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Abstract

In the present paper, we study finite quotients of admissible fundamental groups
of pointed stable curves over algebraically closed fields of characteristic p > 0. Let
Mg,n be the moduli stack over an algebraically closed field k of characteristic p > 0
classifying pointed stable curves of type (g, n) and Mg,n the coarse moduli space
ofMg,n. For each point q ∈ Mg,n, we denote by Πadm

q the admissible fundamental
group of the pointed stable curves determined by q over an algebraically closed field
which contains the residue field of q, and denote by πadm

A (q) the set of finite quotients
of Πadm

q . For each G ∈ πadm
A (q), we take UG := {q′ ∈ Mg,n | G ∈ πadm

A (q′)}.
We prove that UG is an open subset of Mg,n. By applying this result, we give
an alternative proof of a finiteness result for pointed stable curves over Fp which
has been proven by the author in a completely different way. Moreover, by using
the intersection of certain elements of {UG}G∈πadm

A (q), we formulate the pointed
collection conjecture for arbitrary pointed stable curves which is a generalization of
the weak Isom-version of the Grothendieck conjecture of pointed stable curves over
algebraically closed fields of characteristic p > 0.
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Introduction

Let k be an algebraically closed field of characteristic p > 0,Mg,n the moduli stack over
k classifying pointed stable curves of type (g, n), and Mg,n ⊆ Mg,n the open substack
parametrizing smooth pointed stable curves. Write Mg,n and M g,n for the coarse moduli
spaces of Mg,n and Mg,n, respectively. Let q be an arbitrary point of M g,n, k(q) the
residue field of q, and lq an algebraically closed field which contains k(q). Then the
natural morphism

Spec lq → Spec k(q)→M g,n

determines a pointed stable curve

X•
lq := (Xlq , DXlq

)

of type (g, n) over lq. Here, Xlq denotes the underlying curve of X•
lq
, and DXlq

denotes
the set of marked points of X•

lq
. By choosing a base point of X•

lq
, we obtain the admissible

fundamental group (which is a generalization of the tame fundamental group of a smooth
pointed stable curve to an arbitrary pointed stable curve (cf. Definition 1.2))

Πadm
q

which only depends on q. The global properties and the structure concerning the admissi-
ble fundamental group Πadm

q are very mysterious (e.g. anabelian phenomenons are exist),
only a few results are known.

On the other hand, since Πadm
q is a topologically finitely generated profinite group, the

isomorphism class of Πadm
q is determined completely by the set of finite quotients of Πadm

q .
We denote by

πadm
A (q)

the set of finite quotients of Πadm
q . Moreover, for each finite group G ∈ Πadm

q , we define a

subset of M g,n to be
UG := {q′ ∈M g,n | G ∈ πadm

A (q′)},

and take U sm
G := UG ∩Mg,n when q ∈Mg,n. In the present paper, we are interested in the

following question:

Question 0.1. What is UG?

Remark 0.1.1. The specialization theorem of admissible fundamental groups implies
that UG is a dense subset of M g,n. Moreover, when n = 0 and q is a closed point of Mg,0,
K. Stevenson proved that U sm

G contains an open subset of Mg,0 (cf. [S, Proposition 4.2]).

Before we show our main theorem, let us explain some motivations of the theory
developed in the present paper. Some developments of M. Raynaud, F. Pop, M. Säıdi,
and A. Tamagawa (cf. [R], [PS], [T1], [T2]) from the 1990’s showed evidence for very
strong anabelian phenomena for smooth pointed stable curves over algebraically closed
fields of characteristic p > 0. In this situation, the Galois group of the base field is trivial,
and the tame fundamental group coincides with the geometric fundamental group, thus in
a total absence of a Galois action of the base field. Note that, in the case of algebraically
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closed fields of characteristic 0, since the tame fundamental groups of curves depend only
on the genera and the cardinality of the sets of cusps, the anabelian geometry of curves
does not exist in this situation.

Suppose that kq := lq is an algebraic closure of k(q). One of the main problems of the
anabelian geometry of curves over algebraically closed fields of characteristic p > 0 is the
following conjecture which is called the weak Isom-version of the Grothendieck conjecture
for curves over algebraically closed fields of characteristic p > 0 (=weak Isom-version).

Conjecture 0.2. The isomorphism class of X•
kq

as a scheme can be determined completely

from the isomorphism class of the admissible fundamental group Πadm
q as a profinite group.

Conjecture 0.2 has only been proven in some special cases (cf. [T1, Theorem 0.2] for
the case of smooth pointed stable curves and [Y2, Theorem 0.3 (a)] for the case of pointed
stable curves). On the other hand, at the present, almost all of the results concerning
Conjecture 0.2 are proved only in the case where k = kq = Fp is an algebraic closure
of the finite field Fp. When q ∈ Mg,n, the author reformulated Conjecture 0.2 from the
point of view of moduli spaces (cf. [Y2, Conjecture 0.5]), and posed a conjecture (i.e.,
pointed collection conjecture (cf. [Y2, Conjecture 0.9])) which is a generalization of (the
weak Isom-version), and which makes clear the relationship between (weak Isom-version)
over Fp and (weak Isom-version) over arbitrary algebraically closed fields of characteristic
p > 0. The set {U sm

G }G∈πadm
A (q) plays a key role in the formulation of the pointed collection

conjecture for smooth pointed stable curves. Moreover, when g = 0, the pointed collection
conjecture for smooth pointed stable curves holds if one can prove that, for each closed
point t ∈M0,n, {U sm

G }G∈πadm
A (t) is a neighbourhood base of the set

{t′ ∈M0,n | t ∼ t′},

where t ∼ t′ if X•
kt
is isomorphic to X•

kt′
as schemes; then Conjecture 0.2 holds when g = 0

and q ∈M0,n.
In the present paper, we study the set UG. The main theorem of the present paper is

as follows (cf. Theorem 3.6):

Theorem 0.3. Let q ∈ M g,n be an arbitrary point and G ∈ πadm
A (q) an arbitrary finite

quotient of Πadm
q . Then UG is an open subset of M g,n.

As an application, we obtain an alternative proof of the following finiteness theorem.

Theorem 0.4. Suppose that k = Fp and q is a closed point. Then there are only finitely
many k-isomorphism classes of pointed stable curves over k whose admissible fundamental
groups are isomorphic to Πadm

q .

Remark 0.4.1. Suppose that q ∈Mg,n. Then Theorem 0.4 was proved by Raynaud (cf.
[R]) and Pop-Saidi (cf. [PS]) under certain assumptions of Jacobian, and by Tamagawa
in the fully general case (cf. [T2]).

Remark 0.4.2. In [Y2, Theorem 0.3 (b)], the author proved Theorem 0.4 in a completely
different way (i.e., by using [T2, Theorem 0.3] and the combinatorial Grothendieck con-
jecture in positive characteristic obtained by the author).
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Moreover, by using {UG}G∈πadm
A (q), we formulate the pointed collection conjecture for

arbitrary pointed stable curves (cf. Conjecture 4.8) which is a generalization of the pointed
collection conjecture for smooth pointed stable curves.

The present paper is organized as follows. In Section 1, we fix some notations and
review some definitions which will be used in the present paper. In Section 2 and Section
3, we study the set πadm

A (q) and prove our main theorem. In Section 4, we prove Theorem
0.4 by using Theorem 0.3, and formulate the pointed collection conjecture for arbitrary
pointed stable curves.
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1 Preliminaries

In this section, we fix some notations and recall some definitions.

Definition 1.1. Let G := (v(G), e(G), {ζGe }e∈e(G)) be a semi-graph (cf. [Y1, Section 2]).
Here, v(G), e(G), and {ζGe }e∈e(G) denote the set of vertices of G, the set of edges of G,
and the set of coincidence maps of G, respectively.

(a) We write eop(G) ⊆ e(G) and ecl(G) ⊆ e(G) for the set of open edges and the set
of closed edges of G, respectively.

(b) We shall call that G is 2-connected at v if G \ {v} is either empty or connected
for each v ∈ v(G).

(c) We define an one-point compactification Gcpt of G as follows: if eop(G) = ∅,
we set Gcpt = G; otherwise, the set of vertices of Gcpt is v(Gcpt) := v(G)

⨿
{v∞}, the set

of edges of Gcpt is e(Gcpt) := e(G), and each edge e ∈ eop(G) ⊆ e(Gcpt) connects v∞ with
the vertex that is abutted by e.

(d) For each v ∈ v(G), we set

b(v) :=
∑

e∈e(G)

be(v),

where be(v) ∈ {0, 1, 2} denotes the number of times that e meets v. Moreover, we set

v(Gcpt)b≤1 := {v ∈ v(G) ⊆ v(Gcpt) | b(v) ≤ 1}.

Let D be a scheme, and let
X•

D := (XD, DXD
)

be a pointed stable curve of type (g, n) over D. Here, XD denotes the underlying curve
of X•

D over D, and DXD
denotes the set of marked points of X•

D. Let D
′ be a scheme and

D′ → D a morphism of schemes. We denote by

X•
D′ := X•

D ×D D′

the pointed stable curve over D′ induced by X•
D and the morphism D′ → D.

