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A p-ADIC ANALYTIC APPROACH TO THE ABSOLUTE
GROTHENDIECK CONJECTURE

TAKAHIRO MUROTANI

ABSTRACT. Let K be a field, Gx the absolute Galois group of K, X a hyperbolic
curve over K, and m1(X) the étale fundamental group of X. The absolute Grothendieck
conjecture in anabelian geometry asks: Is it possible to recover X group-theoretically,
solely from 71 (X) (not m1(X) - Gk)?

When K is a p-adic field (i.e. a finite extension of Q)), this conjecture (called the
p-adic absolute Grothendieck conjecture) is unsolved. To approach this problem, we
introduce a certain p-adic analytic invariant defined by Serre (which we call i-invariant).
Then, the absolute p-adic Grothendieck conjecture can be reduced to the following
problems: (A) determining whether a proper hyperbolic curve admits a rational point
from the data of i-invariants of the sets of rational points of the curve and its coverings;
(B) recovering the i-invariant of the set of rational points of a proper hyperbolic curve
group-theoretically. The main results of the present paper give a complete affirmative
answer to (A) and a partial affirmative answer to (B).

1. INTRODUCTION

Grothendieck proposed the following conjecture in Esquisse d’un Programme and Brief
an G. Faltings (cf. [14]) :

Conjecture 1.0.1

Let K be a field finitely generated over the prime field. The geometry of an “anabelian”
variety V over K is completely determined by the arithmetic fundamental group m (V, &)
and the surjection 71 (V, ) — m(Spec K, §)(~ Gal(K*P/K)) (where £ is a geometric
point of V' and K* is a separable closure of K).

Although Grothendieck did not give the definition of “anabelian” varieties, he made
the following conjecture:

In the case where V' is a connected and nonsingular scheme of dimension
1, V is “anabelian” if and only if its Euler-Poincaré characteristic y is
negative.

More precisely, let Y be the smooth compactification of V', g the genus of Y and n the
number of geometric points of Y \ V. Then we have y = 2 — 2g — n. So, the above
conjecture states that V' is “anabelian” if and only if 29 +n — 2 > 0 (we call such curves
hyperbolic curves). In the case where K is of characteristic 0, this condition is equivalent
to the condition that the geometric fundamental group of V' (i.e. the étale fundamental
group of V' Xgpec k SPec K, where K is an algebraic closure of K) is not commutative.
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Conjecture 1.0.1 for hyperbolic curves over K of characteristic 0 was partially resolved
affirmatively by Nakamura [10],[11] (for K finitely generated over Q and g = 0) and
Tamagawa [18| (for K finitely generated over Q and n # 0), and then, Mochizuki [3] gave
the following final solution (which is stronger than Grothendieck’s original conjecture):

Theorem 1.0.2 (cf. [3, Theorem A, [6, Theorem 1.3.4])
Let p be a prime number, K a sub-p-adic field (i.e. a field which is isomorphic to
a subfield of a finitely generated extension of Q,) and G the absolute Galois group
of K. Let X and Y be hyperbolic curves over K. Denote by m(X) (resp. m(Y))
the arithmetic fundamental group of X (resp. Y); by Ax (resp. Ay) the geometric
fundamental group of X (resp. Y ); by Isomg (X, Y) the set of K-isomorphisms X =Y ;
by Isom@™ (1 (X), m(Y)) the set of Ay-conjugacy classes of isomorphisms m(X) =
m1(Y) which are compatible with the surjections to Gx. Then the natural map
Isomg (X, Y) — Isomgit(m (X), m(Y))

15 bijective.

In the above problems, we fix a field K and consider group isomorphisms over the
absolute Galois group Gk. So, these results may be thought as “relative” results. On the
other hand, in [6], Mochizuki proposed “absolute” analogues of these results (i.e. con-

sidering similar problems without fixing K and Gf) and proved the following “absolute”
Grothendieck conjecture in the case where base fields are algebraic number fields:

Theorem 1.0.3 (cf. [6, Corollary 1.3.5])
Let X (resp. YY) be a hyperbolic curve over an algebraic number field K (resp. L).
Denote by m(X) (resp. m(Y)) the arithmetic fundamental group of X (resp. Y ); by
Isom(X,Y) the set of isomorphisms of schemes X = Y; by Isom®" (7 (X), m(Y))
the set of w1 (Y)-conjugacy classes of isomorphisms of profinite groups m(X) = w1 (V).
Then the natural map

Isom(X, Y) — Isom®" (7 (X), m(Y))
s bijective.

In the proof of this theorem, the theorem of Neukirch-Uchida ([12, Theorem 12.2.1])
plays an important role. On the other hand, the analogue of the theorem of Neukirch-
Uchida for p-adic fields (i.e. finite extensions of Q) fails to hold (there is a counterex-
ample (cf. [12, Chapter VII, §5])). So, the same method is not available. Although some
affirmative results were proved (in the cases where the hyperbolic curves are “canonical
lifting” (cf. [5]) or “of Belyi type” (cf. [7]), etc.), it is unknown whether or not the
“absolute p-adic Grothendieck conjecture” holds in general.

On the other hand, the following theorem reduces the “absolute p-adic Grothendieck
conjecture” to the group-theoretic characterization of decomposition groups:

Theorem 1.0.4 (cf. |8, Corollary 2.9|, Theorem 4.2.2)
For i =1, 2, let p; be a prime number, K; a finite extension of Q,,, U; a smooth and
geometrically connected hyperbolic curve over K;, X; the smooth compactification of U;,

~ —~ ~ ~l
U; the universal covering of U;, X; the integral closure of X; in U; and X; the set of
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closed points of%. Suppose that an isomorphism of profinite groups o : w1 (Uy) = m1(Us)
satisfies the following condition: A closed subgroup of m(Uy) is the decomposition group
of a point of 5{1(:1 iof and only if the image of the subgroup by « is the decomposition
group of a point of )f(VgC. Then p1 = po, and « is geometric, i.e. arises from a unique
isomorphism of schemes Uy — Uy (more precisely, Uy = Us).

Moreover, the following theorem reduces the group-theoretic characterization of de-
composition groups to the group-theoretic determination of whether or not the sets of
rational points of hyperbolic curves are empty (for notations and terms, see Section 4.1):

Theorem 1.0.5 (cf. |18, Corollary 2.10|, Theorem 4.2.4)
We follow the notations in Theorem 1.0.4. Let Gk, be the absolute Galois group of K;.

—cl
The map T; — Dy, from X; to the set of closed subgroups of m(U;) is injective, where
Dy, is the decomposition group of x;. For each open subgroup G; C Gk, the set of
geometric sections S(G;)8°™ C S(G;) is characterized by:
s; € S(G)E" <= (X;)a, (L;) # O for all open subgroups H; C w1 (U;) such that s;(G;) C H,.

Here, L; = EGi

Moreover, suppose that the commutative diagram

7T1(U1) % 7T1(U2)

prli iprQ

Gr, —=— G,

aK

satisfies the following condition: For all open subgroups G1 C Gk, and all s; € S(Gy),
we have:
51 € S(G1)8°™ <= a o5y 0ay € S(akg(Gy))Eo™.

—~cl
Then a closed subgroup of m1(Uy) is the decomposition group of a point of X1 if and
only if the image of the closed subgroup by « is the decomposition group of a point of

—~cl
X2 .

The above theorems reduce the absolute p-adic Grothendieck conjecture to the group-
theoretic determination of whether or not the sets of rational points of hyperbolic curves
and their coverings are empty. Here, we note that for a finite extension K of Q, and
a proper, smooth and geometrically connected hyperbolic curve X over K, X(K) has
a natural structure of compact analytic manifold over K. We shall introduce the “i-
invariant” of compact analytic manifold over K (cf. Section 2.1) which was defined
by Serre. Roughly speaking, the fact that any compact analytic manifold over K is
the disjoint union of a finite number of (closed) balls and the number of balls is well
determined modulo (¢ — 1) (where ¢ is the cardinality of the residue field of K) allows
us to define the i-invariant of the manifold (over K) as the “number of balls modulo
(¢ — 1)”. Clearly, if the i-invariant of X (K) is not 0, X (K) is not empty. However, the
converse is not true in general. So, in some sense, the ¢-invariant is “weaker” data than
the data of whether or not the set of rational points is empty. In other words, we may
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expect that the group-theoretic “recovery” of the i-invariant is easier than that of the
latter data.

In terms of the i-invariants, the absolute p-adic Grothendieck conjecture is reduced to
the following two problems:

(A)  May the decomposition groups be recovered from the data of i-invariants of
the sets of rational points of hyperbolic curves and their coverings?

(B)  May the i-invariants of the sets of rational points of hyperbolic curves be recov-
ered group-theoretically from the arithmetic fundamental groups of the curves?

The present paper gives a complete affirmative answer to (A) and a partial affirmative
answer to (B).

In the following, for « = 1, 2, let p; be a prime number, K; a finite extension of
Qp,;, ¢; the cardinality of the residue field of K;, Gk, the absolute Galois group of K,
U; a smooth and geometrically connected hyperbolic curve over K; and X; the smooth
compactification of U;. Denote the arithmetic fundamental group of U; by 71 (U;) and
assume that we are given an isomorphism of profinite groups « : 7 (U;) = 71(Us). Then
we have p; = py and ¢; = ¢o (cf. Proposition 4.2.1). Thus, we shall write p := p; = po
and ¢ := ¢ = ¢2. For each open subgroup H C m(U;), let (U;)» be the covering of
U; corresponding to H, (X;)z the smooth compactification of (U;)z, (K;)y the integral
closure of K; in (U;)y and g3 the cardinality of the residue field of (K;)y. Then (K;)y
is a finite extension of K;. The set (X;)x((K;)y) of (K;)y-rational points of (X;)y has
a natural structure of compact analytic manifold over (K;)y. Denote the i-invariant of
this manifold over (/) by i(x,), ((Xi) 2 ((Ki)n))-

The following is the first main theorem of the present paper, which shows together with
Theorem 1.0.5 that the data of whether or not the sets of rational points of hyperbolic
curves are empty may be recovered from the data of i-invariants of the sets of rational
points of the hyperbolic curves and their coverings:

Theorem 1.0.6 (cf. Theorem 4.2.8)
Suppose that there exist an open subgroup Ho C m(Uy) and a divisor m > 1 of qz, — 1
such that:

i1 (X)) (K1)#)) = K)o (X2)a@) (K2)am))  mod m,

for all open subgroups H of w1 (Uy) satisfying H C Ho. Then, for all open subgroups
G1 C Gk, and all s; € S(G4), we have

51 € S(G1)8™ <= a0 s 0ar! € S(ag(Gy))E*™.

The following is the second main theorem of the present paper, which shows that the
i-invariants (mod 2) of the sets of rational points of hyperbolic curves are group-theoretic
in a certain situation:

Theorem 1.0.7 (cf. Theorem 4.3.3)
Suppose that p is odd. Moreover, for i = 1, 2, assume that X; is of genus g; > 2 and
that X; has log smooth reduction. Then we have

iKl (Xl(Kl)) = ’LK2(X2(K2)) mod 2.

For the definition of log smooth reduction, see Section 3.1.



A p-ADIC ANALYTIC APPROACH TO THE ABSOLUTE GROTHENDIECK CONJECTURE 5

Remark 1.0.8

If we prove Theorem 1.0.7 without assuming that X; has log smooth reduction, we get
the affirmative answer to (B) for p odd. Then, together with Theorem 1.0.6 (which
affirms (A)), we can prove the absolute p-adic Grothendieck conjecture for p odd.

We shall review the contents of the present paper. In Chapter 2, we treat problem (A).
First, we review the definition of analytic manifolds and i-invariants. Then, embedding a
proper, smooth and geometrically connected hyperbolic curve X over a finite extension
K of Q, into the Jacobian J, we make some p-adic analytic and algebro-geometric
observations. These observations imply that X (K) is not empty if and only if there
exists a finite étale covering X’ of X such that the i-invariant of set of K-rational points
of X’ over K is not 0. In Chapter 3, we treat problem (B). First, we review the definitions
of models and reductions of curves. There exists a finite Galois extension L/K such that
X Xspec kOpec L has a unique stable model X by the Deligne-Mumford theorem (Theorem
3.1.11). X(K) is characterized as the Galois-invariant subset of X (L). From this point
of view, we investigate the i-invariant of X (K'). We describe explicitly the Galois action
on the inverse image by the reduction map of a rational point of the special fiber of X,
and then, calculate the ¢-invariant of the Galois-invariant subset of the inverse image of
each rational point of the special fiber. In Chapter 4, applying the arguments in Chapter
2 and Chapter 3, we prove the main theorems. In Appendix A, we treat an analogue
over R of the ¢-invariant and the criterion for existence of rational points of hyperbolic
curves given in Chapter 2.

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to Professor Akio Tamagawa for his
helpful advices and warm encouragement.

2. 1-INVARIANTS AND RATIONAL POINTS

Let p be a prime number, K a finite extension of QQ,, X a proper, smooth and geo-
metrically connected hyperbolic curve over K. Then, X (K') has a natural structure of
compact analytic manifold over K, where X (K') denotes the set of K-rational points of
X. In this chapter, we prove that one may recover whether X (K) is empty or not from
the i-invariants of the sets of K-rational points of X and its coverings.

2.1. The definition and properties of i-invariants.

In this section, we will review the definition of analytic manifolds and i-invariants
according to [16]. Let K be a field complete with respect to a non-trivial absolute value,
X a topological space. In the following sections, we consider the case in which K is a
finite extension of Q, and X is the set X (K) of K-rational points of a proper, smooth
and geometrically connected hyperbolic curve X.

Definition 2.1.1
Let o = (21, -+, xp) € K" and r = (ry, --- , 1) €R" (r; > 0,1 <i<n). Weset
and P(r) := P(r)(0).
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Definition 2.1.2 (cf. [16, Part II, Chapter 1I})

Let f = ZaiX{ni’l e Xmen e K[[Xq, -+, X,]] be a formal power series and r =
i
(ri, -+, 1) €R™ (r; >0, 1 <i<mn). The series f is said to be convergent on P(r) if
D lailr™ e < oo,
The series f is said to be convergentif it is convergent on P(r) for some r = (11, - -+, r,) €

R™ (r; > 0,1 <i<n).

Definition 2.1.3 (cf. [16, Part II, Chapter II])
Let U C K™ be an open subset and ¢ : U — K a function. Then ¢ is said to be analytic
in U if for each x € U there is a formal power series f and a radius r = (rq, -+, 1) €

R™ (r; >0, 1 < i <n) such that:

(1) P(r)(z)CU.

(2)  f converges in P(r) and, for h € P(r), ¢(x + h) = f(h).
Definition 2.1.4 (cf. [16, Part II, Chapter IIJ)

Let U C K™ be an open subset and ¢ = (¢1, -+, ¢,) : U — K™ a function. Then ¢ is
said to be analytic if ¢; is analytic for 1 <7 < m.

Definition 2.1.5 (cf. [16, Part II, Chapter III, 1])
A chart c on X is a triple ¢ = (U, ¢, n) such that:

(1) U C X is an open subset.

(2) n € Zso.

(3) ¢ : U — K™ is an open map and induces a homeomorphism U = ¢(U).
We call O(c) := U the open set of ¢, ¢ the map of ¢, and n the dimension of c.

Definition 2.1.6 (cf. [16, Part II, Chapter III, 1])
Let ¢ = (U, ¢, n) and ¢ = (U’, ¢/, n’) be charts on X. Then ¢ and ¢ are said to be

compatible if, setting V = U NU’, the maps ¢’ 0 ¢~'|4) and ¢ o ¢/_1|¢/(V) are analytic.

Definition 2.1.7 (cf. [16, Part II, Chapter III, 1])

A family {¢;}ier of charts on X is said to cover X if UO(cl-) = X.
i€l

Definition 2.1.8 (cf. [16, Part II, Chapter III, 1])

An atlas A on X is a family of charts on X which covers X and such that the charts in
the family are mutually compatible.

Definition 2.1.9 (cf. [16, Part II, Chapter III, 1])
Two atlases A and A’ are said to be compatible if one of the following equivalent conditions
holds:

(1)  AUA is an atlas on X.
(2) Ifce Aand ¢ € A, then ¢ and ¢ are compatible.

Remark 2.1.10 (cf. [16, Part II, Chapter III, 1])
Compatibility of atlases is an equivalence relation.
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Definition 2.1.11 (cf. [16, Part II, Chapter III, 2|)

An atlas A on X is full if whenever c is a chart on X such that c is compatible with all
charts ¢ € A then ¢ € A. Then it is clear that each equivalence class of atlases on X
contains exactly one full atlas.

