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Abstract

Let p be a prime number and k either a finite field of characteristic p or a
generalized sub-p-adic field. Let X; and X, be hyperbolic curves over k. We
shall call a separable k-morphism f : X; — X5 almost open immersion if f is
a composition of an open immersion and a finite étale morphism. In the present
paper, we give some group-theoretic characterizations for the set of almost open
immersions between X; and Xs via their arithmetic fundamental groups. This
result can be regarded as a certain Hom-version of the Grothendieck conjecture for
almost open immersions of curves over k.
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Introduction

In the present paper, we study the anabelian geometry of curves. Let k be a field, k
an algebraic closure of k, and Gy the absolute Galois group of k. Let X;,i € {1,2}, be
hyperbolic curves over k and X; the curve X; x; k over k. Then, for suitable choices of
base point, we have the following exact sequence of tame fundamental groups:

1 (X)) = 7 (X)) = Gy — L

Note that if char(k) = 0, then the tame fundamental groups of X; coincides with the étale
fundamental groups of Xj.
Let Primes be the set of prime numbers and > a non-empty subset of Primes. We

denote by Ay, either the maximal pro-X quotient of 7}(X;) or the maximal pro-solvable

quotient of 7} (X;). Then the kernel of the natural surjection 7} (X;) — Ay, is a closed
normal subgroup of 7} (X;). Moreover, we denote by

Iy, := 7 (X;)/(Ker(m} (X;) = Ax,)).

(3

Thus, we obtain the following exact sequence of fundamental groups:
pry,
1—>AX1-_>HXZ~ —' Gk—>1
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We define

Isompro—gps<_> _) and Homg]i::g—ngps<_7 _)

to be the set of continuous isomorphisms and the set of open continuous homomorphisms

of profinite groups between the two profinite groups in parentheses, respectively, and
define

Isomg, (ILx,, [Ix,) := {® € Isompogps(Ilx,, y,) | pri1 = prif2 o d},

Homgy™ (I, , Ilx,) := {® € Hom 7" (Ix,,1lx,) | pry, = pry, o ®}.

pro-gps

Thus, by composing with inner automorphisms, we obtain a natural action of Ay, on
Isomg, (Ilx,, ITx,) and a natural action of Ay, on Homg ™ (Ix,, Ilx,).

Consider the category Cy. of smooth k-curves and dominant k-morphisms. If char(k) =
p > 0, we denote by FCi the localization of C; at geometric k-Frobenius maps between
curves (cf. [S1, Section 3]). The ultimate aim of Grothendieck’s anabelian conjectures (or,
simply, the Grothendieck conjectures, for short) for curves over suitable k is to reconstruct
the curves from their fundamental groups. Moreover precisely, these conjectures can be
formulated as follows:

Conjecture 0.1. (Isom-version): The natural maps
Isom-7y : Isome, (X1, X3) — Isomg, (Ix,, Iy,)/Inn(Ay,)
if char(k) =0 and
Isom-7}” : Tsomye, (X1, Xy) — Isomg, (Ilx,, Iy,)/Inn(Ax, )

if char(k) = p > 0 are bijections.

Conjecture 0.2. (Hom-version): The natural maps

7y : Home, (X1, X3) — Homg, (Iy,, Ilx,)/Inn(Ax,)
if char(k) =0 and
7 : Homye, (X1, Xy) — Homg, (Ilx,, Iy,)/Inn(Ax,)
if char(k) = p > 0 are bijections.
Moreover, we have the following commutative diagrams:

Isom—ﬂ'lE

Isome, (X1, X3) — Isomg, (Ilx,, Iy, )/Inn(Ax,)

J l

7"% open
Homg, (X1, Xo) —— HomGI;c (Tlx,,1Ix,)/Inn(Ay,),



if char(k) = 0 and

t,2
Isom-7

Isomgze, (X1, X2) ——— Isomg, (Ilx,, IIx,)/Inn(Ay,)

l l

t,2

Hompe, (X1, X2) —— Hom®™(Ily,, [Iy,)/Inn(Ay,)

if char(k) = p > 0. Since all the vertical arrows appeared in the commutative diagrams
above are injections, we have that

Hom-version = Isom-version.

Suppose that char(k) = 0. If X, € {1,2}, is affine, ¥ = Primes, and k is a number
field, then Conjecture 0.1 was proved by H. Nakamura (cf. [N1], [N2]) when the genus
of X;,i € {1,2}, is 0, and was proved by A. Tamagawa (cf. [T1]) in general. Later, S.
Mochizuki (cf. [M1], [M2]) generalized their results to the case where k is a generalized
sub-p-adic field (i.e., a field which can be embedded as a subfield of a finitely generated
extension of the quotient field of the ring of Witt vectors with coefficients in an algebraic
closed field of F))), ¥ is a set which contains p, and X;, i € {1, 2}, is an arbitrary hyperbolic
curve over k.

Suppose that char(k) = p > 0. If ¥ = Primes and k is a finite field, then Conjecture
0.1 was proved by Tamagawa (cf. [T1]) when X;,i € {1,2}, is affine, and was proved by
Mochizuki (cf. [M3]) when X;,i € {1,2}, is projective. Recently, M. Saidi and Tamagawa
(cf. [ST1], [ST3]) generalized their results to the case where p ¢ 3 is a complement of a
finite subset of Primes. On the other hand, J. Stix (cf. [S1], [S2]) proved Conjecture 0.1
when ¥ = Primes and k is a field that is finitely generated over IF,,.

For Conjecture 0.2, if char(k) = 0, by applying p-adic Hodge theory, Mochizuki (cf.
[M1]) proved Conjecture 0.2 when k is a sub-p-adic fields (i.e., a field which can be
embedded as a subfield of a finitely generated extension of Q,), and ¥ is a set which
contains p. If char(k) = p > 0, a birational version of Conjecture 0.2 for function fields
of curves over finite fields was proved by Saidi and Tamagawa (cf. [ST2]), but at the
time of writing, nothing is known about Conjecture 0.2. It is not clear how to adapt
Mochizuki’s method to the case of positive characteristic. On the other hand, although
the Isom-version of the Grothendieck conjecture for curves over sub-p-adic fields obtained
by Mochizuki in [M1] can be generalized to the case of generalized sub-p-adic fields (cf.
[M2]), since the method used in [M1] can not work well in the case of generalized sub-
p-adic fields, we do not know whether or not Conjecture 0.2 holds if k£ is a generalized
sub-p-adic field. Thus, it is worth finding a new approach to Conjecture 0.2 without using
p-adic Hodge theory.

