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Abstract

In the present paper, we study fundamental groups of curves in positive char-
acteristic. Let X*® be a pointed stable curve of type (gx,nx) over an algebraically
closed field of characteristic p > 0, I'xe the dual semi-graph of X*®, and Ilx. the
admissible fundamental group of X*. In the present paper, we study a kind of group-
theoretically invariant Avr,(ILxe) associated to the isomorphism class of IIxe called
the limit of p-averages of IIx., which plays a central role in the theory of anabelian
geometry of curves over algebraically closed fields of positive characteristic. With-
out any assumptions concerning I'xe, we give a lower bound and a upper bound
of Avr,(Ilxe). In particular, we prove an explicit formula for Avr,(Ilxe) under
a certain assumption concerning I'xe which generalizes a formula for Avr,(IIxe)
obtained by A. Tamagawa. Moreover, if X® is a component-generic pointed stable
curve, then we prove an explicit formula for Avr,(Ilye) without any assumptions
concerning ['ye, which can be regarded as an averaged analogue of the results
of S. Nakajima, B. Zhang, E. Ozman-R. Pries concerning p-rank of abelian étale
coverings of projective generic curve for admissible coverings of component-generic
pointed stable curves.
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1 Introduction

In the present paper, we study admissible fundamental groups of pointed stable curves
over algebraically closed fields of positive characteristic. Let

X* = (X, Dy)

be a pointed stable curve of type (gx,ny) over an algebraically closed field k. Here X
denotes the underlying curve of X*, and Dy denotes the set of marked points of X*°.
Write Uy for X \ Dy, I'xe for the dual semi-graph of X*®, v(I'ys) for the set of vertices
of I'xe, and rx for the Betti number of I'x.. Moreover, by choosing a suitable base point
of X*, we obtain the admissible fundamental group

Tye

of X* (cf. Definition 2.2). In particular, Iy« is naturally (outer) isomorphic to the tame
fundamental group 7t(Ux) if X is smooth over k.

Write H’;;. for the maximal prime-to-p quotient of Hgé. if the characteristic char(k) of
k is p > 0. We denote by

I .— HX': if Char(k) = 0,
o Hg’é., if char(k) =p > 0.

Then the structures of II are well-known, which are isomorphic to the profinite completion
and the maximal prime-to-p quotient of the profinite completion of the following free group
(cf. [G, XII1.2.12], [V, Théoreme 2.2])

9x nx
<a17"-7agxab17"-7ngacla-"acnx ‘ H[ai’bi]ch = 1>
i=1 j=1

if char(k) = 0 and char(k) = p, respectively. In particular, ITx. and Hgé. are free profinite
group with 2gx+nx —1 generators if nx > 0 and with 2gx generators if nxy = 0. Note that
we can not determine whether Uy is affine (i.e., nx # 0) or not group-theoretically from
the isomorphism class of II. Moreover, (gx,nx) can not be determined group-theoretically
from the isomorphism class of II.

If char(k) = p > 0, Ily. is very mysterious, and the structure of IIx. is no longer
known. In the remainder of the introduction, we assume that char(k) = p > 0. First,
since all the admissible coverings in positive characteristic can be lifted to characteristic
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0 (cf. [V, Théoreme 2.2]), we obtain that IIye is topologically finitely generated. Then
the isomorphism class of IIy. is determined by the set of finite quotients of Iy (cf.
[FJ, Proposition 16.10.6]). Moreover, the theory developed in [T1] and [Y1] implies that
the isomorphism class of X*® as a scheme can possibly be determined by not only the
isomorphism class of Ilye as a profinite group but also the isomorphism class of the
maximal pro-solvable quotient of I1x. as a profinite group. Then we may ask the following
question.

Which finite solvable group can appear as a quotient of I1xe?

Let H C IIx. be an arbitrary open normal subgroup and X3, = (Xp, Dy, ) the pointed
stable curve of type (gx,,,nx, ) over k corresponding to H. We have an important invari-
ant associated to X3, (or H) called p-rank (or Hasse- Witt invariant) which is defined to
be

o(Xy) = dime(Hab QF,),

where (—)? denotes the abelianization of (—). Note that we have o(X$%) < gx,,. Roughly
speaking, o(X7;) controls the quotients of IIx. which are an extension of group Ilx./H by
a p-group. Since the structures of maximal prime-to-p quotients of admissible fundamental
groups have been known, in order to solve the question mentioned above, we need compute
the p-rank o(X§) when Ilx./H is abelian. If IIy./H is a p-group, then o(X7};) can be
computed by applying the Deuring-Shafarevich formula (cf. [C]). If H is not a p-group,
the situation of o(X7j,) is very complicated. The Deuring-Shafarevich formula implies
that, to compute o(X}§), we only need to assume that H is a prime-to-p group.

Suppose that nx = 0, and that X* is smooth over k (i.e., X* = X). If X is a curve
corresponding to a geometric generic point of moduli space (i.e., a geometric generic
curve), S. Nakajima (cf. [N]) proved that, if IIyxs/H is a cyclic group with a prime
order, then o(X},) = gx,, (i.e, o(X}) attains the maximum). Moreover, B. Zhang (cf.
[Z]) extended Nakajima’s result to the case where IIx./H is an arbitrary abelian group.
Recently, E. Ozman and R. Pries (cf. [OP]) generalized Nakajima’s result to the case
where X is a curve corresponding to an arbitrary geometric point of p-rank stratas of
moduli space. Let n € N such that (n,p) = 1. In other words, the results of Nakajima,
Zhang, and Ozman-Pries show that, for each Galois étale covering of X with Galois
group Z/nZ, the generalized Hasse-Witt invariants (cf. [N]) associated to non-trivial
characters of Z/nZ attain the maximum gy — 1 except for the eigenspaces associated
with eigenvalue 1. However, if X is not geometric generic, o(X?$;) can not be computed
explicitly in general. On the other hand, M. Raynaud (cf. [R]) developed his theory
of theta divisor and proved that, if n >> 0, then the generalized Hasse-Witt invariants
attain the maximum ¢gx — 1 for almost all the Galois étale coverings of X with Galois
group Z/nZ. As a consequence, Raynaud obtained that IIy. is not a prime-to-p profinite
group.

Suppose that ny # 0, and that X* is smooth over k. The computations of generalized
Hasse-invariants of admissible coverings of X*® (i.e., tame coverings of Uy ) are much more
difficult than case where ny = 0. Note that the results of Nakajima, Zhang, Ozman-Pries
do not hold for tame coverings in general, and that the generalized Hasse-Witt invariants
of each Galois admissible coverings of X*® with Galois group Z/nZ are less than gx+nx —1.



In the remainder of the introduction, let ¢ be an arbitrary positive natural number
and n = p' — 1. For each Galois admissible covering Y'* — X* with Galois group Z/nZ,
the Kummer theory implies that there exists a line bundle .Z on X such that £®" =
Ox(—=D), where D is an effective divisor on X of degree deg(D) = s(D)n whose support
is contained in Dy, where we have

nx, ifny <1,
< <
O—S(D)—{nx—L if ny > 1.

A. Tamagawa observed that Raynaud’s theory of theta divisor can be generalized to the
case of tame coverings, and established a theory of theta divisor under the assumption that
s(D) < 1. In particular, Tamagawa proved that, if n >> 0, nx > 1, and s(D) = 1, then
the generalized Hasse-Witt invariants are equal to gx for almost all the Galois admissible
coverings of X* with Galois group Z/nZ. Furthermore, he introduced a kind of group-
theoretically invariant associated to ITy. called the limit of p-averages (see also Definition
2.4)
. dimg, (KRP®TF,)

Aviy(Ihe) = fim #(11%, ® Z/nZ)’
where K, denotes the kernel of the natural continuous surjective homomorphism ITxe —
13 ® Z/nZ, and proved the following formula (cf. [T1, Theorem 0.5]).

Theorem 1.1. Suppose that X*® is smooth over k. Then we have

9x — 17 anX S 17
Avry(Ilxe) = { 9x if nx > 1.

Remark 1.1.1. As an application, Tamagawa obtained that (gx,nx) can be recon-
structed group-theoretically from the isomorphism class of IIx (cf. [T1, Theorem 0.1}),
and proved that the weak Isom-version of the Grothendieck conjecture for curves over
algebraically closed fields of characteristic p > 0 (=Weak Isom-version Conjecture) holds
when ¢ = 0 and X* is smooth over an algebraic closure of F,, (cf. [T1, Theorem 0.2]). This
means that the isomorphism class of Ux as a scheme can be determined group-theoretically
from the isomorphism class of IIx. as a profinite group. The original anabelian conjec-
tures of A. Grothendieck require the using of the highly non-trivial outer Galois actions
induced by the fundamental exact sequences of étale (or tame) fundamental groups. Weak
Isom-version Conjecture showed evidence for very strong anabelian phenomena for curves
over algebraically closed fields of characteristic p > 0. In this situation, the Galois group
of the base field is trivial, and étale (or tame) fundamental group coincides with the ge-
ometric fundamental group, thus in a total absence of a Galois action of the base field.
Note that, in the case of algebraically closed fields of characteristic 0, since the geometric
fundamental groups of curves depend only on the types of curves, (gx,nx) can not be
reconstructed group-theoretically from the isomorphism class of Ilx, and the anabelian
geometry of curves does not exist in this situation.

Furthermore, the following theorem was proved by Tamagawa (cf. [T2, Theorem 3.10],
Remark 5.2.1 and Remark 5.2.2 of the present paper), which is a generalized version of



Theorem 1.2 to the case of pointed stable curves under certain assumptions of dual semi-
graphs (see Definition 5.1 for the definitions of Vi and E%s). This theorem is a key step
toward proving a theorem concerning resolution of non-singularities (cf. [T2, Theorem

0.2]).

Theorem 1.2. Suppose that Fi?.t is 2-connected (cf. Definition 2.1). Then we have
AVI'p(HXo) =4gx —Tx — #Vtr.e + #Eg?f

Remark 1.2.1. Theorem 1.2 means that, if n >> 0, the generalized Hasse-Witt invari-

ants are equal to gy — rx — #VI + #E%S for almost all the Galois admissible coverings

of X* with Galois group Z/nZ.

Remark 1.2.2. Let v € v(I'ys). Write X, for the normalization of the irreducible
component of X corresponding to v and nom,, : X,, — X, for the normalization morphism.
We define a smooth pointed stable curve of type (g,,n,) to be

Xy = (X,, Dg, :=nom, ' ((X, N X™") U (Dx N X,))).

We denote by II, the admissible fundamental group of )?; . Then we have a homomorphism
b, : 112> — 113 induced by the natural (outer) injective homomorphism IT, < ITx.. Note
that ¢, is not an injection in general. The key of the proof of Theorem 1.2 is to prove that
¢, is an injection for each v € v(I'xe) when T'%y is 2-connected (cf. [T2, Proposition 3.4]
or Corollary 3.5 of the present paper). This means that each Galois admissible covering
of )N(U' with Galois group Z/nZ can be extended to a Galois admissible covering of X*®
with Galois group Z/nZ. Then Theorem 1.2 follows immediately from Theorem 1.1.

Remark 1.2.3. On the other hand, the author observed that the following.

The set of limits of p-averages
{Avr,(H) | H C IIx. open normal}

plays a role of (outer) Galois actions in the theory of the anabelian geometry
of curves over algebraically closed fields of characteristic p > 0.

Moreove, by applying Theorem 1.2, the author proved the combinatorial Grothendieck
conjecture for curves over algebraically closed fields of characteristic p > 0 (cf. [Y1, The-
orem 1.2]), and generalized Tamagawa’s result concerning Weak Isom-version Conjecture
to the case of (possibly singular) pointed stable curves (cf. [Y1, Theorem 1.3]).