4



Definition 1.2. Let d be an algebraically closed field, X•
d a pointed stable curve of type

(g, n) over d, and
f •
d : Y •

d → X•
d

a morphism of pointed stable curves over Spec d. We shall call f •
d a Galois admissible

covering over Spec d if the following conditions hold:

(i) there exists a finite group G ⊆ Autd(Y
•
d ) such that Y •

d /G = X•
d , and f •

d is
equal to the quotient morphism Y •

d → Y •
d /G;

(ii) for each y ∈ Sm(Yd) \ DYd
, f •

d is étale at y, where Sm(−) denotes the
smooth locus of (−);
(iii) for any y ∈ Sing(Yd), the image f •

d (y) is contained in Sing(Xd), where
Sing(−) denotes the singular locus of (−);
(iv) for each y ∈ Sing(Yd), the local morphism between two nodes induced by
f •
d may be described as follows:

ÔXd,f
•
d (y)
∼= d[[u, v]]/uv → ÔYd,y

∼= d[[s, t]]/st
u 7→ sn

v 7→ tn,

where (n, char(d)) = 1 if char(d) > 0; moreover, write Dy ⊆ G for the decom-
position group of y and #Dy for the cardinality of Dy; then

τ(s) = ζ#Dys and τ(t) = ζ−1
#Dy

t

for each τ ∈ Dy, where ζ#Dy is a primitive #Dy-th root of unit;

(v) the local morphism between two marked points induced by f •
d may be

described as follows:

ÔXd,f
•
d (y)
∼= d[[a]] → ÔYd,y

∼= d[[b]]
a 7→ bm,

where (m, char(d)) = 1 if char(d) > 0 (i.e., a tamely ramified extension).

Moreover, we shall call f •
d an admissible covering over Spec d if there exists a morphism

of pointed stable curves (f •
d )

′ : (Y •
d )

′ → Y •
d over Spec d such that the composite morphism

f •
d ◦ (f •

d )
′ : (Y •

d )
′ → X•

d is a Galois admissible covering over Spec d. Let Z•
d be the disjoint

union of finitely many pointed stable curves over Spec d. We shall call a morphism

Z•
d → X•

d

over Spec d multi-admissible covering over Spec d if the restriction of Z•
d → X•

d to
each connected component of Z•

d is an admissible covering over Spec d.
We define a category Covadm(X•

d) as follows:
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(i) the objects of Covadm(X•
d) are either empty object or the multi-admissible

coverings of X•
d over Spec d;

(ii) for any A,B ∈ Covadm(X•
d), Hom(A,B) consists of all the morphisms

whose restriction to each connected component of B is a multi-admissible
covering over Spec d.

It is well-known that Covadm(X•
d) is a Galois category. Thus, by choosing a base point x ∈

Sm(Xd)\DXd
, we obtain a fundamental group πadm

1 (X•
d , x) which is called the admissible

fundamental group ofX•
d . For simplicity of notation, we omit the base point and denote

by
ΠX•

d

the admissible fundamental group of X•
d .

Let d′ be an arbitrary field, d
′
an algebraically closure of d′, f •

d′ : Y
•
d′ → X•

d′ a morphism
of pointed stable curves over d′. We shall call f •

d′ an admissible covering (resp. a Galois
admissible covering) over d′ if the natural morphism

f •
d
′ : Y •

d
′ → X•

d
′

induced by f •
d′ is an admissible covering (resp. a Galois admissible covering) over d

′
. Let

D′ be an arbitrary scheme and f •
D′ : Y •

D′ → X•
D′ a morphism of pointed stable curves over

D′. We shall call f •
D′ a Galois admissible covering over D′ if, for each d′ ∈ D′,

f •
d′ : Y

•
d′ → X•

d′

is a Galois admissible covering over each d′.
For more details on admissible coverings and the admissible fundamental groups for

pointed stable curves, see [M1, Section 3], and [M2, Section 2].

Remark 1.2.1. If X•
d is smooth over d, by the definition of admissible fundamental

groups, then the admissible fundamental group of X•
d is naturally isomorphic to the tame

fundamental group of Xd \DXd
.

Remark 1.2.2. LetMg,n,Z be the moduli stack over Z classifying pointed stable curves of
type (g, n) andMg,n,Z the open substack ofMg,n,Z parametrizing smooth pointed stable

curves. WriteMlog

g,n,Z for the log stack obtained by equippingMg,n,Z with the natural log
structure associated to the divisor with normal crossings

Mg,n,Z \Mg,n,Z ⊂Mg,n,Z

relative to SpecZ. The pointed stable curve X•
d → Spec d induces a morphism Spec d→

Mg,n,Z. Write slogXd
for the log scheme whose underlying scheme is Spec d, and whose log

structure is the pulling-back log structure induced by the morphism Spec d → Mg,n,Z.

We obtain a natural morphism slogXd
→Mlog

g,n,Z induced by the morphism Spec d→Mg,n,Z
and a stable log curve

X log
d := slogXd

×Mlog
g,n,Z
Mlog

g,n+1,Z

over slogXd
whose underlying scheme is Xd. Then the admissible fundamental group ΠX•

d

of X•
d is naturally isomorphic to the geometric log étale fundamental group of X log

d (i.e.,

Ker(π1(X
log
d )→ π1(s

log
Xd
))).
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From now on, let k be an algebraically closed field of characteristic p > 0. Let

Mg,n :=Mg,n,Z ×Z k

be the moduli stack over k classifying pointed stable curves of type (g, n) and

Mg,n :=Mg,n,Z ×Z k

the open substack ofMg,n parameterizing smooth pointed stable curves. We denote by
M g,n and Mg,n for the coarse moduli spaces ofMg,n andMg,n, πg,n :Mg,n → M g,n and
πg,n :Mg,n →Mg,n for the natural morphism, respectively.

If g = 0, then M0,n is a scheme over k. Thus, we have M0,n = M0,n. Moreover,
M0,n is a quasi-variety over k. In general, the coarse moduli space is not a fine moduli
space. In order to build the family of curves over schemes in general case, we use the level
structure. Let m ≥ 3 be an integer number distinct from p.

Fist, we treat the case where g = 1. We denotes by M(m)
1,1,Fp

the moduli stack over
Fp classifying smooth pointed stable curves of type (1, 1) with level m-structure (i.e., the
moduli stack of elliptic curve in characteristic p with level m-structure). Moreover, we set

M
(m)
1,1 :=M(m)

1,1 ×Fp k.

There exists a natural covering morphism π
(m)
1,1 : M

(m)
1,1 →M1,1. We set

M
(m)
1,n := M

(m)
1,1 ×M1,1 M1,n.

Then we obtain a natural covering morphism

π
(m)
1,g : M

(m)
1,n →M1,n

determined by the second projection morphism of M
(m)
1,1 ×M1,1 M1,n → M1,n. Note that

M
(m)
1,1,Fp

is a quasi-projective varieties over k. For each k-scheme S, M
(m)
1,n (S) is the set of

S-isomorphism classes of smooth pointed stable curves of type (1, n) over S such that the
smooth pointed stable curves of type (1, 1) over S obtained by forgetting the last n − 1
marked points of the smooth pointed stable curves of type (1, n) are elliptic curves over
S with level m-structure.

Next, we suppose that g ≥ 2. Let M(m)
g,0,Fp

be the moduli stack over Fp classifying
smooth pointed stable curves of type (g, 0) with level m-structure. Moreover, we set

M
(m)
g,0 :=M(m)

g,0 ×Fp k,

and there exists a natural covering morphism π
(m)
g,0 : M

(m)
g,0 →Mg,0. We set

M (m)
g,n := M

(m)
g,0 ×Mg,0 Mg,n.

Then we obtain a covering morphism

π(m)
g,n : M (m)

g,n →Mg,n
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determined by the second projection of M
(m)
g,0 ×Mg,0 Mg,n → Mg,n. Note that M

(m)
g,n is a

quasi-projective variety over k. For each k-scheme S, M
(m)
g,n (S) is the set of S-isomorphism

classes of smooth pointed stable curves of type (g, n) over S whose underlying curve is a
curve of genus g over S with level m-structure.

We shall write
Hg,n

for M
(m)
g,n when g ≥ 1, and for M0,n when g = 0. We use the notation π

(m)
g,n to denote the

morphism π
(m)
g,n : Hg,n = M

(m)
g,n →Mg,n when g ≥ 1, and idM0,n : M0,n →M0,n when g = 0.

Moreover, we shall write
X•

Hg,n

for the universal smooth pointed stable curve over Hg,n with a level m-structure σHg,n :=
σHg,0 ×Hg,0 Hg,n induced by the level m-structure

σHg,0 : Pic
0
X•

Hg,0
/Hg,0

[m]
∼→ (Z/mZ)2gHg,0

when g ≥ 2, with a level m-structure σH1,n := σH1,1 ×H1,1 Hg,n induced by the level
m-structure

σH1,1 : Pic
0
X•

H1,1
/H1,1

[m]
∼→ (Z/mZ)2gH1,1

when g = 1, and with the trivial level m-structure when g = 0.

2 The set of finite quotients of admissible fundamen-

tal groups

We maintain the notations introduced in Section 1. Let q ∈ M g,n be an arbitrary point,
k(q) the residue field of q, and lq an algebraically closed field which contains k(q). Then
the natural morphism

Spec lq → Spec k(q)→M g,n

determines a pointed stable curve
X•

lq

over lq. We shall write Γq for the dual semi-graph of X•
lq
which only depends on q. Since

the admissible fundamental group ΠX•
lq
depends only on q (i.e., does not depend on the

choices of lq), we denote by
Πadm

q

the admissible fundamental group of X•
lq
. Moreover, we write

πadm
A (q)

for the set of finite quotients of Πadm
q . Since Πadm

q is a topologically finitely generated
profinite group, the isomorphism class of Πadm

q is determined completely by the set of
finite quotients πadm

A (q). First, we have the following proposition.
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Proposition 2.1. Let q1, q2 ∈ M g,n be arbitrary points such that q2 ∈ {q1}. Then we
have

πadm
A (q2) ⊆ πadm

A (q1).