In the present, we investigate Conjecture 0.2 for a certain kind of morphisms of curves
which are called almost open immersions. For simplicity, in the remainder of this in-
troduction, we assume that £ is either a finite field of characteristic p or a generalized
sub-p-adic field, and that ¥ is either Primes \ {p} when char(k) = p > 0 or Primes when
char(k) = 0.

Let f € Homg, (X7, X2) be a separable k-morphism. We shall call f : X; — X, almost
open immersion if f is a composition of an open immersion and a finite étale morphism.
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Suppose that char(k) = p > 0. Let ¢ € Homge, (X7, X2). We shall call ¢ : X; — X5 an
almost open immersion if ¢ can be represented by the following k-morphisms

X1 = Y(m) +—Y - XQ,

where Y (m) denotes the m*™-Frobenius twist of Y, and 2, is a k-isomorphism. Then we
define .
Homgl:’p'lm(Xl, X5) € Homg, (X7, X5)

if char(k) = 0 and _
Hom'j—}lap'lm(Xh X5) € Hompge, (X1, X2)

if char(k) = p > 0 to be the sets of the almost open immersions between X; and Xo.
Moreover, we introduce a purely group-theoretic condition (3-gnc) for the open continuous
homomorphisms of Iy, and Ilx, (cf. Proposition 1.2). We denote by

Homcg)ken,ﬁl—gnc (HXl : HXQ)
for the elements of Homg ™ (I1x,, Ilx,) satisfying the condition (X-gnc). Then the natural
by} £, . . .

maps 71 and 7" induce the following natural maps:

e HorngL'Op'im(Xl, X3) — Homgjn’z_gnc(ﬂ x5 x,)/Inn(Ax,)
if char(k) = 0 and

e . Honf}lap‘im(Xl, Xs) — Hom(g;en’z'gnc(ﬂ X1, x,)/Inn(Ax,)
if char(k) = p > 0 which fit into the following commutative diagrams:

Isom—rr%

Isome, (X1, Xs) Isomg, (ILx,, Iy, )/Inn(Ax,)

! l

i myene open,Y-gnc
HomZL'Op'lm(Xl,Xg) —— Homy ZEC(T Ty, )/Inn(Ax,)

l !

ﬂ_Z
Homg, (X1, X5)  ——  Homg™(Ilx,, Ix,)/Inn(Ay,),

and
Isonl—ﬂi’ z

ISOII]]:Ck (Xl,XQ) ISOIIle (HXNHXQ)/IHH(AXQ)

l l

ﬂ_;,E—gnc

HOm‘B;-C(:f-im (Xl, XQ) e Homgj:mz-gnc(HXla HX2)/IHH(AX2)

l l

o5
HOIIl]:ck (Xl,X2> —1 Hom‘éien(ﬂxl,HXQ)/Inn(A)Q),
respectively. Here, all the vertical arrows appeared in the commutative diagrams above

are injections. Now, our main theorem of the present paper is as follows (cf. Theorem
3.2).



Theorem 0.3. (Hom-version for almost open immersions): The natural maps
w8 Homg, P ™ (X1, Xa) = Hom@™#*(Ily,, Iy, ) /Inn(Ax, )
if char(k) =0 and
Wi’z_gnc : Homirl_cip_im(Xl, X5) = Homg;en’z‘gnc(HXl, IIy,)/Inn(Ax,)
if char(k) = p > 0 are bijections.
Remark 0.3.1. Note that we have
Hom-version = Hom-version for almost open immersions = Isom-version.

Our method of proving Theorem 0.3 is as follows. The main difficult is proving the

surjectivity of m 8" and 7l Let & Hom(g):n’z'gnc(ﬂ x,,11x,). To verify that the

. . S . L.
image of ® in Homg ™" *"(Ilx,, Ix,)/Inn(Ax,) comes from a morphism of curves, it is

easy to see that we may assume that ® is a surjection. By using the condition (3-gnc), we
prove that the kernel of the surjection Ay, — Ay, induced by ® is generated by inertia
subgroups of Ay, associated to cups of X;. Then we can reduce Theorem 0.3 to the
Isom-version of the Grothendieck conjecture for curves over k which has been proven by
Mochizuki when k is a generalized sub-p-adic field (cf. [M2]), and by Saidi and Tamagawa
when k is a finite field (cf. [ST3]).

Finally, let us come back to Conjecture 0.2. Note that, for any ¢ which is either
an element of Home, (X7, X3) or an element of Hom e, (X7, X»), there exist an open sub-
curve U; C X, i € {1,2} such that the restriction of ¢ on U; is an almost open immersion.
Let ® be an arbitrary element of Hom¢y ™ (Ilx,, Iy, ). If one can develop a suitable theory
of anabelian cuspidalizations for surjections (i.e., group-theoretic reconstructions of the
fundamental groups of open sub-curves of given curves from the fundamental group of
given curves which has already been established by Mochizuki in the case of isomorphisms
(cf. [M3])), then one may obtain a homomorphism ®“*P : Ily; — Ily; group-theoretically
from @ such that the condition (X-gnc). Here, U/,i € {1,2}, is an open sub-curve of
X;, and Iy is 7(U}) /(Ker(x* (U] xx k) = Ayr)), where Ays denotes the maximal pro-3
quotient of the geometric tame fundamental group 7% (U] x}, k). Then the Conjecture 0.2
follows from Theorem 0.3.

