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Abstract

In the present paper, we study the anabelian geometry of curves over alge-
braically closed fields of characteristic p > 0. Let X} := (X;,Dx,) and X3 :=
(X2, Dx,) be smooth pointed stable curves of type (g,n) over algebraically closed
fields k1 and ko of characteristic p > 0, respectively. We prove that, if g = 0 and
k1 = ko =T, is an algebraic closure of F,, then X; \ Dy, is isomorphic to X\ Dx,
as schemes if and only if the set of open continuous homomorphisms between the
tame fundamental groups of X1\ Dx, and X5\ Dx, is not empty. This result can be
regarded as a weak Hom-version of the Grothendieck conjecture for curves of type
(0,n) over F,. Moreover, this result is a generalization of the weak Isom-version of
the Grothendieck conjecture for curves of type (0,n) over F, which was proved by
A. Tamagawa. On the other hand, for arbitrary (g,n), we formulate a certain weak
Hom-version of the Grothendieck conjecture for curves of type (g,n) over arbitrary
algebraically closed fields of characteristic p > 0.
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Introduction

In the present paper, we study the anabelian geometry of curves over algebraically closed
fields of characteristic p > 0.

Before we explain the main theorem of the present paper, let us recall some general
facts concerning anabelian geometry. Let k be a field and Z a geometrically connected
and k-scheme of finite type. Then we have the following fundamental exact sequence of
étale fundamental groups (for suitable choices of base point):

1= 1 (Zpser) = m(Z) 25 G — 1.

Here, Zyser denotes Z x; k5P, k5P denotes a separable closure of k£ in an algebraically
closed field which contains k, and Gy denotes the absolute Galois group Gal(k*?/k) of k.
A. Grothendieck proposed the following philosophy (cf. [G1], [G2]):
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if Z is anabelian, then the group-theoretic data (m(Z), pry) functorially de-
termines the isomorphism class of the k-scheme Z.

Although we do not have any general definition of the term “anabelian”, if dim(7) = 1,
hyperbolic curves have been regarded as typical examples of anabelian schemes. Here, a
smooth, geometrically connected curve Z over k is called hyperbolic if it may be obtained
as the complement of the divisor of marked points in a smooth pointed stable curve over
k.

Let Z; and Z5 be hyperbolic curves over k. Suppose that k is of characteristic 0.
Relative to the notational conventions introduced above for étale fundamental groups,
write

Isomprogps(—, —) (resp. Hompogps(—, —))

for the set of continuous isomorphisms (resp. continuous homomorphisms) of profinite
groups between the two profinite groups in parentheses,

ISOmGk (7T1(Zl),’/T1<ZQ)) = {(I) € ISOHlpro_gps<7T1(Z1), 71'1(22)) ‘ per = prZ2 o (I)}

(resp. HOHIGk<7T1(Z1),7T1(Z2>> = {q) € Hompro_gps(m(Zl),7r1(Z2)) ‘ przl = pI'Z2 @) CI)})

Thus, by composing with inner automorphisms, we obtain a natural action of 7 (Zy X
k*P) on Isomg, (m1(Z1), m1(Z2)) (resp. Homg, (m1(Z1),m1(Z2))). Then, in this situation,
the philosophy above can be formulated as follows (which is called Grothendieck’s
anabelian conjecture or, simply, the Grothendieck conjecture, for short):

(weak Isom,-version)
The set

Isomg, (m1(Z1), m1(Z2)) # 0
of and only iof
AR

as k-schemes.

(Isom,-version)
The natural morphism

Isomy schemes(Z1, Z2) — Isomg, (m1(Z1), m1(Z2)) /Inn (71 (Z2 X, k°P))
s a bijection.

The Grothendieck conjecture has been proven in many cases. For example, if k is a
number field, then the weak Isomg-version was proved by H. Nakamura when the genera
of Z; and Zy are 0 (cf. [N1], [N2]); the Isomg-version was proved by A. Tamagawa in the
case where Z; and Z, are affine (cf. [T1]) and proved by S. Mochizuki in full generality
(cf. [M1]). In fact, Mochizuki proved a very general version when k is sub-p-adic (i.e., a
subfield of a finitely generated extension of a p-adic number field) as follows:



(Hom, -version)
We denote by
Hom{*™(Z,, Zs)

the subset of the dominant morphisms of Homy schemes(Z1, Z2) and denote by
Hom?;ien(m(Zl), 1 (ZQ))

the subset of open homomorphisms of Homg, (m1(Z1), m1(Z2)). Then the natural
morphism

Hom{\*™ (Z1, Z3) — Homgh ™ (w1 (Z1), m1(Z2)) /Inn (w1 (Zy %1, K*P))
s a bijection.
Note that we have implications
Hom-version = Isom,-version = weak Isom,-version.

Tamagawa also considered an analogue of the Grothendieck conjecture in positive
characteristic and proved the Grothendieck conjecture (Isom-version) for affine hyperbolic
curves over finite fields (cf. [T1]). Afterwards, Mochizuki generalized this result to the
case of projective hyperbolic curves (cf. [M2]), and J. Stix generalized this result to the
case where the base fields are finitely generated over F, (cf. [Stil], [Sti2]).

Unlike the characteristic 0 case, nothing is known about the Grothendieck conjecture
for curves over local fields of positive characteristic. On the other hand, Tamagawa
also considered the Grothendieck conjecture for curves over algebraically closed fields
of characteristic p > 0. Note that all the proofs of the Grothendieck conjecture for
curves over non-algebraically closed fields require the use of the highly non-trivial outer
Galois representation induced by the fundamental exact sequence of étale fundamental
groups reviewed above. In the case of algebraically closed fields, the Galois groups of
the base fields are trivial, and the étale fundamental group coincides with the geometric
fundamental group. As a result, the Grothendieck conjecture for curves over algebraically
closed fields of characteristic p > 0 is quite different from that over non-algebraically
closed fields.

In the remainder of this introduction, let X7 := (X1, Dx,) and X3 := (X, Dx,) be
smooth pointed stable curves of type (gx,ny) over algebraically closed fields k; and ko of
characteristic p > 0 (i.e., X; \ Dx, and X, \ Dy, are hyperbolic curves of type (gx,nx)
over k; and ko, respectively). For ¢ = 1,2, write k™" for the minimal algebraically closed
subfield of k; over which X is defined; thus, by considering the function field of X;, one
verifies immediately that there exists a “natural” smooth pointed stable curve

)

emin | min .
X' - (XZ 7DX,{1’]1[))7

where the function field of X™ is a subfield of the function field of X;, such that X;\ Dx,
may be identified with (X™\ Dymin) X min k;. In this situation, Tamagawa formulated
the Grothendieck conjecture as follows (we only focus on the tame version in the present
paper):



Conjecture 0.1. (weak Isom-version)
The set of continuous isomorphisms of profinite groups

IS0Mpro-gps (M1*(X7 \ Dx, ), mp™(X2 \ Dx,)) # 0

if and only if _ _
X{nln \ _DX{nin = X;Illn \ Dxénin

as schemes.

(Isom-version)
The natural morphism

Is0mgenemes (X7 \ Din, X5\ D ypin )

— Is0mpro-gps (™" (X1 \ D, ), m™ (X2 \ Dx,))/Inn(m™"*(Xz \ Dx, )
1S a bijection.

Remark 0.1.1. Note that the existence of the specialization map of tame fundamental
groups constitutes a counterexample to the “Hom-version” of the Grothendieck conjecture
for tame fundamental groups obtained by simply replacing Isom(—, —) by Hom"(—, —).
Indeed, at the time of writing, we do not know how to give a formulation of a suitable
Hom-version of the Grothendieck conjecture for tame fundamental groups that takes into
account this counterexample (cf. [T3, Remark 1.34]). On the other hand, there exists
a Hom-version of the Grothendieck conjecture for étale fundamental groups (cf. [T3,
Conjecture 1.8]).

At present, no result is known about the Isom-version of Conjecture 0.1. On the other
hand, Tamagawa proved the weak Isom-version of Conjecture 0.1 when gx = 0 and
k1 = kg is an algebraic closure of IF,. More precisely, Tamagawa proved the following
theorem (cf. [T4, Theorem 5.8]).

Theorem 0.2. Suppose that gx = 0. Then we can detect whether X3 (resp. X3 ) can be
defined over the algebraic closure of F), in ki (resp. ks) or not, group-theoretically from
the tame fundamental group 78*™°(X, \ Dx,) (resp. m'*™¢(X5\ Dyx,)). Moreover, suppose
that X7 can be defined over the algebraic closure of IF,, in ki. Then the set of continuous
isomorphisms of profinite groups

IS0 pro-gps (T1( X1 \ Dx, ), mp™(X2 \ Dx,)) # 0

if and only if _ _
X{Illn \ .DX{nin = X;nln \ Dxénin

as schemes.