Proof. The proposition follows immediately from the specialization theorem of admissible
fundamental groups of pointed stable curves.

Lemma 2.2. Let S be a smooth variety over k, ηS the generic point of S, and X•
S a

smooth pointed stable curve over S. Let Y •
ηS

be a smooth pointed stable curve over ηS and

f •
ηS

: Y •
ηS
→ X•

ηS

a Galois admissible covering over ηS. Then there exist an open subset U ⊆ S and a
morphism

f •
U : Y •

U → X•
U

of smooth pointed stable curves over U such that the restriction of f •
U on ηS is isomorphic

to f •
ηS

over ηS, and f •
U is a Galois admissible covering over U .

Proof. Write YS for the normalization of XS in the function field of YηS , and DYS
for

the set of the topological closures of the elements of DYηS
in YS. Furthermore, [Har,

Proposition 5] implies that, by replacing S by an open subset of S, we may assume that
the fiber Ys := YS ×S s is geometrically irreducible over each closed point s ∈ S.

The normalization fS : YS → XS induces a morphism

gS := fS|YS\DYS
: YS \DYS

→ XS \DXS

over S. Since the restriction of gS on the generic fiber ηS is étale, there exists a open
subset U ⊆ S such that

gu : YS \DYS
×S u→ XS \DXS

×S u

is étale at each u ∈ U . Thus, by replacing S by the open subset U , we may assume that
gS is étale. Since the fiber Ys := YS ×S s is generically smooth over each s ∈ S, Ys is
geometrically irreducible over each point s ∈ S.

Let X log
S be the log scheme over S whose underlying scheme is XS, and whose log

structure is determined by the marked points of DXS
. Since S is smooth over k, we may

check that X log
S is log regular. Note that fS is tamely ramified over the generic points of

DXS
. Then the log purity (cf. [M3, Theorem B]) implies that gS extends uniquely to a

Galois log étale morphism
f log
S : Y log

S → X log
S

over S. We take
Y •
S := (YS, DS),

which is a smooth pointed stable curve over S. Then f log
S induces a morphism

f •
S : Y •

S → X•
S

such that the restriction of f •
S on ηS is equal to f •

ηS
, and

fs : Y
•
s → X•

s

induced by f •
S is a connected Galois admissible covering over each s ∈ S.
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Proposition 2.3. Let q ∈Mg,n be an arbitrary point, V sm
q the topological closure of q in

Mg,n, and C ⊆ V sm,cl
q a set of closed points of V sm

q , where (−)cl denotes the set of closed
points of (−). Suppose that C is dense in V sm

q . Then we have

πadm
A (q) =

∪
c∈C

πadm
A (c).

Proof. If q is a closed point, then the proposition is trivial. Then we may assume that q is
not a closed point. Proposition 2.1 implies that, to verify the proposition, it is sufficient to
prove that, for each G ∈ πadm

A (q), there exists a closed point c ∈ C such that G ∈ πadm
A (c).

Let q(m) ∈ (π
(m)
g,n )−1(q) be a point of Hg,n, Vq(m) the topological closure of q(m) in Hg,n,

and k(q(m)) the residue field of q(m) which is the function field of Vq(m) . Write M ′ for the

normalization of Vq(m) in k(q(m)). Then there exists an open subset of M ⊆M ′ such that
M is smooth over k. Moreover , the natural morphism

M ↪→M ′ → Vq(m) ↪→ Hg,n

determines a smooth pointed stable curve

X•
M := X•

Hg,n
×Hg,n M

over M .
Let kq be an algebraic closure of k(q(m)). By the construction, kq is also an algebraic

closure of k(q), where k(q) denotes the residue field of q. Let

Y •
kq → X•

kq

be a G-Galois admissible covering (i.e., a Galois admissible covering with Galois group G)
over kq. By replacing k(q(m)) by a finite extension l of k(q(m)), the G-Galois admissible
covering can be descended to a G-Galois admissible covering

Y •
l → X•

l

over l. Write N for the normalization of M in l, X•
N for X•

N := X•
M ×M N , and Y •

N for
the normalization of X•

N in the function field of Y •
l . Then we obtain a natural G-Galois

covering
Y •
N → X•

N

such the restriction on generic fibers is isomorphic to the G-Galois admissible covering
Y •
l → X•

l over l. Since N is generically smooth over k, by replacing N by an open subset
of N , we may assume that N is smooth over k. Thus, Lemma 2.2 implies that there exists
an open subset U ⊆ N such that the morphism

Y •
U → X•

U

is a connected G-admissible covering over each u ∈ U .
We denote by Uq ⊆ V sm

q the image of U in V sm
q , which is a dense constructible set of

V sm
q . Then Uq contains an open subset Wq of V sm

q . Since C is dense in V sm
q , Uq ∩ C ̸= ∅.

This means that, there exists a closed point c ∈ C such that G ∈ πadm
A (c). This completes

the proof of the proposition.
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The proof of Proposition 2.3 implies the following corollary.

Corollary 2.4. We maintain the notations introduced in the proof of Proposition 2.3. Let
f •
kq

: Y •
kq
→ X•

kq
be a G-admissible covering over kq. Then there exist a smooth k-variety

Uqv and a finite morphism Uq → Hg,n (not necessary a surjection) such that

(i) the image of Uq of the composition of the morphisms Uq → Hg,n
π
(m)
g,n→ Mg,n

is open in V sm
q ;

(ii) the morphism Uq → Hg,n induces a smooth pointed stable curve

X•
Uq

:= X•
Hg,n
×Hg,n Uq

over Uq with a level m-structure σUq := σHg,n ×Hg,n Uq;

(iii) there exists a G-Galois covering f •
Uq

: Y •
Uq
→ X•

Uq
of smooth pointed stable

curves over Uq such that f •
Uq
×Uq Spec kq is isomorphic to f •

kq
over kq, and f •

Uq

is a G-admissible covering over Uq.

In the remainder of this section, we extend Proposition 2.3 to the case where q ∈M g,n.

Lemma 2.5. Let S be a k-variety and s1, s2 ∈ S two points such that s1 ̸= s2 and s2 ∈
{s1}. Then there exist a complete discrete valuation ring R and a morphism SpecR→ S
such that the image of the morphism (as a set) is {s1, s2}.

Proof. It is easy to see that we may assume that s1 is the generic point of S, and s2
is a closed point of S. If dim(S) = 1, then the lemma is trivial. We may assume that
dim(S) ≥ 2.

Let s1 be a geometric point over s1. Write S for S ×S s1. Then the natural morphism
s1 → s1 → S and s2 → S induces a morphism f1 : s1 → S and f2 : s2 → S, respectively.
We denote by s′1 the image (as as set) of f1, and denote by s′2 the image (as a set) of f2.
Note that s′1, s

′
2 are closed points of S and s′1 ̸= s′2. Then there exists a curve C ⊆ S

which contains s′1, s
′
2. Write ηC for the generic point of C. Thus, the image (as a set) of

the composition of the morphisms ηC ↪→ C ↪→ S → S is s1.
There is a complete discrete valuation ring R and a morphism SpecR→ C such that

the image of the morphism (as a set) is {ηC , s′2}. Then the desired morphism is the
composition of the morphisms

SpecR→ C ↪→ S → S.

This completes the proof of the lemma.

Lemma 2.6. Let R be a complete discrete valuation, KR the quotient field of R, and kR
the residue field of R such that kR is an algebraically closed field. Let

f •
KR

: Y •
KR
→ X•

KR

be a morphism of pointed stable curves over KR. Write ΓX•
KR

for the dual semi-graph of

X•
KR

,
nlv : XKR,v → X ′

KR,v

11



for the normalization of the irreducible component X ′
KR,v of XKR

corresponding to each
v ∈ v(ΓX•

KR
), ΓY •

KR
for the dual semi-graph of Y •

KR
, and

nlw : YKR,w → Y ′
KR,w

for the normalization of the irreducible component Y ′
KR,w of YKR

corresponding to each
w ∈ v(ΓY •

KR
). Suppose that

DXKR,v
:= (DXKR

∩XKR,v) ∪ (XKR,v ∩ (Sing(XKR
) \ Sing(X ′

KR
))) ∪ (nlv)

−1(Sing(X ′
KR

))

of XKR
is a set of KR-rational points of XKR,v, and that

DYKR,w
:= (DYKR

∩ YKR,w) ∪ (YKR,w ∩ (Sing(YKR
) \ Sing(Y ′

KR
))) ∪ (nlw)

−1(Sing(Y ′
KR

))

of YKR
is a set of KR-rational points of YKR,w for each w ∈ v(ΓYKR

). We define two
smooth pointed stable curve

X•
KR,v := (XKR,v, DXKR,v

) and Y •
KR,w := (YKR,w, DYKR,w

)

of type (gv, nv) and (gw, nw) for each v ∈ v(ΓX•
KR

) and each w ∈ v(ΓY •
KR

) over KR,

respectively. Moreover, suppose that, for each v ∈ v(ΓX•
KR

) and each w ∈ v(ΓY •
KR

), X•
KR,v

and Y •
KR,w

have good reduction over R, and that f •
KR

is a G-admissible covering over KR.
Then there exists a morphism

f •
R : Y •

R → X•
R

of pointed stable curves over R such that f •
R is a G-admissible covering over R, and that

the restriction f •
kR

:= f •
R×R kR of f •

R on the special fibers is a G-admissible covering over
kR.

