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Abstract

We present a non-pricing allocation scheme of divisible goods to agents with
utility functions and submodular constraints on goods. The main contribution of
the present paper is that through our non-pricing allocation scheme we reveal the
close relation between (1) the recent results in the allocation schemes of the random
assignment problem and its extensions with ordinal or lexicographic preferences on
goods and (2) the monotone algorithms of fair (egalitarian) allocations with separable
utility functions and submodular constraints investigated a few decades ago. The
underlying submodularity structure plays a crucial rôle, so that the probabilistic serial
mechanism of Bogomolnaia and Moulin and other related mechanisms can naturally
be extended to problems with submodular constraints.

Keywords: Random assignment problem, Submodular optimization, Independent flows,
Submodular flows, Non-pricing allocation, Probabilistic serial mechanism

1. Introduction
The random assignment problem has recently been extensively investigated after the sem-
inal paper by Bogomolnaia and Moulin [3] (see, e.g., [1, 2, 5, 8, 12, 13, 16, 17, 20, 21, 22,
28]). In the present paper we show how these results on the random assignment problem
and its extensions can be viewed from submodular optimization for the fair (or egalitarian)
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allocation problems with convex separable utility functions and submodular constraints
[23, 10, 14, 6] considered some decades ago.

We first consider the problem of allocating divisible goods to agents, having utility
functions and submodular constraints on goods, in a fair manner without money. Re-
lated non-pricing allocation schemes have been investigated for the random assignment
problem with ordinal preferences in [1, 3, 2, 5, 8, 16, 17, 20, 21, 22] and for allocation
problems with lexicographic preferences in [1, 28]. These results have not been extended
to allocation problems with utility functions without money in general, which seems to
remain open as mentioned in [28]. We propose a non-pricing allocation scheme of di-
visible goods to agents with utility functions and submodular constraints on goods and
examine our non-pricing allocation scheme in detail.

We then show that the probabilistic serial mechanism of Bogomolnaia and Moulin [3]
and its extensions [17, 20, 21, 12, 13] can be interpreted as special cases of our scheme
given here for appropriately chosen utility functions. This reveals the close relation be-
tween (i) the optimal fair allocation problem and its solution algorithms in [23, 10, 14, 6]
and (ii) the probabilistic serial mechanisms in [3, 17, 20, 21, 12, 13] and others, which
seems to be worth further investigating.

The present paper is organized as follows. Section 2 provides some preliminaries on
polymatroids and submodular optimization from [11] and describes the allocation prob-
lem to be considered in this paper. In Section 3 we propose a non-pricing allocation
scheme as Simultaneous Monotone Algorithm and examine the solution in detail, in-
cluding the case when we allow indifference on goods. Section 4 discusses implications
of our non-pricing allocation scheme in the probabilistic serial mechanisms of Bogomol-
naia and Moulin and its extensions and reveals the close relation between them and our
non-pricing allocation scheme. Finally, Section 5 gives some concluding remarks.

2. Preliminaries and Problem Description
Let N and E be finite sets of agents and goods, respectively. For any e ∈ E define χe to
be the unit vector in RE such that χe(f) = 1 if f = e and χe(f) = 0 if f ∈ E \ {e}. For
any vector x ∈ RE and any set F ⊆ E define xF = (x(e) | e ∈ F ) ∈ RF , the restriction
of x on F .

2.1. Polymatroids and independent flows
We assume that we are given a polymatroid (E, ρ) on E with rank function ρ : 2E → R≥0.
By definition, rank function ρ satisfies

(1) (normalization) ρ(∅) = 0,
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(2) (monotonicity) for any X,Y ⊆ E with X ⊆ Y we have ρ(X) ≤ ρ(Y ),

(3) (submodularity) for any X, Y ⊆ E we have ρ(X)+ρ(Y ) ≥ ρ(X ∪Y )+ρ(X ∩Y ).

The submodular polyhedron P(ρ) associated with a polymatroid (E, ρ) is given by

P(ρ) = {x ∈ RE | ∀X ⊆ E : x(X) ≤ ρ(X)}, (2.1)

where x(X) =
∑

e∈X x(e) for any X ⊆ E. The intersection of P(ρ) and the nonnegative
orthant RE

≥0 is called the independence polytope associated with (E, ρ) and is denoted by
P(+)(ρ). The base polytope B(ρ) associated with polymatroid (E, ρ) is given by

B(ρ) = {x | x ∈ P(ρ), x(E) = ρ(E)}, (2.2)

which is always nonempty and is contained in the nonnegative orthant RE
≥0 and hence

B(ρ) is also a face of P(+)(ρ) (see [11] for more details about polymatroids and submod-
ular functions).

We give some basic definitions of terms related to polymatroids that will be used in
the sequel (also see [11]).