Remark 0.2.1. Tamagawa also obtained an étale fundamental group version of The-
orem 0.2 in a completely different way (by using wildly ramified coverings) (cf. [T2,
Theorem 3.5]). Note that since the tame fundamental group can be reconstructed group-
theoretically from the étale fundamental group (cf. [T2, Corollary 1.10]), the tame fun-
damental group version is stronger than the étale fundamental group version. Recently,
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by using Tamagawa’s idea, A. Sarashina (a student of Tamagawa) proved a similar result
of [T2, Theorem 3.5] for curves of type (1,1)(cf. [Sar], [T6, Theorem 6 (i)]). Moreover,
by applying the theory of Tamagawa developed in [T4], Sarashina’s result also holds in
the case of tame fundamental groups (cf. [T6, Theorem 6 (ii)]).

Remark 0.2.2. We do not know whether the weak Isom-version of Conjecture 0.1 for
gx > 0 holds or not. On the other hand, we have the following finiteness theorem which
was proved by M. Raynaud, F. Pop, M. Saidi, and Tamagawa (cf. [R], [PS], [T5]):

over an algebraic closure of F,, only finitely many isomorphism classes of
hyperbolic curves have the same tame fundamental groups.

Moreover, the finiteness theorem also holds for (possibly singular) pointed stable curves
(cf. [Y]).

In the present paper, we consider a weak Hom-version of Grothendieck conjecture
over algebraically closed field of characteristic p > 0. Our main theorem, which generalizes
Tamagawa’s theorem above, is as follows (see also Theorem 4.2).

Theorem 0.3. Suppose that gx = 0. Then we can detect whether X can be defined
over the algebraically closure of F, in ky or not, group-theoretically from w{*™¢(X; \ Dx, ).
Moreover, suppose that X7 can be defined over the algebraic closure of F), in ky. Then the
set of open homomorphisms

Hom®P** (71""( X, \ Dx, ), m*™*(X2 \ Dx,)) # 0

if and only if . .
X]I-Tlln \ DXinin = X;Illn \ Dxénin

as schemes. In particular, if this is the case, X5 can be defined over the algebraic closure
of Fp, in ks.

Remark 0.3.1. Similar arguments to the arguments developed in the present paper and
[Sar|, one may prove a similar result of Theorem 4.2 for curves of type (1,1) (see Remark
4.2.4 for a precise form).

Theorem 0.3 can be regarded as a weak Hom-version of the Grothendieck conjecture
for curves of type (0,n) over an algebraic closure of F,. Moreover, although we do not
know how to formulate “Hom-version” of the Grothendieck conjecture over algebraically
closed fields of characteristic p > 0, we can formulate a certain “weak Hom-version” of
the Grothendieck conjecture for curves of type (g,n) over algebraically closed
fields of characteristic p > 0 (cf. Conjecture 6.2). Then Theorem 0.3 implies that
Conjecture 6.2 holds in a special case. Conjecture 6.2 also implies Tamagawa’s essential
dimension conjecture (cf. Remark 4.2.3 and Remark 6.2.2).

The present paper is organized as follows. In Section 1, we give some definitions
and propositions which will be used in the next sections. In Section 2, we construct a
correspondence between the set of marked points of smooth pointed stable curves and line
bundles. In Section 3, by applying the theory developed in Section 2, we reconstruct the
inertia subgroups of marked points and their additive structures from a surjection of tame
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fundamental groups. In Section 4, by applying the results obtained in previous sections,
we prove our main theorem. In Section 5, we apply the main theorem to a question
concerning moduli spaces of curves which is originally posed by K. Stevenson. Finally, in
Section 6, we formulate a certain weak Hom-version of the Grothendieck conjecture for
curves of type (g,n) over algebraically closed fields of characteristic p > 0.
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1 Preliminaries

Let k be an algebraically closed field of characteristic p > 0, and let X* := (X, Dx) be
a smooth pointed stable curve of type (gx,nx) over k. Here, X denotes the underlying
curve of X*, Dy denotes the set of marked points of X*®, gx denotes the genus of X*, and
ny denotes the cardinality of Dy. By choosing a base point of x € X \ Dy, we obtain
the tame fundamental group 7i*™¢(X \ Dx,x) of X* and the étale fundamental group
7 (X, z) of X°. Write 7iam¢(X \ Dy, z)*" and (X, z)*! for the maximal pro-solvable
quotients of 7i*™¢(X \ Dy, x) and (X, x), respectively. Note that, by the definition of
tame coverings, there is a natural surjection

7_‘,iame()( \ DX) x)sol — T (X, x)sol.

For simplicity of notation, we omit the base point and denote by Ilx. (resp. IIS.) the
maximal pro-solvable quotient of the tame (resp. étale) fundamental group of X*°.

Definition 1.1. Let ¢ be a prime number, and let f* : Y* — X*® be a connected tame
Galois covering (i.e., f* is a Galois covering and is at most tamely ramified over D) over
k of degree ¢. For any e € Dy, we set

Ramy. := {e € Dx | f* is ramified over e}.

Definition 1.2. Let II be a profinite group, n a natural number, and ¢ a prime number.

(a) We denote by II(n) the topological closure of the subgroup [II, IT|II™ of II. Note
that I1/T1(n) = 1** @ (Z/nZ).

(b) We set v, := dimg, (II/II({)) € Z>o U {0}

(c) Let n be a natural number such that [II : II(n)] < co. We define f-average of II to
be

7" (n)(T) == e(Il(n)) /[IT - TI(n)] € Qxo U {oo}.
(d) We denote by Sub(II) the set of closed subgroups of II.

The following highly non-trivial result concerning p-average of Ily. was proved by
Tamagawa (cf. [T4, Theorem 0.5]).



Proposition 1.3. For any natural number r € N, we set

P (0" = DX®) =" (" = 1)(Ixe).

Then we have
lim Y (p" — 1)(X*®) = d'x,

r—00

where ¢y = gx — 1 if nx <1 and g%y = gx if nx > 1.

Remark 1.3.1. Tamagawa proved Proposition 1.3 as a main theorem of [T4] by devel-
oping a general theory of Raynaud’s theta divisor.

Let K be the function field of X*, and define K*! to be the maximal pro-solvable
Galois extension of K in a fixed separable closure of K, unramified over X \ Dx and at
most tamely ramified over Dx. Then we may identify IIx. with Gal(K*!/K). We set

)'Zo,sol — (5{*5017 Dj('sol),

where X*° denotes the normalization of X in K and D s denotes the inverse image of
Dy in Xl For each ¢ € D $so1, We denote by Iz the inertia subgroup of IIxe associated
to € (i.e., the stabilizer of €). Note that we have Iz = Z(1)”, where Z(1)?" denotes the
prime-to-p part of 2(1)

Lemma 1.4. Let mq, my be two positive numbers and G a finite solvable group of order
mimeg. Let f7:Z* = Y* and f5 :Y*® — X* be connected cyclic tame Galois coverings of
degrees my and ms over k, respectively. Suppose that the composition f35 o f1 : Z° — X*
1s a connected tame Galois covering over k whose Galois group is isomorphic to G. Then
there exists two connected tame Galois coverings f;”* : Z** — Y** and f3° :Y** — X*
over k such that the following conditions hold:

(a) the Galois group of f;** and f3° are isomorphic to y«e/Tlywe(my) and
I xe /Tlxe(my), respectively, where lly«.e denotes the maximal pro-solvable quo-
tient of the tame fundamental group of Y*°;

(b) there exist two morphisms g} : Z** — Z* and g5 : Y** — Y over k which
fit into the following commutative diagram:

zee A 70
fl*"l ffl
yre —E L ye
50| al
X* —— X°.
Proof. Trivial. O]

Remark 1.4.1. Let Cxe := {H,}icz., be a set of open subgroups of Ilx. such that the
following conditions:



(a) Hy = Illxe and H,y is an open normal subgroup of H; for each i € Zx;

(b) I&DZ HX'/Hi = HXo.
Let € € Dg.. For each i € Zsg, we write X3, = (Xp,, Dx,, ) for the smooth pointed
stable curve corresponding to H; and ey, € Dx,, for the image of e in Xz . Then we
obtain a sequence of marked points

Cxe
X o = ep, — ey, & eq,

e

induced by Cx.. Note that the sequence Zéc X* admits a natural action of IIye.

We may identify the inertia subgroup Iz associated to e with the stabilizer of IEC X,
Moreover, Lemma 1.4 implies that we may assume that, for each 7 € Z>,

Hi+1 = Hz(nz)
for some n; € Z~y.

Next, we recall some well-known results concerning the anabelian geometry of curves
over algebraically closed fields of characteristic p > 0.

Definition 1.5. (a) Given an object Ob(X*) (e.g., an invariant of X*, the set of marked
points of X'*) associated to X* depending on the isomorphism class of X* (as scheme), we
shall say that Ob(X*) can be reconstructed group-theoretically from Ily. if there
exists a group-theoretically algorithm for reconstructing Ob(X*®) from IIxe..

