamtomt)) o Lig(e27V7TE2) o Lig(e27711)

Comy/—1

. w2 1 1
+ Lig(e?™V 1) 4 7) +2mV/ =1 o (st s34 55 —s1 =50 — s34 ),

where we put s; = s4 —to —t3 —ty, So =S4 —1t3—1ty, S3 = s4—ty4. Similarly as the proof
of Theorem 1.1, we can restrict the domain of the sum (141) to

0.01 < ty,t3,t4 <0.7, 0.03 <5, <05
A/5 = {(tg,tg,t4) 0.15 § S92 S 09, 0.3 S S3 S 12, 1 S S4 S 1.45 },
S9 + t4 S 1.2
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where we omit concrete computations of the bounds of these inequalities. Hence, by the
Poisson summation formula and Lemma 8.16, (141) is approximated by

/ exXp (N(Ug)(tg, t3, t4)) dtg dt3 dt4 .
Ag

Further, by Lemma 8.17, this integral is of order O(eNr=9)). Hence, we obtain the
proposition. O

The differentials of Us are presented by

0 1

—Us = 2log(1l — 1) —log(l — x5) — 27v/—1(s1 — =),

Oty 2

0

T Us = 2log(l —x) —log(l —x3) — 2mv/—1(s1 + 59 — 1),
3

0 3

5 Us = 2log(l —x1) —log(1 — z4) — 27/ =1 (51 + 59 + 53 — 5),
4

where 7, = 2™V "1tk
Lemma 8.16.

Z / exXp <N(U5 (tg, tg, t4>—271'\/ —1 (m2t2+m3t3+m4t4))> dtg dtg dt4 = O(eN(qus))’
(m2,m3,ma4) A

where the sum runs over (my, ms,myg) € Z3 — {(0,0,0)}.

Proof. We can show the lemma similarly as the proof of Proposition 2.2 (see [20]). In the
case of this lemma, it is sufficient to show that

when my # 0, —(2m —¢) < Re (% Us(ta + 6v —1, t3,t4)> < 27 —¢, (142)
when ms # mg, —(2mr —¢) < Re <% Us(ta + 0V —1,t3 — 0v—1, t4)> < 2m—eg, (143)
when mg#m4, —(27T—€) < Re <% U5(t2,t3+5\/—1,t4—5\/—1)) < 21 — €, (144)

for some € > 0.

We show (142), as follows. The middle term is calculated as

Re (3 Us(ts + 6vV—1, 3, t4)>

00
— Re <\/__1 a% Us(ty + 6v/—1, t3,t4)>
- i (et -0 -1 - - 20 )

1
= —2Arg (1 — 1) + Arg (1 — 22) + 27 (s1 — 5)7
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where 2, = 2™V -1(170V=D) and gy = 27V-1(R24V=1) Gince 0 < 51 < 0.5,

0 < —2Arg(l —x) < 2m(1—2s).

Hence,
_271'(% — 31) < —2Arg(1—x1) + 277(31 — %) < ZW(% — 51)_
Further,
1 1
min{ — 27r(§ — tQ), O} < Arg(1—29) < max{(), 27T(t2 — 5)}
Hence,
min{ —27(1 — s3), —2%(% — 51)} < Re (% Us(ty + 0v/—1, s, t4)>

1
< max{27r(§ - 51), 27 (ty — 31)}.

Therefore, since s; > 0, s, > 0.15 and t5, < 0.7,

_927.085 < Re (% U5(t2+5\/—1,t3,t4)) < 2r-0.7,

and hence, (142) is satisfied.
We show (143), as follows. The middle term is calculated as

9
Re (= Us(ts + 6v/=T, 15 — 6v/=1,1z))

1ol
— Re <\/__1 (a% _ a%) Us(ts + 0v/—1,t5 — 0+/—1, t4)>
= —Im ( —log(1 — z2) + log(1l — x3) + 27?\/—_1(32 - %))

= Arg (1 —23) — Arg (1 — z3) — 2#(32 — %),

where xq = e2™V-1{240V=1) gnd g4 = 2V 1=0V=1)  GQipce

min{ — 2#(% — tg), O} < Arg(l—z9) < max{(), 27T(t2 — %)},

we have that

min{ — 27 - 51, —2#(32 — %)} < Arg(1—a9) — 27r(52 — %)
< max{27r(1 — 52), —27 - sl}.
2
Hence, since s; < 0.5 and 0.15 < 59 < 0.9,

1
—2m-0.5 < Arg(l—xg)—27r(82—§) < 27-0.35.
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Further,

min{(), —27r(t3 — %)} —Arg (1 —z3) < max{?w(% — tg), 0}.

Hence, since 0 < t3 < 0.7,

—21-0.2 < —Arg(1—2z3) < 27-0.5.

IN

Therefore,

—927-0.7 < Re (% U5(t2+5\/—1,t3—5\/—1,164)) < 27-0.85,

and hence, (143) is satisfied.
We show (144), as follows. The middle term is calculated as

0
Re (— Us(ta, ts + 0v/—1, 4 — 5\/—1)>

150
— Re (V1. (a% _ a%) Usltats + 0V ~T 14— 6V/1))
= —Im ( —log(1 — x3) + log(1 — x4) + 27“/__1<33 - %))
= Arg(1 —23) — Arg (1 —zy) — 27T(53 — %)7

where 23 = 2™V -1H0V=D) gnd g, = e27V-1(ta=0V=1)  Gince

min{ — 2#(% — tg), 0} < Arg(l—az3) < max{(), 27r(t3 _ %)}’

we have that

min{ — 27 - So, —27r(33 — %)} < Arg(l—a3) — 27(53 - %)

1
< max{27r(§ — 53), -2 - 32} < 27 -0.2.
Further, since

min{O, —27?(754—%)} < —Arg(l—zy) < max{?w(%—t@, 0} <

we have that

0
Re <% U5(t2, t3 + 5\/ —1, t4 — 5\/ —1))

> min{ — 27 - S, —27?(33 — %), —27r(32 + 1y — %), —27(s4 — 1)}

> min{ —27-0.9, —27-0.7, =27 - 0.7, —27r-0‘45} < —27-0.9,

Re (% Uslto, s+ 03/ ~L 1 —6¥/-T)) < 200,

since s9 < 0.9, s3 < 1.2, s9+1ty < 1.2, s4 < 1.45. Therefore, (144) is satisfied.
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Lemma 8.17.

/ exp (N (Us(ta, t3,ta)) dta dtz dty = O(eNr™9),
;

Proof. Similarly as the proof of the saddle point method, we can show the lemma by
moving AL in each fiber of the projection C* — R3 D AL. We show a sketch proof in this
proof. In the fiber at (o, t3,t4), we put

F(0) = ReUs(ty, ts +6v/—1,t5 — 0v/—1) —¢,,.
It is sufficient to show that
F(§) < 0 for any sufficiently large ¢. (145)
We have that

dF 1
B Arg (1 — x3) — Arg (1 — z4) — 27 (s5 — 5),
where 23 = 2™V -1+H0V=D) gnd g, = 27V-1(a=0V=1)  Hepce,
1 1
5}5%@ = 0—2n(ty — 5) —2m(ss—5) = —2m(sa—1) <0,
dF 1 1
%}5_)_00 = 27T(t3 — 5) — 0—27?(33 — —) = —2m-8y < 0
Since Arg (1 — z3) — Arg (1 — z4) is a monotonic function of §, 45 < 0 for any (5 € R, and
F is monotonically decreasing. Recall that s, > 1 in this section. If s, > 1, ¢ d5 < —¢ for

some ¢ > 0, and hence, (145) is satisfied. If s4 = 0, we have that

. , 1
Jim FO) = Jim Re (5

+ Lig(e2™"1t=0V=D)) 4 97 /7T . ((33 +OVT) = (s34 0V1) ) =5,

(2 Lig( 27r\/7t1) +L1 ( QWletg) +Li2<62nﬁ(t3+6ﬁ))

1
_ R < 2L 2m/—11t1 —|—L 2w/ —1to ) o
€ 27T\/—_1( 12( ) 1 ( )) Sr
: 1 o /T (ta—by=T 1
i Re (271'\/__ Lig(e"m/ ™ 1))> 2t = 5)9
1
— R ( 2L 2w/ —1t1 +L 2w/ —1to ) . ]
€ 271'\/—_1( 12( ) 1 ( )) Sk
Since Im Liy(e?™V~1%) has a maximal value at t = 1/6,
1
. < : (m/—1/3 (T 1/3 ) _
6151010 F(6) < Re <27r\/—_1 (2Liy(e ) + Lia(e ) ) — <p
= 3-0.161533... — 0.530263... = —0.045664... < 0,
and hence, (145) is satisfied. O
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8.2.6 Restriction of the sum to t; +1; < 0.9, t; +ta+t3<1.2and t; +ts+1t4 < 1.2

In this section, we show that we can restrict the domain A"™ to the domain ¢; +¢5 < 0.9,
ty+to+1t3 < 1.2 and t; + 1t + 14 < 1.2 in such a way that the removed part is included
in the domain (125). That is, assuming that t € A", ¢; < 0.5, o, t3,t4 < 0.7 and

2A(t1) + A(t) + Alts) + A(ts) > <,

we show that t1 + 15 < 0.9, t; + 1o +t3 < 1.2 and t; +t5 + t4 < 1.2 in this section.
We calculate the maximal value s . Of $3 = t1 + t5. Since A(t) has a maximal value
at t =1/6,

1
2A(t) + A(ty) > gR—QA(é) = 0.207197... .

Hence, somax is & solution of the following equations,

1
20(s2 — t2) + Alt2) = <, = 20(5),
9

8—252(2/\(52—1t2)+A(tQ)) = 0.

By calculating a solution of these equations by Newton’s method from (sq,t2) = (0.9,0.6),
we obtain sgma = 0.877703... . Therefore, we obtain an estimate of sy = t; + t5 as

1+t < 0.9.

To be precise, the above argument is not partially rigorous, since we do not show the
uniqueness of the solution, though the above argument is practically useful, since we can
obtain a concrete estimate of t; +t5. We give a rigorous proof that ¢; +t5 < 0.9 in Section
AT

We calculate the maximal value s3pax Of s3 = t1 + to + t3. Since A(t) has a maximal
value at t = 1/6,

1

Hence, s3max 18 a solution of the following equations,

(

2A<83 — t2 — tg) + A(tg) + A(tg) = §R — A(é),
) 0%(2 A(s3 —ta — t3) + A(t2) + A(ts)) = 0,
\ %(2 A(Sg — tQ — tg) —+ A(tz) + A(tg)) = O

By calculating a solution of these equations by Newton’s method from (s3,t9,t3) =
(1.2,0.4,0.4), we obtain S3max = 1.13786... . Therefore, we obtain an estimate of s3 =
tl + tg + t3 as

foty+ty < 1.2,

To be precise, the above argument is not partially rigorous similarly as the above case.
We give a rigorous proof that t; + to + t3 < 1.2 in Section A.7.
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We obtain that
todty+ty < 12

in the same way as above.

8.3 Calculation of the critical value

In this section, we calculate the concrete value of a critical point of V.
The differentials of V' are presented by

9 .
%V(t) = —2log(l —z1) + 27v—1 (51 + 89 4 83+ 84 — 2),
1
J - 3
8_152V(t> = —log(l — x3) + 27V —1 (s + s34 54 — 5),
%f/(t) = —log(l —z3) +2mv—1(s3+ s4 — 1),
3
J - 1
ETe (t) = —log(l —zy) +2mv—1 (s4 — 5),
4

where z;, = 2™V "1 (kK =1,2,3,4).
Lemma 8.18. V has a unique critical point ty in P~'(A"), where P : C* — R* is the
projection to the real parts of the entries.

Proof. Any critical point of V is given by a solution of %V = %f/ = 8%3\7 = 6%\7 =0,
and these equations are rewritten,

(1 —3J1)2 — 627'('\/—1 (81—0—82—0—83—0—84—2) 4 3,2

= Ty Xy T3 Ty,
1 -y = 27V Llatsstais) —2} w3 23wy,
1—x3 = 2™V =T (satsa=1) x%x%x%m,
1—x4 = 2™V 1(sa=3) — —T'1 Lo T3 Xy4.

