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Abstract

In the present paper, we develop a theory of the combinatorial anabelian ge-
ometry of curves over algebraically closed fields of characteristic p > 0 from the
point of view of mono-anabelian geometry. We prove that the semi-graphs of
anabelioids associated to pointed stable curves over algebraically closed fields of
characteristic p > 0 can be mono-anabelian reconstructed from their admissible
fundamental groups; moreover, we prove that the mono-anabelian reconstruction
algorithm of two pointed stable curves with same type are compatible with open
continuous homomorphisms of the admissible fundamental groups under certain
assumptions. These results can be regarded as mono-anabelian versions of the
combinatorial Grothendieck conjecture of curves over algebraically closed fields of
characteristic p > 0. As an application, under certain assumptions, we obtain that
two pointed stable curves with same type over an algebraic closure of F, are iso-
morphic as schemes if and only the set of open continuous homomorphisms between
the admissible fundamental groups of the pointed stable curves are not empty.
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Introduction

In the present paper, we develop a theory of the combinatorial anabelian geometry of
curves over algebraically closed fields of characteristic p > 0. Before we explain the main
problem that motivated the theory developed in the present paper, let us recall some
general facts concerning the combinatorial anabelian geometry of curves.

Frequently, in the theory of the anabelian geometry of curves, one observes that, before
starting to reconstruct the scheme structure of a curve, it necessary to reconstruct the
cusps (cf. [N, Theorem 3.4], [M3, Lemma 1.3.9]) or the entire dual semi-graph associated
to a pointed stable curve group-theoretically from some associated fundamental group
(cf. [M2, §1 ~ §5]). The techniques for doing this is various diverse situations are quite
similar and only require much weaker assumptions than the assumptions that ofter hold
in particular situations of interest. In order to give a unified theory concerning this
topic, S. Mochizuki developed the theory of semi-graphs of anabelioids and the theory
of the combinatorial anabelian geoemtry of curves (cf. [M5], [M6]). We do not recall
the theory of semi-graphs of anabelioids in the present paper. Roughly speaking, a semi-
graph of anabelioids (cf. [M5, Definition 2.1]) is a semi-graph (cf. [M5, Section 1]) which
is equipped with a Galois category at each vertex and each edge, together with gluing
isomorphisms that satisfy certain conditions; a semi-graph of anabelioids of PSC-type (cf.
[M6, Definition 1.1]) is a semi-graph of anabelioids that is isomorphic to the semi-graph
of anabelioids associated a pointed stable curve defined over an algebraically closed field.
Let

X! = (X;,Dx,), i € {1,2}

be a pointed stable curve of type (g,n) over an algebraically closed field k; and Ilys the
admissible fundamental group (note that the admissible fundamental group is naturally
isomorphic to the tame fundamental group if X? is smooth over k;) of X? by choosing a
base point (cf. Definition 1.2). Here, X;, i € {1,2} denotes the underlying scheme of X?,
and Dy, denotes the set of marked points of X?. For each i € {1,2}, write

Gxe

for the semi-graph of anabelioids of PSC-type associated X?, I'ys for the dual semi-graph
of X7, v(I'xs) for the set of vertices of I'xs, and e(I'xs) for the set of edges of I'xs. By
choosing a base point, we obtain the fundamental group llg , of Gxs which is naturally

isomorphic to IIxs; moreover, by choosing a suitable base point, we have Ilg , = Ilxs.
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On the other hand, for each v € v(I'xs), write X, for the normalization of the irreducible
component of X; corresponding to v and

X, = (5@,@,9%)

for the smooth pointed stable curve over k; determined by )Z'i,v and the divisor of marked
points Dy — determined by the inverse images (via the natural morphism X;, — X;)

in )N(w of the nodes and marked points of X7?; (g, n;,) for the type of )N(Z’U Then
g X, 1€ {1,2}, contains the following information of the pointed stable curve X}

® gx;, nx,, and I'ys;

the conjugacy class of the inertia group of every marked point of X? in Tlye;

the conjugacy class of the inertia group of every node of X in IIxs;

for each v € v(I'xs), gi.v, Miw, and the conjugacy class of the admissible fundamental
group of X? in Ilxs.

The combinatorial anabelian geometry of curves is a theory which studying how much
information about the isomorphism class of a semi-graph of anabelioids of PSC-type is
contained already in its fundamental group. The main question of interest in the theory
of the combinatorial anabelian geometry of curves is as follows:

Question 0.1. Can we reconstruct the isomorphism class of the semi-graph of anabelioids
of PSC-type associated to a pointed stable curve over an algebraically closed field group-
theoretically from the isomorphism class of the admissible fundamental group of the pointed
stable curve with a certain outer Galois action (i.e., reconstruct an isomorphism of the
semi-graphs of anabelioids of PSC-type associated to given pointed stable curves group-
theoretically from a continuous isomorphism of the admissible fundamental groups of the
pointed stable curves over algebraically closed fields with certain out Galois actions)?

The formulation of Question 0.1 is called the combinatorial Grothendieck conjecture
for semi-graphs of anabelioids of PSC-type or, simply, the combinatorial Grothendieck
conjecture, for short.

The combinatorial Grothendieck conjecture was first proved by Mochizuki in the case
of outer Galois representations of IPSC-type (i.e., an outer Galois representation induced
by the fundamental exact sequence of log étale fundamental groups arising from a stable
log curve over a log point whose underlying scheme is an algebraically closed field, and
whose log structure is N (cf. [M6, Example 2.5 and Corollary 2.8])). Essentially, Mochizuki
proved the combinatorial Grothendieck conjecture as follows:

Theorem 0.2. Suppose that char(k;) = char(ks) = 0. Let o : g, — Ilg, s 0 continuous
1
tsomorphism of profinite groups, Iy and Iy profinite groups, pr, : Iy — Out(HgX,) and py, :

Iy — Out(Ilg,,) outer Galois representations, and (3 : I = I a continuous isomorphism
2



of profinite groups. Suppose that p;, and py, are outer Galois representations of IPSC-
type, and that the diagram

Il L) Out(HgX. )

,Bl Out(a) l

I, 22 Out(Ilg,, ),
2

is commutative, where Out(Ilg,,), i € {1,2}, denotes Aut(llg,,)/Inn(Ilg,,), and Out(a)
denotes the isomorphism induced by o. Then we have L

Gxs = Gxs.

Remark 0.2.1. Suppose that char(k;) = p > 0, i € {1,2}. Let X be a set of prime
numbers such that p ¢ X, ¢ € {1,2}. In fact, Theorem 0.2 also holds if, for each
i € {1,2}, we replace Iy, by the maximal pro-¢ quotients Iy, and replace Gxs by the
semi-graph of anabelioids of pro-3 PSC-type associated to X?.

Remark 0.2.2. Y. Hoshi and Mochizuki generalized Theorem 0.2 to the case of certain
outer Galois representations of NN-type (i.e., an outer Galois representation induced by
the fundamental exact sequence of log étale fundamental groups arising from a stable
log curve over a log point whose underlying scheme is an algebraically closed field, and
whose log structure induced by the log structure of a node of a stable log curves (cf.
[HM1, Definition 2.4 and Theorem A]), [HM3, Theorem 1.9]). The proof of Mochizuki
(or Hoshi and Mochizuki) requires the use of the highly non-trivial outer Galois
representations (e.g. by using weight-monodromy conjecture for curves). For more
details on the theory of combinatorial anabelian geometry of curves in characteristic
0 (or the theory of prime-to-p combinatorial anabelian geometry of curves) and its
applications, see [HM1], [HM2], [HM3], [HM4], [HM5], [M6], [MT7].

On the other hand, some developments of F. Pop, M. Raynaud, M. Saidi, and A.
Tamagawa (cf. [PS], [R], [T1], [T2], [T3]) from the 1990’s showed evidence for very strong
anabelian phenomena for curves over algebraically closed fields of characteristic
p > 0. One of the main steps of the establishing a theory of anabelian geometry of curves
over algebraically closed fields of characteristic p > 0 is reconstructing the semi-graphs
of anabelioids of PSC-type from their admissible fundamental groups. When the base
fields are algebraically closed fields of characteristic p > 0, the Galois groups of the
base fields are trivial, and the tame (or étale) fundamental groups coincide with the
geometric fundamental groups, thus in a total absence of a Galois action of the base field.
In this situation, the reconstructions of the semi-graphs of anabelioids of PSC-type are
quite non-trivial even the pointed stable curves are smooth.

In the case of smooth pointed stable curves, Tamagawa proved that we can reconstruct
an isomorphism of semi-graphs of anabelioids of PSC-type associated to given smooth
pointed stable curves (i.e., the genus, the cardinality of the set of marked points, the
conjugacy class of inertia subgroups of each marked points) over algebraically closed
fields of characteristic p > 0 group-theoretically from a continuous isomorphism of the
tame (or étale) fundamental group of the smooth pointed stable curves (cf. [T2, Theorem
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0.1, Lemma 5.1, and Theorem 5.2] (or [T1, Theorem 1.9, Theorem 2.5, and Theorem
2.7])).

On the other hand, at the present, almost all the results concerning the anabelian ge-
ometry of curves over algebraically closed fields of characteristic p > 0 (i.e., Grothendieck’s
anabelian conjecture, or simply, the Grothendieck conjecture, for curves over algebraically
closed fields of characteristic p > 0) were proved only in the case where the base fields
are algebraic closures of IF,. One of main goals of the anabelian geometry of curves over
algebraically closed fields of characteristic p > 0 is extending [T2, Theorem 0.2] and
[T3, Theorem 0.1] to the case where the base fields are arbitrary algebraically closed
fields of characteristic p > 0. In [Y2], the author established a relationship between the
Grothendieck conjecture for curves over an algebraic closure of F, and the Grothendieck
conjecture for curves over arbitrary algebraically closed fields of characteristic p > 0 (cf.
[Y2, Conjecture 7.8 and Theorem 7.9]), and observed that,

to establish the relationship, we should not only prove that we can reconstruct
an isomorphism of semi-graphs of anabelioids of PSC-type associated to given
smooth pointed stable curves group-theoretically from a continuous isomor-
phism of the tame fundamental group of the smooth pointed stable curves, but
also should prove that we can reconstruct a m-epimorphism of semi-graphs
of anabelioids of PSC-type (cf. [M4, Definition 1.1.12]) associated to given
smooth pointed stable curves of same type group-theoretically from an open
continuous surjective homomorphism of the tame fundamental group of
the smooth pointed stable curves of same type.

In order to extend the main results of [T2], [T3], and [Y2] to the case of (possibly
singular) pointed stable curves over algebraically closed fields of characteristic p > 0, we
may consider a similar question of Question 0.1 in positive characteristic as follows:

Question 0.3. Can we reconstruct the isomorphism class of the semi-graph of anabe-
lioids of PSC-type associated to an arbitrary pointed stable curve over an algebraically
closed field of characteristic p > 0 group-theoretically from the isomorphism class of the
admissible fundamental group of the pointed stable curve without any outer Galois ac-
tions? Moreover, can we reconstruct a unramified m-epimorphism (cf. Definition 9.2)
of the semi-graphs of anabelioids of PSC-type associated to given pointed stable curves of
same type over algebraically closed fields of characteristic p > 0 group-theoretically from
an open continuous homomorphism of the admissible fundamental groups of the pointed
stable curves without any outer Galois actions?

Remark 0.3.1. Note that, in the case of algebraically closed fields of characteristic 0,
then the isomorphism class of the admissible fundamental group of a pointed stable curve
depends only on the genus and the cardinality of the set of marked points. Thus, no
anabelian geometry exists in this situation.

In the present paper, we develop a theory of the combinatorial anabelian geometry of
curves over algebraically closed fields of characteristic p > 0 from the point of view
of mono-anabelian geometry and solve Question 0.3. The classical point of view of an-
abelian geometry (i.e., the anabelian geometry considered in [G1], [G2]) focuses on a com-
parison between two geometric objects via their fundamental groups. Moreover, the term



“oroup-theoretic”, in the classical point of view, means that “preserved by an arbitrary
isomorphism between the fundamental groups under consideration”. The classical point
of view is referred to as bi-anabelian geometry. On the other hand, mono-anabelian
geometry focuses on the establishing a group-theoretic algorithm whose input datum
is an abstract topological group which is isomorphic to the fundamental group of a given
geometric object of interest (resp. a continuous homomorphism of abstract topological
groups which are isomorphic to the fundamental groups of given geometric objects of
interest), and whose output datum is a geometry object which is isomorphic to the given
geometric object (resp. a morphism of geometric objects which is isomorphic to the given
geometric objects of interest). In the point of view of mono-anabelian geometry, the
term “group-theoretic algorithm” is used to mean that “the algorithm in a discussion is
phrased in language that only depends on the topological group structure of the funda-
mental groups under consideration” (cf. [H] for more details concerning the philosophy
of mono-anabelian geometry). Note that, in general, we have

mono-anabelian-type results = bi-anabelian-type results.

From now on, we suppose that char(k;) = p > 0, ¢ € {1,2}. The first main result
of the present paper is as follows, which can be regarded as a mono-anabelian version of
combinatorial Grothendieck conjecture for isomorphisms (cf. Theorem 9.1):

Theorem 0.4. There exists a group-theoretic algorithm whose input datum is Ilx,, i €
{1,2}, and whose output datum is Gxs.

Remark 0.4.1. The bi-anabelian version of Theorem 0.4 has been proven by the author
(cf. [Y1]). This means that, if IIxs = IIxs, then we have Gys = Gxs,.

Remark 0.4.2. If X, i € {1, 2}, are smooth over k;, then Theorem 0.4 has been obtained

by Tamagawa (cf. [T2, Theorem 0.5 and Theorem 5.2}).

Moreover, unlike the case of characteristic 0, there exists an open continuous surjective

homomorphism
gb 11 Xy —» 11 X3

which is not an isomorphism even X; and X, are same type (g,n) (e.g. a specialization
map (cf. [T3, Theorem 0.3])). Note that all the open continuous homomorphism between
IIxs and ILyy are surjections. The “moreover” part of Question 0.3 means whether or not
the group-theoretic algorithm associated to Ilxs and Ilxs obtained in Theorem 0.4 are
compatible with ¢. In other words, we have the following question:

Does there exist a group-theoretic algorithm whose input datum is ¢, and
whose output datum is a morphism of semi-graph of anabelioids of PSC-type
Gxp — Gx37?

For this question, we have the second main result of the present paper as follows, which
can be regarded as a mono-anabelian version of the combinatorial Grothendieck conjecture
for surjections (cf. Theorem 9.3 for more precise form):

Theorem 0.5. For each i € {1,2}, suppose that X; satisfied the following conditions
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(i) the genus of the normalization of each irreducible component of X? is
positive;

(ii) Txs is 2-connected (cf. Definition 1.1 (b));
(iti) #(v(I'§)*<) = 0 (cf. Definition 1.1 (c) (d));
(ZU) #G(FXI> = #e(FX2-) and #U(Fxlo) = #U(FX2->

Then there exists a group-theoretic algorithm whose input datum s an open continuous
homomorphism ¢ : lxs — Ilxy, and whose output datum is a unramified 71 -epimorphism
(cf. Definition 9.2) of semi-graphs of anabelioids of PSC-type ® : Gxs — Gxs.

Let F,; C ki, i € {1,2} be the algebraic closure of F, in k;. By combining [T3,
Theorem 0.1] and [Y2, Theorem 0.4], we obtain the following result concerning the an-
abelian geometry of curves over algebraically closed fields of characteristic p > 0, which
is the third main result of the present paper and generalizes [T2, Theorem 0.2], [T3, The-
orem 0.1], and [Y2, Theorem 0.4] to certain pointed stable curves (possibly singular) (cf.
Theorem 10.1):

Theorem 0.6. (a) Suppose that, for each i € {1,2} and each v € v(I'xs), (giw, Niw) i
equal to either (0,n;,) or (1,1). Moreover, suppose that p # 2 when there exits v € v(I'xs)
such that (g;p,nip) = (1,1).

(a-i) Suppose that ki = Fp,l and ke = vag, and that X3 is an irreducible pointed
stable curve over E). Then we can detect whether or not X3 is isomorphic to a pointed
irreducible component (cf. Section 10) of X3 as schemes group-theoretically from Ilxs
and Ilxy.

(a-ii) Suppose that ky =F,, 1, that (g,n) = (9x,,nx,) = (9xs,Nx,), that
Qb . HXI’ —» HX2-

an open continuous surjective homomorphism, and that there exists an isomorphism of
dual semi-graphs
p: FXI‘ — FX20

such that, for each v € v(I'xs), (91,0, M10) = (92,0(0), N2,p(w))- Let X(;XQ be a minimal model

X(;XQ of X3. Then X;XQ 18 a pointed stable curve over Fpg; moreover, if we suppose that

Xoy, = X3 (ie, ky = Fo2). then, for each v € v(Uxs), X1, is isomorphic to X3 ) S
schemes. In particular, if X2, i € {1,2}, is irreducible, then X? is isomorphic to X(;XQ as
schemes if and only if

Homopen(HXI.’ ngo) 7é @,

where Hom®*(—, —) denotes the set of open continuous homomorphisms of profinite
groups.

(b) Suppose that k; = F,,;, i € {1,2}. Then there are at most finitely many F, ;-
isomorphism classes of irreducible pointed stable curves over F,; whose admissible funda-
mental groups are isomorphic to the admissible fundamental group of a pointed irreducible
component of X?.



Finally, let us explain the ideas of the proofs of Theorem 0.4 and Theorem 0.5. Let
i € {1,2}. For simplicity, we assume that X satisfies the conditions (i)~(iv) of Theorem
0.5, and that the p-rank (cf. Definition 1.3) of the normalization of each irreducible
component of X? are positive. For each open subgroup H; C Ilyx,, write X3 for the
pointed stable curve of type (gXHZ_,nXHi) over k; corresponding to H; and I' X;p for the
dual semi-graph of X7 . Z

Our method of proving Theorem 0.4 is as follows. The main difficult is, for each open
subgroup H; C llx,, proving that the profinite completion of the topological fundamental
group of I'ys and the étale fundamental group of the underlying curve of X3 (or the
weight- monodromy filtration of the first /-adic étale cohomology group of X3, Where (+#
p) can be mono-anabelian reconstructed (cf. Definition 3.1) from H;. Moreover, by
applying the general theory of admissible coverings of pointed stable curves, it is sufficient
to prove that (gXH N> ) and the Betti number Xy, of FX- can be mono-anabelian
reconstructed from H;. In order to do that, we have the followmg key observation:

Tamagawa’s theorem concerning the limit of p-average
Arv,(H;)

of H; (cf. Definition 1.4 and Theorem 1.5) plays a role of (outer) Galois rep-
resentations in the theory of the combinatorial anabelian geometry of curves
over algebraically closed fields of characteristic p > 0.