(b) Given an additional structure Add(X?®) (e.g., a family of subgroups, a family of
quotient groups) on the profinite group Iy« depending functorially on X*; then we shall
say that Add(X*®) can be reconstructed group-theoretically from Il y. if there exists
a group-theoretically algorithm for reconstructing Add(X*®) from Ily..

(c) Let X*and Y* := (Y, Dy) be smooth pointed stable curves over algebraically closed
fields of characteristic p > 0, I[Ix. and Ily. the maximal pro-solvable quotient of the tame
fundamental groups of X*® and Y'®, respectively. Suppose that we are given Ob(X*) and
Ob(Y*) (resp. Add(X*®) and Add(Y*)), and that a continuous homomorphism (in the
category of profinite groups) Ilys — Ilye.. We shall say that a map Ob(X*) — Ob(Y*)
(resp. Add(X*®) — Add(Y*)) can be reconstructed group-theoretically from the
morphism IIxe — Ily. if there exists a group-theoretically algorithm for reconstructing the
map Ob(X*) — Ob(Y*) (resp. Add(X*) — Add(Y"*)) from the morphism IIxe — Ily..

Proposition 1.6. (a) The genus gx of X* and the cardinality of the set of the marked
points nx of X*® can be reconstructed group-theoretically from Ilxe.

(b-1) Let € and € be two points of Dy distinct from each other. Then the intersection
of Iz and Iz is trivial in xe. (b-ii) The map

that maps € — Iz is an injection.

(c) Write Ine(Ilxe) for the set of inertia subgroups in Ilxe, namely the image of the
map Dg — Sub(Ilxs). Then Ine(Ilxs) can be reconstructed group-theoretically from I xe.
In particular, the set of marked points Dx and . can be reconstructed group-theoretically
from 1l x..



Proof. (a) follows immediately from Proposition 1.3. The tame fundamental group version
of (b-i) and (b-ii) was proved by Tamagawa (cf. [T4, Lemma 5.1]). Moreover, it is easy
to see that Tamagawa’s proof holds for ITy.. (c) is a special case of a result of the author
(cf. [Y, Theorem 0.2, Remark 0.2.1, and Remark 0.2.2]). O

Corollary 1.7. Let H C Ilxe be an open normal subgroup and f*:Y* := (Y,Dy) — X*
the connected tame Galois covering over k corresponding to H. Then Dyx, Dy, and the
natural morphism

Vr Dy — Dx

induced by f* can be reconstructed group-theoretically from llxe, H, and the natural in-
clusion H < Il xe, respectively.

Proof. The corollary follows immediately from Proposition 1.6 (b-1), Proposition 1.6 (b-ii),
and Proposition 1.6 (c). O

2 The set of marked points and line bundles

We maintain the notations introduced in Section 1. Moreover, in this section, we suppose
that gx > 2 and nx > 0. Let

(4 d, f*:Y*:=(Y,Dy) > X*)
be a data satisfying the following conditions:

(a) £ and d are prime numbers distinct from each other and from p such that
¢ =1 (mod d); then all d"" roots of unity are contained in F;

(b) f*:Y* — X*is an étale Galois covering over k whose Galois group is
isomorphic to Gy, where G4 C F,* denotes the subgroup of d™ roots of unity.

Write M¢, and My for HY, (Y, Fy) and Hom(IIy., Fy), respectively, where [Ty« denotes
the maximal pro-solvable quotient of the tame fundamental group of Y*. Note that there

is a natural injection
M < My

induced by the natural surjection ITy+ — II$%,. Then we obtain an exact sequence
0 — M — Mye — My = coker(Mh — My.) — 0

with a natural action of Gj.
Let
My ¢, © My,

be the subset of elements on which G, acts via the character G4 — F;* and
Use C My
the subset of elements that map to nonzero elements of My . . For each o € Uy, write

go Y2 :=(Y,,Dy)—Y*
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for the tame covering corresponding to a. Then we obtain a morphism
e:Uye =7

that maps « to # Dy, , where #(—) denotes the cardinality of (—). We define a subset of
Uy. to be

Uy? = {a € Uy. | #Ramgs = d} = {a € Uy. | (o) = {(dnx — d) + d}.

Note that Uys is not empty. For each a € Uy7, since the image of « is contained in

My ¢, we obtain that the action of G4 on the set Ramge C Dy is transitive. Thus,

there exists a unique marked point e, of X* such that f*(y) = e, for each y € Ramge..
We define a pre-equivalence relation ~ on Uys as follows:

if « ~ 3 € Uy?, then a ~ g if, for each A\, pp € F for which Aa + puf € Uy,
we have Ao+ pp € Uyv.

Then we have the following proposition.

Proposition 2.1. The pre-equivalence relation ~ on Uy is an equivalence relation, and,
moreover, the quotient set Uys | ~ is naturally isomorphic to Dx that maps [a] — e,.

Proof. Let 8,y € Uy If Ramgs = Ramgs, then, for each A, u € Fy for which AB+py # 0,
we have Ranlgia+w = Ramgé = Ramg,. Thus, B ~ 7. On the other hand, if g ~ ~, we
have Rang = Ramg.. Otherwise, we have #Ramgéﬂ = 2d. Thus, g ~ ~ if and only if
Ramg;3 = Ramge. Then ~ is an equivalence relation on U, Ve

We define a map
s U;l.p ~— DX

that maps a — e,. Let us prove that ¢ is a bijection. It is easy to see that ¢ is an
injection. On the other hand, for each e € Dy, the structure of the maximal pro-¢ tame
fundamental groups implies that we may construct a connected tame Galois covering of
h® : Z* — Y* such that the line bundle corresponding to h® is contained in Uys. Then ¢
is a surjection. This completes the proof of the lemma. Il

Remark 2.1.1. We claim that the set Uys/ ~ does not depend on the choices of ¢, d,
and the étale covering f*®:Y*® — X°.
Let
(6*,d*,f.’* VA ZLIN Xc)

be a data. Hence we obtain a resulting Uy./ ~ and a naturally isomorphism
0 Uys./ ~— Dx.
First, suppose that ¢ # ¢*, and that d # d*. Then there exists a natural isomorphism

Uy ~= Uye/ ~
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isomorphism which compatible with the isomorphism ¢ and 9* as follows. Let o € Uyd
and o* € Uys.. Write Y.* — Y* and Y% — Y** for the tame coverings corresponding to
a and o, respectively. Let us consider

Y*® xxe Y

Thus, we have a connected tame Galois covering Y* X xe Y** — X* of degree dd*((*.

Then it is easy to check that a and a* correspond to same marked points if and only if

the cardinality of the set of marked points of Y'* X ys Y'** is equal to dd*(¢{*nyx — 1) + 1).
In general case, we may choose a data

(/6**7d**’ f.,** : Y.,** % X.)
such that £** #£ ¢, 0 # ¢*, d** # d, and d** # d*. Hence we obtain a resulting Uy¥../ ~ and

a naturally isomorphism ¢¥** : Uys../ ~— Dx. Then we obtain two natural isomorphisms
Uper) ~=UyY [ ~ and Uye../ ~= Uyt. ] ~. Thus, we have Uys. /) ~= UyP /[ ~.

Remark 2.1.2. Note that Uy. can be reconstructed group-theoretically from Ily. and
IIxe. Since an element o € Uy is contained in Uy? if and only if

#Dya = f(an - d) + d,

Proposition 1.6 (a) implies that Uy+ can be reconstructed group-theoretically from ITy-
and [Ixe.. Moreover, Remark 2.1.1 implies that Dy can be reconstructed group-theoretically
from IIye.

Next, we calculate #Uy. For each e € Dy, we define
Uye, == {a € Uy? | g is ramified over (f*)~'(e)}.
Then, for any two marked points e, e’ € Dy distinct from each other, we have
Um.p,e N U;l.p’e, = 0.
Moreover, we have

mp mp
UYQ - U U .’e-

ecDx

Lemma 2.2. Write gy for the genus of Y*. We have
#Um.p _ €2gy+1 . gng.

Mor eover, we have
mp 29y +1 2
#l? N _nX(g Y ggY)l

Proof. Write E, C Dy for the set (f*)~'(e). Then Uy?, can be naturally regarded as a
subset of H}, (Y \ E.,F/) via the natural open immersion Y \ E, < Y. Write L, for the
Fy-vector space generated by Uy?, in Hg (Y \ E.,F¢). Then we have

Uy?, = Le\ Hg (Y, Fo).
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Write H, for the quotient L./H} (Y, F,). We have an exact sequence as follows:
0 — Hg(Y,F,) = L, — H, — 0.
Since the action of Gy on (f*)~!(e) is translative, we have
dimg, H, = 1.
On the other hand, since dimg,H} (Y, F,) = 2gy, we obtain
#Um.p’e — p29v+l _ p29y

Thus, we have
H#UPS = nx (0291 — 29v),

This completes the proof of the lemma. O

3 Reconstruction of the inertia groups of marked points
and their additive structures

Let ky and ko be algebraically closed fields of characteristic p > 0, and let X7 and X3 be
smooth pointed stable curves of type (gx,nx) over ki and ky, respectively. Write ITxs
and Ilys for the maximal pro-solvable quotient of the tame fundamental groups of X7
and X3, respectively. Suppose that ny > 0, and that there is a continuous surjective

morphism of profinite groups
gf) 11 X? — 11 X3

Note that, since X and X3 are smooth pointed stable curves of type (gx,nx), ¢ induces
a natural isomorphism

or Hg(l. D Hg(g.,
where (—)P" denotes the maximal prime-to-p quotient of (—).

