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ALGORITHMIC APPROACH TO UCHIDA’S THEOREM FOR

ONE-DIMENSIONAL FUNCTION FIELDS OVER FINITE FIELDS

KOICHIRO SAWADA

Abstract. Uchida proved that the isomorphism class of a one-dimensional

function field over a finite field is completely determined by (a suitable quotient
of) its absolute Galois group. But his proof of this theorem essentially gives

a group-theoretic reconstruction algorithm for one-dimensional function fields
over finite fields. In this article, we discuss the group-theoretic reconstruction
algorithm.

1. Introduction

In [10], Uchida proved the following theorem:

Theorem A (Uchida). For i ∈ {1, 2}, let Ki be a one-dimensional function
field over a finite field and Ωi a solvably closed Galois extension of Ki (i.e., Ga-
lois extension of Ki which has no nontrivial abelian extension). For i ∈ {1, 2},
write Gi := Gal(Ωi/Ki). Moreover, write Isom(Ω2/K2,Ω1/K1) for the set of iso-

morphisms Ω2
∼→ Ω1 of fields such that the image of K2 coincides with K1 and

Isom(G1, G2) for the set of isomorphisms G1
∼→ G2 of profinite groups. Then the

natural map Isom(Ω2/K2,Ω1/K1)→ Isom(G1, G2) is bijective.

In particular, the isomorphism class of a one-dimensional function field over a
finite field is completely determined by (a suitable quotient of) its absolute Galois
group. We may consider that the assertion of Theorem A gives a “bi-anabelian”
reconstruction (in the sense of [4]) of one-dimensional function fields over finite
fields.

But in fact, the proof of Theorem A in [10] essentially gives a “mono-anabelian
reconstruction” (in the sense of [4]). In other words, the argument in [10] implies
that a one-dimensional function field over a finite field can be reconstructed from
(a suitable quotient of) its absolute Galois group by a functorial group-theoretic
reconstruction algorithm.

We shall say that a profinite group G is of PGF-type if there exist a one-
dimensional function field K over a finite field and a solvably closed Galois exten-
sion Ω of K such that G is isomorphic to the Galois group Gal(Ω/K) (cf. Definition
3.1(iv)). Let us express more precisely the statement of the “mono-anabelian” ver-
sion of Theorem A:

Theorem B. There exists a functorial group-theoretic algorithm G 7→ K(G) for
constructing a field K(G) from a profinite group G of PGF-type such that the fol-

lowing hold: an isomorphism α : Gal(Ω/K)
∼→ G (where K is a one-dimensional
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function field over a finite field and Ω is a solvably closed Galois extension of K)

induces a natural isomorphism K
∼→ K(G) of fields.

The purpose of this article is to explain in detail this “mono-anabelian” recon-
struction algorithm.

Remark 1. Uchida also proved for the “bi-anabelian” results for number fields
(cf. [9], [11]). However, in this case, the proofs of [9], [11] do not give a “mono-
anabelian” reconstruction. A “mono-anabelian” reconstruction algorithm of num-
ber fields is given in [2].

Remark 2. Some notations and discussions in this article are based on those of [2].

2. Local Theory

In this section, we discuss generalities of the absolute Galois group of positive
characteristic local fields, and review mono-anabelian reconstructions of various
objects.

Definition 2.1.

(i) We shall refer to a field which is isomorphic to a finite extension of Fp((t))
for some prime number p as a PLF (Positive characteristic Local Field).

(ii) Let k be a PLF and ksep a separable closure of k. Then we shall write
• pk := char(k)(> 0) for the characteristic of k,
• Ok ⊂ k for the ring of integers of k,
• O▷

k := Ok \ {0} for the multiplicative monoid of nonzero integers of k,
• mk ⊂ Ok for the maximal ideal of Ok,

• U
(1)
k := 1+mk ⊂ O×

k for the multiplicative group of principal units of
k,

• κk := Ok/mk for the residue field of Ok,
• κk for the residue field of (the ring of integers of) ksep (note that κk

is an algebraic closure of κk),
• fk := [κk : Fpk

] for the extension degree of κk over the prime field
contained in κk,

• Gk := Gal(ksep/k) for the absolute Galois group of k,
• Ik ⊂ Gk for the inertia subgroup of Gk,
• Pk ⊂ Ik for the wild inertia subgroup of Gk, and
• Frobκk

∈ Gal(κk/κk) for the (♯κk-th power) Frobenius element of
Gal(κk/κk).

(iii) Let G be a profinite group. Then we shall refer to a collection of data

(k, ksep, α : Gk
∼→ G)

consisting of a PLF k, a separable closure ksep of k, and an isomorphism of
profinite groups α : Gk

∼→ G as a PLF-envelope for G. We shall say that
the profinite group G is of PLF-type if there exists a PLF-envelope for G.

Remark 3. An open subgroup of a profinite group of PLF-type is of PLF-type.
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Lemma 2.2 (Local class field theory). Let k be a PLF. Let us write (k×)∧ :=
lim←−n≥1

k×/(k×)n. Then there exists a commutative diagram

1 // O×
k

//

∼

��

(k×)∧ //

∼

��

Ẑ //

∼
��

1

1 // Im(Ik ↪→ Gk ↠ Gab
k ) // Gab

k
// Gk/Ik // 1,

where the horizontal sequences are exact, the middle vertical arrow (k×)∧
∼→ Gab

k

is the homomorphism induced by the reciprocity homomorphism k× → Gab
k in lo-

cal class field theory, and the right-hand vertical arrow maps 1 ∈ Z to Frobκk
∈

Gal(κk/κk)
∼← Gk/Ik.

Lemma 2.3. Let k be a PLF and π ∈ Ok a prime element of Ok. Then it holds

that k× ∼= ⟨π⟩ × O×
k
∼= ⟨π⟩ × (k×)tor × U

(1)
k .

Proof. Well-known (cf. e.g., [7] Chapter II, Proposition (5.3)). □

Lemma 2.4. Let k be a PLF. Then the following hold:

(i) pk is the unique prime number l such that l | ♯(Gab
k )tor + 1.