Proof. For each w ∈ v(ΓY •
KR

), the smooth pointed stable curve Y •
KR

over KR determines

a morphism
cY •

KR,w
: SpecKR →Mgw,nw,Z.

Suppose that Y •
KR

is a pointed stable curve of type (gY , nY ) over KR. Write cY •
KR

:

SpecKR → MgY ,nY ,Z for the morphism determined by Y •
KR

over KR. Then the pointed
stable curve Y •

KR
determines a clutching morphism

κY •
KR

:
⨿

w∈v(ΓY •
KR

)

Mgw,nw,Z →MgY .nY ,Z

such that the composition of morphisms κY •
KR
◦ (×w∈v(ΓY •

KR
)
cY •

KR,w
) = cY •

KR
. For each

w ∈ v(ΓY •
KR

), we denote by Y •
R,w the smooth pointed stable curve of type (gw, nw) over R

induced by Y •
KR,w. Then, by using the clutching morphism κY •

KR
, we may glue the pointed

stable curves {Y •
R,w}w∈v(ΓY •

KR
) and obtain a pointed stable curve Y •

R over R.

Since Y •
KR

admits an action of G, this action induces an action of G on the pointed
stable curve Y •

R. Let Z
•
R := Y •

R/G, f •
R : Y •

R → Z•
R the quotient morphism, Z•

KR
the generic

12



fiber over KR, and Z•
kR

the special fiber over kR. [L, Proposition 10.3.48] implies Z•
R is a

pointed semi-stable curve over R. Since f •
KR

is a G-admissible covering over KR, Z
•
KR

is
isomorphic to X•

KR
over KR.

On the other hand, write γf•
KR

: ΓY •
KR
→ ΓX•

KR
for the morphism of dual semi-graphs

induced by f •
KR

. Note that, for each v ∈ v(ΓX•
KR

) and each w ∈ γ−1
f•
KR

(v), f •
KR

induces a

G-admissible covering f •
R,w : Y •

R,w → X•
R,v of smooth pointed stable curves over R. Then

we obtain Y •
R,w/G

∼= X•
R,v over R. This implies that Z•

kR
is a pointed stable curve over

kR. Then we have X•
R
∼= Z•

R over R. We complete the proof of the lemma.

Proposition 2.7. Let q ∈ M g,n be an arbitrary point, Vq the topological closure of q in
M g,n, and G ∈ πadm

A (q) a finite group. Then there exists a closed point c ∈ V cl
q such that

Γq is isomorphic to Γc, and that G ∈ πadm
A (c).

Proof. If q is a closed point, then the proposition is trivial. Then we may assume that
q is not a closed point. If q ∈ Mg,n, then the proposition follows form Proposition 2.3.
Then we may assume that q ∈M g,n \Mg,n.

The natural morphism

Spec kq → Spec k(q)→M g,n

determines a pointed stable curve
X•

kq

over kq. For each v ∈ v(Γq), write

nlv : Xkq ,v → X ′
kq ,v

for the normalization of the irreducible component X ′
kq ,v

of Xkq corresponding to v. Let
DXkq,v

be a set of closed points

(DXkq
∩Xkq ,v) ∪ (Xkq ,v ∩ (Sing(Xkq) \ Sing(X ′

kq))) ∪ (nlv)
−1(Sing(X ′

kq))

for each v ∈ v(Γq), where Sing(−) denotes the set of singular points of (−). We define a
smooth pointed stable curve

X•
kq ,v := (Xkq ,v, DXkq,v

)

of type (gv, nv) over kq for each v ∈ v(Γq).
Let Y •

kq
be a pointed stable curve of type (gY , nY ) over kq,

f •
kq : Y

•
kq → X•

kq

a G-admissible covering over kq, ΓY •
kq

the dual semi-graph of Y •
kq
, and γf•

kq
: ΓY •

kq
→ Γq the

morphism of dual semi-graphs induced by f •
kq
. Note that γf•

kq
does not depends on the

choices of kq. For each v ∈ v(Γq), write Iv for the set γ−1
f•
kq
(v). Then f •

kq
and the natural

morphism of underlying curves Xkq ,v → Xkq induce a Galois multi-admissible covering

f •
kq ,v :

⨿
w∈Iv

Y •
kq ,w → X•

kq ,v

13



over kq with Galois group G, where Y •
kq ,w

, w ∈ Iv, is a smooth pointed stable curve of type
(gY,w, nY,w) over kq whose underlying curve is a normalization of the irreducible component
of Ykq corresponding to w. Note that

⨿
w∈Iv Y

•
kq ,w

admits an action of G induced by the
action of G on Y •

kq
. This action induces an action of G on the set Iv. For each w ∈ Iv,

write Gw for the inertia subgroup of w. Then we obtain a Gw-admissible covering

f •
kq ,w : Y •

kq ,w → X•
kq ,v

over kq.
The pointed stable curves X•

kq
, {X•

kq ,v
}v∈v(Γq), Y

•
kq
, and {Y •

kq ,w
}w∈v(ΓY •

kq
) over kq de-

termine morphisms cX•
kq

: Spec kq → Mg,n, {cX•
kq,v

: Spec kq → Mgv ,nv}v∈v(Γq), cY •
kq

:

Spec kq → MgY ,nY
, and {cY •

kq,w
: Spec kq → MgY,w,nY,w

}w∈v(ΓY •
kq

), respectively. Then the

pointed stable curves X•
kq

and Y •
kq

induce two clutching morphisms as follows:

κX•
kq

:
∏

v∈v(Γq)

Mgv ,nv →Mg,n

and
κY •

kq
:

∏
w∈v(ΓY •

kq
)

Mgw,nw →Mg,n

such that κX•
kq
◦ (×v∈v(Γq)

cX•
kq,v

) = cX•
kq

and κY •
kq
◦ (×w∈v(ΓY •

kq
)
cY •

kq,w
) = cY •

kq
.

On the other hand, the smooth pointed stable curve X•
kq
, v ∈ v(Γq), over kq determines

a morphism
Spec kq →Mgv ,nv ,

and we denote by qv ∈Mgv ,nv for the image of the morphism. Write V sm
qv for the topological

closure of qv in Mgv ,nv . Let kqv be an algebraically closure of the residue field k(qv) of
qv. Since the admissible coverings over algebraically closed fields do not depends on the
choices of base fields, f •

kq ,w
induces a Gw-admissible covering

f •
kqv ,w

: Y •
kqv ,w

→ X•
kqv ,v

over kqv . Then Corollary 2.4 implies that there exist a smooth k-variety Uqv and a finite
morphism Uqv → Hgv ,nv (not necessary a surjection) such that

(i) the image of Uqv of the composition of the morphisms Uqv → Hgv ,nv

π
(m)
gv,nv→

Mgv ,nv is open in V sm
qv ;

(ii) the morphism Uqv → Hgv ,nv induces a smooth pointed stable curve

X•
Uqv ,v

:= X•
Hgv,nv

×Hgv,nv
Uqv

over Uqv with a level m-structure σUqv
:= σHgv,nv

×Hgv,nv
Uqv ;

(iii) for each w ∈ Iv, there exists a G-Galois covering f •
Uqv ,w

: Y •
Uqv ,w

→ X•
Uqv ,v

of smooth pointed stable curves over Uqv such that f •
Uqv ,w

×Uqv
Spec kqv is f

•
kqv ,w

,
and f •

Uqv ,w
is a Gw-admissible covering over Uqv .

14



The clutching morphism induces a morphism

κ :
∏

v∈v(Γq)

Uqv →
∏

v∈v(Γq)

Hgv ,nv →
∏

v∈v(Γq)

Mgv ,nv

κX•
kq→ Mg,n

πg,n→ M g,n

over k. Since the image of κ is a dense constructible subset of Vq, the image of κ contains
an open subset Uq of Vq.

Let c be a closed point of Uq. Then Lemma 2.5 implies that there exist a complete
discrete valuation ring R, whose residue field is an algebraically closed field, and a mor-
phism

SpecR→ Vq

such that the image of the morphism (as a set) is {q, c}. By replacing R by a finite
extension of R, there is a pointed stable curve

X•
R

over R. Write KR for the quotient field of R, KR for an algebraically closure of KR, and
kR for the residue field of R. We may assume that KR contains kq. For each v ∈ v(Γq),
the smooth pointed stable curve

X•
KR,v

:= X•
kq ,v ×kq KR

of type (gv, nv) over KR determines a morphism SpecKR →Mgv ,nv . Thus, we choose a
morphism

SpecKR → Hgv ,nv

induced by the morphism SpecKR ↪→
⨿

SpecKR = SpecKR ×Mgv,nv
Hgv ,nv → Hgv ,nv .

The morphism SpecKR → Hgv ,nv above induces a level m-structure

σKR
:= σHgv,nv

×Hgv,nv
SpecKR.