Lemma 3.1. Let £ be a prime number distinct from p. Then the isomorphism (gb”/)_l

mduces an isomorphism
W HE (X0, Fp) 5 HE (X, Fy).
Moreover, 1% can be reconstructed group-theoretically from the surjection ¢.

Proof. Let
Y = X3

be an étale covering of degree ¢ over k. Write
f2:Yy = X3

for the connected tame Galois covering of degree £ over ky induced by ¢ . Then we claim
that fs is an étale covering over ks.
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Write gy, and gy, for the genera of Y; and Y5,. Since f} is an étale covering of degree
{, we have

9y, = E(g)ﬁ - 1) + 1.

On the other hand, by Riemann-Hurwitz formula, we have
1
gy, = g(ng — 1) + 1 + 5(6 — 1)#Ramf2-
Since ¢ is a surjection, Proposition 1.3 implies that

vy = 9vs-
Thus, we obtain that #Ramys = 0. This means that f3 is an étale covering over ky. Then
we have that the morphism (¢”)~! induces an injection
W T HE (X0, Fe) — HY (X0, Fy).

Furthermore, since dimy,H}, (X1, F,) = dimp,H}, (X2, Fy), % is a bijection. We complete
the proof of the lemma. O

Lemma 3.2. Suppose that gx > 2. Then the surjection ¢ : lxs — Ilxs induces a
bijection

P - DX1 = DXz
between the sets of marked points of X7 and X3. Moreover, the bijection ps can be
reconstructed group-theoretically from the surjection ¢.

Proof. Let ¢ and d be prime numbers distinct from each other and from p. Suppose that
¢ =1 (mod d).

Then we have that all d" roots of unity are contained in F,. Write G4 C [, for the
subgroup of d™ roots of unity.
Let
f2. : Y; = (YévDYz) — XZ.

be an étale covering of degree d over ky. Then ¢ induces a tame covering
fl. : Yi. = (Y17DY1) — Xl.

of degree d over k;. Then Lemma 3.1 implies that ff is an étale covering over k;. Note
that Y* and Y7 are same type.

Write ITye and Iy, for the open normal subgroups of ITxs and Ilxs corresponding to
Yll' and Y3, respectlyely. Write My, ]\/[{}‘13., My, My, M;;., an)d M, for Hom(Ilys,Fy),
Hét()/l,Fg), Mylc/Mei., HOIIl(Hyg,Fz), Hét<Y2,F5), and MY20/M62.. Then Lemma 3.1 im-
plies that (¢”)~! induces a commutative diagram as follows:

0 — M —— Mype —— ME —— 0
1 1 1

Ll l

0 — M —— My, —— MZ —— 0,
2 2 2

13



where all the vertical arrows are isomorphisms. Write U{;l. and U *2. for the subsets of
My and My, defined as in Section 2, respectively. Since the actions of G4 on the exact
sequences are compatible with the isomorphisms appeared in the commutative diagram
above, we have

Uy (Uys) = Uy
Let o € U;I.p and
o * Yo, = YT
the tame covering of degree ¢ over k; corresponding to a;. Write

9;2 : YO; — Yy

for the tame covering of degree £ over ky corresponding to ay := 1% (ay). Write 9y, and
9y., for the genera of Y7 and Y,? . Then Proposition 1.3 and Riemann-Hurwitz formula
implies that

1
9oy = G¥a, = §(d — #Ramgaz)(é —-1)>0.
This means that
d— 3é£Ra][ng:12 > 0.

Since ay € U *2., we have d]#Ramg&?. Thus, either 7éyéRanr1gc.¥2 =0or #Ranlg&2 = d holds.

If #Ramg&2 = 0, then g7, is an étale covering over ky. Then Lemma 3.1 implies
that g2 is an étale covering over ki. This contradicts to a; € U Hi.p . Then we have
#Ramge = d. This means that a, € U, n;f) . Thus, we obtain

vy (Uyd) C Uy

On the other hand, Lemma 2.2 implies that #Uni.p = #Un;.p. We have
U U = U3,

Then Proposition 2.1 implies that ¢ induces a bijection
ps : Dx, = Dxs,.

Remark 2.1.1 implies that p, does not depend on v%. Then Remark 2.1.2 implies
that the bijection p, can be reconstructed group-theoretically from ¢. This completes the
proof of the lemma. Il

Let m be a natural number and U, := Ilys(m). We set Uy := o Uy) C Ixe.
Write Y33, := (Yu,, Dyy,) for the smooth pointed stable curve of type (gy;, ,ny;, ) over
ky corresponding to Uy, Yy, == (Yu, DyUQ) for the smooth pointed stable curve of type
(gyU2,nyU2) over ko corresponding to U,. Then we obtain two connected tame Galois
coverings

Io, Yy, — X7
over k; and
Io,  Yg, = X3

14



over ky. Note that we have

(gYU1 ) nYyl ) = (gYU2 ) nYU2 )

Moreover, ¢ induces a commutative diagram as follows:

U, Bluy U,
¢
HXl. e HX20

! |

My /Uy = Tlx3/Up = 13, @ Z/mLZ,

where ¢|, is a surjection and the bottom arrow is an isomorphism. Note that, if (m,p) =
1, we have Uy = IIxs(m) and Ilxs /U; = Hg}} ® Z/mZ.
Suppose that gx > 2. Lemma 2.3 implies that ¢|y, induces a bijection

Pélu, - l)YU1 - DYUQ'

Then Corollary 1.7 implies a diagram as follows:

Dy, 2y p
’VfUll 'ny2J/
P
Dx, - Dy,

We have the following lemma.

Lemma 3.3. Suppose that gx > 2. The diagram obtained above

15 a commutative diagram. Moreover, the commutative diagram can be reconstructed
group-theoretically from the commutative diagram of profinite groups

3l
U1 i) U2

! !

¢
HX1' — HX2'

Proof. By applying Corollary 1.7 and Lemma 3.1, to verify the lemma, we only need to
check that the diagram is commutative.

15



Let ey, € DYU17 €Uy = Poly, (eUl) € DYU27 €1 = Yy, <€U1> € Dx,, 2 = <7fU2 ©
Pelu,)(eu,) € Dx,, and €] = p;l(eg) € Dy,. Let us prove that e; = ¢€|. Write Sy, and
Sy, for the sets (f,)7'(e}) and (f3,) " (e2), respectively. Note that ey, € Sy,. To verify
e; = €}, we only need to prove that ey, € Sy,

Let (¢,d, fs : Yo — X3) be a data defined as in Section 2. Suppose that (¢,m) = 1
and (d, m) = 1. By lemma 3.1, we obtain a data

(6d, f7 =Y = X7)
induced by ¢ and (¢,d, fs : Y — X3). On the other hand, we have a data
(6od, g5 2 Z3 = Y5 Xx3 Yo, = Y3,)

induced by the natural inclusion Uy < Ilxs and (¢, d, f5 : Y3 — X3). Again, by lemma
3.1, we obtain a data
(0,d,gy: Z7 =Y xxe Y5, = Y(3)
induced by ¢[y, and (£,d, g5 : Z5 — Y7y3,).
Let ap € U H;.p’ e, Where U(H_”; is defined as in Section 2. Then the proof of lemma 3.2
implies that s induces an element

al E Um.pe/ .
101
Write Y and Y, for the smooth pointed stable curves over k; and k; corresponding
to a1 and «y, respectively. Consider the connected tame Galois covering
Yy, Xxs Yo, = 25

of degree ¢ over ks, and write (35 for the element of U }5 corresponding to this connected
tame Galois covering, where U(*_) is defined as in Section 2. Then we have

52: Z t62/6627

C2€SU2

where t., € (Z/{Z)* and f,, € Unz.pm. On the other hand, the proof of Lemma 3.2 implies
that (o induces an element

61 = Z tqﬁa S U;p

C1ESU1

where t., € (Z/{Z)* and ., € U;nl.p?q. Note that since /3; corresponds to the connected
tame Galois covering Y3, X xs Y5, — Z3, we have the composition of the connected tame
Galois covering Y} Xxs Y7, — Z3 and the étale Galois covering g7 : 27 — Y7 is tamely
ramified over €]. This means that ey, is contained in Sy,. This completes the proof of
the lemma. [l

Remark 3.3.1. We maintain the notations introduced in the proof of Lemma 3.3. Let
Ay = xs /Uy = Uxs /U, = H}'?Q. ® Z/mZ. The sets of line bundles

mp mp
U Uz and U Uz,

61€SU1 CQGSU2
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admit natural actions of Ay which are induced by the surjections Ilys — Ay and Ilx; —
Ay, respectively. Then Dy, and Dy, admit actions of Ay which are induced by the
actions of Ay on the sets of line bundles above, respectively. Note that it is easy to see
that the actions of Ay on DYU1 and DYU2 above identify with the natural actions of Ay on
Dy, and Dy, induced by the connected tame Galois coverings ff, and f7,, respectively.