By using the p-Galois admissible coverings (i.e., Galois admissible coverings whose Galois
groups are isomorphic to p-groups), the Betti number r Xy, Can be mono-anabelian recon-
structed from H;. Thus, Theorem 1.5 implies that the (gx,, ,nx, ) can be mono-anabelian
reconstructed from H;.

On the other hand, our method of proving Theorem 0.5 is as follows. To verify that
the group-theoretic algorithm associated to IIxs and IIxs obtained in Theorem 0.4 are
compatible with a given open continuous surjective homomorphism ¢ : Ilxs — Ilxs,
we need to prove that, for each Hy C Ilxs, the profinite completion of the topological
fundamental group of I' X1, and the étale fundamental group of the underlying curve X,
induces the profinite completion of the topological fundamental group of I Xy, and the

étale fundamental group of the underlying curve X7, (or the weight-monodromy filtration
of the first f-adic étale cohomology group of X7, induces the weight-monodromy filtration
of the first (-adic étale cohomology group of X, , where £ # p) group-theoretically from
the natural surjection ¢|g, : Hy — Hy, where Hy := ¢~ '(H,). In order to do that, we
prove that (gx, ,nx,, ) = (9xu,, Mxy, ), and that Xp,, i € {1,2}, satisfies the conditions
(i)~(iv) of Theorem 0.5. Then Theorem 0.5 follows from the computations of admissible
coverings of pointed stable curves by applying the following key observation:

The inequality of the limit of p-averages (cf. Remark 1.5.3)
AI'Vp(Hl) Z AI'VP(HQ)

of Hy and Hy induced by the surjection ¢|y, : Hy — Hs plays a role of the
comparability of (outer) Galois representations in the theory of the anabelian

geometry of curves over algebraically closed fields of characteristic p > 0 (in
fact, we have Arv,(H;) = Arv,(H,) (cf. Corollary 9.5)).
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The present paper is organized as follows. In Section 1, we review some definitions and
results which will be used in the present paper. In Section 2, we establish a correspondence
between a subset of line bundles and the set of vertices (resp. the set of edges, the set
of genera of irreducible components) of a pointed stable curve. In Section 3, by applying
the results obtained in Section 2, we give a mono-anabelian reconstruction algorithm for
dual semi-graph of a pointed stable curve from its admissible fundamental group. In
Section 4~6, we reconstruct the sets of vertices (resp. the sets of edges, the sets of genera
of irreducible components, the sets of p-ranks of irreducible components) via surjections
of the admissible fundamental groups of pointed stable curves. In Section 7, we give
a mono-anabelian reconstruction algorithm for the isomorphisms of dual semi-graphs of
pointed stable curves from surjections of the admissible fundamental groups of pointed
stable curves. In Section 8, we prove that, there exists cofinal systems of open subgroups
of the admissible fundamental groups of pointed stable curves such that the pointed stable
curves corresponding to the open subgroups contained in the cofinal systems satisfy the
conditions (i)~(iv) of Theorem 0.5. In Section 9, by using the results obtained in previous
sections, we prove Theorem 0.4 and Theorem 0.5. In Section 10, we apply Theorem 0.5
to the anabelian geometry of curves over algebraically closed fields of characteristic p > 0
and obtain Theorem 10.1.
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1 Preliminaries

In this section, we recall some definitions and results which will be used in the present
paper.

Definition 1.1. Let G := (v(G), e(G), {¢®}ece(e)) be a semi-graph (cf. [M5, Section 1]).
Here, v(G), e(G), and {¢®}cce(e) denote the set of vertices of G, the set of edges of G,
and the set of coincidence maps of G, respectively.

(a) We shall write e(G) for the set of edges, eP(G) C e(G) (resp. e(G) C e(G)) for
the set of open (resp. closed) edges of G.

(b) Let v € v(G). We shall call G 2-connected at v if G\ {v} is either empty or
connected.

(c) We define an one-point compactification G** of G as follows: if e?(G) = (),
we set GP* = G; otherwise, the set of vertices of G is v(G®P") := v(G) [[{vw }, the set
of edges of GP* is (G") := e(G), and each edge e € e°?(G) C e(GP") connects v, with
the vertex that is abutted by e.

(d) For each v € v(G), we set

b(v) = > be(v),
ece(G)

where b.(v) € {0, 1,2} denotes the number of times that e meets v. Moreover, we set

v(GPY=! = {v € v(G) C v(G™) | b(v) < 1}.

9



Next, we fix some notations. Let k£ be an algebraically closed field and
X* = (X, Dy)

a pointed stable curve of type (gx,nx) over k. Here, X denotes the underlying scheme
of X*, and Dx denotes the set of marked points of X*®. Write

Tye

for the dual semi-graph of X* and 'y for the dual graph of X. Note that, by the
definitions of I'xe and 'y, we have a natural embedding I'x < ["x.; then we may identify
v(I'x) and e(T'y) with v(I'x+) and e(I'xs ), respectively, via the natural embedding I'y <
['x.. We denote by
to

II¢Y
for the profinite completion of the topological fundamental group of I'xe, and denotes rx
the Betti number dim¢(H'(I'ye, C)) of the semi-graph I'ye.

Definition 1.2. Let Y* := (Y, Dy) be a pointed stable curve over k and f*:Y* — X* a
morphism of pointed stable curves over Spec k.

We shall call f* a Galois admissible covering over Speck (or Galois admissible
covering for short) if the following conditions hold:

(i) there exists a finite group G' C Aut,(Y®) such that Y*/G = X*, and f* is
equal to the quotient morphism Y* — Y*/G;

(ii) for each y € Y™ \ Dy, f* is étale at y, where (—)* denotes the smooth
locus of (—);

(iii) for any y € Y*8 the image f*(y) is contained in X®"8 where (— )18
denotes the singular locus of (—);

(iv) for each y € Y*™8_ the local morphism between two nodes induced by f*
may be described as follows:

Oxpop) = klu, )] Juv — Oy, = K[[s,]] /st
U —> s™
v — t",

where (n, char(k)) = 1 if char(k) > 0; moreover, write D, C G for the decom-
position group of y and #D,, for the cardinality of D,; then 7(s) = (4p,s and
T(t) = C;)yt for each 7 € Dy, where (4p, is a primitive #D,-th root of unit;

(v) the local morphism between two marked points induced by f® may be
described as follows:

Ox o) Z kl[a]] = Oy, = K[]
a — b,

where (m, char(k)) = 1 if char(k) > 0 (i.e., a tamely ramified extension).
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Moreover, we shall call f* an admissible covering if there exists a morphism of pointed
stable curves (f*) : (Y*)" — Y* over Spec k such that the composite morphism f®o(f*)" :
(Y*) — X* is a Galois admissible covering over Spec k.

Let Z° be the disjoint union of finitely many pointed stable curves over Speck. We
shall call a morphism Z* — X* over Spec k multi-admissible covering if the restriction
of Z* — X*® to each connected component of Z* is admissible. We use the notation
Cov*™™(X*) to denote the category which consists of (empty object and) all the multi-
admissible coverings of X*. It is well-known that Cov®™(X*) is a Galois category. Thus,
by choosing a base point x € X\ Dy, we obtain a fundamental group 7™ (X*, z)
which is called the admissible fundamental group of X*. For simplicity of notation,
we omit the base point and denote the admissible fundamental group by I1y.. Write

I,

for the étale fundamental group of X* (i.e., the étale fundamental group of X'). Note that
we have natural surjections (for suitable choices of base points)

S t

For more details on admissible coverings and the admissible fundamental groups for
pointed stable curves, see [M1], [M2].

Remark 1.2.1. Let Mq,n be the moduli stack of pointed stable curves of type (g,n)
over SpecZ and M, , the open substack of M, parametrizing pointed smooth curves.
Write ./\_/llg(ji for the log stack obtained by equipping ﬂgm with the natural log structure

associated to the divisor with normal crossings M, \ M,,, C M, relative to Spec Z.
The pointed stable curve X* — Spec k& induces a morphism Speck — Mg, .. Write
sl)(ég for the log scheme whose underlying scheme is Speck, and whose log structure is

the pulling-back log structure induced by the morphism Speck — M We obtain

gx,mx:-
a natural morphism sl)‘;’-g — Hbg induced by the morphism Speck — M

agx.,mx gx,mx and

log . log —log log . .
a stable log curve X' := s Xm:ﬁ . M, 1 over sy whose underlying scheme is

X. Then the admissible fundamental group Ilyx. of X* is naturally isomorphic to the
geometric log étale fundamental group of X% (i.e., Ker(m (X'°8) — m(s'%))).

Remark 1.2.2. If X* is smooth over k, by the definition of admissible fundamental
groups, then the admissible fundamental group of X* is naturally isomorphic to the tame
fundamental group of X \ Dx.

In the remainder of the present paper, we suppose that the characteristic of k is p > 0.

Definition 1.3. We define the p-rank of X* to be
o(X*) := dimg, (I3 @ F,) = dimg, (15 @ F,),

where (—)? denotes the abelianization of (—).
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Remark 1.3.1. For each v € v(I'xs), write X, for the irreducible components of X
corresponding to v. Then it is easy to prove that

(X =0(X)= Y o(X.)+rx,
vev(Txe)

—

where (—) denotes the normalization of (—).

Definition 1.4. Let II be a profinite group, n a natural number, and ¢ a prime number.

(i) We denote by II(n) the topological closure of the subgroup [II, ITJII" of II. Note
that I1/T(n) = I1** @ (Z/nZ).

(il) We set v,(II(n)) := dimg, (II/II(n)) € Zso U {oo}.

(iii) Let » be a natural number such that [II : TI(n)] < co. We define (-average of 11
to be

7" (n)(I) := 7 (T(n))/[IT: TI(n)] € Q>0 U {oo}.
Morever, suppose that [IT : TI(¢* — 1)] < oo for each natural number ¢t € N. We denote by

Arv,(TT) := tlinog V(0= 1)(I1) € Qs U {0},

and we shall call Arv,(II) the limit of /(-average of H.

The following highly nontrivial result concerning the limit of p-average of X*® was
proved by Tamagawa (cf. [T4, Theorem 3.10]), which plays a fundamental role in the
theory of combinatorial anabelian geometry of curves over algebraically closed fields of
characteristic p > 0.

Theorem 1.5. Suppose that, for any v € v(['xs) C v(Fi?f), F‘;?f is O-conmected at v.
Then we have
Arv,(Ilxe) = gx — rx — #v(T')"=L,

Remark 1.5.1. Tamagawa proved Theorem 1.5 as a main theorem of [T2] in the case
of smooth pointed stable curves by developing a general theory of Raynaud’s theta divi-
sor. This result means that, if X* is a smooth pointed stable curve, then there exists a
group-theoretic algorithm whose input datum is IIy., and the output datum is (gx,nx).
Afterwards, in order to compare the admissible fundamental groups of the generic fiber
and the special fiber of a pointed stable curve over a complete discrete valuation ring with
positive characteristic residue field, Tamagawa extended the result to the case of arbitrary
pointed stable curves by using a result concerning the abelian injectivity of admissible
fundamental groups (cf. [T4]).

Remark 1.5.2. Let Z* be a pointed stable curve over k. Then there exists a prime-to-p
solvable Galois admissible covering (i.e, the Galois group of the admissible covering is
solvable) W* — Z* such that the genus of the normalization of each irreducible com-
ponent of W* is positive, that the dual semi-graph I'yye of W* is 2-connected, and that

#(u ()< = 0.

12



Remark 1.5.3. Let X?, i € {1,2}, be pointed stable curves of type (gx,,nx,) over an
algebraically closed fields k; of characteristic p and ITxs the admissible fundamental group
of X?. Suppose that

¢ . HXI' - HX2-

is an open continuous surjective homomorphism, and that (gx,,nx,) = (9x,, nx,). Since
¢ induces an isomorphism of the maximal prime-to-p quotients of Ilxs and Ilxs, we have

Arv,(Ixs) > Arv,(Ilxy).

Definition 1.6. Let f*:Y* — X*® be an admissible covering over k of degree deg(f*).
For any e € e(I'xs) (resp. e € ¢°P(I'xs)), write x, for the node (resp. marked point)
corresponding to e. We define the following sets:

e = {e € e (Txe) | #(f7) M (we) = 1},

= {e € e (Txa) | (/%) (z) = deg(F*)},
e(J)”I-)’ra = {e € €Op<PX') | #(f.)_l(xe) - 1}7
vfe := {v € v(I'x+) | the number of the irreducible components of (f*)~(X,) is 1},
and

vie == {v € v(I'x+) | the number of the irreducible components of (f*)1(X,) is deg(f*)}.

Note that, if the Galois closure of f*® is a p-Galois admissible covering (i.e., the Galois
group is a p-group), then the definition of admissible covering implies that

e = B = 0.

Lemma 1.7. Let k;, i € {1,2}, be an algebraically closed field of characteristic p > 0, £
a prime number, X? a pointed stable curve over k; of type (g,n). Let f*:Y.* — X?, i€
{1,2}, be a Galois étale covering over k; of degree £, I'xs and I'ye the dual semi-graphs
of X and Y;?, rx, and ry, for the Betlti numbers of I'xs and I'ys, respectively. Suppose
that rx, = rx,, that #v(I'x,) = #v(l'x,), and that #e(I'x,) = #e(T'x,). Then we have

#vj{.’ > #vjcg if and only if ry, < ry,.

Moreover, we have
Sp __ Sp ; _
#Uff = #va. if and only if ry, = Ty,.

Proof. Since X7 and X3 are same type, we have #e”(I'xs) = #e(T'xs). Moreover, since
fi and f5 are étale coverings, we have

Py, = G (Dxy) = #0(Txp) — (0= D +1

and

vy = (e (D) — #0(Txg) — (€~ DA + 1
Then we obtain that ry, < ry, if and only if #v;? > #’Uz:, and that ry, = ry, if and only
if #vf{f = #U;S. O

13



2 Line bundles, sets of vertices, and sets of edges

We maintain the notations introduced in Section 1. Let ¢ be a prime number. We define
a subset of v(I'xe) to be

v(Dxe)”% = {v € v(Dxe) | dimg,HL (X, Fy) > 0}.

Write M§ and My? for H} (X*,F,) and H' (T x., Fy), respectively. Note that there is a
natural injection My < M$. induced by the natural surjection ITx. — II'g5. Moreover,
we take

M = coker(My? < ME.).

The elements of M¢. correspond to étale, Galois abelian coverings of X* of degree /.
Let Vi'ye C M. be the subset of elements whose image in My is not 0, and « € Vixe.
We denote by

X, —X*

for the étale covering correspond to the line bundle o and denote by I'xe the dual semi-
graph of X?. Then we obtain a map

L Vixe = Z
that maps a — #(v(I'xs)). We define
‘/K,X‘ g VZX‘

to be the subset of elements o which ¢ attains its maximum (i.e., t(a) = {(#v(I'xs)—1)+1)
and define a pre-equivalence relation ~ on Vj x. as follows:

let o, B € Vp xe; then a ~ B if | for each A, i € Fy for which Ao+ puf8 € V.,
we have Aa + puf € Vi xe.

Then we have the following result (see also [Y1, Section 2]).

Theorem 2.1. The pre-equivalence relation ~ on Vy x« defined above is an equivalence
relation. Moreover, we have a natural bijection

Kexe : Vixe) ~= v(Txe)” 0%

Proof. For any 0 € Vj xe, ¢(0) attains its maximum implies that there exists a unique
irreducible component [ 55 C X3 whose decomposition group is not trivial. We write
I%. C X* for the image of 1'35(5 of the covering morphism X3 — X*. Note that I{. €
v(Txe)>% Then Vj xe = 0 if and only if v(T'x«)>%¢ = 0.

We suppose that v(Ixe)”% #£ (. Let a, 3 € Voyxo. If I§. = If(., then, for each
A\ € FY for which Aa + uf # 0, we have I3ot"’ = I¢. = I%.. Thus, o ~ 3. On
the other hand, if a ~ 3, we have I{. = [ )6(.; otherwise, there exist two irreducible
components of X, ; whose decomposition groups are not trivial. Thus, a ~ § if and only
if I$e =1 )B( This means that ~ is an equivalence relation on Vj xe.
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Moreover, we obtain a natural morphism
: >0,¢
kexe t Vixe/ ~— v(Ixe)

that maps [0] — I%., where [§] denotes the image of § in V x«/ ~. Let us prove that x ye
is a bijection. It is easy to see that xy x« is an injection. For any irreducible component
X, € v(T'x+)>% we may construct an étale, Galois abelian covering f* : Y* — X* of
degree ¢ such that X, is the unique irreducible component of X*® whose inverse image
(f*)~1(X?) is connected. Then the cardinality of the set of irreducible components of Y®
is equal to ¢(#v(I'xs) — 1) + 1. Thus, we obtain an element of V; x« corresponding to Y°.
This means that kg xe is a surjection. We complete the proof of the theorem. O

Remark 2.1.1. Let Brimes be the set of prime numbers and ¢, ¢’ € PBrimes prime numbers
distinct from each other. Write

Vixs/ ~ and Vi xo/ ~
for the sets induced by £ and ¢ defined as above, respectively. Suppose that v(I'x)>%¢ C
v(xe)>%". Note that v(I'xe)>%! = v(I'xe)>%" if £ and ¢ are not equal to p. Then we

claim that there is a natural injection
Vixe/ ~o= Vi xe/ ~.