Definition 2.1.12 (cf. [16, Part II, Chapter III, 2|)
An analytic manifold (over K ) is a topological space equipped with a full atlas on it.

Definition 2.1.13 (cf. [16, Part II, Chapter III, 2])

Let X be an analytic manifold. For x € X, dim, X is defined as the dimension of any
chart ¢ on X such that x € O(c); it is called the dimension of X at x. The function
x +— dim, X is locally constant on X if it is constant, and equal to n, one says that X
is everywhere of dimension n.

Definition 2.1.14 (cf. [16, Part II, Chapter III, 3|)

Let n € Zso, v = (21, --+, &) € K™ and r € Ryy. Then, the (closed) ball B(r)(x) of
radius v centered at x is defined as follows:
B(r)(z) ={y=(y1, -+, yn) € K" ||yi —zi| <7, (1 <i <m)}.

Remark 2.1.15
It is clear that B(r)(z) = P(r, ---, r)(z) by definition.

Remark 2.1.16 (cf. [16, Part II, Chapter III, Appendix 2, Remark])
If K is ultrametric, all points of a ball B in K™ is the center of B. Moreover, if B; are
balls of radius r; for ¢ = 1, 2 and r; < ry, then either B; N By = () or By C Bo.

Definition 2.1.17 (cf. [16, Part II, Chapter III, 3])
Let X be an analytic manifold and B a subset of X. Then B is said to be a ball if there
is a chart ¢ = (U, ¢, n) such that B C U and ¢(B) is a ball in K.

Definition 2.1.18 (cf. [16, Part II, Chapter III, 11])

Let X be an analytic manifold over K and Y a topological subspace of X (with the
induced topology). Let ¢ : ¥ — X be the inclusion map. Then Y is said to be an
analytic submanifold of X if for all y € Y, there exist an open neighborhood V of y in
Y, a chart ¢ = (U, ¢, n) on X, and a linear subspace F of K" such that +«(V') C U and
o(t(V)) = EN¢(U). In this case, an analytic manifold structure is naturally induced on
Y.

Until the end of this section, we assume moreover that K is locally compact and
ultrametric, and let X be an analytic manifold everywhere of dimension n(€ Zsg). We
assume that X is non-empty and Hausdorff as a topological space.

Remark 2.1.19
For a topological field K, the following are equivalent:

(1) K satisfies the above conditions.
(2) K is a complete discrete valuation field and the residue field is finite.
(3) K is a finite extension of Q, or F,((t)).

Until the end of this section, we denote the cardinality of the residue field of K by g.
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Theorem 2.1.20 (cf. [16, Part II, Chapter III, Appendix 2, Theorem 2|)
Suppose that X is non-empty and compact. Then:

(1) X is the disjoint union of a finite number of balls.
(2) The number of balls in a decomposition of X into a disjoint union of a finite
number of balls is well determined mod (¢ — 1).

Definition 2.1.21

Let X be a non-empty and compact analytic manifold over K. We call the number of
balls ix(X) € Z/(q —1)Z in Theorem 2.1.20 the i-invariant of X over K. Moreover, we
set ig(0) =0 mod (q—1).

Remark 2.1.22 (cf. [16, Part II, Chapter III, Appendix 2, Theorem 2|)
If X is a non-empty compact analytic manifold over K, the isomorphism class of X is
determined by ix(X) € Z/(q¢ — 1)Z.

Remark 2.1.23

Let L be an extension of K of finite degree d (€ Z~() and ¢y, the cardinality of the residue
field of L. Then, a ball of dimension n over L is isomorphic to a ball of dimension nd
over K as an analytic manifold over K. Let Y be a compact analytic manifold over L,
ir(Y) € Z/(qr — 1)Z the i-invariant of Y over L and ix(Y') € Z/(q — 1)Z the i-invariant
of Y over K as an analytic manifold over K. Then, from the above observation, it is
clear that

ir(Y)=ig(Y) mod (¢—1).

We will give some examples of computations of i-invariants. Until the end of this
section, let O be the ring of integers of K, M the maximal ideal of Ok, 7 a uniformizer
of Ok and k = O /Mk the residue field of Ok. (Thus, ¢ is the cardinality of k.) Let v
be the valuation of K such that v(K*) = Z.

Example 2.1.24

We consider MP = 7Ok (m € Z>o) as a metric space with respect to the distance

given by v. Then, by taking the inclusion map 9% — K as a chart, we may consider

ML as a compact analytic manifold over K, and ix (M%) =1 mod (¢ —1).
Similarly, we may consider U7 \ im}?“ as a compact analytic manifold over K, and

ik(ME\ M) =¢g—1=0 mod (q—1).

Example 2.1.25

Let P be a projective space of dimension n (> 0) over K and P}%(K) the set of K-
rational points of P%. We may consider P} (K) as a compact analytic manifold (every-
where) of dimension n over K. Let [ag, a1, - - , a,] be the coordinates of P € P (K),
where ag, - - - , a, are elements of K and not all zero. By multiplying a constant if neces-
sary, we may assume that a; € Ok (0 < i <n) and Olgignv(ai) = 0. Such representation

is unique up to multiplication by units of Og.
Let P} be a projective space of dimension n over k and P} (k) the set of k-rational
points of P}. We denote the image of a € Ok in k by @. Then,

[@, @, -+, @] € PE(k).
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This defines a map P%(K) — Py (k) and the inverse image of each point of P} (k) is a
ball of dimension n over K.

qn+1 -1
The cardinality of P} (k) is 1 and
q j—
nt+l _ 1 n )
T —-_ ¢ =n+1 mod (¢—1).
¢—1 =

Therefore, i (P%(K)) =n+1 mod (¢—1).
Here is a key proposition which will be used in the following sections:

Proposition 2.1.26 (cf. [15, §3, Théoréme 9, Proposition 11])
Let Y C OF be a closed analytic submanifold everywhere of dimension d over K.
(i)  Forally= (y1, -, yn) € OF, YN(y+ (7" Ok )N) is either empty or a subset
of OF written in the following form for sufficiently large m:
y+7"Y, ={(p + 7"y, v + 7 yy) € Ok | (W0, - uy) €Y1,
where Y, is a set written in the following form for some permutation o € Gy
{(zoq1), -+ To(w)) € 0%13717 o, 2g € O, xyp = pj(an, -+, wg) (d+1 <5 <N}
(Here, ai1(x1, -+, xa), -+, on(x1, - -+, q) € O|[x1, -+, x4]] are power se-
ries which converge on O%.) In particular, for sufficiently large m, Y N (y +
(7O )N) is either empty or isomorphic to a ball of dimension d over K. More-
over, given ng € Lsq, by taking larger m if necessary, one may take the above
Qa+1s - -, PN S0 that the coefficients of terms of degree greater than 1 of p; (d+
1 <j < N) belong to n"Ok.
(i)  Fory € O¥ and m € Z, we assume that Y N (y + (7™ Ok )N) is not empty and
written as y + 7Y, as in (i). For all m' > m, let
M
(WmOK)N = H(ﬂmz(]) + (7™
j=1
be the coset decomposition (M (= ¢ ~™N) € Z.g, 29 € OF, 1 < j < M).
Then, for each 1 < j < M, Y N (y+ 7™z + (7™ Ok)N) is either empty or
written as y + 729 + 7Y/ (Y!,) is a set written in a form similar toY, in
(i)
(iii) There exists mg € Z such that for all m > my, Y is written as a finite disjoint
union of subsets each of which is written as y + 7Y, . Moreover, the number of
such subsets is well determined mod (¢ —1).

Proof.
Step 1.

If y € Y, it is clear that Y N (y + (7™ Ok)") = 0 for sufficiently large m, so we
may assume that y € Y. Moreover, by translating if necessary, we may assume that
y = (0, -+, 0) without loss of generality.

Let V =T,0% = K" (resp. W =T,Y C V) be the tangent space of OF (resp. Y) at
y. V is a vector space of dimension NV over K and W is a d-dimensional subspace. Take

I

Ok)Y)
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a canonical basis {e;, -+, ey} of V.= K¥ and let & (1 < i < N) be the images of ¢;
in V/W. By permuting e;’s if necessary, we may assume that {€z1, -, -+, en} is a
basis of V//W. Then, there exist a; ; € K (1 <i<d,d+ 1< j < N) such that
N
=) e, (2.1)
j=d+1

for each 1 <17 < d. We will show that one may take a permutation of e;’s so that the
coefficients a; ; (1 <i<d,d+1<j < N) belong to Ok.

Let us call the formula in (2.1) associated to each 1 < i < d, the i-th formula. First,
we claim that one may permute e;’s so that the coefficients in the first formula belong
to Og. If a1, € Ok (d+1 < j < N), the claim is trivial. Otherwise, by permuting

eq+1, -+ , en suitably, we may assume that min v(ay ;) = v(a1,4+1) < 0. Then,
d+1<j<N ’ ’
N
— -1 — -1 _
€d+1 = —0ay g41€1 T ay q1101,5€5,
j=d+2

and the coefficients in the right-hand side belong to Ok. By substituting this into the
i-th formula for 2 < i < d and switching €5 and €577, we obtain formulae similar to (2.1)
where the coefficients in the first formula belong to Ok.

Next, for 1 < 15 < d, we assume that all the coefficients in the ¢-th formula for
1 <i < belong to Og. We claim that one may permute e;’s so that all the coefficients
in the i-th formula for 1 <1 < iy+1 belong to Ok. If a;y41,; € Ok (d+1 < j < N), the

claim is trivial. Otherwise, by permuting esy1, ---, ey suitably, we may assume that
min  v(a;,41.5) = V(@i +1.4+1) < 0. Then
Lmin i) = (i) ,
N
0, = — -1 —_|_ -1 . o
€d+1 = — ;041 g+1Ci0+1 Qio11,d+1%io+1,5€5
j=d+2

and the coefficients in the right-hand side belong to Og. Substitute this into the i-th
formula for i # ip + 1 and switch €;,17 and €;7. Since all the coefficients in the i-th
formula for 1 <1 < iy belong to Ok by assumption, they remain to belong to Ok after
the substitution. So, we obtain formulae similar to (2.1) where all the coefficients in the
i-th formula for 1 <1 <45+ 1 belong to Ok.

By induction, we may assume that each a; ; in (2.1) belongs to Ok after permuting
e;’s suitably.

For each 1 <i < d, set:

N
/
€, =6 — E Q;, j€j.
j=d+1
Then, ¢, € W. Clearly, these are linearly independent over K, so {¢}, --- , €} is a basis

of W. Each element in W can be written in the following form for some z} € K (1 <
i <d):

d d N d

! I, ool
E €;€6; = E Z;€; E E CLL]ZL'ieJ.
=1 =1

j=d+1 i=1
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Therefore, for z; € K (1 <i < N),

N d
inei EW@)xj:—Zamxi (d‘|‘1 <J SN)
=1 =1

Thus, the tangent space of Y at y = (0, --- , 0) is determined by:

d
i=1

Step 2.

By the observation in Step 1, we may permute the order of coordinates so that the
tangent space of Y at y = (0, ---, 0) is written in the following form for some a; ; €
Ok(1<i<d,d+1<j<N):

d

i=1
(Replace —a; ; in Step 1 by a; ;.) Therefore, there exist power series ;(z1, - -+, x4) €
K([z1, -+, z4]] (d4+1 < j < N) which consist of terms of degree greater than 1 and
converge on some neighborhood (which does not necessarily contain O%) such that Y is
determined by the following family of equations in some neighborhood of y = (0, - -+, 0):

d
szzai,jxi_'_wj(xl, oL xg) (d+1 <5< N).
=1

We may take sufficiently large m € Z so that by putting x; = 7"z (1 < ¢ < N),
T (2, e, T 2q) € K|[21, -+, 24]] converges on O% and belongs to Ok |[[z1, - -, z4]]
for all d +1 < j < N. Denote these power series by v (21, ---, 24). For each

d
d+1<j<N,set pj(z1, -, 2q) = Zamzi + Y m(21, - -+, 24). Then,
i=1

Yﬂ(ﬂmC’)K)N ={(r"z, -, 7 "2N) € ox |z € Ok (1 <i<d), zj =pj(z1, -+, za) (d+1 < j < N)}.

Thus, the first assertion of (i) follows. The second assertion of (i) follows immedi-
ately from the first. The third assertion of (i) is immediate from the definition of
©;(z1, -+, xq). This completes the proof of (i).
Step 3.

Assume that for y € OF and m € Z, Y N (y + (7" Ok)") is written as y +7"Y,. We
may assume without loss of generality that Y;J’ is written in the following form for some

power series @qi1(T1, <+, Ta), -+, on(T1, -+, xq) € Of|[1, -+, 24]] which converge
on 0%
}/;:{(xla Tty Xd, Sod-‘rl(xla ) xd)a ) @N(xla Ty :L‘d)) E(9%|l'17 ) xdGOK}

Given m’ > m, let
M
(7m0 = [[(772D + (77 Ok)N) (M € Zg, 29 € OF, 1 < j < M)

J=1
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be the coset decomposition. Then,

Yy + @ 0x)Y) = [[¥ n(y + 772V + (7 Ok)"))

P= -

<.
Il
—

(y+7™Y)) N (y+ 729 + (7™ Ok)Y))

L

<
Il
-

=

(y + 7" (Yy N D + (™" Ok)Y))):

<.
I
)

In light of Remark 2.1.16, we may assume that 200 € Y, if ¥, 1 (20 4 (™ TOK)Y) # 0.
Set m/ —m = n and consider z) (1 < j < M) SUCh that Yy N (29 + (7" Ox)N) # 0.

For simplicity, denote () by z = (21, --- , zn). Then,
2k =r(z1, -, zq) (d+1<k<N). (2.2)

For w = (wy, -+, wy) € OF, z+ 7w € Y, if and only if

2+ mwg = (21 + 7wy, - Zg+ T wg) (d+1 <k < N). (2.3)
By (2.2) and (2.3),

"Wy = pr(z1 + 7wy, e Zg + T we) — (21, 0, 2a) (d+1 < k< N).
The right-hand side is the product of 7™ and some power series @) (wy, ---, wg) €
Ok|[wy, -+, wq]] which converges on O%. Therefore,
2+ 71w Y, = wp = @) (wy, -, wg) (d+1<EkE<SN).

Thus, there exists some Y, such that
Y, N(z+ (7™ "MOR)Y) = 2+ 7™ ™Y
This shows that for 20 such that Y, N (20 + (7™ =" O)N) # 0,
YN (y+ 7729 + (7™ O)Y) = y + 729 + 7YY

This completes the proof of (ii).
Step 4.

It follows from (i) that for each y € Y, there exist m, € Z and a set Y, in a certain
form such that Y N (y + (7™ Ok)") = y + 7™Y]. Since Y is compact, we can take a

finite number of points yM, -+, y™ €Y such that
Y = n@" + @m00)") = [ + 7).
i=1 =1

Set mg = max m; and fix any m > mg. Then there exist finite subsets J; of Z-,
<i<n
200 € OF (j € J;) and Y/, ;) (written in a form similar to Y} in the statement of (i))
such that
Jj€J;
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Therefore, Y can be written in the following form:

n

Y = U(y(i) + 7MY ) = U H(y(i) + 720 4 7Y ). (2.4)

i=1 i=1jeJ;
Assume that
(y(il) + i Z (0 01) 4 z/(il,j1>) N (y(m + M g2 72) e z/("'?’j?)) 70,
for some 1 < iy <19 <nand 5 € J;y, j2 € Ji,. Then,
(Y 4 g™ 2003 L (7m O NY A (y72) 4+ g2 220 52) 4 (7O )N £ (.
So, by Remark 2.1.16,
y ) ) (O )N = ) e ) 4 (7 O,

i.e.,
7 m; 11,7 my// _ 13 m; 12, ' m'j/'/
y( 1) + 7 12( 1,91) +7 2i1,91) — y( 2) + 22( 2J2) +7 2(i2,32) *

Therefore, by removing redundant factors from the union in (2.4), ¥ can be written as
in the statement of (iii). Note that each factor of this disjoint union is isomorphic to
a ball of dimension d over K. By Theorem 2.1.20, the number of the factors of such
decomposition of Y is well determined mod (¢ — 1). This completes the proof of (iii),

hence the proof of Proposition 2.1.26.
O

Remark 2.1.27
Théoréme 9 and Proposition 11 in [15] treat only the case that K = Q,.

