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A p-ADIC ANALYTIC APPROACH TO THE ABSOLUTE

GROTHENDIECK CONJECTURE

TAKAHIRO MUROTANI

Abstract. Let K be a �eld, GK the absolute Galois group of K, X a hyperbolic
curve over K, and π1(X) the étale fundamental group of X. The absolute Grothendieck
conjecture in anabelian geometry asks: Is it possible to recover X group-theoretically,
solely from π1(X) (not π1(X) ↠ GK)?

When K is a p-adic �eld (i.e. a �nite extension of Qp), this conjecture (called the
p-adic absolute Grothendieck conjecture) is unsolved. To approach this problem, we
introduce a certain p-adic analytic invariant de�ned by Serre (which we call i-invariant).
Then, the absolute p-adic Grothendieck conjecture can be reduced to the following
problems: (A) determining whether a proper hyperbolic curve admits a rational point
from the data of i-invariants of the sets of rational points of the curve and its coverings;
(B) recovering the i-invariant of the set of rational points of a proper hyperbolic curve
group-theoretically. The main results of the present paper give a complete a�rmative
answer to (A) and a partial a�rmative answer to (B).

1. Introduction

Grothendieck proposed the following conjecture in Esquisse d'un Programme and Brief
an G. Faltings （cf. [14]）:

Conjecture 1.0.1

Let K be a �eld �nitely generated over the prime �eld. The geometry of an �anabelian�
variety V over K is completely determined by the arithmetic fundamental group π1(V, ξ)
and the surjection π1(V, ξ) ↠ π1(SpecK, ξ)(≃ Gal(Ksep/K)) (where ξ is a geometric
point of V and Ksep is a separable closure of K).

Although Grothendieck did not give the de�nition of �anabelian� varieties, he made
the following conjecture:

In the case where V is a connected and nonsingular scheme of dimension
1, V is �anabelian� if and only if its Euler-Poincaré characteristic χ is
negative.

More precisely, let Y be the smooth compacti�cation of V , g the genus of Y and n the
number of geometric points of Y \ V . Then we have χ = 2 − 2g − n. So, the above
conjecture states that V is �anabelian� if and only if 2g+ n− 2 > 0 (we call such curves
hyperbolic curves). In the case where K is of characteristic 0, this condition is equivalent
to the condition that the geometric fundamental group of V (i.e. the étale fundamental
group of V ×SpecK SpecK, where K is an algebraic closure of K) is not commutative.
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Conjecture 1.0.1 for hyperbolic curves over K of characteristic 0 was partially resolved
a�rmatively by Nakamura [10],[11] (for K �nitely generated over Q and g = 0) and
Tamagawa [18] (for K �nitely generated over Q and n ̸= 0), and then, Mochizuki [3] gave
the following �nal solution (which is stronger than Grothendieck's original conjecture):

Theorem 1.0.2 (cf. [3, Theorem A], [6, Theorem 1.3.4])
Let p be a prime number, K a sub-p-adic �eld (i.e. a �eld which is isomorphic to
a sub�eld of a �nitely generated extension of Qp) and GK the absolute Galois group
of K. Let X and Y be hyperbolic curves over K. Denote by π1(X) (resp. π1(Y ))
the arithmetic fundamental group of X (resp. Y); by ∆X (resp. ∆Y ) the geometric
fundamental group of X (resp. Y ); by IsomK(X, Y ) the set of K-isomorphisms X

∼→ Y ;
by IsomOut

GK
(π1(X), π1(Y )) the set of ∆Y -conjugacy classes of isomorphisms π1(X)

∼→
π1(Y ) which are compatible with the surjections to GK. Then the natural map

IsomK(X, Y ) → IsomOut
GK

(π1(X), π1(Y ))

is bijective.

In the above problems, we �x a �eld K and consider group isomorphisms over the
absolute Galois group GK . So, these results may be thought as �relative� results. On the
other hand, in [6], Mochizuki proposed �absolute� analogues of these results (i.e. con-
sidering similar problems without �xing K and GK) and proved the following �absolute�
Grothendieck conjecture in the case where base �elds are algebraic number �elds:

Theorem 1.0.3 (cf. [6, Corollary 1.3.5])
Let X (resp. Y ) be a hyperbolic curve over an algebraic number �eld K (resp. L).
Denote by π1(X) (resp. π1(Y )) the arithmetic fundamental group of X (resp. Y ); by
Isom(X, Y ) the set of isomorphisms of schemes X

∼→ Y ; by IsomOut(π1(X), π1(Y ))

the set of π1(Y )-conjugacy classes of isomorphisms of pro�nite groups π1(X)
∼→ π1(Y ).

Then the natural map

Isom(X, Y ) → IsomOut(π1(X), π1(Y ))

is bijective.

In the proof of this theorem, the theorem of Neukirch-Uchida（[12, Theorem 12.2.1]）
plays an important role. On the other hand, the analogue of the theorem of Neukirch-
Uchida for p-adic �elds (i.e. �nite extensions of Qp) fails to hold (there is a counterex-
ample (cf. [12, Chapter VII, �5])). So, the same method is not available. Although some
a�rmative results were proved (in the cases where the hyperbolic curves are �canonical
lifting� (cf. [5]) or �of Belyi type� (cf. [7]), etc.), it is unknown whether or not the
�absolute p-adic Grothendieck conjecture� holds in general.
On the other hand, the following theorem reduces the �absolute p-adic Grothendieck

conjecture� to the group-theoretic characterization of decomposition groups:

Theorem 1.0.4 (cf. [8, Corollary 2.9], Theorem 4.2.2)
For i = 1, 2, let pi be a prime number, Ki a �nite extension of Qpi, Ui a smooth and
geometrically connected hyperbolic curve over Ki, Xi the smooth compacti�cation of Ui,

Ũi the universal covering of Ui, X̃i the integral closure of Xi in Ũi and X̃i

cl
the set of
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closed points of X̃i. Suppose that an isomorphism of pro�nite groups α : π1(U1)
∼→ π1(U2)

satis�es the following condition: A closed subgroup of π1(U1) is the decomposition group

of a point of X̃1

cl
if and only if the image of the subgroup by α is the decomposition

group of a point of X̃2

cl
. Then p1 = p2, and α is geometric, i.e. arises from a unique

isomorphism of schemes U1
∼→ U2 (more precisely, Ũ1

∼→ Ũ2).

Moreover, the following theorem reduces the group-theoretic characterization of de-
composition groups to the group-theoretic determination of whether or not the sets of
rational points of hyperbolic curves are empty (for notations and terms, see Section 4.1):

Theorem 1.0.5 (cf. [18, Corollary 2.10], Theorem 4.2.4)
We follow the notations in Theorem 1.0.4. Let GKi

be the absolute Galois group of Ki.