• For any set F ⊂ E define ρF : 2E\F → R≥0, the contraction of ρ by set F , by
ρF (X) = ρ(X ∪ F ) − ρ(F ) for all X ⊆ E \ F , which gives another polymatroid
(E \ F, ρF ) on E \ F , the contraction of (E, ρ) by F .

• For any vector z ∈ P(+)(ρ) define ρz : 2E → R≥0, the contraction of ρ by vector
z, by ρz(X) = min{ρ(Y ) − z(Y ) | Y ⊇ X} for all X ⊆ E, which gives another
polymatroid (E, ρz) on E, the contraction of (E, ρ) by z. Note that for any y ∈ RE

≥0,
we have y ∈ P(+)(ρz) if and only if y + z ∈ P(+)(ρ).

• For any τ ∈ R with 0 ≤ τ ≤ ρ(E) define ρ(τ)(X) = min{ρ(X), τ} for all X ⊆ E,
which is called the truncation of ρ by τ . (E, ρ(τ)) is also a polymatroid.

• Given any x ∈ P(ρ), a set X ⊆ E is called x-tight if x(X) = ρ(X). The family
of x-tight sets is closed with respect to set union and intersection, so that there
exists a unique maximal x-tight set, which we denote by sat(x). The function
sat : P(ρ)→ 2E is called the saturation function.

• Define a function dep : B(ρ)× E → 2E by
dep(x, e) = {f ∈ E | ∃ε > 0 : x+ ε(χe − χf ) ∈ B(ρ)}

for all x ∈ B(ρ) and e ∈ E, which is called the dependence function for (E, ρ).
Note that dep(x, e) is the unique minimal x-tight set containing e ∈ E.
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Figure 1: An independent-flow network.

Consider a (directed) graph G = (V,A) with a vertex set V and an arc set A, which
has a set S+ of entrances and a set S− of exits, where S+ and S− are disjoint subsets of
V (see Figure 1). Each arc a ∈ A has a capacity c(a) > 0 and we also have a polymatroid
P+ = (S+, ρ+) on set S+ of entrances and another polymatroid P− = (S−, ρ−) on
set S− of exits. Denote the present network by N = (G = (V,A), S+, S−, c,P+ =
(S+, ρ+),P− = (S−, ρ−)). A function φ : A → R is called an independent flow in N if
it satisfies

0 ≤ φ(a) ≤ c(a) (∀a ∈ A), (2.3)

∂φ(v) = 0 (∀v ∈ V \ (S+ ∪ S−)), ∂+φ ∈ P(+)(ρ
+), ∂−φ ∈ P(+)(ρ

−), (2.4)

where ∂φ ∈ RV is the boundary of φ defined by

∂φ(v) =
∑

(v,u)∈A

φ(v, u)−
∑

(u,v)∈A

φ(u, v) (∀v ∈ V ) (2.5)

and ∂+φ ∈ RS+ and ∂−φ ∈ RS− are defined by

∂+φ(v) = ∂φ(v) (∀v ∈ S+), ∂−φ(v) = −∂φ(v) (∀v ∈ S−). (2.6)

(See [9, 11].) Also note that the model of independent flows is equivalent to that of
submodular flows by Edmonds and Giles (see [11, Sect. 5]).

Concerning independent flows, we have the following proposition.

Proposition 2.1: Let P ⊆ RA be the set of all independent flows in a networkN = (G =
(V,A), S+, S−, c,P+ = (S+, ρ+),P− = (S−, ρ−)). If the capacity function c and the
rank functions ρ± are integer-valued, then P is an integral polyhedron.
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Moreover, disregarding the polymatroid P+ = (S+, ρ+), we have the following.

Proposition 2.2: Let PS+ ⊆ RS+
be the set of ∂+φ for all φ ∈ RA satisfying (2.3) and

∂φ(v) = 0 (∀v ∈ V \ (S+ ∪ S−)), ∂+φ ∈ RS+

+ , ∂−φ ∈ P(+)(ρ
−). (2.7)

Then there uniquely exists a polymatroid (S+, ρ̂) on S+ such that PS+ = P(+)(ρ̂).

The polymatroid (S+, ρ̂) on S+ appearing in Proposition 2.2 is called the polymatroid
induced on S+ by P− = (S−, ρ−) through network N = (G = (V,A), S+, S−, c,P− =
(S−, ρ−)).