For each a € V;x» and each o/ € Vp xe, we write Y2 — X°® and Y% — X* for
the Galois admissible coverings corresponding to o and o, respectively. Consider the
connected Galois admissible covering

Y xye YO = X°

over k with degree £¢'. Then it is easy to see that a and o/ correspond to same irreducible
component if and only if the cardinality of the set of irreducible components of Y7 X xe
Y? — X°* is equal to

0 (#v(Lxe) — 1) + 1.
Then we obtain a natural injection Vj xe/ ~~ Vi xo/ ~. In particular, if £ and ¢’ are not
equal to p, then we have a natural bijection

Vixe] ~ Virxe] ~

Remark 2.1.2. Let ¢° : Z°* — X* be a Galois admissible covering over k with degree
deg(g°®), I'zs the dual semi-graph of Z*, and ¢ a prime number such that (¢,deg(g®)) = 1.
We denote by

’7;?X7>07€ . U(FZ.)>O,€ N U(FX.)>O,€
the morphism of sets of vertices induced by ¢*. Write V; zo and V x« for the sets of line
bundles defined as above.

We have a natural map
x,{
Voo Veze) ~— Vixe/ ~

defined as follows. For each o € Vj z., we may define

7ee ([a]) = faxe],

where aye € Vp xo such that the following conditions are satisfied:

15



(i) axe induced a line bundle aze = 5., ¢ via the pull-back morphism
axe

induced by ¢°, where L, is a subset of V} z« such that, for any 81, 82 € Lq.

distinct from each other, then [5;] # [B2], ¢g, # 0, and cg, # 0;

(ii) there exists 8 € Lq,. such that 8 ~ a.

vex,l

It is easy to check that v, is well-defined, and that the following diagram

g°
W,ZI/N % U(FZ.)>O’Z

vex,l vex,>0,0
Vg Vg

W7X./ ~ ﬂ) v(FX0)>O’€

1s commutative.

In the remainder of this section, suppose that the genus of the normalization of each
irreducible component of X* is positive, that I'xe is 2-connected. We shall call that

(0, d, f*:Y*— X*)
is a triple associated to X* if

(i) ¢ and d are prime numbers distinct from each other and from p;

(i) £ = 1 (mod d); this means that all d"* roots of unity are contained in Fy;
moreover, we write G4 C F)* for the subgroup of d"™ roots of unity;

(iii) f*:Y*:= (Y, Dy) — X* is a Galois étale covering whose Galois group
is isomorphic to Gy (note that, since the genus of the normalization of each
irreducible component of X* is positive, f* exists);

(iv) #vie = 0.
We fix a triple
(0, d, f*:Y*— X*)
associated to X*. Write M{% and My« for H (Y*, F,) = Hg (Y, F,) and Hom(Ily.,TF,),
respectively, where Ily. denotes the admissible fundamental group of Y*. Note that there

is a natural injection Mg, < My.. induced by the natural surjection ITye —» II5t.. Then
we obtain an exact sequence

0 — Mt — Mye — M% := coker(Mit < My.) — 0

with a natural action of G.

Let My, C My be the subset of elements on which G4 acts via the character
Gq — Fj, and Ujy. C My« the subset of elements that map to nonzero elements of
My g, - Let o € Ujy.. Write

g Y —=>Y*
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for the admissible covering corresponding to the line bundle a. Then we obtain a mor-
phism
€:Ujye = Z

that maps o to #e(I'ys), where I'ys denotes the dual semi-graph of Y,3. We define two
subsets of Ujy. to be

U@ Yo i ={a € Uy | #e;{;a = d},

and
Upye :={a € Uly. | #ege™ = d}.

Note that UP$ Iye (resp. U,V.) is not empty. Moreover, we define a pre-equivalence relation
~ on Up¥. (resp. U,y.) as follows:

let a, € Upg. (resp. o, € UjYs), then a ~ f if, for each \,p € F) for

mp

which Aa + 8 € Ujy., we have Aa + puf3 € UpY, (resp. Upys)-
Then we have the following result.

Theorem 2.2. The pre-equivalence relation ~ on ey. (resp. Uémﬁ.) defined above is
an equivalence relation, and, moreover, the quotient set ZY'/ ~ (resp. U;y./ ~) is
naturally isomorphic to e (I'x+) (resp. e°P(I'xe)).

Proof. For each o € UZ‘}., since the image of a is contained in My%  , we obtain that
the action of G4 on the set {yc},c o C Nod(Y®) is transitive, where Nod(—) denotes the

set of nodes of (—). Thus, there excsts a unique node x, of X* such that f*(y.) = x, for
each e € ed ;e erte ez, € I'xe for the edge corresponding to z,.

Let 3,7 € Upy.. If ed = ed " then, for each A, pu € F)¢ for which A + puy # 0, we

have ¢ = %™ = ed " Thus B ~ ~. On the other hand, if 3 ~ ~, then we have
96+ 9s 9y

1 1 1 1 1
egz;ra = eg¢ 5 otherwise, we obtain #ec;a = 2d. Thus, 8 ~ ~v if and only if eC = e
Y + Y

This means that ~ is an equivalence relation on Ue Ve-
We define a map
19@ Xe U;;i/o/ ~— eCl(FXO)

that maps [a] — e,,, where [o] denotes the image of a in Up{./ ~. Let us prove that
195 “» 1s a bijection. It is easy to see that ﬂz “e is an injection. On the other hand, for each
e € e?(I'xe), the structure of the maximal pro-¢ admissible fundamental groups implies
that we may construct a Galois covering of h* : Z* — Y* such that the line bundle
corresponding to h*® is contained in Ue ye. Then 192%(. is a surjection.

Similar arguments to the arguments given in the proof above imply that the “resp”
part holds. This completes the proof of the theorem. O

Remark 2.2.1. In this remark, we prove that the sets
@Y‘/N and ZY'/N

do not depend on the choices of the triples associated to X*.
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Let
(6*7d*7 f.,* : Y.,* % X.)
be any triple associated to X. Hence we obtain a resulting set U;fly.,* / ~ and a natural
bijection
19 * X UIidY. */ ~— GCI(FXO)
First, suppose that ¢ # ¢*, and that d # d*. Then there exists a natural bijection

UI}kc’lyo,*/ N_> ZY'/ ~

which compatible with the bijections ¥} y. and ¥}%. as follows. Let o € Uj§. and
o € Updy... Write Y2 — Y* and Ya' * 5 Y** for the Galois admissible coverings
corresponding to o and o, respectively. Let us consider

Yo: X xe Y°®r.

o*

Thus, we obtain a connected Galois admissible covering Y.* x xe Yo" — X*® of degree
dd*¢¢*. Then it is easy to check that o and a* correspond to same nodes if and only if
the cardinality of the set of nodes of Y* X ye Y** is equal to

dd* (00 #e (T xe) — 1) + 1).

In general case, for any two given triples (¢,d, f* : Y* — X*) and (¢*,d*, f**: Y** — X*)
associated to X*, we may choose a triple

(6**’d**’ f.,** : Y.,** _) X.)

associated to X*® such that ¢** £ 0, (** £ 0*, d** # d, and d** # d*. Hence we obtain a

resulting set UpL y.../ ~ and a natural bijection 03 yo : Ut yene/ ~— €?(Txe). Then

the proof above implies that there are two natural bijections
UZ**YQ**/NN ZY./N aHdU**y.**/Ng (*Y'*/N-
Thus, we obtain Updy../ ~= Up§./ ~.

Remark 2.2.2. Let ¢° : Z®* — X* be a Galois admissible covering over k& with degree
deg(g®) and I'ze the dual semi-graph of Z°. Let

(0,d, ¥y : Yy — X°)

be a triple associated to X* such that (¢, deg(¢®)) = (d,deg(¢®)) = 1. Then we obtain a
triple
(b,d, fy Y, =Yg Xxe Z° — Z°)

associated to Z* induced by (¢,d, f% : Yy — X*). Moreover, we obtain two natural maps
,_y;l.,edge . €C1(FZ°) - ecl(FX.)

and
fy;)?,edge : BOP(on) — BOP(Fxo)
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induced by ¢®. Write UZ?,Z. and Ue ¢ for the sets of line bundles defined in above. Then
we have a natural map

ZY'/ ~— eY-/N

defined as follows. For each a € Uy§ vz, we define

nd,/¢
g ([]) = laxe),
where ax. € UZ?,Z. such that the following conditions are satisfied:

(i) aexe induced a line bundle aze = ZﬁeJ cgf via the pull-back morphism
induced by ¢°®, where J,,., is a subset of Ue Vs such that, for any 1, 82 € Ja,.
distinct from each other, then [51] # [B2], ¢, # 0, and cg, # 0;

(i) there exists B € J,, such that 8 ~ a.

By applying similar arguments to the arguments given above, we obtain a natural map

Yo Ulyy/ ~= Upye/ ~

It is easy to check that ’y;l.d and fy;ip are well-defined, and that the following diagrams

nd

19ZZ' cl
eY'/N —— e (I'ze)

d l,ed
w| e

97%e
EY'/ ~ e (FX')a

and
mp
0,Z®

UZ;I/)Z./N —— €° (FZQ)

mp op,edge
Vg J/ 'Yg. l

U/ ~ —5% eop(Ixa).

are commutative.

Next, let us calculate the cardinality #Uj$. (resp. #U,Y.) of the set Up§. (resp.
Upys). We define

Ue yeo i =1{a€ UZ?/. | g is ramified over (f*)*(z.)}

g° is ramified over (f*)"(z.)})

(resp. Uyy. . :i={a €U, e

for each e € e(I'xs) (resp. e € e°P(I'xe)), where x, denote the node (resp. the marked
point) of X* corresponding to e. Then, for each e, ¢’ € e?(I'xs) (resp. e, € eP(I'ye))
distinct from each other, we have

Ugy. mUzyo :® (l"esp. Ufﬁ.’eﬂUgﬁ).’e/:@)-
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Moreover, we have
_ mp __ mp
Uy = U UpSe . (resp. Upys = U Upyeo)-
e€e(I'xe) eceoP(T'xe)

We fix a closed (resp. an open) edge e¢ € e(I'xe) (resp. e € eP('xs)). Write Y
(resp. Y. P) for the normalization of the underlying curve Y of Y* at (f*)~!(x.) and

nl? Y = Y (resp. nl? : Y — Y)

for the resulting morphism. Since the genus of the normalization of each irreducible
component of X* is positive, and T'ye is 2-connected, we have that Y (resp. Y°P) is
connected, and that the genus of the normalization of each irreducible component of Y.!
(resp. Y.°P) is also positive. Moreover, since the marked points are smooth points of Y,
we have nleP is an identity.

Proposition 2.3. Write gy for the genus of Y*. We have
HU EY. — (2(gy—d)+1 _ p2(gy—d) (resp. #U" ZY' — p29v+1 _g2gy).
Moreover, we have
HURL. = e (D) (0D (20r=D) (resp. $UPP, = e (Da) (2971 — (27)),
Proof. Write ES (resp. EP) for (f*onld)~(z.) (resp. (f*onl®)~*(z.)). Then Upg. .

(resp. U,y. .) can be naturally regarded as a subset of
He (Y \ BEL )
via the natural open immersion Y\ B¢ < Y (resp. Y.°P \ E%P < Y°P). Write
L (resp. L)

for the Fy-vector space generated by Up§., (resp. U;Y..) in HE (Y \ EZFy) (resp.
H. (V2P \ E% F,)). Then we have

Ue o = L¢ \Hy (Y Fo) (resp. Upye . = L\ Hy (VP Fy)).
Write HS™ (resp. HOP™) for LY /HL (Y Fy) (vesp. LoP/HL (Y.P,Fy)). We have an
exact sequence as follows:
0 — Hg (Y Fe) = LY — HS™ =0
(resp. 0 — HL (Y. P F,) — L% — H®™™ — 0).

On the other hand, since the action of G4 on (f*)~!(z.) is translative, the structure of
the maximal prime-to-p quotient of Ily. implies that

dimg, (™) = 1 (resp. dimg,(HP™) = 1).

Since
ding, (Hg, (Y, Fr)) = 2(gy — d) (vesp. dimg, (Hg (Y, P, Fr)) = 2gv),
we obtain
HUD ZY. — (2(gy—d)+1 _ p2(gy —d) (resp. #U;I}E. — (29v+1 _ngy)‘
This completes the proof of the proposition. n
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Finally, for each e € e(T'y+) (resp. e € ¢°P(I'y+)) and each m € Zs,, we define a
subset of Uy§. , (resp. U;Ys ) to be

dsp=m . _ d _
Uzyfi "i={a e Uy.. | #Uzg =m}

(resp. Uy " i={a € Uy., | #vje =m}).

If e is a closed edge corresponding to a node which is contained in two different irreducible
components of Y*, then

Uy~ = 0 for m > #v(T'ys) — 1.

If e is either an open edge or a closed edge corresponding to a node which is contained in
a unique different irreducible component of Y*, then

U= — ) for m > Ho(T'y+).

3 Mono-anabelian reconstruction algorithm for dual
semi-graphs

We maintain the notations introduced in Section 2. First, let us define the term “mono-
anabelian reconstruction”.

Definition 3.1. Let F;,i € {1,2}, be a geometric object and Il a profinite group associ-
ated to the geometric object F;. Given an invariant Invz, depending on the isomorphism
class of F; (in a certain category), we shall say that Invz, can be mono-anabelian re-
constructed from Il if there exists a purely group-theoretic algorithm whose input
datum is II£,, and whose output datum is Invg,.

Suppose that we are given an additional structure Addg, (e.g., a family of subgroups,
a family of quotient groups) on the profinite group Iz depending functorially on F;; then
we shall say that Addz, can be mono-anabelian reconstructed from Ilz, if there exists
a purely group-theoretic algorithm whose input datum is Iz, and whose output datum
is AACld]:Z

We shall say that a map (or a morphism) Addz, — Addz, can be mono-anabelian
reconstructed from Il — Ilz, if there exists a purely group-theoretic algorithm whose
input datum is Il — Ilz,, and whose output datum is Addz, — Addg,.

Let us fix some notations. For each open subgroup H C Ilye, we write X7, I'xs,
and rx,, for the pointed stable curve of type (gx,,nx,) over k corresponding to H,
dual semi-graph of X7, and the Betti number of I'xs , respectively. Then we obtain an
admissible covering

Xy — X*

and a natural morphism of dual semi-graphs

FX;{ —> FX.
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induced by the admissible covering. Moreover, if H is an open normal subgroup, then
['xs admits a natural action of Ilx./H induced by the action of IIx«/H on X3. Note
that we have I'xs /(Ilx+/H) = I'xs. Moreover, we introduce the following conditions for
X*:

Condition A . We shall say that X* satisfies Condition A if the following conditions are
satisfied:

e the genus of the normalization of each irreducible component of X* is positive;

e ['x. is 2-connected;

o #OIEE =0,

In the remainder of the present section, we suppose that X*® satisfies Condition A.
Then we have the following lemma.

Lemma 3.2. The data p := char(k), gx, nx = #e®(I'xs), rx, and IS can be mono-

anabelian reconstructed from Ilx., where H??’p denotes the maximal pro-p quotient of
to

ITe.

Proof. See [Y1, Lemma 5.4]. O

Lemma 3.3. (i) The set v(I'x+)”%" can be mono-anabelian reconstructed from Ilxe.
(i) Let H C Ilxe be any open normal subgroup. Then the natural map

U(FXZI)>O’p — U(FX0)>O’p

can be mono-anabelian reconstructed from the natural injection H — Il xe.

(iii) The cardinality #v(I'xe) of v(I'xe) can be mono-anabelian reconstructed from
IIye.

Proof. First, let us prove (i). By applying Lemma 3.1, we obtain that V§. can be mono-
anabelian reconstructed from ITxe. Then to verify that v(I'x+)”%? can be mono-anabelian
reconstructed from IIx., it is sufficient to prove that V), x. can be mono-anabelian recon-
structed from Ily.. Let a € V. and H, C Ilxe the open normal subgroup corresponding
to a. Write X} for the étale covering corresponding to H, and I' X3 for the dual
semi-graph of X7, . Then we have the following claim:

Claim:
#u(lxy, ) =p(#vlxe) — 1) +1
if and only if
"Xy, = PIx.

Let us prove the claim. Since ry, = #ed(FX;I ) —#v(lxs )+ 1 and ry =
#e(Cye) — #v(Txe) + 1, we have 7, = prx holds if and only if

#ed(rx;]a) —#v(lx; ) = p#e?(Txe) — p(#v(lxe) — 1) — 1.
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Since Ixe /Hy = Z/pZ, we obtain #e”(Txs ) = p#e”(I'x+). Thus,

#U(FX?{Q) =p(#v(xe) — 1)+ 1
if and only if ry, =prx.

By the definition of V, x«, the claim above implies that V), xe can be mono-anabelian
reconstructed from ITy.. Then we obtain that the set v(I'xs)”%? can be mono-anabelian
reconstructed from Il ye.

Second, we prove (ii). The natural injection H < IIx. induces a natural morphism

Hom(T13%, F,) — Hom(H™ F,).

Then it is easy to see that v(I" XI-{)>O’1’ — v(LCxe)”%P can be mono-anabelian reconstructed
from H < IIx. follows from Remark 2.1.2. This completes the proof of (ii).
Next, we prove (iii). Since, for each open normal subgroup H C Ilx., we have

Vyxy, © Hom(H™ F,),
Vp.xe, admits a natural action of Ilye/H via the natural outer representation
Ixe/H — Out(H) := Aut(H)/Inn(H)
induced by the natural exact sequence
1 - H—1lxe > Ixe/H — 1.

By Theorem 1.5, there exits a open normal subgroup () C Il . such that the p-rank of the
normalization of each irreducible component of the curve corresponding to () is positive.
Then we obtain that

#u(D'xe) = #( lim v(T'xg )07/ (Lxe /N)).

NClIIye open normal
This completes the proof of the lemma. n

Lemma 3.4. The data #¢(I'xs), s and 1% can be mono-anabelian reconstructed
from 1l x..

Proof. By Lemma 3.2 and Lemma 3.3 (iii), we have rx and #v(I'xe) can be mono-
anabelian reconstructed from Ilye. Then

#e(Txe) i=rx + #v(lxe) — 1

and
HeP(Txe) :=n — #e(Txe)

can be also mono-anabelian reconstructed from Ilx.. We set

Et(Ilxe) := {H C Ilx. open normal | #e”(Ixs ) = #(G/H)#¢ (Ux)
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and #P(Ixs) = #(G/H)#e™ (T xo)}.
Then we have /
Y. =Ix./ (] H

HEEt(Tye)

On the other hand, we set
Top(Ilx.) := {H C 1I$. open normal | gx,, —rx, = #(G/H)(gx —rx)}.