The present paper is organized as follows. In Section 1, we review well-known facts
concerning the Isom-version of the Grothendieck conjecture for curves, introduce a purely
group-theoretic condition (X-gnc), and give a group-theoretic characterization of the sets
of cusps of hyperbolic curves. In Section 2, we study the kernels of surjections of geometric
fundamental groups, and prove that the kernels are generated by inertia subgroups under
the condition (X-gnc). In Section 3, by applying the Isom-version of the Grothendieck

conjecture for curves and the result obtained in Section 2, we prove our main theorem.
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1 Preliminaries

Let p be a prime number, Fp a finite field of characteristic p, and E; an algebraic closure
of F,. We shall call that a field is generalized sub-p-adic if the field may be embedded as
a subfield of a finitely generated extension of the quotient field of W (TF,) (i.e., the ring of
Witt vectors with coefficients in IF,)). Let k be either a finite field of characteristic p or a
generalized sub-p-adic field, k an algebraic closure of k, and X;,i € {1, 2}, hyperbolic
curves of type (gx,,nx,) over k. Then we have the following fundamental exact sequence

of tame fundamental groups (for suitable choices of base point):
1 (X)) = 7 (X)) 2 Gy = 1,

where X; denotes the curve X; x; k, and G}, denotes the absolute Galois group Gal(k/k).
Note that, if char(k) = 0, then the tame fundamental groups of X; coincides with the
étale fundamental groups of X;.

Let Primes be the set of prime numbers, p € 3y C Primes a finite subset, p & 3y C
Primes a finite subset,

Y € {Primes, Primes \ 3, sol} if char(k) = p,
and
p € X :=Primes \ X, if char(k) = 0.
Write Ay, for the maximal pro-Y quotient of 7{(X;), respectively. Here, if ¥ = sol, A;‘gl

is the maximal pro-solvable quotient of 7§(X;). Note that
Ker(m}(X;) - Ax,)
is also a normal closed subgroup of 7} (X;). We set
Iy, == 7 (X;)/Ker(n!(X;) = Ay,).

Then we obtain a commutative diagram as follows:

1 —— (X)) — (X)) 25 G —— 1

| l |

=
eri
1 —— Ay, —— Iy —5 Gy —— 1,

where all the vertical arrows are surjections.
We define

[somypro-gps(—, —) and Homglrjs-ngps (——)

to be the set of continuous isomorphisms and the set of open continuous homomorphisms

of profinite groups between the two profinite groups in parentheses, respectively, and
define

Isomg, (ILx,, IIx,) := {® € Isompogps(Ilx,, x,) | pr§(1 = pr§(2 o d},
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Homgh™ (I, , Iy, ) := {® € Hom®™ (I, Ilx,) | pry, = pry, o ®}.

Pro-gps
Thus, by composing with inner automorphisms, we obtain a natural action of Ay, on
Isomg, (Ilx,, ITx,) and a natural action of Ay, on Homg ™ (IIx,, Ilx,).
Consider the category Cy of smooth k-curves and dominant k-morphisms. If char(k) =
p, we denote by FCi the localization of Cy at geometric k-Frobenius maps between curves.
Then we obtain the following commutative diagrams:

Isorn-frlZ

Isome, (X1, Xy) — Isomg, (I1x,, [Ix,)/Inn(Ax,)

l l

my open
Homg, (X1, X5) —— Homg™(Ilx,, Ilx,)/Inn(Ax,),
if char(k) = 0 and

6,5
Isom-m;

ISOHI]:Ck(Xl,XQ) _— ISOHle(HX“HXQ)/IHD(A)Q)

! !

t,3

Hompe, (X1, Xs) —— Hom@®™(Ily,, Ix,)/Inn(Ax,)

if char(k) = p, where all the vertical arrows are injections. Moreover, we have the following
Isom-version of the Grothendieck conjecture for curves over k:

Theorem 1.1. The natural maps
Isom-7y : Isome, (X1, X3) = Isomg, (Ix,, Iy,)/Inn(Ax,)
if char(k) = 0 and
Isom-71"” : Tsomype, (X1, X5) = Isomg, (I, , IIy,) /Inn(Ax, )
if char(k) = p are bijections.
Proof. The theorem follows from [M2, Theorem 4.12] and [ST3, Theorem 4.22]. O

Let ® € Homgy " (Ilx,, lx,). Then @ induces a homomorphism
6 A X, — A X

We denote by
H@. = Im(CI)) Q HX2

the images of ®. Write Ag for Il N Ax,. We have the following commutative diagram:

1 — AXl — HX1 Gk > 1
1 — Aq; — Ils > Gk > 1
1 —— AXQ — HX2 > Gk > 1.

We introduce a genus condition as follows:



(X-gnc): For each open subgroup Hy C Ag, write H; for the inverse image
6_1(F2). We denote by gy, and gp, the genera of the curves over k corre-
sponding to H; and H, respectively. We shall say that ® satisfies (X-gnc) if
gu, = gu, for each open subgroup Hs C Ag.

Note that if ® satisfies (¥-gnc), then, for each open subgroup @ C Ilx,, the morphism
P71(Q2) — Q2 induced by ® also satisfies (X-gnc).

Proposition 1.2. The condition (X-gnc) is a purely group-theoretic condition.

Proof. Let Hy C Ilx, and Hs C Ilg be open subgroups such that H; N Ax, = H, and
HyNAg = H,.

Suppose that char(k) = 0. To verify the proposition, we may reduce immediately
to the case where k is finite over the quotient field of W (F,). Let ¢ € ¥ distinct from
p. Then we obtain that the genera gy, and gp, are reconstructed by the monodromy
filtrations of the abelianization of the maximal pro-¢ quotient of H; and H, respectively.
Moreover, the genera gy, and gp, are also equal to the dimension of the weight 0 part of
the Hodge-Tate decomposition of the abelianization of the maximal pro-p quotient of H;
and H,, respectively.

Suppose that char(k) = p. Let ¢ be a prime number distinct from p. Then the genera
gu, and gy, are equal to the dimension of the Frobenius weight 1 part of the abelianization
of the maximal pro-¢ quotient of H; and H,, respectively. Moreover, if ¥ = Primes or
Y. = sol, by Tamagawa’s p-average theorem (cf. [T2, Theorem 0.5]), gg, and gy, can be
also reconstructed group-theoretically from H; and Hs.

Then gy, and gg, can be reconstructed group-theoretically from H; and Hs, respec-
tively. This completes the proof of the proposition. O]

In the remainder of this section, let X be a hyperbolic curve of type (gx,nx) over
k. Write X for the smooth compactification of X over k. We define a pointed smooth
stable curve
X® = (XP" Dy := X\ X).