The map x̃i 7→ Dx̃i
from X̃i

cl
to the set of closed subgroups of π1(Ui) is injective, where

Dx̃i
is the decomposition group of x̃i. For each open subgroup Gi ⊂ GKi

, the set of
geometric sections S(Gi)

geom ⊂ S(Gi) is characterized by:

si ∈ S(Gi)
geom ⇐⇒ (Xi)Hi

(Li) ̸= ∅ for all open subgroups Hi ⊂ π1(Ui) such that si(Gi) ⊂ Hi.

Here, Li = Ki
Gi
.

Moreover, suppose that the commutative diagram

π1(U1)
∼
α

//

pr1
����

π1(U2)

pr2
����

GK1

∼
αK

// GK2

satis�es the following condition: For all open subgroups G1 ⊂ GK1 and all s1 ∈ S(G1),
we have:

s1 ∈ S(G1)
geom ⇐⇒ α ◦ s1 ◦ α−1

K ∈ S(αK(G1))
geom.

Then a closed subgroup of π1(U1) is the decomposition group of a point of X̃1

cl
if and

only if the image of the closed subgroup by α is the decomposition group of a point of

X̃2

cl
.

The above theorems reduce the absolute p-adic Grothendieck conjecture to the group-
theoretic determination of whether or not the sets of rational points of hyperbolic curves
and their coverings are empty. Here, we note that for a �nite extension K of Qp and
a proper, smooth and geometrically connected hyperbolic curve X over K, X(K) has
a natural structure of compact analytic manifold over K. We shall introduce the �i-
invariant� of compact analytic manifold over K （cf. Section 2.1） which was de�ned
by Serre. Roughly speaking, the fact that any compact analytic manifold over K is
the disjoint union of a �nite number of (closed) balls and the number of balls is well
determined modulo (q − 1) (where q is the cardinality of the residue �eld of K) allows
us to de�ne the i-invariant of the manifold (over K) as the �number of balls modulo
(q − 1)�. Clearly, if the i-invariant of X(K) is not 0, X(K) is not empty. However, the
converse is not true in general. So, in some sense, the i-invariant is �weaker� data than
the data of whether or not the set of rational points is empty. In other words, we may
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expect that the group-theoretic �recovery� of the i-invariant is easier than that of the
latter data.
In terms of the i-invariants, the absolute p-adic Grothendieck conjecture is reduced to

the following two problems:

(A) 　May the decomposition groups be recovered from the data of i-invariants of
the sets of rational points of hyperbolic curves and their coverings?

(B) 　May the i-invariants of the sets of rational points of hyperbolic curves be recov-
ered group-theoretically from the arithmetic fundamental groups of the curves?

The present paper gives a complete a�rmative answer to (A) and a partial a�rmative
answer to (B).
In the following, for i = 1, 2, let pi be a prime number, Ki a �nite extension of

Qpi , qi the cardinality of the residue �eld of Ki, GKi
the absolute Galois group of Ki,

Ui a smooth and geometrically connected hyperbolic curve over Ki and Xi the smooth
compacti�cation of Ui. Denote the arithmetic fundamental group of Ui by π1(Ui) and
assume that we are given an isomorphism of pro�nite groups α : π1(U1)

∼→ π1(U2). Then
we have p1 = p2 and q1 = q2 (cf. Proposition 4.2.1). Thus, we shall write p := p1 = p2
and q := q1 = q2. For each open subgroup H ⊂ π1(Ui), let (Ui)H be the covering of
Ui corresponding to H, (Xi)H the smooth compacti�cation of (Ui)H, (Ki)H the integral
closure of Ki in (Ui)H and qH the cardinality of the residue �eld of (Ki)H. Then (Ki)H
is a �nite extension of Ki. The set (Xi)H((Ki)H) of (Ki)H-rational points of (Xi)H has
a natural structure of compact analytic manifold over (Ki)H. Denote the i-invariant of
this manifold over (Ki)H by i(Ki)H((Xi)H((Ki)H)).
The following is the �rst main theorem of the present paper, which shows together with

Theorem 1.0.5 that the data of whether or not the sets of rational points of hyperbolic
curves are empty may be recovered from the data of i-invariants of the sets of rational
points of the hyperbolic curves and their coverings:

Theorem 1.0.6 (cf. Theorem 4.2.8)
Suppose that there exist an open subgroup H0 ⊂ π1(U1) and a divisor m > 1 of qH0 − 1
such that:

i(K1)H((X1)H((K1)H)) ≡ i(K2)α(H)
((X2)α(H)((K2)α(H))) mod m,

for all open subgroups H of π1(U1) satisfying H ⊂ H0. Then, for all open subgroups
G1 ⊂ GK1 and all s1 ∈ S(G1), we have

s1 ∈ S(G1)
geom ⇐⇒ α ◦ s1 ◦ α−1

K ∈ S(αK(G1))
geom.

The following is the second main theorem of the present paper, which shows that the
i-invariants (mod 2) of the sets of rational points of hyperbolic curves are group-theoretic
in a certain situation:

Theorem 1.0.7 (cf. Theorem 4.3.3)
Suppose that p is odd. Moreover, for i = 1, 2, assume that Xi is of genus gi ≥ 2 and
that Xi has log smooth reduction. Then we have

iK1(X1(K1)) ≡ iK2(X2(K2)) mod 2.

For the de�nition of log smooth reduction, see Section 3.1.
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Remark 1.0.8

If we prove Theorem 1.0.7 without assuming that Xi has log smooth reduction, we get
the a�rmative answer to (B) for p odd. Then, together with Theorem 1.0.6 (which
a�rms (A)), we can prove the absolute p-adic Grothendieck conjecture for p odd.

We shall review the contents of the present paper. In Chapter 2, we treat problem (A).
First, we review the de�nition of analytic manifolds and i-invariants. Then, embedding a
proper, smooth and geometrically connected hyperbolic curve X over a �nite extension
K of Qp into the Jacobian J , we make some p-adic analytic and algebro-geometric
observations. These observations imply that X(K) is not empty if and only if there
exists a �nite étale covering X ′ of X such that the i-invariant of set of K-rational points
ofX ′ overK is not 0. In Chapter 3, we treat problem (B). First, we review the de�nitions
of models and reductions of curves. There exists a �nite Galois extension L/K such that
X×SpecKSpecL has a unique stable model X by the Deligne-Mumford theorem (Theorem
3.1.11). X(K) is characterized as the Galois-invariant subset of X(L). From this point
of view, we investigate the i-invariant of X(K). We describe explicitly the Galois action
on the inverse image by the reduction map of a rational point of the special �ber of X,
and then, calculate the i-invariant of the Galois-invariant subset of the inverse image of
each rational point of the special �ber. In Chapter 4, applying the arguments in Chapter
2 and Chapter 3, we prove the main theorems. In Appendix A, we treat an analogue
over R of the i-invariant and the criterion for existence of rational points of hyperbolic
curves given in Chapter 2.

Acknowledgement

I would like to express my deepest gratitude to Professor Akio Tamagawa for his
helpful advices and warm encouragement.