2.2. Some p-adic analytic observations.

Let p be a prime number, K a finite extension of Q,, Ok the ring of integers of K,
My the maximal ideal of Ok, 7 a uniformizer of Ok, k = Ok /Mg the residue field
of Ok and q the cardinality of k. Let v be the valuation of K such that v(K*) = Z.
We denote the ramification index of K/Q, by e. Let X be a proper, smooth and
geometrically connected hyperbolic curve of genus g (> 2) over K. Then, X(K) has a
natural structure of compact analytic manifold everywhere of dimension 1 over K, where
X (K) denotes the set of K-rational points of X.

In this section and the next one, we make some p-adic analytic and algebro-geometric
observations on X (K') to prove the main theorem of this chapter (Theorem 2.4.1).

Let J be the Jacobian of X. If X(K) # ), we fix Py € X(K). Then, P — [Z(P—F)]
determines a closed immersion 5 : X — J. For m € Z-o, my : J — J denotes
multiplication by m on J. We define X,, = X x; J by the following diagram:

XmZ:XXJJHJ

| o |»

X d J

X, 18 an étale covering of X.
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Let J(K) be the set of K-rational points of J. J(K) has a structure of abelian group
and compact analytic manifold everywhere of dimension g over K. We have the following
exact sequence [16, Part II, Chapter V, 7, Corollary 4]:

0— 0% — J(K)— G —0,

for some finite abelian group . There exist finite abelian groups G, whose order is a
power of p and Gy whose order is prime to p such that G ~ G, x GG;y. Then we obtain
the following exact sequences

0— 0% — J(K)Y — G, —0, (2.5)

0—=0— JK) — Gy — 0,

by taking the p-part and the prime-to-p part of the above exact sequence. Therefore
J(K) = J(K)P x J(K) ~ J(K)? x G.

Remark 2.2.1

There is a one-to-one correspondence between X,,(K) and J(K)Nm;'(X(K)), and we
have a surjection X,,(K) — X(K)Nm(J(K)). If m is prime to p and |G|, m; induces
a bijection J(K) — J(K).

Proposition 2.2.2

We regard X(K) C J(K) ~ J(K)? x Gy as analytic manifolds over K as above. Then,
there exists n' € Z such that for alln > n' and a € G, X(K) N (p"(J(K)?) x {a}) is
empty or isomorphic to a disjoint union of some copies of a ball of dimension 1 over K
and the number of copies is a power of p.

Proof.

First we claim that X (K) N (p™(J(K)?) x {0}) is empty or isomorphic to a disjoint
union of some copies of a ball of dimension 1 over K and the number of copies is a
power of p for sufficiently large n. In the following, we omit the G)-component of
J(K) >~ J(K)P x Gy.

Let us take any ng such that p" > |G,|. Then, by (2.5), (p™Ok)®? C p™(J(K)P) C
03¢ C J(K)P. Therefore, (pt™ Q)% C protmi(J(K)P) C (pmOk)® for all ny €
Zso. On the other hand, we have X(K) N (pmOx)® C X(K)N OF. In the case
0 ¢ X(K)NOY, we may suppose X (K)N (p"O)®9 = () by taking sufficiently large n;.
Otherwise, by Proposition 2.1.26(i), we may suppose that there exist convergent power
series @o(21), -+, @g(x1) which converge on O, whose coefficients of terms of degree
greater than 1 belong to p™° Ok and which satisfy

X(K)N(p"Ok)% = {(p" a1, p"oa(m1), -+, P pg(21)) € ORF |21 € Ok}

If X(K)N(pmOg)® =, the claim is immediate. So, we may suppose 0 € X (K)NO%?
and that X (K) N (p"Ok)% can be written as above. Then, for each j = 2, --- , g,
©;(0) = 0.

(P Ok )9/ (prot™ Ok )9 is a finite abelian group whose order is power of p and
Pt (J(K)P)/(p"t™ Ok )®9 is a subgroup. Since the coefficients of terms of degree
greater than 1 of ;(x1)(2 < j < g) belong to p™ Ok and ¢;(0) = 0, the image of
X(K)N(p"Ok)® in (p" Ok)®9/(p"ot™ Ok )P is also a subgroup. Therefore, the image
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of X(K)Npht™(J(K)P) in (p"Ok)®9/(p"t" OK)% is a subgroup and its order is a
power of p.

This shows that the number of cosets of (p™ T Ok )®9 in p"ot™(J(K)P) which inter-
sect nontrivially with X (K) is a power of p. Moreover, by Proposition 2.1.26(ii), the
intersection of each such coset and X (K) is isomorphic to a ball of dimension 1 over K.

Therefore, by taking n > ng + ny, X (K) N (p"(J(K)?) x {0}) is empty or isomorphic
to a disjoint union of some copies of a ball of dimension 1 over K and the number of
copies is a power of p.

For general a € G/, by translating if necessary, there exists n, such that X(K) N
(p"(J(K)P) x {a}) is empty or isomorphic to a disjoint union of some copies of a ball of
dimension 1 over K and the number of copies is a power of p for all n > n,. Since G,
is a finite group, X (K) N (p"(J(K)P) x {a}) is empty or isomorphic to a disjoint union
of some copies of a ball of dimension 1 over K and the number of copies is a power of p

for all n > maxn, and all a € G,.
aEGp/

0

Proposition 2.2.3
Form € Z-y,

ik(Xm(K)) =ig(X(K)Nm(J(K))) x tJ(K)[m] mod (¢ —1).

Proof.

If X(K) =0, the statement is clear. So, we may assume X (K) # ().

By (2.5), we have mO%! C m(J(K)?). Set (m(J(K)?) : mO%?) = r. Then, there
exist by, -+, b, € m(J(K)P) such that we have the following coset decomposition:

m(J(K)") = ] (b: + mOi?)
i=1
Let us denote the element of J(K) which corresponds to (0, a) € J(K)? x G,y simply by
a. Then, we have

m(J(K)) ~m(J(K)?) x mGpy ~ H (a+ b; + mO%9),

aemGp/
1<i<r

and
X(E)nm(J(K)~ [ (X(K)N(a+b+mO)).

aEmGp/
1<i<r

Since each X (K) N (a + b; + mOY?) is empty or a disjoint union of analytic manifolds
each of which is isomorphic to a ball of dimension 1 over K, X(K) Nm(J(K)) can be
written in the following form:

X(K) Nm(J(K) = [Tla; +mY)),

J

where a; € m(J(K)) and Y; C O3 is an analytic manifold which is isomorphic to a ball
of dimension 1 over K (therefore, mY; C mOR?).



16 TAKAHIRO MUROTANI
By taking a; € J(K) such that ma} = a;, we have
J(EK) Ny (X (K) = J(K)nm7 (X (K) nm(J(K)) =~ [ (d)+e+Y)).

J
ceJ(K)[m)]

Now the proposition is immediate from Remark 2.2.1.

2.3. An algebro-geometric observation.
We follow the notations of the previous section.

Proposition 2.3.1
Assume that X (K) # 0. Set J(K) =B, X(K) =S5, and M = {0} xGy C J(K)?x Gy ~
J(K). Then, there exists some P € X(K) such that
(S=P)nM ={(0,0)},
where S — P:={Q — P € B|Q € S}.
Proof.
Set S_:={Q — P € B|P, Q € S}. Denote the point of B = J(K) corresponding to

the identity element of a group structure of B by O. Define B x B — B by (P,Q) —
@ — P, then a surjection S x S — S_ is induced:

SxS~——=BxB
S B

The inverse image of O € S_ C B by this surjection is the diagonal set Ag C S x S.
So, we obtain the following commutative diagram:

(SxS)\Ag——= S x S——=Bx B

| L

S_\ {0}¢ S B

Then (S_\ {O}) N M is a (possibly empty) finite set. Let 7" be the inverse image of
this set in (S x S5) \ Ag.

T (S x 9\ Asg——= S x S——=Bx B

| | y

(S_\ {0}) N M 5_\ {O)¢ 5S¢ B

Denote the composite of the first projection S x S — S with the above injection
T — SxSbypry: T — S. The condition that pr; is not surjective is equivalent to our
assertion.

Define a morphism of schemes f: X x X — J by (P, Q) — Q — P. Fix any (P, Qo) €
X x X \ Ax (where Ay is the diagonal set). Then, f(P,Q) = f(Fy, Qo) if and only if
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Q — P ~ Qo — Pp. If there exists such (P, Q) € X x X, there exists an element F' of the
function field of X such that (F) = P+ Qo — Py — Q. When (P, Q) # (FPo, Qo), (F) # 0.
Indeed, since Py # Qg by the choice of (Fy, Qo), one has P = Py and Q = Q if (F') = 0.
Then, F' defines a morphism X — P! of degree at most 2. So X is a hyperelliptic curve
since g > 2.

Therefore, when X is not a hyperelliptic curve, the morphism (X x X)\ Ay — J
induced by f is injective. In particular, T — (S_ \ {O}) N M in the above diagram is
injective. Since (S_\ {O}) N M is a finite set, T is also finite.

When X is a hyperelliptic curve, the fiber of (X x X)\ Ay — J over each point of
J(K) consists of at most 2 points. Since (S_ \ {O}) N M is finite, T is again finite in
this case.

So, there is no surjection from 7" to S, which is infinite. ]

2.4. A criterion for existence of rational points in terms of i-invariants.
We follow the notations of Section 2.2. The following is the main theorem of this
chapter:

Theorem 2.4.1
Assume that ¢ # 2 and let m > 1 be a divisor of g—1. Then, the following five conditions
are equivalent:
i) X(K)#0.
(ii)  There exists a finite étale covering X' of X such that X'(K) # 0.
(ili)  There exists a finite étale covering X' of X such that ix(X'(K)) Z0 mod (¢—
1).
(iv)  There exists a finite étale covering X' of X such that ix(X'(K)) Z20 mod m.
(v)  There exists a finite étale covering X' of X such that ix(X'(K)) = (a power of p)
mod (¢ —1).

Proof.

The implications (v)=(iv)==(iii)==(ii)==(i) are trivial. We will show the impli-
cation (i)==(v).

By Proposition 2.3.1, there exists some Py € X(K) such that X(K) C J(K) ~
J(K)? x G and

X(K) N ({0} x Gy) = {0},

with respect to the closed immersion j : X — J defined by P — [Z(P — ).

This implies that by taking sufficiently large n, we have X (K)Np"(J(K)) = X(K)N
(p"(J(K)P) x {0}). Further, this intersection is isomorphic to a disjoint union of some
copies of a ball of dimension 1 over A and the number of copies is a power of p by
Proposition 2.2.2. In other words, ix (X (K)Np"(J(K))) = (a power ofp) mod (¢—1).
On the other hand, by Proposition 2.2.3,

ik (Xpn (K)) = i (X(K) N p"(J(K))) x §J(K)[p"]  mod (¢ —1).

Since §J(K)[p"] is a power of p, this completes the proof.
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3. GALOIS ACTION ON THE SET OF RATIONAL POINTS AND ?-INVARIANTS

Let K be a finite extension of Q,, X a proper, smooth and geometrically connected
hyperbolic curve over K and X (K) the set of K-rational points of X. By the Deligne-
Mumford theorem (Theorem 3.1.11), there exists a finite extension L/K such that X :=
X Xspec k Spec L has a unique stable model. In this chapter, we show that iy (X (K))
mod 2 can be recovered from the special fiber of the stable model of X, under the
assumption that p is odd and that L/K is a tame extension. (We obtain partial results
in the case where p = 2.)

We review various definitions in Section 3.1. In Section 3.2, we consider the case
where X has a stable model over K, which is the origin of our arguments. In Section
3.3, we describe explicitly the Galois action on the inverse image of a rational point
of the special fiber by the reduction map without assuming that L/K is tame. Then,
assuming that L/K is tame, we calculate the i-invariant of the set of K-rational points
of X over a smooth point (which is treated in Section 3.4) and a node (which is treated
in Section 3.5) of the special fiber of the stable model. Here, the set of K-rational points
is characterized as the Galois-invariant subset of the inverse image of a smooth point or
a node by the reduction map.

3.1. Review of definitions.

We review definitions of models and reductions of curves according to [2]. In this
section, we denote a Dedekind scheme (i.e., an integral, normal and Noetherian scheme
of dimension 0 or 1) of dimension 1 by S, the function field of S by K(S), and the generic
point of S by n, unless otherwise noted.

Definition 3.1.1
Let k be a field. A separated scheme of finite type over k whose irreducible components
are all of dimension 1 is called a curve over k.

Definition 3.1.2 (cf. |2, §8, Definition 3.1, §10, Definition 1.1])
Let C be a normal, geometrically connected and projective curve over K(S). We call
a flat, projective S-scheme C — S with C integral, normal and of dimension 2 together
with an isomorphism f : C, ~ C over K(S) a model of C' over S.

We will say that a model (C, f) verifies a property (P) if C — S verifies (P).

Definition 3.1.3 (cf. |2, §10, Definition 1.18])
Let C' be a normal, geometrically connected and projective curve over K(S). Let us fix
a closed point s € S. We call the fiber Cs of a model C of C' a reduction of C' at s.

Definition 3.1.4 (cf. [2, §10, Definition 1.19])

Let C be as in Definition 3.1.3. We will say that C has good reduction at s € S if it
admits a smooth model over Spec Og ;. I C' does not have good reduction at s, we will
say that C' has bad reduction at s.

Definition 3.1.5 (cf. [2, §7, Definition 5.13])

Let X be a reduced curve over an algebraically closed field k. Let 7w : X’ — X be the nor-
malization morphism. For a closed point x € X, set d, = lengthoxiz(ﬂ*(’)xr/(’)x)m, My =
|7~1(z)|. We say that z is an ordinary multiple point or a node if m, = 2 and 6, = 1.
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Definition 3.1.6 (cf. [2, §10, Definition 3.1])

Let C be a curve over an algebraically closed field k. We say that C' is semi-stable if it
is reduced, and if its singular points are ordinary double points. We say that C' is stable
if, moreover, the following conditions are verified:

(1) C is connected, projective and of arithmetic genus p,(C) > 2.
(2) Let ' be an irreducible component of C' that is isomorphic to P;. Then it inter-
sects the other irreducible components at at least three points.

Definition 3.1.7 (cf. |2, §10, Definition 3.2])
We say that a curve C over a field k is semi-stable (resp. stable) if its extension Cf to
the algebraic closure k of k is a semi-stable (resp. stable) curve over k.

Definition 3.1.8 (cf. [2, §10, Definition 3.8|)

Let C be a semi-stable curve over a field k, let # : ¢/ — C be the normalization
morphism, and z € C' a singular point. We will say that x is split if the points of 77! (z)
are all rational over k.

Definition 3.1.9 (cf. [2, §10, Definition 3.14])

Let f : X — S be a morphism of finite type to S. We say that f is semi-stable (or a
semi-stable curve), or that X is a semi-stable curve over S, if f is flat and if for any
s € S, the fiber X is a semi-stable curve over k(s). We say that f is stable (or a stable
curve) of genus g > 2, or that X is a stable curve over S of genus g > 2, if f is proper,
flat, and if for any s € S, the fiber X is a stable curve over k(s) of arithmetic genus g.

Definition 3.1.10 (cf. |2, §10, Definition 3.27])

Let C' be a smooth, geometrically connected and projective curve over K(S). We say
that C' has semi-stable reduction (resp. stable reduction) at s € S if there exists a model
C of C over Spec Og ¢ that is semi-stable (resp. stable) over Spec Og 5. The special fiber
C; of a stable model over Spec Og ; is called the stable reduction of C' at s.

Theorem 3.1.11 (Deligne-Mumford, (cf. [2, §10, Theorem 4.3]))

Let C be a smooth, projective, geometrically connected curve of genus g > 2 over K(S5).
Then there exists a Dedekind scheme S’ (with a function field K(S")) that is finite and
flat over S such that Cr sy = C X gpec k(s) Spec K(S') has a stable model over S" which
is unique up to isomorphism over S'. Moreover, we can take K(S") separable over K(S).

Here, we give a definition of log smooth reduction. The following definition is different
from the usual one. However, these definitions are equivalent by [13, Theorem 4.2|.

Definition 3.1.12

Let p be a prime number and K a finite extension of Q,. Let X be a proper, smooth and
geometrically connected hyperbolic curve (hence, of genus g > 2) over K. By Theorem
3.1.11, there exists a finite extension L of K such that X := X Xgpecx Spec L has a
stable model over Or. We say that X has log smooth reduction if we can take L tame
over K.

3.2. The case where X has stable reduction.
Let p be a prime number, K a finite extension of Q,, Ok the ring of integers of K,
My the maximal ideal of Ok, 7 a uniformizer of Ok, k = Ok /My the residue field of



20 TAKAHIRO MUROTANI

Ok and q the cardinality of k. Let v be the valuation of K such that v(K*) = Z. Let X
be a proper, smooth and geometrically connected hyperbolic curve over K with stable
reduction over Ok. We denote the stable model by X.
Let X(K) (resp. X(Ok)) be the set of K-rational (resp. Og-rational) points of X
(resp. X). Set X = X Xgpeco, Speck and denote the set of k-rational points of X by
We have natural maps X(Ok) — X(K), p: X(Ok) — X(k). Since X is proper over
Ok, the former is bijective by the valuative criterion of properness.