Putting ys = 129, y3 = 12273, Y4 = T1x2x3%4, the above equations are rewritten,
Y2 Ys Ya
(1 - $1)2 = T1Y2Y3Ya, l1—=— = —Y2Y3Y4, 1—= = Y3Y4, 1—2= = —Yy.
1 Y2 Y3

From the fourth equation, we have that y3 = y4/(1+y4). Further, from the third equation,
we have that y» = —y4/(y? — ys — 1). Furthermore, from the second equation, we have
that z1 = ya(ys + 1)/(2y4 + 1). By substituting them into the first equation, we obtain
that

Yi— 2y +3us + 2y — 2 —1 = 0.

Its solutions are

ys = —0.532511... £/—1-0.0564334..., 1.10636... = /—1-1.69341..., 0.852303... .
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Among these, the solution —0.532511... + /=1 - 0.0564334... gives a solution in A’, from
which we have that

r1 = 0.941819... + v/—1-1.69128... | ty, = 0.169133... — /-1-0.105128... ,

re = 0.193141... + /=1-1.23996... , ty = 0.225407... — /—1-0.0361386... ,

r3 = 0.424148... + /—1-0.19808... , t3 = 0.0695358... +/—1-0.120803... ,

ry = 0.467489... + v/—1-0.0564334... , ty = 0.01912... + v/—1-0.119867... .
These give a unique critical point in P71(A). ]

The critical value of V at the critical point of Lemma 8.18 is presented by

¢ = V(to) = 0.530263... — /—1-1.74407... . (146)
Further, we put its real part to be ¢, ,

¢, = Re¢ = 0.530263... . (147)

8.4 Calculation by the Poisson summation formula

In this section, we show Proposition 8.19 below, which is used in the proof of Theorem
1.1 for the 75 knot in Section 8.1.

Proposition 8.19. For the notation in Section 8.1,

Y 4+1 p+1 s +1 2iy+1
NV )
Zexp( (2N’2N’2N’2N)

11,12,i3,i4 €Z
(il/N,iz/N,i;;/N,M/N)GA/

= /lexp (N-V(t))dt + O(eNr )

for some € > 0.
Proof. We put a function ¢ : R* — R by
1 ifteA
g(t) = . :
0 ifté¢ N(A),
0<g(t)<1 ifte NA)-A

for t = (t1,t2,t3,t4) € R* such that g depends only on ¢4 (independently of other ¢;
(j # k)) in a neighborhood of 9, A for each k = 2,3, 4. By applying the Poisson summation
formula to g(t)V (t), the sum of the proposition is presented by

Z / exp (N(V(tl, t2, tg, t4>—271'\/ —1 (m1t1+m2t2+m3t3+m4t4))> dtl dtg dtg dt4 .
mi,mz,m3,me€L '
By Lemmas 8.20-8.23 below, the summand at (my, my, ms, my) is of the order O(e™ <z =)

for some € > 0 in the cases where my # 0,1, my # ms, my # mg or ms # my. Namely,

97



the summand is of the order O(eNr=9)) when (mq, my, ms, my) # (0,0,0,0),(1,1,1,1).
(To be precise, it is necessary to show that the sum of such summands is of this order; we
can show it in a similar way as in [20].) Further, by Proposition 8.32, the summand at
(my, ma, ms,my) = (1,1,1,1) is of the order O(e~V¢) for some ¢ > 0. Hence, we obtain
the proposition. O

Lemma 8.20. When my # 0,1,

/ exp (N (V(t1, ta, ta, ta) — 20v/—1 (maty + mats + mgts + m4t4))> dty dts dts diy
= O(eNbrm9),
Proof. We put
V/(t1, ta, ts, tg) = V(ty, ta, s, ta) — 20V —1 (maty + maty + mats + mats).

We show the lemma by moving A’ into the imaginary direction of ¢,. When my > 1, it is
sufficient to show that

Re (‘A//(tl, tg, tg, ty — 50 V —1)) < Sk for any (tl, tQ, t3, t4) € A,, (148)
/ NV 2 tsta =0V ity dig dty = O(eN6r), (149)
AN’ %[0,80]
for some 9y > 0. When my < 0, it is sufficient to show that
Re (V/(tl, tg, t3, t4 + (S() V —1)) < Sk for any (tl, tz, t3, t4> € A/, (150)
/ eNV’(t1,t2,t3,t4+5\/j1) dtl dtQ dtg dt4 — O<€N(§R75))’ (151>
A’ X[0,60]

for some dy > 0.

We show (148) and (150) for some sufficiently large &y, as follows. It is sufficient to
show that

if my > 1, % Re (V’(tl,tg,tg, ty—0v—1)) < —€ for any § >0, (152)
9 .
if my <0, 2 Re (V'(t1,t2,t3,ta + 0v/—1)) < —¢'  for any § > 0, (153)

for some ¢’ > 0. Hence, since Re (V’(tl, to, t3, t4—|—5\/—1)) = Re (V(tl, to, t3, t4+(5\/—1)) +
2mmy0, it is sufficient to show that

(47— &) < Re (%V(tl, to, ta,ts + 5\/—1)) < oar—¢ (154)

for some € > 0. The middle term is calculated as

0 ~ 0 ~
Re <%V(t1,t2,t3, t4 + (5\/ —1)> = Re (\/ —1- a—MV(tl,tQ,tg,tAL + (S\/ —1))
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1
~— —Im ( —log(1 — x4) + 27v/—1 (s4 — 5))
1
= Arg (1 —2y) — 27r(84 — 5),
where x4 = e2V"LEHVTD 10 < ¢, < L

—27T(%—t4) < Arg(l—az4) < 0.

Hence,

—2ms3 < Re (%V(tl,tQ,tg,t4+6\/—1)) < 2W(%—34).

Therefore, since s3 < 1.2 and s4 > 0, (154) is satisfied. If % <ty <1,

0 < Arg(l—xy) < 27r(t4—%).

Hence,

1 0 ~
—271'(84—5) < Re (g‘/(tl,tz,tg,tzl—f—é‘\/—l)) < —27s3.

Therefore, since s, < 1.45 and s3 > 0, (154) is satisfied.

We show (149) and (151), as follows. Since A’ is the union of &1 A’} -+, A, it is
sufficient to show that

if my > 1, / NV nttata=0V=D) gty dts dty, = O(eNor), (155)
9 A x[0,60]

if my < 0, / NVttt tatoV=D) qp ity dty dty = O(eN6r), (156)
9; A/ x[0,80]

for any dp > 0 and any ¢ = 1,--- , 5. R

When ¢ = 1, 0,A’ is included in the domain that ReV < ¢,. When my > 1,
Re V' (t1,t,t3,t4 — 04/—1) is monotonically decreasing with respect to & by (152), and
hence, (155) holds. When my < 0, Re V’(tl, ty,t3,t4 + 6y/—1) is monotonically decreasing
with respect to § by (153), and hence, (156) holds.

When i = 5, 357’ is included in the domain that ReV < ¢,. Hence, (155) and (156)
hold in the same way as the above case.

When i = 2, since t5 is fixed to be 0.003, the 4-form dt; dt, dts dt, vanishes on 0,A’ x
0, do]. Hence, (155) and (156) hold.

When i = 3, since t3 is fixed to be 0.003, (155) and (156) hold in the same way as the
above case.

When i = 4, in order to show (155) and (156), it is sufficient to show that

/ eNV/(tLtQ,tg,O‘OOBJr(S\/j].) dtl dtQ dt3 — O(eN(CR*E)>7
04 A\
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where we fix § such that (5A§ 0 when my > 1, and 0 > 0 when my < 0. Noting that
Re V'(tq,1ts,t3,0.003) > Re V'(ty,t2,t3,0.003 + d+/—1) by (152) and (153), it is sufficient
to show that

eNV/(tl,tg,tg,o.ooswﬁ) dty dty dts = O(eN(che))’ (157)
A
where we recall that A is defined in Section 8.2.3. We put
R 1

Us(ty,t2,t3) =

214 GQW\/Tltl + Li 627r\/—71t2 + Li 627r\/—71t3 )
o (2L 7T 4 Lig(e?7) + Lip( 77
2

1
+27T\/—1-§(sf%—s%—ks%—i—si—sl—52—53—84—1-5),

where S1 = tl, S9 = tl + t2, S3 = tl + t2 + t3, Sq4 = tl + t2 + t3 +0.003. It is sufficient to
show that, for any (my, ma, m3) € Z2,

s

We can show this formula by Lemmas 8.12, 8.13 and 8.14. Therefore, (157) holds. O

exp (N(U4(t1, tg, tg) — 271'\/ —1 (m1t1 + mgtg —+ mgtg))) dtl dtz dtg = O(eN(CR*E)»

Lemma 8.21. When my # mso,

/ exXp (N(V(tl, tg, t3, t4) - 27'['\/ -1 (m1t1 + m2t2 + m3t3 + m4t4))> dtl dtg dtg dt4
= O(eNtr=9),

Proof. We put V' as in the proof of Lemma 8.20. When m; > ma, it is sufficient to show
that

Re (V'(t — 6oV =1, t2 + oV =1L, t3,t1)) < <, for any (b, to,t3,ts) € A/, (158)
/ NV (=0V=Tto 0V =Tt5ta) gy dto dty dt, — O(eNtr=2)), (159)
A %[0,60)]

for some 9y > 0. When m, < mo, it is sufficient to show that
Re (‘A//(tl +50\/ —1,t2 —50\/ —1,t3,t4)) < §R fOl" any (tl,tg,tg,t4> - A/, (160)
/ NV (t14+8v/ =T ta—6/ =T t3,t4) dty dty dts dt, = O(eN(gR*E))7 (161)
DA’ x[0,50]

for some dp > 0.

We show (158) and (160) for some sufficiently large dy, as follows. It is sufficient to
show that

%Re (V'(t1 — 0v/=1,ta + 6v/—=1,t3,t1)) < —€ forany 6 >0, (162)

% Re (V/(tl —+ (5\/ —]., tg — (5\/ —1, tg,t4)) < —Ef/ for any ) Z 07 (163)

if my > Mo,

if myp < My,
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for some &’ > 0. Hence, since Re (V/<t1+5\/—1,t2—5\/—1, t3, t4)) = Re (V(tl‘i‘(;\/—l,tg—
0v/—1,t3,t4)) + 2 (my — m2)4, it is sufficient to show that
0 ~
(21 —¢) < Re <%V(t1 OV ty — 0V —1, t, t4)> < o —¢ (164)

for some € > 0. The middle term is calculated as

0 -~ 1
Re <%V(t1 + (5\/ —].,tg — (5\/ —1,t3,t4)) = 2AI‘g (1 — ZEl) - Al"g (1 — 1’2) — 271'(81 — 5),

where z; = e2™V=1EHVD and gy = 27V=170VD Since 0 < #; < &,

—QW(%—tl) < Arg(l—a2p) < 0.

Hence,

—271'(%—t1) < 2Arg(1—x1)—27r(51—1) < 27r(1—t1).

2 2
Therefore, since t; > 0.003,
1
—2m-0.497 < 2Arg(1 —ay) — 27 (s, — 5) < 27 -0.497.
Further, since —m < Arg (1 — z3) <, (164) is satisfied.
We show that (159) and (161), as follows. Since A’ is the union of O A, -+ -, 5A’, it
is sufficient to show that

if mi > My, / €N V! (t1=0v/ =T tatdv=Tts,ta) dtl dtg dtg dt4 = O(GN(gR _8)), (165)
0; A" % [0,60}

if my < Mma, / €N V/(t148V=Tit2=3V=Tts ta) dtl dtQ dtg dt4 = O(@N(<R _6)), (166)
6¢A’>< [0,(50}

for any dp > 0 and any ¢ = 1,--- , 5.

When i = 1,3,4,5, we can show (165) and (166) in a similar way as in the proof of
Lemma 8.20.