2. i-invariants and rational points

Let p be a prime number, K a �nite extension of Qp, X a proper, smooth and geo-
metrically connected hyperbolic curve over K. Then, X(K) has a natural structure of
compact analytic manifold over K, where X(K) denotes the set of K-rational points of
X. In this chapter, we prove that one may recover whether X(K) is empty or not from
the i-invariants of the sets of K-rational points of X and its coverings.

2.1. The de�nition and properties of i-invariants.
In this section, we will review the de�nition of analytic manifolds and i-invariants

according to [16]. Let K be a �eld complete with respect to a non-trivial absolute value,
X a topological space. In the following sections, we consider the case in which K is a
�nite extension of Qp and X is the set X(K) of K-rational points of a proper, smooth
and geometrically connected hyperbolic curve X.

De�nition 2.1.1

Let x = (x1, · · · , xn) ∈ Kn and r = (r1, · · · , rn) ∈ Rn (ri > 0, 1 ≤ i ≤ n). We set

P (r)(x) := {y = (y1, · · · , yn) ∈ Kn | |yi − xi| ≤ ri (1 ≤ i ≤ n)},
and P (r) := P (r)(0).
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De�nition 2.1.2 (cf. [16, Part II, Chapter II])

Let f =
∑
i

aiX
mi, 1

1 · · ·Xmi, n
n ∈ K[[X1, · · · , Xn]] be a formal power series and r =

(r1, · · · , rn) ∈ Rn (ri > 0, 1 ≤ i ≤ n). The series f is said to be convergent on P (r) if∑
i

|ai|r
mi, 1

1 · · · rmi, n
n <∞.

The series f is said to be convergent if it is convergent on P (r) for some r = (r1, · · · , rn) ∈
Rn (ri > 0, 1 ≤ i ≤ n).

De�nition 2.1.3 (cf. [16, Part II, Chapter II])
Let U ⊂ Kn be an open subset and ϕ : U → K a function. Then ϕ is said to be analytic
in U if for each x ∈ U there is a formal power series f and a radius r = (r1, · · · , rn) ∈
Rn (ri > 0, 1 ≤ i ≤ n) such that:

(1) 　 P (r)(x) ⊂ U .
(2) 　 f converges in P (r) and, for h ∈ P (r), ϕ(x+ h) = f(h).

De�nition 2.1.4 (cf. [16, Part II, Chapter II])
Let U ⊂ Kn be an open subset and ϕ = (ϕ1, · · · , ϕm) : U → Km a function. Then ϕ is
said to be analytic if ϕi is analytic for 1 ≤ i ≤ m.

De�nition 2.1.5 (cf. [16, Part II, Chapter III, 1])
A chart c on X is a triple c = (U, ϕ, n) such that:

(1) U ⊂ X is an open subset.
(2) n ∈ Z≥0.

(3) ϕ : U → Kn is an open map and induces a homeomorphism U
∼→ ϕ(U).

We call O(c) := U the open set of c, ϕ the map of c, and n the dimension of c.

De�nition 2.1.6 (cf. [16, Part II, Chapter III, 1])
Let c = (U, ϕ, n) and c′ = (U ′, ϕ′, n′) be charts on X. Then c and c′ are said to be
compatible if, setting V = U ∩ U ′, the maps ϕ′ ◦ ϕ−1|ϕ(V ) and ϕ ◦ ϕ′−1|ϕ′(V ) are analytic.

De�nition 2.1.7 (cf. [16, Part II, Chapter III, 1])

A family {ci}i∈I of charts on X is said to cover X if
∪
i∈I

O(ci) = X.

De�nition 2.1.8 (cf. [16, Part II, Chapter III, 1])
An atlas A on X is a family of charts on X which covers X and such that the charts in
the family are mutually compatible.

De�nition 2.1.9 (cf. [16, Part II, Chapter III, 1])
Two atlases A and A′ are said to be compatible if one of the following equivalent conditions
holds:

(1) 　A ∪ A′ is an atlas on X.
(2) 　 If c ∈ A and c′ ∈ A′, then c and c′ are compatible.

Remark 2.1.10 (cf. [16, Part II, Chapter III, 1])
Compatibility of atlases is an equivalence relation.
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De�nition 2.1.11 (cf. [16, Part II, Chapter III, 2])
An atlas A on X is full if whenever c is a chart on X such that c is compatible with all
charts c′ ∈ A then c ∈ A. Then it is clear that each equivalence class of atlases on X
contains exactly one full atlas.

De�nition 2.1.12 (cf. [16, Part II, Chapter III, 2])
An analytic manifold (over K) is a topological space equipped with a full atlas on it.

De�nition 2.1.13 (cf. [16, Part II, Chapter III, 2])
Let X be an analytic manifold. For x ∈ X, dimxX is de�ned as the dimension of any
chart c on X such that x ∈ O(c); it is called the dimension of X at x. The function
x 7→ dimxX is locally constant on X; if it is constant, and equal to n, one says that X
is everywhere of dimension n.

De�nition 2.1.14 (cf. [16, Part II, Chapter III, 3])
Let n ∈ Z≥0, x = (x1, · · · , xn) ∈ Kn and r ∈ R>0. Then, the (closed) ball B(r)(x) of
radius r centered at x is de�ned as follows:

B(r)(x) := {y = (y1, · · · , yn) ∈ Kn | |yi − xi| ≤ r, (1 ≤ i ≤ n)}.

Remark 2.1.15

It is clear that B(r)(x) = P (r, · · · , r)(x) by de�nition.

Remark 2.1.16 (cf. [16, Part II, Chapter III, Appendix 2, Remark])
If K is ultrametric, all points of a ball B in Kn is the center of B. Moreover, if Bi are
balls of radius ri for i = 1, 2 and r1 ≤ r2, then either B1 ∩B2 = ∅ or B1 ⊂ B2.

De�nition 2.1.17 (cf. [16, Part II, Chapter III, 3])
Let X be an analytic manifold and B a subset of X. Then B is said to be a ball if there
is a chart c = (U, ϕ, n) such that B ⊂ U and ϕ(B) is a ball in Kn.

De�nition 2.1.18 (cf. [16, Part II, Chapter III, 11])
Let X be an analytic manifold over K and Y a topological subspace of X (with the
induced topology). Let ι : Y → X be the inclusion map. Then Y is said to be an
analytic submanifold of X if for all y ∈ Y , there exist an open neighborhood V of y in
Y , a chart c = (U, ϕ, n) on X, and a linear subspace E of Kn such that ι(V ) ⊂ U and
ϕ(ι(V )) = E ∩ϕ(U). In this case, an analytic manifold structure is naturally induced on
Y .

Until the end of this section, we assume moreover that K is locally compact and
ultrametric, and let X be an analytic manifold everywhere of dimension n(∈ Z≥0). We
assume that X is non-empty and Hausdor� as a topological space.

Remark 2.1.19

For a topological �eld K, the following are equivalent:

(1) K satis�es the above conditions.
(2) K is a complete discrete valuation �eld and the residue �eld is �nite.
(3) K is a �nite extension of Qp or Fp((t)).