2.2. Model description
We assume that we have a set of available good vectors x ∈ RE

≥0 that forms the base
polytope B(ρ) of a polymatroid (E, ρ) on E with rank function ρ : 2E → R≥0. Also,
each agent i ∈ N has a separable convex “disutility” function ui : RE

≥0 → R as

ui(z) =
∑
e∈E

ui
e(z(e)), (2.8)

which agent i wants to minimize. Here we treat convex functions to be minimized instead
of concave functions to be maximized just as a matter of taste, without loss of generality.
We will use the term, utility, instead of disutility in the sequel for simplicity. (We will also
see in Section 4 that the minimization model fits better when we discuss its relation to the
serial mechanism of the random assignment problem of Bogomolnaia and Moulin [3].)
We also assume for simplicity that each ui

e is increasing and strictly convex on [0,+∞)
and is differentiable on (0,+∞). Let ui

e
′ be the derivative of ui

e on (0,+∞). Note that
by the assumption the set {ui

e
′(α) | α > 0} is an open interval, which we denote by

(β
(i,e)
0 , β

(i,e)
∞ ) where β

(i,e)
0 ≥ 0 and β

(i,e)
∞ > 0 or β(i,e)

∞ = +∞. Define a function (ui
e
′)−1

on [0,+∞) by

(ui
e
′)−1(λ) =


0 if 0 ≤ λ ≤ β

(i,e)
0

α if λ = ui
e
′(α) for α > 0

+∞ if β
(i,e)
∞ ≤ λ

(2.9)

for all λ ∈ [0,+∞). Note that the restriction of (ui
e
′)−1 on (β

(i,e)
0 , β

(i,e)
∞ ) is the inverse

of ui
e
′ on (0,+∞). We assume that we can compute (ui

e
′)−1(λ) in unit time for each

λ ∈ [0,+∞).
It should be emphasized that we do not allow addition of utility functions ui and uj of

distinct agents i, j ∈ N (i.e., the utilities are not transferable) though the utility functions
are defined on the common space of goods where we allow addition of good vectors.
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Define µ0 = ρ(E)/|N |, which is the same (common) amount of goods for each agent
to receive. We call x = (xi(e) | i ∈ N, e ∈ E) ∈ RN×E

≥0 a feasible allocation if x satisfies

xi(E)(=
∑
e∈E

xi(e)) = µ0 (∀i ∈ N),
∑
i∈N

xi ∈ B(ρ), (2.10)

where xi = (xi(e) | e ∈ E) ∈ RE
≥0 denotes a good vector that agent i ∈ N receives. Each

agent i ∈ N wants to minimize the objective function
∑

e∈E ui
e(x

i(e)) under the overall
interrelated constraints (2.10) for all agents.

A feasible allocation x = (xi(e) | i ∈ N, e ∈ E) can be identified with an independent
flow φ : N × E → R≥0 in a network N = (G=(V,A), S+=N,S−=E, d, (E, ρ)), where
V = N ∪E, A = N ×E, and d(i) = µ0 (∀i ∈ N), such that φ(i, e) = xi(e) for all i ∈ N
and e ∈ E. (See Figure 2.)
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Figure 2: A feasible allocation as an independent flow φ.

3. Monotone Algorithms
We propose a scheme of finding a “fair” feasible allocation of goods to agents under the
constraints of (2.10) without money.

Suppose N = {1, · · · , n}. We introduce some definitions and notation to be used for
our algorithms given below. For each i ∈ N define xi

λ = ((ui
e
′)−1(λ) | e ∈ E) for all

λ ≥ 0. For any α ≥ 0, F ⊆ E, and i ∈ N define λ(i, F, α) to be the value of λ satisfying∑
e∈F

xi
λ(e) = α. (3.1)
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Note that λ(i, F, α) for each α ≥ 0 is well-defined since xi
λ(e) is continuous and increas-

ing in λ ∈ [0, β
(i,e)
∞ ) and takes on all nonnegative reals. Also note that for any real α ≥ 0

equation (3.1) implies 0 ≤ xi
λ(e) < +∞ for all e ∈ F , and we have ui

e
′(xi

λ(e)) = λ (the
common value λ(i, F, α) of derivatives) for all e ∈ F .

3.1. A known result for the case of a single agent
When there is only one agent, e.g., N = {1}, there is no game-theoretic situation and the
problem becomes an optimization problem:

P1 : Minimize
∑
e∈E

u1
e(x(e))

subject to x ∈ B(ρ). (3.2)

(Actually, Problem P1 was originally considered as a fair allocation problem of a sin-
gle commodity to multiple agents, with E being the set of agents.) It is known ([11,
Sect. 9],[15]) that the following algorithm gives an optimal solution of Problem P1. Re-
call the notation that for any x ∈ RE and F ⊆ E we write xF = (x(e) | e ∈ F ).

Single Monotone Algorithm

Input: Problem P1 with a polymatroid (E, ρ) and a separable convex function u1 :
RE

≥0 → R.
Output: An optimal solution x∗ of P1.

Step 0: Put x∗ ← 0 ∈ RE , k ← 0, λ0 ← 0, and S0 ← ∅.