(ii) It holds that fk = logpk
(♯(Gab

k )tor + 1).
(iii) It holds that Ik = Gal(ksep/kur) =

∩
k′ Gal(ksep/k′), where k′ ⊂ ksep runs

over all finite unramified extensions of k contained in ksep.
(iv) Let k′ ⊂ ksep be a finite extension of k contained in ksep. Then k′ is

unramified over k if and only if it holds that [Gal(ksep/k) : Gal(ksep/k′)] =
fk′/fk.

(v) Pk is the unique Sylow pro-pk-subgroup of Ik.

(vi) Frobκk
∈ Gal(κk/κk)

∼← Gk/Ik is the unique element of Gk/Ik which acts

by conjugation on Ik/Pk by multiplication by pfkk .

(vii) It holds that Im(O×
k ↪→ k× ↪→ Gab

k ) = Im(Ik → Gab
k ).

(viii) Im(k× ↪→ Gab
k ) coincides with a subgroup of Gab

k generated by Im(O×
k ↪→

Gab
k ) and (a lifting of) Frobκk

(in Gab
k ). In other words, Im(k× ↪→ Gab

k ) =

Gab
k ×Gk/IkFrob

Z
κk
, where we write FrobZκk

for the discrete subgroup of Gk/Ik
generated by Frobκk

.
(ix) Im(O▷

k ↪→ k× ↪→ Gab
k ) coincides with a submonoid of Gab

k generated by
Im(O×

k ↪→ Gab
k ) and (a lifting of) Frobκk

(in Gab
k ). In other words, Im(O▷

k ↪→
k× ↪→ Gab

k ) = Gab
k ×Gk/Ik Frob

Z≥0
κk

, where we write FrobZ≥0
κk

for the discrete
submonoid of Gk/Ik generated by Frobκk

.

(x) U
(1)
k is the unique Sylow pro-pk-subgroup of O×

k .

Proof. Assertions (i), (ii) follow from Lemmas 2.2, 2.3. Assertions (iii)-(v), (vii)-(x)
are immediate. Assertion (vi) follows from [8] Proposition (7.5.2). □

Definition 2.5. Let G be a profinite group of PLF-type.

(i) It follows from Lemma 2.4(i) that there exists a unique prime number l
such that l | ♯(Gab)tor + 1. Write p(G) for this prime number.

(ii) Write f(G) := logp(G)(♯(G
ab)tor + 1).
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(iii) Write I(G) :=
∩

G′ G′, where G′ runs over all open subgroups of G such
that [G : G′] = f(G′)/f(G) (cf. Remark 3).

(iv) It follows from Lemma 2.4(v), together with Theorem 2.6(i), (ii) below,
that there exists a unique Sylow pro-p(G)-subgroup of I(G). Write P (G)
for this subgroup of I(G).

(v) It follows from Lemma 2.4(vi), together with Theorem 2.6(i)-(iii) below,
that there exists a unique element of G/I(G) which acts by conjugation on
I(G)/P (G) by multiplication by p(G)f(G). Write Frob(G) ∈ G/I(G) for
this element of G/I(G).

(vi) Write O×(G) := Im(I(G)→ Gab).
(vii) Write k×(G) := Gab ×G/I(G) Frob(G)Z ⊂ Gab, where we write Frob(G)Z

for the discrete subgroup of G/I(G) generated by Frob(G).
(viii) WriteO▷(G) := Gab×G/I(G)Frob(G)Z≥0 ⊂ Gab, where we write Frob(G)Z≥0

for the discrete submonoid of G/I(G) generated by Frob(G).
(ix) Since O×(G) ⊂ Gab is abelian, there exists a unique Sylow pro-p(G)-

subgroup of O×(G). Write U (1)(G) for this subgroup of O×(G).

Theorem 2.6. Let G be a profinite group of PLF-type and (k, ksep, α : Gk
∼→ G) a

PLF-envelope for G. Then the following hold:

(i) It holds that pk = p(G), fk = f(G).
(ii) It holds that α(Ik) = I(G).
(iii) It holds that α(Pk) = P (G).

(iv) The image of Frobκk
∈ Gk/Ik by the isomorphism Gk/Ik

∼→ G/I(G) deter-
mined by α (cf. (ii)) coincides with Frob(G) ∈ G/I(G).

(v) The reciprocity homomorphism k× → Gab
k and the isomorphism α deter-

mine an isomorphism k×
∼→ k×(G). Moreover, the image of O▷

k (resp.

O×
k , U

(1)
k ) by the isomorphism k×

∼→ k×(G) coincides with O▷(G) (resp.

O×(G), U (1)(G)).

Proof. These assertions follow from Lemma 2.4. □

Theorem 2.7. Let G be a profinite group of PLF-type, (k, ksep, α : Gk
∼→ G) a

PLF-envelope for G, and H ⊂ G an open subgroup of G. Write k′ for the finite
extension of k contained in ksep which corresponds to the open subgroup α−1(H) ⊂
Gk of Gk. Then we obtain a commutative diagram

k×
∼ //

� _

��

k×(G)
� _

��

(k′)×
∼ // k×(H),

where the horizontal arrows are the isomorphism appearing in Theorem 2.6(v), and
the right-hand vertical arrow is the homomorphism induced by the transfer homo-
morphism Gab → Hab.

Proof. This follows from Theorem 2.6(v), together with [12] Chapter XII, Theorem
6. □
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3. Multiplicative Structure of One-dimensional Function Fields
over Finite Fields

In this section, we reconstruct the multiplicative structure of one-dimensional
function fields over finite fields.

Definition 3.1.

(i) We shall refer to a field which is isomorphic to a one-dimensional function
field over a finite field as a PGF (Positive characteristic Global Field).

(ii) Let K be an algebraic extension (not necessarily finite) of a PGF. Then we
shall write VK for the set of all places of K.