X(K) <" %(0x) —— X(k) .

Proposition 3.2.1
Let P € X3,(k) be a smooth point over k. Then, ix(p~(P))=1 mod (q—1).

Proof.
Since X, — X is a closed immersion, we may consider P € X, (k) as a closed point of
X. If P is a smooth point over k, Ox p ~ Ok|[[T]] and

p H(P) ~ Homgpec 0, (Spec Ok, Spec Ox p)
~ HOIHOK(Ox’p, OK)
~ HomoK(@x’p, OK)
>~ mK.

The last bijection associates © € My with f, : @xJD ~ Ok|[T]] — Ok such that
fo(T) = x. Since ig(Mg) =1 mod (¢ — 1) by Example 2.1.24, this completes the

proof.
O

Proposition 3.2.2
Let P € Xi(k) be a node and assume that P is split. Then, ix(p~™*(P)) =0 mod (¢g—1).

Proof.

If P is a node and split, there exists r € Zq such that Ox p ~ Ok|[[S, T]]/(ST — "),
and we have:

p~ ' (P) =~ Homsgpec 0 (Spec O, Spec Ox, p)
~ HOHI(')K(OXVP, OK)

= Homox(@x,P> Ok)
~ {(z,y) € M x Mk |2y =7"} = A,

The last bijection associates (z, y) € A, with fr, ) : Ox.p ~ Ok|[S, T)|/(ST — n") —
Ok such that f (S) = , f,,)(T) = y. Here, we denote the images of S, T €
Ok|[S, T] in Ok|[[S, T)]/(ST — ") simply by S, T
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On the other hand,
A~ {zeMg|0<v(z)<r}

~ [T (o \ o).
0<i<r
By Example 2.1.24, ix (9% \ M) =0 mod (g — 1) for each 0 < i < r. Therefore,
ik(p~™(P))=0 mod (¢—1).
U

Corollary 3.2.3
Let X5™ C X, be the (open) set which consists of all points of Xy, which are smooth over
k. If all nodes in Xg(k) are split, ix(X(K)) = X™(k) mod (¢ —1).

Proof.

Since X (K) ~ X(Ok) = H p~(P), the corollary is immediate from Proposition
Pexk(k)
3.2.1 and Proposition 3.2.2.
[l

Remark 3.2.4

Let Y be a proper, smooth and geometrically connected hyperbolic curve over K which
has a regular model ) over Ok (Y does not necessarily have stable reduction). Then,
by an argument similar to Proposition 3.2.1 and Corollary 3.2.3, i(Y(K)) = 9™ (k)
mod (¢ —1).

Remark 3.2.5

We will consider nodes which are not necessarily split in the following sections. How-
ever, Proposition 3.2.2 is independent of the arguments there (i.e., they do not imply
Proposition 3.2.2).

3.3. Galois action on the set of rational points.

Let p be a prime number, K a finite extension of QQ, and X a proper, smooth and
geometrically connected hyperbolic curve over K. By Theorem 3.1.11, there exists a
finite Galois extension L of K such that X, := X Xgpec k Spec L has a stable model X.
Let Ok (resp. Or) be the ring of integers of K (resp. L), Mg (resp. M) the maximal
ideal of Ok (resp. Op), k = Ok /Mg (resp. kr = Or /M) the residue field and g the
cardinality of k. By taking an unramified extension of L if necessary, we may assume
that all singular points of Xy, (k1) are split, where X;, = X Xspec 0, Spec kr, and Xy, (k)
is the set of kr-rational points of X, . Let m be a uniformizer of O and v the valuation
of L such that v(L*) = Z. We denote the Galois group of L/K by G = Gal(L/K) and
the inertia group of L/K by I C G.

Let X (K) (resp. X (L)) be the set of K-rational (resp. L-rational) points of X and
X(Oy) the set of Op-rational points of X. We denote the subset of X, (k1) which consists
of smooth (resp. non-smooth) points over kz by X§™(k.) (resp. Xj°%¢(k.)). In particular,
Xy (k) = 250 (k) U X500 (k).

By the uniqueness of stable model (Theorem 3.1.11), G acts on these sets. We denote
the G-invariant subsets of these sets by X (L)“ and so on. There exist natural maps
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X(0Or) — X(L) and p : X(Or) — Xi,(kr). Since X is proper over Op, the former is
bijective by the valuative criterion of properness. Moreover, as P is split by assump-
tion, these maps are G-equivariant. Since X (K) = X (L), we obtain the following
commutative diagram:

X (L) <" X(01) —"—= Xy, (ks)

|

X(K) <= %(01)% — Xy, (kr)®

Remark 3.3.1
Since X, — X is a closed immersion, we may consider P € xgng(kL) as a closed point

of X. Moreover, there exists a positive integer r such that Ox p ~ OL[[S, T]]/(ST — =").
Set:

X" (k) = {P € X19%(kp) | Ox.p = O[S, T)J/(ST — "), r > 1}.
Then the image of X(Or) by p coincides with X3 (kz) U %’Ezde(/@).

For each P € Xy, (k1)¢, we describe the G-action on p~!(P) explicitly.
Let pr: Xy := X Xgpecx OSpec L — X be the projection.

pr

X, X

| e |

Spec L — Spec K

The map Homgpe. 1, (Spec L, X)) — Homgpec x(Spec L, X), ¢, — pr o ¢ = ¢ is a
bijection. For each v € G, let 7 be the automorphism of Spec L over Spec K induced by
7. We define a G-action on Homgpe x (Spec L, X)) by:

v ¢ = gb o A’yiv
for all v € G and ¢ € Homgpec k(Spec L, X). We let G act on Homgpec 1.(Spec L, X1)

so that the bijection Homgpec 1 (Spec L, X1) — Homgpee x (Spec L, X) is G-equivariant.
Since 7y - ¢, = (7 - @)1, the map v - ¢, makes the following diagram commutative:

V¢

pr

Spec L T X1 X

e

Spec L — Spec K

ie.,
v-¢r = (idx x 7 ") ogL o7,
Denote the residue field at P by k(P)(=~ kz). Then we have the following commutative
diagram:
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Spec ((’A)ggp ®o, L) — Spec @XJD <— Speck(P)

L
X XL X ka
R T T
Spec K Spec L Spec O, <—— Spec kg,

Case 1.  The case where P € X537 (k.)“.
In this case, Ox, p ~ Oy [[T]], and

p~ ' (P) =~ Homsgpec 0, (Spec Or, Spec Ox, p)
~ HOIHOL (01:7]3, OL)
~ Hom@L(@x’p, OL)
~ E)JTL.

The last bijection associates z € My, with f : Ox, p ~ OL[[T]] = Oy such that f(T) = x.

Denote the element of Home, (Ox, p, O1) which corresponds to = € My, ~ p~'(P) by
fz. Let ¢, be the element of Homgpec 1.(Spec L, X1) obtained from f,. Since v - ¢, =
(idx x y71) o ¢, 07 for each v € G,

(v f)(T) = (fuly - T)).

On the other hand, G acts on Ox,p ~ OL[[T]] so that the following diagram is com-
mutative:

G ~ @xjp
G ~ OL

In other words, for each v € G and a € Of, C (’A)ggp, we have 7' - a = v/(a) (the usual
Galois-action). As to T' € OL[[T]] ~ Ox, p, for each v/ € G, v/ - T can be written in the
following form for some a; = a ; € O, depending on 7"

T = Z a;T".
i=0
In the following, we will denote ~" - T simply by ~'(7T).

Lemma 3.3.2
In the above notation, ag € My, and a; € OF.

Proof.
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7' € G defines an automorphism ' : OL[[T]] = OL[[T]]. Let + : k[[T]] = k. [[T]] be
the automorphism of k;[[T]] such that the following diagram is commutative. (Since ~/
preserves Mz, such 7/ exists.)

!

OL[[T]] —— OL[[T]]

| oo

k(7)) —— ko [[T]]

Here, vertical arrows are natural surjections.
_ Denote the image of a € Op in ky, by @. Since kz[[T] is a DVR and T'is a uniformizer,
7/(T) is also a uniformzer of k.[[T]]. So, @g = 0 and @; # 0 in ky, as desired.
O
By replacing 7/ in the above argument by 7!, we obtain:

(v fo)(T) = y(foly H(T))) = Zv(aixi),

where a; = a,-1; € Op. Therefore, if we identify p~'(P) with 9, the image [y](z) of
x € My by the action of v € G can be written in the following form:

(z) = Z y(aia').

Case 2. The case where P € X}0%(k)“.
In this case, Ox p ~ OL[[S, T]]/(ST —="). In the following, we will denote the images
of S, T € O[S, T]] in OL[[S, T)]/(ST — ") simply by S, T

Remark 3.3.3

For each element of O[S, T]]/(ST — #"), the “constant term” and the “ coefficient of
St (resp. T")” (i > 1) are not well-defined. However, they are well-defined modulo 9} .
Since we have ST = 7" in OL|[S, T]]/(ST — «"), any F € O[S, T]]/(ST — 7") can be

uniquely written in the following form:
F = Qo + Z(CLLlSi + aMTi) (ao, CZLJ‘ € OL, 7 Z 1, j = 1, 2)
i=1

As in Case 1, we have the following bijections:

p 1 (P) =~ Homgpec 0, (Spec Of, Spec Ox p)
~ Homp, (Ox, p, OL)
~ Homo, (Ox. p, O1)
~ {(z,y) € My, x My |ay =7"} = A,

The last bijection associates (z, y) € A, with f : Ox p ~ OL[[S, T)]/(ST — ") = O,
such that f(S) =z, f(T) =y.
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Denote the element of Homo, (Ox, p, O1) which corresponds to (z, y) € A, ~ p~(P)
by f,y)- Let ¢, y) be the element of Homgpe .(Spec L, X1 ) obtained from f(, ,). Asin
Case 1, for each v € G,

(v fan)(S) =vf@n(r"-9)),
(7 : f(x,y))(T) = V(f(m,y)m/_l : T))

On the other hand, as in Case 1, for each v € G and a € O C @gp, we have
v - a = +'(a) (the usual Galois-action). As to S, T' € O[[S, T]]/(ST — 7") ~ Ox, p, for
each v/ € G,y - S and 4/ - T can be uniquely written in the following form:

’ S _ (a0 = ;1 4,2 S
(7)) G i) ()

Here, ag = Q' 0, bo = b'y’,07 Qg 5 = Q' g j, bz’,j = 04/ 4,5 S OL (Z > 1 j = 1 2) In the
following, we will denote 7' - S, 7/ - T simply by ~/'(S), v/(T).
Lemma 3.3.4

In the above notation, ag, by € M} and one (and only one) of the following conditions
holds:

(1) CL171, b172 € OZ and a/i,27 bi,l € 93?2 (Z Z 1)
(11) a2, b171 c OZ and Qj 1, b@g € mz (Z Z 1)

Proof.

7' € G defines an automorphism ' : OL[[S, T]]/(ST — 7") — Og[[S, T]|/(ST — =").
Let ' : ki[[S, T)]/(ST) — ki[[S, T)]/(ST) be the automorphism of k[[S, T]]/(ST)
such that the following diagram is commutative. (Since 4/ preserves 9, such 7/ exists.)

OL[IS, TII/(ST — 77) —L= O[S, T)|/(ST — ")

! : i

ke[S, TN/ (ST) ———— ku[[S, T]]/(ST)

Here, vertical arrows are natural surjections.

Now, we have:
(S [ ao - Qi1 A2 S
7(T)‘(bo +2 bt bio) \T7)

If ap € OF, it is obvious that 7/(S) € (kz[[S, T]]/(ST))*. On the other hand, the
condition 7/(S) - 4/(T) = 0 implies that 7'(T") = 0, which is a contradiction. Therefore,
ap € My, and similarly, by € M. Since 7/ is an automorphism of kz[[S, T|]/(ST), we

have
(‘“’ ! ) € GLo(ky).
b1 1

a1,1 Q1,2
’ GL2(Op)
<51,1 by 2) < 2 L

Thus,
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The product of 4/(S) and 7/(T") can be uniquely written in the following form:

Y(S) -+ (T) = co + Z(Ci,lSi + ¢i o TY).
i=1
Here, co, ¢; ; € O (i > 1, j =1, 2).
Easy calculation shows that:

o0
T
co = apby + E (@;,1bi,2 + @, 2b; 1),

i=1

[oe)
c1,1 = aob1,1 + boay,1 + g (@ix1,1bi 2 + @iy1 2b; 1),
i=1
o
¢k, 1 = aobg,1 + boay, 1 + g (@itk,10i 2 + Qigp,2bi )T + E a;1bj 1 (k> 2),
i=1 itj=k

4,521

[o@)
ri
1,2 = agby,2 + boay 2 + E (a;,10i41,2 + @i, 2big1,1)7"",

=1
00

Cg,0 = aobk72 + boa]@g + Z(ai,lbi+k,2 + GijgbZ#k’l)ﬂ'm -+ Z Gijgbj@ (k 2 2)
i=1 i+ji=k

i j>1
(Note that ST = 7".)
On the other hand, the condition 7/(.S)-~/(T") = +/(7") implies that ¢y = v/(7"), ¢;,; =
0(>1,j=1,2). Therefore,

C1,1\ _ b1,1 1,1 ap\ _ 0 r
()= G i) () = (0) o o

Since (al’l a1’2) € GL2(Oy), we have (bl’l a171> € GLy(Or) and

bi1 12
Qo \ _ 0 r
(bo) = (0) mod M.
c2,1\ _ [a1,1011 — 0 r
() - <b> - (0> mod ;.

On the other hand, since (lei Zi;) € GL2(Op), one (and only one) of ay 1, by 1
belongs to OF and one (and or{ly oné) of the following conditions holds:
(i) a1, € Of and by, € M.
(i) a1, €M} and by € OF.
Similarly, one (and only one) of the following condition holds:
(i) a1,2 € OF and by 5 € M.
(i) a0 €M) and by 5 € OF.

This shows that:
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The case where (i) holds.
) a a . . .
Since ( L1 1’2) € GLy(Oy), (ii)" holds in this case.

bi,i bio
We show that a; o € 9 (¢ > 1) by induction on i. The case where i = 1 is already
proved. Assuming that a; o, -+, a; 2 € MM}, we show that a1, € 9MM}. By assumption,

— — r
Ciy2,2 = (Zi+172b172 =0 mod E).TIL.

Since by o € OF, we have a;1 2 € M.
Similar arguments show that b; ; € MM} (i > 1).
The case where (ii) holds.
Since <Zl’1 21’2) € GL2(Oyr), (i)’ holds in this case.
1,1 01,2
Similarly to the case where (i) holds, we obtain a; 1, b; 2 € 9 (i > 1) by induction.
O

Definition 3.3.5 R
For P € X}°%(k;), fix an isomorphism Ox, p >~ OL[[S, T]]/(ST —n"). For v € G,+'-S
and v - T can be uniquely written in the following form:

(S _ [ o - Qi1 A2 S
i (T = L *; bin bis) \T7)
We say that v is of type (I) (resp. of type (1)) at P (with respect to the isomorphism

Ox.p =~ OL[[S, T]/(ST — 7)) if ag, by, a; j, bi; € Op (i > 1,7 = 1, 2) satisfy the
condition (i) (resp. (ii)) in Lemma 3.3.4.

Remark 3.3.6 R

For P € .’fﬁzde(kL)G, the type of 4/ € G at P with respect to an isomorphism Ox p =~

OL[[S, T)]/(ST—=") defined in Definition 3.3.5 is independent of the choice of the isomor-

phism. Indeed, a 2-element set which consists of irreducible components of Spec ((’jx r/ me@x, P)
is independent of the choice of the coordinates S, T. G acts on this 2-element set and

the action of 4" € G on this set is trivial (resp. non-trivial) if and only if 7’ is of type

(I) (resp. of type (II)).

Remark 3.3.7
Assume that 7/ € G is of type (II) at some P € X;°%(k;)“ and denote the order of

v € G by ord+’. Then, since (v)°"47(S) = S, we have ord ' is even. Moreover, the
product of two elements of the same type is of type (I) and the product of two elements
of different types is of type (II).