Step 1: Compute
λk+1 = max{λ ≥ λk | xE\Sk

λ ∈ P(+)(ρSk
)}. (3.3)

Put x∗(e)← xλk+1
(e) for each e ∈ E \ Sk and Sk+1 ← sat(x∗).

Step 2: If Sk+1 ̸= E, then put k ← k + 1 and go to Step 1.
Otherwise return x∗.

By Procedure Single Monotone Algorithm we get a solution x∗ and a sequence of
x∗-tight sets

∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sk∗+1 = E, (3.4)

where k∗ is the finally obtained index k. Moreover, we can easily show that
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• for any distinct e, f ∈ E such that f ∈ dep(x∗, e), if we have f ∈ Sk \ Sk−1, then
e ∈ E \ Sk−1, which implies u1

e
′(x∗(e)) ≥ u1

f
′(x∗(f)).

(Recall the definition of the dependence function dep in Section 2 and note that e ∈ Sk

implies dep(x∗, e) ⊆ Sk.) This guarantees the optimality of the solution x∗.

Theorem 3.1 ([10, 11, 15]): The Procedure Single Monotone Algorithm computes an
optimal solution x∗ of Problem P1.

A special case where u1
e(z) = 1

w(e)
z2 with positive weights w(e) for all e ∈ E was

considered in [10], which shows the monotone algorithm and a characterization of the
unique optimal solution as follows. For any vector x ∈ RE

≥0 let Tw(x) be a linear
arrangement of x(e)/w(e) (e ∈ E) in the non-decreasing order of magnitude. That
is, Tw(x) = (x(e1)/w(e1), · · · , x(em)/w(em)) that satisfies E = {e1, · · · , em} and
x(e1)/w(e1) ≤ · · · ≤ x(em)/w(em). We call a solution x ∈ B(ρ) a lexicographically
optimal base with respect to the weight vector w if Tw(x) is lexicographically maximum
among linear arrangements Tw(y) for all y ∈ B(ρ). (Megiddo [23] considered a special
case when w(e) = 1 for all e ∈ E for a polymatroid of network type, induced on a set E
of exits in a flow network. Also Gallo, Grigoriadis, and Tarjan [14] presented an efficient
parametric algorithm for a polymatroid of network type with general positive weights as
in [10].)

Theorem 3.2 ([10]): When u1(x) =
∑

e∈E
1

w(e)
x(e)2, the output x∗ of the procedure Sin-

gle Monotone Algorithm is the unique lexicographically optimal base with respect to
the weight vector w.

Informally speaking, the lexicographically optimal base x∗ is the one within the base
polytope B(ρ) that is as proportional to w as possible. The (equivalent) solution is re-
discovered by Dutta and Ray [6] as a (weighted) egalitarian solution (also see [18, 19]).

3.2. The case of multiple agents
Now let us consider the case of multiple agents, i.e., N = {1, · · · , n} with n ≥ 2.

We carry out the procedure Single Monotone Algorithm simultaneously as follows.
Recall the definition of λ(i, F, α) by (3.1) given at the beginning of Section 3.

Simultaneous Monotone Algorithm

Input: A set N of agents, a polymatroid (E, ρ), and separable convex functions ui :
RE

≥0 → R for all i ∈ N .
Output: A solution (xi

∗ | i ∈ N) with xi
∗ ∈ RE

≥0 (i ∈ N) and
∑

i∈N xi
∗ ∈ B(ρ).
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Step 0: Put k ← 0, α0 ← 0, S0 ← ∅, and xi
∗ ← 0 ∈ RE for each i ∈ N .

Step 1: Putting Fk = E \ Sk, compute

αk = max
{
α ≥ 0 |

∑
i∈N

(xi
λ(i,Fk,α)

)Fk ∈ P(+)(ρSk
)
}
. (3.5)

For each i ∈ N and e ∈ Fk put xi
∗(e)← xi

λ(i,Fk,αk)
(e).

Put Sk+1 ← sat(
∑

i∈N xi
∗).

Step 2: If Sk+1 ̸= E, then put k ← k + 1 and go to Step 1.
Otherwise return (xi

∗ | i ∈ N).

It should be noted that for each i ∈ N the sequence of λ(i, Fk, αk) for k = 0, 1, . . . is
monotone increasing, i.e.,

0 ≤ λ(i, F0, α0) < λ(i, F1, α1) < · · · (∀i ∈ N) (3.6)

and that the output (xi
∗ | i ∈ N) satisfies

xi
∗(E) = µ0(≡ ρ(E)/|N |) (∀i ∈ N), (3.7)∑

i∈N

xi
∗ ∈ B(ρ). (3.8)

For the output x∗ ≡ (xi
∗ | i ∈ N) of Simultaneous Monotone Algorithm consider

the following optimization problem for each i ∈ N :

Pi(x∗) : Minimize
∑
e∈E

ui
e(x(e))

subject to x ∈ B(ρzi∗), (3.9)

where zi∗ =
∑

j∈N\{i} x
j
∗ and ρzi∗ is the contraction of ρ by vector zi∗. It should be noted

that Problem Pi(x∗) is to find an optimal solution for agent i to choose from among
B(ρzi∗). In other words, if all the agents j ∈ N \ {i} other than i have received goods
xj
∗ (j ∈ N \ {i}) and agent i can look for an optimal allocation within a set D of good

vectors available for agent i, then the set D is the base polytope B(ρzi∗).
Hence we have the following theorem based on the procedure Single Monotone

Algorithm and Theorem 3.2.