(iii) Let K be a PGF and v ∈ VK a place of K. Then we shall write
• Kv for the PLF obtained by forming the completion of K at v,
• ordv : K× → Z for the uniquely determined surjective valuation asso-

ciated to v,
• Ov := {a ∈ K | ordv(a) ≥ 0} ⊂ K for the discrete valuation ring at v,
• O▷

v := Ov \ {0} for the multiplicative monoid of nonzero elements of
Ov,

• mv ⊂ Ov for the maximal ideal of Ov,

• U
(1)
v := 1 +mv ⊂ O×

v , and
• JK := lim−→S

(
∏

v∈S K×
v ) × (

∏
v∈VK\S O

×
Kv

) for the idèle group of K,

where S runs over all finite subsets of VK .
(iv) Let G be a profinite group. Then we shall refer to a collection of data

(K,Ω, α : Gal(Ω/K)
∼→ G)

consisting of a PGF K, a solvably closed Galois extension Ω of K, and an
isomorphism of profinite groups α : Gal(Ω/K)

∼→ G as a PGF-envelope for
G. We shall say that the profinite group G is of PGF-type if there exists a
PGF-envelope for G.

Remark 4. An open subgroup of a profinite group of PGF-type is of PGF-type.

Lemma 3.2 (PGF-analogue of [3] Proposition 2.1(i)). Let K be a PGF, Ksep a
separable closure of K, Ω a solvably closed Galois extension of K contained in Ksep,
and A a continuous discrete torsion Gal(Ω/K)-module. Then, for each integer i ≥
0, the natural surjection GK = Gal(Ksep/K) ↠ Gal(Ω/K) induces an isomorphism

Hi(Gal(Ω/K), A)
∼→ Hi(GK , A).

In particular, cdp(Gal(Ω/K)) =

{
2 (p ̸= char(K))

1 (p = char(K)).

Proof. It is well-known that cdp(GK) =

{
2 (p ̸= char(K))

1 (p = char(K))
(cf. e.g., [8] Proposi-

tion (6.5.10), Theorem (7.1.8)(i), Theorem (8.3.17)). Thus, the second assertion
follows from the first assertion. We verify the first assertion. Write J := ker(GK ↠
Gal(Ω/K)). It suffices to prove that Hi(J,A) = 0 for i ≥ 1. We may assume
that A is finite and p-primary for some prime number p. Since cdp(J) ≤ cdp(GK),
we may assume that 1 ≤ i ≤ cdp(GK). If i = 2 (hence p ̸= char(K)), then it
follows from an argument similar to the argument in [3] Proposition 2.1(i), that
H2(J,A) = 0. Moreover, if i = 1, then, since Ω is solvably closed, we obtain
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H1(J,A) = Homcts(J,A) = {0}, where we write Homcts(J,A) for the set of contin-
uous homomorphisms from J to A. This completes the proof of Lemma 3.2. □

Lemma 3.3 (PGF-analogue of [3] Proposition 2.3(iii)-(v)). Let K be a PGF, Ksep

a separable closure of K, Ω a solvably closed Galois extension of K contained in
Ksep, and v, w ∈ VΩ places of Ω. Suppose that v ̸= w. Write Dv, Dw ⊂ Gal(Ω/K)
for the decomposition subgroups associated to v, w, respectively. Then the following
hold:

(i) The natural surjection Gal(Ksep/K) ↠ Gal(Ω/K) induces an isomorphism
of Dv with the decomposition subgroup associated to a lifting of v in VKsep .

(ii) It holds that Dv ∩Dw = {1}.
(iii) Dv is its own commensurator in Gal(Ω/K), i.e., for g ∈ Gal(Ω/K), g lies

in Dv if and only if Dv ∩gDvg
−1 is of finite index in both Dv and gDvg

−1.

Proof. Assertion (i) follows from an argument similar to [3] Proposition 2.3(iii).
Assertion (iii) follows from assertion (ii). We verify assertion (ii). Since v ̸= w,
there exists a finite extension L of K contained in Ω such that v and w are not
equivalent over L. Then it follows from an argument similar to [3] Proposition
2.3(iv) that (Dv∩Gal(Ω/L))∩(Dw∩Gal(Ω/L)) = {1}, which implies thatDv∩Dw is
finite. Since Gal(Ω/K) is of finite cohomological dimension (cf. Lemma 3.2), hence
torsion-free, we conclude that Dv∩Dw = {1}. This completes the proof of assertion
(ii), hence also of Lemma 3.3. □

Lemma 3.4. Let K be a PGF, Ω a solvably closed Galois extension of K, H ⊂
Gal(Ω/K) a closed subgroup of Gal(Ω/K), and l a prime number different from
char(K). Then the following hold:

(i) The natural map VΩ → VK and the natural action of Gal(Ω/K) on VΩ
determines a bijection VΩ/Gal(Ω/K)

∼→ VK .
(ii) Consider the following conditions:

(1) H is an open subgroup of the decomposition subgroup of Gal(Ω/K)
associated to some v ∈ VΩ.

(2) H is of PLF-type.
(3) There exists an open subgroup V of H such that, for any open subgroup

U ⊂ V of V , it holds that dimFl
H2(U,Fl) = 1, where the action of U

on Fl is trivial.
(4) H is a closed subgroup of the decomposition subgroup of Gal(Ω/K)

associated to some v ∈ VΩ.
Then we have implications (1)⇒ (2)⇒ (3)⇒ (4).

Proof. Assertion (i) is immediate. We verify assertion (ii). The implication (1)⇒
(2) follows from Lemma 3.3(i), together with Remark 3. Next, we verify the impli-

cation (2)⇒ (3). Suppose that condition (2) is satisfied. Let (k, ksep, α : Gk
∼→ H)

be a PLF-envelope for H. Write V := Gal(ksep/k(µl)) ⊂ H. Then V is an open
subgroup of H, and, moreover, for any open subgroup U ⊂ V of V , it holds that
H2(U,Fl) ∼= H2(U, µl). On the other hand, it follows from Hilbert’s theorem 90,
together with the well-known fact that cdl U = 2 (cf. e.g., [8] Theorem (7.1.8)(i)),
that the exact sequence

1→ µl → (ksep)×
l→ (ksep)× → 1
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induces an exact sequence

0→ H2(U, µl)→ H2(U, (ksep)×)
l→ H2(U, (ksep)×)→ 0.

Since (it is well-known that) H2(U, (ksep)×) ∼= Br((ksep)U ) is isomorphic to Q/Z,
it holds that dimFl

H2(U, µl) = 1. This completes the proof of the implication
(2)⇒ (3).