Then we have
e =1/ () H
HeTop(ITye)

This completes the proof of the corollary. n
Next, we prove the mono-anabelian version of Theorem 2.1 and Theorem 2.2.

Theorem 3.5. (i) Let ¢ be an arbitrary prime number. Then the set
Vixe/ ~

can be mono-anabelian reconstructed from Ilxe.
(ii) Let ', 0" be prime numbers distinct from each other such that " # p, then there
18 a natural injection
Vi xo| ~= Vir xo | ~

which fits into the following commutative diagram

VE’,X'/N M 'U(FX.)>O’Z,

! !

W”,X'/ ~ —}HZII‘X. /U(Fxo)>0’ﬁl/.

Moreover, the injection can be mono-anabelian reconstructed from Ilxe.
(iii) The set of vertices v(I'xe) can be mono-anabelian reconstructed from Il xe.

Proof. By applying Lemma 3.4, 1I{. can be mono-anabelian reconstructed from ILye.
Then by similar arguments to the arguments given in the proof of Lemma 3.3 (i), (i)
follows immediately.

Let o' € Vp xe and o € Vi xo. Write Y3 and Y2, for the pointed stable curves
corresponding to o/ and «”, H, and H,~ for the open subgroups of IIx. corresponding to
Y? and Y}, respectively. Then we obtain that

o
a//

°
Ya/ X Xe

is a connected pointed stable curve corresponding to the open subgroup H, N Hyr C 1l xe.
Moreover, Lemma 3.3 (iii) implies that the cardinality of the set of irreducible components
of Y% X xe Y2, can be mono-anabelian reconstructed from H, N Hy» C Ilx.. Then (ii)
follows from Remark 2.1.1.
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On the other hand, Lemma 3.2 implies that p can be mono-anabelian reconstructed
from IIx.. Moreover, we note that, since X* satisfies Condition A, we have

U(FX0)>0’€ = ’U(Fxo>
when ¢ # p. Then (iii) follows from (i) and (ii). O

Theorem 3.6. (i) Let
(0,d, f*:V* = X*)

be an arbitrary triple associated to X*®. Then
UZ?"/ ~ UZ;B'/ ~

can be mono-anabelian reconstructed from Ilxe.
(i) Let
(0, d, Y = X*) and (0", d", f*" YY" — X°)

be triples associated to X*. Then there are natural bijections

Upyar | ~= Upispan ]~ USS L[ ~w—= UNR L)~

oy’ oy oy oy

which fits into the following commutative diagram

nd

nd 192le' cl
U )~ )

| H

nd

nd 195”’)(' cl
Ue//’yo,”/N — € (FX‘)7

and
mp

Upyer/ ~ —5 eP(Ixe)

l H

mp
mp o xe o
Ug// Y.,”/ ~ € p(FX.)v
respectively. Moreover, the bijections can be mono-anabelian reconstructed from Ilxe,
respectively.

(iii) The sets of closed edges and open edges
e (Txe), eP(Txe)
can be mono-anabelian reconstructed from Ilxe, respectively.

Proof. We only treat the case of nodes. First, let us prove (i). By the definition of U}y,
we have that the set of line bundles U;y. can be mono-anabelian reconstructed from ITxe..
Hence, to verify (i), it is sufficient to prove that the set of line bundles Up{.. C Uy can be
mono-anabelian reconstructed from Il y.. Write Iy« for the admissible fundamental group
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of Y*. Note that IIy. can be mono-anabelian reconstructed from Ilx.. Let o € UZ ye
and H, C Ilye the open normal subgroup corresponding to a. Write Y for the étale
covering corresponding to H, and I'ys for the dual semi-graph of Y3 . We observe that

a € UE%.

if and only if
#e (Y ) = U(#e Tys) —d) + d.

Since #e?(Yy ) and #e“(I'y+) can be mono-anabelian reconstructed from H, and Iy,
respectively. Then we obtain that U 2‘}. can be mono-anabelian reconstructed from Ilxe.
This completes the proof of (i).

Next, we prove (ii). Let o/ € Ulf}dy,’, and o € Ulf},dy,’,,. Write Y and Y7, for the
pointed stable curves corresponding to o/ and o , H, and H,» for the open subgroups of
IIxe corresponding to Y% and Y2, respectively. Then we obtain that

Ya.’ X xe Ya.”

is a connected pointed stable curve corresponding to the open subgroup H, NH,» C Ilxe.
Moreover, Lemma 3.3 (iii) implies that the cardinality of the set of irreducible components
of Y% X xe Y2 can be mono-anabelian reconstructed from H, N H,r C IIx.. Then (ii)
follow immediately from (i), Remark 2.2.1.

Next, let us prove (iii). By Lemma 3.2 and Lemma 3.4, p := char(k) and 1. can be

mono-anabelian reconstructed from Ily.. Then we may choose a triple
(fm,dm,f.’m . Y.,’” — Xo)

associated to X* group-theoretically from IIx.. Thus, (iii) follows from (i) and (ii). This
completes the proof of the theorem. n

Theorem 3.7. Let H C Iy« be any open subgroup.
(i) The natural maps

v(lxs) — v(Tx), ed(FXI-{) — e (xe), and e (Lxs ) — eP(xe)

can be mono-anabelian reconstructed from the natural injection H — Ilx., respectively.

(ii) Suppose that H is normal. Then the natural action of lx«/H on v(I'xs ) (resp.
e (Txs, ), e(Txs ) ) induced by the natural action of lixe /H on X}, can be mono-anabelian
reconstructed from the natural injection H < Ilxe.

Proof. Let us prove (i). Write Ny for the maximal open normal subgroup which is
contained in H. By Lemma 3.2, we may choose a prime number ¢ group-theoretically
from H and I xe such that ¢ # p (:= char(k)) and (¢, #(I1xe /Ny)) = 1. Similar arguments
to the arguments given in the proof of Lemma 3.3 (i), we obtain that

can be mono-anabelian reconstructed from Ilx., H, respectively. For each o € V; x« and
each ag € Vjxs, we write (o C Ilxe and (o, € H for the open normal subgroups
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corresponding to o and oy, respectively. Note that Qo N H # Q,,. Then, by Remark
2.1.2, we observe that
[om] = [a]

if and only if there exists oy € Vi xs such that ag ~ oy, and that
#U(FXEQQHQQH) = K#U(FX(.QQQH)’

where [a] and [ag] denote the images of o and ay in Vi x+/ ~ and V; xs / ~, respectively.
Thus, the natural map v(I'ys ) — v(I'x) can be mono-anabelian reconstructed from the
natural injection H — Ilye.

Next, let us prove that the natural maps of sets of edges can be mono-anabelian
reconstructed from the natural injection H < Ily.. We only treat the case of closed
edges. By Lemma 3.2 and Lemma 3.4, we may choose a triple

(f*’d*’ f.,* : Y.,* _> X.)

associated to X* group-theoretically from H and Ilyxe such that (¢*, #Ilxs /Ng) =1 and
(d*, #11xe /Ny) = 1. Write Hy..» C Ilx. for the open normal subgroup corresponding to
Ve, Write fy© : Yy — X for the étale covering corresponding to the open normal
subgroup H N Hy.. of H. Thus, the triple (¢*,d*, f** : Y** — X*) associated to X*
induces group-theoretically a triple

(0, d fxn Yo — X3)

associated to X7p;. Similar arguments to the arguments given in the proof of Lemma 3.6
(i), we obtain that

UZ(}.,*, UE@;{H
can be be mono-anabelian reconstructed from Ilx., H, respectively. For each € Ujf‘)i/.,*
and each [y € Ulff/;(;, we write Ps C Hys» C Ilxe and Ps,, € H N Hy.. C H. Note that
PsN HN Hye» # Pg,. Then, by Remark 2.2.2, we observe that

[Bu] = (8]

if and only if there exists S such that 5}, ~ g, and that
cl o cl
#6 (FXI.DBOPHH ) - g#e (FX;DﬁmHmHYo,* )’

where [3] and [8g] denote the images of 5 and By in Up§../ ~and U}S... / ~, respectively.
) Xy
Thus, the natural map e(I'xs ) = ¢(I'x) can be mono-anabelian reconstructed from the

natural injection H < Ilye.
Next, let us prove (ii). By lemma 3.2, we may choose a prime number ¢ group-
theoretically from H and IIye. such that ¢ # p (:= char(k)) and (¢, #(Ilx./H)) = 1.

Then there is an action of IIxe/H on the set of line bundles

W,X;{ g Hel’gt<XI.{7]Ff) = H0m<Hab7]F€)
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induced by the natural outer representation
Mye/H — Out(H)
induced by the following natural exact sequence
1> H —1lye > ye/H — 1.

Let a,a’ € Vi xs. We obverse that, for each o € llxe/H, o ~ o' if and only if o(a) ~
o(a’). Thus, we obtain an action of Ilxe/H on v(I'xs) group-theoretically from the
injection H < Ilxe. On the other hand, it is easy to check that the action of Ilxe/H
on v(I'xe ) obtained above coincides with the action of Ilxs/H on v(I'xs ) induced by the
natural action of Iy./H on X3;. This completes the proof of the “non-resp” part of (ii).

Next, let us prove the “resp” part of (ii). We only treat the case of closed edges. By
Lemma 3.2 and Lemma 3.4, we may choose a triple

(e, d fo"Y*r — X°)
associated to X* group-theoretically from H and Ilx. such that (¢*,#Ilx./H) = 1 and
(d*,#1lxe /H) = 1. Write Hys~ C Ilxe for the open normal subgroup corresponding to
Yer. Write fy© @ Yyo — X} for the étale covering corresponding to the open normal
subgroup Hye« := H N Hye.. of H. Thus, the triple (¢*,d", f** : Y** — X*) associated

H

to X* induces group-theoretically a triple

(& d 3, Yy, — X5)
associated to X7;. Note that Hye+ is an open normal subgroup of I1xe and

H
HX-/HY;(,* “Tlye/H X Z/d*"Z.
H

Thus, we obtain an action of IIys/H on

Uz(li/"* g Hét<YI;7*7 Ff) = Hom(H;z;JFZ)

XH

induced by the natural outer representation

HX-/H — on/Hy);H — Out(Hy;{H)
induced by the following natural exact sequence

1— Hy;(H — Ixe — HX./Hy;(H — 1.

Let 8,5 € Ulf‘dy.,*. We obverse that, for each 7 € Ilxe/H, g ~ [’ if and only if
b XH

7(8) ~ 7(f'). Thus, we obtain an action of Iy« /H on e?(I'xs ) group-theoretically from
the injection H < Ilxe. On the other hand, it is check to see that the action of IIxe/H
on v(I'xs ) obtained above coincides with the action of ITxs /H on e”(I'xs ) induced by the
natural action of IIxs/H on X7,. This completes the proof of the “resp” part of (ii). O
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Finally, we give a mono-anabelian reconstruction algorithm for dual semi-graphs.
Theorem 3.8. (i) The dual semi-graph
[ xe

can be mono-anabelian reconstructed from Ilxe.
(ii) For each open subgroup H C Ilxe, the natural map of dual semi-graphs

FX;{ —> FX.

can be mono-anabelian reconstructed from the natural injection H — Ilxe. Moreover, if
H C 1lxe. is an open normal subgroup, then the natural action of llxe /H on Lxe induced
by the natural action of llxe/H on X3, can be mono-anabelian reconstructed from the
natural injection H — Ilxe.

Proof. Theorem 3.7 implies that, to verify (ii), we only need to prove the dual semi-graphs
of X7, and X* can be mono-anabelian reconstructed from H and IlIx.. Hence we only
prove (i).

By Lemma 3.2 and Lemma 3.4, we may choose a triple

(6,d, f*:V* — X*)

associated to X* group-theoretically from IIx.. Write Hy. for the open normal subgroup
of IIxe corresponding to Y*. Then the sets of line bundles

UZ?"/ ™~ Uzllg'/ ~

can be mono-anabelian reconstructed from Hy. and IIx.. Let o € UZdy. U UZl ve be any
element. Write e, := {be, 1,be, 2} for the image of « in e(I'xs), where b, 1, be, 2 denote
the branches of e, (cf. [M5, Section 1]). To verify (i), we only need to prove that the
coincidence map QeFaX * can be mono-anabelian reconstructed from Ilx.. We only treat the
case where o € UE‘}.. Moreover, since the composition of maps

Upya™™ = Uy = Upe) ~ e?(Txe)
is a surjection, to verify (i), we may assume that o € Uzgi;fp:m.

Write Y3 — Y'* for the Z/{Z-admissible covering corresponding to a, Hy. for the open
normal subgroup of Hy. corresponding to Y7, and I'y. for the dual semi-graph of Y,7. Let
my = #v(Txe) — 2 and my = #v(I'xe) — 1. We observe that a € UpS="™ i e {1,2}, if
and only if 7

#v(Lys) = #v(Tye) — m; + m; = #v(T'xe) — my + lm,.
Since v(I'ys) and v(I'xe) can be mono-anabelian reconstructed from Hys and Ilx., re-
spectively, Uy$P=™ i € {1,2}, can be mono-anabelian reconstructed from Hy. and
I xe. ’
We define n to be my if U’ dP=m2 £ ) (i.e., a corresponds a node which is contained in

a unique irreducible component of X*), and to be m; if U’ =" — ) (i.e., a corresponds
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a node which is contained in two different irreducible components of X*). We may assume
that a € U;"7P=". Theorem 3.7 (i) implies that the natural map

Yo : v(Cys) = v(I'xe)
can be mono-anabelian reconstructed from H, < IIx.. Then we have

{CX (bea), Ce¥* (beo 2)} = {v € v(Ixe) | #95" (v) = 1}

This means that I'xe can be mono-anabelian reconstructed from Ilye.. This completes
the proof of (i). O

4 Reconstruction of sets of vertices, sets of edges,
and sets of genera via surjections

We fix some notations. Let k;, i € {1,2}, be an algebraically closed field of characteristic
p > 0 and ¢ # p a prime number. Let X?,i € {1,2}, be a pointed stable curve of type
(9x,,nx,) over k;, Ilxs the admissible fundamental groups of X7, I'xs the dual semi-graphs

of X?, and rx, the Betti number of I'ys. Moreover, we introduce the following condition:

Condition B . We shall say that X7 and X3 satisfy Condition B if the following condi-
tions are satisfied:

hd (gxl,nxl) = (QXQ,NXQ);
o #u(l'xs) = #v(I'xs);
[} #€<FX1') = #6(FX2~)

In this section, we suppose that X7 and X3 satisfy Condition A and Condition
B, and that
¢ xe — Ilys

is an open continuous surjective homomorphism of the admissible fundamental groups of
X7 and X3. Denote by

(gan) = (gXl’nXl) = (nganz)'

We will prove that the surjection ¢ : IIyxs — Ilxs induces bijections between the sets
of vertices, the sets of closed edges, and the sets of open edges of the dual semi-graphs
['xs and 5T xg3, respectively; moreover, for each v € v(l x¢), the genus of the normaliza-
tion of the irreducible component of X7 corresponding to v is equal to the genus of the
normalization of the irreducible component of X3 corresponding to the image of v.

Since X} and X3 are pointed stable curves of type (g,n), the sujection ¢ : Ilys —
IIx; induces a natural isomorphism of maximal prime-to-p quotients of the admissible
fundamental groups , S

P Hé’q — Hg(z..
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Then, for each G-Galois admissible covering (i.e., whose Galois group of the covering is
isomorphic to G)
fToY? = X7 (vesp. f3:Y5 — X3)

over ky (resp. ko) such that (#G,p) = 1 induces a G-Galois admissible covering
f3 Y5 — X5 (vesp. f7: Y — X7).

over kg (resp. ki). For i € {1,2}, write gy,, for the genus of Y;*, T'ye for the dual
semi-graph of Y;*, and ry, for the Betti number of I'y..

Lemma 4.1. Let f} : Y* — X7 be a Galois étale covering of degree ¢ over ki and
I3 Y? — X3 the Galois admissible covering of degree { over ko induced by fy. Suppose
that #vj{.’ =m. Then we have
#ecl,ra+ l#eop,ra_i_#vsp <m
f3 9T fS 3 ="
Proof. Since f} is an étale covering, the Riemann-Hurwitz formula implies that

op,ra

1
i — 9y, = _§(£ - 1)#6f5
On the other hand, we have
ry, = (e (Dxs) — #v(Dxs) + #pe — (#vje + 1

= Z#eCI(FXIo) — #U(Fxlo) — (£ - 1)m +1
and ,
Ty, = é#e%.’et + #e;zéra - ﬂ#vjcg —#vs + 1.
Since #e(I'xs) = #e(I'xg) and #v(I'xs) = #v(I'xs), we obtain that
Pyt = vy = (€= D™ 1 (0= 1) (0% — m)

Moreover, by using Theorem 1.5, we have

9vi — 9y, > Tyy = Tv,-
Thus,
1
clra op,ra Sp
This completes the proof of the lemma. m

Lemma 4.2. Let f} : Y® — X7 be a Galois étale covering of degree ¢ over ki and
fs Yy — X3 the Galois admissible covering of degree ¢ induced by f; over ko. Suppose
that #vj{.’ = 0. Then f5 is an étale covering, and #vj}; = 0.

Proof. The lemma follows immediately from Lemma 1.7. O
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Lemma 4.3. Let f : Y* — X} be a Galois étale covering of degree ¢ over ki and
fs Yy — X3 the Galois admissible covering of degree { over ko induced by ff. Suppose
that #vj}lf = 1. Then f5 is an étale covering.

Proof. In order to verify the lemma, we only need to prove that
#ecl ra #eop ra —0.

By applying Lemma 4.1, we have

# clra+ #eopra+#vsp < 1.

clra

Suppose that #e # 0. The structure of the maxmial prime-to-p quotient of ad-

missible fundamental groups imply that either #ed ,* =1 and #eOP > 1 or #ed > 2

holds. Then we obtain a contradiction. Thus, we have #ed = 0.