Theorem 3.3: For the output x∗ ≡ (xi
∗ | i ∈ N) of Simultaneous Monotone Algo-

rithm, for each i ∈ N the allocation xi
∗ is an optimal solution of Problem Pi(x∗) in

(3.9).
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For each i ∈ N define a vector yiλ ∈ RE with a parameter λ ≥ 0 by

yiλ(e) =

{
xi
λ(i,Fk,α)

(e) if e ∈ Sk+1 \ Sk, λ = λ(i, Fk, α) for 0 ≤ α ≤ αk,

xi
λ(i,Fk,αk)

(e) if e ∈ Sk+1 \ Sk, λ > λ(i, Fk, αk)
(3.10)

for all e ∈ E, where recall the definition of λ(i, F, α) by (3.1). Put λi
∗ = λ(i, Fk∗ , αk∗)

where k∗ is the finally obtained index k. Then yiλ ∈ RE with parameter 0 ≤ λ ≤ λi
∗

defines a parametric continuous increasing curve for each agent i ∈ N .
For each i ∈ N and any τ with 0 ≤ τ ≤ µ0(= ρ(E)/|N |) define λi(τ) to be the value

λ satisfying yiλ(E) = τ .
From Theorem 3.3, we can show the following.

Theorem 3.4: For any τ with 0 ≤ τ ≤ ρ(E), (yiλi(τ/|N |) | i ∈ N) coincides with the
output of Simultaneous Monotone Algorithm for the input polymatroid given by the
truncation (E, ρ(τ)) of (E, ρ) by τ , where ρ(τ)(E) = τ .

(Proof) The procedure Simultaneous Monotone Algorithm generates the same inter-
mediate allocation (yiλi(τ ′/|N |) | i ∈ N) till

∑
i∈N yiλi(τ ′/|N |)(E) becomes equal to τ when

τ ′ = τ . Hence the proof completes. 2

Theorem 3.4 means that for each given total amount τ ≥ 0 of supplies the proce-
dure Simultaneous Monotone Algorithm gives the incrementally best solution for ev-
ery agent for total amount (τ + ∆τ)/|N | of supplies with a sufficiently small increment
∆τ > 0.

3.3. Allowing indifference on goods
In this subsection we consider the case when there exists a collection E i of sets of indif-
ferent goods for each agent i ∈ N . That is, E i is a partition {Ei

1, · · · , Ei
ki
} of E for each

agent i ∈ N and the utility function ui is expressed as

ui(x) =

ki∑
ℓ=1

ui
ℓ(x(E

i
ℓ)), (3.11)

where ui
ℓ (ℓ = 1, · · · , ki) are increasing, differentiable, convex functions. Note that dis-

tinct goods e, f ∈ Ei
ℓ for ℓ ∈ {1, · · · , ki} are indifferent for agent i ∈ N and the utility

depends on the total amount x(Ei
ℓ) =

∑
e∈Ei

ℓ
x(e) but not on individual x(e) for e ∈ Ei

ℓ

such as
∑

e∈Ei
ℓ
ui
ℓ(x(e)) having the same utility function ui

ℓ for all e ∈ Ei
ℓ. This is mod-

eled as an independent flow problem as follows (see [11] and Figure 3). Let G = (V,A)
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be a graph with a vertex set V and an arc set A given by

V = N ∪ E ∪W, (3.12)
W = {viℓ | i ∈ N, ℓ ∈ {1, · · · , ki}}, (3.13)

A = B1 ∪B2, (3.14)
B1 = {(i, viℓ) | i ∈ N, ℓ ∈ {1, · · · , ki}}, (3.15)
B2 = {(viℓ, e) | i ∈ N, ℓ ∈ {1, · · · , ki}, e ∈ Ei

ℓ}. (3.16)

Set N is the set of entrances and E is the set of exits. We have a polymatroid P =
(E, ρ). Let φ : A → R be an independent flow in the network N = (G=(V,A), S+=N,
S−=E, c, d=(µ0 | i ∈ N), (E, ρ)) satisfying

(a) ∀a ∈ A : 0 ≤ φ(a) < c(a) = +∞ (a sufficiently large number),

(b) ∀v ∈ W : ∂φ(v) = 0,

(c) ∀i ∈ N : ∂+φ(i) ≤ d(i) and ∂−φ ∈ P(+)(ρ).