Finally, we verify the implication (3) ⇒ (4). Suppose that condition (3) is
satisfied. Let v ∈ VΩ. By abuse of notation, let us write Kv for the “Kv”, where we
take “v ∈ VK” to be the image of v ∈ VΩ by the natural surjection VΩ ↠ VK . Then
we can consider Ω as a subfield of a separable closure of Kv. For any intermediate
field L of K and Ω, write Lv := L · Kv. Let V be as in condition (3) and F a
finite extension of (ΩV )(µl) contained in Ω. Write U := Gal(Ω/F ) ⊂ V . Then
it follows from condition (3) that dimFl

H2(U,Fl) = 1. Moreover, it holds that
H2(U,Fl) ∼= H2(U, µl). Thus, it follows from Hilbert’s theorem 90, together with
Lemma 3.2, that the exact sequence

1→ µl → Ω× l→ Ω× → 1,

induces an exact sequence

0→ H2(U, µl)→ H2(U,Ω×)
l→ H2(U,Ω×)→ 0,

which implies that the l-primary part H2(U,Ω×)(l) of H2(U,Ω×) is of corank 1.
It follows from [10] Lemma 1 that there exists a unique v(F ) ∈ VF such that, for
any extension v ∈ VΩ of v(F ) in Ω, it holds that H2(Gal(Ωv/Fv),Ω

×
v )(l) ̸= {0}.

Moreover, it follows from the uniqueness of v(F ′) for any finite extension of F
contained in Ω, that v(F ) has a unique extension in Ω.

Now let us write E := ΩH ⊂ F and v(E) ∈ VE for the restriction of v(F ) ∈ VF
to E. Then, since F is finite over E, it follows from [10] Lemma 1, together with
the (already verified) fact that H2(U,Ω×)(l) is of corank 1, that v(F ) is the unique
extension of v(E). Thus, we conclude that v(E) has a unique extension v ∈ VΩ in
Ω, which implies that H is contained in the decomposition subgroup of Gal(Ω/K)
associated to v ∈ VΩ. This completes the proof of the implication (3)⇒ (4), hence
also of Lemma 3.4. □

Definition 3.5. Let G be a profinite group of PGF-type.

(i) Write V(G) for the set of maximal elements of the set of all closed subgroups
H ⊂ G satisfying the following condition:

there exist a prime number l and an open subgroup V of H such that, for
any open subgroup U ⊂ V of V , it holds that dimFl

H2(U,Fl) = 1, where
the action of U on Fl is trivial.

Let us define the action of G on V(G) by conjugation.
(ii) Write V(G) := V(G)/G.

Theorem 3.6. Let G be a profinite group of PGF-type and (K,Ω, α : Gal(Ω/K)
∼→

G) a PGF-envelope for G.

(i) The isomorphism α determines a bijection VΩ
∼→ V(G), which is compatible

with the actions of Gal(Ω/K) and G. In particular, any D ∈ V(G) is of

PLF-type. Moreover, the above bijection induces a bijection VK
∼→ V(G).
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(ii) Let H ⊂ G be an open subgroup of G. Write L for the finite extension
of K contained in Ω which corresponds to the open subgroup α−1(H) ⊂
Gal(Ω/K) of Gal(Ω/K). Then we obtain a commutative diagram

VΩ
∼ // V(G)

∼

��

VΩ
∼ // V(H),

where the horizontal arrows are the bijection appearing in (i), and the right-
hand vertical arrow is the bijection which maps D ∈ V(G) to D∩H ∈ V(H).
Moreover, the inverse map of the right-hand vertical arrow of this diagram
determines a commutative diagram

VL
∼ //

����

V(H)

����

VK
∼ // V(G).

(Note that it follows from Lemma 3.3(iii) that the inverse map V(H)
∼→

V(G) maps D ∈ V(H) to the commensurator of D in G.)

Proof. Assertion (i) follows from Lemma 3.4, together with Lemma 3.2 and Lemma
3.3(ii). Assertion (ii) follows from assertion (i). □

Remark 5. The reconstruction of VΩ is essentially due to J. Neukirch [5], [6].

Lemma 3.7 (Global class field theory). Let K be a PGF and Ω a solvably closed
Galois extension of K. Let us consider the homomorphism JK → Gal(Ω/K)ab

determined by the reciprocity homomorphisms K×
v → Dab

v , where Dv ⊂ Gal(Ω/K)
is the decomposition subgroup associated to a lifting of v ∈ VK in VΩ (note that,
since Dv is well-defined up to conjugation, JK → Gal(Ω/K)ab is well-defined).
Then it holds that K× = ker(JK → Gal(Ω/K)ab).

Lemma 3.8. Let G be a profinite group of PGF-type and v ∈ V(G) = V(G)/G.

(i) There exists a unique submodule M of
∏

D∈v k
×(D) (cf. Theorem 3.6(i))

which satisfies the following conditions:
(1) The action of G on

∏
D∈v k

×(D) by conjugation induces the identity
automorphism on M .

(2) For any D0 ∈ v, the composite M ↪→
∏

D∈v k
×(D) ↠ k×(D0) is an

isomorphism of modules.
(ii) The inverse image of O▷(D0) (resp. O×(D0), U (1)(D0)) by the isomor-

phism M
∼→ k×(D0) of condition (2) of assertion (i) does not depend on

the choice of D0 ∈ v.

Proof. In light of Theorem 2.6(v) and Theorem 3.3(iii), it is clear that the “di-
agonal” of

∏
D∈v k

×(D) is the unique submodule satisfying the conditions of (i).
Assertion (ii) is immediate. □
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Lemma 3.9. Let K be a PGF and v ∈ VK . Then the inverse image of O▷
Kv

(resp.

O×
Kv

, U
(1)
Kv

) by the natural inclusion K× ↪→ K×
v coincides with O▷

v (resp. O×
v , U

(1)
v ).

Proof. Trivial. □

Definition 3.10. Let G be a profinite group of PGF-type and v ∈ V(G).

(i) Write k×(v) for the unique submodule M of
∏

D∈v k
×(D) (cf. Theorem

3.6(i)) satisfying the conditions of Lemma 3.8(i).
(ii) It follows from Lemma 3.8(ii) that the inverse image of O▷(D0) (resp.