By replacing R by a finite extension of R, X•
KR,v

descents to a smooth pointed stable

curve X•
KR,v over KR, and the level m-structure σKR

descents to a level m-structure σKR

on the smooth pointed stable curve X•
KR,v over KR. Write

X•
R,v

for the pointed stable model over R. Note that, by the construction, X•
R,v is smooth over

R. Then the level m-structure σKR
extends to a level m-structure σR. Thus, for each

v ∈ v(Γq), the smooth pointed stable curve X•
R,v over R with the level m-structure σR

determines a morphism
SpecR→ Hgv ,nv

such that the image (as a set) of the composition morphism

SpecR→
∏

v∈v(Γq)

Hgv ,nv →
∏

v∈v(Γq)

Mgv ,nv

κX•
kq→ Mg,n

πg,n→ M g,n
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is {q, c}. Moreover, by choosing a suitable level m-structure (or the morphism SpecKR →
Hgv ,nv), we may assume that the image (as a set) of SpecR →

∏
v∈v(Γq)

Hgv ,nv is con-

tained in the image (as a set) of
∏

v∈v(Γq)
Uqv →

∏
v∈v(Γq)

Hgv ,nv . Since the morphism∏
v∈v(Γq)

Uqv →
∏

v∈v(Γq)
Hgv ,nv is finite, by replacing R by a finite extension of R, we may

assume that the morphism SpecR →
∏

v∈v(Γq)
Hgv ,nv obtained above is a composition of

a morphism

SpecR→
∏

v∈v(Γq)

Uqv

and the natural morphism ∏
v∈v(Γq)

Uqv →
∏

v∈v(Γq)

Hgv ,nv .

Thus, for each v ∈ v(Γq) and each w ∈ Iv, we obtain a Gw-Galois covering

f •
R,w := f •

Uqv ,w
×Uqv

SpecR : Y •
R,w := Y •

Uqv ,w
×Uqv

SpecR→ X•
R,v := X•

Uqv ,w
×Uqv

SpecR

of smooth pointed stable curves over R such that f •
R,w is Gw-admissible covering over

SpecR. Moreover, the clutching morphism κY •
kq

implies that we may glue {Y •
R,w}w along

the marked points and obtain a pointed stable curve

Y •
R

over R such that

(i) Y •
R ×KR

KR
∼= Y •

kq
×kq KR over KR;

(ii) there exists a morphism f •
KR

: Y •
KR
→ X•

KR
of pointed stable curves over

KR which is aG-admissible covering overKR such that f •
KR
×KR

KR isomorphic

to f •
kq
×kq KR.

Then Lemma 2.6 implies that there exists a G-admissible covering f •
R : Y •

R → X•
R such

that the restriction of f •
R on the special fibers is a connected G-admissible covering over

kR. This means that G ∈ πadm
A (c). We completes the proof of the proposition.

Definition 2.8. Let q ∈M g,n be an arbitrary point. For each G ∈ πadm
A (q), we define

UG := {q′ ∈M g,n | G ∈ πadm
A (q′)}.

Moreover, we take
U sm
G := UG ∩Mg,n.

3 The openness of UG in M g,n

We maintain the notations introduced in the previous sections. In this section, we prove
UG is an open subset of M g,n.
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3.1 Mg,n case

First, let us prove that U sm
G is an open subset of Mg,n.

Lemma 3.1. Let v be a closed point of Hg,n, ÔHg,n,v the completion of the local ring

OHg,n,v, V̂ = Spec ÔHg,n,v with the natural morphism V̂ → Hg,n, and X•
V̂

the smooth

pointed stable curve X•
Hg,n
×Hg,n V̂ over V̂ with a level m-structure σV̂ := σHg,n ×Hg,n V̂

induced by σHg,n. Let Y
•
V̂
be a smooth pointed stable curve over V̂ and

f •
V̂
: Y •

V̂
→ X•

V̂

be G-Galois covering such that f •
V̂
is a G-Galois admissible covering over V̂ . Then there

exists a subring A ⊆ ÔH,v, a morphism αE : E := SpecA→ H, and a G-Galois covering
f •
E : Y •

E → X•
E := X•

H ×H E such that the following conditions hold:

(a) X•
E ×E V̂ is isomorphic to X•

V̂
over V̂ , and the pulling-back of f •

E ×E V̂ • via the

natural morphism V̂ → E is isomorphic to f •
V̂
over V̂ ;

(b) f •
E is a connected G-admissible covering over each e ∈ E.

Proof. By applying [V, Proposition 4.3 (1)], there exists a subring A′ ⊆ OH,v which is of
finite type over k such that the Galois covering f •

V̂
descents to a Galois covering

f •
E′ : Y •

E′ → X•
E′

over E ′ := SpecA′ with a level m-structure σV̂ on X•
E, and that the restriction of f •

E′

on each e′ ∈ E ′ is a G-admissible covering over e′. Moreover, by the construction, the
pulling-back f •

E′×E′ V̂ via V̂ → E ′ is isomorphic to f •
V̂
over V̂ . The smooth pointed stable

curve X•
E′ over E ′ determines a morphism αE′ : E ′ → Hg,n.

We denote by vE′ ∈ E ′ the image of v ∈ V̂ via the natural morphism V̂ → E ′ which
is a closed point of E ′. [Har, Proposition 5] implies that, there exists by replacing E ′ by
an affine open subset

vE′ ∈ E := SpecA ⊆ E ′,

the fiber Y •
e := Y •

E ×E e is geometrically irreducible over each closed point e ∈ E, where

A ⊆ ÔH,v. Moreover, since the underlying curve of the fiber Y •
e := Y •

E×E e is smooth over
each e, we have that Y •

e is geometrically irreducible over each point e ∈ E. Thus, for each
point e ∈ E, the restriction of f •

E := f •
E′|E on e is a connected G-admissible covering over

e. We define αE := αE′ |E : E → Hg,n. Then we obtain the desired curve and complete
the proof of the proposition.

Theorem 3.2. Let q be an arbitrary point of Mg,n and G ∈ πadm
A (q). Then U sm

G is an
open subset of Mg,n.

Proof. To verify the theorem, Proposition 2.3 (or Proposition 2.7) implies that it is
sufficient to prove that, for each closed point c ∈ U sm

G , there exists an open subset
c ∈ Uc ⊆Mg,n which is contained in U sm

G .
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Let v ∈ Hg,n be a closed point such that π
(m)
g,n (v) = c. We maintain the notations

introduced in Lemma 3.1. Then we obtain an affine k-variety E and a morphism

αE : E → Hg,n

over k such that (π
(m)
g,n ◦ αE)(vE′) = c. Moreover, since the image Ŵ of the composition

of morphisms

V̂ → E
αE→ Hg,n

π
(m)
g,n→ Mg,n

is dense in Mg,n, the image of the composition of morphisms

E
αE→ Hg,n

π
(m)
g,n→ Mg,n

is a dense constructible subset of Mg,n.
Write W for the image of E in Mg,n. Since W is constructible subset, we have

W =
r∪

i=1

Wi

is a finite disjoint union of local closed subsets Wi, i = 1, . . . , r, of Mg,n. Without loss of

generality, we may assume that c ∈ W1. Since W1 contains the image of Ŵ , we obtain
that W1 is an open subset of Mg,n. This completes the proof of the theorem.

Remark 3.2.1. In [S, Section 4], Stevenson proved that U sm
G contains an open subset of

Mg,n when n = 0.

3.2 M g,n case

In this subsection, we generalizes Theorem 3.2 to the case of an arbitrary point q ∈M g,n

and UG.

Lemma 3.3. Let R be a complete discrete valuation ring, KR the quotient field of R of
characteristic p > 0, and kR the residue field of R such that kR is an algebraically closed
field. Let X•

R be a pointed stable curve of type (g, n) over R and

f •
kR

: Y •
kR
→ X•

kR

a G-admissible covering over kR. Then, by replacing R by a finite extension of R, there
exist a pointed stable curve Y •

R over R and a G-admissible covering

f •
R : Y •

R → X•
R

over R such that the restriction of f •
R on the special fibers f •

R ×R kR is isomorphic to f •
kR

over kR.
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Proof. Let X•
M′ be the versal formal deformation of the special fiber X•

kR
of X•

R over

M′ = SpecOk[[t1, . . . , t3g−3+n]],

where Ok is a regular local ring with maximal ideal pOk and residue field kR (cf. [DM,
p79]). The pointed stable curve X•

R over R determines a morphism

SpecR→M′

such that X•
M′ ×M′ SpecR is isomorphic to X•

R over R. Moreover, since R ∼= kR[[t]], the
morphism SpecR→M′ induces a morphism

SpecR→M = Spec kR[[t1, . . . , t3g−3+n]],

and the natural morphismM→M′ induces a pointed stable curve X•
M overM.

LetMlog

g,n be the log stack obtained by equippingMg,n with the natural log structure

associated to the divisor with normal crossings Mg,n \ Mg,n. Then we obtain a log
schemeMlog whose underlying scheme isM, and whose log structure is the pulling-back
log structure induced by the natural morphismM→M′ →Mg,n. Moreover, we obtain
a stable log curve

X log
Mlog :=M

log

g,n+1 ×Mlog
g,n
Mlog

overMlog whose underlying curve is XM. Note that X log
Mlog is log regular.