Suppose that #eof 2 0. Since #ed > = 0, we have #eOP T =2 Let ¢! # pbe a
prime number distinct from ¢, and let

95 27 = X3

be a Galois étale covering of degree ¢ over k; such that #USp = 0. Then Lemma 4.2
implies that the Galois admissible covering

g5 2y — X3

of degree ¢’ over ky induced by g3 is an étale covering such that #uv’s
[’z for the dual semi-graphs of Z7 and Z3, respectively. We have

#u(lxs) = #v(lz:) = #v(Lz5) = #v([xy),
C#eP(Dxs) = #eP(Tzs) = #eP(Lz) = U'#eP(Txy),

% = (. Write I'ze and
92 1

and
U'#e (Dxs) = #e™(Tzs) = #€(Dzg) = '#e(xy).
Write W and W3 for Y)* xx» Z7 and Y5 xx; Z3, respectively. Then f} and f3 induce
two Galois admissible coverings
hy WP — 23
and
hy W3 — Z3

over k; and ko of degree ¢, respectively. We have that h{ is an étale covering such that
#U,SE =1, and that #ezg’ra = 2¢'. Then Lemma 4.1 implies that

clra_I_ #eopra+#vs #eclra_f_fl_’_#vzg < 1.

op,ra

This is a contradiction. Thus, we obtain #e = 0. This completes the proof of the
lemma. O
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Proposition 4.4. Write Mxs and My for Hom(Ilxs,F¢) and Hom(ILys, ), M)é(tl. and
Mg,y for Hy (X7, Fe) and Hi (X3, Fo), respectively. Then the isomorphism g : Mxy =
Mxs induced by the isomorphism @ induces an isomorphism
¢ MG S M
2 1
which fits into a commutative diagram as follows:

MXz' L) MX-

Mg, s s,
where the vertical arrows are the natural injections.

Proof. To verify the proposition, we only need to prove that v, LM Xe S M xs induces
an isomorphism 1, " : M)é(tl. S M ét2. which fits into a commutative diagram as follows:

P
MX1. L) MXO

Mét d)f o Met
X3 X

where the vertical arrows are the natural injections.
For each line bundle o € Mf}l. over X7, write f}, : Y%, — X7 for the étale covering
corresponding to a. We set

sp:1 .
L= {ae M5, | #op =1}

L#’USPZI

Then it is easy to see that Mg}t. is generated by as an [Fy-vector space.

#’Up 1

On the other hand, Lemma 4.3 implies that, for each ac L , f1 induces a Galois

étale covering of X3 of degree £. Thus, 1, ' induces an 1n3ect10n of Fy-vector spaces
1,ét ét ét
Yy T Mxe — My,.
Moreover, since dimFe(Mf(tl.) =29 —rx, =29 —rx, = dimg, (M5 +), we obtain that
1,ét ét ét
v, T My =M .
is an isomorphism. This completes the proof of the proposition. O

Proposition 4.5. Write ]\4“)1.p and M;?; for HY(xs,Fy) and H'(Txs,Fy). Then the

isomorphism ;" : M)e(tQ. — M}?l. induces an isomorphism
top . top top
YR MAEE 5 M
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which fits into a commutative diagram as follows:

, Pt .
MEE ¢ M€
xg — Mxs

T T

t %P t
op 0 op
M xs — M Xe
where the vertical arrows are the natural injections.

Proof. For each line bundle 5 € Mfé over X3, write f3 5: Y35 — X3 for the Galois étale
covering corresponding to 3. Then 3 induces a line bundle ¢*(3) € Mf}l. over X7. Write
Fug  Vive
Theorem 1.5 implies that

— X7 for the Galois étale covering corresponding to 95t(53).

(8%

) <
e = Yes

where ry ° and

1,y88(8) Lygt(8)
Yy s, respectively. Since #U;Sﬁ = #v(l'xy) = #v(l'x;), we have #vie < Fo(lxy).
; : 1,958(8)

Moreover, Lemma 1.7 implies that #vje = #uv(I'x;). Thus, we have
Lygt(9)

and ry, , denote the Betti numbers of the dual semi-graphs of

((B) € My,
Then ¢ induces an injection
U ME = MY
Moreover, since rx, = rx,, we have gDEOp is an isomorphism. This completes the proof of
the proposition. Il

Lemma 4.6. Let f5 : Y — X3 be a Galois étale covering of degree ¢ over ko and
fi Y — X7 a Galois admissible covering of degree { over ki induced by fy. Suppose
that #v};i = 1. Then we have #v}il = 1.

Proof. Theorem 1.5 and Proposition 4.4 imply that ry; < ry,. Then we have

#e(Dxy) — (F#v(Dxy) — #0) — #07 +1 < #e(Dxg) — U#o(Dxg) —1) —1+1

Thus, we obtain that #v}? <1
It #v}? = 0, then the line bundle corresponding to f;{ is contained in M;?l.p . Then

Proposition 4.5 implies that the line bundle corresponding to fs5 is contained in M;?F :
This means that #vgﬁ = 0. This is a contradiction. Thus, #vjfli = 1. We completes the
proof of the lemma. O

We reconstruct the sets of vertices and the sets of genera of irreducible components
as follows.
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Proposition 4.7. For eachv € v(I'xs) (resp. v € v(I'xs)), we write Xy, (resp. Xy,) for
the irreducible component of X3 (resp. X3 ) corresponding to v and gy, (resp. ga.) for the

genus of the normalization X1, (resp. Xa,) of X1, (resp. Xa,). Then the isomorphism
ot M)é}Q. = M}sfl. induces a bijection of the set of vertices
Py v(I'xs) 5 v(T'xe),
where pi™ does not depend on the choices of { € Primes \ {p}. Moreover, we have
92,0 = G1,p¥™(v)
for each v € v(I'xy).

Proof. Let Vi xe C© Vx. and Vi xg3 C Vi, be the subsets of Mf}l. and Mf(z., respectively,
defined in Section 2. By applying Lemma 4.2, we obtain that

?%Wég) - V)?;'
Moreover, Lemma 4.6 implies that
Vit (Vexs) = Vixs.

Let aj,ay € Vi xs distinct from each other such that a; ~ as. It is easy to see that
acy + bay € Vj xg if and only ast(on) + byt (ag) € Vi xs for each a,b € F. Thus, we
obtain an injection of the set of vertices

Vixs) ~—= Vixs/ ~.

Then the “non-moreover” part of the proposition follows from Remark 2.1.1.
Next, let us prove the “moreover” part of the proposition. For each w; € v(I'xs) (resp.
Wy € U(F)q)), we set

L?l.’ﬁ ={a € Métl. | #U}?a =land (ff,) ' (X1 ) is connected}

(resp. L;"(z’e ={a € MétQ. | #vjs =1and (f5.2) ' (X2,u,) is connected}).

Moreover, we denote by
w1,f wa,f
[LX; ] (resp. [LX5 )

for the image of L?{Z in M>éft1' / M;}P (resp. L%ﬁ in Mfgg /M;;p ). Then we have
#[[&11.74] = (941 — 1 (resp. #[[&Ef] = (92w 1),

On the other hand, for each v € v(I'xe), Proposition 4.5 and Lemma 4.6 imply that
Yt induces an injection
i
[L’U,(] N [Lp;ex('u),e]
X3 X2 .

Thus, we have

vex

f920 _ | = #[LE;] < #[Lig} (v),f] — ggl,p;ex(v) 1.
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This means that
Jou < 91,03 (v)

for each v € v(I'xg). On the other hand, since

Z JGiw=9 —Tx; =9 —TXx, = Z 92,ws

wEv(FX;) wev(rxg)
we have
92,0 = J1,p5(v)

for each v € v(T" X2-). This completes the proof of the proposition. Il

Next, let us reconstruct the sets of edges from surjections. In the remainder of the
present section, we fix a triple

(6d, 7Y = X7)

associated to X7 (cf. Section 2 for definition). Then Lemma 4.2 implies that the triple
induces a triple
(6,d, f3 - Yy = X3)

associated to X3. The surjection ¢ : Ilxs — Ilxs induces a sujection of admissible
fundamental groups
¢Y . Hylo —» ]___[Y2.

of Y* and Y;". Moreover, the constructions of Y;* and Y,® imply that Y}* and Y, satisfy
Condition A and Condition B.
We write
Méj., Mye, My, Mé;., Myy, and My

for
H}?t (}/1.’ FZ)’ HOIH(HY;, Ff)? MY; /Mé:.’ Hét (}/2.a ]Fﬂ)v Hom(HYQ' P Fﬁ)a and MYQ. /Mé;'v
respectively. Then, by Proposition 4.4, we have the following commutative diagram:

0 — M —— My; —— Mi% —— 0

|l

0 —— M, —— My, —— M —— 0,

where all the vertical arrows are isomorphisms. Let Ujy. and Ujy. be the subsets of My
and My, (cf. Section 2), respectively. Since the actions of Gq on the exact sequences are
compatible with the isomorphisms appeared in the commutative diagram above, we have

'QZ)Yj(UZ}/;) == UZY2..
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Moreover, let

mp mp nd,sp=0 mp,sp=0
Uz Y?® Ue Y { EY‘ }eEe"l(Fyl-)7 {UZ,YfE}eEeOP(Fyl-)v U&yl‘,e }eEeCI(I‘Ylo)u {Ug Yee }eGeOP(FYI-)a

mp mp nd,sp=0
Uz Yy Ue,y;v gy- { ZY‘ }eeed Fy. {U[,yie}eeeOP(FYzo)a LY e }eeed(l“y2-)a

and {Uyyee %Y cceon(ry.o) be the subsets of U 7y and Ujy, defined in Section 2, respectively.
3 : :
We have the following two lemmas.

Lemma 4.8. We have

s U omaae U oo

1
eEeOP(Fylo) eEeOP(Fy2.)

Moreover, we have
-1 mp _ mp
wY,Z(UZ,YI') = Uz,yz--

Proof. Let e € e®P(I'yp) and a € U)yey~ 0. Then the admissible covering
o Yia =T
corresponding to « induces a Galois admissible covering
Gop: Yo=Yy
over ko of degree ¢. Write 3 := 1[);;(04) for the line bundle corresponding to g3 ;. We have
B e Ugjy2..

Write gy, , and gy, , for the genera of Y7°, and Y3'5, ry, , and ry, , for the Betti numbers
of the dual semi-graphs I'ys and FY2./3’ respectively. Then the Riemann-Hurwitz formula
implies that

1 op,ra

916 — 9Ys 5 = §(d - #eggﬁ )(f - 1)

On the other hand, we have
Ty, = (#e(Dys) — #v(Tys) + 1

and

o cl,ét clra clsp clra

TYo = 5#695,@ + #GQS,B E#Uggﬁ #vgg’ﬁ + 1.
Then Theorem 1.5 implies that
9Y16 — 9Yap > ™ia = TYo,u-

Thus, we have

1 d
clra Sp - clra e
#%Eﬁ + #Ugé,;a + 2##6%,[3 < 5
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clra

If #ed = ey o, = 0, then g3 5 is an étale covering. By replacing X7 and X3 by
Y® and Y2 , respectively, Proposition 4.4 implies that g7 , is an étale covering. This is
a contradiction. Thus, either ed.ra # 0 or #e(’p’ra # 0 holds. If #ed ' = 0, then

H#e ;1 ;"> > d. This is a contradiction. T hus, we have #edrj = 0.
If #eOP’ra # 0, then we have #eOP’ra d and #092’ = 0. This means that

pe |J umr

ece°P( FYo )

— | | mp,sp= 0 | | np,sp= 0
w]”g( i/€3p7.7 ) C i)g’pr.7 .

e€eop (Fyl. ) ec€eop (FY2o )

Moreover, for each v € Ugné). o> 7 is a linear combination of the elements of U ﬁ:Sp 0

Then we have
ww( EY’) - U?}E'

On the other hand, since gy, = gy,, Proposition 2.3 implies that #U, {31. = #U, {32.. Thus,
we obtain

Uy e(Upye) = UpYe.
This completes the proof of the lemma. O

Lemma 4.9. We have

— d d
o U e U oume

eEeCl(Fylo) eGeCl(FY;)

Moreover, we have

ww( ZY') UKY‘
Proof. Let e € e?(I'ys) and a € Uy 20=0 Then the admissible covering
o Yia = YT
corresponding to « induces a Galois admissible covering
9op: Yoz =Yy
over kg of degree £. Write § for the line bundle corresponding to g3 ;. We have
RS UZYQ..

Write gy, , and gy, , for the genera of Y7°, and Y3'5, 1y, , and ry, , for the Betti numbers
of the dual semi-graphs I'ys and FY2./3’ respectively. Then the Riemann-Hurwitz formula
implies that

e~ s = ——(#6°p =1,
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On the other hand, we have
v, = U#e (Dys) — d) +d — #v(Tys) + 1

and
vy, = g#eclet + # clra g#vzésﬁp . # Clra+1
Then Theorem 1.5 implies that

Y10 — Vs > ™o ~ TYaps-

Thus, we have
C ,ra 1 op,ra
l , T #v ot —#egé” <d.

If #te chra _ #ezj’;a = 0, then g3 5 is an étale covering. By replacing X7 and X3 by
Y}* and Y2 , respectively, Proposition 4.4 implies that g7 , is an étale covering. This is a
contradiction. Thus, either d e 7é 0 or #eOP’ra # 0 holds.

If #e(’p’ra # 0, then we have #e°p < 2d and #ed ;"> = 0. Then the “moreover” part of

Lemma 4.8 implies that g, € Upys. ""This is a contradiction. Then we obtain #eOP’ra =0.

If #ed ' £ 0, then we have #ed ' = d and #U95 L= #e°%™ = 0. This means that

92,8
d,sp=0
se || Uryse -

EEECI(FY2Q)

Thus, we have
—1 nd,sp=0 nd,sp=0
e U usah e U o
eEeCI(FYIo) 6€6C1(FY2-)

Moreover, for each v € U} Y+ e» 7 1 a linear combination of the elements of Ugldyfp 0

Then we have
%Z)w( ZY') - Uey'

On the other hand, since gy, = gy,, Proposition 2.3 implies that #U}' eY' =#U} Zy. Thus,
we obtain

¢Ye( ZY') UKY'
This completes the proof of the lemma. O

By Theorem 2.2, Remark 2.2.1, Lemma 4.8, and Lemma 4.9, we have the following
theorem.

Theorem 4.10. The isomorphism Yy, : My; = Mye induces a bijection of the set of
closed edges (resp. open edges)

p(cz)l,edge . €CI<FX2.) :> ecl(rxl.)
(resp. pg” edge eP(Pxs) = e®P(T'xs)).

Moreover, ,0C ©dze fregp. pz)p’edge) does not depend on the choices of {,d, and the étale
covering ft Y — X7.
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5 Reconstruction of sets of p-rank via surjections

Let k;,i € {1,2}, be an algebraically closed field of characteristic p > 0. Let X?, i € {1,2},
be a pointed stable curve of type (gx,, nx,) over k;, 11 xs the admissible fundamental groups
of X7, I'xe the dual semi-graphs of X7, and ry, the Betti number of I'xs. In this section,
we suppose that X7 and X3 satisfy Condition A and Condition B, and that

¢ xs — Ilys

is an open continuous surjective homomorphism of the admissible fundamental groups of
X7 and X3. Moreover, we denote by

(9:1) = (gx:,x,) = (9xz, Toxy)-
The surjection ¢ induced a surjection of the maximal pro-p quotients
o H’)’(I. — II% .
Then each Galois admissible covering
J3 Y3 = X3
of degree p over ky induces a Galois admissible covering
JeY o X

of degree p over k;. Note that, by the definition of admissible coverings, ff and f5 are
étale coverings. Moreover, ¢P induces an injection

Pp Hét(Xgale) — Hét(Xl.7Fp)'

For i € {1,2}, write gy, for the genus of Y,*, I'ys for the dual semi-graph of Y;*, and ry,
for the Betti number of I'ys.

Lemma 5.1. Let f? : YY" — X7 be a Galois étale covering of degree p over ky which
15 induced by a Galois étale covering fs : Yy — X35 of degree p over ks. Suppose that
#v}? = 0. Then f3 is an étale covering, and #U;Z. = 0. In particular, 1, induces an
1somorphism

H'(Txs,F,) = H' (Txs, Fp).

Proof. Since f; and f3 are étale coverings, the Riemann-Hurwitz formula implies that
Ivi = 9va-

Thus, similar arguments to the arguments given in the proofs of Proposition 4.5 imply
that

#v}? =0.
This completes the proof of the lemma. O
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Lemma 5.2. Let ff : Y* — X} be a Galois étale covering of degree p over ki which
is induced by a Galois étale covering f3 : Yy — X3 of degree p over ko. Suppose that
#U;?. = 1. Then f5 is an étale covering, and #v;;i =1.

Proof. Similar arguments to the arguments given in the proofs of Lemma 4.6 imply that
#v}z.“ < 1.

If #v}iﬁ = 0, then Lemma 5.1 implies that the line bundle corresponding to #v}i‘. = 0.
This is a contradiction. Then we obtain that

#v};i =1

The main theorem of the present section is as follows.

Theorem 5.3. For each v € v(I'xs) (resp. v € v(I'xs)), we write Xy, (resp. Xa,) for
the irreducible component of X3 (resp. X5) corresponding to v and o1, (resp. oa,) for

the p-rank of the normalization )/(\1/1, (resp. Xa,) of X1, (resp. Xa,). Then the injection
W, HL (X3, F,) — HL (XT,F,) induces an injection of the set of vertices

p;ex’p : U(FX5)>0”’ — U(FX5)>O”’.

Moreover, we have

T2 S 010757 (y)
for each v € v(Txg)”"P.

Proof. For the prime number p, write V), xs and V), xs for the sets of line bundles defined
in Section 2. Lemma 5.2 implies that

Vp(Voxs) € Vpxs.

Let an, a2 € Vp x3 distinct from each other such that a; ~ ay. It is easy to see that
acy + bay € V,, xs if and only ayyy(ay) + bpy(az) € V,, xs for each a,b € F. Thus, we
obtain an injection of the set of vertices

py P v(Txg)”"% < v(Dxs)” P
For each w; € v(I'ys) (vesp. wy € v(I'xy)), write
L;"(ll.’p = {a € HL (X}, F,) | #vfe =1and (f1a) " (X1,) is connected}

(resp. Ly3" == {a € H} (X3, F,) | #vjs =1and (f5.2) " (X2,u,) is connected}),

where f7, (resp. f5,) denotes the Galois étale covering corresponding to . Moreover,
we denote by
w1,p w2,p
[Ls"] (resp. [L3"])
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for the image of L in HE (X7, F,)/HY(Dxs, Fp) (vesp. L;‘%e in Hy (X3, F,)/H' (T'xs, Fp)).
Then we have
W1,Pl __ 0l,wy __ W2,P1 _ 02wy __
#[Lxs"] =p" 1 (resp. #[Ly3"] = p™ 1).