O×(D0), U (1)(D0)) by the isomorphism k×(v)
∼→ k×(D0) of condition (2)

of Lemma 3.8(i) does not depend on the choice of D0 ∈ v. Write O▷(v)
(resp. O×(v), U (1)(v)) for this inverse image in k×(v).

(iii) Write J(G) := lim−→S
(
∏

w∈S k×(w)) × (
∏

w∈V(G)\S O×(w)), where S runs

over all finite subsets of V(G). Note that J(G) ⊂
∏

w∈V(G)

∏
D∈w Dab =∏

D∈V(G) D
ab.

(iv) It follows from Lemma 3.7, together with Theorem 3.11(i), (ii) below, that
the inclusions D ↪→ G (D ∈ V(G)) determine a homomorphism J(G) →
Gab. Write K×(G) := ker(J(G)→ Gab).

(v) Write O▷
v(G) (resp. O×

v (G), U
(1)
v (G)) for the inverse image of O▷(v) (resp.

O×(v), U (1)(v)) by the composite of the inclusion K×(G) ↪→ J(G) and the
projection J(G)→ k×(v).

Theorem 3.11. Let G be a profinite group of PGF-type, (K,Ω, α : Gal(Ω/K)
∼→

G) a PGF-envelope for G, and v ∈ VK . Write vG ∈ V(G) for the image of v ∈ VK
by the bijection VK

∼→ V(G) appearing in Theorem 3.6(i).

(i) The isomorphism α determines an isomorphism K×
v

∼→ k×(vG).

(ii) The image of O▷
Kv

(resp. O×
Kv

, U
(1)
Kv

) by the isomorphism K×
v

∼→ k×(vG)

appearing in (i) coincides with O▷(vG) (resp. O×(vG), U (1)(vG)).
(iii) The isomorphism α and various isomorphisms appearing in (i) determine

a commutative diagram of groups

JK //

∼

��

Gal(Ω/K)ab

∼

��

J(G) // Gab,

where the lower horizontal arrow is the homomorphism appearing in Defini-
tion 3.10(iv). Moreover, this diagram determines an isomorphism of groups

K× ∼→ K×(G).

(iv) The image of O▷
v (resp. O×

v , U
(1)
v ) by the isomorphism K× ∼→ K×(G)

appearing in (iii) coincides with O▷
vG

(G) (resp. O×
vG

(G), U
(1)
vG

(G)).

Proof. These assertions follow from Lemmas 3.7, 3.8, 3.9, together with Theorems
2.6, 3.6. □

Theorem 3.12. Let G be a profinite group of PGF-type, (K,Ω, α : Gal(Ω/K)
∼→

G) a PGF-envelope for G, H ⊂ G an open subgroup of G, and w ∈ V(H). Write
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v ∈ V(G) for the image of w by the surjection V(H) ↠ V(G) appearing in Theorem
3.6(ii) and L for the finite extension of K contained in Ω which corresponds to the
open subgroup α−1(H) ⊂ Gal(Ω/K) of Gal(Ω/K). Then we obtain a commutative
diagram

K× ∼ //
� _

��

K×(G)
� _

��

L× ∼ // K×(H),

where the horizontal arrows are the isomorphism appearing in Theorem 3.11(iii),
and the right-hand vertical arrow is an injection determined by various injections
“k×(v) ↪→ k×(w)” induced by the right-hand vertical arrow of the commutative
diagram appearing in Theorem 2.7. In particular, the inverse image of O▷

w(H)

(resp. O×
w (H), U

(1)
w (H)) by the injection K×(G) ↪→ K×(H) coincides with O▷

v(G)

(resp. O×
v (G), U

(1)
v (G)).

Proof. This follows from Theorems 2.7, 3.11. □

4. Additive Structure of One-dimensional Function Fields over
Finite Fields

In this section, we reconstruct the additive structure of one-dimensional function
fields over finite fields.

Definition 4.1. Let K be a PGF.

(i) We shall write
• FK ⊂ K for the constant field of K,
• K̃ := K ⊗FK

FK , where FK is an algebraic closure of FK ,

• CK̃ for a nonsingular projective curve whose function field is K̃ (which
is unique up to isomorphism, cf. e.g., [1] Chapter I, Corollary 6.12),
and

• Div(K̃) for the group of divisors of CK̃ .
(ii) Let v ∈ VK̃ . Then we shall write

• ordv : K̃× → Z for the uniquely determined surjective valuation asso-
ciated to v,

• Õv := {a ∈ K̃ | ordv(a) ≥ 0} ⊂ K̃ for the discrete valuation ring at v,

• Õ▷
v := Õv \ {0} for the multiplicative monoid of nonzero elements of

Õv,
• m̃v ⊂ Õv for the maximal ideal of Õv,

• Ũ
(1)
v := 1 + m̃v ⊂ Õ×

v , and

• κ̃v := Õv/m̃v for the residue field of Õv.

(iii) Let v ∈ VK̃ and s ∈ Õv. Then we shall write s(v) ∈ κ̃v for the image of

s ∈ Õv by the natural surjection Õv ↠ κ̃v.
(iv) Let D ∈ Div(K̃). Then we shall write

• H0(D) := H0(CK̃ ,L(D)), where L(D) is the invertible sheaf associ-
ated to D, and

• l(D) := dimFK
H0(D).
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Lemma 4.2. Let K be a PGF, Ω a solvably closed Galois extension of K, and
H ⊂ Gal(Ω/K) an open subgroup of Gal(Ω/K). We regard FK and K̃ as subfields
of Ω in a natural way (i.e., FK is the algebraic closure of FK in Ω). Write L for
the finite extension of K contained in Ω associated to H ⊂ Gal(Ω/K). Then the
following hold:

(i) It holds that F×
K =

∩
v∈VK

O×
v .

(ii) H contains ker(Gal(Ω/K) ↠ Gal(FK/FK)) if and only if [G : H] = [FL :
FK ] = log♯FK

(♯FL) (in this case, L = K ⊗FK
FL).

Proof. Trivial. □
Definition 4.3. Let M be a monoid. Then let us write M⊛ := M ∪ {∗M}. We
regard M⊛ as a monoid by a · ∗M = ∗M · a = ∗M for every a ∈M⊛. If N ⊂M is a
submonoid of M , then we regard N⊛ ⊂ M⊛ by identifying ∗N by ∗M . We always
write ∗ instead of ∗M for simplicity.