By replacing Mlog by a finite log étale covering N log, and replacing R by a finite
extension of R, we obtain a morphism SpecR→ N induced by the morphism SpecR→
M, we obtain a log scheme slogkR

whose underlying scheme is Spec kR, and whose log
structure is the pulling-back log structure induced by skR → SpecR→ N ; moreover, the
G-admissible covering f •

kR
determines a log étale covering

f log
kR

: Y log
kR
→ X log

kR

over slogkR
such that the underlying morphism of f log

kR
is f •

kR
. Moreover, [Hos, Corollary 1]

implies that there exist a Galois log étale covering

f log
N log : Y

log
N log → X log

N log := X log
Mlog ×Mlog N log

with Galois group G over N log such that

f log
N log ×N log slogkR

: Y log
N log ×N log slogkR

→ X log
N log ×N log slogkR

is isomorphic to f log
kR

over slogkR
. Furthermore, by replacingN log by a finite log étale covering

of N log, we may assume that the underlying morphism of f log
N log is a morphism of pointed

stable curves over N .
Let slogR be the log scheme whose underlying scheme is SpecR, and whose log structure

is the pulling-back log structure induced by the morphism SpecR→ N . Then we obtain
a log étale covering

f log
N log ×N log slogR : Y log

N log ×N log slogR → X log
N log ×N log slogR
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over slogR . We denote by
f •
R : Y •

R → X•
R

the underlying morphism f log
N log ×N log slogR over R. Note that, since the special fiber Y •

R is
connected, the Zariski main theorem implies that Y •

R ×R R′ is connected for each finite
extension R′ of R. Thus, the generic fiber of Y •

R is geometrically connected.
Let us prove that f •

R is a G-admissible covering over R. We have a log scheme slogKR

whose underlying scheme is sKR
:= SpecKR, and whose log structure is the pulling-back

log structure induced by the morphism sKR
→ SpecR→ N . Then we see that

f log
N log ×N log slogKR

: Y log
N log ×N log slogKR

→ X log
N log ×N log slogKR

is geometrically connected Galois log étale covering over slogKR
. This means that the un-

derlying morphism of f log
N log ×N log slogKR

is a G-admissible covering over KR. This completes
the proof of the lemma.

Let c ∈M g,n be a closed point and kc = k the residue field of c. Then c determines a
pointed stable curve

X•
kc

over k. For each v ∈ v(Γc), write

nlv : Xkc,v → X ′
kc,v

for the normalization of the irreducible component X ′
kc,v

of Xkc corresponding to v. Let
DXkc,v

be a set of closed points

(DXkc
∩Xkc,v) ∪ (Xkc,v ∩ (Sing(Xkc) \ Sing(X ′

kc))) ∪ (nlv)
−1(Sing(X ′

kc)),

where Sing(−) denotes the set of singular points of (−). We define a smooth pointed
stable curve

X•
kc,v := (Xkc,v, DXkc,v

)

of type (gv, nv) over k which determines a morphism cX•
kc,v

: Spec kc → Mgv ,nv for each

v ∈ v(Γc). Write cX•
kc

: Spec kc → Mg,n for the morphism induced by X•
kc

over k.
Moreover, X•

kc
induces a clutching morphism

κX•
kc

:
∏

v∈v(Γc)

Mgv ,nv →Mg,n

such that κX•
kc
◦ (×v∈v(Γc)

cX•
kc,v

) = cX•
kc
. We denote by Mc the image of the composition

of the morphisms ∏
v∈v(Γc)

Mgv ,nv

κX•
kc→ Mg,n

πg,n→ M g,n.

Lemma 3.4. We maintain the notations introduced above. Let G ∈ πadm
A (c) be a finite

group. Then
UG ∩Mc

contains an open subset of Mc which contains c.
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Proof. Let Y •
kc

be a pointed stable curve of type (gY , nY ) over k and

f •
kc : Y

•
kc → X•

kc

a G-admissible covering over k. Write ΓY •
kc

for the dual semi-graph of Y •
kc
, and γf•

kc
:

ΓY •
kc
→ Γc for the morphism of dual semi-graphs induced by f •

kc
. For each v ∈ v(Γc),

write Iv for the set γ−1
f•
kc
(v). Then f •

kc
and the natural morphism Xkc,v → Xkc induce a

multi-admissible covering

f •
kc,v :

⨿
w∈Iv

Y •
kc,w → X•

kc,v

over k, where Y •
kc,w

, w ∈ Iv, is a smooth pointed stable curve of type (gY,w, nY,w) over
k whose underlying curve is a normalization of the irreducible component of Ykc corre-
sponding to w. Note that

⨿
w∈Iv Y

•
kc,w

admits an action of G induced by the action of G
on Y •

kc
. This action induces an action of G on the set Iv. For each w ∈ Iv, write Gw for

the inertia subgroup of w. Then we obtain a Gw-admissible covering

f •
kc,w : Y •

kc,w → X•
kc,v

over k. Write cY •
kc

: Spec kc → MgY ,nY
for the morphism determined by Y •

kc
over kc,

and cY •
kc,w

: Spec kc → Mgw,nw for the morphism determined by Y •
kc,w

over kc for each

w ∈ v(ΓY •
kc
). Then the pointed stable curve Y •

kc
over kc induces a clutching morphism as

follows:
κY •

kc
:

∏
w∈v(ΓY •

kc
)

Mgw,nw →Mg,n

such that the composition of morphisms κY •
kc
◦ (×w∈v(ΓY •

kc
)
cY •

kc,w
) = cY •

kc
.

For each v ∈ v(Γc), the smooth pointed stable curve X•
kc,v

of type (gv, nv) over k
determines a natural morphism

Spec k →Mgv ,nv ,

and write cv ∈Mgv ,nv for the image. Then the proof of Theorem 3.2 implies that, for each
v ∈ v(Γc), there exist an affine k-variety Ecv and a morphism αEcv

: Ecv → Hgv ,nv such
that

(i) the image of αEcv
contains an open subset Ucv of Hgv ,nv whose image

π
(m)
gv ,nv(Ucv) in Mgv ,nv contains cv;

(ii) there exists a smooth pointed stable curve X•
Ecv

with a level m-structure
σEcv

:= σHgv,nv
×Hgv,nv

Ecv ;

(iii) for each w ∈ Iv, there exists a Gw-Galois covering of smooth pointed
stable curves

f •
Ecv ,w

: Y •
Ecv ,w

→ X•
Ecv ,v

over Ecv such that f •
Ecv ,w

is a Gw-admissible covering over Ecv , and that the

restriction of f •
Ecv ,w

on each point of (π
(m)
gv ,nv ◦ αEcv

)−1(cv) is isomorphic to the
Gw-admissible covering f •

kc,w
over k.
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Then the image of∏
v∈v(Γc)

Ucv ↪→
∏

v∈v(Γc)

Hgv ,nv →
∏

v∈v(Γc)

Mgv ,nv

κX•
kc→ Mg,n

πg,n→ M g,n

contains an open subset c ∈ Wc of Mc. To verify the lemma, it is sufficient to prove that
G ∈ πadm

A (c′) for each c′ ∈ Wc.
Since Wc is a k-variety, there exists a k-curve C ′ ⊆ Wc which contains c and c′. Write

C for the normalization of C ′, c1 for a closed point of C over c, and c2 for a closed point
of C over c′. Let Ri, i ∈ {1, 2} be a complete discrete valuation ring which is a finite

extension of ÔC,ci , KRi
the quotient field of Ri, KRi

an algebraic closure of KRi
, and

kRi
= k the residue field of Ri.
By replacing R1 by a finite extension of R1, there is a smooth pointed stable curve

X•
R1

over R1 whose special fiber X
•
kR1

over the residue field kR1 = k of R1 is isomorphic to X•
kc

over k. Lemma 3.3 implies that the G-admissible covering f •
kc

over k can be lifted to a
G-admissible covering

f •
R1

: Y •
R1
→ X•

R1

over R1. Moreover, for each v ∈ v(Γc) and each w ∈ Iv, the Gw-admissible covering over
k can be lifted to a Gw-admissible covering

f •
R1,w

: Y •
R1,w
→ X•

R1,v

over R1. Write c
(m)
v ∈ Ucv ⊆ Hgv ,nv for a closed point over cv. The level m-structure

σHgv,nv
×Hg1,n1

cv

on the special fiber of X•
R1,v

extends to a level m-structure σR1,v on X•
R1,v

. Then, for
v ∈ v(Γc), the pointed stable curve X•

R1,v
with the level m-structure σR1,v determines a

morphism
lR1,v : SpecR1 → Hgv ,nv .

Thus, X•
R1,v

is isomorphic to X•
Hgv,nv

×Hgv,nv
SpecR1 over R1. Moreover, for each v ∈ v(Γc)

and each w ∈ Iv, we have a Gw-admissible covering

fKR1
,w : Y •

KR1
,w
→ X•

KR1
,v

over KR1 .
Let ηv be a closed point over Ecv ×Hgv,nv

SpecKR1 and s1,v ∈ Ecv a closed point

contained in Vηv := {ηv} such that αEcv
(s1,v) is equal to the image (as a set) of

Spec kR1 ↪→ SpecR1

lR1,v→ Hgv ,nv .