Next, let us explain another motivation of the theory developed in the present paper.
Since (gx,nx) can be reconstructed group-theoretically from the isomorphism class of
[T x., Weak Isom-version Conjecture can be reformulated from the point of view of moduli
spaces (cf. [Y2]). Then Weak Isom-version Conjecture means that the moduli spaces of
curves can be reconstructed group-theoretically as sets from the isomorphism classes of
admissible fundamental groups of curves. However, Weak Isom-version Conjecture can not
tell us any further information of moduli spaces (e.g. topological structure). In [Y2], the
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author posed a new conjecture which is called the weak Hom-version of the Grothendieck
conjecture for curves over algebraically closed fields of characteristic p > 0 (=Weak Hom-
version Conjecture). Roughly speaking, Weak Hom-version Conjecture means that the
moduli spaces of curves can be reconstructed group-theoretically as topological spaces from
the sets of continuous open homomorphisms of admissible fundamental groups of curves
with a fixed type.

Let X?, i € {1,2}, be a pointed stable curve of type (gx,nx) over an algebraically
closed field k; of characteristic p > 0 and llxs the admissible fundamental group of
X?. The first step toward proving Weak Hom-version Conjecture is to prove that each
continuous open surjective homomorphism ¢ : Iy, — Ilx, induces a morphism of semi-
graphs of anabelioids (cf. [M2] for the definition of semi-graphs of anabelioids) associated
to X?. In order to prove this, we have the following key observation.

The set of inequalities of the limit of p-averages
{Avr, (¢~ (H,)) > Avr,(Hs) | Hy C Ilxs open normal}

induced by the surjection ¢ plays a role of the comparability of (outer) Galois
actions in the theory of the anabelian geometry of curves over algebraically
closed fields of characteristic p > 0.

Let H, be arbitrary open normal subgroup of Ilys, H; := ¢~ (Ho), Xy, 1€ {1,2},
the pointed stable curve over k; corresponding to H;, and I'xs the dual semi-graph of
X3 Since rgg;, i € {1,2}, is not 2-connected in general even in the case where I'Sy is 2-

connected, we can not use Theorem 1.1 to compute Avr,(H;). Thus, we need a generalized
version of Theorem 1.2.

For each v € v(I'yxe), we introduce two sets E.! and E;! associated to v which only
depend on I'ye and v (cf. Definition 3.3). The first main theorem of the present paper
is the following (cf. Theorem 5.2), which gives a lower bound and a upper bound of
the generalized Hasse-Witt invariants for almost all the Galois admissible coverings of an
arbitrary pointed stable curve X* with Galois group Z/nZ when n >> 0 (see Definition
5.1 for the definition of V{&9=0).

Theorem 1.3. We have
gx = rx = VS #VEOCT BV — > 90

vev(lye) s.t. #E;I>1

< Avry(Ixe) < gx —rx — #0([xe) + #VE " + #ES + > #E7
vev(lye)
In particular, if #E71 <1 for each v € v(['x+), then we have
Aviy(Ilxe) = gx —rx — #VE +#VEE0 ™+ #E5 — > 9

vEv(Tyxe) st #EZ1>1

=gx —rx — #v(['xe) + SV e=0 o pptre 4 Z #E1

vev(Txe)

= gx —rx — #VEEH#VEOOT B
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Remark 1.3.1. Since the condition that #FE.! < 1 for each v € v(I'x+) is weaker than
the condition that 'y is 2-connected, Theorem 1.3 is a generalized version of Theorem
1.2 (cf. Remark 5.2.1).

To verify Theorem 1.3, first, we give an explicit description of the image ¢, : [1?* —
I13% for each v € v(I'ye) (cf. Proposition 3.4). Then we obtain an explicit description
of the set of the Galois admissible coverings of )Z;, v € v(I'yxe), with Galois group Z/nZ
which can be extended to a Galois admissible covering of X*® with Galois group Z/nZ,
and compute the generalized Hasse-Witt invariants of the Galois admissible coverings
contained in the set. Then we obtain the lower bound and the upper bound of Theorem
1.3. On the other hand, we do not know whether Avr,(Ily.) can attain the upper bound
or not in general. The main difficulty is as follows. Let v € v(I'xs) and %, a line bundle
on )?v such that £ = Ogv(—DU), where D, is an effective divisor on )~(v of degree

deg(D,) = s(D,)n

whose support is contained in Dg . We do not know whether or not the theta divisor
defined by Raynaud and Tamagawa associated to D, exist in general (if s(D,) = 0 or
s(D,) = 1, the existence of theta divisor proved by Raynaud and Tamagawa, respectively).
In fact, there is an example that the theta divisor associated to D, does not exist when
s(D,) > 2 (cf. Remark 4.5.2). Thus, we can not use the theory of theta divisor to compute
the cardinality of the set of the Galois admissible coverings of )N(v‘, v € v(I'xe), with Galois
group Z/nZ whose generalized Hasse-Witt invariants are equal to gx + #E.1 — 1.

On the other hand, if X*® is a component-generic pointed stable curve over k (i.e.,
Xe, v € v(T'xe), is a geometric generic curve of p-rank stratas of moduli space (cf.
Definition 6.2)), we prove that the theta divisor defined by Raynaud and Tamagawa
associated to D, exists under a certain assumption concerning D, (cf. Proposition 6.4).
Then we obtain the following formula of Avr,(Ily.) for component-generic pointed stable
curves without any assumptions of dual semi-graphs, which is the second main theorem
of the present paper (cf. Theorem 6.6).

Theorem 1.4. Suppose that X*® is a component-generic pointed stable curve over k. Then
we have

Avry(Ixe) = gx —rx — #o(Dxe) + #VESO+ #ER + > #E

vev(Iye)

Remark 1.4.1. Theorem 1.4 means that, if n >> 0, the generalized Hasse-Witt invari-
ants attain the upper bound for almost all the Galois admissible coverings of X*® with
Galois group Z/nZ. Then Theorem 1.4 can be regarded as an averaged analogue of the
results of Nakajima, Zhang, Ozman-Pries for admissible coverings of pointed stable curves.

The present paper is organized as follows. In Section 2, we fix some notation and given
some definitions which will be used in the present paper. In Section 3, we analyze images
and kernels of homomorphisms between the abelianizations of admissible fundamental
groups. In Section 4, we compute the limits of p-averages of images of homomorphisms
between the abelianizations of admissible fundamental groups. In Section 5, we prove the
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first main theorem of the present paper. In Section 6, we prove the second main theorem
of the present paper.
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2 Preliminaries

In this section, we recall some definitions and results which will be used in the present
paper.

Definition 2.1. Let G := (v(G), e (G) U e°P(G), {(F}cce(c)) be a semi-graph (cf. [M2,
Section 1]). Here, v(G), e*(G), e®?(G), and {(®}cce(s) denote the set of vertices of G, the
set of closed edges of G, the set of open edges of G, and the set of coincidence maps of
G, respectively.

We define an one-point compactification GP* of G as follows: if e°?(G) = (), we set
G°P* = G; otherwise, the set of vertices of GP* is v(G") := v(G) [ [{v }, the set of closed
edges of Gt is e (GPY) := e (G) U e (G), the set of open edges of G is empty, and each
edge e € e°P(G) C e(GP*) connects v, with the vertex that is abutted by e.

Let v € v(G). We shall call that G is 2-connected at v if G \ {v} is either empty or
connected. Moreover, we shall call that G is 2-connected if G is 2-connected at each v €
v(G). Note that, if G is connected, then G is 2-connected at each v € v(G) C v(G")
if and only if GP* is 2-connected.

Let k be an algebraically closed field and
X*=(X,Dx)

a pointed stable curve of type (gx,nx) over k. Here, X denotes the underlying curve of
X* and Dyx denotes the set of marked points of X*. Write I'x. for the dual semi-graph
of X*, HE?E’ for the profinite completion of the topological fundamental group of I"x., and
rx = dimg(H'(I'x.,Q)) for the Betti number of the semi-graph I'x.. Let v € v(I'xe)
and e € e¥(T'xe) U e(I'xs). We shall write X, for the irreducible component of X
corresponding to v, write z, for the node corresponding to e of X if e € e(I'ys), and
write z, for the marked point corresponding to e of X if e € e°P(I'x).

Definition 2.2. Let Y* = (Y, Dy) be a pointed stable curve over k and f*:Y* — X* a
morphism of pointed stable curves over k.

We shall call f* a Galois admissible covering over k (or Galois admissible covering for
short) if the following conditions are satisfied:



(i) there exists a finite group G C Auty(Y®) such that Y*/G = X*, and f* is
equal to the quotient morphism Y* — Y*/G;

(ii) for each y € Y™ \ Dy, f*® is étale at y, where (—)*™ denotes the smooth
locus of (—);

(iii) for any y € Y18 the image f*(y) is contained in X*"& where (—)sne
denotes the set of singular points of (—);

(iv) for each y € Y*"8  the local morphism between two nodes induced by f*
may be described as follows:

Ox o) = k[[u,v]]fuv — Oy, = k[[s, t]] /st
U — s"
v — t",

where (n, char(k)) = 1 if char(k) > 0; moreover, write D, C G for the decom-
position group of y and #D,, for the cardinality of D,; then 7(s) = (4p,s and
T(t) = (;jljyt for each 7 € D,, where (xp, is a primitive #D,-th root of unit,
and #(—) denotes the cardinality of (—);

(v) the local morphism between two marked points induced by f® may be
described as follows:

Ox o) 2 klla]] — Oy, 2 k[b]
a — b,

where (m, char(k)) = 1 if char(k) > 0 (i.e., a tamely ramified extension).

Moreover, we shall call f® an admissible covering if there exists a morphism of pointed
stable curves (f*)" : (Y*)" — Y*® over k such that the composite morphism f* o (f*) :
(Y*) — X* is a Galois admissible covering over k.

Let Z* be the disjoint union of finitely many pointed stable curves over k. We shall call
a morphism Z°®* — X*® over k multi-admissible covering if the restriction of Z®* — X* to
each connected component of Z* is admissible. We use the notation Cov®®™(X*) to denote
the category which consists of (an empty object and) all the multi-admissible coverings of
X*. It is well-known that Cov*¥™(X*) is a Galois category. Thus, by choosing a base point
r € X\ Dy, we obtain a fundamental group 7™ (X*, x) which is called the admissible
fundamental group of X*. For simplicity of notation, we omit the base point and denote
the admissible fundamental group by IIx.. Write II§. for the étale fundamental group
of the underlying curve X of X°®. Note that we have the following natural continuous
surjective homomorphisms (for suitable choices of base points)

& t

For more details on the theory of admissible coverings and admissible fundamental
groups for pointed stable curves, see [M1].

Remark 2.2.1. Let ﬂgxm be the moduli stack of pointed stable curves of type (gx,nx)

over SpecZ and M, .. the open substack of M, ,, parametrizing pointed smooth
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curves. Write M- for the log stack obtained by equipping M, with the natural

ax,mx gx,mx

log structure associated to the divisor with normal crossings My, o, \ Mgy ny C Myn
relative to SpecZ.

The pointed stable curve X* — Spec k induces a morphism Spec k — M, ... Write

sl)‘;g for the log scheme whose underlying scheme is Speck, and whose log structure is

the pulling-back log structure induced by the morphism Speck — M We obtain

a natural morphism SIXg — M gxmy nduced by the morphism Speck — My ny

agx,mx-
and
a stable log curve X8 = sl)(;g Xm;o;’ . ./\_/llgoj nx+1 OVer s > whose underlying scheme is
X. Then the admissible fundamental group Ilx. of X*® is naturally isomorphic to the
geometric log étale fundamental group of X% (i.e., ker(m (X'8) — 7 (s'%))).

Remark 2.2.2. If X* is smooth over k, by the definition of admissible fundamental
groups, then the admissible fundamental group of X* is naturally (outer) isomorphic to
the tame fundamental group of X \ Dyx.

In the remainder of the present paper, we suppose that the characteristic of k is p > 0.
Definition 2.3. We define the p-rank (or Hasse- Witt invariant) of X* to be
o(X*) := dimg, (I3 @ F,) = dimg, (M55 © F,),
where (—)? denotes the abelianization of (—).