Until the end of this section, we denote the cardinality of the residue �eld of K by q.
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Theorem 2.1.20 (cf. [16, Part II, Chapter III, Appendix 2, Theorem 2])
Suppose that X is non-empty and compact. Then:

(1) 　X is the disjoint union of a �nite number of balls.
(2) 　The number of balls in a decomposition of X into a disjoint union of a �nite

number of balls is well determined mod (q − 1).

De�nition 2.1.21

Let X be a non-empty and compact analytic manifold over K. We call the number of
balls iK(X) ∈ Z/(q− 1)Z in Theorem 2.1.20 the i-invariant of X over K. Moreover, we
set iK(∅) ≡ 0 mod (q − 1).

Remark 2.1.22 (cf. [16, Part II, Chapter III, Appendix 2, Theorem 2])
If X is a non-empty compact analytic manifold over K, the isomorphism class of X is
determined by iK(X) ∈ Z/(q − 1)Z.

Remark 2.1.23

Let L be an extension of K of �nite degree d (∈ Z>0) and qL the cardinality of the residue
�eld of L. Then, a ball of dimension n over L is isomorphic to a ball of dimension nd
over K as an analytic manifold over K. Let Y be a compact analytic manifold over L,
iL(Y ) ∈ Z/(qL − 1)Z the i-invariant of Y over L and iK(Y ) ∈ Z/(q− 1)Z the i-invariant
of Y over K as an analytic manifold over K. Then, from the above observation, it is
clear that

iL(Y ) ≡ iK(Y ) mod (q − 1).

We will give some examples of computations of i-invariants. Until the end of this
section, letOK be the ring of integers ofK,MK the maximal ideal ofOK , π a uniformizer
of OK and k = OK/MK the residue �eld of OK . (Thus, q is the cardinality of k.) Let v
be the valuation of K such that v(K×) = Z.

Example 2.1.24

We consider Mm
K = πmOK (m ∈ Z≥0) as a metric space with respect to the distance

given by v. Then, by taking the inclusion map Mm
K ↪→ K as a chart, we may consider

Mm
K as a compact analytic manifold over K, and iK(M

m
K) ≡ 1 mod (q − 1).

Similarly, we may consider Mm
K \Mm+1

K as a compact analytic manifold over K, and
iK(M

m
K \Mm+1

K ) ≡ q − 1 ≡ 0 mod (q − 1).

Example 2.1.25

Let Pn
K be a projective space of dimension n (≥ 0) over K and Pn

K(K) the set of K-
rational points of Pn

K . We may consider Pn
K(K) as a compact analytic manifold (every-

where) of dimension n over K. Let [a0, a1, · · · , an] be the coordinates of P ∈ Pn
K(K),

where a0, · · · , an are elements of K and not all zero. By multiplying a constant if neces-
sary, we may assume that ai ∈ OK (0 ≤ i ≤ n) and min

0≤i≤n
v(ai) = 0. Such representation

is unique up to multiplication by units of OK .
Let Pn

k be a projective space of dimension n over k and Pn
k(k) the set of k-rational

points of Pn
k . We denote the image of a ∈ OK in k by a. Then,

[a0, a1, · · · , an] ∈ Pn
k(k).
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This de�nes a map Pn
K(K) → Pn

k(k) and the inverse image of each point of Pn
k(k) is a

ball of dimension n over K.

The cardinality of Pn
k(k) is

qn+1 − 1

q − 1
, and

qn+1 − 1

q − 1
=

n∑
j=0

qj ≡ n+ 1 mod (q − 1).

Therefore, iK(Pn
K(K)) ≡ n+ 1 mod (q − 1).

Here is a key proposition which will be used in the following sections:

Proposition 2.1.26 (cf. [15, �3, Théorème 9, Proposition 11])
Let Y ⊂ ON

K be a closed analytic submanifold everywhere of dimension d over K.

(i) 　For all y = (y1, · · · , yN) ∈ ON
K , Y ∩(y+(πmOK)

N) is either empty or a subset
of ON

K written in the following form for su�ciently large m:

y + πmY ′
y = {(y1 + πmy′1, · · · , yN + πmy′N) ∈ ON

K | (y′1, · · · , y′N) ∈ Y ′
y},

where Y ′
y is a set written in the following form for some permutation σ ∈ SN :

{(xσ(1), · · · , xσ(N)) ∈ ON
K |x1, · · · , xd ∈ OK , xj = φj(x1, · · · , xd) (d+ 1 ≤ j ≤ N)}.

(Here, φd+1(x1, · · · , xd), · · · , φN(x1, · · · , xd) ∈ OK [[x1, · · · , xd]] are power se-
ries which converge on Od

K.) In particular, for su�ciently large m, Y ∩ (y +
(πmOK)

N) is either empty or isomorphic to a ball of dimension d over K. More-
over, given n0 ∈ Z≥0, by taking larger m if necessary, one may take the above
φd+1, · · · , φN so that the coe�cients of terms of degree greater than 1 of φj (d+
1 ≤ j ≤ N) belong to πn0OK.

(ii) 　For y ∈ ON
K and m ∈ Z, we assume that Y ∩ (y+(πmOK)

N) is not empty and
written as y + πmY ′

y as in (i). For all m′ ≥ m, let

(πmOK)
N =

M⨿
j=1

(πmz(j) + (πm′OK)
N)

be the coset decomposition (M (= q(m
′−m)N) ∈ Z>0, z

(j) ∈ ON
K , 1 ≤ j ≤ M).

Then, for each 1 ≤ j ≤ M , Y ∩ (y + πmz(j) + (πm′OK)
N) is either empty or

written as y + πmz(j) + πm′
Y ′
z(j)

(Y ′
z(j)

is a set written in a form similar to Y ′
y in

(i)).
(iii) 　There exists m0 ∈ Z such that for all m ≥ m0, Y is written as a �nite disjoint

union of subsets each of which is written as y + πmY ′
y . Moreover, the number of

such subsets is well determined mod (q − 1).

Proof.
Step 1.