Definition 4.4. Let G be a profinite group of PGF-type.

(i) Write K(G) := (K×(G))⊛.
(ii) Write F×(G) :=

∩
v∈V(G)O×

v (G) ⊂ K×(G).

(iii) It follows from Theorem 4.5(i) below that ♯F×(G) is finite and nonzero.

Write G̃ :=
∩

H H, where H runs over all open subgroups of G such that
[G : H] = log♯F×(G)+1(♯F

×(H) + 1) (cf. Remark 4).

(iv) Write K̃×(G) := lim−→H
K×(H), Ṽ(G) := lim−→H

V(H) (cf. Remark 4), where

H runs over all open subgroups of G containing G̃, and the transition maps
are the maps appearing in Theorem 3.12, Theorem 3.6(ii). Note that the

actions of “H”s on “V(H)”s determine an action of G̃ on Ṽ(G).

(v) Write Ṽ(G) := Ṽ(G)/G̃, Div(G) :=
⊕

v∈Ṽ(G) Z · v.
(vi) It follows from Theorem 4.5(ii) below that any open subgroup of G contain-

ing G̃ is normal in G. We define an action of G on K̃×(G) by conjugation.

(vii) Write K̃(G) := (K̃×(G))⊛, and define an action of G on K̃(G) by the

natural action determined by the action of G on K̃×(G) appearing in (vi)

and the trivial action of G on {∗} ⊂ K̃(G).

Theorem 4.5. Let G be a profinite group of PGF-type and (K,Ω, α : Gal(Ω/K)
∼→

G) a PGF-envelope for G. We regard FK and K̃ as subfields of Ω in a natural way.
Then the following hold:

(i) The isomorphism of groups K× ∼→ K×(G) appearing in Theorem 3.11(iii)

determines an isomorphism of monoids K
∼→ K(G). Moreover, the image

of F×
K ⊂ K by the isomorphism K

∼→ K(G) coincides with F×(G).

(ii) It holds that G̃ = α(ker(Gal(Ω/K) ↠ Gal(FK/FK))).

(iii) The isomorphisms of groups “K× ∼→ K×(G)” appearing in Theorem 3.11(iii)

for various open subgroups of G containing G̃ determine an isomorphism
of groups K̃× ∼→ K̃×(G), which is compatible with the actions of Gal(Ω/K)
and G with respect to α. In particular, the above isomorphism induces an
isomorphism of monoids K̃

∼→ K̃(G), which is compatible with the actions
of Gal(Ω/K) and G.

(iv) Let H ⊂ G be an open subgroup of G containing G̃. Write L for the
finite extension of K contained in Ω which corresponds to the open subgroup
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α−1(H) ⊂ Gal(Ω/K) of Gal(Ω/K). Then the natural map V(H) → Ṽ(G)
is bijective. Moreover, the inverse map of this bijection and the bijection
VΩ

∼→ V(G) appearing in Theorem 3.6(i) determine a commutative diagram

VK̃
∼ //

����

Ṽ(G)

����

VL
∼ // V(H).

In particular, the bijection VK̃
∼→ Ṽ(G) determines an isomorphism Div(K̃)

∼→
Div(G).

Proof. Assertion (i) follows from Lemma 4.2(i). Assertion (ii) follows from assertion
(i) and Lemma 4.2(ii). Assertion (iii) is immediate. Assertion (iv) follows from
Theorem 3.6. □
Lemma 4.6. Let K be a PGF and v ∈ VK̃ . For any finite extension L of K

contained in K̃, write vL ∈ VL for the image of v ∈ VK̃ by the natural surjection
VK̃ ↠ VL. Then the following hold:

(i) It holds that Õ▷
v =

∪
LO▷

vL
, Õ×

v =
∪

LO×
vL
, Ũ

(1)
v =

∪
L U

(1)
vL

, where L runs

over all finite extensions of K contained in K̃.

(ii) The natural surjection Õv ↠ κ̃v induces an isomorphism of groups Õ×
v /Ũ

(1)
v

∼→
κ̃×
v .

Proof. Trivial. □
Definition 4.7. Let G be a profinite group of PGF-type and v ∈ Ṽ(G). For any

open subgroup H ⊂ G of G containing G̃, write vH ∈ V(H) for the image of

v ∈ Ṽ(G) by the surjection Ṽ(G) ↠ V(H) appearing in Theorem 4.5(iv).

(i) Write Õ▷
v(G) := lim−→H

O▷
vH

(H), Õ×
v (G) := lim−→H

O×
vH

(H), Ũ
(1)
v (G) := lim−→H

U
(1)
vH

(H)

(cf. Remark 4), where H runs over all open subgroups of G containing G̃,
and the transition maps are the maps induced by the map “K×(G) ↪→
K×(H)” appearing in Theorem 3.12.

(ii) Write κ̃×
v (G) := Õ×

v (G)/Ũ
(1)
v (G).

(iii) Write Õv(G) := (Õ▷
v(G))⊛, κ̃v(G) := (κ̃×

v (G))⊛.

Theorem 4.8. Let G be a profinite group of PGF-type, (K,Ω, α : Gal(Ω/K)
∼→ G)

a PGF-envelope for G, and v ∈ VK̃ . Write vG ∈ Ṽ(G) for the image of v ∈ VK̃ by

the bijection VK̃
∼→ Ṽ(G) appearing in Theorem 4.5(iv). Then the following hold:

(i) The image of Õv (resp. Õ▷
v , Õ×

v , Ũ
(1)
v ) by the isomorphism K̃

∼→ K̃(G) ap-

pearing in Theorem 4.5(iii) coincides with ÕvG
(G) (resp. Õ▷

vG
(G), Õ×

vG
(G), Ũ

(1)
vG

(G)).

(ii) The isomorphisms of groups Õ×
v

∼→ Õ×
vG

(G), Ũ
(1)
v

∼→ Ũ
(1)
vG

(G) obtained in

(i) determine an isomorphism of groups κ̃×
v

∼→ κ̃×
vG

(G). In particular, we

obtain an isomorphism of monoids κ̃v
∼→ κ̃vG

(G).