Remark 2.3.1. For each v € v(I'y.), write X, for the normalization of the irreducible
component X, of X corresponding to v. Then it is easy to see that

(X)) =0(X)= Y o(X,)+rx.

vev(Txe)

Definition 2.4. Let ¢ be an arbitrary positive natural number, n := p' — 1, and K, the
kernel of the natural surjective homomorphism ITxe — 1135 ® Z / nZ. For each n, we define
the p-average of Ilxe to be

dimg, (K* @ F,)
#1132 @ Z/nZ)’

Voo (Hxe) ==

Morever, we put
Avr,(Ilxe) := tlg& Yo (T xe)

and call Avr,(Ilxe) the limit of p-averages of 1l y..

Remark 2.4.1. Let ¢ be a prime number distinct from p, m an arbitrary positive natural
number such that (p,m) = 1, and K, the kernel of the natural surjective homomorphism
[xe — 3% ® Z/mZ. Then we may also define the f-average of Ilye to be

dim]pe (Kab X ]Fg)
#(113 @ Z/mZ)

’Yfm(HX‘) =
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To compute lim,, o 'yZZn(H x+), by applying the specialization theorem of the maximal
prime-to-p quotients of admissible fundamental groups (cf. [V, Théoreme 2.2]), we may
assume that X*® is smooth over k. Thus, the Riemann-Hurwitz formula implies that

lim 72¥ (Ilxe) = 2gx + nx — 2 = dimg, (115 @ F,) — 1.
m—oo

Let X3 = (X4, Dx,_) be a smooth pointed stable curve of type (gy,, N, ) over k
such that g, > 2 and n, = nx. Write I', for the dual semi-graph of X7 . If nx # 0,
we fix a bijection Dx, — Dy. Then we may glue X* and X, along the sets of marked
points Dy and Dy, and obtain a stable curve X! of type (9x + gv, +nx — 1,0) over
k. We define a stable curve X, of type (gx. ,0) over k to be

o X, ian:O,
Koo = { X', ifny £0.

Write [Ix_ for the admissible fundamental group of X, and I'x_ for the dual graph of
Xoo. Then we have a natural continuous (outer) injective homomorphism

on — HXoo’

and that, by the construction of X, I’g?f is naturally isomorphic to I'x__. Moreover,
the natural (outer) injective homomorphism above induces a homomorphism of abelian
profinite groups
Y I — TR
Let R be a complete discrete valuation ring of equal characteristic with residue field
k, K the quotient field of R, and K an algebraic closure of K. Let

L Q GCI(FXOO>

be an arbitrary subset of closed edges. We claim that we may deform the pointed stable
curve X, along L to obtain a new pointed stable curve over K such that the set of edges
of the dual graph of the new stable curve may be naturally identified with e(I'x_ ) \ L.
Suppose that

¢s : Speck — ngooR = ngoo Xz R

is the classifying morphism determined by X,, — Spec k. Thus the completion of the local
ring of the moduli stack at ¢, is isomorphic to R[ty, ..., t35, 3], where t, ..., 135, 3
are indeterminates. Furthermore, the indeterminates ¢4, ...,t,, may be chosen so as to
correspond to the deformations of the nodes of X.. Suppose that {t1,...,t4} is the
subset of {ty,...,t,} corresponding to the subset L C e?(I'x_). Now fix a morphism
Spec R — Spec R[ty, ..., t3g, 3] such that t411,...,t35_ 3+ 0 € R, but 1,...,t; map to
nonzero elements of R. Then the composite morphism

¢ : Spec R — Spec R[ty, ..., t3q, 3] — ./VQXWR

determines a pointed stable curve X, — Spec R. Moreover, the special fiber X, X g k of
X 1s naturally isomorphic to X, over k. Write

X

11



for the geometric generic fiber X, xx K of X, over K and I’ «\z for the dual graph of

XoF. 1t follows from the construction of XoF that we have a natural bijective map
e(lx )\ L= e(l'y\e).
Let v € v(I'xs) Cv(I'x, ) be an arbitrary vertex of I'xs and
L, :={e € e?(I'x.) | e does not meet v}.

We shall denote by
Xdef — X\LU.

Write [ xaer for the admissible fundamental group of X3t and T xger for the dual graph of
Xl

3 Images and kernels of homomorphisms of abelian-
izations of admissible fundamental groups

We maintain the notation introduced in Section 2. Let v € v(I'ys) C v(I'x_) be an
arbitrary vertex of I'xe. Write X, for the normalization of the irreducible component X,
of X corresponding to v and nom,, : X,, — X, for the normalization morphism. We define
a smooth pointed stable curve of type (g,,n,) to be

X¢ = (X,, Dy, = nom, (X, N X™) U (Dx N X,))).

Moreover, we denote by II, the admissible fundamental group of )?; and by I', the dual
semi-graph of )?; Note that there is a natural map of semi-graphs p, : I', — I'xe induced
by the natural morphism X, "8 X, < X and the natural map of sets of marked points
Dz — Dx. We have a natural (outer) injective homomorphism II, < Ilx., which
induces a natural homomorphism

by : TP — T35,
Note that ¢, is not an injection in general. We write
M,

for the image of ¢,.

Let X** = (X*, Dx+) — X* be a universal admissible covering corresponding to IIxe.
For each e € e?(I'x+)Ue®®(I'x ), write z, for the marked point corresponding to e, and let
T+ be a point of the inverse image of Te in Dx«. Write I« C Ilxe for the inertia subgroup
of z.~. Note that I, is isomorphic to Z(1)?', where (—)?" denotes the maximal prime-to-p
quotient of (—). Suppose that z. is contained in X,. Then we have the following (outer)
injective homomorphisms .« < II, < Ilx, which induces an injection

Gor t Lor — I

Since the image of ¢« depends only on e, we may write /. for the image Ger(Iex).
We denote by ¢f : TI2P¢ — TIE%® and ¢ @ T3 — T3 for the homomorphisms
induced by ¢, and v, respectively. First, we have the following two lemmas.

12



; ét . Trab,ét ab,ét & . Trab.ét ab,ét
Lemma 3.1. The homomorphisms ¢ : 15> — Ilyo and 9 : Iy — I are
mjections.

Proof. The lemma follows immediately from the structures of the Picard schemes Pic5 Ik
and Pick . O
Lemma 3.2. The homomorphism

¥ 5 — TR
18 an injection.

Proof. Suppose that nx = 0. Then the lemma follows immediately from the definition of
Xy (i€, X*=X).

Suppose that ny # 0. Since each p-Galois admissible covering (i.e., a Galois admissible
covering whose Galois group is isomorphic to a p-group) is a Galois étale covering, to verify
the lemma, it is sufficient to prove that

P . 1ab.p ab,p’
PP e — I

is an injection. Write I for the subgroup 1135 generated by I, e € e°?(I'x.). Note that
I8 is a free ZP-module with rank nyx — 1. We have two exact sequences

1— I% — I — I — 1,

1— I — 0P — TR 1,
and the following commutative diagram:

/
ab7pl d]p ab

! |

b 7 b’
By Lemma 3.1, to verify the lemma, we only need to prove that the composition morphism
I = T — T3

is an injection. The specialization theorem of the maximal prime-to-p quotients of admis-
sible fundamental groups implies that we only need to treat the case where X* is a smooth
pointed stable curve over k. Thus, the image of the homomorphism 1%, < IT5" — H?}’;f

is the subgroup
Sx., C Y

generated by I, e € e?(I'x_). The Poincaré duality for prime-to-p étale cohomology
implies that R
Sx.. = Hom(IT2", Z(1)").

Then Sx_ is a free 77 -module with rank n x — 1. Thus, we have that the homomorphism
I — I — TIPY is an injection. This completes the proof of the lemma. O

13



Definition 3.3. For each v € v(I'x.) C v(I'%:). We denote by m(v) the set of connected
components of T'%y \ {v}. For each v € v(I'xs) C v(I'%) and each C' € my(v), we put

E,c:={e€e®l,) | pole)nC # 0D},
E7r:={C e ny(v) | #E,c > 1},
ESN={C e m(v) | #E,c =1}
Note that we have e (I'y) = Upero) Boc and #mo(v) = #E; + #E;".

For each e € e°(I',), we write [s.] for a generator of I, and I for the subgroup
of TI*P generated by I,, e € ¢°P(T',). The structure of maximal prime-to-p quotients of
admissible (or tame) fundamental groups of smooth curves implies that

> [s]=0.

eceor(T',)
Note that, if n, # 0, then ISP is a free 7P -module with rank n, — 1, and we have
1L — I — I — 1% 5 1,
Next, we have the following proposition.

Proposition 3.4. Let v € v(I'xs) C v(I'x_) be an arbitrary vertex of I'xs. Then the
following holds:

(i) Suppose that n, = 0. We have I12° = 1125, .
(i1) Suppose that n, # 0. We have that

K= (Y [sd, Cem) C I

€€EUYC

is the kernel ker(¢,) of ¢, where ((—)) denotes the subgroup generated by (—).
Moreover, MY and K, are free ZP -modules with rank

29, + Y, (#Esc—1) andn,—1— > (#E,c—1),

Cemg(v) Cemg(v)
respectively.

Proof. (i) is trivial. We only prove (ii). Note that Lemma 3.1 implies that there is a
natural surjection M, — I1**€', Then K, C I%. To verify the proposition, we only need
to prove that K, is the kernel of the homomorphism

oy TP MY
induced by ¢,, and that M?" is a free 7P -module with rank

20, + Y (#E,0—1).

Cemg(v)
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On the other hand, Lemma 3.2 implies that M, and ker(¢,) coincide with Im(t) o ¢,)
and ker(¢ o ¢,), respectively. Then we may assume that X* = X,,. By applying the
specialization theorem of prime-to-p of admissible fundamental groups, we obtain that

/ /
P ~ TTP
Iy = TIR .

To verify the proposition, we may assume that X* = X, = X, This means that we
may identify my(v) with v(I'xe) \ {v}, and that, for each C' € my(v) = v(I'xe) \ {v}, the
irreducible component X is smooth over k.

Moreover, in order to prove that I, is the kernel of ¢, it is sufficient to prove that,
for each positive natural number n such that (p,n) = 1, K, ® Z/nZ is the kernel of the
homomorphism

VoI @ Z/nZ - MY @ Z/nZ

induced by ¢¥ .

Let o be an arbitrary element of Hom (TT5%” ' ® Z/nZ,7,/nZ) and o, the composition
of the morphisms

/

’ ‘ﬁ?,n ’ / «
1P @ Z/nZ — MP @ Z/nZ — I8P ® Z/nZ > Z/nZ.

Write f3 : Y? = (Y,, Dy,) — X* for the Galois multi-admissible covering with Galois
group Z/nZ over k corresponding to a. Then by restricting f3 to X, we obtain a
morphism B

f(;,l) : YOC.,U = (YO%U? DYa,’U) - XT:’
where Y, , = )?v Xx Yo, and Dy, , is the inverse image of D;(U of the first projection

)?U Xx Yy — )?v. Note that f3, is a Galois multi-admissible covering with Galois group
Z/nZ of smooth pointed stable curves over k corresponding to «,. On the other hand,
for each C' € mo(v) = v(I'xs) \ {v}, by restricting f2 to X&, we obtain a morphism

f;,C : Ya.,C = (YQ,C7DYQ,(J) — )?6'7

where Y, ¢ = )?c Xx Yo, and Dy, . is the inverse image of D)}c of the first projection

)z, Xx Y, — )N(C. Note that f3 - is a Galois multi-admissible covering with Galois group
Z/nZ of smooth pointed stable curves over k corresponding to ac.
For each C' € mo(v) = v(I'xe) \ {v}, we write I  C I3P for the subgroup ([sc])ees, -

Note that I’  and Iz’ can be regarded as subgroups of 1% and that I =1 in

11557 " The definition of Galois admissible fundamental coverings implies that

alI?E}Z,c = —ac/|pr, C € mo(v).

Then the structure of the maximal prime-to-p quotients of admissible (or tame) funda-
mental groups implies that
> affse) = 0.

EEEU,C
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This means that K, ® Z/nZ C ker(«) for each a € Hom(l’[i?.’p/ ® Z/nZ,Z/nZ). Thus, we
obtain that K, ® Z/nZ C ker(¢%,), and that ¢¥, induces a surjection

(112> /K, @ Z/nZ — M, @ Z/nZ.