If y ̸∈ Y , it is clear that Y ∩ (y + (πmOK)
N) = ∅ for su�ciently large m, so we

may assume that y ∈ Y . Moreover, by translating if necessary, we may assume that
y = (0, · · · , 0) without loss of generality.
Let V = TyON

K = KN (resp. W = TyY ⊂ V ) be the tangent space of ON
K (resp. Y ) at

y. V is a vector space of dimension N over K and W is a d-dimensional subspace. Take
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a canonical basis {e1, · · · , eN} of V = KN and let ei (1 ≤ i ≤ N) be the images of ei
in V/W . By permuting ei's if necessary, we may assume that {ed+1, · · · , · · · , eN} is a
basis of V/W . Then, there exist ai, j ∈ K (1 ≤ i ≤ d, d+ 1 ≤ j ≤ N) such that

ei =
N∑

j=d+1

ai, jej, (2.1)

for each 1 ≤ i ≤ d. We will show that one may take a permutation of ei's so that the
coe�cients ai, j (1 ≤ i ≤ d, d+ 1 ≤ j ≤ N) belong to OK .
Let us call the formula in (2.1) associated to each 1 ≤ i ≤ d, the i-th formula. First,

we claim that one may permute ei's so that the coe�cients in the �rst formula belong
to OK . If a1, j ∈ OK (d + 1 ≤ j ≤ N), the claim is trivial. Otherwise, by permuting
ed+1, · · · , eN suitably, we may assume that min

d+1≤j≤N
v(a1, j) = v(a1, d+1) < 0. Then,

ed+1 = −a−1
1, d+1e1 +

N∑
j=d+2

a−1
1, d+1a1, jej,

and the coe�cients in the right-hand side belong to OK . By substituting this into the
i-th formula for 2 ≤ i ≤ d and switching e1 and ed+1, we obtain formulae similar to (2.1)
where the coe�cients in the �rst formula belong to OK .
Next, for 1 ≤ i0 < d, we assume that all the coe�cients in the i-th formula for

1 ≤ i ≤ i0 belong to OK . We claim that one may permute ei's so that all the coe�cients
in the i-th formula for 1 ≤ i ≤ i0+1 belong to OK . If ai0+1, j ∈ OK (d+1 ≤ j ≤ N), the
claim is trivial. Otherwise, by permuting ed+1, · · · , eN suitably, we may assume that
min

d+1≤j≤N
v(ai0+1, j) = v(ai0+1, d+1) < 0. Then,

ed+1 = −a−1
i0+1, d+1ei0+1 +

N∑
j=d+2

a−1
i0+1, d+1ai0+1, jej

and the coe�cients in the right-hand side belong to OK . Substitute this into the i-th
formula for i ̸= i0 + 1 and switch ei0+1 and ed+1. Since all the coe�cients in the i-th
formula for 1 ≤ i ≤ i0 belong to OK by assumption, they remain to belong to OK after
the substitution. So, we obtain formulae similar to (2.1) where all the coe�cients in the
i-th formula for 1 ≤ i ≤ i0 + 1 belong to OK .
By induction, we may assume that each ai, j in (2.1) belongs to OK after permuting

ei's suitably.
For each 1 ≤ i ≤ d, set:

e′i = ei −
N∑

j=d+1

ai, jej.

Then, e′i ∈ W . Clearly, these are linearly independent over K, so {e′1, · · · , e′d} is a basis
of W . Each element in W can be written in the following form for some x′i ∈ K (1 ≤
i ≤ d):

d∑
i=1

x′ie
′
i =

d∑
i=1

x′iei −
N∑

j=d+1

d∑
i=1

ai, jx
′
iej.
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Therefore, for xi ∈ K (1 ≤ i ≤ N),

N∑
i=1

xiei ∈ W ⇐⇒ xj = −
d∑

i=1

ai, jxi (d+ 1 ≤ j ≤ N).

Thus, the tangent space of Y at y = (0, · · · , 0) is determined by:

xj = −
d∑

i=1

ai, jxi (d+ 1 ≤ j ≤ N).

Step 2.
By the observation in Step 1, we may permute the order of coordinates so that the

tangent space of Y at y = (0, · · · , 0) is written in the following form for some ai, j ∈
OK (1 ≤ i ≤ d, d+ 1 ≤ j ≤ N):

xj =
d∑

i=1

ai, jxi (d+ 1 ≤ j ≤ N).

(Replace −ai, j in Step 1 by ai, j.) Therefore, there exist power series ψj(x1, · · · , xd) ∈
K[[x1, · · · , xd]] (d + 1 ≤ j ≤ N) which consist of terms of degree greater than 1 and
converge on some neighborhood (which does not necessarily contain Od

K) such that Y is
determined by the following family of equations in some neighborhood of y = (0, · · · , 0):

xj =
d∑

i=1

ai, jxi + ψj(x1, · · · , xd) (d+ 1 ≤ j ≤ N).

We may take su�ciently large m ∈ Z so that by putting xi = πmzi (1 ≤ i ≤ N),
π−mψj(π

mz1, · · · , πmzd) ∈ K[[z1, · · · , zd]] converges onOd
K and belongs toOK [[z1, · · · , zd]]

for all d + 1 ≤ j ≤ N . Denote these power series by ψj,m(z1, · · · , zd). For each

d+ 1 ≤ j ≤ N , set φj(z1, · · · , zd) =
d∑

i=1

ai, jzi + ψj,m(z1, · · · , zd). Then,

Y ∩(πmOK)
N = {(πmz1, · · · , πmzN) ∈ ON

K | zi ∈ OK (1 ≤ i ≤ d), zj = φj(z1, · · · , zd) (d+1 ≤ j ≤ N)}.
Thus, the �rst assertion of (i) follows. The second assertion of (i) follows immedi-
ately from the �rst. The third assertion of (i) is immediate from the de�nition of
φj(x1, · · · , xd). This completes the proof of (i).
Step 3.

Assume that for y ∈ ON
K and m ∈ Z, Y ∩ (y + (πmOK)

N) is written as y + πmY ′
y . We

may assume without loss of generality that Y ′
y is written in the following form for some

power series φd+1(x1, · · · , xd), · · · , φN(x1, · · · , xd) ∈ OK [[x1, · · · , xd]] which converge
on Od

K :

Y ′
y = {(x1, · · · , xd, φd+1(x1, · · · , xd), · · · , φN(x1, · · · , xd)) ∈ ON

K |x1, · · · , xd ∈ OK}.
Given m′ ≥ m, let

(πmOK)
N =

M⨿
j=1

(πmz(j) + (πm′OK)
N) (M ∈ Z>0, z

(j) ∈ ON
K , 1 ≤ j ≤M)
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be the coset decomposition. Then,

Y ∩ (y + (πmOK)
N) =

M⨿
j=1

(Y ∩ (y + πmz(j) + (πm′OK)
N))

=
M⨿
j=1

((y + πmY ′
y) ∩ (y + πmz(j) + (πm′OK)

N))

=
M⨿
j=1

(y + πm(Y ′
y ∩ (z(j) + (πm′−mOK)

N))).

In light of Remark 2.1.16, we may assume that z(j) ∈ Y ′
y if Y

′
y ∩(z(j)+(πm′−mOK)

N) ̸= ∅.
Set m′ −m = n and consider z(j) (1 ≤ j ≤ M) such that Y ′

y ∩ (z(j) + (πnOK)
N) ̸= ∅.

For simplicity, denote z(j) by z = (z1, · · · , zN). Then,
zk = φk(z1, · · · , zd) (d+ 1 ≤ k ≤ N). (2.2)

For w = (w1, · · · , wN) ∈ ON
K , z + πnw ∈ Y ′

y if and only if

zk + πnwk = φk(z1 + πnw1, · · · , zd + πnwd) (d+ 1 ≤ k ≤ N). (2.3)

By (2.2) and (2.3),

πnwk = φk(z1 + πnw1, · · · , zd + πnwd)− φk(z1, · · · , zd) (d+ 1 ≤ k ≤ N).