U
Morleover, we have the commutative diagram
Poly,
DYU1 e DyU2
W“l waQJ
P¢

is compatible with the actions of Ay on the sets of marked points.

Next, we prove the main theorem of this section.
Theorem 3.4. Let X = ()A(CTOI,D)?TM) and X% = ()?SOI,DX?]) be the pairs (see
Section 1 for the definition) associated to X3 and X3, respectively. Let ey € D)?SOI and

Iz, € Ine(Ilxy) the inertia subgroup associated to €. Then there exists an inertia subgroup
I5, € Ine(Ilxs) associated to a point €, € Dgeo such that

¢([gl) = [52'
Moreover, the restriction homomorphism
gb 151 . ]a — ]g2

18 an isomorphism.

Proof. Let N >> 0 be an integer number such that (N,p) = 1. We set F} := IIxs(N)
and Fy := llxs(N). Then ¢ induces a commutative diagram as follows.

F1 B F2
HXl. L} HXz.
% ® Z/NZ —— TI§ ® Z/NZ,

where the top arrow is a surjection induced by ¢. Then we obtain a smooth pointed stable
curve Yz of type (gy;, ,ny, ) over k; corresponding to Fi and a smooth pointed stable
curve Yz, of type (v, , nyy, ) over ky corresponding to Fh. Since X7 and X3 are smooth
pointed stable curves of type (gx,nx), we obtain 9yr, = 9vp, = 2 and Nyp, = Nyg,- To
verify the theorem, by replacing X7 and X3 by Y72 and Y3, respectively, we may assume
that

gx = 2.

Let Cxy := {Hai}icz., be a set of open subgroups of Ilx. satisfying the following
conditions:

17



(a) Hop = ITxs and Hy ;11 is an open normal subgroup of Hy; for each i € Zxo;
b) lim Ly /Hy; = Ilxg;
(C) for each 7 € Z207 H27i+1 = Hz,i(nm) for some n; € Z>0.

For each i € Zo, we write X, := (Xn,,, Dx,, ) for the smooth pointed stable curve
over ky corresponding to Hs; and ep,, € DXHM for the image of e, in Xtr, .- Then we
obtain a sequence of marked points

Cxs
.72 - = €Hoo 7> CHyy 7 CH, -

€2

Write {Hy; := ¢~ (Ha,) }iez,, for the set of open subgroups of Ilxs induced by ¢. For
cach i € Zxo, we write X7, = (Xp,,, Dx,, ) for the smooth pointed stable curve over
ki corresponding to H;,;. Then, for each ¢ € Z>(, Lemma 3.2 implies that the restriction
homomorphism ¢| H,; - Hii — Hs; induces a natural bijection of the set of marked points

p¢|HZ~ : DX1,¢ - DXz,z‘v

moreover, that pg| y, Can be reconstructed group-theoretically from ¢|gq, ;. We set
-1
eHl,i T qu\Hi(eHz,i)

Cxes
for each ¢ € Z>(. Then, by applying Lemma 3.3, IEQXQ induces a sequence of marked
points as follows:

C €H 5 - DXH12 — €H, - DX1,1 — €H, c DXl,o = DXl-

Let Kyer() be the subfield of G corresponding to the closed subgroup ker(¢) of ITxs.
We set

Xl:er(¢>) = (Xker(¢)7 Dj?kcr(d)))’

where )~(ker denotes the normalization of X in Kyeg) and D~ o) denotes the inverse

image of Dx in Xker(¢). Then the sequence
c = €H, » — €H, , — €H, -

determines a point €yey(g) € D Rt . We choose a point of ¢; € D T such that the image
of e in Dg, o 18 €ker(¢)- Then we have ¢(I3,) = Iz,.
Moreover, since [z and Iz, are isomorphic to Z(l)p', the restriction homomorphism

ol I;, 1s an isomorphism. This completes the proof of the theorem. n

In the remainder of this section, we reconstruct “additive structures” of inertia groups.
Let €5 be any point of .D)'Zv;;ol and ¢€; a point of D)?T"l such that ¢(Iz ) = €3. Write F; (resp.

Fy) for the algebraic closure of F, in k; (resp. ko). We set

Fe, o= (Iz, ®2 (Q/Z)]) [ [{*ei} (xesp. Fe, = (Iz, @2 (Q/Z)) [ [{#ea}),

18



where {#.,} (resp. {*.,}) is an one-point set, and (Q/Z)!" (resp. (Q/Z)}) denotes the
prime-to-p part of (Q/Z); (resp. (Q/Z)s), can be canonically identified with

U pmlkr) (esp. | pn(R2)).

(pym)=1 (pym)=1

Moreover, Fs, (resp. Fz,) can be identified with F, (resp. F) as set, hence, carries a
structure of field, whose multiplicative group is Iz, ®z (Q/Z)] (resp. Iz, ®z (Q/Z)% ) and
whose zero element is *., (resp. *,). Then we have the following proposition.

Corollary 3.5. The field structures of Fz, and Fz, can be reconstructed group-theoretically
from Ixs and Ilxg, respectively. Moreover, ¢ induces a field isomorphism

9¢7€1,52 : Fe, = Fe,,
and 04z, &, can be reconstructed group-theoretically from ¢.

Proof. To verify the theorem, similar arguments to the arguments given in the proof of
[T4, Proposition 5.3] imply that we may assume that ny = 3.

For each natural number r, we denote by F,rz (resp. F,rz,) the unique subfield of
Fz (resp. Fz,). We fix any finite field F,- of cardinality p” and an algebraic closure F of
F,. By Proposition 1.6 (c), we have F}, 5 =I5, /(p" — 1) (resp. F), 5, = Iz, /(p" — 1)) can
be reconstructed group-theoretically from IIxs (resp. Ilxs). Then the set

X
Homygyoup (F; 55

IF;,«) (resp. Homgyoup (F =, F )

" 7€2 )= pt

is group-theoretically, and reconstructing the field structure of F,rz (resp. Fyrgz,) is
equivalent to reconstructing
Hompgeias(Fpr 2, Fpr) (resp. Homgeas(Fpr 2, Fpr))
as a subset of Homgroup(F;T gl,IF;T) (resp. Homgmup(IF;T gZ,IF;T)). Note that, to recon-
struct the field structure of Fg (resp. Fg,), it is sufficient to reconstruct the subset
Homgeras(Fpr &1, Fyr) (resp. Homgeas(Fpr 5, Fpr)) for 7 in a cofinal subset of N with respect
to division.
Let
X1 € Homgroups(l_[%};‘l. ®Z/(p" - 1)Z,F,,)

(resp. x2 € Homgmups(ﬂig ®Z/(p" — 1)Z,F,.)).
Write Hy, (resp. Hy,) for Ilxs(p" — 1) (vesp. Ixg(p" — 1)), My, for H2> @ F, (resp. M,,
for H2? ® IF,), and

X[.{ = (XHxl ) DXH><1) (resp. XI.{xz = (XHXQ’ DXHX2 ))

X1

for the smooth pointed stable curve over ky (resp. ks) corresponding to H,, (resp. H,,).
Note that M,, (resp. M,,)isaF, [H_%P1.®Z/(p7"—1)Z]—module (resp. FP[H% QRZ/(p"—1)Z]-

module) via conjugation. We define

My, [x1] == {a € My, @, F | o(a) = x1(c)a for all o € H%}’l. ®RZ/(p"—1)Z}
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(resp. My, [x2] == {a € M, ®r, F | 0(a) = x2(0)a for all o € IT{X «®Z/(p" —1)L})
and
Yo (M) == dimg(My, [x1]) (resp.yy, (My,) = dimg(M,, [x2]))-

(T4, Remark 3.7] implies that 7, (M,,) < gx + 1 (resp. vy, (M,,) < gx + 1).
We define two maps

Resy, : Homgmups(Ha s ®Z/(p" — VZ,F ) — Hom(F ;. - ,F)

€1 p”

(resp. Ress, Homgroups(ﬂi?. ®Z/(p" - 1)Z,F,.) — Hom(F . . ,F.))