Proof. Assertion (i) follows from Theorem 3.11(iv), Theorem 3.12, Theorem 4.5(iii),
(iv), Lemma 4.6(i). Assertion (ii) follows from assertion (i) and Lemma 4.6(ii). □
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Definition 4.9. Let G be a profinite group of PGF-type, v ∈ Ṽ(G), and s ∈ Õv(G).

If s ∈ Õ×
v (G), then we shall write s(v) ∈ κ̃v(G) for the image of the composite

Õ×
v (G) ↠ κ̃×

v (G) ↪→ κ̃v(G). If s /∈ Õ×
v (G), then we shall write s(v) := ∗ ∈ κ̃v(G).

Theorem 4.10. Let G be a profinite group of PGF-type, (K,Ω, α : Gal(Ω/K)
∼→

G) a PGF-envelope for G, v ∈ VK̃ , and s ∈ Õv. Write vG ∈ Ṽ(G) for the image

of v ∈ VK̃ by the bijection VK̃
∼→ Ṽ(G) appearing in Theorem 4.5(iv), and sG ∈

ÕvG
(G) for the image of s ∈ Õv by the isomorphism Õv

∼→ ÕvG
(G) obtained in

Theorem 4.8(i). Then the image of s(v) ∈ κ̃v by the isomorphism κ̃v
∼→ κ̃vG

(G)
appearing in Theorem 4.8(ii) coincides with sG(vG) ∈ κ̃vG

(G).

Proof. This follows from Theorem 4.8(ii). □

Lemma 4.11. Let K be a PGF, v ∈ VK̃ and s ∈ K̃×. Then the following hold:

(i) ordv(s) = 1 if and only if O▷
v ⊂ K̃× is generated by Õ×

v and s as a monoid.

(ii) Let t ∈ K̃× such that ordv(t) = 1. Then ordv(s) is the unique integer n

such that s · t−n ∈ Õ×
v .

Proof. Trivial. □

Definition 4.12. Let G be a profinite group of PGF-type, v ∈ Ṽ(G), and s ∈
K̃×(G). Let us define ordGv (s) ∈ Z as follows:

(i) If Õ▷
v(G) ⊂ K̃×(G) is generated by Õ×

v (G) ⊂ Õ▷
v(G) and s as a monoid,

then let us write ordGv (s) := 1.
(ii) It follows from Theorem 4.5(iii), Theorem 4.8(i), Lemma 4.11 that there

exists t ∈ K̃×(G) such that ordGv (t) = 1 (in the sense of (i)), and, moreover,

there exists a unique integer n such that s · t−n ∈ Õ×
v (G). Let us write

ordGv (s) for this integer n.

Note that it follows from Theorem 4.5(iii), Theorem 4.8(i), Lemma 4.11 that

ordGv (s) is well-defined, i.e.,

• the condition “s · t−n ∈ Õ×
v (G)” does not depend on the choice of t, and

• “ordGv (s) = 1” in the sense of (i) if and only if “ordGv (s) = 1” in the sense
of (ii).

Theorem 4.13. Let G be a profinite group of PGF-type, (K,Ω, α : Gal(Ω/K)
∼→

G) a PGF-envelope for G, and v ∈ VK̃ . Write vG for the image of v ∈ VK̃ by

the bijection VK̃
∼→ Ṽ(G) appearing in Theorem 4.5(iv). Then the composite of

ordGvG : K̃×(G) → Z and the isomorphism K̃× ∼→ K̃×(G) appearing in Theorem

4.5(iii) coincides with ordv : K̃× ↠ Z.

Proof. This follows from Theorem 4.5(iii), Theorem 4.8(i), Lemma 4.11. □

Lemma 4.14. Let K be a PGF. Then the following hold:

(i) Let D =
∑

v∈VK̃
nv · v ∈ Div(K̃). Then it holds that

H0(D) = {s ∈ K̃× | ordv(s) + nv ≥ 0 for all v ∈ VK̃} ∪ {0},

l(D) = min{n ∈ Z≥0 | there exist v1, . . . , vn ∈ VK̃ such that H0(D−
n∑

m=1

vm) = {0}}.
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(ii) For any v ∈ VK̃ , there exist D =
∑

w∈VK̃
nw · w ∈ Div(K̃) and w1, w2 ∈

VK̃ such that v, w1, w2 are distinct, nv = nw1 = nw2 = 0, l(D) = 2,
l(D − v − w1) = l(D − v − w2) = l(D − w1 − w2) = 0.

(iii) Let v, w1, w2 ∈ VK̃ , D ∈ Div(K̃) be as in (ii). Moreover, let ζ, λ ∈
κ̃×
v . Then there exists a unique element s (resp. t) of H0(D) such that

s(v) = ζ, s(w1) = 0, s(w2) ̸= 0 (resp. t(v) = λ, t(w1) ̸= 0, t(w2) = 0).
Moreover, s + t ∈ H0(D) is the unique element u of H0(D) such that
u(w1) = t(w1), u(w2) = s(w2).

Proof. Let us observe that, it follows from the proof of [1] Chapter IV, Proposition

3.1 that, for any D ∈ Div(K̃) and w ∈ VK̃ , it holds that l(D − w) ≥ l(D) − 1,
and, moreover, if l(D) > 0, then for all but finitely many w ∈ VK̃ , it holds that
l(D − w) = l(D) − 1. In particular, assertion (i) holds. Next, we verify assertion
(ii). Let W be a canonical divisor (cf. [1] Chapter IV, §1). Write g for the genus
of CK̃ . Then it follows from Riemann-Roch theorem (cf. [1] Chapter IV, Theorem
1.3) that l(W + v) = deg(W + v) + 1 − g + l(−v) = g < g + 1. Thus, it follows

from the observation above that there exists a divisor D =
∑

w∈VK̃
nw ·w ∈ Div(K̃)

such that nv = 0, degD = g + 1 and l(W + v −D) = 0. Then, since l(W −D) ≤
l(W+v−D) = 0 (hence l(W−D) = 0), it follows from Riemann-Roch theorem that
l(D) = degD+1−g−l(W−D) = 2, l(D−v) = deg(D−v)+1−g−l(W+v−D) = 1.
Moreover, it follows from the observation above that there exist w1, w2 ∈ VK̃ such
that v, w1, w2 are distinct, nv = nw1