To verify the proposition, we only need to prove that the surjection (II?***'/K,) ®
Z/nZ — M, ® Z/nZ above is also an injection (or, equivalently, for each non-trivial
homomorphism 3, : [I2P? — Z/nZ such that K, C ker(f,), there exists § : IT5%" e
Z,/nZ such that the composite morphism

o :
A VN LNy Y/

is f,). We write
9o+ Zy = (Zu; Dz,) = X3

for the Galois multi-admissible covering with Galois group Z/nZ over k corresponding to
the surjection [3,. Then the definition of K, and the structure of the maximal prime-to-p
quotients of admissible (or tame) fundamental groups imply that, for each C' € my(v) =
v(I'xe) \ {v}, we may construct a Galois multi-admissible covering

68+ 22 = (Zo, Dz,.0) = X
with Galois group Z/nZ over k such that the following holds:

write f¢ for the surjection Hgb’p 'S Z /nZ corresponding to g¢&, then
Belier = —Bolrer.

Thus, by the definition of Galois multi-admissible coverings, we may glue g3 : Z7 =
(Zy,Dz,) — X3 and g¢, : Z¢ = (Z¢, Dy, ) — X¢&, C € m(v), and obtain a Galois
multi-admissible covering

g5 25— X°
over k with Galois group Z/nZ. Write 3 for the element of Hom (I3 '\ Z/nZ) corre-
sponding to g§. Then by the construction above, the composition of the morphisms
e /
by’ & b 5 7z

is equal to f3,.
Finally, let us compute the rank of Mf’. Note that since we assume that X® = Xdef,
we obtain that the kernel of the natural surjection MP" — I1¢+2P?" is the subgroup

by
Sxe C TI0P

generated by I., e € e?(X®). The Poincaré duality for prime-to-p étale cohomology
implies that R
Sxe = Hom(II'%", Z(1)7).
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Then we have Sye is a free ZP-module with rank ry = > Ceno(w)(#Evc — 1). Thus, we
obtain that MP' is a free Z¥ -module with rank

29, + Y (#Euc—1).

Cemo(v)
This completes the proof of the proposition. n
Corollary 3.5. The following conditions are all equivalent.

(i) The homomorphism ¢, : 112> — TI3% is an injection.
(ii) TBs is 2-connected at v.
(i) T xaer is 2-connected at v.
Proof. 1f n, = 0, the corollary is trivial. We may assume that n, # 0. The constructions

of I'Ys and T yeer imply that (i7) < (iéi). We only prove that (i) < (iid).
First, let us prove “=-". Proposition 3.4 implies that K, = 0. Then we have

ne—1= Y (#E,c—1).

Cemo(v)

This means that #m(v) = 1 and #E, ¢ = n,. Thus, Iy is 2-connected at v.
Next, let us prove “ <= ". Since I'xqer is 2-connected at v, we have

n, = #E, ¢ and #m(v) = 1.

Then Proposition 3.4 implies that K, = 0. This means that the homomorphism ¢, :
128> — 1135, is an injection. This completes the proof of the corollary. O

Remark 3.5.1. Corollary 3.4 also obtained by Tamagawa (cf. [T2, Proposition 3.4]) by
using different methods.

4 Averages of generalized Hasse-Witt invariants

In this section, we compute the limits of averages of generalized Hasse-Witt invariants.

4.1 Generalized Hasse-Witt invariants and line bundles

Let X* := (X, Dx) be a pointed stable curve of type (gx,nx) over k, IIx. the admissible
fundamental group of X°®, and Uy := X \ Dx. Moreover, in this subsection, we assume
that X* is smooth over k. Let ¢ be an arbitrary positive natural number, n := p* — 1, and
tn C Kk the group of n'" roots of unity. Fix a n'® root of unity ¢ # 1, we may identify
fin With Z/nZ via the map ¢’ + i. For each o € H, (Ux, u1,), we denote by Uy, for the
ln-torsor corresponding to «, and by X, for the normalization of X in Uy, . Write Fix,_
for the absolute Frobenius morphism on X®. Then there exist a decomposition (cf. [S,
Section 9))
H'(X,,Ox) = H(X,, Ox)* @ H'(X,, Ox)™,
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where Fy, is a bijection on H'(X,, Ox)** and is nilpotent on H'(X,, Ox)™; moreover, we
have
H'(X,, Ox)* = HY(X,, Ox)"™ @5, k,

where (—) denotes the subspace of (—) on which Fy_ acts trivially. Then Artin-
Schreier theory implies that we may identify H, := H}(X,,F,) ®r, k with the largest
subspace of H'(X,, Ox) on which Fx, is a bijection.

The finite dimensional k-vector spaces H, is a finitely generated k[u,,]-module induced
by the natural action of p,, on X,. We have the following canonical decomposition

}id - 6}) ffaﬁa

1€Z/nZ

Fx,

where ¢ € p, acts on H,; as the (*-multiplication. We define
Vo,i = dimg(H,,), i € Z/nZ.

These invariants are called generalized Hasse-Witt invariants (cf. [N]). Moreover, the
decomposition above implies that

dimy(H,) = Z Voui-
1€Z/nZ

Note that, if X, is connected, then dimy(H,) = 0(X,).

The generalized Hasse-Witt invariants can be also described in terms of line bundles
and divisors. We denote by Pic(X) the Picard group of X and by Z[Dx] the group of
divisors whose supports are contained in Dy. Note that Z|Dx] is a free Z-module with
basis Dx. Consider the following complex of abelian groups:

Z[Dx] % Pic(X) & Z[Dx] 2 Pic(X),
where a,(D) = (Ox(—D),nD), and b,(([-£], D)) = [£™ ® Ox(—D)]. We denote by
Pxe ,, == ker(b,)/Im(ay,)
the homology group of the complex. Moreover, we have the following exact sequence
0 — Pic(X)[n] & Pye, 8 Z/nZ[Dx] := Z|Dx] ® Z/nZ < 7./nZ,
where [n] means the n-torsion subgroup, and

a,([£]) = ([£],0) mod Im(an),

v (([Z], D)) mod Im(a,)) = D mod n,
¢ (D mod n) = deg(D) mod n.

Then ker(c],) can be regarded as a subset of (Z/nZ)~[Dx], where (Z/nZ)~ denotes the set
{0,1,...,n—1}, and (Z/nZ)~[Dx]| denotes the subset of Z[Dx]| consisting of the elements
whose coefficients are contained in (Z/nZ)~. We shall define

]%Yﬂn
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to be the inverse image of ker(c/,) C (Z/nZ)~[Dx| C Z][Dx] under the projection ker(b,) —
Z[Dx]. Tt is easy to see that Pxe, and Pxs , are free Z/nZ-groups with rank 2gy +nx —1
if nx # 0 and with rank 2gx if nx = 0. Moreover, we have (cf. [T1, Proposition 3.5])

Pxen & Pxe, = HL (Ux, i)

Let (.Z], D) € Pxe,. We fix an isomorphism 2" = Ox(—D). Note that D is an
effective divisor on X. We have the following composition of morphisms of line bundles

LU g = g PO (-D) R L s L.
The composite morphism induces a morphism
b0 - HI(X, &) — H'(X, 2).

We denote by ((#),p) := dimy((),5; Im(f 4| p))). Write ay € H}, (Ux, pt) for the element
corresponding to ([.Z], D) and Fx for the absolute Frobenius morphism on X. Then S,
Section 9] implies that v, 1 is equal to the dimension over k of the largest subspace of
H'(X, %) on which Fx is a bijection. Moreover, we have

Vag,l = dlmk(Hl(Xa g)FX ®Fp k)7

where (—)fX denotes the subspace of (—) on which Fx acts trivially. It is easy to check
that

H'Y(X,.2)™ @p, k = m Im(¢(()p))-

r>1
Then we obtain that v(#),p) = Vay,1-
On the other hand, the Riemann-Roch theorem implies that

dimy, (H' (X, .2)) = gx — 1 — deg(L) + dim,(H°(X, 2))

1
=gy —1+ Edeg(D) + dimg (H° (X, 2))

nx(n—1)

<gx —1+4] ] + dimy, (H(X, .2))

n
nx . 0
=gx —1+nx+ [—7] + dimy, (H" (X, .2)).
Then we obtain the following rough estimate:

gx, if ([JZ],D):([O)(LO),
Yag1 < dimp(H'(X, 2)) << gx — 1, if ny =0,
gx —2+nx, ifnx #0.
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4.2 Raynaud-Tamagawa theta divisor

We maintain the notation introduced in Section 4.1. Let F} be the absolute Frobenius
morphism on Speck and F/, the relative Frobenius morphism X — X; := X X3 p k
over k. We define

Xy =X Xk,Fé k,

and define a morphism
F)t(/k X =X,

over k to be the composition of the ¢ relative Frobenius morphism F% = Fx,ypo---o
Fx, /k © F X/k-

On the other hand, we denote by Z/nZ[Dx|° the kernel of ¢, and by (Z/nZ)~[Dx]°
the subset of (Z/nZ)~[Dx| corresponding to Z/nZ[Dx]° under the natural bijection
(Z/nZ)~|Dx| = Z/nZ|Dx]. Note that, for each D € (Z/nZ)~[Dx]°, we have n|deg(D).
Then

deg(D) = s(D)n

for some integer s(D) such that s(D) =0ifny <1land 0 < s(D) <nyxy —1ifny > 1.

Let D € (Z/nZ)~[Dx]°, £ a line bundle on X such that £®" =~ Ox(—D), and %,
the pull-back of . by the natural morphism X; — X. Note that .Z and .Z; are line
bundles of degree —s(D). We put

B = ((Fx;)-O0x(D))/Ox,, Ep = Bp ® 4.
Write rk(Ep) for the rank of Ep. Then we have
X(Ep) = deg(det(Ep)) — (9x — 1)rk(Ep).

Moreover, x(Ep) = 0 (cf. [T1, Lemma 2.3 (ii)]). In [R], Raynaud investigated the
following property of the vector bundle Fp on X.

Condition 4.1. We shall call that Ep satisfies () if there exists a line bundle £/ of
degree 0 on X; such that

0 = min{dim (H*(X;, Ep ® .£/)), dim,(H*(X;, Ep @ Z/))}.

Let Jx, be the Jacobian variety of X;, and £; a universal line bundle on X; x Jx,. Let
pry, : Xy X Jx, = X; and pryy, + Xe X Jx, = Jx, be the natural projections. We denote
by F the coherent Ox,-module pry, (Ep) ® L;, and by

xr = dimg (H2(X, x5 k(y), F @ k(y))) — dimy, (H (X, xx k(y), F @ k(y)))

for each y € Jx,, where k(y) denotes the residue field of y. Note that since pr 7y, is flat,
X7 is independent of y € Jx,. Write (—xx)" for max{0, —xr}. We denote by

Op, C Jx,
the closed subscheme of Jy, defined by the (—yz)*-th Fitting ideal
Fitt(— )+ (R (pry, )«(pry,(Ep) ® Ly)).
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The definition of ©,, is independent of the choice of £;,. Moreover, for each line bundle
Z" of degree 0 on X;, we have that [£"] € O, if and only if

0 = min{dim; (H*(X;, Ep ® ")), dimy(H' (X, Ep ® £"))},
where [.Z”] denotes the point of Jx, corresponding to .Z” (cf. [T1, Proposition 2.2 (i)
(iD)]).
Suppose that Fp satisfies (x). [R, Proposition 1.8.1] implies that O, is algebraically

equivalent to rk(Ep)©, where O is the classical theta divisor (i.e., the image of XX~ in
Jx,). Then we have the following definition.

Definition 4.2. We shall call ©g,, C Jx, the Raynaud-Tamagawa theta divisor associated
to Ep if Ep satisfies (x).

First, we have the following theorem.

Theorem 4.3. Suppose that s(D) € {0,1}. Then the Raynaud-Tamagawa theta divisor
associated to Ep exists.