By replacing 7/ in the above argument by v~!, we obtain:

((%f(x,y))(S)) _ (v(fu,m(v‘i(S)))) _ (v(%)) +i (v(ai,l) v(am)) (v(flf))

(v f)(T) V(fw.n (v H(T))) Ybo) ) = \V(bin) A(bi2) ) \())
where ag = ay-1,0, bp = by-10, @i j = a1 5, b5 = b1, € O (0 > 1,5 =1, 2).
Therefore, if we identify p~'(P) with A, = {(z, y) € My x My |zy = 7"}, the image
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] (m) of (x, y) € A, by the action of v € G can be written in the following form:

z\ _ (~(ao) S Y(ain) v(ai2)\ (v()
) (y) - (wbo)) t2 <v<bz-,1> 7(@‘,2)) <v<yf>) |
3.4. Fixed points over X;™(k;)°.

We follow the notations of the previous section. Moreover, we assume that X has
log smooth reduction. That is to say, there exists a finite, Galois and tame extension
L/K such that X := X Xgpec k Spec L has a stable model X. We may assume that all
singular points of Xy, (k) are split.

Let K" be the maximal unramified extension of K in L and Okur the ring of integers
of K". Set [L: K"]| =e, [K™ : K] = f (by assumption, e and p are coprime). Then,
K" contains a primitive e-th root of unity. Furthermore, there exists a uniformizer m of
Or, such that L = K" (7) and 7 is a uniformizer of Ogur.

In this case, I = Gal(L/K") is a finite cyclic group and we fix a generator o of I.
There exists some 7 € G = Gal(L/K) such that the image of the subgroup (1) C G
by the natural surjection G — Gal(K"/K) ~ Gal(ky/k) coincides with Gal(ky/k). f
divides the order of 7 and we denote the order by eqf (here, ¢g | e, in particular, p feo).

Until the end of this section, P will be an element of X3 (k.)“.

Lemma 3.4.1 R
Forv € G and T € OL][[T]] ~ Ox, p, set:

7_1(T) = Z aiTi7
i=0
where a; = a,-1 ; € O, ag € My, a1 € Of (cf. Lemma 3.3.2). Then, for any v € Zs,
(the coefficient of T in v "(T)) = HW_(j_l)(al) mod 95,
j=1

and
(Y“(T))|7=0 =0 mod M.

In particular,

(the coefficient of T in v~ "(T)) = Hv_(j_l)(al) mod M.
j=1

Proof.
Use induction on v. The assertion is obvious for v = 1.
For v > 2, assume that

v—1
H”y’(jfl)(al) mod ‘J)?Z(a(’), (3.1)

Jj=1

(the coefficient of T in v~ *~1(T))

and that
(v (T)|r—o=0 mod M:™. (3.2)
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Since
YT =y (Z aiTi)
i=0
= @) - (D),
i=0
we have
d = , d
— ~7Y(T) = —(v—-1) 5 - - —(v—1) T -1 % —(v-1) T).
=1 (1) ;7 (a:) iy~ T) Ty TOT(T)
d
The coefficients of T'in v~ ¥(T') is given by (ﬁy_”(T)> . By (3.1),
T=0
d v—1 .
=0 j=1
This and (3.2) show that
(i,y—u(T>> _ i 7—(1/—1)(@1.) g ((7_(”_1)(T))|T:0)i_1 . <ify—(V—1)(T))
dT =0 = dT T—o0
v—1
=4 V(ay)- H 7Y (a;)  mod ,’Jﬁz(“o).
j=1
Therefore,
(the coefficient of T in v (7)) = ny’(jfl)(al) mod 9,
j=1
Moreover,
(,Y—V(T))|T:0 = (Z ,y—(u—l)(al.) . (7_(”_1)(T))i> =0 mod mz(ao).
=0 T=0
O

Theorem 3.4.2 R X
There exists some T € Ox p such that Ox, p ~ OL|[[T]] and

o N T) =uwT,
1

“(T) =-T.
1) =1

Here, w € OF is an e-th root of unity (not necessarily primitive) and u € OF .

Proof.

Fix any P € X"(kr)” and any isomorphism Ox.p ~ OL[[T]]. If we take a formal
power series 17" € Op[[T]] in T such that the constant term belongs to 91, and the
coefficient of T belongs to O;, the homomorphism OL[[T]] — OL[[T]], T — T" over Oy,
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defines an automorphism of O, [[T]]. Then we have Ox p ~ OL[[T"]] and may replace T’
by T'. This process allows us to change variable 1" so that the image of T" by the action
of GG is less complicated.

Step 1.

Set o }(T) = Zaﬂ’i (a; = ap—1; € Or). By Lemma 3.3.2, we have ag € My, a; €
i=0
O7F. Since 0 ¢(T) =T,
Ha’(j’l)(al) =1 mod My,
j=1
by lemma 3.4.1. As o belongs to the inertia group, this shows that af =1 mod ;.
Therefore, there exists an e-th root of unity w € K" (not necessarily primitive) such

that a; =w mod M.
Set:

T — T + w25 (T) + - + wo~ @ (T) 4 o~ D(T) = Zwe_jO'_(j_l)(T)-
j=1

We regard T” as a formal power series in T'. By the fact that ag € 91, and Lemma 3.4.1,
it is clear that the constant term of 7" belongs to 9;. As to the coefficient of 7" in 77,
by Lemma 3.4.1,

(the coefficient of Tin T") = w* ' 1+ w % a; 4+ +w-af?+af"

we—l_1_’_we—2_w+_”+w.we—2_’_we—1

=ew’ !  mod M.

(Note that o € I.) Since e and p are coprime, ew® ' Z 0 mod M. Thus, the coefficient
of T"in T" belongs to OF .
As o acts trivially on w € K™,

o NT) =w o ™ (T)+ w20 2(T) + - +wo )+ T =wT.

Therefore, by changing variable T, the problem is reduced to the case where the action
of 7 on T € OL[[T]] ~ Ox, p is given by 0 (T) = wT.
Step 2.

Consider the case where o~ }(T) = wT. Since I = (o) is a normal subgroup of
G, there exists an integer m € {0, 1, --- , e — 1} such that m and e are coprime and
o~ 't71 = 771¢=™. On the other hand, as 7=/ € Ker(G — Gal(K“/K)) = (o), there
exists an integer n € {0, 1, --- , e — 1} such that 7/ = o7".

Recall that a uniformizer m of O is an e-th root of a uniformizer of Oguw. So, there
exists a primitive e-th root of unity ¢ € K" such that o~1(7) = {m. Since w™! is also
an e-th root of unity, there exists an integer u € {0, 1, --- , e — 1} such that ¢ = w™"
Put ¢ = 7. Then, 07*(c) = w'c. Define u € OF by 77*(c) = uc.

Set 77 H(T) = Za;Ti(a; = a1 ; € Op). By Lemma 3.3.2, we have ay € My, o) €
i=0
OF. Compare the coefficient of T in 7=/(T') = ¢="(T) by using Lemma 3.4.1. Then we
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have
D@ (@) (d) @, =w” mod My (3.3)
On the other hand,
) =7V Vue) = =7 D) - 77U D) - 77 (w) - ue. (3.4)
Since this is equal to 0" (c) = w "¢,
Set:
-1 —(f-1
7= Car+ T gy 4o T g gy
c c c
-f —(2f-1)
T\ <C)T—f dT) + -+ — Y (C>T_(2f ~V(dT)
c c
+ N
—(eo=1)f —(eof—1
+ MT*(eofl)f(dT) 4+t MT*(eoffl)(dT)
c c

eof—1 —j
-y I ) —iar),
=0 °

for some d € Oj... We regard 1" as a formal power series in 7. We will show that by
taking d appropriately, the constant term of 7" belongs to 9%, and the coefficient of T’
in 7" belongs to O] . The former is obvious (for any d) from the fact that a; € 9t and
Lemma 3.4.1. As to the latter, by Lemma 3.4.1 and (3.4),

7)) (dT)>

C
= U (w) e d) 7O @) ) o)
J

-1

(the coefficient of T in

=77(d) || 7% (ua}) mod My, (3.6)
i=0
j—1
for each 0 < j < egf — 1. Here, we set HT‘i(ua'l) =1 for j = 0. Note that (3.4) is still
i=0
correct if we replace f by any positive integer.
By (3.6),
eof—1 j—1

(the coefficient of T"in T")

Il
3
d
—
S
N~—r
ﬂ|
—~
I
S
=~
~—

Il
ﬁ|
=
<
=
—~
S
~—
<”3
2
L
—
I
s
_~
~—

_ T ® @) T 7 (uah) - ] 77 (ua))  mod M.
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This, together with (3.3) and (3.5), shows that

eg—1 f—1 -1
(the coefficient of T in T") = 77H(d) - HT”(ua’l)
k=0 =0 i=0
f-1 -1
= (601_[7' (uaﬁ)) 77H(d)  mod My
=0 =0

(Note that 7/ =0 € I.)
-1

Since ey and p are coprime, eOHT’i(ua’l) = 0 mod My, for each 0 < 1 < f — 1.

i=0
Denote the image of 7 € G in Gal(K"/K) ~ Gal(k./k) by T and that of a € Of, in

kr by @ Then 70 =id, 7L, --- | 7=(/=D are different elements of Gal(ky/k). By the
linear independence of automorphisms of a field [9, Lemma 2.9.9], there exists § € kf

such that in kg,
f-1 S
Z (e_()H Tt (ua’1)> 77Hd) # 0.
i=0

1=0
If we take d € O, so that d = d, the coefficient of T in 7" belongs to O} .
Consider the action of o1, 771 on T". For each 0 < j < egf — 1,

. ( - T_j(dT)) ) i (a—m"(0>> - <U—mj(dT))

c o~ 1(c)

_ T (w_mj0> 7—j(wmde)

) T (c) i
© . (dT)

77(dT).

c
(Note that o~ '7! = 77167™). So, we have o~ 1(T") = wT".
On the other hand, for each 0 < j <eof — 1,
—J , —(3+1) '
L (C)T*J(dT) _I "~ 9 (c) T*(ﬁl)(dT)
c 7=1(c)
—(+1) A
__¢c T (c) T_(ﬁ_l)(dT)
—1(e) c

T
1 T_(j+1) (C)
E - _ 7

U (dT).

1
Thus, we have 771(T") = ~T".
u
Therefore, by changing variable T, the action of G on Ox p ~ OL[[T]] is given by
1
o (T)=uwT, 7 YT)=~T.
u
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U

Corollary 3.4.3

For p/ : X(01)¢ — X, (k)Y we have X" (k)Y C p'(X(OL)). Moreover, for each

P e %ZT(/{:L)G, o'~ (P) is isomorphic to a ball of dimension 1 over K. In particular,

ik(p " (P))=1 mod (¢—1).

Proof.

Fix any P € X"(kz)“. By Theorem 3.4.2, we may take an isomorphism @_{7}3 ~

1

Op[[T]] such that c=*(T) = wT and 77 }(T) = ~T. We will construct an element of
u

p~1(P) ~ M fixed under the action of G. The action of o, 7 on x € My ~ p~(P) is
given by the following formulae:

T
Take a uniformizer mx of K and set zg = —. Here, ¢ € Oy, is defined as in Step 2

c
of the proof of Theorem 3.4.2. As c¢ satisfies 0 < v(c) < e — 1, we have zo € M, and
1 <wv(zg) < e. xg satisfies the following formulae:

M(%)ZW‘E:W'EZ%,
_ o 1)
[T](%)_T<u> o) 7 K¢ 0:

Since G is generated by o and 7, g is fixed under the action of G and therefore, o'~ ' (P) #
(. This shows that X3 (k.) C o/ (X(Or)%).

Assume that two elements xq, xo of 91 fixed under G are given and that at least one
of them is not equal to 0. Without loss of generality, we may assume that v(z1) < v(z2)
7(x:)

(in particular, x; # 0). For each i = 1, 2, we have wo(z;) = wx;, = i So.
7(u
’ (E) - ﬁ’ T <ﬁ> =2 Thus, 2o € Okx;. On the other hand, by the choice of
sl Ty T T

xg, we have v(zy) < v(x) for all z € M, fixed by the action of G. Indeed, suppose that
v(xg) > v(z). Then, we have xy € Ogx and v(zg) > v(x) +e > e+ 1, which contradicts
the fact that 1 < v(zg) < e. Therefore, we obtain

§1(P) = p(P)° = Oy,

Clearly, this is isomorphic to a ball of dimension 1 over K.

3.5. Fixed points over Xp°de(k;)C.
As in the previous section, assume that X has log smooth reduction.
Until the end of this section, P will be an element of X3°%¢(k.)¢.
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Lemma 3.5.1 A
Fiz any P € X°%(kL)® and any isomorphism Ox p ~ OL[[S, T|]/(ST — ="). With
respect to P and this isomorphism:
(i) If v € G is of type (1), there exists U € (O[S, T)]/(ST — 7"))* such that
Y(S) =US, y(T) = %UlT-
(i) If v € G is of type (II), there exists U € (O[S, T)|/(ST — n"))* such that
3(8) = U, (1) = Wy,

Proof.
Set:

")/(S) = ag + Z(ai,lSi + ai’QTi),
i=1
where ag = a4,0, a;,; = a4, € Of.
If v € G is of type (1), ag, a; 2 € M} (i > 1), a1, € O by Lemma 3.3.4. Therefore,

i ap = Qi 2 1
S)=S PR L " “LEpil)
1(S) (Zm el )

=1

(Note that ST = 7".) The fact that a; 1 € OF implies that U := Z a; 15"t + Ll
ﬂ-'f’

=1
00

Z aL’fT”l belongs to (OL[[S, T1]/(ST —7"))*. As y(S)-~v(T") = v(n"), it is clear that
-1
A1) = ),
71-7’
If v € G is of type (IT), ag, a;,1 € M} (i > 1), a1,2 € OF by Lemma 3.3.4. Similarly
to the case where 7 is of type (I), we have:

> i ap N i 1
=T T 4+ =8 Lo gt
8 (z sy S )

. . N i— a < @i, 1 i
The fact that a; o € Of implies that U := ;aing Ly W—SS + ; 71_’”15 +1 belongs to
(OL[[S, T|/(ST — 7"))*. As 4(S) - y(T') = ~(n"), it is clear that ~(T) = MU_lS.
71-7’
U

Theorem 3.5.2
Fiz any P € X709 (kg)¢.

(i) Ifo ' and 7" are of type (I) at P, there exist some S, T € Ox, p and uy, uy €

OF such that Ox p ~ O[S, T)]/(ST — ") and that

o 1S) =uS, 71(S) =uyS,
-1 o ") -1 )
o N(T) = u T, |7 HT) = U T.
7-(-7" T
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(i)  Assume that p is odd. If o' is of type (I) at P and if 771 is of type
(II) at P, there exist some S, T € Ox p and us, uy € Of such that Ox p ~
OLS, T))/(ST — «") and that

o 1(S) =usS, 7HS) = uT,

-1 o '(r") 4 -1 T ")

o Y (T) = ug T, | 7 HT) = Uy S.
g g

(iii)  If o= is of type (II) at P, then p is automatically odd and there exist S, T €
Oz, p and us, ug € O such that Ox p ~ O[S, T]]/(ST — ") and that

o }8) =usT, 77NS) = ugS,
1/ r =1/ r

o1y =TT g Yoy =T g,

T sl

Here,
)T (1 : of type (I) at P),
| 7o (7 : of type (II) at P).
Proof.

Fix any P € X3°%(k;,)¢ and any isomorphism Ox, p =~ O [[S, T]]/(ST—7"). If we take
an invertible element U € (OL[[S, T)]/(ST—="))*, the homomorphism O[[S, T]]/(ST—
") — O[S, T)/(ST — 7"), S — US = S, T — U™'T =: T" over O, defines an
automorphism of OL[[S, T)]/(ST — 7). Then we have Ox p ~ OL[[S', T'|]/(S'T' — «")
and may replace S’, T by S, T. This process allows us to change variables S, T" so that
the images of S, T' by the action of G are less complicated.

As in Step 2 of the proof of Theorem 3.4.2; there exist integers m € {0, 1, --- , e—1}
and n € {0, 1, --- , e — 1} such that m and e are coprime, that o7~ = 771¢™™ and
that 7=/ = o™,

First, we treat the case where 0! is of type (I) in Case 1. Under this assumption, we
treat the case where 771 is of type (I) (resp. (II)) in Case 1.1 (resp. Case 1.2). Similarly,
we treat the case where o' is of type (II) in Case 2. Under this assumption, we treat
the case where 77! is of type (I) (resp. (II)) in Case 2.1 (resp. Case 2.2). Case 2.1 is
divided into Step 2.1.1 and Step 2.1.2.

Case 1.  The case where o' is of type (I).