P2’
and
Fl,r : Homgroups(ﬂa e ® Z/(p — 1)Z,F;¢) — ZZO
(resp. I'g, Homgmups(ﬂf’,}; ®Z/(p" — 1)L, F,.) = Zxo),

where the map Res; . (resp. Ressy,) is the restriction with respect to the natural inclusion
F o = IR . ®Z/(p —1)Z (vesp. F . — TI5A + ®Z/(p" —1)Z), and the map I'y; (resp.

;€1 ,€2

Fgﬂ,) is the map that maps x; — 7X1(MXI) (resp X2 F Yyo (My,))-

Let mg be the product of all prime numbers < p—2if p # 2,3 and my =1 if p = 2, 3.
Let ro be the order of p in the multiplicative group (Z/moZ)*. Then [T4, Claim 5.4
implies the following result:

there exists a constant C'(gx) which only depends on gx such that, for each
r > log,(C(gx) + 1) divisible by o, we have

Homgewgs(Fpr iz, Fyr) = Homgel o () o Fp) \ Resy (D, ({gx + 1))

(vesp. Homgegs(Fyr 2, Fpr) = Homgtl () o ) \ Resy, (I, ({gx + 13))),

where Hom

surj o

swij  (—, —) denotes the set of surjections of HomZ\o (=, —).

groups ( )

Thus, we obtain that the field structures of Iz and Fg, can be reconstructed group-
theoretically from IIxs and Ilxs, respectively.
Next, we prove the “moreover” part of the proposition. Let

Ko € Homgmups(ﬂa « QZL/(p" - 1)Z,F,.).
Then ¢ induced a character
K1 € Homgmups(l_[a . RZ/(p" —1)Z, ]17*"X ).
Moreover, ¢| H,, induces a surjection
M, [k1] = M,,[ksa].

Suppose that ry € T3 ({gx 4 1}). Then we obtain that the surjection My, [r1] — M, [ro]
is an isomorphism. On the other hand, by Theorem 3.4, we have an isomorphism ¢| Iz

Iz, = Iz,. Then the isomorphism ¢|r, induces an injective

Ress, (I3 ({gx + 11)) = Resy, (U5 ({gx + 1}).
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Since #Homgeias(Fpr 2, Fpr) = #Homgeras(Fpr 25, Fpr ), ¢ Iz, induces a bijection
HOHlﬁeldS (Fpr,gw ]Fpr) :> HOHlﬁeldS (Fpr,'él s ]Fpr).
Thus, ¢| 1;, induces a bijection

Homgelgs (Fz,, F) = Homgeas(Fe, , F).
If we choose F = Fg,, then the bijection above induces a field isomorphism
94),'51,52 . Fgl :> FgQ.

This completes the proof of the proposition. O]

4 A weak Hom-version of the Grothendieck conjec-
ture for curves of type (0,n)

We maintain the notations introduced in Section 3. Moreover, in this section, we suppose
that (gx,nx) = (0,n).

Fix two marked points e , €10 € Dx, distinct from each other. We choose any field
k) that is isomorphic to ki, and choose any isomorphism ¢, : X; — ]P’,lc,1 as schemes such
that ¢1(e1,00) = 00 and ¢1(e19) = 0. Then the set of kj-rational points X (k1) \ {€1.00}
is equipped with a structure of F,-module via the bijection ¢;. Note that since any ki-
isomorphism of IP’l,1 fixing oo and 0 is a scalar multiplication, the F,-module structure of

Xi(k1) \ {e1,00} does not depend on the choices of k] and ¢; but depends only on the
choices of e; o and e; 9. Then we shall call X; (k) \ {e1,} is equipped with a structure of
F,-module with respect to e; o, and e; . On the other hand, by Lemma 3.2, ¢ induces a
bijection ps : Dx, = Dx,. We write 3o, and ez for py(e1.00) and py(e1,0), respectively.

Lemma 4.1. Consider the following linear condition :

E be,e1 = €10, with respect to €1 00, €10

e1€Dx, \{e1,00,€1,0}

on X3, where b, € F, for each e; € Dx, \ {€1.00,€10}. Then we can detect, group-
theoretically from lxs, whether the linear condition defined above holds or not. Moreover,
if the linear condition defined above holds, then the linear condition

Z be, po(€1) = €1, with respect to es 0, €20

e2€Dx, \{€e2,00,€2,0}
on X3 also holds.

Proof. Let €3 € D)?Sol be a point over ey . Then the set

Fg?,oo = (18200 Kz Q/Z H{*ezoo}
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carries a structure of field, and Corollary 3.5 implies that the field structure can be
reconstructed group-theoretically from Ilys. Theorem 3.4 implies that there exists a
point €1 o, € D)Z'fol; and that ¢(Iz, ) = €2,.c. Moreover, Corollary 3.5 implies that the set

Fa,oo = (‘[gl,oo Xz (Q/Z)}f/) H{*el,oo}

carries a structure of field, that the field structure can be reconstructed group-theoretically
from IIxs, and that ¢ induces a field isomorphism
9¢’ :F :> Fg?,oo‘

€1,00,€2,00 €1,00

For each e; € Dx,, we choose b, € Zx( such that

b., = b, (mod p), and that > b, > 2.

e1€Dx, \{e1,00,€1,0}

pr—2> Z b,

e1€Dx, \{e1,00,€1,0}

Let » > 1 such that

For each e; € Dy, and each e, € Dgiol over ej, write Iz o, for the image of the

composition of the natural morphisms Iz, < Tlys — H%}){. Moreover, since the image of
I7, a1 does not depend on the choice of €1, we may write /., for Iz, .. We define

1

€1,00

— Z/(p" — 1)Z that maps 1+ 1,

I

e1,0

— Z/(p" — 1)Z that maps 1 > ( Z b)) —1,
e1€Dx, \{e1,00,€1,0}
and
I, » Z/(p" — 1)Z that maps 1 — —b, for each e; € Dx, \ {e1,00,€1,0}-

Then the surjections of inertia groups defined above induces a sujection
(51 . HX; - Z/(pr - 1>Z

Write Hy, for the kernel of 6;, Mj, for Hglb®IFp, and X;—I‘Sl = (XH51 s Dxy ) for the smooth
1

pointed stable curve over k; corresponding to Hs,. Note that Ms, admits a natural action

of ITxs via conjugation. Then My, admits a natural action of Iz,  via a character

€1,00

- Iz

€1,00

XIz — HXl’ - Z/(pr - 1)Z = Igl,oo/(pT - 1) - ]Fgl,oo’

1,00’

where the middle morphism is d;. We set
Ms, [Xfél wyr] ={a € M;, ®p,Fz, | 0(a) =x1., ,(o)aforaloel; }.

°1,00"

Then the proof of [T2, Lemma 3.3] implies that the linear condition

E be,e1 = €1, with respect to e o, €10

e1€Dx, \{e1,00,€1,0}
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on X7 holds if and only if Ms, [x I, Oo,,ﬁ] = 0. This completes the proof of the first part of
the lemma.
Next, let us prove the “moreover” part. Since (p,p” — 1) = 1, the surjection ¢ induces

a surjection
(52 : HX20 — Z/(pr — 1)Z

which fits into the following commutative diagram:

Olimg,
H51 —_— H52
HXI L) HX2-
(sll 521
Z/(pr—1)2 —— Z/(p" — 1)Z,

where Hj, denotes the kernel of d,. Write Ms, for Hi® ® F,, and X;j,(52 = (XH517DXH5 )
2

for the smooth pointed stable curve over ky corresponding to Hs,. Similar arguments to

the arguments given above imply that M;, admits a natural action of 5, _ via a character

€2 00

ro. [52,00

XIz — HXQ’ - Z/(pT - 1)Z = Ez,oo/(pT - 1) - Fé;,oo’

2,00’

where the middle morphism is ;. We set
Ms, [Xféz,oov’”] = {a € M;, ®p, Fz, | o(a) = Xlgzwr(a)a for all o € I3, _ }.
Then we obtain a surjection
Ms, [Xlgl,oo,'r] — Ms, [X]gz’oo,r]

induced by ¢|p, and 0z 2, -
Since the linear condition

E be,e1 = e1o with respect to e, €10

e1€Dx, \{e1,00,€1,0}

on X7 holds, we have Ms, [xr,, ] = 0. Thus, we obtain M, [xr,, | = 0. Then, by
applying the first part of the lemma to X3, we have the linear condition

Z be, po(€1) = €10, With respect to €30, €20

e2€Dx, \{e2,00,€2,0}
on X3 holds. -

Remark 4.1.1. Note that, if X; = P}, then the linear condition is the follows:

Z be,e1 = 0 with respect to {oo, 0}.
e1€Dx, \{c0,0}
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Next, we prove the main theorem of the present paper.