(See Figure 3.)
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Figure 3: An independent flow network.

Every feasible allocation (xi | i ∈ N) with xi ∈ RE
≥0 is given by an independent flow

φ in N with ∂−φ ∈ B(ρ) as

xi(e) = φ(viℓ, e) (i ∈ N, e ∈ Ei
ℓ, ℓ ∈ {1, · · · , ki}). (3.17)
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It should be noted that the value of (3.11) for x = xi is given by

ui(xi) =

ki∑
ℓ=1

ui
ℓ(φ(i, v

i
ℓ)). (3.18)

Now, for any independent flow φ in N define xφ ∈ RW by

xφ(w) = φ(i, viℓ) (w = viℓ, i ∈ N, ℓ ∈ {1, · · · , ki}). (3.19)

Then, from Proposition 2.2 we have the following.

Corollary 3.5: The polymatroid (E, ρ) defined on the set E of exits induces a polymatroid
on W through the subgraph H = (W ∪ E,B2) with vertex set W ∪ E and arc set B2 in
(3.16), whose independence polytope is given by

PW = {xφ | φ is an independent flow in N}. (3.20)

Denote by (W, ρ̂) the induced polymatroid in Corollary 3.5. It follows from (3.18)–
(3.20) that our problem becomes equivalent to the original allocation problem with set N
of agents, set W of “goods”, set PW = P(+)(ρ̂) of available “good” vectors, and utility
functions (3.18) and without indifference. Consequently, we can employ the extended
probabilistic serial mechanism shown in Section 3.2 to obtain a solution when allowing
indifference. Here, every “good” is regarded as a bundle of original goods. A more gen-
eral Leontief model (but with lexicographic preference orders) is considered by Schulman
and Vazirani [28].

Moreover, it should be noted that the subgraph H in Corollary 3.5 is a bipartite graph
but we can deal with a general graph Ĥ = (V̂ , Â) having the set W of entrances and
the set E of exits with W ∪ E ⊆ V̂ and having capacities of arcs in Â. Similarly as in
Corollary 3.5 a polymatroid (W, ρ̂) is induced on W from polymatroid (E, ρ) on E. It
should also be noted that for the random assignment problem, matroids of network type
are considered in [5], where the underlying graph represents laminar constraints on W .

4. The Random Assignment Problem Viewed from Sub-
modular Optimization

In this section we examine our allocation scheme and reveal its relation to the probabilistic
serial mechanism of Bogomolnaia and Moulin [3] and its extensions [20, 12, 13].
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4.1. Relation to the probabilistic serial mechanism
Recently the probabilistic serial mechanism of Bogomolnaia and Moulin [3] has been
extended from the original random assignment problem to that with polymatroidal con-
straints on multiple goods [12, 13]. In this section we reveal that the probabilistic serial
mechanism and its extensions can be interpreted as special cases of the procedure Simul-
taneous Monotone Algorithm given in Section 3.

We are given a polymatroid (E, ρ) with integer-valued rank function ρ. Suppose that
each agent i ∈ N has an ordinal preference list

Li : ei1 ≻i · · · ≻i e
i
m, (4.1)

where {ei1, · · · , eim} = E and ei1 is agent i’s best (top) good. Under the preference profile
L = (Li | i ∈ N) each agent i considers m-tuples of

(xi(ei1), x
i({ei1, ei2}), · · · , xi({ei1, · · · , eim})) (4.2)

for all (real-valued, expected) allocations xi to agent i. Here, note that in the random as-
signment problem setting available good vectors are integer-valued, while by considering
a lottery we have an expected real-valued allocation (xi | i ∈ N), which corresponds to
a feasible flow in the independent-flow network N defined in Section 2. The (first-order)
stochastic dominance relation ⪰d

i over (real-valued) allocation xi is defined by the partial
order induced by the component-wise order ≥ on R over m-tuples of (4.2). The (ex-
tended) serial mechanism to choose an efficient and envy-free solution with respect to the
stochastic dominance is given as follows (paper [13] extends the Bogomolnaia-Moulin
solution to the problem with submodular constraints). Define

b(L) =
∑
i∈N

d(i)χei1
, (4.3)

where d(i) = µ0(= ρ(E)/|N |) for all i ∈ N .

Extended Random Assignment

Input: A random assignment problem RA = (N,E,L, d, (E, ρ)).
Output: A random assignment matrix P ∈ RN×E

≥0 .
Step 0: For each i ∈ N put xi ← 0 ∈ RE (the zero vector), and x∗ ← 0 ∈ RE .