The right-hand side is the product of πn and some power series φ′
k(w1, · · · , wd) ∈

OK [[w1, · · · , wd]] which converges on Od
K . Therefore,

z + πnw ∈ Y ′
y ⇐⇒ wk = φ′

k(w1, · · · , wd) (d+ 1 ≤ k ≤ N).

Thus, there exists some Y ′
z such that

Y ′
y ∩ (z + (πm′−mOK)

N) = z + πm′−mY ′
z .

This shows that for z(j) such that Y ′
y ∩ (z(j) + (πm′−mOK)

N) ̸= ∅,

Y ∩ (y + πmz(j) + (πm′OK)
N) = y + πmz(j) + πm′

Y ′
z(j) .

This completes the proof of (ii).
Step 4.
It follows from (i) that for each y ∈ Y , there exist my ∈ Z and a set Y ′

y in a certain

form such that Y ∩ (y + (πmyOK)
N) = y + πmyY ′

y . Since Y is compact, we can take a

�nite number of points y(1), · · · , y(n) ∈ Y such that

Y =
n∪

i=1

(Y ∩ (y(i) + (πmiOK)
N)) =

n∪
i=1

(y(i) + πmiY ′
y(i)).

Set m0 = max
1≤i≤n

mi and �x any m ≥ m0. Then there exist �nite subsets Ji of Z>0,

z(i, j) ∈ ON
K (j ∈ Ji) and Y

′
z(i, j)

(written in a form similar to Y ′
y in the statement of (i))

such that
y(i) + πmiY ′

y(i) =
⨿
j∈Ji

(y(i) + πmiz(i, j) + πmY ′
z(i, j)).
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Therefore, Y can be written in the following form:

Y =
n∪

i=1

(y(i) + πmiY ′
y(i)) =

n∪
i=1

⨿
j∈Ji

(y(i) + πmiz(i, j) + πmY ′
z(i, j)). (2.4)

Assume that

(y(i1) + πmi1z(i1, j1) + πmY ′
z(i1, j1)

) ∩ (y(i2) + πmi2z(i2, j2) + πmY ′
z(i2, j2)

) ̸= ∅,

for some 1 ≤ i1 < i2 ≤ n and j1 ∈ Ji1 , j2 ∈ Ji2 . Then,

(y(i1) + πmi1z(i1, j1) + (πmOK)
N) ∩ (y(i2) + πmi2z(i2, j2) + (πmOK)

N) ̸= ∅.

So, by Remark 2.1.16,

y(i1) + πmi1z(i1, j1) + (πmOK)
N = y(i2) + πmi2z(i2, j2) + (πmOK)

N ,

i.e.,

y(i1) + πmi1z(i1, j1) + πmY ′
z(i1, j1)

= y(i2) + πmi2z(i2, j2) + πmY ′
z(i2, j2)

.

Therefore, by removing redundant factors from the union in (2.4), Y can be written as
in the statement of (iii). Note that each factor of this disjoint union is isomorphic to
a ball of dimension d over K. By Theorem 2.1.20, the number of the factors of such
decomposition of Y is well determined mod (q − 1). This completes the proof of (iii),
hence the proof of Proposition 2.1.26.

□

Remark 2.1.27

Théorème 9 and Proposition 11 in [15] treat only the case that K = Qp.

2.2. Some p-adic analytic observations.
Let p be a prime number, K a �nite extension of Qp, OK the ring of integers of K,

MK the maximal ideal of OK , π a uniformizer of OK , k = OK/MK the residue �eld
of OK and q the cardinality of k. Let v be the valuation of K such that v(K×) = Z.
We denote the rami�cation index of K/Qp by e. Let X be a proper, smooth and
geometrically connected hyperbolic curve of genus g (≥ 2) over K. Then, X(K) has a
natural structure of compact analytic manifold everywhere of dimension 1 over K, where
X(K) denotes the set of K-rational points of X.
In this section and the next one, we make some p-adic analytic and algebro-geometric

observations on X(K) to prove the main theorem of this chapter (Theorem 2.4.1).
Let J be the Jacobian of X. If X(K) ̸= ∅, we �x P0 ∈ X(K). Then, P 7→ [L (P −P0)]

determines a closed immersion j : X → J . For m ∈ Z>0, mJ : J → J denotes
multiplication by m on J . We de�ne Xm = X ×J J by the following diagram:

Xm := X ×J J //

��

J

mJ

��
X

j //

□

J

Xm is an étale covering of X.
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Let J(K) be the set of K-rational points of J . J(K) has a structure of abelian group
and compact analytic manifold everywhere of dimension g overK. We have the following
exact sequence [16, Part II, Chapter V, 7, Corollary 4]:

0 → O⊕g
K → J(K) → G→ 0,

for some �nite abelian group G. There exist �nite abelian groups Gp whose order is a
power of p and Gp′ whose order is prime to p such that G ≃ Gp ×Gp′ . Then we obtain
the following exact sequences

0 → O⊕g
K → J(K)p → Gp → 0, (2.5)

0 → 0 → J(K)p
′ → Gp′ → 0,

by taking the p-part and the prime-to-p part of the above exact sequence. Therefore
J(K) ≃ J(K)p × J(K)p

′ ≃ J(K)p ×Gp′ .

Remark 2.2.1

There is a one-to-one correspondence between Xm(K) and J(K) ∩m−1
J (X(K)), and we

have a surjection Xm(K) ↠ X(K)∩m(J(K)). If m is prime to p and |Gp′ |, mJ induces
a bijection J(K) → J(K).

Proposition 2.2.2

We regard X(K) ⊂ J(K) ≃ J(K)p ×Gp′ as analytic manifolds over K as above. Then,
there exists n′ ∈ Z such that for all n ≥ n′ and a ∈ Gp′, X(K) ∩ (pn(J(K)p) × {a}) is
empty or isomorphic to a disjoint union of some copies of a ball of dimension 1 over K
and the number of copies is a power of p.

Proof.
First we claim that X(K) ∩ (pn(J(K)p) × {0}) is empty or isomorphic to a disjoint

union of some copies of a ball of dimension 1 over K and the number of copies is a
power of p for su�ciently large n. In the following, we omit the Gp′-component of
J(K) ≃ J(K)p ×Gp′ .
Let us take any n0 such that pn0 ≥ |Gp|. Then, by (2.5), (pn0OK)

⊕g ⊂ pn0(J(K)p) ⊂
O⊕g

K ⊂ J(K)p. Therefore, (pn0+n1OK)
⊕g ⊂ pn0+n1(J(K)p) ⊂ (pn1OK)

⊕g for all n1 ∈
Z≥0. On the other hand, we have X(K) ∩ (pn1OK)

⊕g ⊂ X(K) ∩ O⊕g
K . In the case

0 ̸∈ X(K)∩O⊕g
K , we may suppose X(K)∩ (pn1OK)

⊕g = ∅ by taking su�ciently large n1.
Otherwise, by Proposition 2.1.26(i), we may suppose that there exist convergent power
series φ2(x1), · · · , φg(x1) which converge on OK , whose coe�cients of terms of degree
greater than 1 belong to pn0OK and which satisfy

X(K) ∩ (pn1OK)
⊕g = {(pn1x1, p

n1φ2(x1), · · · , pn1φg(x1)) ∈ O⊕g
K |x1 ∈ OK}.