Note that since R1
∼= k[[t]], the scheme-theoretic image of lR1,v is a local ring of dimension

one. Moreover, since the residue field of ηv is a finite extension of KR1 , Vηv is an one
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dimensional k-subscheme of Ecv . Write A1,v for the normalization of ÔVηv ,s1,v . Note that
A1,v is a complete discrete valuation ring, and the natural morphism SpecA1,v → SpecR1

is finite. Then we may assume that KR1 contains A1,v. Thus, the geometric generic fiber
of the Gw-admissible covering

f •
A1,v ,w

:= f •
Ecv ,w

×Ecv
SpecA1,v : Y

•
A1,v ,w

→ X•
A1,v ,v

of smooth pointed stable curves over A1,v is isomorphic to f •
KR1

,w
over KR1 as Gw-

admissible coverings.
On the other hand, by replacing R2 by a finite extension of R2, there is a smooth

pointed stable curve
X•

R2

over R2, and the G-admissible covering f •
R1
×R1 KR1 over KR1 induces a G-admissible

covering
f •
KR2

: Y •
KR2
→ X•

KR2

of pointed stable curves over KR2 ; moreover, for each v ∈ v(Γc) and each w ∈ Iv, f
•
KR2

induces a Gw-admissible covering

f •
KR2

,w : Y •
KR2

,w → X•
KR2

,v

of smooth pointed stable curves over KR2 . For v ∈ v(Γc), the level m-structure σR1,v ×R1

KR1 induces a level m-structure σR2,v on X•
R2,v

such that the pointed stable curve X•
R2,v

with the level m-structure σR2,v determines a morphism

lR2,v : SpecR2 → Hgv ,nv

whose image (as a set) is contained in Ucv .
By replacing R2 by a finite extension of R2, we may assume that Y •

KR2,w
has pointed

stable reduction over R2. Next, let us prove that Y •
KR2,w

has good reduction for each

w ∈ v(ΓY •
kc
).

If the image of lR2,v is a constant morphism, then Y •
KR2,w

has good reduction over

R2. Then we may assume that lR2,v is not a constant morphism. Since R2
∼= k[[t]], the

scheme-theoretic image of lR2,v is a local ring of dimension one. Let s2,v ∈ Ecv a closed

point contained in Vηv := {ηv} such that αEcv
(s2,v) is equal to the image (as a set) of

Spec kR2 ↪→ SpecR2

lR2,v→ Hgv ,nv .

Write A2,v for the normalization of ÔVηv ,s2,v . Note that A2,v is a complete discrete valuation

ring, and the natural morphism SpecA2,v → SpecR2 is finite. We assume that KR2 =
KR1 . Thus, we obtain a Gw-admissible covering

f •
A2,v ,w

:= f •
Ecv ,w

×Ecv
SpecA2,v : Y

•
A2,v ,w

→ X•
A2,v ,v

of smooth pointed stable curves over A2,v such that the geometric generic fiber f •
A2,v ,w

×A2,v

KR2 is isomorphic to f •
KR2

,w
×KR2

KR2 = f •
KR1

,w
over KR2 as Gw-admissible coverings.

This implies that Y •
KR2,w

has good reduction.
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The clutching morphism κY •
kc

implies that we may glue {Y •
R,w}w∈v(ΓY •

kc
) and obtain a

pointed stable curve
Y •
R2

over R2 such that

(i) Y •
R2
×R2 KR2

∼= Y •
KR2

over KR2 ;

(ii) there exists a morphism f •
KR2

: Y •
KR2
→ X•

KR2
of pointed stable curves

over KR2 which is a G-admissible covering over KR2 such that f •
KR2
×KR2

KR2

isomorphic to f •
R1
×R1 KR1 .

Then Lemma 2.6 implies that there exists a G-admissible covering f •
R2

: Y •
R2
→ X•

R2
such

that the restriction of f •
R2

on the special fibers is a connected G-admissible covering over
kR2 . This means that G ∈ πadm

A (c′). We completes the proof of the lemma.

Corollary 3.5. We maintain the notations introduced in Lemma 3.4. Let G ∈ πadm
A (c)

be a finite group. Then
UG ∩Mc

is an open subset of Mc.

Proof. The corollary follows immediately from Proposition 2.7 and Lemma 3.4.

For each j ∈ Z≥0, we take

Mj := {q′ ∈M g,n | #ecl(Γq′) = j},

and denote by Gen(Mj) the set of generic points of Mj. Note that M0 = Mg,n. Write Mηj

for the topological closure of Mηj in M g,n for each j ∈ Z≥0. Note that Mj = ∅ if j >> 0.
Then we have

M g,n =
∪

j∈Z≥0

Mj,

and Mj′ ∩Mj′′ = ∅ if j′ ̸= j′′. Moreover, for each ηj ∈ Gen(Mj), we set

Mηj := Vηj ∩Mj.

Then we obtain that, for each j ∈ Z≥0,

Mj =
∪

ηj∈Gen(Mj)

Mηj ,

and Mη′j
∩Mη′′j

= ∅ if η′j ̸= η′′j . Thus, we obtain

M g,n =
∪

j∈Z≥0

∪
ηj∈Gen(Mj)

Mηj

which is a finite disjoint union.
Next, we prove our main theorem of the present paper.
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Theorem 3.6. Let q be an arbitrary point of M g,n and G ∈ πadm
A (q). Then UG is an open

subset of M g,n.

Proof. We have

UG =
∪

j∈Z≥0

∪
ηj∈Gen(Mj)

Mηj ∩ UG.

Corollary 3.5 implies that Mηj ∩UG is an open subset of Mηj . This means that Mηj ∩UG

is a constructible set and Mηj ∩UG is stable under generation in Mηj ∩UG. Then UG is a
constructible set.

Let j′ ≥ j′′. If Mηj′
⊆ Mηj′′

and Mηj′
∩ UG ̸= ∅, then Proposition 2.1 implies that

Mηj′′
∩ UG ̸= ∅. Then UG is stable under the generation in M g,n. Thus, UG is an open

subset of M g,n. This completes the proof of the theorem.

4 Anabelian geometry of pointed stable curves over

algebraically closed fields of characteristic p > 0

In this section, we study the anabelian geometry of pointed stable curves over algebraically
closed fields of characteristic p > 0. We maintain the notations introduced in the previous
sections and suppose that k = Fp is an algebraic closure of Fp.

4.1 An alternative proof of a finiteness result for pointed stable
curves

Let c ∈M
cl

g,n be an arbitrary closed point. We take

Sc := {c′ ∈M
cl

g,n | Πadm
c′
∼= Πadm

c }.

Theorem 4.1. We have #Sc <∞.

Proof. If Sc is not a finite set, then the topological closure Sc in M g,n contains a Fp-
curve C ⊆ Sc such that C ∩ Sc ̸= ∅. Write ηC for the generic point of C. Then for
any G1, G2 ∈ πadm

A (ηC), Theorem 3.6 and the definition of Sc imply that UG1 ∩ Sc ̸= ∅,
UG2 ∩ Sc ̸= ∅, and UG1 ∩ Sc = UG2 ∩ Sc. This means that there exists a closed point
c′ ∈ Sc ∩ C such that πadm

A (ηC) ⊆ πadm
A (c′). Moreover, Proposition 2.1 implies that

πadm
A (ηC) = πadm

A (c′).

Thus, Πadm
ηC

is isomorphic to Πadm
c′ as profinite groups.

Let R′ := ÔC,c′ . By replacing R′ by a finite extension R of R′, we have a pointed
stable curve

X•
R

over R. Then we obtain a specialization map

spηC ,c′ : Π
adm
ηC

↠ Πadm
c′
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which is a surjection. Since Πadm
ηC

and Πadm
c′ are topologically finitely generated, the spe-

cialization map spηC ,c′ is an isomorphism.
On the other hand, let ηC ∈ Mj1 and c′ ∈ Mj2 (cf. Section 3 for the definitions of

Mj1 and Mj2). If j1 = j2, we have that ΓηC is isomorphic to Γc′ . Then [T2, Theorem 0.3]
implies that spηC ,c′ is not an isomorphism. This is a contradiction. Thus, to verify the
theorem, we may assume that j1 ̸= j2.

Let kηC and kc′ be algebraic closures of the residue fields of ηC and c′, X•
kηC

and X•
kc′

the pointed stable curves corresponding to the natural morphisms

Spec kηC →M g,n and Spec kc′ →M g,n,

respectively. Let ℓ >> 0 be a prime number distinct from p. We denote by Hc′ the kernel
of the morphism

Πadm,ab
c′ ↠ G := Πadm,ab

c′ ⊗ Fℓ,

where (−)ab denotes the abelianization of (−), and write Y •
kc′
→ X•

kc′
for the G-admissible

covering over kc′ induced by the surjection. Moreover, HηC := sp−1
ηC ,c′(Hc′) determines a

G-admissible covering Y •
kηC
→ X•

kηC
over kηC .

The specialization map implies that, by replacing R by a finite extension of R, we
have a pointed stable curve

Y •
R

of type (gY , nY ) over R whose geometric generic fiber is isomorphic to Y •
kηC

over kηC , and
whose special fiber is isomorphic to Y •

k′c
over kc′ . Then the types of Y •

kηC
and Y •

k′c
are

(gY , nY ).
Write ΓY •

ηC
and ΓY •

k′c
for the dual semi-graphs of Y •

ηC
and Y •

k′c
, respectively. It is easy

to check that ΓY •
ηC

and ΓY •
k′c

are 2-connected, and that v(ΓY •
ηC
)b≤1 = v(ΓY •

k′c
)b≤1 = 0.

Moreover, since j1 ̸= j2, one sees that the Betti number of ΓY •
ηC

is strictly less than

the Betti number of ΓY •
k′c
. Since spηC ,c′ is an isomorphism, spηC ,c′ |HηC

: HηC
∼→ Hc′ is

an isomorphism. This contradict to [T3, Theorem 3.10]. We complete the proof of the
theorem.