When i = 2, in order to show (165) and (166), it is sufficient to show that

/ 6]\/ V/(t1+5\/—71,0.003—5\/—71,t3,t4) dtl dt3 dt4 — O(GN(§R—€))7
D2 A

where we fix § such that ¢ < 0 when my > mgy, and 0 > 0 when m; < msy. Noting that
Re V'(t1,0.003, t3,t4) > ReV'(t; + 0v/—1,0.003 — 6+/—1,t3,t4) by (162) and (163), it is
sufficient to show that

/ N V! (t146v/=T1,0.003-6v/~T,t3,t4) dty dtsdt, = O(eN(§R—£))7 (167)
Ay
where we recall that A} is defined in Section 8.2.1. We put
Oty to,ta) = —
21/ —1

1 2
+27T\/—1-§(sf%—s%—ks%—i—si—sl—52—53—84—1-5),

(2Lia(e711) 4+ Lig(e?V11) o Lig(e*™ 1))
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where s; = t1, so = t; +0.003, s3 =t; +1t3+0.003, s4 =11 +t3+ ¢4+ 0.003. It is
sufficient to show that, for any (my,ms, my) € Z3,

/.

We can show this formula by Lemmas 8.4, 8.5 and 8.6. Therefore, (167) holds. O

exXp (N(ﬁg(ﬁ + 5\/ —1, t3, t4) — 27T\/ —1 (ml(tl + 5\/ —1) + m3t3 + m4t4))) dtl dtg dt4

= O(eN6r9),

Lemma 8.22. When my # mg,

/ exp <N(V(t1, tQ, t3, t4) - 27’(’\/ —1 (m1t1 + m2t2 + m3t3 + m4t4))> dtl dtg dtg dt4
— OV,

Proof. We put V' as in the proof of Lemma 8.20. Similarly as the proof of Lemma 8.21,
it is sufficient to show that

—(@2r—¢) < Re (%V(tl,t2+5\/—l,t3—5\/—1,t4)> < oam—¢  (168)

for some &’ > 0, and that

if me > M3, / €N V' (t1,t2=8V=Tta+3v=Tta) dtl dtQ dtg dt4 = O(GN(gR 76)), (169)
81'A/>< [0,(50]

if mo < Mg, / €N V' (t1,t2 48V =T ta =3V =T ta) dtl dtg dtg dt4 = O(eN(gR 78)), (170)
9; A’ x[0,00]

for any 6p > 0 and any ¢ = 1,--- 5.
We show (168), as follows. The middle term of (168) is calculated as

0 ~ 1
Re <%V(t1, to+0vV—1,1t3 — (5\/—1,t4)> = Arg(l —2y) — Arg (1 — x3) — 27r(32 — 5),

where 25 = 2™V -1(2H0V=D) gnd g4 = 27V-1(=0V=1)  Gince

min{ — QW(% —t3), 0} < Arg(l—a5) < max{0, 27 (t> — %)},

we have that
min{—27r-t1, —27‘(’(82—%)} < Arg (1—x2)—27r(32—%) < maX{27T(%—82), —27r-t1}.
Hence, since 0.003 < ¢; < 0.5 and 0.003 <t < 59 < 0.9,

1
—m < Arg (1 —xo) — 27(s2 — 5) < 27 -0.497.
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Further,
min{O, —27r(t3 — %)} < —Arg(l—a3) < max{%r(% — tg), 0}.
Hence, since 0 < t3 < 0.7,
—27m-0.2 < —Arg(l—=z3) < 7.
Therefore,
—27.0.7 < Re (%f/(tl,tz 46/, by — 6v/—1, t4)> < 271 -0.997,

and hence, (168) is satisfied.

We show (169) and (170) for i = 1,--- , 5, as follows.

When i = 1,4,5, we can show (169) and (170) in a similar way as in the proof of
Lemma 8.20.

When i = 2, in order to show (169) and (170), it is sufficient to show that

/ 6]V V/(t1,0.003+5\/—71,t3—5\/—71,t4) dtl dt3 dt4 — O(GN(§R—6))7
Do A

where we fix § such that 6 < 0 when my > mg3, and d > 0 when my < ms3. We can show
this formula in a similar way as in the proof of Lemma 8.21.
When i = 3, in order to show (169) and (170), it is sufficient to show that

/ 6N V' (t1,t2+0v/—1,0.003—6+/—1,t4) dtl dtg dt4 _ O(eN(cR—s))7
O3 A’

where we fix § such that § < 0 when my > ms3, and 6 > 0 when my < m3z. We can
show this formula by Lemmas 8.8, 8.9 and 8.10 in a similar way as in the proof of Lemma
8.21. O

Lemma 8.23. When ms3 # my,
/ exp (N(V(tl, tQ, tg, t4) — 27'('\/ —1 (m1t1 -+ m2t2 -+ m3t3 + m4t4))> dtl dtg dtg dt4
= O(eNtr™9),

Proof. We put V' as in the proof of Lemma 8.20. Similarly as the proof of Lemma 8.21,
it is sufficient to show that

o
—(@2r—¢) < Re <%V(t1,t2,t3 oV Tty — 5\/—1)) <or—¢  (171)
for some &’ > 0, and that

if ms > My, / €N V' (t1,t2,t3=8V=Tta+8v=1) dtl dtQ dtg dt4 = O(GN(GR 76)), (172)
9; A’ x[0,00]
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if mg < my, / NVttt tOVELU=0VED gy Gty dtg dty, = O(eNer=)),  (173)
8; A% [0,60]

for any 6g > 0 and any ¢ = 1,--- | 5.
We show (171), as follows. The middle term of (171) is calculated as
1

o -
Re <%V(t1,t2,t3 + 5\/ —1,t4 — 5\/ —1)) = Al"g (1 — x‘3> — AI’g (1 — 1’4) — 27T(53 — 5),

where x5 = 2™V-1t+0V=1) and g, = 2V-1(la=0V=1)  GQipce

min{ — 271'(% — tg), 0} < Arg(1—a23) < max{O, 27r(t3 — %)},

we have that

min{ — 27 - 89, —27?(33 - %)} < Arg(1—23) — 2%(33 - %)

< maX{QW(% —s3), —2m-s3) < 2m-0.497,
since 0.003 < t; < s3 and 0 < sy. Further,
minf0, ~2n(t~ 1)} < ~Arg(l-x) < max{2r(; 1), 0} < 7
since t, > 0. Therefore,

Re <%V(t1,t2,t3 +0v =1ty — 5\/—1)> < 2rm-0.97,

0 ~ 1 1
Re <%V(t1,t2,t3 + 5\/ —1,t4 — 5\/ —1)) Z —27 - HlaX{SQ, S3 — 5, So + t4 — 5, Sq4 — 1}
> —27-max{0.9, 0.7, 0.7, 0.45} > —27-0.9,
and hence, (171) is satisfied.

We show (172) and (173) for i = 1,--- |5, as follows.

When i = 1,2,5, we can show (172) and (173) in a similar way as in the proof of
Lemma 8.20.

When i = 3, in order to show (172) and (173), it is sufficient to show that

/ €N V7 (t1,t2,0.0034+8+/—1,t4—5+/—1) dtl dtg dt4 — O(eN(qR—a))’
O3 A/

where we fix § such that 6 < 0 when ms > my, and § > 0 when ms < my4. We can show
this formula in a similar way as in the proof of Lemma 8.21.
When i = 4, in order to show (172) and (173), it is sufficient to show that

/ eN V’(tl,t27t3+6\/j1,0.003—5\/j1) dt]_ dtz dt3 — O(eN(CR—E))’
O4 A\
where we fix § such that 6 < 0 when ms > my, and § > 0 when ms < my4. We can show

this formula by Lemmas 8.12, 8.13 and 8.14 in a similar way as in the proof of Lemma
8.21. O
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8.5 Verifying the assumption of the saddle point method

In this section, we verify the assumption of the saddle point method in Proposition 8.28.
In order to show this proposition, we show Lemmas 8.24-8.27 in advance.

We put
f(X,Y,ZW) = ReV(ty + X/—1,ty + YV =1 ts 4+ ZvV—1,t4+ W/—1) —,,.

Then, we have that

g_)f; = 2Arg (1 — 1) — 27(s1 + 52+ 55+ 54 — 2),
g_}‘i = Arg(l—xg)—27T(82+83+S4—g)7

g_é = Arg (1 —x3) — 2m(s3 + 54 — 1),

% = Arg(l—x4)—27r(84—%>a

where z; = 627r\/—71(t1+X\/—71)7 Ty = e2w¢fl(t2+Y¢T1)’ T3 = eQﬂJTl(t3+Z¢T1) and x, =
2V =1 (ta+Wv=1)

Lemma 8.24. Fizing X, Y, Z, we regard f as a function of W.

(1) If sy > 3, then f is monotonically decreasing as a function of W.

(2) Ifsq< %, then f has a unique minimal point as a function of W. In particular, this
mintmal point goes to oo as s4 — % — 0.

Proof. It 0 <ty < %, we have that
1
—27r(§ = t4) < Arg(1—xz4) < 0,

and Arg (1 — z4) is monotonically increasing as a function of W. Further,

of 1

I - 9 _ -

OW lw—oo 7T(84 2)’

of 1 1

_ = 927 (= —ts) — 2 — =) = 27 < 0.

W W oo m(y —t) = 2m(sa = 5) s
If s4 < %, there is a unique zero of %, which gives a unique minimal point of f, and
hence, (2) holds. If s4 > 3, % is always negative, and (1) holds.

If % <ty <1, Arg(1l — z4) is monotonically decreasing as a function of W. Since

g—V{, I is negative, % is always negative, and (1) holds. O

Lemma 8.25. Fizing X, Y, W, we regard [ as a function of Z.
(1) If s3+ s4 > 1, then f is monotonically decreasing as a function of Z.
(2) If s3+s4 <1 and sy + s4 > %, then f has a unique minimal point as a function of
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Z. In particular, this minimal point goes to oo as s3+ sy — 1 — 0, and goes to —o0 as
So + S4 — % + 0.
(3) If so+s4 <3, then f is monotonically increasing as a function of Z.

Proof. If 0 < t3 < %, we have that
1
—27(5 - tg) < Arg(1—z3) < 0,

and Arg (1 — z3) is monotonically increasing as a function of Z. Further,

of

=L = -2 1

(9Z Z—00 7T(53 + 5 )’

0 1 1

a_£Z—>—oo = —27T(§—t3)—271'<83+84—1> = —27T(82+S4—§).
If s3+s4>1, g—é is always negative, and (1) holds. If s3+ s4 < 1 and sg + 54 > %, there
is a unique zero of g—é, which gives a unique minimal point of f, and hence, (2) holds. If

So + 54 < %, then % is always positive, and (3) holds.
It % < t3 < 1, Arg(l — x3) is monotonically decreasing as a function of Z. Since

S3+84> 213 > 1, % ; is negative, and % is always negative. Hence, (1) holds. [
——00

Lemma 8.26. Fizing X, Z, W, we regard f as a function of Y.

(1) If so+ s34+ 54 > %, then f is monotonically decreasing as a function of Y.

(2) If so4 s34+ 84 < % and t, + s3 + s4 > 1, then [ has a unique minimal point as a
function of Y. In particular, this minimal point goes to oo as So + S3 + S4 — % — 0, and
goes to —oo ast; +s3+ 854 — 1+ 0.

(3) Ifty+ s34+ s4 <1, then f is monotonically increasing as a function of Y.

Proof. We can prove the lemma, similarly as the proof of Lemma 8.25. O]

Lemma 8.27. Fixing Y, Z, W, we regard f as a function of X.

(1) If s1+ s2 4 s3+ s4 > 2, then f is monotonically decreasing as a function of X.

(2) Ifs1+s2+ 83+ 54 <2 and ty+ s3+ s4 > 1, then f has a unique minimal point as a
function of X. In particular, this minimal point goes to 0o as s1 + So + S3+ 54 — 2 — 0,
and goes to —oo as ty + s34+ s4 — 1+ 0.