If X(K)∩ (pn1OK)
⊕g = ∅, the claim is immediate. So, we may suppose 0 ∈ X(K)∩O⊕g

K

and that X(K) ∩ (pn1OK)
⊕g can be written as above. Then, for each j = 2, · · · , g,

φj(0) = 0.
(pn1OK)

⊕g/(pn0+n1OK)
⊕g is a �nite abelian group whose order is power of p and

pn0+n1(J(K)p)/(pn0+n1OK)
⊕g is a subgroup. Since the coe�cients of terms of degree

greater than 1 of φj(x1) (2 ≤ j ≤ g) belong to pn0OK and φj(0) = 0, the image of
X(K)∩(pn1OK)

⊕g in (pn1OK)
⊕g/(pn0+n1OK)

⊕g is also a subgroup. Therefore, the image
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of X(K) ∩ pn0+n1(J(K)p) in (pn1OK)
⊕g/(pn0+n1OK)

⊕g is a subgroup and its order is a
power of p.
This shows that the number of cosets of (pn0+n1OK)

⊕g in pn0+n1(J(K)p) which inter-
sect nontrivially with X(K) is a power of p. Moreover, by Proposition 2.1.26(ii), the
intersection of each such coset and X(K) is isomorphic to a ball of dimension 1 over K.
Therefore, by taking n ≥ n0 + n1, X(K) ∩ (pn(J(K)p)× {0}) is empty or isomorphic

to a disjoint union of some copies of a ball of dimension 1 over K and the number of
copies is a power of p.
For general a ∈ Gp′ , by translating if necessary, there exists na such that X(K) ∩

(pn(J(K)p)× {a}) is empty or isomorphic to a disjoint union of some copies of a ball of
dimension 1 over K and the number of copies is a power of p for all n ≥ na. Since Gp′

is a �nite group, X(K) ∩ (pn(J(K)p)× {a}) is empty or isomorphic to a disjoint union
of some copies of a ball of dimension 1 over K and the number of copies is a power of p
for all n ≥ max

a∈Gp′
na and all a ∈ Gp′ .

□
Proposition 2.2.3

For m ∈ Z>0,

iK(Xm(K)) ≡ iK(X(K) ∩m(J(K)))× ♯J(K)[m] mod (q − 1).

P roof.
If X(K) = ∅, the statement is clear. So, we may assume X(K) ̸= ∅.
By (2.5), we have mO⊕g

K ⊂ m(J(K)p). Set (m(J(K)p) : mO⊕g
K ) = r. Then, there

exist b1, · · · , br ∈ m(J(K)p) such that we have the following coset decomposition:

m(J(K)p) =
r⨿

i=1

(bi +mO⊕g
K )

Let us denote the element of J(K) which corresponds to (0, a) ∈ J(K)p×Gp′ simply by
a. Then, we have

m(J(K)) ≃ m(J(K)p)×mGp′ ≃
⨿

a∈mGp′
1≤i≤r

(a+ bi +mO⊕g
K ),

and

X(K) ∩m(J(K)) ≃
⨿

a∈mGp′
1≤i≤r

(X(K) ∩ (a+ bi +mO⊕g
K )).

Since each X(K) ∩ (a + bi +mO⊕g
K ) is empty or a disjoint union of analytic manifolds

each of which is isomorphic to a ball of dimension 1 over K, X(K) ∩m(J(K)) can be
written in the following form:

X(K) ∩m(J(K)) ≃
⨿
j

(aj +mYj),

where aj ∈ m(J(K)) and Yj ⊂ O⊕g
K is an analytic manifold which is isomorphic to a ball

of dimension 1 over K (therefore, mYj ⊂ mO⊕g
K ).



16 TAKAHIRO MUROTANI

By taking a′j ∈ J(K) such that ma′j = aj, we have

J(K) ∩m−1
J (X(K)) = J(K) ∩m−1

J (X(K) ∩m(J(K))) ≃
⨿
j

c∈J(K)[m]

(a′j + c+ Yj).

Now the proposition is immediate from Remark 2.2.1.
□

2.3. An algebro-geometric observation.

We follow the notations of the previous section.

Proposition 2.3.1

Assume that X(K) ̸= ∅. Set J(K) = B,X(K) = S, andM = {0}×Gp′ ⊂ J(K)p×Gp′ ≃
J(K). Then, there exists some P ∈ X(K) such that

(S − P ) ∩M = {(0, 0)},
where S − P := {Q− P ∈ B |Q ∈ S}.

Proof.
Set S− := {Q− P ∈ B |P , Q ∈ S}. Denote the point of B = J(K) corresponding to

the identity element of a group structure of B by O. De�ne B × B → B by (P,Q) 7→
Q− P , then a surjection S × S ↠ S− is induced:

S × S � � //

����

B ×B

��
S−

� � // B

The inverse image of O ∈ S− ⊂ B by this surjection is the diagonal set ∆S ⊂ S × S.
So, we obtain the following commutative diagram:

(S × S) \∆S
� � //

��

S × S � � //

����

B ×B

��
S− \ {O} � � // S−

� � // B

Then (S− \ {O}) ∩M is a (possibly empty) �nite set. Let T be the inverse image of
this set in (S × S) \∆S.

T � � //

��

(S × S) \∆S
� � //

��

S × S � � //

����

B ×B

��
(S− \ {O}) ∩M � � // S− \ {O} � � // S−

� � // B

Denote the composite of the �rst projection S × S → S with the above injection
T ↪→ S ×S by pr1 : T → S. The condition that pr1 is not surjective is equivalent to our
assertion.
De�ne a morphism of schemes f : X×X → J by (P,Q) 7→ Q−P . Fix any (P0, Q0) ∈

X ×X \∆X (where ∆X is the diagonal set). Then, f(P,Q) = f(P0, Q0) if and only if
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Q−P ∼ Q0 −P0. If there exists such (P,Q) ∈ X ×X, there exists an element F of the
function �eld of X such that (F ) = P +Q0 −P0 −Q. When (P,Q) ̸= (P0, Q0), (F ) ̸= 0.
Indeed, since P0 ̸= Q0 by the choice of (P0, Q0), one has P = P0 and Q = Q0 if (F ) = 0.
Then, F de�nes a morphism X → P1 of degree at most 2. So X is a hyperelliptic curve
since g ≥ 2.
Therefore, when X is not a hyperelliptic curve, the morphism (X × X) \ ∆X → J

induced by f is injective. In particular, T → (S− \ {O}) ∩M in the above diagram is
injective. Since (S− \ {O}) ∩M is a �nite set, T is also �nite.
When X is a hyperelliptic curve, the �ber of (X × X) \∆X → J over each point of

J(K) consists of at most 2 points. Since (S− \ {O}) ∩M is �nite, T is again �nite in
this case.
So, there is no surjection from T to S, which is in�nite. □

2.4. A criterion for existence of rational points in terms of i-invariants.
We follow the notations of Section 2.2. The following is the main theorem of this

chapter:

Theorem 2.4.1

Assume that q ̸= 2 and let m > 1 be a divisor of q−1. Then, the following �ve conditions
are equivalent:

(i) 　X(K) ̸= ∅.
(ii) 　There exists a �nite étale covering X ′ of X such that X ′(K) ̸= ∅.
(iii) 　There exists a �nite étale covering X ′ of X such that iK(X

′(K)) ̸≡ 0 mod (q−
1).