Remark 4.1.1. Suppose that c ∈ M cl
g,n. Then #(Sc ∩M cl

g,n) < ∞ was proved by Ray-
naud (cf. [R]) and Pop-Saidi (cf. [PS]) under certain assumptions of Jacobian, and by
Tamagawa in the fully general case (cf. [T2]).

Remark 4.1.2. In [Y2, Theorem 0.3 (b)], the author proved Theorem 4.1 in a completely
different way (i.e., by using [T2, Theorem 0.3] and the combinatorial Grothendieck con-
jecture in positive characteristic (cf. [Y2, Theorem 0.2])). Moreover, we suppose that
c ∈Mj. Then there exists a unique generic point ηc,j ∈ Gen(Mj) such that c ∈ Vηc,j ∩Mj.
Thus, [Y2, Theorem 0.2] implies that c′ ∈ Vηg,j ∩Mj for each c′ ∈ Sc. In particular, if
c ∈Mg,n, then Sc ∩Mg,n = Sc.

4.2 Pointed collection conjecture for pointed stable curves

We denote by
Mg,[n] := [Mg,n/Sn]
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the quotient stack, and denote by
M g,[n]

the coarse moduli space of Mg,[n], where Sn denotes the n-symmetric group. Note that
we obtain a morphism

π : M g,n →M g,[n]

induced by the natural quotient morphism Mg,n → Mg,[n]. We define an equivalence

relation on the set of closed points M
cl

g,n as follows:

for any closed points c1, c2 ∈ M
cl

g,n, c1 ∼ c2 if there exists m ∈ Z such that

π(c2) = π(c
(m)
1 ), where c

(m)
1 denotes the closed point corresponding to the mth

Frobenius twist of the pointed stable curve corresponding to c1.

Let q ∈ M g,n be an arbitrary point and q ∈ Mηjq
, where ηjq ∈ Gen(Mjq). We denote

by
Wq := Mηjq

∩ Vq.

Note that, by the definition, we have Wηj = Mηjηj
= Mηj for each ηj ∈ Gen(Mj).

Definition 4.2. Let q1, q2 ∈M g,n be arbitrary points. We denote by

Wq1 ⊇ec Wq2

if, for each closed point c2 ∈ W cl
q2
, there exists a closed point c1 ∈ W cl

q1
such that c1 ∼ c2.

Moreover, we denote by
Wq1 =ec Wq2

if Wq1 ⊇ec Wq2 and Wq1 ⊆ec Wq2 . We shall call that Wq1 essentially contains Wq2 if
Wq1 ⊇ec Wq2 and shall call that Wq1 is essentially equal to Wq2 if Wq1 =ec Vq2 .

First, we have the following proposition.

Proposition 4.3. Let q1, q2 ∈M g,n be arbitrary points. Suppose that Πadm
q1
∼= Πadm

q2
. Then

Mηjq1
=ec Mηjq2

. Moreover, Mηjq1
= Mηjq2

.

Proof. The proposition follows immediately from [Y2, Theorem 0.2].

Remark 4.3.1. The proposition means that, for any q ∈M g,n, Mηjq
can be reconstructed

group-theoretically from Πadm
q .

The weak Hom-version of the Grothendieck conjecture of curves over algebraically
closed fields of characteristic p > 0 can be formulated as follows:

Conjecture 4.4. Let q1, q2 ∈ M g,n be arbitrary points. The set of continuous open
homomorphisms of profinite groups

Hompro-gps(Π
adm
q1

,Πadm
q2

) ̸= ∅

if and only if Wq1 ⊇ec Wq2. In particular, the set of continuous isomorphisms of profinite
groups

Isompro-gps(Π
adm
q1

,Πadm
q2

) ̸= ∅
if and only if Wq1 =ec Wq2.
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Remark 4.4.1. The “in particular” part of the conjecture is called the weak Isom-version
of the Grothendieck conjecture of curves over algebraically closed fields of characteristic
p > 0.

Remark 4.4.2. At the present, only a few cases concerning Conjecture 4.4 have been
proven (cf. [T1, Theorem 0.2], [T2, Theorem 0.3], [Y2, Theorem 0.3], [Y3, Theorem 0.7],
and [Y4, Theorem 0.6]).

Almost all of the results concerning Conjecture 4.4 are proved only in the case where
q1 and q2 are closed points. One of the main goals of the anabelian geometry of curves
in positive characteristic is to extend [T1, Theorem 0.2], [T2, Theorem 0.3], and [Y2,
Theorem 0.3] to the case where q1 and q2 are arbitrary points of M g,n.

Let q ∈ M g,n be an arbitrary point. The main difficulty is that we do not know
how to reconstruct the admissible fundamental groups of the closed points of Wq group-
theoretically from Πadm

q . Once the admissible fundamental groups of the closed points of
Wq are reconstructed group-theoretically from Πadm

q , then, by applying the results con-
cerning Conjecture 4.4 for closed points, the set of closed points ofWq can be reconstructed
from Πadm

q . Thus, Conjecture 4.4 for non-closed points follows from Conjecture 4.4 for
closed points. On the other hand, since the isomorphism class of Πadm

q as profinite group
is determined completely by the set πadm

A (q). In order overcome the difficulty mentioned
above, we consider the following question:

Question 4.5. (i) For each closed point t of Wq, which collection of finite groups, whose
elements are contained in πadm

A (q), coincides with πadm
A (t)?

(ii) For each closed point t of Mηjq
, if πtame

A (t) ⊆ πtame
A (q), then is t a closed point of

Wq?

Let t ∈ M
cl

ηjq
be arbitrary closed point. Let kt = Fp be the residue field of t and X•

kt

the pointed stable curve over kt determined by the natural morphism Spec kt → M g,n.
We take

Ft := (
∩

G∈πadm
A (t)

UG) ∩M cl
ηjq

which is a set of closed points of M g,n.

Proposition 4.6. Suppose that the genus of the normalization of each irreducible com-
ponent of the underlying curve of X•

kt
is 0. Then #Ft <∞. Moreover, suppose that X•

kt

is irreducible. Then #(Ft/ ∼) = 1. In particular, #Ft < ∞ for each q ∈ M0,n and each
t ∈M cl

ηjq
.

Proof. Let t′ be any closed point of Ft. Then we have that, for each G ∈ πtame
A (t),

Homsurj
pro-gps(Π

adm
t′ , G) ̸= ∅,

where Homsurj
pro-gps(−,−) denotes the set of surjections of Hompro-gps(−,−). Since Πadm

t′ is

topologically finitely generated, the set Homsurj
pro-gps(Π

adm
t′ , G) is finite. Then the set of open

continuous homomorphisms

lim←−
G∈πtame

A (t)

Homsurj
pro-gps(Π

adm
t′ , G) = Hompro-gps(Π

adm
t′ ,Πadm

t ) ̸= ∅.
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Thus, the proposition follows from [Y4, Theorem 0.6].

Let
C ⊆ πtame

A (ηjq) =
∪

t∈Mcl
ηjq

πtame
A (t)

be the a collection of finite groups contained in πtame
A (ηjq).

Definition 4.7. We shall call that C is a pointed collection if the following conditions
are satisfied:

(i) (
∩

G∈C UG) ∩M cl
ηjq
̸= ∅;

(ii) #(((
∩

G∈C UG) ∩M cl
ηjq

)/ ∼)=1;

(iii) UG′ ∩ (
∩

G∈C UG) ∩M cl
ηjq

= ∅ for each G′ ∈ πtame
A (ηjq) such that G′ ̸∈ C.

On the other hand, for each closed point t ∈ M cl
ηjq

, we may define a collection associated

to t as follows:
Ct := {G ∈ πadm

A (ηjq) | t ∈ UG}.
Note that, if t ∈ W cl

q , then Ct ⊆ πadm
A (q). Moreover, we denote by

Cq := {C pointed collection | C ⊆ πadm
A (q)}

the set of pointed collections which are contained in πadm
A (q).

We conjectured the set of closed points W cl
q can be reconstructed from πadm

A (q) (or
Πadm

q ) as follows:

Conjecture 4.8. For each t ∈M cl
ηjq

, the collection Ct associated to t is a pointed collection.

Moreover, the natural map
θq : W

cl
q / ∼→ Cq

that [t] 7→ Ct is a bijection, where [t] denotes the image of t in W cl
q / ∼.

Remark 4.8.1. By the similar arguments to the arguments given in the proof of [Y3,
Proposition 7.2] imply that

Conjecture 4.4⇔ Conjecture 4.8.

Remark 4.8.2. Let kq and kηjq be algebraic closures of the residue field of q and ηjq , X
•
kq

and X•
kηjq

the pointed stable curves over kq and kηjq determined by the natural morphisms

Spec kq →M g,n and Spec kηjq →M g,n, respectively.
Suppose that X•

kq
is irreducible and the genus of the normalization of the underlying

curve of X•
kq

is 0 (then X•
kηjq

is irreducible and the genus of the normalization of the

underlying curve of X•
kηjq

is 0). Proposition 4.6 implies that the collection Ct associated
to t is a pointed collection for each t ∈M cl

ηjq
, and that θq is an injection. Moreover, if q is

closed point, θq is a surjection.

Remark 4.8.3. Conjecture 4.8 generalizes the pointed collection conjecture for smooth
pointed stable curves (cf. [Y3, Conjecture 0.9]) to the case of arbitrary pointed stable
curves.
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