Theorem 4.2. Let X} := (X1, Dx,) and X3 := (Xs, Dx,) be smooth pointed stable curves
of type (0,n) over algebraically closed fields ki and ko of characteristic p > 0, respectively.
Write Ilxs andIlxy for the mazimal pro-solvable quotients of the tame fundamental groups
of X3 and X3, respectively. Let k™ and ki™ be the minimal algebraically closed subfields
of k1 and kg over which X} and X3 are defined, respectively; thus, by considering the
function fields of X1 and X5, we obtain smooth pointed stable curves

e min , min . emin ,__ min .
X7 = (XM, Dxmin) and X3 1= (X5™, D xpin)

such that X, \ Dy, = (XM \ Dmin) Xpnin k1 and X5\ Dy, = (X gnin\ D) X pin ko as
k1-schemes and ko-schemes, respectively.

Then we can detect whether X7 can be defined over the algebraic closure Fy of F, in
ky or not, group-theoretically from Ilxs. Moreover, suppose that X7 can be defined over

the algebraic closure Fy of F, in k1. Then the set of open homomorphisms
HomP*" (s, [Ixs) # 0

if and only iof . .
Xiﬂln \ DX{nin = X;Illn \ Dxénin

as schemes. In particular, if this is the case, X5 can be defined over the algebraic closure
FQ Of Fp m k’g.

Proof. Note that, it is easy to see that the proof of [T2, Theorem 3.5] also holds for
ILye, then first part of the theorem follows from [T4, Theorem 5.8] and the proof of [T2,
Theorem 3.5]. Let us prove the “moreover” part of the theorem.

The “if” part of the theorem is trivial. We only prove the “only if” part of the theorem.
Suppose that

HOHIOpen(HXI-, HX2-> 75 Q)

Let ¢ € Hom®*(ILys,Ilys). Since X} and X3 are type (0,n), we have that ¢ is a
surjection.

Let €50 € Dggo be a point over e;0. Then

]Fggo = (Iez() ®Z Q/Z H{*EQ 0}

carries a structure of field, and Corollary 3.5 implies that the field structure can be
reconstructed group-theoretically from Ilys. Theorem 3.4 implies that there exists a
point €9 € Do, and that ¢(Iz, ,) = €2,0. Moreover, Corollary 3.5 implies that

Fa,o = <[e1 0 Kz Q/Z H{*el 0}

carries a structure of field, that the field structure can be reconstructed group-theoretically
from ITxs, and that ¢ induces a field isomorphism

~

9¢>f51,0,€2,0 : IFg1,0 — ng,o'
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Proposition 1.6 (a) implies that n can be reconstructed gorup-theoretically from IIxs or
Ilxs. If n = 3, then the theorem is trivial, so we may assume that n > 4. Moreover, since

X? can be defined over F,, without loss of generality, we may assume that k; = F; = Fz o,
that X; = ]P’%l, and that

Dy, :={e1,00 = 00,e10 = 0,611 = 1,e12,..., €152}

Here, €19,...,€14-2 € Fi\ {€e1,0, €11} distinct from each other. By [T2, Lemma 3.4], there

exists a natural number 7 prime to p such that F,((,) contains rh roots of €19, ..., €102,
where ¢, denotes a fixed primitive r™ root of unity in Fy. Let s := [F,((.),F,]. For each
e1i € {€12,.. ., €102}, we fix an r™ root ei/[ in F;. Then we have

s—1
61,/{ = Z b1,ijCZ for each i € {2,...,n — 2},
§=0

where by ;; € F, foreach i =2,...,n =2, =0,...,s — 1.
Let X \ {oo} = SpecFy[z;] and

X;Il = (XHlﬂDXHl) — Xl.

the tame covering over F; determined by the equation y} = x;. Write H; for the maximal
pro-solvable quotient of the tame fundamental group of X, . The tame covering X3 —
X7 is totally ramified over e , €1, and is étale over Dy, \ {€1,0, €10} Note that Xy, =
IP%I, and that the unique points of DXH1 OVeT €1 oo € Dx, and e; ¢ € Dx, are ey, o := 00
and eg, o := 0, respectively. We set

/r

1
ey i=ey; € DXH1
for each i € {2,...,n — 2} and

J N
€1 = G € Dy,

for each j =0,...,s — 1. Thus, we obtain a linear condition on X3 as follows:
s—1
evw, = Y bii€l | with respect to {e €m0}
1,H; Lij €, 1 p Hy,005 €H1,0
Jj=0

for each i €{2,...,n—2}.
Since the order #(Ilxs/H;) is prime to p, then we have the following commutative

diagram:

&l

—

H, H,
| |
Mys  —= Iy
| |
Z/(p" =12 —= Z/(p" = 1)Z
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Write X3, := (Xg,, Dx,) for the smooth pointed stable curve over k; corresponding to
H,. Lemma 3.2 implies that the following commutative diagram of the sets of marked
points can be reconstructed group-theoretically from the commutative diagram of profinite

groups above:

p¢\H1
ZDH1 —_— DH2

l |

Pg
l)X1 —_— DX2'

Write
€200, €2,0,€2,0,1 = 1,...,m — 2, for py(e1,00), pgle10); poleri), i =1,...,n—2,
eHg,ooa eHg,()) eHQ,’i?/l: = 27 s, = 2a for P¢(€H1,oo)a p¢(eH1,0)7 p¢(€H1,i)ai = 27 cee, = 2a
and

efhbj € {0,...,s—1} for P¢>(€;12,1):j €{0,...,s—1}.
We may assume that X, = IP’}Q, and that eg o = 00,29 = 0,e21 = 1. Note that

J J
€H27 I

th

where & := 043z, ,2,(¢) is an 7" root of unity in Fz, ;. Then

€1,2,---,€2n-2 € ko \ {62,007 62,0}

distinct from each other.
Lemma 4.1 implies that the following linear condition

e m, = E by Z]eH 1= 621 with respect to {em, €m0}

on X7, holds for each i € {2,...,n — 2}. Thus, we obtain

s—1 ' s—1
€2, = (Z b1,z‘j€§q2,1)r = (Z bl,ijfr)r
j=0 j=0

for each i € {2,...,n—2}. This means that X;"™* can be defined over F,. Moreover, we
obtain _
Xl\DXl g)(vénln\_D)(énin

as schemes. We complete the proof of the main theorem. O

Remark 4.2.1. Since IIxs and ITx; are topologically finitely generated, by Theorem 4.2,
we obtain that
HomOpen(HXI, HXQ') = ISOI’]_’I(HX;, HXQ'),

where Isom(—, —) denotes the set of continuous isomorphisms of profinite groups.
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Remark 4.2.2. Let C} := (C1,D¢,) and C§ := (Cy, D¢,) be pointed stable smooth
curves of type _(gc,nc) over algebraically closed fields [y and [y of characteristic p > 0.
Suppose that F, := l; = Iy is an algebraic closure of F,. Write 7{*(C} \ D¢,) and
mi#me(Cy \ Dg¢,) for the tame fundamental groups of C7 and C3, respectively. Then the
weak Isom-version of the Grothendieck conjecture for curves of type (gc,nc)

over F, can be formulated as follows:

The set of continuous isomorphisms
Isom(m;"(C1 \ D, ), m™(C2 \ Dc,)) # 0
if and only if Cy \ D¢, = Cy \ D¢, as schemes.

This conjecture was proved by Tamagawa when go = 0 (cf. [T4, Theorem 5.8]). Theorem
4.2 extends Tamagawa’s result to the case of open continuous homomorphisms. More-
over, Theorem 4.2 can be regarded as a weak Hom-version of the Grothendieck
conjecture for curves of type (0,n¢) over F,.

Remark 4.2.3. Let C* := (C, D¢) be a pointed stable smooth curve of type (g¢, ne) over
algebraically closed fields [ of characteristic p > 0. We denote by td(l) the transcendence
degree of [ over F, C I. We define the essential dimension ed(C*) of C* to be the minimum
of td(!"), where I’ runs over the algebraically closed subfields of [ over which there exists a
smooth curve C"* such that C* is [-isomorphic to C"* x [. Tamagawa posed a conjecture
concerning the essential dimensions as follows (cf. [T3, Conjecture 5.3 (ii)]):

Let C"* := (C", D¢w) be a smooth pointed stable curve over an algebraically
tame

closed field I” of characteristic p > 0. Suppose that 7*™¢(C'\ D¢) is isomorphic
to miame(C” \ Den) as profinite groups. Then we have

1

ed(C*) =ed(C *).

Tamagawa proved the essential dimension conjecture above in the case where ed(C*®) =
1 and g¢ = 0 (cf. [T4, Theorem 5.8]). Moreover, the author extended Tamagawa’s result
to the case of (possibly singular) pointed stable curves (cf. [Y, Theorem 6.6 (i-b)]).

On the other hand, let C} := (Cy, D¢, ) and C3 := (Cy, D¢,) be pointed stable smooth
curves of type (gc,n¢) over algebraically closed fields I; and [y of characteristic p >
0. Then Theorem 4.2 implies that, if g0 = 0 and there exists a continuous surjective
morphism 7{*¢(Cy \ D¢, ) — 7i#2¢(Cy \ D¢, ), we have

ed(C7) = ed(C3).