(3) Ifta+ s3+ s4 <1, then f is monotonically increasing as a function of X.

Proof. We can prove the lemma, similarly as the proof of Lemma 8.25. O]

Proposition 8.28. When we apply the saddle point method to (128), the assumption of
the saddle point method holds.

Proof. We show that there exists a homotopy A’(6) (0 <6 < 1) between A’(0) = A" and
A’(1) such that

(tlcat207t3cat4c) S A,(l)a (174)
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A,<]-) - {(tIC)t267t3C)t4C)} C {(t17t27t37t4) € (C4 ‘ RGV(t17t2,t3,t4) < gR}’ (175>
/ V(tl, tg, tg, t4) dtl dtQ dtg dt4 = O(GN(gR_E)) for some € > 0. (176)
UoA(3)

We make the homotopy, as follows. We note that the behavior of f(X,Y,Z, W) as a
function of X does not depend on'Y', Z, W, and the behavior of f(X,Y, Z, W) as a function
of Y does not depend on X, Z, W, and the behavior of f(X,Y,Z, W) as a function of Z
does not depend on X, Y, W, and the behavior of f(X,Y, Z, W) as a function of W does
not depend on X, Y, Z. We make the homotopy by taking (t1,ts,t3,t4) to the minimal
point (or infinity) of Lemmas 8.24-8.27 in each fiber of the projection C* — R*. We note
that we can choose any order of moving variables to the minimal points (or infinity) in a
general fiber. In each fiber on ,A’, we take X, Z, W to the minimal points (or infinity) in
advance, and take Y to the minimal point (or infinity) later. In each fiber on 03A’; we take
X, Y, W to the minimal points (or infinity) in advance, and take Z to the minimal point
(or infinity) later. In each fiber on 9,A’, we take X, Y, Z to the minimal points (or infinity)
in advance, and take W to the minimal point (or infinity) later. When s; < %, So+54 > %,
t1+53+s4 > 1 and to+s3+s4 > 1, f has aunique minimal point by Lemmas 8.24-8.27; we
put it to be (X, Y7 Z7 W) = (91(t1, tQ, t3, t4)7 gg(tl, tQ, tg, t4), gg(th tg, t3, t4), g4(t1, tQ, t3, t4))

We show (176), as follows. It is sufficient to show that

/ V(ty, by, ts, ta) dty dty dtsdty, = O(eNr9) (177)
Ua;A(8)

foreachi =1,---,5. Wheni = 1, %A’ is included in the domain that Re V < G,. Further,
by the construction of the homotopy, ReV monotonically decreases by the homotopy.
Hence, (177) holds. When i = 5, 0;A’ is also included in the domain that ReV < ¢,
and hence, (177) holds, similarly as the above case. When i = 2, in a fiber on 0;A’, the
homotopy moves X, Z, W in advance, fixing t, and Y. In this range of §, the restriction
of the 4-form dt, dts dts dt, to | J 0,A’(d) vanishes, and the integral of (177) is 0. Further,
when the homotopy moves Y later, ,A’(8) is included in the domain that ReV < ¢, by
Lemma 8.29 below. Hence, (177) holds. When i = 3,4, (177) holds similarly, by Lemmas
8.30 and 8.31 below.

We show (174) and (175), as follows. In a similar way as the cases of other knots, we can
show that, when (¢1, %, t3, t4) is a critical point of h(ty, ta, ts, ta), (t1+g1(t1, o, ts, ta)vV/—1, ta+
ga(t1, ta, t5, ta)V/=1, t5+ gs(ty, ta, ts, ta)v/—1, ts+ ga(tr, ta, 13, t4)v/—1) is a critical point of
V. Tt follows that h(ti,ta,ts,t4) has a unique maximal point at (¢, to, t3,t4) = (Rety., Rets,
Retse, Rety.). Therefore, (174) and (175) hold. O

Lemma 8.29. When the homotopy moves X, Z, W to the minimal points (or infinity)
in each fiber on Oy A', the homotopy moves O, A" into the domain that ReV < ,.

Proof. As shown in the proof of Lemma 8.6, we can take X — —oo or W — oo in every
fiber on 0,A’. Hence, f — —o0 in every fiber. Therefore, we obtain the lemma. m
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Lemma 8.30. When the homotopy moves X, Y, W to the minimal points (or infinity)
in each fiber on 03A', the homotopy moves 0sA’ into the domain that ReV < ,.

Proof. As calculated in the proof of Lemma 8.9, when we move X, Y, W to the minimal
points (or infinity), d3A’ is moved to the position of the saddle point method of Lemma
8.9. Then, f is bounded by the critical value of Lemma 8.9, and it follows that d3A’ (after
the move) is included in the domain that Re V< Sp- ]

Lemma 8.31. When the homotopy moves X, Y, Z to the minimal points (or infinity)
in each fiber on 0,A', the homotopy moves 0,A" into the domain that ReV <.

Proof. As calculated in the proof of Lemma 8.13, when we move X, Y, Z to the minimal
points (or infinity), 0,A’ is moved to the position of the saddle point method of Lemma

8.13. Then, f is bounded by the critical value of Lemma 8.13, and it follows that 0,A’
(after the move) is included in the domain that Re V' < ¢,. O

8.6 Estimate of the integral at (mj, mo, m3,my) = (1,1,1,1)

Y Y )

In this section, we show Proposition 8.32 below, which is used in the proof of Proposition
8.19 in Section 8.4.

Proposition 8.32. For the notation of Proposition 8.19,

/ exp <N(V(t1, to,t3,ts) — 2/ =1 (t) +to + t3 + t4))> dty dty dtsdty, = O(eNer™9).

Before showing a proof of the proposition, we show some lemmas. We put

~

V/(ty, ta, b3, ) = V(t1,to, ts,ts) — 207/ —1 (t1 + to + t3 + t4),
F(X,Y, Z, W) = ReV'(ty + Xv/—1,ty + Y/ =1, ts + Zv/—1,t, + W/—1) —,
= f(X,) Y, Z, W)+ 2r(X+Y +Z+W).
It is sufficient to show that, in the fiber of the projection C* — R* at each (¢, 1o, t3,14) €

A’, we can move X, Y, Z, W in such a way that f’ becomes negative. We will show this
actually by moving X and W, fixing Y and Z. We have that

af’ 0

ai = a—)f(—l—QT( = 2Arg(1—xl)—27r(81+82+83+34—3)’
of  of - 3

e a—+27r—Arg(1—x4)—27T(84—§)>

where z; = 2™V 10+XV=D) and g, = 2™V -1EAWV=I),

Lemma 8.33. Fizing X, Y, Z, we regard f' as a function of W.

(1) If s3 <1, then f’ is monotonically increasing as a function of W.

(2) If s3> 1, then [’ has a unique minimal point at W = g4(ty, ta, t3, 1), where
1 sin 27 (sg — 1)

galt, o, s, 1a) = o log sin271'(§ — 84) .
2
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In particular, this minimal point goes to —oo as s3 — 1+ 0.

Proof. It 0 <ty < %, we have that
1
—27r(§ —t4) < Arg(l—m) < 0,

and Arg (1 — z4) is monotonically increasing as a function of W. Further,

af 3

3W W—oo o 27T(§ B 54) > 07

of' 1 5

W lwooo _Zﬁ(é —ta) =2m(si—3) = —2n(ss —1).

If s3 > 1, there is a umque Z€TO of 2 8W, which gives a unique minimal point of f’; and
hence, (2) holds. If s3 <1, aW is always positive, and (1) holds.
If % <ty <1, Arg(1l — z4) is monotonically decreasing as a function of W. Since

of
» oW

/ . . .
9L 1S positive

is always positive, and holds. O
A . s (1)

Lemma 8.34. Fizing Y, Z, W, we regard f' as a function of X.

(1) If s1+ s2+ s3+ s4 > 3, then f' is monotonically decreasing as a function of X.

(2) If s14+ so+ s34+ 54 < 3 and ty + s3 + s4 > 2, then [’ has a unique minimal point at
X = gl(tla tQ, t3, t4>, where

sinm(ty + s34+ s4 — 2)
t1,t9,13, 1 = log .
g(tr, t2, 13, 14) o sm7r(3—31—82—33—s4)

In particular, this minimal point goes to oo as s1 + o+ S3+ s4 — 3 —0, and goes to —oo
as t2+83+84—>2+0.
(3) Ifta+ s34 s4 <2, then [’ is monotonically increasing as a function of X.

Proof. Since 0 < t; < %, we have that
1
—27r(§ —t1) < Arg(l—x1) < 0,

and Arg (1 — z1) is monotonically increasing as a function of X. Further,

o 2m(s1 4+ s + 53+ 54 — 3)
= — 27T —_
6’X X —00 ! 2 3 4 ’
or 2m(1 —2t1) — 2m(s1 + s2 + 53+ 3) 2m(ty + s34+ 2)
= —27(1 — —2m(s1+S2+s83+854—3) = —27 S3+ 84 — 2).
DX | x o 1 1T S2+ 83+ 84 2 1+ 83+ 84
Hence, we can show the lemma similarly as the proof of Lemma 8.33. O

We now show a proof of Proposition 8.32 by using the above lemmas.
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Proof of Proposition 8.32. We show that
/ NV ttat) gy dty dtgdty, = O(eNEr9),

It is sufficient to show that there exists a homotopy A’(d) (0 < § < 1) between A’'(0) = A’
and A’(1) such that

AN(1) C {(ti ta,ts,ts) € C* | Re V' (b1, bo, t,11) < <}, (178)

/ NV tntostsita) gt ity dty dty = O(eNr=9))  for some € > 0. (179)
Joar(s)

We make the homotopy, as follows. We note that the behavior of f(X,Y,Z, W) as a
function of X does not depend on W, and the behavior of f'(X,Y, Z, W) as a function of
W does not depend on X. We define the homotopy by taking X and W to the minimal
points (or infinity) of Lemmas 8.33 and 8.34 in each fiber of the projection C* — R* at
(t1,t9,t3,t4). We note that we can choose any order of moving X and W to the minimal
points (or infinity) in a general fiber. In each fiber on 0,A’, noting that f* — —oo as
W — —o0 by Lemma 8.33 since s3 < 095, we move (tl, to, 13, t4) to (th to,l3,t4 — 5/\/—_]_>
for a sufficiently large ¢’ in advance, and move X later.

We show (179), as follows. It is sufficient to show that

/ eNV’(t17t2:t37t4) dtl dtg dtg dt4 — O(GN(gR_E)) (180)
U0 A(5)

for each i = 1,---,5. When ¢ = 1, &;A’ is included in the domain that ReV’ < Sp-

Further, by the construction of the homotopy, Re 1% monotonically decreases by the ho-
motopy. Hence, (180) holds. When i = 5, d5A’ is also included in the domain that
Re V'’ < Sn, and (180) holds similarly as the above case. When i = 2, since the homotopy
fixes ty and Y, the restriction of the 4-form dt; dts dts dt, to | 02 A’(9) vanishes, and the
integral of (180) is 0. Hence, (180) holds. When i = 3, (180) holds similarly as the above
case. When 7 = 4, we have that

/ eN‘A//(tl,tQ,tg,tzl) dtl dtQ dtg dt4 - _ /_1 /d(SI / 6N\A//(751,152,t370.003—5/\/—;1) dtl dtQ dt3,
U 04A7(6) 1

and (180) holds by Lemma 8.35 below.

We show (178), as follows. When s3 < 1, since f’ — —oo as W — —oo by Lemma
8.33, (178) holds. When t5 + s3 + s4 < 2, since f' — —o0 as X — oo by Lemma 8.34,
(178) holds. When s; + s + s3 + 84 > 3, since f' — —oo as X — —oo by Lemma
8.34, (178) holds. The remaining case is the case where s3 > 1, ty + s34+ s4 > 2 and
S1+ S2 + s34 s4 < 3. In this case, we show (178), as follows. We put

F(t17t27t37t47X7 W) = Re (V/(tl _'_XV _17 t27 t3a t4 + WV _1)>7
h(tl,tg,tg,t4) = F(tl,tg,tg,t47gl<t1,t2,t3,t4),g4(t17t2,t3,t4)),
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where g; and g4 are as in Lemmas 8.33 and 8.34. Let (t1,1s,t3,%4) be a critical point of
h(tl, t2, t3, t4), and put X = gl(tl, tg, tg, t4) and W = g4(t1, t27 t3, t4). Then, (tl, t2, t37 t4, X, W)
is a critical point of F'. Hence,

8%‘7’ — 0, Re<a%x7’> — 0, Re(a%f/’) — 0, 3%17’ — 0.