Remark 4.3.1. Theorem 4.3 was proved by Raynaud if s(D) = 0 (cf. [R, Théoreme
4.1.1]), and by Tamagawa if s(D) = 1 (cf. Theorem 2.5).

Note that we have the following natural exact sequence
0= % — (Fx)«(Ox(D)) ® £ — Ep — 0.

Let .# be a line bundle of degree 0 on X. Write .#; for the pull-back of .# by the natural
morphism X; — X. we obtain the following exact sequence

S HYA(X,, Ep © .4) - H(X,, £ © 2) "5 H(X,, (Fl ). (0x(D)) © % @ .7)

—>H1(Xt,ED®ft) — ...
Note that we have that

H'(X, % ® %) 2 H'(X,2® %),
and that
H' (X}, (Fx/1)«(Ox(D)) ©® £ @ ) = HY(X,Ox(D) @ (Fx ;)" (£ @ A1)

~HY(X,0x(D)® (£ @ £)*") 2 H (X, Z ® 7).

Moreover, it is easy to see that the homomorphism
H(X, Y2 .9) - H(X, 22 .9)

induced by ¢ 4,6, coincides with ¢ #g.»,p). Suppose that the Raynaud-Tamagawa theta
divisor O, associated to Ep exists. Then we obtain that [.%] & O, if and only if

Y(zes,p) = dim (H (X, Z ® 7).
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Definition 4.4. Let D be an arbitrary effective divisor on X.
(i) For each natural number m, we put

[D/m] := Z[ordx(D)/m]x,

zeX

which is an effective divisor on X.
(ii) For u € {0,1,...,n}, let u = Z;j] u;p’ be the p-adic expansion with u; €
{0,1,...,p—1}. We identify {0,1,...,t — 1} with Z/tZ naturally, we put

t—1
U(z) = Z Ui+jpj.
7=0

Suppose that D € (Z/nZ)~[Dx]. Then, we put

DO .= Z(ordx(D))(i)m,

zeX

which is an effective divisor on X.
By applying [T1, Corollary 3.10], we obtain the following theorem.

Theorem 4.5. We put

L 07 ngX - Oa
Clox) = { 39x1gxl, if gx > 0.

Let ([£],D) € Pxe.. Suppose that the Raynaud-Tamagawa theta divisor O, associated
to Ep exists. Then the following statements hold.

(i) We have
#{[Z"] € Pic(X) | ¢(zegp) is bijective} > n*9* — C(gx)n*X .
(i) We have
#{[ZL"] € Pic(X) | vizez1p) = 9x — 1+ s(D)} > n29x — O(gy)n29x !

and
#{[Z] € Pic(X) | vzee),p) = 9x — 1+ s(D)}

> nng - C(QX)n2gX_1 - 17 Zf‘S(‘D) = 07
= | n*x — C(gx)n?9x—1, if s(D) > 1.

In particular, suppose that there exists i € {0,1,...,t—1} such that s(D®) =
1. Then we have

#{[Z"] € Pic(X) | Y(zoz.p) = gx} > n** — Clgx)n** .
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Remark 4.5.1. If s(D) € {0,1}, Theorem 4.5 was proved by Tamagawa (cf. [T1, Theo-
rem 3.12 and Corollary 3.16).

Remark 4.5.2. Let D € (Z/nZ)~[Dx]°. We may also consider the following problem.
Suppose that s(D) > 2. Does the Raynaud-Tamagawa theta divisor O, ezist?

In fact, the Raynaud-Tamagawa theta divisor O, associated to Ep does not exist in
general. Here, we have an example as follows. Suppose that p = 3. Let X = P},
Dx ={0,1,00,w}, where w ¢ {0,1}, and

Then we have s(D) = 2. Let ([.Z], D) be an arbitrary element of Py.,,. We see immedi-
ately that Fp satisfies (x) if and only if the elliptic curve defined by the equation

v =x(r —1)(z —w)

is ordinary. Thus, we can not expect that O, exists in general. On the other hand, we
have the following open problem posed by Tamagawa (cf. [T1, Question 2.20]).

Problem . Let F, be the algebraic closure of ¥y, in k, and M gy ny the coarse moduli
space of the moduli stack Mg,

Xz Fp. Suppose that X* is a geometric generic curve
of Myy ny- Let ([£], D) be an arbitrary element of Pxe . Does the Raynaud-Tamagawa
theta divisor O, associated to Ep exist?

In Section 6, we will prove that Problem is true under a certain assumption of D.

On the other hand, Tamagawa proved the following result (cf. [T1, Proposition 3.18]).)

Proposition 4.6. Let d > log,(nx —1) be an arbitrary positive natural number and € < 1
an arbitrary positive real number. We put

d 1 ny — 1\, 0=
A:—, Cbnd)\:<].—m( d >)d ,
€ p p

where (:) denotes the binomial coefficient. Then if nx > 1, we have
#{D € (2/nZ)~[Dx]° | s(DD) =1 for somei € {0,1,...,t —1} >n™ X1 (1 - \) -1

for allt > A.

4.3 Lower bounds and upper bounds of the limit of p-averages

Definition 4.7. Let G be an arbitrary cyclic group of order prime to p and M a finitely
generated F,[G]-module. For any given character x : G — k™, we set

(M ®p, k)[x] :={m € M ®g, k | 7(m) = x(7)m for all T € G},
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and define 7, (M) := dimy((M ®g, k)[x]). Moreover, we define the primitive part of M

to be .
AP — M/( Z ]\47—)7
1#7€G

where M7 := {m € M | 7(m) = m} for each 7 € G. We put 4*"(M) := dimg, (M).
Remark 4.7.1. We see immediately that

M @p, k= D (M g, k).

Gk X

Then we have .
PHM) = ) (M),
x:G—kX*
On the other hand, we can define a F,[G]-module MV := Hom(M,F,) via (7
a(t7'(m)) for each 7 € G, a € MY, and m € M. Then we have ~, (M) =
Thus, we obtain

(a))(m) =
’Yx‘l(Mv)-
M) = ),

Let us return to the case where X* is an arbitrary pointed stable curve and maintain
the notation introduced in Section 3. Let ¢ be an arbitrary positive natural number,

n=rp' —1,
and p, C k* the group of n™ roots of unity. Fix a n' root of unity ¢ # 1, we may
identify p, with Z/nZ via the map ¢* = i. Let v € v(I'x.), U, := X, \ Dg , Pg., the

abelian group associated to )?; defined in Section 4.1, and
Ton = Hom(Hibv fn) = Hét(Uvapdn)-

For each e € e°?(T',), we fix a generator [s.] of I.. Then the structure of the maximal
prime-to-p quotients of admissible fundamental groups implies that, for each a € Ty,
a([se]) = ¢ for each e € e°?(I",) and

I es) =1

eceP(I'y,)

Note that the image Im(a) = (¢ := (™) is a cyclic subgroup of p,, with order m, and
I12P /ker(a) = (7) is isomorphic to the image Im(a) via 7+ &.

Let @, := acm/n, and let f5 : Y2, — )?; be the p,-torsor induced by a and Z* =
(Z,Dz) a connected component of Y,*,. Then f3 induces a connected Galois admissible

covering B
f*:Z°*=(Z,Dy) — X3

over k with Galois group I12* /ker(a). Write f : Z — X, for the underlying morphism
induced by f°. Then we have

f02)= P %,

1€EZ/MmZ
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where locally % is the eigenspace of the natural action of 7 with eigenvalue &. By
consider the action of 7, we have .Z*™ — Oy . Moreover, since $®m|Uv = 0z |u,,

we have Z®™ C Ox,. Then there is a un1que effective divisor Dy on X such that
Supp(Dz) C Dy, and Zm = Oz, (—Dg), where Supp(—) denotes the support of (—). We
have the following lemma.

Lemma 4.8. For each e € e°P(T',), we write x, € D for the marked point corresponding

to e. Then we have
Da - Z ae$e.

ece°P(I'y)

Proof. Let e € e°P(T,). We write I, C I1?" /ker(«) for the inertia subgroup of x., m,. for
#1.., q. for m/m,. Let W, := Z/I,, and f, : Z — W, the quotient morphism over k. We
define a smooth pointed stable curve over k to be

We. = (WeaDW = fl(DZ))
Then f*® and f; induce the following morphisms of smooth pointed stable curves
ze Lwe & xe
over k such that f5o f; = f°. Write f5 for the underlying morphism of f5. Moreover, we

have
(f):(02)= B L.

JEZ/meL

where locally Zy; is the eigenspace of the natural action of 7% with eigenvalue 7%,

Let m;, be a uniformizer of the discrete valuation ring O, . , we a point of f5 Yx,) =
{we, T(we), ..., 7% Hw,)}, z. the point fy'(w.), T, a uniformizer of the maximal ideal
of the discrete valuation ring Oy, ,,, and 7., a uniformizer of the maximal ideal of the
discrete valuation ring Oz ... The Kummer theory implies that

qu (ﬂ-ze) = gqereﬂ—ze (mOd ﬂ-gg)7

where r.a./q. = 1 (mod m.). Then we obtain that

TQE( ac/Qe) §(Ic ae/(Ie

This means that Zjy; is locally generated by er/ % at w.. Moreover, since (7)) = T,
we have (729 )me = 7e/%  Thus, Lyt is locally isomorphic to Oy, (—(@e/qe)we) at we.
We put
ge—1

7T_||7' “E/qe

Note that 7(7) = £%m. We obtain that .,5,”1@% is locally generated by m at x.. Since
7" = mde, we have

LT 2 det((fo) (L))
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locally at z., where det(—) denotes the determinate of the sheaf (—). On the other hand,
by applying [H, Chapter IV Exercises 2.6], we obtain the following isomorphisms

det((f2)-(Lp1)) = det((f)o(Ow (= D (@e/a)7'(w.)))

Ti(we)Efy H(we)

=~ det((f2).Ow,) ® Og (f2)s(— Y. (@e/qe)m (we)))

T (we)Efy *(we)
= det((fQ)*OWE) X O)}U(_aexe)

locally at x.. Moreover, since f; is étale over z,, we have det((f2).Ow,)%%* = O %, locally
at z.. Then we obtain

Dfl®qemgo)~@<_qe Z ae;pe),

e€e°P(T'y)

quE = Qe Z Aee.

Thus, we obtain that

ece°P (')
Then Dy = Zeeeop(rv) @.x.. This completes the proof of the lemma. Il
We denote by .Z, the line bundle .£; and by D,, the effective divisor Ze€eop ) QelLe.
Note that .ZF" = Oz (—D,). Then we obtain a morphism
7:),71 — ﬁ)’fom
a— ([Z.], D).
It is easy to check that this morphism is an isomorphism.
Let H,, be the kernel of the composition of surjective homomorphisms
ab v
II, - 15" — M, ® Z/nZ
and Xy, = (Xu,,., Dx,, ) — )Z'; the Galois admissible covering over k corresponding

to Hy . For each C' € my(v ) we put
Dl)?v,c = {z. € Dg, | e€ E,c}.

We define a smooth pointed semi-stable curve of type (g, ny ¢ := #E, ) over k to be
;70 = (XU’C’ D)’zv,C) = <XU7 D;Zv,c)'

Then we have the following proposition.

Proposition 4.9. (i) Suppose that (g,, #E;') = (0,0). Then

L olX,)
o FOL @ LZ/Z)
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(ii) Suppose that (g,, #E>') # (0,0). Then we have

0 < lim U(XI.{” ”)
= SR FOL, © 272

< gy +#E' -1

Moreover, we have

tim 0 Kr) go— 1, if#EZ =0,
im0 (M, @ Z/nZ) s if #E71 = 1.

Proof. Frist, we prove (i). Since H,, is trivial, we have o(X}; )= o(P;) = 0. Then we
have

o(X7,.)
lim

S FOL e Z/T)

Next, we prove (ii). We put
Ny :={H C1I, open normal | H,,, C H and II,/H is cyclic}.