Put S0 ← ∅, k ← 1, and ν0 ← 0.
Step 1: For current (updated) L = (Li | i ∈ N), using b(L) in (4.3), compute

νk = max{ν ≥ 0 | x∗ + νb(L) ∈ P(+)(ρ)}.

13



For each i ∈ N put xi ← xi + νkd(i)χei1
.

Put x∗ ← x∗ + νkb(L) and Sk ← sat(x∗).
Step 2: Put Tk ← Sk \ Sk−1.

Update Li (i ∈ N) by removing all elements of Tk from current Li (i ∈ N).
Step 3: If ρ(Sk) < ρ(E), then put k ← k + 1 and go to Step 1.

Otherwise (ρ(Sk) = ρ(E)) put P (i, e)← xi(e) for all i ∈ N and e ∈ E.
Return P .

Put M = max{ρ({e}) | e ∈ E}.
Now, reflecting the ordinal preference Li in (4.1) of every agent i, suppose that the

utility functions ui
e (e ∈ E) satisfy the following condition:

β
(i,eiℓ+1)

0 > ui
eiℓ

′(M) (∀ℓ ∈ {1, · · · ,m− 1}), (4.4)

where recall the definition of β(i,e)
0 given in Section 2. Note that the right derivative of

ui
e(z) at z = 0 for i ∈ N and e ∈ E is equal to β

(i,e)
0 .

Theorem 4.1: If ui
e (i ∈ N, e ∈ E) satisfy (4.4), then the allocation computed by Si-

multaneous Monotone Algorithm coincides with the solution obtained by the extended
probabilistic serial mechanism Extended Random Assignment given in [13]. In par-
ticular, under assumption (4.4) Simultaneous Monotone Algorithm outputs the proba-
bilistic serial solution for the original assignment problem in [3].

(Proof) Under the assumption by Simultaneous Monotone Algorithm the amounts of
only the current top goods ei1 (i ∈ N), one for each i, get increased uniformly. This is
exactly the procedure Extended Random Assignment of the (extended) probabilistic
serial mechanism. Note that νk appearing in Step 1 of Extended Random Assignment
corresponds to αk/µ0 for αk appearing in Step 1 of Simultaneous Monotone Algorithm.

2

The solution obtained by Extended Random Assignment can also be interpreted as
a solution of Simultaneous Monotone Algorithm for separable quadratic functions:

ui(x) =
∑
e∈E

1
wi(e)

x(e)2 (i ∈ N). (4.5)

For each i ∈ N , corresponding to the preference order Li in (4.1), suppose that the
weights wi(e) (e ∈ E) satisfy

wi(ei1)≫ wi(ei2)≫ · · · ≫ wi(eim) > 0. (4.6)

14



Here, for any a, b ∈ R a ≫ b means that a is sufficiently larger than b. Then Problem
P1 with u1 in (4.5) has an optimal solution x∗, which is as proportional to w as possi-
ble. It follows from (4.6) that the optimal solution x∗ is obtained by lexicographically
maximizing the sequence (x(e11), x(e

1
2), · · · , x(e1m)) for x ∈ B(ρ) since we always have

Tw(x) = (x(e11)/w
1(e11), x(e

1
2)/w

1(e12), · · · , x(e1m)/w1(e1m)) (4.7)

for all x ∈ B(ρ). Hence x∗ is the optimal solution computed by what is called the greedy
algorithm of Edmonds [7] as

x∗(e1ℓ) = ρ({e11, · · · , e1ℓ})− ρ({e11, · · · , e1ℓ−1}) (ℓ = 1, · · · ,m). (4.8)

It should be noted that from (4.8) sets {e11, · · · , e1ℓ} (ℓ = 1, · · · ,m) are x∗-tight, so that
we have

x∗({e11, · · · , e1ℓ}) = ρ({e11, · · · , e1ℓ}) ≥ y({e11, · · · , e1ℓ}) (ℓ = 1, · · · ,m). (4.9)

for all y ∈ B(ρ). In other words, x∗ is the maximum vector in B(ρ) with respect to
the (first-order) stochastic dominance relation associated with the preference order L1 in
(4.1).

Consequently, we may call the procedure Simultaneous Monotone Algorithm for
(4.5) and (4.6) a simultaneous greedy algorithm in the sense of Edmonds. We can restate
Theorem 3.3 as follows.

Corollary 4.2: Under the assumptions (4.5) and (4.6), for the output x∗ ≡ (xi
∗ | i ∈ N)

of Simultaneous Monotone Algorithm, for each i ∈ N the allocation xi
∗ is the one

obtained by the greedy algorithm of Edmonds on base polytope B(ρzi∗).