Therefore,
—2log(1l — x1) + 2mv—1 (81+82+83+S4—3) = 0,
5
Re ( —log(1 — @5) + 27V =1 (52 4 53+ s4 — —)) =0,

2
Re ( —log(1 — a3) + 27V —1 (s34 54 — 3)) = 0,
3
— log(l — 33'4) + 271'\/ —1 (84 — 5) = 0.
Hence, F' has a unique critical point given by

xr1 = 0.233604... + /—1-0.706749... | t; = 0.199193... + /—1-0.0469884... ,
xy = —0.0659927... + /=1-0.99782... , ty = 0.260511... ,
x3 = —0.92395... — /-1-0.382514... , t3 = 0.562471... ,
xqy = 3.29476... + /—1-1.29574... , ty = 0.0596343... — /—1-0.20121... |

and its critical value is given by
vy = 0.454575... .

This critical point gives a maximal point of h, and hence, h(ty, ta,t3,t4) is bounded by vy.
Since v, is less than ¢, = 0.530263..., (178) holds. O

Lemma 8.35. For an arbitrarily fized &' > 0,

/ eNV(tl,tg,tg,0.00Iif&/\/jl) dty dty dts = O(eN(nge)).
Al

Proof. 0A, is originally included in the domain that Re V! < G- Further, since s3 < 0.95
in 0A), Re % (t1,t2,t3,0.003 — §'y/—1) is monotonically decreasing with respect to ¢’ by
Lemma 8.33. Hence, 0A] is included in the domain that Re V’(tl, ta, t3,0.003 — &'/—1) <
G,. Further, since Re V/(tl, ta,t3,0.003 — §'v/—1 — §"/—1) = —o0 as §" — oo by Lemma
8.33, we can show the lemma by taking the domain of the integral as §” — oc. ]

A The domain {ReV >¢,} is convex
In Sections 3.2, 4.2, 5.2, 6.2 and 7.2, we estimate the maximal and minimal values of some

linear function L(t,s,u,v) on the domain {(t, S, U, ) | Re V(t, S,u,v) > gR}. In this sec-
tion, we explain that this domain is a convex domain such that its boundary is a smooth
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closed hypersurface whose sectional curvatures are positive everywhere. Then, the maxi-
mal and minimal values of L(¢,s,u,v) are obtained when the hyperplane L(t,s,u,v) = ¢
(where ¢ is a constant) is tangent to this domain, and there are exactly two such tangent
points corresponding to the maximal and minimal values of L(t,s,u,v). Such tangent
points are given by solutions of a certain system of equations given in Sections 3.2, 4.2,
5.2, 6.2 and 7.2. Hence, such a system of equations has exactly two solutions; we use this
fact in these sections. R

So, the aim of this section is to show that the domain {(t, S, U, V) | ReV (t,s,u,v) > gR}
is a convex domain such that its boundary is a smooth closed hypersurface whose sectional
curvatures are positive everywhere. We show this for the 73, 74, 75, 75, 77 knots in Sections
A2 A3 A4 A5 A6, respectively. In Section A.1, we prepare some lemmas. In Section
A.7, we give rigorous proofs of such estimates for the 75 knot in another way.

A.1 Some lemmas

In this section, we give some lemmas, which we use in the following sections.

Let F(z,y, z,w) be a smooth concave function whose maximal value is positive. Then,
the domain {(z,y,z,w) € R? ‘ F(z,y,z,w) > 0} is a convex domain and its boundary is
a smooth surface.

Lemma A.1. Let F(x,y, z,w) be a smooth concave function whose mazimal value is posi-
tive and Hesse matrix is negative definite. Then, the domain {(m, y,z,w) € R ‘ F(x,y,z,w) >
0} 1 a convexr domain and its boundary is a smooth hypersurface whose sectional curva-
tures are positive everywhere.

We can show the lemma in a similar way as in [21, Appendix BJ.

Lemma A.2. We put G(t,s) = 2A(t) — A(t + s) + 2A(s).

(1) On the domain {(t,s) € R* | 0 < t,s < 0.5}, G(t,s) is a concave function whose
Hesse matriz is negative definite.

(2) On the domain {(t, s) € R? ‘ 0<t,s, t+s< 1}, the upper bound of G(t, s) is given
by G(t,s) < G(1,1) = 4A(3) = 0.583122....

Proof. We show (1) of the lemma, as follows. The differentials of G' are given by

%—f = 2N (t) = AN(t+s) = —2log2sinnt + log2sin7(t + s),

%—G = 2N'(s) = AN(t+s) = —2log2sinms + log2sin7(t+ s).
s

Further, their differentials are given by

G _ 2N"(t) = AN'(t+s) = —2mcotmt t(t
57 = s) = 7ot t + weot w(t + ),
0?°G ”
5105 —A"(t+s) = wcotm(t+ s),
G _ 2MN"(s) — A"(t = —2mcot t(t
i s) (t+s) = —2mcotms + weotw(t + s).
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We put a = cotnt and b = cot s, noting that they are positive since 0 < t,s < 0.5.
Further, noting that cot(a+5) = (cot awcot § — 1)/(cot o + cot ), we have that

1 0°G ab—1 1 0°G ab—1 1 0°G ab—1
- = 20+ ——, — - = , —— = —2b+ )
T Ot? a+b ™ OtOs a+b T 0s? a+b
We put the Hesse matrix of G to be H. Then,
1 b—1 2((a+b)? —ab+1 2(a®* +0* +ab+1
—-trace H = —2a—2b—|—2-a = — ((a ) ¢ ) = — (a ¢ ) < 0.
T a+b a+b a+b
Further,
L et B = dab—(2a+25)- 2= — oab+1) > 0
— - de = 4dab — (2a . = 2(a )
2 a+b

Hence, the two eigenvalues of H are negative, and H is negative definite. Therefore, G is
a concave function on {(t, s) ’ 0<t,s< 0.5}, whose Hesse matrix is negative definite, as
required.

We show (2) of the lemma, as follows. A maximal point of G is whether a solution
of % = % = 0 or a point on the boundary of the domain {0 < t,s, t+s < 1}. We
can show by concrete calculation that the solutions of the above equation are (t, s)
(3,1),(1,0),(0,1), and at these points the values of G is bounded by G(5, 1) = 4A(3).
Further, the boundary of the domain {0 < ¢,s, t+s < 1} consists of {t = 0}, {s = 0}
and {t+s = 1}. On the boundary {t = 0}, the upper bound of G is given by G = A(s) <
A(§) < 4A(3). On the boundary {s = 0}, the upper bound of G is given by 4A(3) in the
same way. On the boundary {t+s = 1}, the upper bound of G is given by G = 0 < 4A(3).

Therefore, the upper bound of G is given by 4_/\(}1) on the domain of (2), as required. [

Lemma A.3.
(1) We put Gy(t,s,u) =2A(t) + A(s —t) + Au—s) —2A(u). On the domain

{(t,s,u) e R’

0<t,s<0b<u<l 0<s—t<0.5 O<u—s<0.5}, (181)

G1(t, s,u) is a concave function whose Hesse matrix is negative definite.

(2) We put Gy(t,s,u) =2A(t) + A(s —t) — A(s +u) + 2 A(u). On the domain
{ts,u)eR*|0<t<s<1—-wu, 0<u}, (182)
the upper bound of Go(t, s, u) is given by

V17T —1 11 V1T =1

Gg( - arccos —1 3 arccos 1 ) = (.887067....
Proof. We show (1) of the lemma, as follows. The differentials of G are given by
oG 0G oG,
— =2N({)—AN(s— — = N(s—t)—N(u— — = 2/ N(u—s).
= 2N() - N(s—1), S = N(s—H)-Nu-s), 5 (1) + X (u—s)
Further, their differentials are given by
0*Gq 0?Gq
= 2A"(t)+ N'(s—t = —AN'(s—t
atQ ( ) + (S )7 62,: 88 (S )
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0*Gq " " PGy "

52 = N(s—t)+ A'(u—s), 9500 —A"(u—s),
82G1 " "

52 = —2AN"(u) + A"(u—s).

We put a; = —2A"(t), by = —A"(s — 1), bp = —A"(u — s) and ay = 2A”(u), noting that
they are positive on the domain of (1). The Hesse matrix of G is given by

a; + bl —b1 0
—| —b bi+by by
0 —by  az+ by

As we show in the proof of Lemma 5.4, (—1) times the above matrix is positive definite.
Hence, the Hesse matrix of GG; is negative definite on the domain of (1), as required.

We show (2) of the lemma, as follows. We note that Ga(t,s,u) = Gi(t,s,1 —u). A
maximal point of G5 is whether a solution of % = aan = % = 0 or a point on the
boundary of the domain (182). We calculate a solution of the equation in the interior of
the domain (182). The differentials of G5 are given by

% = 2N (t) — N(s—t) = —2log2sinnt + log2sinm(s —t),

? = N(s—t)—AN(s+u) = —2log2sinm(s —t) + log2sin (s + u),
s

? = 2N (u) — N(s+u) = —2log2sinmu + log2sinn(s + u).
u

Hence, the above mentioned equation is rewritten
2sin’7t = sinm(s —t) = sinw(s+u) = 2sin®Tu.

Since sin 7t = sin7wu, we have that ¢t = w or ¢t + u = 1; we choose that ¢t = u, since we
consider a solution in the interior of (182). Further, since sinn(s —t) = sinm(s + u) and

t = u, we have that s = % Hence, 2sin® 7t = sin W(% —t) = cosmt. Therefore, putting

r = cos7t, we have that 2(1 — 2?) = z. Hence, z = @ and ¢ = < arccos (%) =

0.214823.... Putting ty = uy = %arccos (@) and sy = %, (to, S0, ug) is a unique
critical point of G in the interior of (182). It follows by (1) that (¢, so, 1 —ug) is a unique
maximal point of G; in the domain (181). Hence, (%o, so, uo) is a unique maximal point
of Go, and its maximal value is Ga(tg, So,up) = 0.887067.... Further, we see that Gy is
bounded by this value on the boundary of the domain (182). This boundary consists of
{t =0}, {t = s}, {s+u=1} and {u = 0}. On the boundary {t = 0},

Go(0, s,u) — Go(to, S0, u0) = A(s) — A(s+u) + 2 A(u) — Ga(to, So, uo)
< A(é) + 4A(%) — Go(to, 50, ug) = —0.142413... < 0,
by Lemma A.2. On the boundary {t = s},
Go(t,t,u) — Ga(to, So,u0) = 2A(t) — A(t +u) + 2 A(u) — Ga(to, So, Uo)
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1
< 4A(Z)—G2(t0,80,’lﬁ0) = —0.303946... < O,

by Lemma A.2. On the boundary {s +u = 1},
Go(t, 1 —u,u) — Ga(to, So,ug) = 2A(t) — At +u) + 2 A(u) — Ga(to, So,up) < O,
in the same way as above. On the boundary {u = 0},
Gso(t, s,0) — Ga(to, S0, ug) = 2A(t) + A(s —t) — A(s) — Ga(to, S0, o)
< 4A(%) — Go(to, S0, ug) = —0.240936... < 0,

since [A(-)| < A(g). Hence, G is bounded by Ga(to, so, up) on the boundary of (182).
Therefore, the upper bound of G, is given by Ga(tg, So, uo), as required. m

A.2 The domain {ReV >¢,} is convex for the 73 knot
For the 73 knot, we recall that

ReV(t,s,u,v) = A(t) —2A(s) + Au) + Av),

s, = 0.730861... (given in (29)),

A = {(t,s,u,v) eR? | 0<t<s<1, 0<u,v, u+v§3},
as we put in Section 3. The aim of this section is to show Lemma A.4 below, without
using results in Section 3.2. As we mentioned at the beginning of Appendix A, we can

show by this lemma that each system of equations in Section 3.2 has exactly two solutions;
we use this fact in Section 3.2.