Note that the order of I,/H, H € N,,, is prime to p. Write X}, := (Xy, Dx,,) for the
pointed stable curve over k corresponding to H. Since M, ® Z/nZ is an abelian group,
we have the following canonical decomposition

Hét(XHv,wFp) - @ (Hét(XHu,mFP)H/HU’R)(HU/H)_pri
HeNyn

@ H XH, Hv/H)-pri’
HeNy

where (—)-pri means the primitive part as an F,[(—)]-module. Then we have
o(Xp,,) = dimp,(Hy (Xn,, Fp)) = D Y n(Ha(Xu,Fy)).
HeNy x:I1, /H—k*
Moreover, we put

Qun ={(H,x)| HeEN,, and x : II,/H — k*}.

For each pair (H,x) € Q,,, the composition of the homomorphisms II, — II,/H &
tn € kX induces an element
Oé( H,x) € T .

Moreover, [T1, 4.7] implies that v, ,1 = vy (Hi (X, Fp)). We obtain that

O-(X;Inyv) = Z 7a(H,x)»1‘
(H,x)€Qu,n
We put
Apn i ={a e Tn| K, Cker(a)}.
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Then we have #A,,, = #M, ® Z/nZ. Moreover, Proposition 3.4 implies that

I als)) =1, € €mv).

6EEU70

Let (H,x) € Qun and au,y) € To, induced by (H, x). The definition of N, ,, implies that,
the homomorphism II, — II,/H factors through the natural surjective homomorphism
II, » M, ® Z/nZ. Then we obtain a map

Qv,n — Avm

defined by (H,x) — a(m,). Moreover, it is easy to check that this map is a bijection.
Thus, we have

(X)) =Y UzlDw):

a€Ayn

Note that we have n|deg(D,,).

On the other hand, let v € A, ,, such that S(nyi))zl for some i € {0,1,...,t—1}. We
have the following claim.

Claim: There exists 5 € A,, such that Dg = Dgi) (cf. Definition 4.4 (ii)).

Let us prove the claim. We see that

where D (p'") :=p' "D, — n[p'~*D.,/n]. Then we have that s(D,(p""")) =1,
and that .
Supp(D,(p"™")) = Supp(D,) € Dg, ¢

for a unique C, € my(v). For each e € e?(I',), we write [s.] for the image of
[se] under the natural surjection I, — I, ® Z/nZ. Then the structure of the
maximal prime-to-p quotients of admissible fundamental groups implies that

"7 ® Z/nZ =

= (a1, gy, by b, )™ & ({[sel feeeorr,) | [se] = 0)) ® Z/nZ.

ece°P(Ty)

Write I for the subgroup of Hib’p/@)Z/nZ generated by ai,...,a4,,b1,...,b

-y Ygxs

and ILY" for the subgroup INP ® Z/n’Z = ({[se]}eceor(r,))- Then we have
I © Z/n & I 6 I

Note that since 7, is naturally isomorphic to 7, := Hom(II2*" ® Z /nZ, ),
7 can be regarded as an element of 7, ,,. We define an element 3 € 7, , to be

t—i N ordy (D
Bl == (Y[mur)” -, B([se]) = ¢ dae (D7)
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Note that since ]
Moreover, we have

Supp(Ds) = Supp(D,) € Dy, ¢, Ds = D, (0.

This completes the proof of the claim.

Y([se]) = 1 for each C' € my(v), we have § € A, ,.

eckE, C

Write 2, (pt~%) for L&' @ Ox([pt~*D/n]). Then we observer that
v Y

(2], Dy (0'™)) € Pxgny (23], Ds) = (20" )], Do (")), s(Dg) = 1.
Furthermore, [T1, Claim 3.8] implies that
V(Z61.D5) = V([£],D4)-
Suppose that #E>1 = 0. Since (g,, #E;') # (0,0), we have g, > 0. Then
# Ay = #(M, @ Z/n7) = n*
Moreover, for each a € A, ,,, we have

g, L =05,
< v
V([Za],Da) = { g, — 1, otherwise.

Thus, we obtain
o(X3,,) < (90— D™ = 1) + g,

On the other hand, note that for each a € A, ,, we have D, = 0. Then by applying
Theorem 4.5 (i), we obtain that

o(X7,,) = (90— D(n* = Clgo)n** ).

Thus,

Suppose that #E>! > 1. Let d, ¢ > log,(nx — 1), C € E>' be an arbitrary positive
natural number and €, ¢ < 1 an arbitrary positive real number. We put

dyc 1 Ny, o — 1), e

_ ) _ ) d,,

Ao = ;and Ao = (1 — ————F o 4 o ) de |
€v,C plo.c Mo, poos

and suppose that ¢ > max{A, c}cer (). Dividing the sum

XHn'u Z ’y[g]pa S1+SQ+S3

€Ay n

into three parts, where S;, [ € {1,2,3}, denotes the sum of v #,),p.) that the D, satisfies
the condition (I): (1) s(Ds) = 0; (2) S(DS)) = 1 for some i € {0,1,...,t — 1}; (3)
otherwise.
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Suppose that #FE.! = 1. Then we may assume that ! = E, ¢ for some C € mo(v).
By applying Corollary 3.5, we have

#AU = #(Mv ® Z/TLZ) = TLQQ'H'”U,C—l‘
Theorem 4.5 and Proposition 4.6 implies that

o(X7,,) < (9o = D + g (n™ <7 1 = X o) — 1))

(g + nuc — 202 (07N, o).
On the other hand, we have
O'(X]}nw) > 51+ 95
> (g — D(n** — Cgo)n*7") + go(n*” — C(go)n** ) (0L = X o) = 1).

Thus, we obtain that
lim U(X;{”’”) =
t—oo #(M, @ Z/nZ) o
Suppose that #E>1 > 1. We divide

into #E;! 4+ 1 parts, where T}, j € {0,1,...,#E;'}, denotes the sum of (g, p,) that
D,, satisfies the following conditions:

(i) s(D&i)) > 1foreachie {0,1,...,t —1};

(ii) there exist a subset E, C E;! and a set of divisors

{Duoc = Z ord,, (Do)x., C € EZ'}

6€EU7C

such that #FE, = 7, that S(DSCC)) = 1for some iz € {0,1,...,t—1}ifC € E,,
and that s(D\}.) > 1 for each i € {0,1,...,t — 1} i C ¢ E,.

Note that since deg(.%,) = —deg(D,)/n = —s(D,), we have
V([ Za]iDa) = Vg, 1 < dimg (HY(X,, )

= g, — 1 — deg(.Z,) + dimy,(H*(X,, . 4.)) = go + s(Da) — 1.

We put
E;:={E C E;' subset | #E = j}.

Since s(DS)) < n, — 1 for each i € {0,1,...,t — 1}, by applying Theorem 4.5 to 555,0:
C € E', we have

Ty < (9o +ny — 2 Ecem (me (S T 3 )
Ec€E; ceE;\E
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if j €{0,1,...,#E>"—1}. Moreover, if j = #E_!, then we have that, for each C € E>!,
s(DSCC)) =1 for some i € {0,1,...,¢t — 1}. Then there exists an element ¢ € A,,, such

that
Z D(ZC)

cerz!

we ha\/e - + E — h
,-Z#EU>1 < (gv _ :#E;l 1>n2£]v+§ CeEﬁl(nvvc_l)‘

Then we obtain that
o(X3,,) = S1+ S+ S5 < (g — Dn® + g0 ( Y (0™ (1=, 0) — 1)
CceE!

#E>l 1

O S O ol

E€E; ceE7'\E

+(g + #E>1 . 1)n29U+ZC€Ev>1(nU’C_1).

Z (nm() — 1) = Z (nvyc — 1)

cekrz! Cemp(v)

Note that

Proposition 3.4 implies that
#‘Av,n = #(Mv ® Z/TLZ) = n2gU+ZC€WO(v)(nv,C_1).

Then (X3 )
oAn
0< 1l - <go+H#ET -1
<M aon ez S0 T
We completes the proof of the proposition. O]
Remark 4.9.1. Suppose that (g, #E.!) # (0,0). We do not know whether
o(X%,,)

lim

t=oo #(M, ® Z/nZ)

can attain the upper bound g,+#FE_ ! —1 or not in general. The main difficulty is that we
do not know whether or not the Raynaud-Tamagawa theta divisor exist if s(Dy) = #E.!
and ° . orde, (Do) =n, C € E7' (cf. Remark 4.5.2).

Remark 4.9.2. Motivated by the theory of the combinatorial anabelian geometry of
curves over algebraically closed fields of characteristic p > 0, we may expect that

L olXE,,)
o B (M, © Z/n7)

admits a better lower bounder than 0. We pose the following question.

Question . Does

holds?
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5 Lower bounds and upper bounds for the limits of
p-averages of admissible fundamental groups

In this section, we prove the first main theorem of the present paper. We maintain the
notation introduced in Section 4.

Let ¢ be an arbitrary positive natural number and n := p' — 1. We denote by K, the
kernel of the natural surjective homomorphism I18% —» 134 ® Z/nZ and denote by

XI.(n = (XKm DXKn)

the pointed stable curve over k corresponding to K. Write I'ys for the dual semi-graph
of X} and ry, for the Betti number of FX;} )

Definition 5.1. Let v € v(I'xe) C v(I'x,.) and e € e (I'ye) C e9(T'x, ). We shall call
that v is a tree-like vertex if I yaer is a tree (i.e., the Betti number of I'yaer is 0), and call
that e is a tree-like edge if there exists a vertex w € v(I'xs) such that E, o = {e} for
some C' € EZ'. We put

Ve :={v € v(lxs) | vis tree-like},
Vet == {v € V¥ | g0 = 0},
EY = {e ce¥(I'xe) | eis tree-like} = U U E,c.

vev(lye) Cemp(v) s.t. CEEST

Remark 5.1.1. Note that the definition of tree-like vertices and tree-like edges does not
depends on the choices of X7 .

Then we have the following formula for the limits of the p-averages of admissible
fundamental groups which generalizes Tamagawa’s results (cf. [T1, Theorem 0.5] and
[T2, Theorem 3.10]).

Theorem 5.2. We have

gx —Tx = #VEHHVEIPT H H BN — > o

vev(Tye) s.t. #E7I>1

S AVI'p(on) S gx —Tx — #U(FX-) + #Vtr.e,gvz() + #Etrf + Z #Ev>1

vev(I'xe)
In particular, if #E71 <1 for each v € v(['x+), then we have
AVI'p(HXo) =0gx —Tx — #Vtr.e + #V)t;.e,gv:() + #Egg? - Z 9o

vev(Txe) s.t. #EZ1>1

=gx —rx — #0(Dxe) + #VETP 0+ HE + Y #E]!

vev(T ye)

= gx —rx — #VEH#VEOOT B
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Proof. Remark 2.3.1 implies that

Z # .®Z/TLZ) (X.

o(X
K #(M, ® Z/nZ) i) X

n

’UE’U

where X7, ;v € v(I'x+), is a pointed stable curve over k defined in Section 4.2. Moreover,
the Euler-Poincaré characteristic formula for dual semi-graphs implies that

TXg, = #GCI(FX;(H) —#u(l'x; ) +1

#(I ® Z/nZ) #(1135 ® Z/nZ)
- X Y. Z A, 2 ZnZ)

ecel(I'xe) vev(T

where I, e € e?(I'x+), denotes the image of the inertia subgroup I, of e in 113 ® Z/nZ.
Moreover, the structure of the maximal prime-to-p quotients of admissible fundamental
groups implies that

: tre
Iy { 1, ifee EXS,

n, otherwise.