Set:

0'71<S) = Qg + Z(amSi + ai72Ti),
i=1
where ag = a,-1,¢, @; j = ay-1,; ; € Op. By Lemma 3.3.4, we have ag, a;» € M} (1 >
1), a1,1 € O . In particular,
o (S = Zai’lsi mod M.
i=1
Since 07 ¢(S) = S,
1 mod WL,

)
=o
—

Il
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as in the proof of Lemma 3.4.1. Therefore, there exists an e-th root of unity w € K"
(not necessarily primitive) such that a; 1 = w mod M. As noted in Remark 3.3.3,
the coefficient of S in 0!(S) modulo M7 is well-defined. So, as in Lemma 3.4.1, for any
Ve Z>0,

(the coefficient of S in o~( Ha J(ay,1)  mod M. (3.7)

Set:

S = WS 4 w20 (S) -+ wo D (S) 4 oV (S) = Zwe_jO'_(j_l)(S)-

It is clear that o~1(S5") = wS’.
By Lemma 3.5.1, 0= (S) = US for some U € (O[S, T1]/(ST — ="))*, which allows
us to set:

S =S 4w + WU U) 4 -+ Uo (U)o~ D(U)) =: SU'.

We will show that U’ is an invertible element of O[S, T]]/(ST —="). Tt suffices to show
that the coefficient of S in S" modulo M, (which is well-defined by Remark 3.3.3 and
the fact that » > 1) is not 0. By (3.7) and the fact that ;1 =w mod My,

(the coefficient of S in S") = Zwe’j Wl =ew H(#£0)  mod My.

Thus, we have U’ € (O[[S, T|]/(ST — 7"))*. Setting S' = SU', T' = TU'~!, we get
—1(r
o 1S =wS, o HT") = o (r w T

Therefore, by changing variables S, T, the problem is reduced to the case where the
action of o™t on S, T € O[S, T)]/(ST—7") ~ Ox pis given by 0 1(S) = wS, o 1T =

—Oilgwr)w_lT.
Ca;; 1.1.  The case where both o= and 77! are of type (I).
By the argument in Case 1, we may assume that c1(S) = wS, o71(T) = U_lgﬂr)w’lT.
As in Step 2 of the proof of Theorem 3.4.2, there exists an integer € {0, 1, -+, e—1}
such that 07 '(c) = w™ ¢, where ¢ = 7. Set 7 !(c) = uc(u € O)).
Set:

TH(S) = ap + Z(a;,lsi + a;,2Ti)a
i=1
where ay = a/_, , a} ; = d € Op. By Lemma 3.3.4, we have ag, aj , € M} (i >
1), ay, € OF.
Similarly to (3.7),

_IZ_]

f
(the coefficient of S in 7~ H '(a,;) mod M.
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Moreover, we have 77/(S) = 07"(S) and 07 1(S) = wS. Therefore,
f .
HT’(J’l)(a’Ll) =w" mod M. (3.8)
j=1
On the other hand,
) =V VW) - u)ue.

Since we have 0~ !(c) = w™lc and 77/ (c) = 07"(c),

/
HT*(jfl)(u) =w " (3.9)

Set:

s eo}f ) ias)
=

for some d € Of... We will show that by taking d appropriately, S’ is a product of S and
an invertible element (of O[[S, T]]/(ST — 7")). Indeed, by Lemma 3.5.1, 77(S) is a
product of S and an invertible element. So, it is clear that S € (OL[[S, T]]/(ST —="))S.
Therefore, it suffices to show that the coefficient of S in S’ modulo 9, (which is well-
defined by Remark 3.3.3 and the fact that » > 1) is not 0. By a similar argument to
Step 2 of the proof of Theorem 3.4.2, we can easily check this (using (3.8) and (3.9)).
Thus, there exists some U’ € (O[S, T)]/(ST — n"))* such that S’ = SU".

Again as in Step 2 of the proof of Theorem 3.4.2, we obtain 0~!(S") = wS’, 771(9') =

-5
u

uT’.

O-_l(tﬂ-r)w—lj'v7 7_—1<T/) — 7_—1(7.‘_7“)
" T

Putting 7" = TU' ", we get o~ (T") =

Therefore, by putting u; = w, us = — and changing variables S, T', the assertion (i)
u

holds.
Case 1.2.  The case where o~ is of type (I) and 77! is of type (II).

If f is odd, some power of 772, which is of type (I), coincides with 7, which contra-
dicts Remark 3.3.7. So, f is even. Applying an argument similar to Case 1.1 to ¢ and
72, we may reduce the problem to the case where there exist some e-th root of unity w

and v’ € Of such that

1
o }(S) =ws, T2(S) =5,
—1/.r o r

oY T) = U W(:T )w_lT, T) = MUIT.

7-‘-7‘

: -1 / -1 T_1<7Tr) 1—1
Furthermore, by Lemma 3.5.1, we can write 7 (S) = U'T, 7' (T) = ——=U"""S
7TT

for some U’ € (O[S, T]]/(ST — ="))*.
Set:

TN S) = ap+ ) (a1 S+ af , T,

i=1
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g Wi = a;flvm € Op. By Lemma 3.3.4, we have ag, a; , € MM} (i >
1), aj o € OF. Then, by Lemma 3.5.1 and its proof, we can write U’ in the following

form:

where a = a a

U' = aj o x (14 (terms of degree at least 1 in 5, T)).

Each coefficient of Maclaurin series of (1+2)/2 is a rational number whose denominator

is a power of 2, which belongs to Op in the case where p is odd. Therefore, there exists
W' € (O[S, T])/(ST — 7"))* such that U’ = a} ,W".

Now, we have

o't (S) =0 (UT) =" (U) -
and
T loT™(S) = 7 (Ww™S) = 7 HW™U'T.
Since o~ '771 = 7716™™ these show that

oMU i m m
o7 (W™)w - o1 (r)
Thus,
O-_I(W/Q) _ -1 m 7TT(1/1,2 OX
e T WO ) €9
Set w| = —0_1(W,) € (O[S, T —77))x 12 x in w' x
1= - LIS, T))/(ST —x"))*. Then, as w}~ € Of, we obtain w] € OF.

On the other hand, since 77(S) = U'T, we have
(7" U") T‘l(ﬂ’“a’l,QW’Q)

—2(9) = S = S.
7(9) mrU’ 7T’"a’1,2W’2
1
Moreover, as 77%(5) = =5,
u
U may, 1 x
12 R T € OL’
W 1w aLQ) U
-1 !
As above, we obtain w) := % € OF.
S
Set S’ = W T" = W'T. Then we have
-1 !
gy oS WS WS wy,
o (5 = oYW ot (W) “ oY (W) W’ wis'
—1(r /
Similarly, we get o~ 1(T") = 7 <:T ). %T’. On the other hand, we have
T
-1 ! ! l
—1/ ¢t T (S) u'r / W / 41,2 7y
— — == S T o * T - : T .
e B A U B

™) wh

Similarly, we get 771(T") = . =5
s al
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a/
Therefore, by setting us = i,, Uy = 1’,2 and changing variables S, T', the assertion
wy Wy
(ii) holds.
Case 2.  The case where 07! is of type (II).
In this case, by Remark 3.3.7, e is even and we set e = 2¢’. Since L/K is tame, o~
cannot be of type (IT) if p = 2. So, we may assume that p # 2.

As o2 is of type (I), applying an argument similar to Case 1, we may assume that there
U_Q(Wr>w/—1T

1

exists an €/-th root of unity «’ € O} such that 0~2(5) = 'S, 0~ *(T) =
Set:
J_I(S) = ap + Z(%JSi + az’,QTi),
i=1
where ag = a,-1,9, a; j = ay-1,;; € Op. By Lemma 3.3.4, we have ag, a; 1 € M} (i >
1), a1.2 € OF. Then, by Lemma 3.5.1 and its proof, there exists some U € (OL[[S, T]/(ST—
1/ r
7"))* such that c=1(S) = UT, o= }(T) = o (")

ﬂ-’f‘
lowing form:

U~1S and we can write U in the fol-

U = a2 x (1 + (terms of degree at least 1in S, T)).

Since p # 2, there exists W € (O[S, T]]/(ST —7"))* such that U = a; ,WW? as in Case
1.2
As 071(S) = UT, we have

o Y x"U) o Y7 ay . W?)

-2 _ —
7 <S) N U 5 7TTCL172W2 5.
On the other hand, since 072(S) = 'S, we get
o1 (W?) a9 ,
- ’ 5.
W2 0'_1(7TTCL1,2>U) < L
W) 2 = X : x
Set w = € (OL[[S, T1]/(ST — 7"))*. Then, as w* € OF, we obtain w € OF.
Set S' = %, T' = WT. Then we have
-1 T
i C) N A LS 70 JTE Y )

o Y(W) o Y W) oY (W) w

o) w

Similarly, we get o~ 1(T") = S’
r ai, 2

Therefore, by changing variables S, T, the problem is reduced to the case where the ac-
A a
tionof o on S, T € OL[[S, T)]/(ST—7") ~ Ox p is given by = 1(S) = —2T, 0~ (T) =
w

—1(r
o () w S
iul ai, 2
Case 2.1.  The case where o~ is of type (II) and 77! is of type (I).

Step 2.1.1.
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—1(.r
a o Hrm
By the above argument, we may assume that o~ '(S) = 27 o Y (T) = (7")
w "
—S Here, a1 2, w € OF and
ai,2
w?= 2y (3.10)

0'_1(7TTCL1’2>
e—1
By the definition of w, it is clear that Ha‘i(w) = 1. Thus, by Hilbert’s Theorem
i=0
~1
c (a). Let w € Of be an e-th root of unity

such that w’ = w? As in Step 2 of the proof of Theorem 3.4.2, there exists an integer
pef0,1,--- ,e—l}suchthata 1(c) = w™ ¢, where ¢ = 7. SetT Y(e) = uc(u € OF).
Set:

90, there exists a € Op, such that w =

T H(S) = ap + Z(a;,lsi + a;,QTi)v
i1

a =a € Op. By Lemma 3.3.4, we have ag, aj , € M} (i >

Whereao—aTlo, i\ 105

1), a;, € OF.
Now, we have

7 (c) = T*(ffl)(u) o (u)ue.

Since 07 1(c) = wlc and 77 (c) = 07"(c),

=1
| T () =w " (3.11)
Set 77 1(a) = ba (b € OF). As 77/(a) = 07"(a),
f-1 n—1
HT—J‘ (b) = Ha—f(w). (3.12)

o 2(S) = ———5. (3.13)

Note that o1 is of type (II) and 771 is of type (I) in the equality o=™ = 7=/, Thus,
Remark 3.3.7 shows that n is even and we set n = 2n’. As o € I, the coefficient of S in
o2 (S) = 77/(S) modulo My, is written in the following form by (3.13):

H a1 ;) mod M.

1=0

w2n
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Therefore, this, together with (3.11) and (3.12), shows that

ffl /n/

l_IT_"(a’1 qub) = w2 - cw "ew" =1 mod M. (3.14)
) w n

=0

(Note that w' = w?.)

Set:
eof—1 _
, 777 (ac) W
S = jgo p— (dS),

for some d € Of... We will show that by taking d appropriately, S’ is a product of S and
an invertible element (of OL[[S, T]]/(ST — 7")). Indeed, by Lemma 3.5.1, 77(S) is a
product of S and an invertible element. So, it is clear that S’ € (OL[[S, T1]/(ST —="))S.
Therefore, it suffices to show that the coefficient of S in S’ modulo 9, (which is well-
defined by Remark 3.3.3 and the fact that » > 1) is not 0.

~(ac)

ac

Similarly to Lemma 3.4.1, the coefficient of S in 779(dS) (0 < j < eof — 1)

satisfies the following formula:

= . o
(the coefficient of S in (aC)T_J(dS)> =77(d) HT_Z<CL,1 qub)  mod M. (3.15)
ac ’
i=0
-1
Here, we set HT‘i(a’Llub) =1for j =0.
=0
By (3.15),
(the coefficient of S in S’)
eof—1
= Z HT (a}, ub)
eo—1 f-1 kf+i-1
= Z T~ ®H () - H 7 (a}, yub)
=0 i=0 ‘
eo—1 f—1 kf+l 1 1
= 7RI H 7 '(af, ub) - H 7 '(af,yub)  mod M.
k=0 1=0 i=hf

This, together with (3.14) and the fact that 7=/ = 0" € I, shows that

(the coefficient of S in S") = T HT (a}, ub)
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-1
Since ey and p are coprime, e HT_i(a'Llub) #Z 0 mod My, for each 0 <[ < f — 1.
i=0
Thus, similarly to Step 2 of the proof of Theorem 3.4.2, there exists some § € k; such
that in ]{ZL,

f-1 -1
(aHF (a’l’lub)> 7=1(8) # 0.
=0

=0

If we take d € O¥,. so that d = d, the coefficient of S in S’ is not 0 modulo 9 y,.

Therefore, there exists U’ € (O[[S, T]]/(ST — #n"))* such that S = SU’. Setting
T" = U'"'T, we consider the action of 0=2, 77 on ', T". By (3.13) and the fact that
ol =771 for each 0 < j < eof — 1,

o (70 )

ac

(o (ac)) 779 (672 (dS))

o2(ac)

7 (o@D () - o (wwa - w2 ¢)

- L sas

- ag(cac) ' T_]a(caC)T_j(dS)

B alciv)w . T_;(CQC)T_j(dS)

B alw”:v)w . T_;(CQC)T_j(dS)'

So, we obtain 072(S’) = —0_10(};0 wS’. Similarly, we get o=2(T") = Ujr(:TT) . UlﬁU)wT’.

On the other hand, for each 0 < j <egf — 1,

—j , —(j+1) .
(L (ac) 779(dS) ) = TfWT—(J+1)(dS)
ac 71 (ac)
ac 70D (ac) _;

_ . —(j+1)

T 1(ac) ac g (d5)
—(J+1)
_ L. MT_U“)(dS).

ub ac

1 (7")
So, we obtain 771(5") = —bS’. Similarly, we get 7 1(T") = ———>ubT".

U "
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Therefore, by changing variables S, T', the problem is reduced to the case where the
action of 072, 77t on S, T € O[S, T)]/(ST — ") =~ Ox, p is given by:

1
2(5) = ——_§ (5) = —
o ( ) O_,;(w)w ) 1 T (S) ub?’ )
1) =L (") o~ (w)wT7 ~UT) = (™) p
7" W’ T
Step 2.1.2.
-2 W' ) o *(n")
By the above argument, we may assume that 0 =*(S) = ———8S, 0 *(T) =
o~ Hw)w 7
o Hw) 7= (7")

Y and r1(S) = -5, 1(T) =

bT.
ub Y

/

w "
Set:

o 19) = ag + Z(agilSi +a} ,T7)
i—1

where ag = a1 o, aj ; = aj-1 ; ; € Op. By Lemma 3.3.4, we have ag, a]; € M, (i >

1), ai o € OF. Then, by Lemma 3.5.1 and its proof, we can write oY 8)=U"T, o™ YT) =
—1(r

U—(W)U”_IS for some U” € (OL[[S, T]]/(ST — n"))* and

71—7"
U" =aj o, x (14 (terms of degree at least 1 in S, T)).
Since p # 2, there exists W” € (O[[S, T]]/(ST — n"))* such that U" = af ,W"? as in

Case 1.2.
As 071(S) = U"T, we have

_2(S> B O.fl(ﬂrU//)S B 0_1(7r7’a’1’72W”2)
o - U - ﬂ.ralll 2M///Q
!/
On the other hand, since 072(5) = — Y S we get
o~ Hw)w

o (W) _ may, W c O
W ol (rraf 5) o7 (w)w L
O'_l(W”>

Similarly to the argument in Case 1.2, we obtain w{ :=
1—1 1

X
Now, we have o~ 77! = 77'¢7™. Furthermore, m and ¢ = 2¢’ are coprime. So, m is
odd and we set m = 2m’ + 1. Comparing

1 U'T W
) - o~ tub) o~ (ub)

1 —1iqy — —1( L
ot (S)=0 <ubs
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and
o (S) = 7 (07 (S))
= 7'_10_1(0_2”‘,(3))
ym/
S . | w
= T g <O__(2m/_1) (w> . 0__1<w)w8)
ym/
— -1 U//T
g o2 (w) -+ o7 (w)
ym/ 1 r
1 —1/ .1 n2y T (ﬂ- )
= . . bT
T <0-—2m’ (w) O'_l(w)> T (al,QW ) T uovt,
we get
7_—1(“/2//2) _ 7_—1 0—2m’ (’LU) ) _/_ 0_1(w) . 7r7"a’1’7 ?/ . 1 . OZ
w W™ T Hr"af 5) o~ (ub)ub
—1 W//
As above, we obtain w} := % € OF.
Set S’ = Tk T' = W"T. Then we have
-1 " " "
1 oSy u'Tr %% _afy
g (S/) - Uﬁl(W") - 0.—1(W//) - a,1/72 ) 071<W//) -W'T = wlll T
- . —1 ! 0—*1(7-‘1) w,ll ! M
Similarly, we get 0! (T") = ——— - —=5’. Moreover, we obtain
" ay o
771(9) B 1 1 w 1 S 1,

“1(8" = = e
T )= e T i W T ) wb W b

—1( r
Similarly, we get 77 1(T") = T—(:T) ~whubT”.