On the other hand, for each v € v(I'yxs), Lemma 5.1 implies that 1, induces an
injection
v, P (U),p
(L] = [Lys 7]
Thus, we have
o9 0 v, p"ex(v),p o pVEX (y
p7* —1:#[LX§]§#[L)?; J=p e —1.
This means that

02 < Ul,p;’f" (v)

for each v € v(I'xg). On the other hand, since

Z Olw = U(Xl.) —Tx, > U(X2.> —TXy, = Z 02w,

wEv(Fxlo) wEv(FXQ.)
we have
02 < Ul,p;’f"(v)

for each v € v(I'xy). This completes the proof of the theorem. ]

6 Reconstruction of dual semi-graphs via surjections

Let k;,7 € {1,2}, be an algebraically closed field of characteristic p > 0 and ¢ # p a prime
number. Let X7, i € {1,2}, be a pointed stable curve of type (gx,,nx,) over k;, ILys the
admissible fundamental groups of X, I'ys the dual semi-graphs of X?, and rx, the Betti
number of I'xs. In this section, we suppose that X7 and X7 satisfy Condition A and
Condition B, and that

¢ . HXI’ - HX2-

is an open continuous surjective homomorphism of the admissible fundamental groups of
X7 and X3. Moreover, we denote by

(gun) = (glenX1> = (ngan2)'

Let Hy be an open normal subgroup of II%, and Hy := ¢~'(H,) the open normal
subgroup of Ilys. Write ¢, for the surjection ¢|x, : Hy — Ho,

o o Xi, = X3

and
f)'(H2 c Xgy, — X3

for the Galois admissible coverings over ki and ko, (gXHl,nXHl) and (gXH27nXH2) for
the types of X3 and X7, FXZzl and FX;ﬁ for the dual semi-graphs of X3 and X7,
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respectively. Note that X7, and X}, satisfy Condition A. Furthermore, we suppose that
X}, and X7 satisfy Condition B.
Let
(0,d, f3 : Y5 — X3)

be a triple associated to X3 such that (¢, #(Ilxs/H>)) = 1 and (d, #(Ilxs/H>)) = 1. By
Lemma 4.2, we obtain a triple

(6d, fT: Y = X7)

associated to X7 induced by ¢ and (¢,d, f3 : Y5 — X3). On the other hand, we have a
triple
(6, d, h; : W; = }/2. Xx3 XI.{2 — X;{Q)

associated to X7,. By Lemma 4.2 again, we obtain a triple
(0, d,hS = WF =Y xxe Xpp, — Xp))

associated to Xy induced by ¢x, and (¢,d, hy : W3 — X3;)).
Then the morphisms g7 and g5 induce respectively the natural morphisms

Ve Txp, = Ty and 9 0 Iy, — D,

vex vex

Ve U(FX;II) — v('xy) and 755" U<FX;12) — v(l'xy),

Led Led
Yy e (Txy, ) — €(Txp) and 73" e (T, ) — €(Txy),

yﬁﬁ’edge e®(Lxy, ) — € (I'x;) and 7;§’edge 1e®(Lxy, ) = € (T'xy).

Write ¢y, for ¢|g, : H — Hs. By Theorem 3.7 and Theorem 3.10, ¢y, induces

vex cledge . ¢ c op,edge . o o
p¢H1 : U<FX;12> — U(FX;Il), ,0¢ng te I(FX;{Q) — € 1(Fx;]1>, and p(;;l e p(rx;l2> — € p<FX;II>‘

Then we have the following lemma.

Lemma 6.1. The natural diagrams

H
U(FX;IZ) —_— U(Fxﬁl)

vex vex

pVeX
U(FX2-> L) U(FXI),

cl,edge

4 1
e(Txy, ) —— o(Txy, )

cl,edge cl,edge
| e |

cl,edge

GCI(FXZ-) d)——) GCI(FXI-),
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and
op,edge

e®(x;, ) om o(Tx;, )
,y;;.),edgel ,y;?,edgel
op,edge
e°P (FXZ- ) ¢—> e°P (FXf )

are commutative. Moreover, all the commutative diagrams above are compatible with the
natural actions of lxs/Hy = Ilxs /H;.

Proof. We only treat the third diagram. Let

ed . ed
exu, € €(Uxy )y expy =Py (exy,) € €P(Ixy ), €2 1= 730" (ex,,) € € (I'xy),

er = (Y% 0 g% e, ) € €P(xy), and € 1= pP () € (g,

Let us prove that e; = €.

Write Sx, and Sy, for the sets (vﬁg’edge)*l(e’l) and (7;§’edge)*1(eg), respectively.
Note that ex,, € Sx,, . To verify e; = €/, it is sufficient to prove that ex, € Sx,,

Let as € Uy, ., (cf. Section 2). Then the proof of Lemma 4.8 implies that a, induces
an element

arelU 2 ;2.76,1 .

Write Y7 and Y, for the pointed stable curves over k; and ky corresponding to a; and
ap, respectively. Consider the connected admissible Galois covering

° L] L]
Ya2 XXQ‘ XH2 — W2

of degree ¢ over ky, and write o for the element of Ujj. (cf. Section 2 for definition)
corresponding to this connected admissible Galois covering. Then we have

B2 = Z tqﬁcy

CQGSXH2

where t., € (Z/{Z)* and f, € Uy, ., Note that t., 7 0. On the other hand, the proof

. . . mp
of Lemma 4.8 implies that £, induced an element ﬁp«;};}cldgc(c2) eU gywl-,pf;;idgc(cﬁ Then B,

induces an element

L op,edge
/31 = Z tc2/8p25};}jdg6(C2) + teXHQ p¢H1 (eXHg) E UZWI' .

C2ESXH2 \{GXH2}

Note that since 3; corresponds to the connected admissible Galois covering Y3 x xs X3, —
T, we have the composition of the connected admissible Galois covering Y3 xx» Xz —

WP and the étale Galois covering hi : W — X3 is ramified over Sx, . This means that
— Opvedge 1 3 1
X, = Py, (exy,) is contained in Sx,, .
Similar arguments to the arguments given above imply the first and the second di-
agrams are commutative. It is easy to check the “moreover” part of the lemma. This

completes the proof of the lemma. n
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Lemma 6.2. Write I'ye and U'y; for the dual semi-graphs of Y* and Yy, respectively,
and
%’t,é : Hét(}/é.7Fé) — Hét(Yl',]Fg)

the natural isomorphism induced by ¢. Let es € e?(Txs) and e := p;l’edge(eg) € e (Txs)
(resp. ex € eP(I'xg) and e = pzp’edge(@) € e®(I'xs)). Letm € Zxq such that UZ(}i/’lff):lm #
0 and UZ@;‘Em # (fesp. Upyee, = # 0 and Ufgsﬁjm #0), az € UjS, ,, (resp, az €
Uiys o) and ay ==y, (as) € Ugj‘f,l.m (resp. a1 = Py, (az) € Upys. ) the line bundle
mduced by as. Then we have

dsp=m . : dsp=
ay € Uzylff’elm if and only if an € UZYS{D@m

sp= ) . ,Sp=
(resp. oy € UZ;%.; " af and only if an € Ug;%.gz ")

Proof. We only treat the case where e; and ey are closed edges. Write

foy  Yia, = X7 and f3,, - Yy

;2

— X3

for the Galois admissible coverings over k; and ks of degree ¢ corresponding to o and aso,

: : . .
respectively. Write gy, , and gy, for the genera of Y, and Y3, , rv, , and ry,, for

the Betti numbers of the dual semi-graphs Fyl-a1 and I‘y;az, respectively. Note that we

have MNia, = a0y
First, we prove the “if” part of the lemma. We have

Yoy = TVany = 6(#6‘31({‘5/2-) —d)+d—tm— (Fv([lyp) —m) +1

= 6(#6C1(Fy2-) —d) +d—UF#Fv(Lyp) — (Fv(T'ys) —m)) — (Fv(l'ys) —m) + 1
and )
Vi, = é#ejcll.’jl + #e‘}ll.’f:l — E#v;ll.’ipl — #v?l.’;al + 1.
Then Theorem 1.5 implies that

0 = gyl,al - gYQ,az = TYl,ozl - TYQ,aQ °

Thus, we have

#ejcll.’z +#f =d— (#o(Tyy) —m).

Since #e;ll.’ra = d, we obtain that
,a

#v’}?al =#v(lyp) —m.

This means that aq € U}’ i’lfpjlm
Similar arguments to the arguments given in above imply the “only if” part and the

“resp” part of the lemma. This completes the proof of the lemma. O
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Lemma 6.3. We maintain the notations introduced in Lemma 6.2. Then we have
(i) er € e (Tys) is a closed edge that corresponds to a node of Yy which is contained
in a unique irreducible component of Y;* if and only if e; € eCI(FYQ-) 15 a closed edge that
corresponds to a node of Yy which is contained in a unique irreducible component of Y.
(i) 1 € e?(Tye) is a closed edge that corresponds to a node of Yy which is contained
in two different irreducible components of Y* if and only if e; € ed(FYQ-) s a closed edge

that corresponds to a node of Yy which is contained in two different irreducible components
of Y3';

Proof. Since (ii) can be deduced from (i), we only prove (i). Let us prove the “if” part of
(i) of the lemma. Let m := #uv(I'ys) — 1 = #v(I'yp) — 1. Then we have Ugj?,;ff’;m # (). Let

nd,sp=m
QQ E UZ,Y;,GQ

Lemma 6.2 implies that
aq = w‘;}’z(@g) c UZdY’lEI;:m

Thus, U, ?iff)e:lm # (). On the other hand, if e; is a closed edge that corresponds to a node
of Y;* which is contained in two different irreducible components of Y;*, then we have

Uy = 0.
Thus, e; is a closed edge that corresponds to a node of Y;* which is contained in a unique
irreducible component of Y7*.

Similar arguments to the arguments given in above imply the “only if” part of (i) of
the lemma. N

Next, we reconstruct the dual semi-graphs. The main theorem of the present section
is as follows.

Theorem 6.4. The surjections ¢ : Uxs — lxs and ¢g, : HXI-{1 — Hx;,1 induce isomor-
phisms of dual semi-graphs
Oy : Ixs ST X3
and
9¢H1 : FX;JI .t FX;Il
such that

vex\— cledge\ — op,edge\ —
9(1)’1)(1")(;) - <p¢ ) Y 9¢|6C1(PXI) - (qu ) g 9¢>|6°P(Fx;) = (/0¢p ) !

Y

o cledgey —1 - op,edgey—1
ecl(FX}h) N (’0¢H1 ) , and 9¢H1 |50p(FXF{1) - (p¢H1 ) ’

Oy o0y, ) = (P)Y, By,

Moreover, the natural digram

0y
Ixs —— I'xg

1s commutative, and the commutative diagram is compatible with the natural actions of
Hxs/Hy = xs /H.
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Proof. Let us construct 6;. We only need to prove that, for each e; = {b¢,1,be, 2} €
e(I'xs), we have

(6 (Bern)s G (ber2)} = {05 ™ (o (Besn))s (0) ™ (s (s 2))

where
€2 = (beg,1, ey 2) = (p5°%) " (e1)

when e, is a closed edge of I'xs,

op,edge)—l (

€y = <b€2,17b€2,2) = (;0¢ 61)

when e; is an open edge of I'xs, and b, ;, i,j € {1,2}, denotes the branches of e; (cf.
M5, Section 1]).

First, let us treat the case where e; is a closed edge of I'xs and corresponds to a node
of X7 which is contained in two different irreducible components of X7. We maintains
the notations introduced in Lemma 6.2. Then the construction of Y’ and Lemma 6.3
imply that ey corresponds to a node of X3 which is contained in two different irreducible
components of X3. We maintain the notations introduced in Lemma 6.2. Let m =
#v(Tye) =2 =#v(l'yy) —2 and ay € UZ%;’;W‘. Then Lemma 6.2 implies that

. d,sp=
o = '[bg}ie(&g) c UZY?,Delm‘

Thus, Lemma 6.1 implies the following commutative diagrams:

vex
¢Y,o¢

U(FY2~7Q2) — U(Fyf,al)

g o l it o l

vex

v(Tyy) —X u(lye)

0 18 J{ Y e l
vex

p
o(lxg) —— v(Tx;),

where ¢y denotes the surjections between the admissible fundamental groups of Y;* and
Yy induced by ¢, and ¢y, denotes the surjection between the admissible fundamental
groups of Y7, and Y3, induced ¢. Write

{Uel,lv /06172}

FX. FX.
for {Cel ! (b6171>7 Ce1 ! (b81,2)} and
{UEQ,].? 062,2}

Txe T xe
for {Ces ? (bey,1)s Ces 2 (bey.2)}- Moreover, we have that

{Ver,1,ver 0} = {v € v(Txs) | #(ypp 0 s, )7 (v) = 1}
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and
{Vea1s Ve o} = {v € v(Txg) | #(vp 0 vp3,) ' (v) = 1}

Then the commutative diagram above implies that

{Uehlv U61,2} = {(péex)il(vezl)v (péex)il(vwﬂ)}'

By applying similar arguments to the arguments given in above imply that

(6 (Bern)s G (ber o)} = {05 ™ (Cen (Beyn))s (02) ™ (s (e o))}

holds when e, is a closed edge of I'ys and corresponds to a node of X} which is contained
in a unique irreducible component of X} (resp. e; is an open edge of I'xs).
On the other hand, by applying Lemma 6.1, it is easy to check that the diagram

is commutative, and the commutative diagram is compatible with the natural actions of
Ixs JHy =11 Xs /H;. This completes the proof of the theorem. O

7 Mono-anabelian reconstruction algorithm for dual
semi-graphs via surjections

Let k;, i € {1,2}, be an algebraically closed field of characteristic p > 0. Let X?,i € {1,2},
be a pointed stable curve of type (gx;, nx;) over k;, Ilxs the admissible fundamental groups
of X7, I'xs the dual semi-graphs of X7, and ry, the Betti number of I'xs. In this section,
we suppose that X7 and X3 satisfy Condition A and Condition B, and that

¢ lUxy — lxg

is an open continuous surjective homomorphism of the admissible fundamental groups of
X7 and X3. Moreover, we denote by

(gun) = (glenX1> = (ngyan)-

In this section, we prove the mono-anabelian versions of Theorem 4.7, Theorem 4.10,
Theorem 5.3, and Theorem 6.4. First, the mono-anabelian version of Theorem 4.7 is as
follows:

Theorem 7.1. We maintain the notations and conditions introduced in Theorem 4.7.
Then the bijection of the set of vertices

pZ)eX : U(FXQ-) 5 U(FXI-)

can be mono-anabelian reconstructed from the surjection ¢ : Ilys —» Ixs.
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Proof. Since Lemma 3.2 implies that p can be mono-anabelian reconstructed from the
surjection Ilys or Ilxs, we may choice a prime number ¢ # p. Then Lemma 3.4 implies

that HOHI(H?E}ab,Fg), Hom(Hig;.ab,Fz), and
ét,ab ~ ét,ab
Hom (I3, Fy) = Hom(ITy3", Fr)

can be mono-anabelian reconstructed from Ilxs, IIxs, and ¢, respectively. Moreover,
Theorem 3.5 implies that Vy xs and Vj xs can be mono-anabelian reconstructed from Ilys
and Ilxy, respectively. Thus, the proof of Proposition 4.7 implies that

p;ex : U<FX2‘) :> U(FXI‘)
can be mono-anabelian reconstructed from the surjection ¢ : Ixs — Ilxs. ]
The mono-anabelian version of Theorem 4.10 is as follows:

Theorem 7.2. We maintain the notations and conditions introduced in Theorem 4.10.
Then the bijections of the set of closed edges (resp. open edges)

p;l,edge . 601<FX2-) :> eCI(PXf)

(resp. pP*5 : P (T'yy) 5 ()
can be mono-anabelian reconstructed from the surjection ¢ : Ilys — Ilxs.

Proof. We only treat the case of pc ©dg° " Since Lemma 3.2 implies that p can be mono-

anabelian reconstructed from ITxs or IIxs, we may choice a triple
(0.d, f3:Y5 — X3)

associated to X3. Then the proof of Theorem 4.10 implies that the surjection ¢ induces
group-theoretically a triple
(4,d, ff - Y — X7)
associated to X7. Write [y and Iy, for the admissible fundamental groups corre-
sponding to Y;" and Y., respectively. Then Lemma 3.4 implies that Hom(H?,E’.,IFg),
Hom(H’;‘,";.,IFg), and
Hom(Hy. F,) = Hom(H JFy)

can be mono-anabelian reconstructed from ITxs, HX-, and ¢, respectively. Moreover,

Theorem 3.6 implies that U} Iy and U 1ys can be mono-anabelian reconstructed from ITys
and Ilxs, respectively. Thus Theorem 3.6 and the proof of Theorem 4.10 imply that

pZ} cdee e xg) — €“(T'xs) can be mono-anabelian reconstructed from the surjection
¢ Ilxy — Ily;. O

The mono-anabelian version of Theorem 5.3 is as follows:
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Theorem 7.3. We maintain the notations and conditions introduced in Theorem 5.5.
Then the injection of the set of vertices

p;/bex,p . U(FX5)>O’p N U(FXI)>O,p
can be mono-anabelian reconstructed from the surjection ¢ : Ilxs — llxs.

Proof. By Lemma 3.2, the prime number p can be mono-anabelian reconstructed from
IIxs or Ixs. Then Lemma 3.4 implies that Honl(Hiz}ab, F,), Hom(H%;.ab, F,), and

Hom(IT;", ) = Hom(II5:™, F,)

can be mono-anabelian reconstructed from Ilxs, IIxs, and ¢, respectively. Moreover,
Theorem 3.5 implies that V}, ys and V}, xs can be mono-anabelian reconstructed from Ilys
and Ilxy, respectively. Thus, the proof of Proposition 5.3 implies that

. 07 07
p;lsex : U(FX£)> Py ’U(F_}(f)> P
can be mono-anabelian reconstructed from the surjection ¢ : lxs — Ilx,. O]
The mono-version of Theorem 6.4 is as follows:

Theorem 7.4. We maintain the notations and conditions introduced in Theorem 6.4.
Then commutative diagram

0
FXf —¢> FX20

can be mono-anabelian reconstructed from the natural commutative diagram of profinite

groups

H, O, f,

l !