Here, X°P* denotes the underlying curve of X*, and Dx denotes the set of marked points
of X*.

Let Kx be the function field of X, and define K% to be the maximal pro-¥ Galois
extension of Ky in a fixed separable closure of Ky, unramified over X and at most tamely

ramified over Dy. Then we may identify the maximal pro-¥X quotient Ay of the tame
fundamental group 7{(X) of X with Gal(K%/Kx). We set

X** = (X* Dys),

where X* denotes the normalization of X' in K%, and Dys denotes the inverse image
of Dy in X*. For each e* € Dys, we denote by I s the inertia subgroup of Ax associated
to e* (i.e., the stabilizer of €*). Note that we have I.» = Z(1)*, where Z(1)* denotes the



pro-X part of i(l) Let Cxe := {H,}icz., be a set of open normal subgroups of Ax such
that Hy = Ax, that H;;; is a proper subgroup of H; for each i € Z>(, and that

lglﬁx/ﬂl = Ax.

Let e* € Dys. For each i € Zsg, we write X}, := (Xu,, Dx,,) for the smooth pointed
stable curve corresponding to H; and ey, € DXH,- for the image of e* in Xt Then we
obtain a sequence of marked points

Cxe
s e, en = en,

induced by Cx.. We may identify the inertia subgroup I.= associated to e” with the
stabilizer of Ie(’;x °.

Definition 1.3. Let ¢ be a prime number, and let f*: Y*® — X*® be a connected tame
Galois covering (i.e., f* is a Galois covering and is at most tamely ramified over Dx ) over
k of degree £. For any e € Dy, we set

Ramye := {e € Dx | f* is ramified over e}.
In the remainder of this section, we suppose that gx > 2, and that nx > 0. We define
(l,d, f*:Y*:=(Y,Dy) - X*)
to be a data satisfying the following conditions:

(a) ¢,d € ¥ are prime numbers distinct from each other and from p such that
¢ =1 (mod d); then all d"" roots of unity are contained in Fy;

(b) f*:Y* — X*is an étale Galois covering (i.e., the morphism of underlying
curves induced by f* is an étale Galois covering) over k whose Galois group is
isomorphic to Gy, where G4 C F* denotes the subgroup of d"™ roots of unity.

Write M, and My. for H} (Y*,F,) and Hom(Ay,F,), respectively, where Ay denotes
the maximal pro-X quotient of the tame fundamental group of Y \ Dy. Note that there
is a natural injection

M — My

induced by the natural surjection Ay — AS$t, where A$t denotes the maximal pro-%
quotient of Ay. Then we obtain an exact sequence

0 — M — My« — M3 = coker(ME, < My.) — 0

with a natural action of Gy.
Let
My o, © Mys

be the subset of elements on which G, acts via the character G4 — F;* and

U;‘/. g MY.
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the subset of elements that map to nonzero elements of M4 . For each a € Uy, write
go Y2 =(Y,,Dy,) =YY"
for the tame covering over k corresponding to a. Then we obtain a morphism
€:Upe =7

that maps « to # Dy, , where #(—) denotes the cardinality of (—). We define a subset of
Uy. to be

Uy?d :={a € Uy. | #Ramgs = d} = {a € Uy. | e(a) = {(dnx — d) + d}.

Note that Uys is not empty. For each a € Uy?, since the image of « is contained in
M. Ve Gy We obtain that the action of G4 on the set Ramge C Dye is transitive. Thus,
there exists a unique marked point e, of X*® such that f*(y) = e, for each y € Ramy,.
We define a pre-equivalence relation ~ on Uys as follows:

if @ ~ € Uy?, then a ~ g if, for each A, pp € F) for which Ao + pf € Uy,
we have Aa + uf € Uy?.

On the other hand, for each e € Dx, we define
Uy, :={a € Uy? | g5 is ramified over (f*)7'(e)}.
Then, for any two marked points e, e’ € Dy distinct from each other, we have
Uyeo N U;‘Se, = 0.

Moreover, we have

U v,

ecDx

Then we have the following proposition.

Proposition 1.4. (i) The pre-equivalence relation ~ on Uys is an equivalence relation,
and, moreover, the quotient set Uys | ~ is naturally isomorphic to Dx that maps [a] — e,.
Moreover, the set Uy / ~ does not depend on the choices of £,d, and the étale covering
fe:Ye — X°.

(ii) Write gy for the genus of Y'*. We have, for each e € Dx,

#UHI.P _ g2gy+1 _ £2gy'

Proof. First, let us prove (i). Let 5,y € Uyw. If Ramgs = Ramys, then, for each A, i € F
for which )\5 + uy # 0, we have Ram,s Son Ramgé = Ramg Thus, f ~ 7. On the
other hand, if § ~ ~, we have Ramg[-3 = Ramg Otherwise, we have #Ramgé+7 = 2d.
Thus, 8 ~ v if and only if Ramgs = Ramg,. Then ~ is an equivalence relation on U Ve

We define a map
Vv : U/ ~— Dx

10



that maps o — e,. Let us prove that v is a bijection. It is easy to see that ¥ is an
injection. On the other hand, for each e € Dy, the structure of the maximal pro-¢ tame
fundamental groups implies that we may construct a connected tame Galois covering of
h® : Z* — Y* such that the line bundle corresponding to h® is contained in Uys. Then ¢
is a surjection.
Let
(6*,d*, f.,* Y Xc)

be a data. Hence we obtain a resulting Uy./ ~ and a naturally isomorphism

W Uype./ ~— Dx.
First, suppose that ¢ # ¢*, and that d # d*. Then there exists a natural isomorphism

Uyen/ ~=Uyd ) ~

isomorphism which compatible with the isomorphism ¢ and ¥* as follows. Let o € Uyo
and o* € Uyr.. Write Y.* — Y*® and Y,%. — Y** for the tame coverings corresponding to
a and o, respectively. Let us consider

Y* Xxe YO8

Thus, we have a connected tame Galois covering Y* X xe Y** — X* of degree dd*((*.
Then it is easy to check that o and a* correspond to same marked points if and only if
the cardinality of the set of marked points of Y* X xs Y** is equal to dd*(¢0*nx — 1) + 1).
In general case, we may choose a data

(6**,d**7 f.,** Y.,** _) X.)

such that ¢** # ¢, 0** % 0*, d** # d, and d** # d*. Hence we obtain a resulting Uy ../ ~
and a naturally isomorphism ¥** : Uy?../ ~— Dx. Then we obtain two natural isomor-
phisms Uye../ ~= Uy ) ~ and Uys../ ~= Uys./ ~. Thus, we have Uye./ ~= UyY
This completes the proof of (i).