Lemma A.4. The domain {(t,s,u,v) e A ’ Re V(t,s,u,v) > gR} is a compact convex
domain in the interior of /A such that its boundary is a smooth closed hypersurface whose
sectional curvatures are positive everywhere.

Proof. We restrict A to
A" = {(t,s,u,v) eA | 0 < tbu,v < 0.5 < s < 1}

in such a way that A” includes the domain {Re V> gR} in Step 1 below. Further, in Step

2 below, we show that, on A", ReV is a smooth concave function whose Hesse matrix
negative definite. Furthermore, we can verify by concrete calculation that ReV < ¢, on
the boundary of A”. Hence, by Lemma A.1l, we obtain the lemma. So, we show Steps 1
and 2 below in the following of this proof.

Step 1: In this step, we show that the domain {Re V> CR} is included in A”. Assuming
that Re V(t, s,u,v) > ¢, for (¢,s,u,v) € A, we calculate ranges of ¢, s, u and v.
We calculate a range of ¢, as follows. Since |A(-)] < A(g),

1
A(t) > gR—4A(6) = 0.084729... > 0.
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Hence, we obtain that 0 <t < 0.5.
We obtain ranges of v and v as 0 < u,v < 0.5 in the same way as above.
We calculate a range of s, as follows. Since A(-) < A(3),

1
—2A(s) > §R—3A(6) = 0.246262... > 0.

Hence, we obtain that 0.5 < s < 1.
Therefore, the domain {Re V> gR} is included in A”, as required.

Step 2: In this step, we show that ReV is a smooth concave function whose Hesse
matrix is negative definite on A”. We note that A(t), —2A(s), A(u) and A(v) are smooth
concave functions whose second derivatives are negative on A”. Since the Hesse matrix of
ReV is equal to their direct sum, Re V' is a smooth concave function whose Hesse matrix
is negative definite on A”, as required. H

A.3 The domain {ReV >,} is convex for the 7, knot
For the 7, knot, we recall that

ReV(t,s,u,v) = A(t) +2A(s) — A(s +u) + 2A(u) + A(v),

¢p = 0.817729...  (given in (48)),

A = {(t,s,u,v)€R4 ‘ 0<t<1l-s, 0<su s+u<l, Ogvgl—u},
as we put in Section 4. The aim of this section is to show Lemma A.5 below, without
using results in Section 4.2. As we mentioned at the beginning of Appendix A, we can

show by this lemma that each system of equations in Section 4.2 has exactly two solutions;
we use this fact in Section 4.2.

Lemma A.5. The domain {(t,s,u,v) e A ’ Re V(t, S, U, v) > gR} is a compact convex
domain in the interior of A such that its boundary is a smooth closed hypersurface whose
sectional curvatures are positive everywhere.

Proof. Assuming that Re V(t, s,u,v) > g, for (t,s,u,v) € A, we calculate ranges of ¢, s,
u and v.
We calculate a range of s, as follows. Since [A(-)] < A(g),

1
A(s) > ¢, — 5A(6) = 0.010064... > 0.

Hence, we obtain that 0 < s < 0.5.

We obtain that 0 < v < 0.5 in the same way as above.

We calculate a range of ¢, as follows. Since 2A(s) — A(s + u) 4+ 2A(u) < 4A(3) by
Lemma A.2, and A(-) < A(3),

1 1
At) > ¢, — 4A(Z> - A(é) = 0.0730742... > 0.

Hence, we obtain that 0 <t < 0.5.
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We obtain that 0 < v < 0.5 in the same way as above.
Therefore, the domain {ReV > ¢} is included in

A" = {(t,s,u,v) €A ‘ 0 < tsuv <05}

We note that A(t), F'(s,u) and A(v) are smooth concave functions whose Hesse matrices

are negative definite on A”. Since the Hesse matrix of ReV is equal to their direct
sum, ReV is a smooth concave function whose Hesse matrix is negative definite on A”.
Therefore, by Lemma A.1, we obtain the lemma. O

A.4 The domain {ReV >¢,} is convex for the 75 knot
For the 75 knot, we recall that

ReV(t,s,u,v) = 2A(t)+Als —t) + Alu—s) — 2A(u) + A(v),
s, = 1.02552... (given in (69)),
A = {(t,s,u,v)G]R4 | 0<t<s<u, Ogvgugl},

as we put in Section 5. The aim of this section is to show Lemma A.6 below, without
using results in Section 5.2. As we mentioned at the beginning of Appendix A, we can
show by this lemma that each system of equations in Section 5.2 has exactly two solutions;
we use this fact in Section 5.2.

Lemma A.6. The domain {(t,s,u,v) e A ’ Re V(t, S, U, v) > gR} is a compact convex
domain in the interior of A such that its boundary is a smooth closed hypersurface whose
sectional curvatures are positive everywhere.

Proof. We restrict A to
A" =t s,uv)eA|0<tv<05<u<l 0<s—t<05 0<u—s<05}

in such a way that A” includes the domain {Re V> gR} in Step 1 below. Further, in Step

2 below, we show that, on A", ReV is a smooth concave function whose Hesse matrix
negative definite. Furthermore, we can verify by concrete calculation that ReV < ¢, on
the boundary of A”. Hence, by Lemma A.1, we obtain the lemma. So, we show Steps 1
and 2 below in the following of this proof.

Step 1: In this step, we show that the domain {Re V> gR} is included in A”. Assuming

that Re V(t, s,u,v) >, for (t,s,u,v) € A, we calculate ranges of ¢, u, v, s—t and u—s.
We calculate a range of v, as follows. Since |A(-)| < A(3),

1
Aw) > ¢, — 6A(6) = 0.056322... > 0.
Hence, we obtain that 0 < v < 0.5.
In the same way, we obtain that 0 <t < 0.5 < u < 1l and 0 < s —¢ < 0.5 and
0<u—s<0.5. A
Therefore, the domain {Re V> gR} is included in A", as required.
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Step 2: In this step, we show that ReV is a smooth concave function whose Hesse
matrix is negative definite on A”.

We note that, by Lemma A.3, Gi(t,s,u) = 2A(t) + A(s —t) + A(u — s) — 2A(u) is
a concave function whose Hesse matrix is negative definite on A”. Further, A(v) is a
concave function whose second derivative is negative on A”. Since the Hesse matrix of
ReV is equal to the direct sum of A”(v) and the Hesse matrix of G;, ReV is a smooth
concave function whose Hesse matrix is negative definite on A”, as required. O

A.5 The domain {ReV >,} is convex for the 7 knot

For the 74 knot, we recall that

ReV(t,s,u,v) = 2A(#) +A(s—1t) —A(s+u) +2A(u) — A(u+v) +2A(v),

s, = 1.1276... (given in (87)),

A = {{ts,uv)eR|0<t<s<1-u, 0<uw, utv<l},
as we put in Section 6. The aim of this section is to show Lemma A.7 below, without
using results in Section 6.2. As we mentioned at the beginning of Appendix A, we can

show by this lemma that each system of equations in Section 6.2 has exactly two solutions;
we use this fact in Section 6.2.

Lemma A.7. The domain {(t,s,u,v) e A ’ Re V(t, S,u,v) > gR} is a compact convex
domain in the interior of /A such that its boundary is a smooth closed hypersurface whose
sectional curvatures are positive everywhere.

Proof. We restrict A to
A" = {(t,s,u,0) € A ‘ 0<tuv<05 0<s—t<05<s+u<]l}

in such a way that A” includes the domain {Re V> gR} in Step 1 below. Further, in Step
2 below, we show that, on A", ReV is a smooth concave function whose Hesse matrix
negative definite. Furthermore, we can verify by concrete calculation that ReV < ¢, on
the boundary of A”. Hence, by Lemma A.1, we obtain the lemma. So, we show Steps 1
and 2 below in the following of this proof.

Step 1: In this step, we show that the domain {Re V> gR} is included in A”. Assuming
that Re V(t, s,u,v) >, for (t,s,u,v) € A, we calculate ranges of ¢, u, v, s—t and s+u.
We calculate a range of ¢, as follows. Since 2A(u) — A(u + v) + 2A(v) < 4A(3) by
Lemma A.2, and |A(-)| < A(3),
1 1
At) > ¢, — 3A(6) - 4A(Z) = 0.059879... > 0.
Hence, we obtain that 0 <t < 0.5.

We obtain that 0 < s —t < 0.5 < s+ u < 1 in the same way.

We calculate a range of v, as follows. Since Ga(t,s,u) < Ga(to, So, uo) by Lemma A.3
(2), and [A(-)] < A(p),

1
2/\(1)) Z §R—G2(t0,SO,UO>—A(6) = 0.078999... > 0.

118



Hence, we obtain that 0 < v < 0.5.
We calculate a range of u, as follows. By Lemma A.8 below,

2A(u) > ¢, —1.12 = 0.0076... > 0.

Hence, we obtain that 0 < u < 0.5.
Therefore, the domain {Re V> gR} is included in A", as required.

Step 2: In this step, we show that ReV is a smooth concave function whose Hesse
matrix is negative definite on A”.
We put

F(t,s,u,v) = ReV(t,s,u,v) = 2A()+A(s—1t) = A(s+u)+2A(uw) — A(u+v)+2A).

The second derivatives of F' are given by

82F " "
Erai 2N () +AN'(s—t) = —m(as + by),
O*F "
5105 —A'(s—t) = 7by,
82F 14 "
e = N(s—t)=AN'(s+u) = —m(by + by),
O*F "
dsou ~Astu) = b,
O*F " "
57 = —N'(s+u)+2A(u) = A'(u+v), = —7(by +2¢c —b3),
O*F "
oudv —Auto) = mhs,
O*F , ,
57 = 2N () = N'(u+v) = —7(2d + b3),

where we put

a; = 2cotwt, by = cotm(s—1t), by = —cotm(s+u), ¢ = cotmu, d = cotwv,

(which are positive on A”) and by = cot m(u+v) = (cd —1)/(c+d). Hence, —< times the
Hesse matrix of I is given by

aq + bl —b1 0 0
—b; b+ by by 0
0 bg 2c + bg — bg —bg (18?))
0 0 —bs 2d — b3

It is sufficient to show that this matrix is positive definite on A”.
This matrix is related by elementary transformation as a quadratic form to the direct
sum of (a1 + bl) and the following matrix,

a9 + b2 bg 0
b2 2c + bz — b3 _b3 )
0 —b3 2d — bs
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where we put
b% . Clel

a + b1 N ay + b1
Further, the above matrix is related by elementary transformation as a quadratic form to
the direct sum of (ag + bg) and the following matrix,

as + 2c — bg —bg
( by 2d- bg) ’ (184)

b% . a2b2

a2+b2 B (12+b2

> 0.

Ao — bl—

where we put

az = by —
Furthermore,

trace(the matrix (184)) = az +2(c+d) —2b; = as+ (+d*+cd+1) > 0,

c+d
d+2d* + 1
det (the matrix (184)) = a3(2d — b3) + 4cd + 2(c + d)by = ag% +2cd+2 > 0.
c
Therefore, the two eigenvalues of the matrix (184) are positive, and the matrix (184) is
positive definite. Hence, the matrix (183) is positive definite, as required. ]

The following lemma is used in the above proof of Lemma A.7.

Lemma A.8. We put G(t,s,u,v) = 2A(t)+ A(s—t) = A(s+u) —Alu+v)+2A(v). On
the domain

A = {(t,s,u,v)ERﬂOﬁtﬁsSl—u, 0<u,v, u+v§1},

an upper bound of G is given by G(t,s,u,v) < 1.12.

. . . . 0G _ 90G _ 9G _ 909G _ ;
Proof. A maximal point of G is whether a solution of 57 = 52 = 3% = 5% = () or a point

on the boundary of A. We show that G is bounded by 1.12 at such a critical point and
at the boundary of A.