¢
My —— Ilyg,

where the vertical arrows of the commutative diagram above are natural injections. More-
over, the commutative diagram is compatible with the natural actions of llxs/Hy =
[Lys/H;.

Proof. Theorem 3.8, Lemma 6.1, and Theorem 7.1 imply that the natural commutative
natural diagrams

vex

¢H1
U(FX;JQ) —_— ’U(FX;Il)

vex vex
vex

U<FX2') L) U(Fxlo),
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cl,edge

PH,
QCI(FX;IQ) L) U(PX;II)

cl,edge cl,edge
| e |

cl,edge

€C1(FX2-) ¢—> GCI(FXI>,

and
op,edge
op o
e (FX;JQ) g U(Fx;ll)
,y;);.),edgel ,y;)?edgel
op,edge
60p<FX2-) ¢—> 60p(FX1-)

can be mono-anabelian reconstructed from the natural commutative diagram of profinite

groups

¢
Hli)HQ

| l

¢
HXl‘ EE— HX2-

On the other hand, Theorem 3.8 implies that the natural morphisms of dual semi-graphs
Vrp FXI.Jl — I'xs and 7y, - FX;{Q — Ixs
can be mono-anabelian reconstructed from the natural injections
Hy < Ilxs and Hy — Ilxs,

respectively. Thus, to verify the first part of the theorem, we only need to check the
morphisms of the sets of vertices, the sets of closed edges, and the sets of open edges
obtained above induce a commutative diagram of dual semi-graphs. Then the first part
of the theorem follows from Theorem 6.4, and the “moreover” part of the theorem follows
immediately from Theorem 3.8 and Theorem 6.4. ]

8 Condition A and Condition B

Let k;, ¢ € {1,2}, be an algebraically closed field of characteristic p > 0, and let X?,i €
{1,2}, be a pointed stable curve of type (gx,, nx,) over k;, ILxs the admissible fundamental
groups of X?, I'xe the dual semi-graphs of X7, and ry, the Betti number of I'xs. In this
section, we suppose that X7 and X3 satisfy Condition A and Condition B, and that

¢ xp — Ixg

is an open continuous surjective homomorphism of the admissible fundamental groups of
X7 and X3. Moreover, we denote by

(gan) = (gXl’nXl) = (ngﬂan)'
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Let Hy be an open normal subgroup of II%, and Hy := ¢~'(H,) the open normal
subgroup Ilxs. Write ¢y, for the surjection ¢|y, : Hy — Hj induced by ¢,

Fo + Xi = X7

and
f)'(H2 : XI'{2 — X3

for the Galois admissible coverings over k; and ko, (gXH1 N XHI) and (gXH2 , nXHQ) for the
types of X3 and Xp , T X3, and I' Xt for the dual semi-graphs of X7, and X7, and
TXp, and "Xp, for the Betti numbers of T’ Xt and I’ Xt respectively. The main goal of
the present section is proving that there exists an open subgroup H) C H, such that
the pointed stable curves corresponding to H; := ¢~ *(Hj) C H; and Hj over k; and ks,
respectively, satisfy Condition A and Condition B.

Proposition 8.1. Suppose that the order of G := Ilxs/H, = Ilxs/Hsy is prime to p.
Then X3, and Xy, satisfy Condition A and Condition B.

Proof. 1t is easy to see that X7 and X7 satisfy Condition A. We only need to prove
that X7, and X3 satisfy Condition B. To verify the proposition, by Theorem 5.4, it
is sufficient to prove that there exists a characteristic subgroup H; C Hj such that the
pointed stable curves corresponding to H; := ¢! (Hj) and Hj over k; and ks, respectively,
satisfy Condition B. Moreover, without loss of generality, we may assume that the image
of Hy in H’;;Z. is a characteristic subgroup of II% ’2.. Since ¢ induces an isomorphism

the image of H; in I, Xs is also a characteristic subgroup of I . Thus, the lemma follows
immediately from Prop051t10n 4.7 and Theorem 6.4. O]

Proposition 8.2. Suppose that G := llxs /H, = lxs/H, is a finite p-group. Then X3,
and Xy, satisfy Condition A and Condition B.

Proof. Tt is easy to see that X3, and X7, satisfy Condition A. We only need to prove that
X}, and X3, satisfy Condition B. To verify the proposition, without loss the generality, it
is sufficient to treat the case where G = Z/pZ. For each w; € v(I'xs) (resp. wy € v(I'xs)),
write

L?l.’p = {a € Hi (X}, F,) | #v}?a =1land (ff,) (X1 ) is connected}

(resp. Ly} P = {a € Hy (X5, F,) | #v}za =1 and (f5,) " (X2u,) is connected}),

where f7, (resp. f3.) denotes the Galois étale covering corresponding to a. Since
H. (X7, F,) (resp. H} (X3, TF,)) is generated by Lys" (vesp. Ly3"), the proposition follows
immediately from Lemma 4.2. m

Lemma 8.3. Suppose that G := llxs /H, = llxs/H, is a finite simple group. Then
there exists an open subgroup Qo C Ilxs satisfies the following conditions:
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(i) let Q1 := ¢~1(Qs); then we have
(#1lxs /Q1,p) = 1,
#(Ix, /(@1 N Hy)) = #(Ix, /Qu)#(Ix, /H1)

and
#(Ix, /(Q2 N Hy)) = #(1lx,/Q2)#(Ix, / H),
where #(—) denotes the cardinality of the quotient set (—);

(ii) write X8 and X¢, for the pointed stable curves over ki and ko corre-
sponding to Q1 and ()2, respectively; then X§ and X, satisfy Condition A
and Condition B;

(iii) let Py := Q2N Hy and X3, the pointed stable curve over ky corresponding to
Py; then the Galois admissible covering hp, © Xp, — X9, induced by Py C Q-
is a connected G-étale covering over ko;

(w) let P, :== Q1N H, = ¢~ (P,) and Xp, the pointed stable curve over ki
corresponding to Py; then the Galois admissible covering hy, = Xp — X§)
induced by P, C Q1 is a connected G-étale covering over ky;

(v) write FXC-21 and FXEg2 Jor the dual semi-graphs of X¢, and X¢),, respectively;
then we have #U(Fxél) = #v(['xs) and #U(Fxég) = #v([xy).

Proof. Let G, be a Sylow-p-subgroup of G and ¢ the index of G,. Let d be a prime
number distinct from p such that (d q) = 1. Let f3: Yy — X3 be a Galois étale covering
of degree d over ky such that #v =0and f}:Y" = X7 the Galois admissible covering
of degree d over k; induced by qb “and fs5. Then Lemma 4.2 implies that f; is étale and
#vSp = 0. Note that Y}* and Y satisfy Condition A and Condition B.

Next, we consider a Z/qZ-Galois admissible covering
FERED A Py

over ky such that f,°* is totally ramified over all the nodes and all the marked points of
Y. Write
FERED (e

for the Z/qZ-Galois admissible covering over k; induced by f5°°, I'yye and I'y-e for the
dual semi-graphs of Y;* and Y;"*, respectively. Since f5** induces an isomorphism be-
tween I’Y;,o and the dual semi-graph I'ye of Y5, Lemma 1.7 implies that f17° induces
an isomorphism between Fyl*»' and the dual semi-graph I'ye of Y}*. Thus, f17° is totally
ramified over all the nodes and all the marked points of Y.

We take Qs := Hyxe C Ily,, where Hye denotes the admissible fundamental group
of Y;**. Then Q; := ¢1(Q3) is the admissible fundamental group [Iy=e of ¥"*. Thus,
we obtain that

Xty = X, x Y

and
X]‘D2 X;{2 X x3 Y,
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If G is a commutative simple group, it is easy to see that we may choose suitable
7./ qZ-Galois admissible coverings fi"* and fy>* such that X} and X} are connected.
Moreover, if G is a non-commutative simple group, Since GG is a non-commutative simple
group, the constructions of X3 and X3, imply that Xp and Xp, are connected. Then the
condition (i) holds. This means that Xp and X3 are connected. By the constructions
of Y;"* and Y5"°, ¥|"* and Y;"* satisfy Condition A and Condition B. Then condition (ii)
holds. Moreover, Abhyankar’s lemma implies that (iii) and (iv) hold. The constructions
of Xqs and Xqs implies that (v) holds. This completes the proof of the lemma. Il

Next, we prove a generalized version of Proposition 4.5.

Proposition 8.4. Let G := llxs /H, = llxs/Hy. Suppose that f};, is an étale covering
over kg, and that #v;’g = #v(I'xg). Then f3, is an étale covering over ki, and that
2
#U;E = #v(I'xs). In particular, Xy and X3, satisfy Condition A and Condition B;
1

moreover, ¢ induces an isomorphism
t ~ t
IT ;(’f.’ — 1II )?5.)

Proof. First, let us prove that, if f3 is an étale covering over £y, then #v;p;l = #v(lxe).
1

Write Vi, r Xg, ['xs for the morphism of dual semi-graphs induced by f#,. Then we

have
rxy, = #GH#H Txg) — #G#v(Txg) + 1
and
rxg, = #G#e (Txg) = #G#UE — (D (#G/#G.) +1,
veu(Txp)\vfe N

where #G,, denotes the order of the stabilizer of a vertices of 7;;11 (v) under the natural
1

action of G on I'xy (note that #G,, does not depend on the choices of v € 7]71.: (v)). Since
1

[, and ff, are étale, we have gx, = gx, . Then Theorem 1.5 implies that

TXH2 :TXHl'

We obtain
#G#(Tx)\ vk )= Y (#G/#G.).

H
! vev(Lxe)\vre
XV gy,

Thus, we obtain that
#G, = 1.
This means that #v;i.’] = #v(Txs).
We only need to prlove that f7; is étale. By applying Proposition 8.1 and Proposition
8.2, we may assume that GG is a non-commutative simple group such that (#G,p) # 1.
Then Lemma 8.3 implies that there exists an open subgroup (); C Ily; satisfying the

conditions (i) (ii) (iii) (iv) (v) in Lemma 8.3. We maintain the notations introduced in
Lemma 8.3. Then A} : Xp — X3, and hp : Xp — Xj, are étale, and #v,sli =
2
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#u(T X?;2>' Moreover, the proof above implies that #v,sli = #u(T X;Il). Thus, X3, and

X3, satisfy Condition A and Condition B. Write ¢p, for the surjection ¢|p, : Pi — P,
induced by ¢ and ¢y for the surjection between the admissible fundamental groups of Y*
and Y5 induced by ¢. Moreover, Theorem 6.4 implies the following commutative diagram

and the commutative diagram above compatible the natural actions of
G X Z/qZ,

where ¢ denotes the index of a Sylow-p-subgroup of G. On the other hand, we note that
each ramification groups associated to the marked points of X3 (i.e., the stabilizers of
each open edge of ' xp, under the action of G X Z/qZ) are contained in Z/qZ. This implies

that each ramification groups associated to the marked points of X3 (i.e., the stabilizers
of each open edge of I'x; under the action of G x 7./qZ) are contained in Z/qZ. This

means that
Y Xxp X, — Y7

is étale. Since Y)* — X7 is étale, we have fp; : X}, — X7 is étale. This completes the
proof of the proposition. O

Proposition 8.5. Let G := llxs/H, = Ilxs/H,. Suppose that f; and f;, are étale,
and that #vj{’.{ =#v([xs) — 1 and #vjs = 1. Then we have
2 2

#U;El = #v([lxs) — 1 and #U}El = 1.

In particular, X3 and X3, satisfy Condition A and Condition B.

Proof. Write Vi, r xg, ['xs for the morphism of dual semi-graphs induced by f7,.
We have
rxy, = #GH#H Txg) — #G(#v(lxy) —1) —1+1

and

g = #GHE Tx) = () (#G/#G)) +1,

’UE’U(FX;)

where #G,, denotes the order of the stabilizer of a vertices of 7;;11 (v) under the natural
1

action of G on I’ X1, (note that #G,, does not depend on the choices of v € 7;; (v)). Since
1

[, and ff, are étale, we have gx, = gx, . Moreover, Theorem 1.5 implies that

TXHl :TXHQ'
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Then we obtain

#GHV(Txs) — (Y (#G/#G,)) = #G - 1.

UG’U(FXf)

This implies that

#G, — 1. #G
(U%X.)( 2a N1 =t

Since X7 and X3 satisfy Condition A and Condition B, Theorem 5.4 implies ¢ induces
a morphism of dual semi-graphs

(9¢ZFX10—>FX20

of X7 and X3. Let ¢ be any prime number such that (¢, #G) = 1. Moreover, let v'a :=

fi,
{va}, and let
f2 Yy = X5

be a Galois étale covering over ky of degree ¢ such that vYs = {vo}, and, by Proposition
4.4,
1Y = X3

the Galois étale covering over k; of degree ¢ induced by ¢ such that
vfe = {v1 = 0;1(1}2)}.
Consider the Galois étale covering
gy Zy = Xp, Xx3 Yy — X3

over ks whose Galois group is isomorphic to H := G x Z/{Z. Then ¢ induces a Galois
étale covering
gy 27 = Xp Xxe Y7 — X7

over k1 whose Galois group is isomorphic to H. Note that, by the construction above, we
have vgs = {va}. Write yge : I'ze — I'xs for the morphism of dual semi-graphs induced by
g% Moreover, for each v € v(I'xs), #H, denotes the order of the stabilizer of a vertices
of fyg_;l (v) under the natural action of H on I'zs (note that #G, does not depend on the

choices of v € 79_; (v)). Then, for each v € v(I'xs), we have

#Hv = #Gv

if v # vy and
#HUI = K#G'Ul'

On the other hand, we have

rz = #G#e (Txs) = (Y (#H/#H,))+1

va(FXf )
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and
rz, = #H#e Txg) — #H(#v(Txg) — 1) =1+ 1,

where 77, denotes the Betti number of Lz, and rz, denotes the Betti number of Lyzs.
Since g} and g3 are étale, we have gz, = gz,. Moreover, Theorem 1.5 implies that

T‘leTZ2.

Then we obtain

#HH#0(Dxy) — (Y (#H/#H,)) = #H — 1.

’UEU(FX; )
This implies that

YH,— 1., #H LG, — 1. (#G,, — 1. (4G
(> ( 7 ))(#H_l)z( > T %, )(E#G_1

UEU(FXI) UEU(FXI M\Mw1}

) =1

holds for any ¢ if (#G,¢) = 1. This implies that
#G, =1

if v # v; and
#G,, = #G.

This means that
#U;El =1 and #vjc%l = #v(l'xs) — 1.

This completes the proof of the proposition. n

Now, let us prove the main theorem of the present section.

Theorem 8.6. There erists open subgroups Hy C Hy and H| := ¢~'(H})) C Hy such
that the pointed stable curves XI'{{ and Xl'i,é over ky and ko corresponding to H and H),
respectively, satisfy Condition A and Condition B.

Proof. 1t is easy to see that X7 and X7 satisfy Condition A. We only need to prove
that X3, and X3, satisfy Condition B. To verify the theorem, without loss of generality,
we may assume that G := HX;/Hl = Ilx; /Hs is a simple group.

If G is commutative, then the theorem follows from Proposition 8.1 and Proposition
8.2. Then we may assume that G := Ilxs/H; = Ilx;/H; is a finite non-commutative
simple group. Furthermore, by applying Lemma 8.3 and Proposition 8.4, we may assume
that f7;, and f};, are étale, and that all the irreducible components of X7 and X3 are
smooth over k; and ks, respectively.

For each vy € T xg, write X, for the irreducible component of the underlying curve
X, corresponding to vy. We define a smooth pointed stable curve

X.

2,02

= (X27U27 DXQ,UQ = (DX2 U NOd(XQ.)) N X27U2>
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over ko, where Nod(X3) denotes the set of nodes of X3. Write ILy;, vy for the admissible

fundamental group of X3, . Then we have an outer injective homomorphism

xy = Ilxs,
and, moreover, we fix an injection. Let H,,, := Hxs N Hy It is easy to construct a
b B 2

Galois étale covering
° . . .
f2,1)2 ° XP2’U2 — X2

over ko which corresponds to an open normal subgroup P, ,, C Ilx; satisfying the following
conditions:

(1) P2,U2 N HXQ.,UQ = H2,v2;
(ii) Vi = {v2} and #U;EUQ = #v(l'xy) — 1.

Since X7 and X3 satisfy Condition A and Condition B, Theorem 6.4 implies ¢ induces
a morphism of dual semi-graphs

(9¢ : FXl‘ — FX20
of X7 and X3. Write v; for 6’;1(02). Then f3,, and ¢ induces a Galois admissible covering
fo s Xpy,, = X3

over k; which corresponds to an open normal subgroup P ,, := ¢~ }(Py,,) C II Xe-

First, we suppose that I := Ilxs/Py,, = lxs/Ps,, is a simple group. By applying
Lemma 8.3, there exists an open subgroup @3 C Ilxs such that the admissible coverings
2w+ Xy s = X

and
gi,i.h : X;)l,'ulﬁQI - Xéf
are étale, where Q7 := ¢~ 1(Q%). Moreover, by the construction of @3, we have
(i) P27U2 N QS N HXQ'J& = HQ,W N sz
(ii) write yg; : T’ xg, — I'xg for the morphism of dual semi-graphs of X¢, and
2

X3 induced by the morphism X@. — X3; then we have

Vgt =gy (v2) and #oRe = Ho(Txy ) —1;

92,1)2 2,v9
note that #’yég (vg) = 1.