T
"
1
Therefore, by setting us = Lﬂz, ug = and changing variables S, T', the assertion
wy wiu

(iii) holds in the case where 77! is of type (I).
Case 2.2.  The case where both o~! and 77! are of type (IT).
In this case, by Remark 3.3.7, o177 ! is of type (I). Moreover, (o~ '77!) surjects to
Gal(kr/k). Therefore, by replacing 77 by o177}, we can reduce this case to Case 2.1.
O

Remark 3.5.3
We use the condition that p # 2 to prove Theorem 3.5.2(ii). The author at the time of
writing does not know whether a similar assertion holds in the case where p = 2.

Corollary 3.5.4
If p is odd, for any P € X;°%(kr)%, ik(p ' (P)=0o0r2 mod (¢—1). In particular,
ix(p " (P)) =0 mod 2 (since p is odd, we have 2|(q—1)).
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Proof.

Fix any P € X;°%(k;)¢ and take an isomorphism Ox.p =~ OL[[S, T))/(ST — =").
Case 1.  The case where both 0! and 77! are of type (I).
By Theorem 3.5.2, we may assume that there exist uj, uy € O such that o7*(S) =

1/ S
uls, g—l(T) — U—(7T>U1_1T and 7_—1(5) _ UQS, T_I(T) _ T (7‘(‘ )
that Z.K(p’*l(P)) = mod (q — 1) (I—Iere7 p1*1<P) _ p—l(P)G is the G-invariant

0
subset of p™H(P) ~ {(x,y) € My, x My |zy = 7"} = A,.) The action of o, 7 on
(z,y) € A, ~ p~1(P) is given by the following formulae:

uy 'T. We will show

If /"1 (P) = p~(P)% = 0, it is clear that ix (o’ "(P)) =0 mod (q—1). So, we may
assume that o'~ (P) # 0.

Consider two elements (z1, y2), (z2, y2) of A, with v(z1) < v(x2) and assume that
(1, y1) is fixed under G. If (z2, yo) is also fixed under G, then for each i = 1, 2, we
have o(uyz;) = ;, 7 (ugz;) = x;. So, o (xz) = ﬁ, T (@) = ﬁ. Thus, x9 € Ogux;.

T

I I I
Conversely, if o € Ogzy, then (x9, yo) is fixed under G.

We fix any (o, yo) € AS such that v(x) = ( m)irzg v(x). Then we have
x?y e T

§P) = o (P
~ {x e M, \ M} | (x, 7" /z) is fixed under G}
~ [T o \ oz

i>0
ietv(xo)<r

For each i > 0, we have ix (9% \ M) =0 mod (¢ — 1) by Example 2.1.24. Now, it
is clear that ix(p " (P)) =0 mod (¢—1).
Case 2.  The case where o' is of type (I) and 77! is of type (II).

By Theorem 3.5.2, we may assume that there exist uz, uy € O such that o7*(S) =

—1(,r —1(nr
uzS, o7 1(T) = o (m >u§1T and 771(S) = w T, 7 HT) = u (W ) uy'S. We will show

that ix(p'~ (P)) =0or2 mod (¢—1). (Here, p’ " (P) = p~ (P ¢ is the G-invariant
subset of p~'(P) ~ A,.) The action of o, 7 on (z,y) € A, ~ p~!(P) is given by the




46 TAKAHIRO MUROTANI

o] @ B %:)(Zizly) !

") - ﬁ((y))

If "1 (P) = p~"(P)% = 0, it is clear that ig (o’ '(P)) =0 mod (q—1). So, we may
assume that p~1(P)Y # 0.

Consider two elements (1, y2), (72, y2) of A, with v(z1) < v(xy) and assume that
(x1, y1) is fixed under G. If (z9, yo) is also fixed under G, then for each i = 1, 2, we have

L2 L2 Y2 L2 . Y2 L1
o(usz;) = x;, T (ugy;) = 5. So, 0| — | = =, 7| = | = —. Since = = —, we have
1 L1 1 1 Y1 L2

T T T
T <—1> — 22 Thus, r is even and v(z) = v(zs). We set z = = € O. Then we have
L2 L1 L1

following formulae:

0(z) = z and 7(z) = z~1. Conversely, if z := T2 ¢ O, satisfies 0(z) = zand 7(2) = 271,
T

1
then (x, yo) is fixed under G.

Consider an element z € Oy, satisfying o(z) = z and 7(z) = 27!, The former implies
that z € Ok and the latter implies that 2 € O} and 72(2) = 2. Denote the intermediate
field which corresponds to (o, 72) C G by M. M/K is an unramified Galois extension
of degree 2. Let Oy be the ring of integers of M, 91y, the maximal ideal of Oy and
kv = On /My the residue field. By Kummer theory, there exists some £ € Oj such
that M = K(1/€) and that Oy = Ox © VEOk

We have isomorphisms Oy, ~ (1 + 9y) X k5, and O ~ (1 4+ Mg) x k. The
restriction of the norm Nyyklox : O — Ok sends (a,b) € (1 + My) X kj; to
(Nayic(a), Niy (b)) = (t(a)a, b)) € (1 4+ M) x k*. We will consider the kernel
of NM/K‘O;CI.

Set a =a+EB €1+ My (o, B € Ok). Then we have o € 1 + Mg and B € M.
If Ny (a) =1, we obtain

o —¢pr=1=a* =1+&5°%

Since p # 2, 1+£8? € Ok has square roots in O and one and only one of them belongs
to 1 + M. This implies that each 8 € Mg uniquely determines o« € 1 + Mg such
that a? — £3% = 1. Thus, there exists a bijection between the kernel of the restriction to
L4+ of Nyyyi and M. On the other hand, we have |Ker Ny, /x| = ¢+ 1 since Ny, /i
is surjective. Therefore, there exists a bijection between Ker NM/K|0;I and the disjoint
union of ¢ + 1 copies of M.

The above argument shows that if there exists (zo, yo) € A, fixed under G, the G-
invariant subset of A, is given by:

{(zxo, zflyg) |z € Oy, Ny (2) = 1}
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Thus, there exists a bijection between this set and Ker NM/K|O;{' Now, it is clear that

ik(p " (P)=q+1=2 mod (¢—1).
Case 3.  The case where 07! is of type (II).
By Theorem 3.5.2, by replacing 7 by 7o if necessary, we may assume that there

—1(r
exist us, ug € OF such that c7'(S) = usT, o™ H(T) = o (m )ung and 771(S) =
7TT
—1(r
ugS, 7 H(T) = T (r >ug1T. We will show that iK(p’_l(P)) =0or2 mod (¢q—1).
7rT

(Here, o' (P) = p~*(P)€ is the G-invariant subset of p~*(P) ~ A,.) The action of o, T
on (z, y) € A, ~ p~!(P) is given by the following formulae:

()= (o)

If p~H(P) = p~"(P)% = 0, it is clear that i (' '(P)) =0 mod (q—1). So, we may
assume that p~1(P)% # ().

Consider two elements (z1, y2), (z2, y2) of A, with v(z1) < v(xg) and assume that
(21, y1) is fixed under G. If (z2, yo) is also fixed under G, then for each i = 1, 2, we have

Y2 ) L2 L2 . Y2 L1
o (usy;) = xi, 7 (uex;) = x;. So, 0| = | = —, 7| —= | = —. Since == = —, we have
1 1 21 Z1 Y1 T2

T x x
o (—1) =22 Thus, r is even and v(x;) = v(x). We set z = Z2 € Oy. Then we have
) T1 sl

o(z) = z7' and 7(2) = 2. Conversely, if z := 72 ¢ Oy satisfies o(z) = 27! and 7(z2) = 2,
Ty
then (xs, yo) is fixed under G.

Consider an element z € Oy, satistying o(z) = z=" and 7(z) = z. The former implies
that z € OF and 6%(z) = 2. Denote the intermediate field which corresponds to (o2, 7) C
G by M. Let Oy be the ring of integers of M and 91, the maximal ideal of O);. The
residue field of M is Oy /My ~ k. In this case, there exists a uniformizer 7k of Ok
such that M = K(\/7x) and that Oy = O @ /7 Ok.

We have isomorphisms Oy, =~ (1 + 9My) x k% and Og =~ (1 + Mk) x k*. The
restriction to Oy, of the norm NM/K’o;{ : Oy — Op sends (a, b) € (1 4+ Myy) x k™ to
(Nuyx(a), 0°) = (o(a)a, b%) € (1+ M) x k*. We will consider the kernel of Ny/x|ox .

Set a = a4/ B € 1+My (o, B € Ok). Then we have a € 1+Mg. If Nyy/i(a) = 1,
we obtain

1

QA — =1 o? =1+ 7[>

Since p # 2, 1 + 8% € Ok has square roots in Ok and one and only one of them
belongs to 1 + M. This implies that each f € Ok uniquely determines o € 1 4+ My
such that o? — 732 = 1. Thus, there exists a bijection between the kernel of the
restriction to 1 4+ 9My; of Nyyyx and Og. On the other hand, the kernel of k£ > b — b? is
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{£1}. Therefore, there exists a bijection between KerNM/K|O;I and the disjoint union
of 2 copies of O.

The above argument shows that if there exists (xg, y9) € A, fixed under G, the G-
invariant subset of A, is given by:

{(2z0, 27 '90) | 2 € OF;, Nayr(2) = 1}.
Thus, there exists a bijection between this set and KerNM/K|Owa. Now, it is clear that
ix(p ' (P))=2 mod (¢—1).

O
Corollary 3.5.5
If p is odd,
ix(X(K)) = 8X3"(kr)Y  mod 2.
Proof.
Immediate from Corollary 3.4.3 and Corollary 3.5.4.
0

Remark 3.5.6

Corollary 3.5.5 holds without assuming that all singular points of Xy, (kz) are split.
Indeed, let L/K be a finite extension such that singular points of X, (k;) are not
necessarily split (where X is the stable model of X ). Then, there exists a finite un-
ramified extension L'/L such that X' := X Xgpeco, Spec O is the stable model of
X1 = X1 Xgpec £ Spec L and that all singular points of X} (ky/) are split. (Here, Oy is
the ring of integers of L’ and ky/ is the residue field.) We may assume that L' is Galois
over K.

Set G' := Gal(L'/K) and N := Gal(L'/L). We have

/
ks

Since N acts trivially on Xy, , the fact that X7 (k) = X}, (kr/) shows that
(X%, (ko)™ = (X57 (k)™ = 250 (k1) = X537 (ke).

Therefore, we have
(X, (k) = (X5, (k) ™) = (X7 (k).

This shows that we can reduce to the case where all singular points of Xy, (k1) are split.

= (% X Spec O, Spec OL/) X Spec Oy Spec kL’ = %kL XSpeckr, Spec kL"

4. AN APPLICATION TO ANABELIAN GEOMETRY

In this chapter, we apply the arguments in Chapter 2 and Chapter 3 to anabelian
geometry. We review some general facts on arithmetic fundamental groups in Section
4.1. In Section 4.2, assuming that we are given an isomorphism between arithmetic
fundamental groups of hyperbolic curves over finite extensions of @Q,, we show that
the isomorphism arises from a unique isomorphism of schemes if the i-invariants of
the sets of rational points of hyperbolic curves and their coverings “coincide” in some
sense. In Section 4.3, assuming that p is odd and that we are given an isomorphism of
arithmetic fundamental groups of hyperbolic curves which have log smooth reduction,
the i-invariants of the sets of rational points of these curves coincide modulo 2.
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4.1. Some general facts on arithmetic fundamental groups.

Let x be a field, k%P a separable closure of x and S a geometrically connected scheme
of finite type over k. Take any geometric point 5 of Suser 1= S Xgpecx Spec £5P. The
image of 5 in S will be also denoted by 5. Let m(S,3) (resp. m1(Sgser, S)) be the
¢tale fundamental group of S (resp. Suser) with base point 5 and G, = Gal(k**?/k)
the absolute Galois group of k. Then, we have the following natural exact sequence of
profinite groups:

1 — 7 (Sgser, 5) = m (S, 5) = G, — 1. (4.1)

We sometimes call 71 (S, 5) (resp. m1(Sgser, 5)) the arithmetic fundamental group (resp.
the geometric fundamental group) of S.

Remark 4.1.1

The isomorphism classes (as topological groups) of the étale fundamental groups 7 (.S, 3)
and 7y (Sgser, S) are independent of the choice of the geometric point 5. In the following,
unless otherwise noted, we fix any base point and omit it (e.g. m1(.5), 1 (Skser ), €tc.).

Let p be a prime number, K a finite extension of Q,, K an algebraic closure of K,
Of the ring of integers of K, My the maximal ideal of Ok, k = Ok /My the residue
field of Ok and ¢ the cardinality of k. Let U be a smooth and geometrically connected
hyperbolic curve over K, X the smooth compactification of U and g the genus of X. Set
S := X \U and n := #S(K). Then we have 2g+n —2 > 0. We denote the function field
of U by KU.

Set Uz := U Xspec x Spec K. The following is the exact sequence (4.1) with respect to
U (and its geometric point Spec Ky — U):

1= m(Ug) = m(U) B Gg — 1. (4.2)

Let If(VU be the maximal algebraic extension of Ky unramified on U. Then we may
naturally identify (4.2) with the following exact sequence:

1 — Gal(Ky /Ky - K) — Gal(Ky/Ky) — Gal(Ky - K/Ky) (~ Gg) — 1. (4.3)

We denote the integral closure of U (resp. X) in Ky by U (resp. )?) Let X! be the
set of closed points of X.

Definition 4.1.2 (cf. [18, §2)

For each 7 € X, we denote the residue field at T by k(7). We define the decomposition
group Dz of x and the inertia group Iz of x by:

Dz ={y € m(U) [(z) =7},
Iz = {v € Dz |~ acts trivially on k(7)}.

For each open subgroup H C 71 (U), let Uy be the covering of U corresponding to
‘H and Ky the integral closure of K in Uy. Then Uy is a smooth and geometrically
connected hyperbolic curve over K3. We denote the residue field of Ky by k3 and set
qu = fky. Let X3 be the smooth compactification of Uy and gy the genus of X4. Set
S’H = X?-t \ UH and ny ‘= ﬁSy(F)
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Definition 4.1.3 (cf. [18, Definition 2.3])
Let G C Gk be an open subgroup, ¢ : G — Gk the natural inclusion and pr : m (U) —
Gk the natural surjection. Let H C m(U) be an open subgroup.

(i) We define
S(G) :={s € Homeon (G, m(U)) |pros =1},
Su(G) :={s € S(G)|s(G) C H}.

We refer to an element of S(G) as section.
(ii) We say that a section s € Sy(G) is geometric if its image s(G) is contained in
Dz for some 7 € X. We denote the set of geometric sections in Sy (G) by
Su(G)E™, and Sy, )(G)E*™ simply by S(G)seo™.

Remark 4.1.4
In the situation of Definition 4.1.3(ii), let = be the image of T in X and k(z) the residue
field at z. Then, if x € U and G = G, we have Dz = 5(G).

4.2. Reconstruction of decomposition groups from i-invariants.

For i = 1, 2, let p; be a prime number, K; a finite extension of Q,,, K; an algebraic
closure of K;, Ok, the ring of integers of K;, Mg, the maximal ideal of Ok,, k; =
Ok, /Mg, the residue field of O, and ¢; the cardinality of k;. Let U; be a smooth and
geometrically connected hyperbolic curve over K;, X; the smooth compactification of U;
and g; the genus of X;. Set S; := X; \ U; and n; := 15;(K,).

In the following, assume that we are given an isomorphism of profinite groups « :
71 (Uy) = 71 (Us). By |6, Lemma 1.3.8|, there exists an isomorphism of profinite groups
ag : Gg, — G, such that the following diagram is commutative:

7T1(U1) %)WI(UQ)

pry i iPTQ

Gk, — G,

aK

Here, pr; : m(U;) = Gg, and pr, : m1(Us) — G, are natural surjections.