Then we obtain that

o(Xk,) o(Xt,.)
#(Ha.®Z/nZ Z #(M, @ Z/nZ)

VeV (F .)
R - X sorezm g
’ (M, ® Z/nZ # (118 ® Z/nZ
e€e? (Txe \Uyeu(r o) Bt veu(Tys) #(M, ®Z/nZ)  #(Ix. ® Z/nZ)

Thus, by applying Proposition 4.9, we obtain that

gx —Tx — HVE + #VET0 + #ER - 3 Go
vev(Tye) s.t. #E71>1
= > (9o + #E;' — 1) + #E%S
vev(lye) s.t. go#0, #EZ1<1
dimp (K* @ F X
S AVI'p(HXO) = lim HIHFPIS n ® p) = lim Jb( Kn)
tooo # (150 ® Z/nZ)  t=oe #(115. @ Z /)
< > (go +#E7" — 1) + #E%

vev(Tye) s.t. (gu,#E51)#(0,0)

S get D HET —Hu(Txe) + #VET0 + $E

vev(Tye) vev(Txe)
= gx —rx — #o(lxe) TV HERS Y #E
vev(xe)
This completes the proof of the theorem. n
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Remark 5.2.1. Suppose that I'Ps is 2-connected. Then we have #E>1 < 1 and #Vgo9 = =

0. Then we have
Avr,(Ilxe) = gx — rx — #V¥ + #ES:.

This formula has been obtained essentially by Tamagawa (cf. [T2, Theorem 3.10]). More-
over, suppose that X* is smooth over k. Then we have

AVI"p(HXO) =(Jx — #Vtr.e.
Note that we have

we [ 1 ifnx <1
#V._{O if ny > 1.

This is the formula of Tamagawa obtained in [T1, Theorem 0.5].
Remark 5.2.2. For each v € v(I'xs), we put
b) = >, ()
e€eoP(I'x o )Uec! (I xo)
where b.(v) € {0, 1,2} denotes the number of times that e meets v. Moreover, we put
v(Cye)'=' = {v € v(Txe) | b(v) < 1}.

Note that if T'P. is 2-connected, then #v(I'xe)*<' = #VEe. Then the statement of [T2,
Theorem 3.10] is as follows.

Suppose that Fg?.t 18 2-connected. Then we have

AVl"p(HXo> =0gx —Tx — U(Fxo)bgl.

Since there is an error in the proof of [T2, Theorem 3.10], the statement of the formula
for Avr,(Ilxe) of [T2, Theorem 3.10] is not correct.

6 A formula for the limits of p-averages of admissible
fundamental groups of component-generic pointed
stable curves

In this section, we prove a formula for Avr,(Ilx.) when each irreducible component is
generic. We maintain the notation introduced in Section 4. Let t be an arbitrary positive
natural number, n := p! — 1, and p, C k* the group of n'® roots of unity. Fix a n'® root
of unity ¢ # 1, we may identify u, with Z/nZ via the map ¢* > i.
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6.1 Degeneration and existence of Raynaud-Tamagawa theta di-
visor

We introduce a condition concerning degeneration.

Condition 6.1. Let v € v(I'ys). We shall call that X* satisfies (DEG) if there exist
a complete discrete valuation ring R, with an algebraically closed residue field kg, and
a pointed stable curve X3 = (X,, Dy,) of type (g,,n,) over R, satisfying the following
conditions:

(i) k contains the quotient field Kg, of R,.

(ii) Write K g, for the algebraic closure of Kp, in k. Then )?; is k-isomorphic
to X® X g, k. Moreover, the k-isomorphism induces a bijection ¢, : Dy, — D %,
For each C' € mo(v), write D, ¢ for v;'({%c}eer, o). Then we have

(i) Write X3 = (X, 7, Dx, ) for the geometric generic fiber X X g, Kp, of
X, and Xy, = (X, Dy, ) for the special fiber Xy x g, kg, of &,. For each
C € mo(v), write DZC for D, ¢ xg, Kg, and D; . for D, ¢ Xg, kg,. Then we

have B
Dx,,= |J Dl Dr.= |J Dic
)

Cemp(v) Cemp(v

Moreover, we have

such that the following conditions hold: (1) D} is contained in P, ¢ for each
CeE? (2 Pe™ P,ﬁRU; (3) the dual semi-graph of X _ is a tree; (4) if
#E>Y #£ 0, then Z, is either a smooth projective curve over kg, of genus g,
when g, # 0 or an empty set when g, = 0; (5) if #E! = 0, then Z, is a
smooth projective curve over kg, of genus g,.

Let F, be an algebraic closure of F, in k. For each v € v(I'xs), write M,, ., for the
moduli stack Mg, . 7z Xz F,. For each 0 <o < g,, we denote by

revid

Gu;Nw

the p-rank strata of M,, ,, with prank o (i.e., the locally closed reduced substack of
My, n, whose geometric points corresponding to pointed stable curves with p-rank o).

Note that M;M is not irreducible in general.

Definition 6.2. For each v € v(I'y.), write M, . for the coarse moduli space of the

Gu,Mv
o and k(g7 #") the residue field of

substack M; ny- L€t g7 be a generic point of M
q7 &, Suppose that k(g 8") C k for each v € v(I'x+). Let k,g-zn be the algebraic closure

v
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of the residue field of k(¢7#") in k and X;g-gcn the geometric generic curve corresponding to
the geometric generic point Spec k,g-sen — Spec k(gg8") — MZMU. We shall call that X*®

is a component-generic pointed stable curve over k if )?; is k-isomorphic to X(;U.gen Xk g-gen k
for each v € v(I'xe).

We have the following proposition.

Proposition 6.3. Suppose that X*® is a component-generic pointed stable curve over k.
Then X2 satisfies (DEG) for each v € v(I'xs).

Proof. If E-* = (), then the proposition is trivial. We may assume that E! # (), and let
E>t:={Cy,...,C,}. For each C; € E', we put

E’U,Ci — {6(2]<1 nmcj)-‘rl? e 762;9 nv,Cj }
Moreover, we put

U Ev,c = {e(zceEil Ny,c)+Lly s env}'
CeEs!

Then the order of e°?(T',) defined above induces an order of the set of marked points D .
Suppose that g, = 0. Then the definition of component-generic pointed stable curves
implies that X? is a geometric generic curve of My ,,. Then X? satisfies (DEG).
Suppose that g, =1 and ¢ = 1. Then )?; is a geometric generic curve of M ,,,. Then
X¢ satisfies (DEG).
Suppose that g, = 1 and 0 = 0. Write 7,1 : MLM — ﬂl,l for the morphism
induced by forgetting the marked points except the first marked point and ¢, : Speck —
M, for the classifying morphism determined by X*. Then the composite morphism

Tyl O Cy : Speck — My

determines a supersingular elliptic curve Z;* = (Z;, Dz:) over k. Since Z;* can be
defined over [F,, there exists a supersingular elliptic curve

2,7 = (2o, {2})

over I, such that Z** = Z3 x5 k. Let P,c, = Pg for each i € {1,...,q}, Dp . a
set of distinct closed points {x1 ¢, z2.¢,} U {x(ZK,M C)HL - T i o tof Pooif i€
[ O <z O Ed]

{1,...,9—1}, Dp,, aset of distinct closed point {z1,c, }U{z (s, _, nue )+ T nv,cj}
of P,c,. Then we obtain a pointed stable curve

U.,Ci = (PU,CN DPU,CZ-)’ (S {L s 7Q}>
and a pointed stable curve

Z; = (Zv, DZU = {Zv} U {JJ(ECGEU>1 M)+« ,Jjnv})

over F,, where {z,} N {Z( ot muc)1s - T b = 0. We glue {P} ¢ }iequ,...qy and Z;
by identifying z,, za¢,, ¢ € {1,...,q — 1}, with 1 ¢,, 716, © € {2,...,q}, respectively.
Thus, we obtain a pointed stable curve

XU‘,S = (X'U757 DX’U,S)
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of type (1,n,) over Fp which determines a classifying morphism ¢, 5 : Spec Fp — va-
Moreover, we write g, s for the image of the composite morphism

SpecF, = Mi,., — Mi,,.

Note that the construction of X implies that the curve corresponding to the composite
morphism
T1my1 O Cps : OpecF, = M,

is Fp-isomorphic to Z2. This means that ¢, s is contained in the closure of ¢ in Mlm.
Then the proposition holds when g, = 1 and o = 0.

Suppose that g, > 2. We denote by Sy |~ the set of irreducible components of ﬂ;nv.
Write 7, no0 @ Mgyn, — My, o for the morphism induced by forgetting the marked
points. We note that !, (S) € 57, for each S € S7 ,, and that

gv,nmo
1 i
U ﬂ-gvanva(S> - Mgvynv'

Sesg

Then by applying [AP, Proposition 3.5, we see that )?; admits a pointed stable reduction
W. - (W, Dw)

such that W is a chain of nonsingular projective curves of genus 1. Moreover, without
loss of generality, we may assume that W* is component generic. Write 'y« for the dual
semi-graph of W*. Let

v(Cwe) = {ur, ... uy, }-

We may assume that for each ¢ € {1,...,g,—1}, W,,,nW,,,, # 0. Foreachi € {1,...,9,},
we define a smooth pointed stable curve to be

Wi, = (W, Dw,, == (Wy, N W) U (D N W.,)).

Moreover, we may choose W* such that Dy, is contained in W,,. This means that
W, N Dy = 0 if u; # uy. Let W,, N Wse = {z,. 1} if i € {1,9,} and W,, N W*ne =
{Tuy, 1, 20,2} if0€{2,...,9, — 1}.

The proposition in the case where g, = 1 implies that W satisfies (DEG). Let
Wa s = Wu s, Dw,, ) be such a reduction of W and z,, .1 € Dw,, . the reduction of

u1,S .

the point of W,, N W=, We may glue W3 _ and {W} }icqa..4,) by identifying z, o1,
Ty, 0 € {2,...,9, — 1} with @y, 1, Ty, 1, © € {3,..., g}, respectively. Then we obtain a
pointed stable curve

W = (Ws, Dw,)
of type (g, 1) which is a pointed stable reduction of W*. Write V gz for the topological
closure of {¢7#"} in M, ,,,. Then W? corresponds to a geometric point of M, ,,, whose
image is contained in Vjg-zen. Write N for the set of reduction of the points of W*"¢ in

W,. Then N C W& Thus, there exists a deformation of the pointed stable curve W,
along N (cf. Section 2), and we obtain a pointed stable curve

X.

s
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of type (gu,ny) such that X3 = (X,, Dx,,) corresponds to a geometric point of My, ,,
whose image is contained in Vgsn. Note that X, satisfies (iii) of Condition 6.1. Then

X satisfies (DEG). This completes the proof of the proposition. O

In the remainder of the present paper, we assume that X*® is a component-generic
pointed stable curve over k. Then Proposition 6.3 implies that, for each v € v(I'xe), X?
satisfies (DEG). Moreover, we denote by II, 7 and II, ; the admissible fundamental groups
of Xy~ and A7, respectively. Then II,7; is naturally isomorphic to II,, and there is a

specialization map
spr, - vy = Ty

Then we obtain a continuous surjective homomorphism of maximal pro-p quotients

PP P
SPg, : 7 > 11

v,8)

where (—)? denotes the maximal pro-p quotient of (—). On the other hand, the specializa-
tion theorem of maximal prime-to-p quotients of admissible fundamental groups implies
that
sph, 15, = ngs.
Let @, be an effective divisor on X, of degree (#FE.!)n such that Supp(Q,) C Dy,
and

Z ord,(Q,) =

CEEDU,C

n, if C e B,
0, ifCeE"

Write Q7 for Q, xg, Kg,, Q3 for Q, xg, kg,, and Qo C € EZ', for Q5N P,c. Then
we have deg(Q5 o) =n, C € E7'. This means that

Let Z,5 be a line bundle on X, 5 such that £ = Oy, (—Q1). We put

Eq

j = Bt 7} X D%U’ﬁ
Then we have the following proposition.

Proposition 6.4. The Raynaud-Tamagawa theta divisor @EQW associated to EQ? exists.