Next, let us prove (ii). Write E, € Dy for the set (f*)~'(e). Then Uy?, can be
naturally regarded as a subset of H} (Y'\ E., F;) via the natural open immersion Y\ E, <
Y. Write L, for the F,-vector space generated by Uy?, in Hy (Y \ E.,F;). Then we have

Upe, = L\ Hy (Y, Fy).
Write H, for the quotient L./H} (Y,F;). We have an exact sequence as follows:
0 — HL(Y,F,) — L, — H, — 0.
Since the action of G4 on (f*)7!(e) is translative, we have
dimg, H, = 1.
On the other hand, since dimg,H} (Y, F,) = 2gy, we obtain
#Ups, = 0297 — 297

Thus, we have

HUPP = ny (0291 — g2ov),
This completes the proof of the lemma. n
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2 The kernels of surjections of geometric fundamen-
tal groups

We maintain the notations introduced in Section 1. Let X, o ,i € {1,2}, be the smooth

compactification of X; over k. We define a pointed smooth stable curve over k to be

cpt

X = (X", Dy, =X\ X)), i€ {1,2}.

Let ® € Hom? ™ (Ilx,,Ilx,) and ® : Ay, — Ax, the homomorphism induced by ®. In
this section, we suppose that nx, > 0, that ® is a surjection, and that ® satisfies (X-gne).
Then & is also a surjection.

Lemma 2.1. Suppose that gx, > 2. Then the surjection ® induces an injection
)\5 . Dyg — DY1
Proof. Let o
(Ea da f2. : }/2. = (}/27DY2) — X2)
be a data defined as in Section 1. For each ¢ € {1,2}, write M~ for Hom(Ax,,F,) and
M%, for H:, (X;,F4) = HY, (7;“, Fy). Then we have the following claim.

Claim: Write AY ,i € {1,2}, for the étale fundamental group of X (ie.,

—<-cpt = . . .
m (X, )). Then ® induces an isomorphism
&~ A
AXl _> AXQ
In particular, ® induces an isomorphism M%. = M%t..
2 1

Let us prove the claim. For each Ny C Ay, open subgroup such that the
covering Xy, — X corresponding to Ns is étale. Write N, for the inverse
image 671(]\[2). Then the condition (3-gen) and the Riemann-Hurwitz for-
mula imply that the covering Xy, — X corresponding to N is étale. Thus,
@ induces a surjection
Aégl —» A(;EQ.

On the other hand, A‘;’}l is isomorphic to A§}2 as abstract profinite groups.
Indeed, Aé}i,i € {1,2}, is a free profinite group of rank 2gy,. Then Aé}l and
Aé}Q are topologically finitely generated. Thus, the surjection Aé}l —» A‘;}Q is
an isomorphism. This completes the proof of the claim.

The claim implies the data (¢, d, f3 : Yo — X,) induces a data
(0, d, f7 Y = (Y1, Dy;) — YI%

where the étale Galois covering f; is induced by f5 via the isomorphism Mit. = Mit.
1

12



Write Ay, € Ax, and Ay, C Ay, for the maximal pro-X quotients of the tame funda-
mental groups of Y}* and Y3, respectively. Write My, M éi., ve, Myy, M éz., and My
for Hom(Ay,, Fy), Hy, (Y1, Fe), Myg /My, Hom(Ay,, Fp), He (Y, Fy), and My /My, Sim-
ilar arguments to the arguments given in the proof of the claim imply that the SurJectlon
Py = @]AY Ay, — Ay, induces a commutative diagram as follows:

0 —— My —— Mys —— MjA —— 0

[ w T

0 —— Myl —— My, —— Mjn —— 0,

where the vertical arrows on the right-hand side and the middle side are injections, and
the vertical arrows on the left-hand side is an isomorphism. Write U;}. and U. *. for the
subsets of Mys and My, defined as in Section 1, respectively. Since ‘the actions of Gq
on the exact sequences are compatible with the morphlsms appeared in the commutative
diagram above, we have

—ab * *
WY,Z (UY2. ) g UYl. .

Let€2€DX,OéQEUo
corresponding to . erte

and g3, : Yy, — Y5 the tame covering of degree £ over k

,€27
g;l : YO:1 - Y

for the tame covering of degree ¢ over k corresponding to o := @;Z(OCQ). Write gy, and
9v., for the genera of Y3 and Y, . Then the condition (3-gnc) and the Riemann-Hurwitz
formula imply that

1
gyal — gya2 = é(d — #Ramgal)(@ — 1) =0.

Then we have d = #Ramg, . This means that a; € U ni.p . Moreover, there exists e; € Dy,
such that oy € U{}?el
Let of, € Umpe distinct from aw. Since, for each aay +bah, # 0, a,b € F), acs + bajy €

Uys.,, we have \If”(aozg +bay) € Uy’ Moreover, we have \I/”(aozg +bay) € Uys,,. This

implies that q’y,e(%) € Uy»,,. Thus, we obtain
—ab
\IJY,E(U;/I;'p,ez) g Ulr;}p,el

On the other hand, Proposition 1.4 (ii) implies that #U;I.Iiel = #U2362. We have

—ab mp mp
\I]Y,E(UY;,ez) - UYI',el :

Then Proposition 1.4 (i) implies that ﬁ?}} induces an injection
)\6 : DY2 — Dyl .
This completes the proof of the lemma. n
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Let Hy C llx, be an open subgroup and P; € Ay, the inverse image 6_1(P2). Write
Zl. = (Zl,Dzl) and ZQ. = (ZQ,DZ2)

for the pointed smooth stable curves of over k corresponding to Py and P, respectively.
The surjection ¢ induces a surjection

62 Z:5|p1 ZP1—>->P2.
Then Lemma 2.1 implies an injective map
)\Ez : D22 — DZ1-

On the other hand, the tame coverings fp : Z7 — X7 and Ip, 43 — X induced by P,
and P, determine the surjective maps of the set of marked points

Vep, Dz, — D%, and Vep, : Dz, - Dx,,
respectively. Furthermore, we have the following lemma.