We show that G is bounded by 1.12 at a critical point of G in the interior of A, as
follows. We calculate a solution of the above mentioned equation. The differentials of G
are given by

% = 2N (t) = N(s—t) = —2log2sin7t + log2sinm(s — t),

% = N(s—t)=AN(s+u) = —2log2sinm(s —t) + log2sin7(s + u),
g_i = —N(s+u)—Nu+v) = 2log2sinn(s+ u) + log2sin7(u + v),
é;_f = 2N (v) = N(u+v) = —2log2sinmv + log 2sin7(u + v).
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Hence, the above mentioned equation is rewritten

2sin’ 7t = sinw(s —t) = sin7w(s+ u), (185)

4sinm(s+u) sinm(u+v) = 1, 2sin’ v = sinw(u+ ).
Since sinm(s — t) = sin7(s + u), we have that s —¢ = s +u or 2s —t + u = 1; we choose
2s —t 4+ u = 1, since we consider a solution in the interior of A. We put

mt T8 T ™
a = tan —, b = tan —, c = tan—, d = tan —.
2 2 2 2
. —a2 . .
Then, we have that sinnt = li‘flg , cosTt = ﬁ, ..., and so on. Since 2sin®7t =
: 2¢ V2 _ 2 1-a® _ 1-0®  _2a
sin7(s — t), we have that 2(1+a2) = T iTer — ine Tz - Hence,

4a*(140%) = (b(1—a®) —a(l —b%))(1+a®).
Similarly, since 2sin® 7v = sin 7(u + v), we have that
AP (14¢%) = (c(1=d®) +d(1— )1+ d%).

Further, since 16 sin? ¢ sin? 7v = 4 sin 7(s+u) sin 7 (u+v) = 1, we have that 4 sin 7t sin 7o =
1. Hence,
16ad = (1+ a®)(1+ d?).

Furthermore, since 2s —t+u = 1, we have that % = cotws = tan (7—2r - 7rs) = tan (“2—“ -
mt\ _ c—a
7) = {7 - Hence,

(1 -3 (1+ac) = 2b(c—a).
Therefore, the system of equations (185) is rewritten
4a*(140%) = (b(1—a®) —a(l—=0b%)(1+a®), (1-b)(1+ac) = 2b(c—a),
AP (14+¢%) = (=) +d1-)A+d*), 16ad = (1+a*)(1+d).

By Lemma A.9 below, this system of equations has the following unique solution in the
interior of A,

a = 0.23500046..., b = 0.46445467..., c¢ = 1.34645751..., d = 0.30711467...,
t = 0.14693973..., s = 0.27680813..., wu = 0.59332346..., v = 0.18969433....
Its critical value is bounded by G = 1.11152546... < 1.12, as required.
We show that G is bounded by 1.12 on the boundary of A, as follows. The boundary

of A consists of {t =0}, {t = s}, {s+u=1}, {u =0}, {v=0} and {u+v =1}. On the
boundary {t = 0},

(186)

1
G = As)—A(s+u) —A(s+v) +2Av) < 5A(6) = 0.807665... < 1.12.

On the boundary {t = s},

1
G = 2A() — At +u) — Au+0v) +2A(w) < 6A(6) = 0.969198... < 1.12.
On the other parts of the boundary, we can verify that G is bounded by 1.12 in similar
ways. Therefore, G is bounded by 1.12 on the boundary of A, as required. O
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Lemma A.9. The system of equations (186) is rewritten as the following single equation,

o®* —8a% +36a% — 1200 + 330a% — 696 o'® + 1156 a'® — 1416 &'" — 1561 o'©
+ 10160 a® — 28664 a'* + 69712 a'® — 84756 a'? + 88464 o' — 187032 a'”

— 213776 & + 512991 o® — 472872 a” + 3604052 a® — 64088 a® — 1782934 a*

+ 333992 0 — 11718764 o + 168728 a + 9803929 = 0,

where we put a = (a — é)/Z In particular, there is a unique solution a = 0.23500046...
such that the corresponding (t,s,u,v) is in the interior of A.

Proof. We rewrite the system of equations (186) as a single polynomial equation of a, as
follows. The first and second equations of (186) are quadratic polynomial equations of b.
So, we can remove the term b? as a linear sum of these equations, and we can present b
by a rational function of a and c. By substituting this rational function into the first (or
second) equation of (186), we obtain a polynomial equation of a and ¢ as the numerator
of the resulting equation. By calculating concretely, this polynomial equation is given by

02(a8 +3a% — 61a* + a2) —c (2@7 + 6a° + 64> + 2a) +a®—61la*+3a*>+1 = 0.

This equation and the third equation of (186) are quadratic polynomial equations of c.
Hence, we can remove ¢ from these equation in a similar way as above, and obtain a
polynomial equation of a and d. By using the fourth equation of (186) linearly, we can
remove the term a‘d’ for i,5 > 2 from this equation. By calculating concretely, the
resulting equation is given by

fla,d) = —3974889215 + 13107208 a — 4160749800 a”® 4 4192680 a* — 117444612 a*
— 4232248 a® 4 66997288 b + 4307752 a” — 1267066 a® — 400680 a” + 144424 a*°
— 23752 — 7172a'? +2392a' — 2324' — 84S + 4"
— 262144 d — 3891657728 d? — 262144 d® + 82839040 d* — 392192 d° — 16384 a d” + 256 d°
+ d (63342362592 a — 209715440 a” + 2709523808 a® + 142629984 a* — 1098853344 a”
— 74910736 a® + 26818592 a” + 6238528 a® — 2476256 a” + 392688 a'® + 119456 a'!
— 39840 a"? + 3296 a'* + 272" — 324"?)
+ a (17301504 d* — 1583398912 d° + 10436608 d°) = 0.

We consider to remove d from this equation and the fourth equation of (186). The fourth
equation of (186) is a quadratic polynomial equation of d. Let d; and dy be its solutions.
Then,
16a

14 a?
Further, f(a,dy)f(a,ds) is a symmetric polynomial in d; and dy, i.e., a polynomial in
dy + dy and didy. By substituting above formulas, we can remove d; 4+ ds and dyds from
this polynomial, and obtain a polynomial equation of a as the numerator of the resulting
formula. By calculating concretely, we obtain the equation of the lemma.

dy+dy = didy = 1.
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We consider a solution of this equation. By calculating concretely, the positive solutions
are given by
a = 0.23500046..., 0.31673729..., 0.38876234..., 0.39875987...,
2.42024595..., 2.90127305..., 4.82771874..., 5.46433094....
Further, by calculating the corresponding (t, s, u,v) concretely, we can verify that the

corresponding (¢, s,u,v) is in the interior of A only when a = 0.23500046.... Hence, we
obtain the lemma. O]

Remark A.10. In the above argument, we use a numerical solution of Lemma A.9 in
the proof of Lemma A.8. This argument is practically useful, though it is not rigorous.
To be precise, we can estimate this solution concretely as precisely as we need, and we
can rewrite this argument by using such an estimate in a rigorous way.

A.6 The domain {Reff > ¢, } is convex for the 7; knot
For the 7; knot, we recall that
ReV(t,s,u,v) = 2A(t) — At +5) +2A(s) — A(s +u) + 2A(u) — Alu+v) +2A(v),
s, = 1.21648... (given in (109)),
A = {(t,s,u,v) e R? ’ 0<t,s,u,v, t+s<1, s+u<l, ut+ov< 1},
as we put in Section 7. The aim of this section is to show Lemma A.11 below, without
using results in Section 7.2. As we mentioned at the beginning of Appendix A, we can

show by this lemma that each system of equations in Section 7.2 has exactly two solutions;
we use this fact in Section 7.2.

Lemma A.11. The domain {(t, s,u,v) € A ‘ Re V(t,s,u,v) > gR} is a compact conver
domain in the interior of A such that its boundary is a smooth closed hypersurface whose
sectional curvatures are positive everywhere.

Proof. We restrict A to
A" = {(t,s,u,v) €A ‘ 0<tsuv<05<stu<l}

in such a way that A” includes the domain {Re V> gR} in Step 1 below. Further, in Step

2 below, we show that, on A", ReV is a smooth concave function whose Hesse matrix
negative definite. Furthermore, we can verify by concrete calculation that ReV < ¢, on
the boundary of A”. Hence, by Lemma A.1, we obtain the lemma. So, we show Steps 1
and 2 below in the following of this proof.

Step 1: In this step, we show that the domain {Re V> gR} is included in A”. Assuming
that Re V(t, s,u,v) >, for (t,s,u,v) € A, we calculate ranges of ¢, s, u, v and s+u.

We calculate a range of s + u, as follows. Since 2A(t) — A(t + s) + 2A(s) < 4A(3) and
2A(u) — A(u +v) + 2A(v) < 4A(F) by Lemma A.2,

1
—A(s+u) > g, —2-4A(Z) = 0.0502364... > 0.
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Hence, we obtain that 0.5 < s+ u < 1.
We calculate a range of v, as follows. Since 2A(t) — A(t + s) + A(s) < 0.46 and
A(s) = A(s+u) +2A(u) < 0.46 by Lemma A.12 below and |A(-)]

1
2A(v) = gR—2-0.46—A(6) = 0.134947... > 0.

Hence, we obtain that 0 < v < 0.5.

We obtain that 0 < ¢ < 0.5 in the same way as above. R

We calculate a range of s, as follows. If s satisfied that 0.5 < s < 1, then Re V (¢, s, u,v) =
Fi(t,s) + Fa(s,u,v) < 0.46 +0.74 = 1.2 < ¢, by Lemmas A.12 and A.13 below, and this
is a contradiction. If s was 0, then

. 1
ReV(t,s,u,v) = A(t) +A(u) — A(u+v)+2A(v) < 5A(6) = 0.807665... < ¢,
and this is a contradiction. Hence, we obtain that 0 < s < 0.5.
We obtain that 0 <« < 0.5 in the same way.
Therefore, the domain {Re V> gR} is included in A", as required.

Step 2: In this step, we show that ReV is a smooth concave function whose Hesse
matrix is negative definite on A”.
We recall that

ReV(t,s,u,v) = (2A(t) = A(t+5) +2A(s)) — A(s+u) + (2A(uw) — Alu+v) +2A(v)).

Its Hesse matrix is equal to the sum of the Hesse matrix of —A(s + u) (whose entries are
negative on A”) and the direct sum of the Hesse matrices of 2 A(t) — A(t +s) +2 A(s) and
2 A(u) — A(u+wv)+2A(v) (which are negative definite on A” by Lemma A.2). Therefore,

ReV is a smooth concave function whose Hesse matrix is negative definite on A", as
required. O

The following two lemmas are used in the above proof of Lemma A.11.
Lemma A.12. We put Fi(t,s) = 2A(t) — A(t+ s) + A(s). On the domain
Ay = {(t,s)eR*|0<t,s, t+s<1},

an upper bound of Fy is given by Fi(t,s) < 0.46.

Proof. A maximal point of Fj is whether a solution of % = % = 0 or a point on the

boundary of A;. We show that F} is bounded by 0.46 at such critical points and at the
boundary of A;.

We show that Fj is bounded by 0.46 at critical points of F} in the interior of Ay, as
follows. We calculate a solution of the above mentioned equation. The differentials of Fj
are given by

el 2N (t) = N(t+s) = —2log2sinnt + log2sinm(t + s),
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or,
0s

Hence, the above mentioned equation is rewritten

= N(s)—=AN(t+s) = —log2sin7s + log2sinm(t + s).

2sin’ 7t = sinw(t+s) = sinws.

Since sin7(t 4+ s) = sinws, we have that t = 0 or t + 2s = 1; we choose t + 2s = 1, since
we consider solutions in the interior of A;. Putting ¢t = 1 — 2s,

sints = 2sin®m(1 —2s) = 2sin’*27s = 8sin®wscos® ws.