Proof. If #E-' < 1, then the proposition follows immediately from Theorem 4.3. We
may assume that #FE>! > 2. To verify the proposition, it is sufficient to prove that Eqgr
satisfies (x). This is equivalent to prove that there exists a line bundle .%, 5 on &, 5 of
degree 0 such that

ry([zv7ﬁ®fv,ﬁ]7Qj) - dimkRv (Hl(Xv’ﬁ7 g’v:ﬁ ® j”7ﬁ>) = g”L) + #Ev>1 - 1

For each C' € E}', let .Z, ¢ be a line bundle on P, ¢ such that 2% = Op, .(—Q5 o),
and let
f;C : Y;;.,C’ - (Y;),CvDYu,c) — Pv.,C = (Pv,CvDPu,c)7 Ce Ev>1’
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be the connected Galois admissible covering corresponding to .Z,  over kg, with Galois
group Z/nZ, where Dp, , := Dy, N P,c. Then the kg, [p,]-module H (Y, ¢, F,) ® kg,
admits the following canonical decomposition

Hy (Yoo, Fp) @ kr, = @ Mocl(i)

1€L/nL

where ¢ € p, acts on M, o(i) as the (*-multiplication. By applying Theorem 4.3 and
Theorem 4.5, we may choose %, ¢, C' € E!, such that

dimkRv (MU7C(1)) =0.

If g, # 0, let £, be a non-trivial line bundle on Z, of degree 0 such that ZZ@;” = Oy, .
We denote by
f2,:Y7, =Yz, Dy,)) = Z

the connected Galois étale covering correspondlng to £, over kg, with Galois group
Z/nZ, where Dy, := Dy, N Z,. Then the kg, [u,]-module H (Y7, ,F,) ® k, admits the

following canonical decomposition

Hét(YZv7 ® kRU @ MZU

1€L/nL

where ( € p, acts on My, (i) as the (“-multiplication. By applying Theorem 4.3 and
Theorem 4.5, we may choose ., such that

dimkRv (sz(l)) =g — L.

We glue {Y c}oepst if go = 0, and glue {Y,'c}oepst and Y2 if g, # 0. Then we
obtain a connected Galois admissible covering

f;,s : y;,s = (y'u757 Dyv,s) - X’I:S

over kg, with Galois group Z/nZ. Write I'ys = for the dual semi-graph of ;. and ry,
for the Betti number of I'ys . The construction of Yy . implies that

B (#E2' —1)(n—1), ifg,=0,
W T HE (n - 1), if g, # 0.

The k[u,]-module H (V,s, F,) ® kg, admits the following canonical decomposition

Hét (yv,Sa ® kRv @ Mv ,S

1€Z/nZ

where ¢ € p, acts on M, (i) as the (*-multiplication. Moreover, we have a natural
k|[p,])-submodule
H' (F)’J,San> & kRu - Hét(ywsv Fp) ® kRv
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which admits a canonical decomposition

H'(Iys ,F,) ® kr, = €D Mr,, (i),

1€EZ/nZ

where ¢ € pu, acts on My, (i) as the ¢*-multiplication. Then we have
M,s(1) = Mg, (1) ® Mpwvs(l).

We see immediately that

0, if =0,
dimy, MI‘y;S@) = #E>' -1, ifi#0andg, =0,
7 #E if i £ 0 and g, # 0.

Thus, we obtain that
dimyg, (M,(1)) = go + #E7' -1

On the other hand, since (p,n) = 1, the isomorphism sp%lv : Hf:ﬁ = Hfgts implies that,
by replacing R, by a finite extension of R,, there exists a finite morphism of pointed
stable curves

[V =V, Dy,) = &3

over R, such that the restriction of f on the special fibers is kg, -isomorphic to f; ., and
that the restriction of f; on the geometric generic fibers is a connected Galois admissible
covering

f’m . y (yv,nyDyvn) = y; X Ry WRU — X;ﬁ

withe Galois group Z/nZ over Kpg,. The kg, [p,]-module Hy (Y, 7, F,) ® kg, admits the
following canonical decomposition

Hi (Vo Fy) @ kp, = @ Moy(i)

1E€EZ/NL

where ¢ € p, acts on M, (i) as the (*-multiplication. Write Iys C 1y and IIys C Il
for the open normal subgroups corresponding to V5 and )3 ;, respectively. Then the
surjection sp,, : lyz — 11, s induces a surjection sp, y : Hys = Ily, . Thus, we obtain a
surjection

SPyy ngg - H’J’,;S.

Since H (Vom, Fp) ® kg, and Hg (Vys,Fp) ® kg, are semi-simple kg, [11,]-modules, the
surjection spy , induces an injection M, (1) < M, z(1). This implies that

dimy,, (M, 5(1)) > g, + #E71 — 1.

Write £ ;- for the line bundle on &, 5 corresponding to V. Then Lemma 4.8 implies
that (2 : )®” = Oy, (—Q7). Moreover, we have

dimg, (Mo5(1)) =Yg 1 qn < dime(H' (Yo, Z05)) = g0 + # B — 1
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Then we obtain that
dimg, (M (1)) = Y ) gpy = dimig, (H (Y, Z0)) = g0+ #E7 — 1
We define .7, 7 = ,,iﬂv_ﬁl ® &, 5. Note that ., 5 is a line bundle on X, 5 of degree 0.
Then we have
N Lo suml @D = V12,100
= dimy,,, (H'(X, 5, Z,5)) = dimy,, (H' (X5, Loy @ Foz)) = g + #E;" — 1.
This completes the proof of the proposition. Il

Remark 6.4.1. Proposition 6.4 gives a positive answer of Problem of Remark 4.5.2 under
certain assumptions of divisors. On the other hand, we may pose a generalized version of
Tamagawa’s problem as follows.

Problem . We maintain the notation introduced in Remark 4.5.2. Suppose that X*®
is a component-generic smooth pointed stable curve over k. Let ([£], D) be an arbitrary
element of Pxe . Does the Raynaud-Tamagawa theta divisor ©g,, associated to Ep exist?

6.2 A formula for the limits of p-averages

In this subsection, we prove the second main theorem of the present paper. First, we have
the following proposition.

Proposition 6.5. Suppose that X*® is a component-generic pointed stable curve over k.
Then we have

1 (XI.{vn) 07 ZfU c Vtre gU_O
t—o0 #(M ® Z/TLZ) '8 -+ #E1)>1 _ 1, va c U(FX.) \ vtr.e,gu=0‘

Proof. We maintain the notation introduced in the proof of Proposition 4.9. Moreover,
Proposition 4.9 implies that we may assume that #E! > 2. Then

#(M, ® Z/nZ) =29, + > (nyc—1).
Cemp(v)

Suppose that v € VI ="  Then the proposition follows from Proposition 4.9 (i).

Suppose that v € v(I'xe) \ V)t(rf’g”zo. Theorem 4.5 and Proposition 6.4 imply that
o(Xf,,) = (90 + #E; = D)(n* = Clg)n® =) [] (e (1= A e) = 1)
CeE!
> (g + #E7 — 1) Eeesz (e L g(g, n Roerzi e
— (g + #EZ = [0 EeenneD) _ (g, )2+ eeroline 1)
Then Proposition 4.9 (ii) implies that

lim U(XHM)
t=o0 #(M, ® Z/n)

This completes the proof of the proposition. n

:gv+#E1;>1_1
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The second main theorem of the present paper is as follows, which is a formula of the
limits of p-averages without any assumptions of dual semi-graphs.

Theorem 6.6. Suppose that X*® is a component-generic pointed stable curve over k. Then
we have

Avry(Ixe) = gx —rx — #o(Dxe) + #VESO + #ER + > #E

vev(Tye)

Proof. We denote by K, the kernel of the natural surjective homomorphism I18, —»
3% @ Z/nZ. By applying similar arguments to the arguments given in the proof of
Theorem 5.2 imply that

dinl[{a (Kab ®F dlme Hab ® F )
(I3 @ Z/nZ) Z , #(M, ® Z/nZ)
tre 1 1
+#Eye + Z Z #(M, ® Z/nZ) # (113 @ Z/nZ)

GEecl(FX')\Uvev(rX,) E7 vev(Txe)
Thus, Proposition 6.5 implies that
Aviy(Ilc) = > (9o + #E;' = 1) + #EXS

vev(Pxe) s.t. (go,#E71)#(0,0)

Z 9o + Z #E7" — #o(Txe) + #V)t(r.e,gvfo LB

vev(Ixe) vev(Txe)
=gx —rx = foCxe) + #VRSOTHHERS - Y HE]
vev(Ixe)
This completes the proof of the theorem. O

Remark 6.6.1. We can also prove Theorem 6.6 by applying Theorem 5.2 directly (i.e.,
without using the existence of Raynaud-Tamagawa theta divisor). Let us explain the
arguments in this remark.

Suppose that X*® is a component-generic pointed stable curve over k. Then there exists
a discrete valuation ring R with algebraically closed residue field kg of characteristic p > 0
and a pointed stable curve X* = (X, Dy) over R such that the following conditions are
satisfied:

(i) k contains the quotient field Kp of R.

(i) Write X = (X, Dx,) for the generic fiber X* Xz K'r. Then each point of
A8 ig K p-rational.

(iii) Write I xg for the dual semi-graph of X;?. Note that I'xe can be naturally
identified with I'xs. For each v € v(I'xs), write &, for the irreducible com-

ponent of X, corresponding to v and nol, : )?v,n — &, for the normalization
morphism. We define a smooth pointed stable curve of type (g,,n,) to be

2?; (X, Dz :=nol, (X, N X:™) N (D, N X,,)))

v,
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over K. Then we have that )?v.,n X i, k is k-isomorphic to )?;, and that the
reduction of ‘/ﬁ;n over R satisfies the (DEG) (iii) defined in Section 6.1.

(iv) Write K for the algebraic closure of Kg in k and X3 = (X, Da,) for
the geometric generic fiber X* xp K of X*. Then X*® is k-isomorphic to

X*® X5, k. Moreover, we write I'xe for the dual semi-graph of A7. Note that
FX- can be naturally identified w1th r xs

Write Il and II; for the admissible fundamental groups of A3 and X7, respectively. Let
us compute Avr,(Il;). Note that the construction of X implies that, for each w € v(I'xs),
we have #FE>1 < 1. Thus, by applying Theorem 5.2, we obtain that

Avr,(ILy) = gx —rx — #v(Lxs) + #V/‘ti.e,gv=0 + #Eng + Z LE>T,

wev(l ye)

Moreover, the construction of X7 implies that

#0(Dys) = > (#E'+1)+ > HE7 > 1

UGU(FXTI:) s.t. gu#0 v€V(Lye) s.t. go=0,#E 140 v€V(Lye) s.t. go=0,#E71=0
n n
1 1
—#oTw)+ Y, HET+ > (#E' - 1),
va(Fx%) s.t. gu#0 vev(rﬁ) st. gu=0,#E7'#£0

#Vt}e,gufo #Vtre gq,fo

Z #E>1 Z #E>1,

wev(Lxe) UGU(FX%)
tre __ tre >1 >1
#Ew = #Ew+ Y H#ET+ > (HE - 1).
’UG’U(FX%) s.t. gu#0 ’UEU(FX%) s.t. gu=0,4E1#0

Thus, we have

Avr,(ILy) = gx —rx — #v(Cas) + #V;éls"&gv—o +HES + Z HE>!

wG'L)(FX; )

= 9x _TX_#U(FX%) - Z #E; — Z (#E; 1)

UEU(F){%) s.t. gu#0 va(FX%) s.b. go=0,#E7 140

—I—#V;,;e’g“_o #Etre

+ Y #ET+ > HE =1+ Y #E

’L)G’U(FX%) s.t. gu#0 v€v(Lype) s.t. go=0,#E; 10 WEU(FX%)
n

= gx —rx — #o(Tag) + #Va T A HER + Y #E]

vEV(T o)
7
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=0gx —Tx _#U<FX.)+#V)1:(rf,gU:0+#Etr? + Z #Ev>1

vev(I'xe)

On the other hand, since Il is naturally (outer) isomorphic to ILxs, we obtain Avr,(Ilx.) =
Avry(Il). Moreover, Since A7 and X are same types, we have a specialization map

spg : 1z — 1L,.

Then we have
Avr,(Ilxe) = Avr,(Il5) > Avr,(1Ly).

This means that

Avr,(ITxe) > gx — rx — #0(Txe) + #VEDP0 + #EW + > #E

vev(Ixe)

Thus, Theorem 5.2 implies that

Avry(Ixe) = gx —rx — #o(Dxe) + #VES ™+ #ER + > #E

vev(Tye)

This completes the proof of Theorem 6.6.
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