Moreover, we posed the following question:

Question. Suppose that there exists a continuous surjective morphism 7{*™¢(Cf \

De¢,) — mi#e(Cy \ D¢, ). Does
ed(C}) > ed(C3)

hold?
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Remark 4.2.4. Before Tamagawa proved [T4, Theorem 5.8], he also obtained an étale
fundamental group version of [T4, Theorem 5.8] in a completely different way (by using
wildly ramified coverings) (cf. [T2, Theorem 3.5]). Note that, for any nonsingular pointed
stable curve over an algebraically closed field of positive characteristic, since the tame
fundamental group can be reconstructed group-theoretically from the étale fundamental
group (cf. [T2, Corollary 1.10]), the tame fundamental group version is stronger than
the étale fundamental group version. Recently, by using Tamagawa’s idea, A. Sarashina
proved a similar result of [T2, Theorem 3.5] for curves of type (1,1) (cf. [Sar], [T6,
Theorem 6 (i)]). Moreover, by applying the theory of Tamagawa developed in [T4],
Sarashina’s result also holds in the case of tame fundamental groups.

Moreover, similar arguments to the arguments developed in the present paper and
[Sar], one may prove a similar result of Theorem 4.2 for curves of type (1,1) as follows:

Let C} := (Ch, D¢,) and C3 = (Cy, D¢,) be smooth pointed stable curves of
type (1,1) over algebraically closed fields l; and ly of characteristic p > 0,
respectively. Write Ilcs and Ilgy for the mazimal pro-solvable quotients of the
tame fundamental groups of C7 and C5, respectively. Let 7" and I3 be the
manimal algebraically closed subfields of l; and ly over which C} and C5 are
defined, respectively; thus, by considering the function fields of Cy and Cs, we
obtain smooth pointed stable curves

CP™™ = (O™, Dgin) and C3™™ := (O™, Degen)

S'U/Ch that Cl\DC1 g (Cinin\DCinin) Xlllnin ll and CQ\DC2 g (Cénin\Dcrénin) Xlénin l2
as li-schemes and ly-schemes, respectively.

Then we can detect whether C} can be defined over the algebraic closure of
[, or not, group-theoretically from Ilcs. Moreover, suppose that CT can be
defined over the algebraic closure of Fy, in l;. Then the set of open continuous

homomorphisms
H0m0pen<Hclo, Hcg) 7é (Z)

if and only if . _
C{nln \ Dcinin %‘J Oénln \ DCénin

as schemes. In particular, if this is the case, C5 can be defined over the
algebraic closure of F), in ly.

5 An application to moduli spaces of curves

Let Fp be an algebraic closure of I,,, and let M, ,, be the moduli stack over Fp parame-
terizing smooth pointed stable curves of type (g,n) and M,,, the coarse moduli space of
M. Let X* be a pointed stable smooth curve of type (g,n) over an algebraically closed
field £ D F,. Then there exists a unique composition of morphisms

cxe : Speck — Mg, — Mgy,
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determined by X* — Speck and the natural morphism M, — M,,. We write
gxe S Mg,n

for the image of cx.. Moreover, for any ¢ € M,,, let k, be an algebraically closed
field which contains the residue field k(q) of ¢. Then the natural morphisms Speck, —
Speck(q) — My, determine a smooth pointed stable curve X := (X, Dx,) of type (g,n)
over k,. We write

ﬂ_Eame<q)

for the tame fundamental group 7{**(X, \ Dx,) of X7 and

A" (a)

for the set of finite quotients of 7{*™¢(¢). Note that 7{*™¢(q) and 7%™°(¢) do not depend
on the choice of k, but depend only on gq. Moreover, for two points ¢, g2 € M, ,,, we have

miame(gy) &2 rtame (g, as profinite groups if and only if 7'™¢(q;) = 7%™(qo) as sets.
K. Stevenson proved the following result (cf. [Ste, Proposition 4.2]).
Proposition 5.1. Suppose that n = 0. Let q be a closed point of My = My, and

G € ©%™(q) a finite group. Then there exists an open neighborhood ¢ € U C M, such
that, for each ¢ € U, G € n%™¢(¢').

Similar arguments to the arguments given in the proof of [Ste, Proposition 4.2] imply
Proposition 5.1 also holds for n > 0. Then we obtain the following result.

Proposition 5.2. Let g be a closed point of M, and G € %™(q) a finite group. Then
there exists an open neighborhood ¢ € U C M, such that, for each ¢ € U, G € n%™¢(¢').

Remark 5.2.1. Proposition 5.2 means that, for any finite group H, either H is not a
quotient of the tame fundamental group of any smooth pointed stable curves of type (g, n)
over algebraically closed fields fields of characteristic p > 0, or is a quotient of the tame
fundamental group of almost each such curve.

Suppose that H is any finite quotient of the tame fundamental group of a smooth
pointed stable curves of type (g,n) over algebraically closed fields fields of characteristic
p > 0. We define

U C Mg,

tame

for the maximal open subset such that, for each ¢’ € Uy, H € m™¢(¢'). Stevenson posed
a question as follows (cf. [Question 4.3] for n = 0 case):

is the intersection of all the Up’s contains any F,-rational points?

Let ggen be the generic point of M, ,, and ¢” any closed point of M, ,,. Then by [T5, Theo-
rem 0.3], 7%"¢(ggen) is not equal to 7'¢™°(¢”). This means that the answer of Stevenson’s
question above is “No”. Moreover, we may refine Stevenson’s question above as follows:
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let ¢ be any closed point of M, ,; what is the set

( ﬂ UH)CI’

Hertame(q)

where (—) denotes the set of closed points of (—)?
For this question, we have the following result.

Theorem 5.3. Let q be any closed point of My, and X; the smooth pointed stable curve

over F, = k(q) determined by the natural morphism Spec k(q) — My.,,. For each m € Z,
write g™ for (xe)m, where (X)) denotes the m™ Frobenius twist of X*. Then we

have
(N U = {4 ez

Heﬂ.fqame (q)

Note that since X* can be defined over a finite field, {q"™ }mez is a finite set.

Proof. Since “ 2 7 is trivial, we only need to prove that “ C ” holds. Let ¢’ be any closed
point of ﬂHeﬂ%me(q) Upy. Then we have that, for each H € 7%§™(q),

Homsurj (Triame<q/)7 H) 7& @7

where Hom*™(—, —) denotes the set of surjections of Hom(—, —). Since 7{*™¢(q') is topo-

logically finitely generated, the set Hom®™ (mtam¢(¢'), H) is finite. Then the set of open
continuous homomorphisms

lim  Hom™"(my*"*(¢'), H) = Hom®* (m"™(¢), "™ (q)) # 0.
Heﬂ.%ame(q)

Thus, Theorem 4.2 implies that ¢’ € {¢"™ },,cz. This completes the proof of the theorem.
O

The author is very interested in the following question.

Question 5.4. Does
() Unl= 1Spec Oy, gom|

Heﬂ.i‘ame(q) meZ

holds? Here, |(—)| denotes the underlying topological space of (—).

6 Formulation of a weak Hom-version of the Grothendieck
conjecture for curves of type (g,n)

We maintain the notations introduced in Section 5. Let X7 and X3 be smooth pointed
stable curve of type (g,n) over algebraically closed fields k; and ks, respectively. Write
q1 and g for gxs and gxs, V1 and V; for the topological closure of ¢ and g, in M,
respectively.
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Definition 6.1. We shall say that V5 is essentially contained in V; if, for each ¢ € V5,
there exists m € Z such that ¢™ € V;. We denote by

Vo Cee V1
if V5 is essentially contained in V;.

Then we formulate a certain weak Hom-version of the Grothendieck conjecture
for curves of type (g,n) over algebraically closed fields of charcteristic p > 0 as
follows.

Conjecture 6.2. (weak Hom-version for curves of type (g,n))
The set of open continuous homomorphisms

Homopen (7T11;ame (QI) 7 7T11:ame <Q2)) ?é @

of and only of
‘/VQ gec ‘/i’

Moreover,
HomePren (ﬂ_;ame ((h) ’ 7_[_Eame (QQ)) — ISOHl(TI‘}ame (Q1 ) ; W‘{ame (q2)) ?é @

if and only if
Va Cec Vi and Vi Cee Va.

Remark 6.2.1. Theorem 4.2 implies that Conjecture 6.2 holds in the case where ¢; is a
closed point of My ,. Moreover, we have

weak Hom-version for curves of type (g,n) = weak Isom-version.

Remark 6.2.2. We note that dim(V;) = ed(X?) and dim(V3) = ed(X3). Thus, we
obtain that Conjecture 6.2 implies Tamagawa’s essential dimension conjecture, Remark
4.2.3 Question, and Question 5.4.
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