Lemma 2.2. Suppose that gx, > 2. Then the natural diagram

A5
D22 —Z> D21

'Yfp2 J{ ’Yfpl l

a3
D%, —— Dx,
15 commutative.
Proof. Let ez, € Dg,, ez, = Xg,(€z,) € Dz, €2 := 7y (ez,) € Dx,, e1 :== (v, ©
Xg,)(ez,) € Dx,, and €] := A\g(e2) € Dx,. Let us prove that e; = €]. Write Sz, and Sy,
for the sets (s, )~'(e}) and (ys,, )" (e2), respectively. Note that ez, € Sz,. To verify
e = €}, it is sufficient to prove that ez, € Sz,

Let (¢,d, f3 : Yo — X5) be a data defined as in Section 1 such that (¢, #(Ax,/Py)) = 1
and (d, #(Ax,/P,)) = 1. By the proof of Lemma 2.1, we obtain a data

(.d, 1Y = X))
induced by ® and (£, d, f3 : Yo — X3). On the other hand, we have a data
(6.d, gy : W3 = Y5 X 23 = Z3).
Again, by the proof of Lemma 2.1, we obtain a data
(Ld,gt s W = Y} X 28— 23)

induced by ® and (¢,d, g5 : W3 — Z3).

14



Let ap € U;;.If ¢ys Where U(H_1 I; is defined as in Section 1. Then the proof of Lemma 2.1

implies that as induces an element

mp
L] ! .
161

a; €U

Write Y,; and Y, for the smooth pointed stable curves over k corresponding to a;
and g, respectively. Consider the connected tame Galois covering

Ya.g Xyg Z2. — W2.

of degree ¢ over k, and write 3, for the element of U{fVQ. corresponding to this connected
tame Galois covering, where U(”:) is defined as in Section 1. Then we have

62: Z tczﬁcw
c2€87,

where t., € (Z/{Z)* and f,, € U&};Q. On the other hand, the proof of Lemma 2.1 implies
that (., induced an element B,\$Z (c2) € UII/E?AEZ (c2)" Then (5 induces an element

Bri= Y. tesPog, () € Uiy

c2€S57,

Note that since 3, corresponds to the connected tame Galois covering Y3, X% zZr = WP,
we have the composition of the connected tame Galois covering Y7 x5+ Z7 — W7 and
the étale Galois covering g7 : W — Z} is tamely ramified over €}. This means that ey,
is contained in Sz,. This completes the proof of the lemma. Il

Let Kx,,i € {1,2}, be the function field of X;, and define K% to be the maximal

pro-% Galois extension of K%, in a fixed separable closure of K+ , unramified over X;
and at most tamely ramified over D . We set

.5
Xi

= (X, Dy»), i € {1,2},

= . . <-cpt . . .
where X, denotes the normalization of X ;?pt in K% , and Dy denotes the inverse image
of Dy in 712 We have the following proposition.

Proposition 2.3. Let e5 € D<=, €3 € Dx, the image of ey, and Ie§ the inertia subgroup
2

of Ax, associated to e5. Then the following results hold.

(i) There exists a point eF € D<= such that ® induces an isomorphism
1
6’[612 : [e§ :> Ie§7

where 1.z denotes the inertia subgroup associated to er.

(i) Let e}, €Ty € DYIZ' Write Iz and Iy, for the inertia subgroups of Ax,
associated to efl and e%Q, and write ey 1 and ey 9 for the images of 61271 and 61272
in D%, , respectively. Suppose that CI)|]€122 e = Iz and (D|18122 e = s

are isomorphism. Then we have Ag(ez) = e11 = €.
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Proof. First, we have the following claim.

Claim: Suppose that the proposition holds when gy, > 2. Then the propo-
sition holds when gx, > 0.

Let us prove the claim. Let ¢ € ¥ be a prime number distinct from p. We
choose an open normal subgroup @); C Ilx, such that

@2 = QQ N AXQ = Ker(AX2 - Z/KIZ),
and that the tame covering

g Xé2 = (XQQ,DX@) - X,

over k corresponding to @, is totally ramified over D+,. Write @ for d1(Q,),
Q, for 5_1(@1), and
g1 : X5 = (Xg,, Dxy ) = X1

for the tame covering over k corresponding to Q,. Note that the genera of
Xi and Xi are > 2. Write eg, for the image of ey in DX, . By Lemma

2. 1 we have €g, = s By ( ) € Dx,, - Moreover, by (i) of the proposition,

there exists el € DYE such that the inertia subgroup I, a2, of @, associated
1

to 612 is equal to I, =N @, and that Q)|1 : Iea 5 Ief , where I, ® denotes

1

the inertia subgroup of Ay, associated to 61 Then [T2, Lemma 5. 1] or [M4,
Proposition 1.2] implies that (P(]elz) C Iz. On the other hand, (ii) of the
proposition implies that g7 is totally ramified at €q,- Thus, Ie@1 #+ Iy This
means that

Let ey}, ey € D= satisfying (i) of the proposition. Then we have the images
9 K 1
of e} and e7, in Dx, are equal to eg . Thus, the images of er, and €7, in
Dy, are equal. This completes the proof of the claim.
By the claim above, we may assume that gx, > 2. Let us prove (i). Let C’y; =
{Fg,i}iezzo be a set of open normal subgroups of Ay, such that Fg,o = Ay,, that Fg,iﬂ
is a proper subgroup of ﬁgﬂ- for each i € Z>(, and that

@AXQ/FQ,Z‘ = Ax,.