If F':=1Ilxs/P1y, = lxg/Pay, is not a simple group, then we have a sequence of
subgroups
{1}=FK<kKC---CF,,CF,=F

such that F;/F; 1, i € {1,...,n}, is a simple group. For each i € {0,...,n}, write
Py i © 1xs for the inverse images of F; of the natural morphism II xg — Ux;s /Ps.,, and
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Piyi = ¢ Y(Pya,i). By applying similar proof of the case where F' is a simple group
to Py, ; and Pay,;, @ € {1,...,n}, we may obtain that there exists an open subgroup
()2 C Tlxs such that the admissible coverings

g;,’l}g : X;27U20Q2 - XC.?2
and
g;,vl : Xl.Dl’UlﬂQ1 — XZ?I
are étale, where Q; := ¢~ (Q). Moreover, by the construction of Q,, we have
(1) Pop, N Q2 NIlxs .y = Hopy N Qo;

(i) write yg, : I' xg, —* I'xg for the morphism of dual semi-graphs of X§, and
X3 induced by g3 ,,; then we have

U =ngh(e) and #% = Hu(lxy )~ 1,

95 0,
note that #7@21 (vg) = 1.
Then by replacing
X7, X3, Xy, Xi,, X}Ml, and X}Q’U2

by
Xél’ X(:b’ Xé1ﬂH1’ Xé2ﬁH2’ X;)I,vlle’ and X;’2,v2ﬂQ2’

respectively, to verify the theorem, we may assume that
Mo Xp,, = X7

is also a Galois étale covering over k;. Moreover, Proposition 8.5 implies that v}? ={n}
, U1
and #vf{iwl = #v(I'x;) —1. Note that Xp, —and Xp, satisfy Condition A and Condition
B.
We consider the fiber product

ARES X X}l’vl

Xt oneu(Txs)
of curves Xp, , ,v1 € v(I'x;), over X7 and the fiber product

ARES X X}Q’Uz

X302 ev(in)

of curves Xp, , ,v2 € v(I'xg), over X3. Note that Z} and Z3 are connected which corre-
sponding to the open normal subgroups

() P Clixpand () Poy, Cllyg,

vicv(lxe) v2€v(l'xe)
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respectively. Moreover, we have that Z7 and Z3 satisfy Condition A and Condition B.
Write I'ze and I'zg for the dual semi-graphs of Z7 and Z3, respectively.
Next, we consider
hy WP — Z7 xXxs X3, — 27

and
hy W3 — Z3 X x3 XI}Q — 73,

where W and W3 denotes the pointed stable curves over k; and ky corresponding to the
open normal subgroups

HN( () Pu)CSH Clysand Hyn ([ Pa,) € Hy C oy,

vrev(xe) vp€u(Txy)
By the construction of Z3, we obtain that
#vzg = #v(['zs).
Then Proposition 8.4 implies that
#v,sfz’ = #v([zs).
Thus, W} and W3 satisfy Condition A and Condition B. Then we may take

Hy:=H, N( ﬂ P ,,) and Hy = HyN( ﬂ P.,).

vi€v(l'xe) v2€v(l'xe)

This completes the proof of the theorem. n

9 Mono-anabelian versions of combinatorial Grothendieck
conjecture

In this section, we prove mono-anabelian versions of combinatorial Grothendieck conjec-
ture for semi-graphs of anabelioids of PSC-type associated to pointed stable curves over
algebraically closed fields of characteristic p > 0. Let k be an algebraically closed field of
characteristic p > 0, and let

X
be a pointed stable curves of type (gx, nx) over k, Iy the admissible fundamental group
of X*, and I'y. the dual semi-graph of X*. We write

Gxe

for the semi-graph of anabelioids of PSC-type associated to X* and write I'g,, for the
underlying semi-graph of Gx. (cf. [M4], [M5], [M6] for the general theories of anabelioids,
semi-graphs of anabelioids, and semi-graphs of anabelioids of PSC-type, respectively).
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Then we have I'g,, = I'x.. We choose a base point 3g,, of Gx.. Then we obtain the
fundamental group

Hg.. :=m(Gxe, Boye)
of Gxe. By the definition of semi-graph of anabelioids of PSC-type, we have

Mg, = My

Moreover, for suitable choices of base points of X*® and fg,., we may assume that Ilg,, =
[Tx.. We have the following theorem, which is the first main theorem of the present paper.

Theorem 9.1. The semi-graphs of anabelioids of PSC-type Gxs associated to X*® can be
mono-anabelian reconstructed from its fundamental group Ilg_, .

Proof. Note that since Ilg,, is topologically finitely generated, there exists a set of open
normal subgroups {H,},en (e.g. characteristic subgroups) of Ilg,, such that

(l) HZ D) Hi+17 for each i € N,

(11) @nieN ng. /Hz = ng. .

Then to verify that Gy« can be mono-anabelian reconstructed from its fundamental group
Ilg,., it is sufficient to prove that

(i) for each i, the dual semi-graph I'ys of the curve X}, corresponding to H;
can be mono-anabelian reconstructed from H;;

(ii) for each i, the natural map of dual semi-graphs
FXI.-I,L- — Pxn = ng,

can be mono-anabelian reconstructed from the natural injection H; — Ilg_.,
and the natural action of Ilg,./H; on FX;JZ- induced by the natural action
of Ilg,./H; on X}, can be mono-anabelian reconstructed from the natural
injection H; — Ilg,,.

By [Y1, Lemma 5.3], we may assume that Hy = Ilg,,, and that the curve X3 corre-
sponding to H; satisfies Condition A. Then Theorem 3.7 implies that, for each i < 1,
['xs admits a natural action of g , /H;. For each 4,7 < 1 such that j > i, by applying

2

Theorem 3.7 again, we may identify naturally T'xe /(H;/H;) with T'xe . Moreover, we
J i
may identify naturally I'xs /H; with I'xs /H;. Thus, we can define
ng, = FX' = FX;{l/Hl‘
Then the theorem follows from Theorem 3.7. ]

Remark 9.1.1. Let v € v(I'xs), X, the irreducible component of X corresponding to v,
and nl, : X, = X, the normalization morphism of X,. We define

X?* := (X,,nl;}((Node(X) U Dx) N X,))
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to be a smooth pointed stable curve of type (g,,n,) over k, where Node(X) denotes the
sets of nodes of X. For suitable of choices of base point of X, we obtain the admissible
fundamental group

I1

X3
of )N(; Moreover, we have an outer injective homomorphism of fundamental groups

Then Theorem 9.1 means that, there exists a group-theoretic algorithm whose input
datum is IIxe, and whose output data are as follows:

[} (gX,nX) and FX';
e the conjugacy class of the inertia group of every marked point of X* in Ily.;
e the conjugacy class of the inertia group of every node of X*® in Ilxe;

® (gy,n,) and the conjugacy class of IIz, for each v € v(I'xs).

Remark 9.1.2. If X* are smooth over k, then Theorem 9.1 has been obtained by Tam-
agawa (cf. [T2, Theorem 0.5 and Theorem 5.2]).

Remark 9.1.3. This theorem is a mono-anabelian version of [Y1, Theorem 0.2].

In the remainder of the present section, let k;, i € {1,2}, be an algebraically closed
field of characteristic p > 0, and let
X?

(2

be a pointed stable curve of type (gx,, nx,) over k;, II x» the admissible fundamental group
of X?. Moreover, for each ¢ € {1,2}, we write

Gxe

for the semi-graph of anabelioids of PSC-type associated to X?, I'g,, for the underlying

semi-graph of Gys. Let
®:Gxs — Gxg

be a morphism of semi-graphs of anabelioids (cf. [M5, Remark 2.4.2]). We choose a base
point fg,, of Gys and denote by fg,, the resulting base point of Gxs induced by ® and
1 2

Bgy.- Then we obtain a morphism of fundamental groups
1

ngI = 7T1(QX;,5QX1-) — HQXQ. = Wl(ngaﬁgxg)
of G Xe and G X3 Note that we have two isomorphisms as follows:
1_1(_;)(I = HXf and HgX5 = HXz.

Moreover, by choosing suitable base points of X7 and X3, respectively, we may assume
that
ngf = HXl‘ and HQXQ = HXQ’
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Definition 9.2. We shall call that a morphism ® : Gxs — Gy of semi-graphs of an-
abelioids of PSC-type is a unramified 7-epimorphism if the following conditions are
satisfied:

(1) (gX17nXl) = (gX27nX2);
(ii) ® induces an isomorphism on underlying semi-graphs;

(iii) each of the induced morphisms between the respective constituent anabe-
lioids (cf. [M5, Definition 2.1]) is a 7y-epimorphism (i.e., induces an open con-
tinuous surjective outer homomorphism on associated fundamental groups).

We denote by
Hom"™ P (Gxs, Gxs)

the set of unramified 7;-epimorphisms between Gxs and Gx; (possibly empty).

Remark 9.2.1. Suppose that ® : Gxs — Gx; is a unramified 7;-epimorphism. Then ¢
induces an open continuous surjective homomorphism of fundamental groups

QZS . ngf —» ng5

of Gxs and Gxs. Let ¥ be a set of prime numbers such that p ¢ 3. Write Q)E(l. and Q)Z(z. for
the semi-graphs of anabelioids of pro-¥ PSC-type associated to X7 and X3, respectively
(cf. [M6, Definition 1.1 (i)]). Then ® induces an isomorphism

2 X N 0

We denote by
Homopen(l—‘[g){f Y ng5 )

the set of open continuous homomorphisms between Ilg,, and Ilg,,. Then we obtain the
1 2
following natural map

m " Hom™®(Gxy, Gxg) = Hom™(Ig,, , Tlg,, ) /Inn(Tlg,, ).

The second main theorem of the present paper is as follows:

Theorem 9.3. Suppose that X7 and X3 satisfy Condition A and Condition B. Then the
natural map

" Hom"™ P (Gxs, Gxs) — HomoPen(HgX; , ngg)/lnn(ﬂgxs)
is a bijection. Moreover, let ¢ € Hom®*"(Ilg,,Ilg ., ). Then the unramified m-epimorphism
1 2

© = (m"P) 7 ([0]) : G = Gixs

can be mono-anabelian reconstructed from ¢ : Illg . — g ,.
1 2
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Proof. The injectivity of 7,"" follows immediately from the definitions of semi-graphs of
anabelioids, and the surjectivity of 7;"" follows from the “moreover” part of the theorem.
Then, to verify the theorem, we only need to prove the “moreover” part of the theorem.
Let
open
¢ € Hom <ngf y ngs )
Then we have ¢ is a surjection. Since HgX5 is topologically finitely generated, Theorem
8.6 implies that there exists a set of open normal subgroups {Hy;}ien of Ilg,, such that
2

(1) H27Z‘ 2 Hg’i_t'_l, for each i € N,
(

ii) 1.&nz‘eN HgX2' [Hai = HQXE;

(iii) write {Hy,}ien for the set of open normal subgroups {¢~'(Hy;)}ien of
Ilg . ; then, for each i, the pointed stable curve XI'{M and X;IM corresponding
to Hy; and Hs;, respectively, satisfy Condition A and Condition B.

Moreover, by Theorem 9.1, the sets {H1;}ien, {Haitien, and {@|m,, : Hi; — Hajtien

can be mono-anabelian reconstructed from Ilg_,, Ilg, ., and ¢ : IIg,, — Ilg . Then, to
1 2 1 2

verify the “moreover” part of the theorem, it is sufficient to prove that

for each ¢, there exists a group-theoretic algorithm whose input datum is the
natural commutative digram profinite groups

¢|H1,i

H,;, —— Hj;

l l

¢
ngl, —_— ng2, ,

and whose output datum is a commutative dual semi-graphs

0¢|H1,i

FXO e Fxo

Hy ; Hy ;

! !

O
ngl. = Fxlo —_— FX2- = ng5

which induced by the commutative digram of profinite groups above, where
I'(_y denotes the dual semi-graph of the curve (—). Moreover, the commutative
diagram is compatible with the natural action of Ilg , /H:; = g, ., /Ho;.

1 2

Thus, the theorem follows immediately from Theorem 7.4. [
The Theorem 9.3 implies the following corollaries.

Corollary 9.4. Let
¢ : ngf - HQ}(5
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be an open continuous surjective homomorphism, Hy C ngg an open subgroup, and
H, := ¢~ (Hy). Write X3, 1€ {1,2}, for the curve corresponding to H;. If we suppose
that X3, i € {1,2}, satisfies Condition A and Condition B, then there exists a unramified
T -epimorphism

Q:Gxr — Oxg
such that m " (®) = [¢], where [¢] denotes the image of ¢ in HOHlOpen(Hng g, )/Inn(ng5)'
In particular, if there exists an isomorphism of dual semi-graphs

PiFX; :>FX20

such that, for each vy € v(I'xs), the genus of the normalization of the irreducible compo-
nent of X7 corresponding to vy is equal to the genus of the normalization of the irreducible
component of X35 corresponding to p(vy), then there exists a unramified m-epimorphism

Q:Gxs = Gxs
such that m""(®) = [¢], where [¢] denotes the image of ¢ in Hom***"(Ilg , g, . )/Inn(Ilg . ).

Proof. The first part of the corollary follows immediately from Theorem 9.3. Let us prove
the “in particular” part of the corollary. Write I1%., i € {1,2}, for the maximal prime-
to-p quotient of ITxs. The assumptions implies (gx,,nx,) = (9x,,nx,). Then ¢ induces

an isomorphism
O | A |
. L] ® .
Xl X2

By [Y1, Lemma 5.3] and the assumptions, there exists a characteristic subgroup Hgl -
H’)’é. such that the curve corresponding to the curves corresponding to HY " and Hgl satisty
Condition A and Condition B. Thus, the “in particular” part of the corollary follows from
the first part of the corollary. ]

Remark 9.4.1. Corollary 9.4 generalizes [Y2, Theorem 3.4] to the case of arbitrary
pointed stable curves.

Corollary 9.5. Let
Qb . HXI’ —» HX2-

be an open continuous surjective homomorphism, Hs an arbitrary open subgroup, and
H, := ¢~ (Hy). Write X, and X3, for the pointed stable curves corresponding to H,
and Hy over ki and ko, respectively. Suppose that X3 and X3 satisfy Condition A and
Condition B. Then we have

Arv,(Hy) = Arv,(H,).

Proof. The corollary follows immediately from Theorem 1.5 and Theorem 9.3. O
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10 Applications to the anabelian geometry of curves
over algebraically closed fields of characteristic
p >0

In this section, we apply the results obtained in Section 9 to the anabelian geometry of
curves over algebraically closed fields of characteristic p > 0.
Let ), be an algebraic closure of I, and let

My,

be the moduli stack over Fp parameterizing pointed stable curves of type (g,n). We
denote by
M,.,
the coarse moduli space of Mg,n. Let k be an algebraically closed field, and let X*® be
a pointed stable curve of type (g,n) over k. Then X* — Speck determines a classifying
morphism
cxe i Speck — My, — My,

and we denote by gx € M,,, the image of cx.. Write k(gx) for the residue field of gx and
k(gx) for an algebraic closure of k(gx). We denote by

Xoy = Mgt X5z, Speck(gx)
the pointed curve of type (g,n) over k(gx) induced by the natural morphism
Spec k(qx) — Speck(qx) — M.

We shall call that X? is a minimal model of X* (cf. [T2, Definition 1.30 and Lemma
1.31] for the case of smooth pointed stable curves). Note that the admissible fundamental
group of X* is naturally isomorphic to the admissible fundamental group of X7 .

We fix some notations. Suppose that F, C k;, i € {1,2}, and let
X! = (X;,Dx,)
be a pointed stable curve of type (gx,,nx,) over k; and
ITye

the admissible fundamental group of X?. For each i € {1,2} and each v € v(I'xs), write

X, for the irreducible component of X; corresponding to v and nl; ,, : )?Z-ﬂ, — X, for the
normalization morphism of X, ,; we define

)? = (X, nl; ! ((Node(X;) U Dx,) N X)),

and
Xi.,v = (Xi,v7 DXz N Xi,v);
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to be a smooth pointed stable curve of type (g;,,ni,) and an irreducible pointed stable
curve of type (gx,,,nx,,) over k;, respectively, where Node(X;) denotes the set of nodes
of X;. We shall call X? a pointed irreducible component of X?. For suitable of

choices of base points of )?Z'v and X? , we obtain the admissible fundamental group

2,09

I1 s, and II X,

of X and X7, respectively; moreover, we have outer injective homomorphisms of ad-

7,09

missible fundamental groups
H)“(“i.v — HXi.,v — HXZ.

Then the third main theorem of the present paper is as follows:

Theorem 10.1. (a) Suppose that, for each i € {1,2} and each v € v(I'xs), (gi v, i) s
equal to either (0,n;,) or (1,1). Moreover, suppose that p # 2 when there exits v € v(I'xs)
such that (g; ., nip) = (1,1).

(a-1) Suppose that ky = kg = Fp, and that X7 is an irreducible pointed stable curve
over Fp. Then we can detect whether or not X7 is tsomorphic to a pointed irreducible
component of X3 as schemes group-theoretically from Ilxs and Ilx;.

(a-ii) Suppose that ky =F,, that (g,n) = (g9x,,nx,) = (9xs,nx,), that
¢ xp — Ixg

an open continuous surjective homomorphism, and that there exists an isomorphism of
dual semi-graphs

p: FXf :> FX2-
such that, for each v € v(I'xs), (91,0, M10) = (92,0(0), N2,p(w))- Let X(;X2 be a minimal model
X;XQ of X5. Then X;XQ_is a pointed stable curve over Fp; moreover, if we suppose that
Xoo, = X3 (i.e., ko = F,), then, for each v € v(I'xy), X3, is isomorphic to X3 .\ as
schemes. In particular, if X?, i € {1,2}, is irreducible, then X3 is isomorphic to XL;X2 as

schemes if and only if
Hom®* (ILx;, Ilx) # 0,

where Hom®®(—, —) denotes the set of open continuous homomorphisms of profinite
groups.

(b) Suppose that ki = Fp. Then there are at most finitely many Fp—isomarphism
classes of irreducible pointed stable curves over Fp whose admissible fundamental groups

are isomorphic to the admissible fundamental group of a pointed irreducible component of
X7

Proof. The part (a) of the theorem follows immediately from [Y2, Theorem 4.3 and Re-
mark 4.3.3], Theorem 9.1, and Corollary 9.4. The part (b) of the theorem follows imme-
diately from Theorem 9.1 and [T3, Theorem 0.1]. O

Remark 10.1.1. Theorem 10.1 generalizes [Y1, Theorem 6.6 (ii) and Theorem 6.9] and
[Y2, Theorem 4.3 and Remark 4.3.3].
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