Hence, 8 sin 7s cos® ms = 1. Further, putting x = sin s, we have that 8z(1 —z?) = 1. We

have the following two positive solutions of this equation,
x = 0.1270508..., 0.9304029... .
The corresponding values of (¢, s) are given by
(t,s) = (0.9188977..., 0.0405511...), (0.2389143..., 0.3805428...).
Further, the corresponding values of F} are given by
Fy = —0.0800755..., 0.4587632... .

They are bounded by 0.46, as required.

We show that F is bounded by 0.46 on the boundary of A;. The boundary of A
consists of {t =0}, {s =0} and {t+s = 1}. On the boundary {t = 0}, we have that F} =
0 < 0.46. On the boundary {s = 0}, we have that F; = A(t) < A(3) = 0.161533... < 0.46.
On the boundary {t+s = 1}, we have that F}; = A(t) < 0.46 in the same way as above.
Therefore, F} is bounded by 0.46 on the boundary of Ay, as required. O

Lemma A.13. We put Fy(s,u,v) = A(s) — A(s+u) +2A(u) — Alu+v) +2A(v). On
the domain

Ay = {(s,u,v)GR?"Oﬁu,v, 05<s, s+u<l, u+v§1},

an upper bound of Fy is given by Fy(s,u,v) < 0.74.

f%? :%ﬁ 9% — () or a point on

Proof. A maximal point of F, is whether a solution o 5
the boundary of As. We show that F is bounded by 0.74 at such critical points and at
the boundary of As.

We show that F, has no critical points in the interior of Ay, as follows. We calculate

a solution of the above mentioned equation. The differential of F; by s is given by

OF:
5_2 = N(s)—AN(s+u) = —log2sin7s + log2sinm(s + u).
s
Hence, the equation % = 0 is rewritten
sins = sinw(s+ u).
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Since 0.5 < s < s+ u < 1, the above equation has no solution in the interior of As.
Therefore, F3 has no critical points in the interior of A,.

We show that F3 is bounded by 0.74 on the boundary of A,, as follows. The boundary
of A, consists of the boundary {u = 0}, {v =0}, {s =0.5}, {s+u =1} and {u+v = 1}.
On the boundary {u = 0},

IN

1
Fy = A(v) A(é) = 0.161533... < 0.74.

On the boundary {v = 0},

1
Fy = A(s) = A(s+u) +A(u) < SA(E) = 0.484599... < 0.74.

On the boundary {s = 0.5}, we have that F» < 0.74 by Lemma A.14 below. On the

boundary {s + u = 1},

Fy = Au) —Au+v)+2Av) < 4A(%) = 0.646132... < 0.74.
On the boundary {u + v =1},
Fy = A(s) = A(s+u) < 2A(é) = 0.323066... < 0.74.
Therefore, F3 is bounded by 0.74 on the boundary of Ay, as required. n

The following lemma is used in the above proof of Lemma A.13.

Lemma A.14. We put Ga(u,v) = —A(u + 0.5) + 2A(u) — A(u+v) +2A(v). On the
domain {(u,v) € R? ’ 0<u<0b5 0<v<1— u}, an upper bound of Gy is given by
Go(u,v) < 0.74.

Proof. A maximal point of GGy is whether a solution of % = 9% — () or a point on the

boundary of the domain of the lemma. We can see that G5 is bounded by 0.74 on the
boundary of the domain of the lemma as a special case of the proof of Lemma A.13.
Hence, it is sufficient to show that G5 is bounded by 0.74 at critical points of G5 in the
interior of the domain of the lemma.

We show that G5 is bounded by 0.74 at critical points of G5 in the interior of the
domain of the lemma, as follows. The differentials of G5 are given by

% = 2N (u) — A(u+0.5) — A'(u+0)
= —2log2sinmu + log2sinm(u + 0.5) + log 2sin 7(u + v),
% = 2N (v) = N(u+v) = —log2sinmv + log2sinm(u+ v).
Hence, the equation % = % = 0 is rewritten
sin®ru = sin(u+ %) sin7(u + v), 2sin® v = sinw(u+v). (187)
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We put y = cosmu = sinm(u + %) Then, sin? 7u = 1 —y?. Hence, from the first equation
of (187), we have that sin7(u+v) = % . Therefore, from the second equation of (187),
1—y®

we have that sin? 7o = . Hence, from the second equation of (187), we have that

2y
1—9? . . .
= sinm(u+v) = sin7u cosTv + cos Tu sin v
Yy
242y—1 1—y?
Ny R e A S yt
2y 2y

Therefore, we can show by some concrete calculation that
8y°+16y* —16y° — 159> +4y+4 = 0.

This equation has the following two positive real solutions,

y = 0.6198210..., 0.9612566....
The corresponding values of (u,v) are given by

(u,v) = (0.2872051..., 0.2489731...), (0.0888946..., 0.0637065...).

Further, the corresponding values of G5 are given by

Gy = 0.7353326..., 0.4259419...,

which are bounded by 0.74. Hence, (G5 is bounded by 0.74 at critical points of G5 in the
interior of the domain of the lemma, as required. ]

A.7 Proofs of estimates for the 75 knot in Section 8.2.6

For the 75 knot, in Section 8.2.6, we give estimates that t; +t, < 0.9 and t; +t5+t3 < 1.2
assuming that

~

in the domain
{te A" |11 <05, ta 5,84 <0.7}, (189)

where we recall that ¢, = 0.530263... as given in (147). In this section, we show rigorous
proofs of these estimates in Sections A.7.1 and A.7.2 respectively. Unlike the previous
sections, we give direct proofs of them in this section.

A.7.1 Proof of the estimate that ¢; +t> < 0.9

In this section, we show that ¢; + t2 < 0.9 assuming (188) in the domain (189). That
is, we show that we can restrict the domain (189) to the domain ¢; + 5 < 0.9 in such a

way that the removed part is included in the domain {Re V(t) < ¢, }. We recall that, by
(188),

1
2A(t) + A(ty) > gR—2A(6) = 0.207197... .

Hence, it is sufficient to show the following lemma.
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Lemma A.15. The domain
{(t1,t2) €R?* | t; <05, 1, <07, ¢+t >09} (190)
is included in the domain {2 A(t1) + A(t2) < 0.2}.

Proof. 1t is sufficient to show that, in the domain (190), the value of 2 A(¢;) + A(ts) is
bounded by 0.2. We note that 0.2 < ¢; < 0.5 and 0.4 < t5 < 0.7 in the domain (190).
Since the behavior of A(t) is as mentioned in Section 2.2, in these ranges, A(t;) and A(tz)
are monotonically decreasing with respect to t; and t, respectively. Hence, it is sufficient
to show that, on the interval

{(tl,t2> c R2 ’ t1 < 05, ty < 07, t1+1to = 09},

the value of 2 A(t;)+A(t2) is bounded by 0.2. Therefore, putting f(t) = 2 A(t)+A(0.9—1),
it is sufficient to show that f(¢) < 0.2 for 0.2 <¢ < 0.5.
We show that f(¢) < 0.2 for 0.2 <t < 0.5, as follows. We consider a maximal point of
f(t). It is given by
f'(t) = 2N (t)—AN(09—-1t) = 0.

Since A'(t) = —log 2 sin ¢, we have that
2log2sinnt = log2sinm(0.9 —t).

Hence,
2sin® 7t = sinm(0.9—t) = sin7-0.9 cosmt — cos - 0.9 sin 7t

Therefore, by putting a = sin 7t,
20> = V1—a2sinm-0.9 — asinm-0.9.
Hence,
a?(2a + cost-0.9)" = (1 —a?) sin*m - 0.9,
This equation has the following unique positive real solution,
ap = 0.65417005....
The corresponding values of ¢ and f(t) are given by
to = 0.22698193..., f(te) = 0.19462761... < 0.2.
Further, we can verify this ¢y is the maximal point of f(¢) in 0.2 <t < 0.5. Therefore,
f(t) <0.2 for 0.2 <t < 0.5, as required. O

A.7.2 Proof of the estimate that t; +t5 +t3 < 1.2

In this section, we show that ¢, +to +t3 < 1.2 assuming (188) in the domain (189). That
is, we show that we can restrict the domain (189) to the domain ¢; +¢5 +t3 < 1.2 in such
a way that the removed part is included in the domain {Re V' (t) < ¢,}. We recall that,
by (188),

1
2A(t) + Alts) + Ats) > <, — A(é) = 0.36873... .

Hence, it is sufficient to show the following lemma.
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Lemma A.16. The domain
{(t1,t2,t3) ER® | t1 <05, o83 <0.7, 1+t +1t3 > 1.2} (191)

15 included in the domain {2 A(ty) + A(ty) + A(ts) < 0.35}.

Proof. 1t is sufficient to show that, in the domain (191), the value of 2 A(¢;)+A(t2) + A(t3)
is bounded by 0.35. A maximal point of 2 A(t;) 4+ A(t2) +A(t3) is whether a maximal point
of 2 A(ty) + A(t2) + A(t3) in the interior of the domain (191) or a point on the boundary of
the domain (191). Since the maximal points of A(t1), A(ts) and A(t3) are t1 = ¢, to = &
and ¢3 = § respectively, there is no maximal point of 2 A(t;) 4+ A(t2) + A(t3) in the interior
of the domain (191). Further, as shown in Section 8.2.4, the parts {¢; = 0.5}, {to = 0.7}

and {t3 = 0.7} are included in the domain {Re V (t) < ,,}. Hence, it is sufficient to show
that, on the domain

{(t1,t2,t3) ER® | 11 0.5, 1o,t3 0.7, b1 +1ta+1t3 =12},
the value of 2 A(t1) + A(t2) + A(t3) is bounded by 0.35. Therefore, putting
g(ta ts) = 2A(1.2 —ty —t3) + A(t2) + A(ls),
it is sufficient to show that g(t2,t3) < 0.35 in the domain
{(t2.t3) ER? | 0 < by, 83 < 0.7, 0.7 <ty +1t5 < 1.2} (192)

We show that g(ts,%3) < 0.35 in the domain (192), as follows. A maximal point of
g(ta,t3) is whether a maximal point of g(t,t3) in the interior of the domain (192), or a
point on the boundary of the domain (192). The boundary of (192) consists of {t; = 0.7},
{t3 = 0.7}, {ta +t3 = 0.7}, {t2 +t3 = 1.2}, and we can verify by concrete calculation
that g(to,t3) < 0.35 on this boundary. We show that g(t2,t3) < 0.35 at any critical point
of g(ts,t3) in the interior of the domain (192), as follows. The differentials of g are given
by The differentials of G5 are given by

0

% = —2N(1.2—ty —t3) + N(t) = 2log2sinm(1.2 — ty — t3) — log 2sints
2

0

% = ON(1.2—ty —t3) + N(t3) = 2log2sinm(1.2 — ts — t3) — log 2sin ity .
3

Hence, a critical point of g is given by
sinmty, = 2sin’7(1.2 —ty —t3) = sinwts.

Since sin wty = sinwts, we have that t9 = t3 or to +t3 = 1. If {5 + t3 = 1, we have that
sin 7ty = sin w3 = 2sin? 7-0.2, and we can verify by concrete calculation that this equation
has no solution in the domain (192). If ¢, = t3, we have that 2sin® 7(1.2 — 2t,) = sin 7t,.
By putting t = 0.6 — t,, this equation is rewritten 2sin® 27t = sin7(0.6 — t). Hence,

8sin’® 7t cos’mt = sinm - 0.6 cosmt — cos7 - 0.6 sin 7t.
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1—a?
1+a?

2a

Tre? and coswt =

Putting a = tan %t , we have that sinnt = . Therefore, the above

equation is rewritten
8(2a)*(1 —a®)*> = (1+a*)?*((1—a®) sinm-0.6 — 2a cosm - 0.6).
This equation has the following three positive real solutions,
a=0.1985194..., 0.7542454..., 1.1583976....

We can verify by concrete calculation that, only from the first solution, we obtain a
solution to = t3 = 0.4752406... in the domain (192), and the corresponding critical value
is given by g(te,t2) = 0.3261675... < 0.35. Therefore, we obtain that g(te,t3) < 0.35 in
the domain (192), as required. O
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