= nw2
= 0, l(D − v − w1) = l(D − v) − 1,

l(D − v − w2) = l(D − v) − 1, l(D − w1 − w2) = l(D − w1) − 1. Now we can
easily check that D,w1, w2 satisfy the condition of assertion (ii). This completes
the proof of assertion (ii). Finally, we verify assertion (iii). The existence of s
(resp. t) follows from the fact that l(D − w1) = 1 (resp. l(D − w2) = 1), and the
uniqueness of s (resp. t, u) follows from the assumption that l(D − v − w1) = 0
(resp. l(D−v−w2) = 0, l(D−w1−w2) = 0). This completes the proof of assertion
(iii), hence also of Lemma 4.14. □

Definition 4.15. Let G be a profinite group of PGF-type andD =
∑

v∈Ṽ(G) nv ·v ∈
Div(G).

(i) Write H0
G(D) = {s ∈ K̃×(G) | ordGv (s) + nv ≥ 0 for all v ∈ Ṽ(G)} ∪ {∗} ⊂

K̃(G).
(ii) It follows from Theorem 4.5(iii), (iv), Theorem 4.13, Lemma 4.14(i), to-

gether with Theorem 4.16(i) below, that the set {n ∈ Z≥0 | there exist v1, . . . , vn ∈
Ṽ(G) such that H0

G(D −
∑n

m=1 vm) = {∗}} is not empty. Write lG(D) for
the smallest integer in this set.

Theorem 4.16. Let G be a profinite group of PGF-type, (K,Ω, α : Gal(Ω/K)
∼→

G) a PGF-envelope for G, and D ∈ Div(K̃). Write DG ∈ Div(G) for the image of

D ∈ Div(K̃) by the isomorphism Div(K̃)
∼→ Div(G) appearing in Theorem 4.5(iv).

Then the following hold:

(i) The image of H0(D) ⊂ K̃ by the isomorphism of monoids K̃
∼→ K̃(G)

appearing in Theorem 4.5(iii) coincides with H0
G(DG) ⊂ K̃(G).

(ii) It holds that l(D) = lG(DG).

Proof. These assertions follow from Theorem 4.13, Lemma 4.14(i). □
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Definition 4.17. Let G be a profinite group of PGF-type, v ∈ Ṽ(G), and ζ, λ ∈
κ̃v(G). Let us define ζ ⊞v λ ∈ κ̃v(G) as follows:

(i) If ζ = ∗, then ζ ⊞v λ := λ.
(ii) If λ = ∗, then ζ ⊞v λ := ζ.
(iii) Suppose that ζ ̸= ∗, λ ̸= ∗. Then it follows from Theorem 4.5(iv), Lemma

4.14(ii), Theorem 4.16(ii) that there exist D =
∑

w∈Ṽ(G) nw · w ∈ Div(G)

and w1, w2 ∈ Ṽ(G) such that v, w1, w2 are distinct, nv = nw1
= nw2

= 0,
lG(D) = 2, lG(D − v − w1) = lG(D − v − w2) = lG(D − w1 − w2) = 0.
Moreover, it follows from Theorem 4.5(iv), Theorem 4.10, Lemma 4.14(iii),
Theorem 4.16 that there exists a unique element s (resp. t, u) ofH0

G(D) such
that s(v) = ζ, s(w1) = ∗, s(w2) ̸= ∗ (resp. t(v) = λ, t(w1) ̸= ∗, t(w2) =
∗; u(w1) = t(w1), u(w2) = s(w2)). Then we shall write ζ ⊞v λ := u(v).

Theorem 4.18. Let G be a profinite group of PGF-type, (K,Ω, α : Gal(Ω/K)
∼→

G) a PGF-envelope for G, and v ∈ VK̃ . Write vG ∈ Ṽ(G) for the image of

v ∈ VK̃ by the bijection VK̃
∼→ Ṽ(G) appearing in Theorem 4.5(iv). Then ⊞vG

:
κ̃vG

(G)× κ̃vG
(G) → κ̃vG

(G) is well-defined (i.e., does not depend on the choice of
D,w1, w2) and determines a structure of field on κ̃vG

(G). Moreover, the isomor-

phism of monoids κ̃v
∼→ κ̃vG

(G) appearing in Theorem 4.8(ii) is an isomorphism of
fields.

Proof. This follows from Theorem 4.5(iv), Theorem 4.10, Lemma 4.14(iii), Theorem
4.16. □
Lemma 4.19. Let x, y ∈ K̃. Then x + y ∈ K̃ is the unique element z of K̃ such
that, for any v ∈ VK̃ , if x, y, z ∈ Õv, then it holds that x(v) + y(v) = z(v).

Proof. Trivial. □
Definition 4.20. Let G be a profinite group of PGF-type and x, y ∈ K̃(G). Then
it follows from Theorem 4.5(iii), (iv), Theorem 4.10, Theorem 4.18, Lemma 4.19

that there exists a unique element z of K̃(G) such that, for any v ∈ Ṽ(G), if

x, y, z ∈ Õv(G), then it holds that x(v) ⊞v y(v) = z(v). Write x ⊞ y ∈ K̃(G) for
this element z.

Theorem 4.21. Let G be a profinite group of PGF-type and (K,Ω, α : Gal(Ω/K)
∼→

G) a PGF-envelope for G.

(i) ⊞ : K̃(G)× K̃(G)→ K̃(G) determines a structure of field on K̃(G). More-

over, the isomorphism of monoids K̃
∼→ K̃(G) appearing in Theorem 4.5(iii)

is an isomorphism of fields.
(ii) It holds that (K̃(G))G = K(G), hence ⊞ determines a structure of field on

K(G). In particular, the isomorphism of monoids K
∼→ K(G) appearing in

Theorem 4.5(i) is an isomorphism of fields.

Proof. Assertion (i) follows from Theorem 4.5(iii), (iv), Theorem 4.10, Theorem
4.18, Lemma 4.19. Assertion (ii) follows from assertion (i) and Theorem 4.5(iii). □
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