4.2. Quasi-order preferences
Katta and Sethuraman [20] considered the random assignment problem on the full pref-
erence domain of quasi-orders, where we have a partition E i = {Ei

1, · · · , Ei
ki
} of E (into

the indifference class of sets) for each agent i ∈ N and the preference order list Li on E i
as

Li : Ei
1 ≻i · · · ≻i E

i
ki
. (4.10)

A special case of dichotomous preferences was considered earlier by Bogomolnaia and
Moulin [4]. Allowing indifference for goods, the problem with utility functions can be
reduced to a problem without indifference as shown in Section 3.3. For the induced
problem we can further apply the result of Section 4.1 to deal with the preference orders
(4.10).

We can easily see that the output of Simultaneous Monotone Algorithm with ui (i ∈
N) modified in Section 3.3 coincides with the solution obtained by the probabilistic serial
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mechanism of Katta and Sethuraman [20] (extended to the problem with polymatroidal
constraints).

This explains why the flow algorithms in [23, 10, 14] appear in the mechanism of
Katta and Sethuraman [20] (also [4]) as a subroutine.

4.3. Non-uniform shares
We have assumed that the total amount ρ(E) of goods are uniformly distributed to all
agents, each receiving µ0 = ρ(E)/|N | of ρ(E).

Now suppose that we are given µi
0 > 0 (i ∈ N) satisfying

∑
i∈N µi

0 = ρ(E) and
that each agent i ∈ N receives the total amount µi

0 of goods. Then we adapt the pro-
cedure Simultaneous Monotone Algorithm in such a way that the output satisfies the
requirement as follows.

We modify the definition (3.1) of λ(i, F, α) alone. Other definitions are the same as
in Section 3.2. For any i ∈ N , F ⊆ E, and α with 0 ≤ α ≤ 1 define λ(i, F, α) to be the
value of λ satisfying ∑

e∈F

xi
λ(e) = µi

0α. (4.11)

Then Theorems 3.3 and 3.4 hold mutatis mutandis.

5. Concluding Remarks
We have presented a solution for the non-pricing allocation of divisible goods to agents
with utility functions and submodular constraints and showed the adaptability of the prob-
abilistic serial mechanism of Bogomolnaia and Moulin [3] to the non-pricing allocation
of divisible goods to agents with utility functions. Our results reveal how the probabilis-
tic serial mechanism of Bogomolnaia and Moulin [3] and its extensions [20, 12, 13] are
related to the optimal fair allocation algorithms of Megiddo [23], Fujishige [10], Gallo,
Grigoriadis, and Tarjan [14], and Groenevelt [15] and to the greedy algorithm of Edmonds
[7]. This also shows that it is natural to consider extensions of the original assignment
problem to those with sets of available good vectors expressed by submodular functions
as in [12, 13].

Apart from the submodular optimization views on the probabilistic serial mecha-
nisms, our simultaneous monotone algorithm can be employed as a non-pricing allocation
scheme when we are given such a fair allocation problem with non-transferable separa-
ble convex utility functions and submodular constraints to be solved. Then we have to
examine the computational complexity issue of our algorithm in more detail. Also a
game-theoretical issue remains to be investigated when every agent does not necessarily
reveal her utility function truthfully.
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Throughout the present paper the separability of utility functions plays a crucial rôle.
How to deal with non-separable utility functions is also left open. It seems that M♮-convex
functions ([24]) are good candidates for utility functions without separability in order to
extend our allocation scheme appropriately, since separable convex functions defined on
independence polytopes (polymatroid polytopes) are M♮-convex (see [24, 25, 26, 27] for
more details).
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[8] Ö. Ekici and O. Kesten: An equilibrium analysis of the probabilistic serial mecha-
nism. International Journal of Game theory 45 (2016) 655–674.

17



[9] S. Fujishige: Algorithms for solving the independent-flow problems. Journal of the
Operations Research Society of Japan 21 (1978) 189–204.

[10] S. Fujishige: Lexicographically optimal base of a polymatroid with respect to a
weight vector. Mathematics of Operations Research 2 (1980) 186–196.

[11] S. Fujishige: Submodular Functions and Optimization Second Edition (Elsevier,
2005).

[12] S. Fujishige, Y. Sano, and P. Zhan: A solution to the random assignment problem
with a matroidal family of goods. RIMS Preprint RIMS-1852, Kyoto University,
May 2016.

[13] S. Fujishige, Y. Sano, and P. Zhan: An extended probabilistic serial mechanism to
the random assignment problem with multi-unit demands and polymatroidal sup-
plies. RIMS Preprint RIMS-1866, Kyoto University, November 2016.

[14] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan: A fast parametric maximum flow
algorithm and applications. SIAM Journal on Computing 18 (1989) 30–55.

[15] H. Groenevelt: Two algorithms for maximizing a separable concave function over a
polymatroid feasible region. European Journal of Operational Research 54 (1991)
227–236.

[16] T. Hashimoto, D. Hirata, O. Kesten, M. Kurino, and M. U. Ünver: Two axiomatic
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