For each i € Z>o, we write X3, = (Xg,,» Dx,, ) for the smooth pointed stable curve
- )i )t 2,4
corresponding to Fz,i and ex,, € Dxﬁ for the image of 622 in X%Q . Then we obtain a
» 2, Ji

sequence of marked points

X3 . _ _ o
I€§ : P CH,, T CH,y T €l T €2
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induced by Cy;. Then we may identify the inertia subgroup Iz associated to ey with the
Cso
stabilizer of IeEXZ.
2
. T —1,— .
On the other hand, write Hy;,i € Z>o for ® " (H,;), and Xﬁu = <XF1,N DXﬁl,i) for
the smooth pointed stable curve corresponding to Fl,i- Write 6)(?_ for ﬂﬁu : Hl,i —»

Hs;. Then Lemma 2.1 implies that, for each i € Zsg, we have an injection

)‘6 : DXﬁ2i — Dx_

X— Hy,

i

We denote by e, . := A5, (eg, ) for each i € Z>o. Then Lemma 2.2 induces a sequence

k3

of marked points
T O, T CH T Gl

Write Lg for the kernel of DA x;, > Ax,. We denote by K;f - K% the subfield
corresponding to L. We set

1.,L3 = (XI,L5> DXl,L$)>

. . —cpt . L= . .
where X 1 denotes the normalization of X| in Ky‘i’, Dx, , denotes the inverse image
) 1 i)
of Dx, in Xj 1. Then the sequence of marked points above - -+ — ez, , = e, | = e,

determines a point ey, Ly € Dx,, . We choose a point 612 € Dyz such that the image of
Ly 1

et in Dy, Ly is €1, Write I » for the inertia subgroup of Ay, associated to ef. Then ®
induces a surjection
@]1612 iz > Lz

Moreover, since I.s and Iz are isomorphic to Z(1)*, we have ®|; ,, is an isomorphism.
€
1

This completes the proof of (i). B
Let us prove (ii). Write e; for the image of ef’ in D¢ . Let (¢,d, f3 : Y3 — X3) be a
data defined as in Section 1. Then ® induces a data

(.d, f7: Y7 = X))
Write
AYQ g AX2 and AY1 g AXl

for the normal open subgroup corresponding to Y;*. Since f3 and f; are étale, we have
1822 g AY27IB%1 g Ayl, and 16122 Q Ayl.

Let oy € Un;fi .
Iz — Ay, and the morphism Ay, — Z,/¢Z induced by ay is nontrivial. Then, by the
proof of Lemma 2.1, we obtain a line bundle a; € U. Hi.p ¢, Moreover, the composition of
the natural injection Iz — Ay, (resp. Lz, = Ay, ) and the morphism Ay, — Z/{Z
induced by a; is nontrivial. This means that e; = e;; = e; 5. Moreover, the proof of (i)
implies that Ag(e2) = €1 = €11 = ey . This completes the proof of the proposition. O

, be a line bundle such that the composition of the natural injection
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We set
Dxnx, = Dx, \ X(Dx,)-
Next, we prove the main theorem of the present section.

Theorem 2.4. Let Lg be the kernel of ® : Ax, — Ax,. For each e € Dx,\x, and each

er e Dxs over e, we denote by I s the inertia subgroup of Ax, associated to e*. Then

we have
Is C L.
Proof. We denote by I C Ay, the image ®(I.x). To verify the theorem, we may assume
that I is not trivial. Then [ is a pro-cyclic subgroup of Ax,. / ,
Let Hy be any open subgroup of Ay, and H; := E_I(ﬁg). Write ﬁ? and ﬁ;t for
the étale fundamental groups of the smooth compactifications of the curves over k corre-
sponding to H; and H, respectively. Then we obtain natural surjections

H, — H and H, — Hy.
By the claim in the proof of Lemma 2.1, ® induces an isomorphism ﬁit = H?. Moreover,
since I,=NH is contained in the kernel of the surjection H; —» Fit, the natural morphism
—=ét,ab

Imﬁg%ﬁg—»HQ

is trivial. Thus, by applying [N3, Lemma 2.1.4|, we have I is contained in an inertia
subgroups J C Ax,. Proposition 2.3 implies that e € Ag(Dx,). This contradicts to
¢ € Dx,\x,- We complete the proof of the theorem. O

3 Group-theoretic characterizations of almost open
immersions

We maintain the notations introduced in Section 1 and Section 2.

Definition 3.1. Let f € Home, (X7, X2) be a separable morphism over k. We shall call
f : X1 — X, an almost open immersion if f is a composition of an open immersion
and a finite étale morphism. Note that the open immersion and the finite étale morphism
are unique.

Suppose that char(k) = p. Let ¢ € Homge, (X7, X2). We shall call ¢ : X; — X5 an
almost open immersion if ¢ can be represented by the following k-morphisms

X1 =, Y(m) ~Y — XQ,

th

where Y (m) denotes the m'-Frobenius twist of Y, and = is a k-isomorphism.

Remark 3.1.1. Let f : X; — X; be a separable morphism over k, Ky,,i € {1,2}, the
function fields of X;, and X5® the normalization of X, in Kx,. Then f is an almost
open immersion if and only if the natural finite morphism of X5% — X is étale, and the
natural morphism X; — X5 induced by f is an open immersion.

On the other hand, if X; and X, are projective, then f is an almost open immersion
if and only if f is an finite étale morphism.

18



We define
Homal op- 1m(X17 Xz) C Homg, (Xla X2)

if char(k) = 0 and
HOmal op- 1m(X1,X2) C Homge, (X1, X>)

if char(k) = p to be the sets of the almost open immersions between X; and X,. On the
other hand, we set

HomOpenE #(Ilx,, Ix,) = {® € Homy " (Ilx,, [, ) | ® satisfies (X-gnc)}.
Thus, the natural maps
¥ Home, (X1, Xo) — Homg ™ (Ix,, Ilx,)/Inn(Ax, )
if char(k) = 0 and
> Homge, (X1, Xa) — Homg ™ (Ix,, Ilx,)/Inn(Ax, )
if char(k) = p induce the following natural maps:
e Homal P (X Xp) — Homgy ™ E([Ty Ty, ) /Inn(Ay,)

and
7T_;,E—gnc . Homal op im (Xh X2) N Homopen - gnC(HXU HXQ)/IDH(AXQ)

which fit into the following commutative diagrams:

SOl'l’l—’]'l'ZJ
Isome, (X1, Xs) ! ! Isomg, (ILx,, Iy, )/Inn(Ax,)
X-gnc
Hom$ "™ (X1, X5) —— Hom@™#(Ily,, [Iy,)/In(Ay,)
ﬂ_E