Proposition 4.2.1 (cf. |6, Proposition 1.2.1])
Suppose that we are given an isomorphism of profinite groups:

A . GK1 :> GKQ.
Then:

(i) We have py = pa. Thus, we shall write p = p; = po.
(ii) ax induces an isomorphism Ix, — Ik, between the respective inertia subgroups
Of GKU GKQ.
(i) We have [K; : Qp) = [K2 : Q] and [ky : F,| = [ka : Fp]. In particular, the
ramification indices of Ky, Ky over Q, coincide.

This proposition shows that p; = po and ¢; = ¢o. Thus, we shall write p = p; = po
and ¢ = ¢1 = ¢
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The following theorem reduces the absolute p-adic Grothendieck conjecture to the
group-theoretic characterization of decomposition groups:

Theorem 4.2.2 (cf. [8, Corollary 2.9])

Suppose that an isomorphism of profinite groups o : m (Uy) = w1 (Uy) satisfies the fol-
lowing condition: A closed subgroup of m(Uy) is the decomposition group of a point of
)71(21 iof and only if the image of the subgroup by « is the decomposition group of a point of
)A(;CI. Then « is geometric, i.e., arises from a unique isomorphism of schemes Uy 5 U,
(more precisely, Uy — Us).

Remark 4.2.3

The original statement of Corollary 2.9 of [8] is stronger than that of Theorem 4.2.2. More
precisely, the following result is proved there: Let YJ; be a set of primes such that §>; > 2
and that p; € ¥;, A; the maximal pro-%; quotient of m1(U; Xspec k; Spec K;) and II; the
quotient of 71 (U;) by the kernel of the natural surjection m (U; Xgpec k; Spec K;) — A
If an isomorphism of profinite groups II; — II, preserves decomposition groups in the
sense as in the statement of Theorem 4.2.2, then this isomorphism is geometric.

On the other hand, the following theorem reduces the group-theoretic characterization
of decomposition groups to the group-theoretic determination of whether or not the sets
of rational points of hyperbolic curves are empty:

Theorem 4.2.4 (cf. [18, Corollary 2.10])

—~cl
The map z; — Dz from X; to the set of closed subgroups of m(U;) is injective. For
each open subgroup G; C Gg,, S(G;)5™ C S(G;) is characterized by:
si € S(G)5*" <= (X;), (Li) # O for all open subgroups H; C m1(U;) such that s;(G;) C H,.
Here, L; = KG
Moreover, suppose that the commutative diagram

7T1(U1) %) 7T1(U2)

prli iprz

Gk, —— Gk,

aK

satisfies the following condition: For all open subgroups G1 C Gk, and all s; € S(G1),
we have:
s1 € S(G1)8°™ <= a o500y € S(akg(Gy))Ee™.

~cl
Then a closed subgroup of m(Uy) is the decomposition group of a point of ch if and
only if the image of the closed subgroup by « is the decomposition group of a point of
—~cl
X5 .
Remark 4.2.5
In the original statement of Corollary 2.10 of [18], an explicit characterization of de-

composition groups by using the data on whether or not the hyperbolic curve and its
coverings admit rational points is given.
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The following two lemmas are used to prove the main theorem (Theorem 4.2.8):

Lemma 4.2.6 (cf. [18, Theorem 2.8, Remark 2.11|)
Let G C G; be open subgroups of Gk,. Then, for s; € S(G}),

Si|G; S S(G;)geom <~ S; € S(Gi)geom‘

Lemma 4.2.7
There exists an open subgroup H; C m(U;) such that g, > 2.

Proof.

We show this lemma by an argument similar to that of the proof of |18, Proposition
2.8].

By [18, Lemma 1.10], there exists an open normal subgroup H of 71 (U; X spec i, Spec K;)
such that the corresponding covering (X;)y is of genus at least 2. It suffices to show that
there exists an open subgroup H C m(U;) such that H N 71 (U; Xspec ik, Spec K;) C H.
Suppose that there are no such subgroups of 71 (U;). Then the family {(H N7 (U; Xspec k;
Spec K;)) \ H }acm (i)open OF closed subsets of 1 (U; Xspec i; Spec K;) has the finite in-
tersection property. Indeed, assuming that

N
((H; N7 (Us Xspec, Spec K7) \ H) =0,

j=1

N
for some open subgroups H; C m(U)(1 < j < N, N € Z-,), we have (ﬂ Hj) N
j=1
(Ui Xspec i; Spec K;) C H, which contradicts our assumption. Thus, by the compact-
ness of 71 (U; Xspec i; Spec K;), we obtain

(| (HNm(Ui Xspecr, Spec K;)) \ H) # 0.
‘HC71(U;):0open
However, we have
(1 (HNm(Ui Xspeer, Spec K;)) = {1} € H.
HCn1(U;):open

This is a contradiction.
O

Theorem 4.2.8
Suppose that there exist an open subgroup Ho C m(Ur) and a divisor m > 1 of gy, — 1
such that:

ik (X)) (K1) = i) (X2)a@ (K2)ay))  mod m,

for all open subgroups H of m(Uy) satisfying H C Ho. Then, for all open subgroups
G1 C Gk, and all s; € S(G4), we have

s1€ S(G)**™ <= aosioag € S(ag(Gr))=™.
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Proof.

Take any open subgroup G; C Gg, and any s; € S(G;). By Lemma 4.2.7, there
exists an open subgroup H;, of 71 (Uy) such that Hy C Ho and that gy, > 2. Then, by |6,
Lemma 1.3.9], we obtain ga ) = guy > 2. G = pry(s1(G1) NHy) is an open subgroup
of G, such that s1(G}) C H. Set Ly := KGI and Lo := EQK(Gl)
all open subgroups H of m(U;) satisfying H C Hj, we have

i(r)p (XD)#(K1)n)) = i(ia)am (X2)a@o (K2)amy))  mod m.

So, by Theorem 2.4.1, for all open subgroup H of m(Uy) satisfying s1(G}) C H C Hy,
we have

. By assumption, for

(XD)u(L1) # 0 = (X2)a@)(L2) # 0.
Thus, by Theorem 4.2.4,

sila; € S(G)E™ == s2lak(ay) € S(ax(Gh))5,
where sy == @05, 0 a}l € S(ak(Gy)). Therefore, by Lemma 4.2.6, we obtain
S1 € S(Gl)geom < S9 € S(aK(Gl))geom.
O

Corollary 4.2.9
Suppose that there exist an open subgroup Ho C m(Ur) and a divisor m > 1 of qz, — 1
such that:

i) (XD u((K1)n)) = 655) a0 (X2)a) (K2)a@y))  mod m,

for all open subgroups H of w1 (Uy) satisfying H C Ho. Then « arises from a unique
isomorphism of schemes Uy — U, (more precisely, Uy 5 Us).
Proof.

Immediate from Theorems 4.2.2, 4.2.4 and 4.2.8.
U

4.3. Group-theoreticity of i-invariants.
We follow the notations of the previous section. Suppose that we are given an isomor-
phism of profinite groups « : 71 (U;) = m1(Us).

Theorem 4.3.1 (cf. [6, Theorem 2.7])
For v = 1, 2, suppose that X; is of genus g; > 2 and that X; has a stable model X;
over Ok,. Set (X)), = X; X Spec O, Speck;. Then an isomorphism of profinite groups

71 (X1) = 71 (Xs) induces the following commutative diagram:

7T1(X1) *N> 7T1(X2)

L

Gr, —— G,

Moreover, the isomorphism induces the following commutative diagram of schemes:
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(%1)161 —— (%Q)kz

L

Spec ki —— Spec ks

This correspondence s functorial in the following sense: Define X;, K;, etc. fori =3
in the same manner as fori =1, 2 and suppose that X3 has a stable model X5 over Ok,
Moreover, we assume that we are given isomorphisms of profinite groups ;= m(X;) =

m(X;) for 1 < i < j < 3. Let fi; : (Xi)r, — (X)), be the isomorphism of schemes
induced by ;. Then oz = oz 0 aqg tmplies fi3 = faz o fia.

Remark 4.3.2

Theorem 2.7 of [6] shows a stronger result including the data of log structures of schemes
without assuming the properness of hyperbolic curves. However, we do not use this result
in the present paper.

The following theorem shows that the i-invariants (mod 2) of the sets of rational points
of hyperbolic curves are group-theoretic in a certain situation:

Theorem 4.3.3
Suppose that p is odd. Moreover, for i = 1, 2, assume that X; is of genus g; > 2 and
that X; has log smooth reduction. Then we have

irc (X1(K1)) = g, (Xo(EK»))  mod 2.

Proof.
Note that we obtain the following commutative diagram from the isomorphism « :
71 (Uy) = 71 (Us) by [6, Lemma 1.3.9]:

’/Tl(Ul) L>7T1([]2)

L

7T1(X1) *N> 7T1(X2)

L

Gr, —— G,

There exists a finite tamely ramified extension L;/K; such that (X1)r, := X1 Xspec iy

Spec Ly has a stable model X; over Op,,. Then, Ly := EQK(G“) is a finite tamely ramified
extension of Ky by Proposition 4.2.1(iii). Moreover, (X2)r, := X5 Xgpec k, Spec Lo has a
stable model X5 over Oy, (cf. Remark 4.3.4) . Let kg, (resp. kz,) be the residue field
of Ly (resp. Ls).

By Theorem 4.3.1, the isomorphism of profinite groups 71 (X;) = m(X5) induces the
following commutative diagram:
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m((X1)1,) —— m((X2)L,)

7T1(X1) = 7T1<X2>

Gk,

Gk,

Gal(L1/K,) —— Gal(Ly/ K>)

Again by Theorem 4.3.1, the induced isomorphism of special fibers and the Galois
actions on the fibers make the following commutative diagram:

(X0)ky, — (X2,
S 5
Gal (Ll/K1> /= Gal(Lg/Kg)

Now the theorem is immediate from Corollary 3.5.5 and Remark 3.5.6.
O

Remark 4.3.4

Suppose that we are given an isomorphism of profinite groups a : m(X;) — m(X3).
Then, by [6, Lemma 2.1], X; has stable reduction if and only if X5 has stable reduction.
On the other hand, by Proposition 4.2.1(ii) and [13|, X; has log smooth reduction if
and only of X5 has log smooth reduction. Moreover, if L; is a finite tamely ramified

extension of K such that (Xi)z, := X1 Xgpeck; Opec Ly has a stable model over Oy,

(X2)1, := X2 Xspec K, Spec Ly has a stable model over Oy, where Ly := EQK(G“) is a

finite tamely ramified extension of K5 by Proposition 4.2.1(iii).

Remark 4.3.5
If we prove Theorem 4.3.3 without assuming that X; has log smooth reduction, we can
prove, by using Corollary 4.2.9, the absolute p-adic Grothendieck conjecture for p odd.

In the case where X; has stable reduction over Og,, the following theorem holds
without assuming p # 2:

Theorem 4.3.6
For i =1, 2, suppose that X; is of genus g; > 2 and that X; has a stable model X; over
Ok,. Moreover, assume that all nodes of (X;)x, (ki) are split. Then we have

ir, (X1(K1)) = ik, (Xa(K32))  mod (¢ —1).

Proof.
Immediate from Corollary 3.2.3 and Theorem 4.3.1.
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Remark 4.3.7
By Theorem 4.3.1 and |6, Lemma 2.1], X has a stable model X; over Ok, and all nodes
of (X1)y, are split if and only if X, satisfies the similar conditions.

Appendix A. A REAL ANALOGUE

In Chapter 2, we gave a criterion for existence of rational points of proper, smooth
and geometrically connected hyperbolic curves over K in terms of i-invariants, where K
is a finite extension of Q,. On the other hand, for a proper, smooth and geometrically
connected hyperbolic curve X over R, the number of connected components |7y (X (R))]
of the set X (R) of R-rational points of X may be considered as an analogue of the
i-invariants. In this appendix, we show that |mo(X(R))| may be recovered from the
arithmetic fundamental group of X.

In the following, let X be a proper, smooth and geometrically connected hyperbolic
curve over R, X (R) the set of R-rational points of X, g (> 2) the genus of X and 7*'(X)
the arithmetic fundamental group of X. Set n(X) := |m(X(R))|. For a real manifold
Y, we denote the usual topological fundamental group of Y by m(Y).

The action of Gg = Gal(C/R) = {1, 7} on the vector space V = 7%(X Xgpecr
Spec C)**®TF, of dimension 2g over Fy defines a homomorphism p : Gg — GL(V). (Here,
T8 (X Xgpeck Spec C) is the arithmetic fundamental group of X Xgpecr Spec C.) Let rx
be the rank of p(7) — 1 € End(V). Clearly, rx may be recovered group-theoretically
from 7*'8(X) — Gr.

The following is a key proposition for the group-theoretic recoverability of n(X):

Proposition A.0.1 (cf. [1, Proposition 4.4])
(i)  Ifn(X) >0, then:
rx +n(X)=g+ 1.

veaff)

Here, [g} 15 the largest integer less than or equal to g

(i) Ifn(X)=0, then:

Remark A.0.2
In [1, Proposition 4.4], rx is denoted by rank (H).

Except for the case where g+ 1 —n(X) =2 [g} holds, n(X) can be recovered imme-

diately from rx by using Proposition A.0.1 (this recovery is clearly group-theoretic). On

the other hand, we may not distinguish the following cases (where g+ 1 —n(X) = 2 [Q}

holds) from the case where n(X) = 0 only by the data of rx: ?
(i) giseven and n(X) = 1.
(ii) g is odd and n(X) = 2.
We distinguish these cases from the case where n(X) = 0 by using the data of coverings
of X.
Let J be the Jacobian of X, J(R) the set of R-rational points of X and J(R)® the
connected component of J(R) which contains the unit element of the abelian group
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J(R). By [1, Proposition 1.1], there exists a finite abelian group G such that G ~
(Z/2Z)®N (0 < N < g) and that the following split exact sequence exists:

0— J(R) - J(R) = G — 0.
Since J(R)? ~ (R/Z)®, we have J(R) ~ (R/Z)% @ G.

Proposition A.0.3
If n(X) # 0, there exists a finite étale covering X' of X such that X' is geometrically
connected over R and of odd genus, and that n(X') > 2.

Proof.

Since n(X) # 0, we have X (R) # ). So, by taking a point of X (R), we obtain a closed
immersion j : X — J. Let 2; : J — J stand for multiplication by 2 on J. We define
Xy =X x; J by the following diagram:

Xyi= X x;J ——=J

J/ O \L2J
) Q— J

X, is a finite étale covering of X and geometrically connected over R. Let v (= 2%9) be the
degree of Xy — X and g5 the genus of X5. By Hurwitz formula, we have g, = v(g—1)+1.
Since v is a positive power of 2, g5 is odd.

Let my(X) (resp. mo(X)) be the number of the connected components of X (R)
which are contained (resp. not contained) in J(R)?. Then we have m;(X) > 0 and
n(X) =my(X) + ma(X).

Set:

JR) = [J(e+I®)) = [T 4
oeG oceG
For each o0 € G, A, surjects onto J(R)? by multiplication by 2. By translating by o, we
see that it is isomorphic to the covering J(R)? — J(R)? defined by multiplication by 2.
The latter covering corresponds to the surjection 71 (J(R)%)(x~ Z®9) — (Z/27.)%9.

On the other hand, since m(X) > 0, we may take a connected component C of X (R)
which is contained in J(R)° and fix it. As C' is a compact manifold of dimension 1 over
R, C' is homeomorphic to S' and we have m(C) ~ Z. Thus, the image of 7,(C) in
(Z/27,)%9 is trivial or isomorphic to Z/2Z, in particular, the index of the image of m1(C)
in (Z/27)% is at least 297!, This shows that the inverse image of C' by the covering
A, — J(R)" induced by multiplication by 2 has at least 297! connected components.
Denote m, by the number of the connected components of X5(R) which are contained
in A,. Then we have:

297 'my (X)) < my < 29my (X).
Summing over o € (G, we obtain:
|G| - 297 'my (X) < n(Xy) < |G- 29m,(X).

(Note that Zma = n(X3).) In particular, we have n(X,) > 2971, So, if g > 2, we may
oeG

take X5 for X'.
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If g = 2, we have g5 > 2. Therefore, by applying the same argument for Xs, we obtain
a curve with the desired properties.
O

Corollary A.0.4
n(X) = |mo(X (R))| may be recovered group-theoretically from n™8(X) — Gg

Proof.
By Proposition A.0.3, whether n(X) = 0 or not is determined group-theoretically.
Now the proposition is immediate from Proposition A.0.1.
U

Remark A.0.5
In [4, Corollary 3.13|, a real analogue of the section conjecture is proved. Corollary A.0.4
also follows from this result.
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