Home, (X1, X») —1 HOHIOpen(HXI,HXQ)/IHII(AXQ),

and
Isom—ﬁi’ z

ISOHI]:C,C (Xl,XQ) ISOHIGk (HX1; HXQ)/IHH(AXQ)

t,3-
771 gnc

Homf;'l_ctjcp_im(le XQ) — Homopen > gnC(HXU HXQ)/IHH(AXZ)

t,2

Homze, (X1, X2)  ——  Hom@®*(Ilx,,Ilx,)/Inn(Ay,),

respectively, where all the vertical arrows are injections. Moreover, our main theorem of
the present paper is as follows:
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Theorem 3.2. The natural maps

e Hom?zlk_op_im(Xh Xp) = Hom(g:mz_gnc(HXu [Ix,)/Tn(Ax, )
if char(k) =0 and

oz Hom?i'cip'im(Xb X5) =5 Homgfn’z'gnc(ﬂxl, Ix,)/Inn(Ax,)

if char(k) = p are bijections.

Proof. We prove the theorem when char(k) = p. Let us prove " is a bijection. If
nx, = 0, then the theorem follows from Theorem 1.1. Thus, we may assume that ny, > 0.

First, let us prove that 70">#" is a surjection. Let

n,>-gn
(0] GHOngpke & C(HXl,HXQ).
To verify the surjectivity, it is sufficient to prove that the image of ® in
Hom‘éien’z'gnc (Ix,,x,)/Inn(Ax,)

is induced by an almost immersion of X; and X5. Moreover, ® is a composite of a open
surjection and an open injection. Since any open injection is induced by a finite étale
covering, to verify the surjectivity, we may assume that ® is a surjection. Note that
(3-gnc) implies that g := gx, = gx,-

Let 35 C Brimes be a finite set which contains ¥; U {2} and A := Primes \ E3. Then,
for each ¢ € {1,2}, we have a surjection

AXi - A{;Q?
where Aé\(i denotes the maximal pro-A quotient of Ax,. We denote by

for each i € {1,2}. Then the surjection ® induces the following commutative diagram:

1 —— AY, —— T, Gy >y 1
el
1 —— A} —— 11§, > Gy > 1.

We define a pointed smooth curve over k to be
—*,® —cpt
X1" = (X", Dy = A5(Dx,))-

Let X{** be the smooth compactification of X; over k and Dy the image of Dy in X cPt.
We set
X; = X"\ Dxs:.

Note that X7} is a hyperbolic curve of type (g,nx,) over k. Write Ax: for the maximal
pro-X quotient of m{(X7 xy k), qu for the maximal pro-A quotient of Axy, IIx» for
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T (X7)/ (Ker(mh (X7 xx k) = Axs), and H/}q for Ix: /(Ker(Ax: x4 k) — Ag\q). Since X,
is an open subcurve of X{, we have a natural surjection ITx, — ITx;.

Write Dk %, for Dg \ A\g(Dx,), and write E for the subgroup generated by the
inertia subgroups associated the inverse images of the elements of Dy \%, in D¢ 5. Then
the kernel of Iy, — II X7 and Ax, - A x; are E. Moreover, Theorem 2.4 1mphes that ®
induces the following commutative dlagram

1 — AXl — HX1 Gk > 1

1 —— AXf — HXT > Gk > 1
2l e

1] —— AXQ —_— HX2 > Gk 1,

where all the vertical arrows are surjections. Thus, to verify the surjectivity, it is suf-
ficient to prove that the image of ®* in Homg, (Ilxs,Ilx,)/Inn(Ax,) is induced by an
isomorphism of Homgze, (X7, Xa).

On the other hand, ®* induces the following commutative diagram:

1] —— AQq — HAT Gy 1
o el
1 — AL, — TI%, » G > 1,

where all the vertical arrows are surjections. Since X7 and X, are hyperbolic curves of type
(9,nx,), and p € A, we obtain that & is an isomorphism. Thus, ®** is also an isomor-
phism. Then Theorem 1.1 implies that the image of ®** in Isomg, (H%l*, I1%,)/Inn(A%,)
is induced by an isomorphism of Isomzc, (X7, X3). This means that ®* is an isomorphism.
Again, by applying Theorem 1.1, we obtain that the image of ®* in

Isomg, (HXT ,x,)/Inn(Ax,)

is induced by an isomorphism of Isomgc, (X7, X3).
Next, let us prove 7}’ 2780 s an injection. Let

¢1, 02 € Homs" ™ (X1, X) such that [@'] := 778" (¢)) = 7y 5" (¢).

We may assume that ¢; and ¢, are separable k-morphisms. Note that, if ¢; and ¢, are
finite étale morphisms, then we obtain immediately ¢; = ¢5. Since ¢; and ¢ are composi-
tions of a unique open immersion and a unique finite étale morphism, to verify the injectiv-
ity, we may assume that ¢; and ¢, are open immersions. Let ® € Homg ™ FEC(Ty Tly,)
such that the image of ® in Homg ™" EC([T Ty, )/Inn(Ay,) is [@]. Then the kernel of
@’ is generated by the inertia subgroups associated to the inverse images of the elements
of Dg,\x, in Dylz. Then the injectivity follows immediately from [T2, Lemma 5.1] or
[M4, Proposition 1.2].
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On the other hand, suppose that char(k) = 0. By replacing A and Hom?g'cip'im(Xl, X2)

by ¥ and HomgL'Op'im(Xl, X5), respectively, similar arguments to the arguments given in

the proof of the case where k is a finite field imply that le'gnc is a bijection. This completes
the proof of the theorem. Il

Remark 3.2.1. Theorem 3.2 can be regarded as a certain Hom-version of the Grothendieck
conjecture for almost open immersion of curves over finite fields.

Remark 3.2.2. We maintain the notations introduced in the proof of Theorem 3.2. Then,
if char(k) = p, Theorem 3.2 implies that

Hom{ "™ (X, X,) & Homgien’z-gm(nxl I3 ) /Tnn (A y,)

= Hom(&ien’/\'gnc(ﬂ?(l LII%,)/Inn(A%)

are bijections.
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