(iv) 　There exists a �nite étale covering X ′ of X such that iK(X
′(K)) ̸≡ 0 mod m.

(v) 　There exists a �nite étale covering X ′ of X such that iK(X
′(K)) ≡ (a power of p)

mod (q − 1).

Proof.
The implications (v)=⇒(iv)=⇒(iii)=⇒(ii)=⇒(i) are trivial. We will show the impli-

cation (i)=⇒(v).
By Proposition 2.3.1, there exists some P0 ∈ X(K) such that X(K) ⊂ J(K) ≃

J(K)p ×Gp′ and

X(K) ∩ ({0} ×Gp′) = {O},

with respect to the closed immersion j : X → J de�ned by P 7→ [L (P − P0)].
This implies that by taking su�ciently large n, we have X(K)∩ pn(J(K)) = X(K)∩

(pn(J(K)p) × {0}). Further, this intersection is isomorphic to a disjoint union of some
copies of a ball of dimension 1 over K and the number of copies is a power of p by
Proposition 2.2.2. In other words, iK(X(K)∩pn(J(K))) ≡ (a power of p) mod (q−1).
On the other hand, by Proposition 2.2.3,

iK(Xpn(K)) ≡ iK(X(K) ∩ pn(J(K)))× ♯J(K)[pn] mod (q − 1).

Since ♯J(K)[pn] is a power of p, this completes the proof.
□
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3. Galois action on the set of rational points and i-invariants

Let K be a �nite extension of Qp, X a proper, smooth and geometrically connected
hyperbolic curve over K and X(K) the set of K-rational points of X. By the Deligne-
Mumford theorem (Theorem 3.1.11), there exists a �nite extension L/K such that XL :=
X ×SpecK SpecL has a unique stable model. In this chapter, we show that iK(X(K))
mod 2 can be recovered from the special �ber of the stable model of XL, under the
assumption that p is odd and that L/K is a tame extension. (We obtain partial results
in the case where p = 2.)
We review various de�nitions in Section 3.1. In Section 3.2, we consider the case

where X has a stable model over K, which is the origin of our arguments. In Section
3.3, we describe explicitly the Galois action on the inverse image of a rational point
of the special �ber by the reduction map without assuming that L/K is tame. Then,
assuming that L/K is tame, we calculate the i-invariant of the set of K-rational points
of X over a smooth point (which is treated in Section 3.4) and a node (which is treated
in Section 3.5) of the special �ber of the stable model. Here, the set of K-rational points
is characterized as the Galois-invariant subset of the inverse image of a smooth point or
a node by the reduction map.

3.1. Review of de�nitions.

We review de�nitions of models and reductions of curves according to [2]. In this
section, we denote a Dedekind scheme (i.e., an integral, normal and Noetherian scheme
of dimension 0 or 1) of dimension 1 by S, the function �eld of S by K(S), and the generic
point of S by η, unless otherwise noted.

De�nition 3.1.1

Let k be a �eld. A separated scheme of �nite type over k whose irreducible components
are all of dimension 1 is called a curve over k.

De�nition 3.1.2 (cf. [2, �8, De�nition 3.1, �10, De�nition 1.1])
Let C be a normal, geometrically connected and projective curve over K(S). We call
a �at, projective S-scheme C → S with C integral, normal and of dimension 2 together
with an isomorphism f : Cη ≃ C over K(S) a model of C over S.
We will say that a model (C, f) veri�es a property (P) if C → S veri�es (P).

De�nition 3.1.3 (cf. [2, �10, De�nition 1.18])
Let C be a normal, geometrically connected and projective curve over K(S). Let us �x
a closed point s ∈ S. We call the �ber Cs of a model C of C a reduction of C at s.

De�nition 3.1.4 (cf. [2, �10, De�nition 1.19])
Let C be as in De�nition 3.1.3. We will say that C has good reduction at s ∈ S if it
admits a smooth model over SpecOS, s. If C does not have good reduction at s, we will
say that C has bad reduction at s.

De�nition 3.1.5 (cf. [2, �7, De�nition 5.13])
Let X be a reduced curve over an algebraically closed �eld k. Let π : X ′ → X be the nor-
malization morphism. For a closed point x ∈ X, set δx = lengthOX, x

(π∗OX′/OX)x, mx =

|π−1(x)|. We say that x is an ordinary multiple point or a node if mx = 2 and δx = 1.
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De�nition 3.1.6 (cf. [2, �10, De�nition 3.1])
Let C be a curve over an algebraically closed �eld k. We say that C is semi-stable if it
is reduced, and if its singular points are ordinary double points. We say that C is stable
if, moreover, the following conditions are veri�ed:

(1) C is connected, projective and of arithmetic genus pa(C) ≥ 2.
(2) Let Γ be an irreducible component of C that is isomorphic to P1

k. Then it inter-
sects the other irreducible components at at least three points.

De�nition 3.1.7 (cf. [2, �10, De�nition 3.2])
We say that a curve C over a �eld k is semi-stable (resp. stable) if its extension Ck to
the algebraic closure k of k is a semi-stable (resp. stable) curve over k.

De�nition 3.1.8 (cf. [2, �10, De�nition 3.8])
Let C be a semi-stable curve over a �eld k, let π : C ′ → C be the normalization
morphism, and x ∈ C a singular point. We will say that x is split if the points of π−1(x)
are all rational over k.

De�nition 3.1.9 (cf. [2, �10, De�nition 3.14])
Let f : X → S be a morphism of �nite type to S. We say that f is semi-stable (or a
semi-stable curve), or that X is a semi-stable curve over S, if f is �at and if for any
s ∈ S, the �ber Xs is a semi-stable curve over k(s). We say that f is stable (or a stable
curve) of genus g ≥ 2, or that X is a stable curve over S of genus g ≥ 2, if f is proper,
�at, and if for any s ∈ S, the �ber Xs is a stable curve over k(s) of arithmetic genus g.

De�nition 3.1.10 (cf. [2, �10, De�nition 3.27])
Let C be a smooth, geometrically connected and projective curve over K(S). We say
that C has semi-stable reduction (resp. stable reduction) at s ∈ S if there exists a model
C of C over SpecOS, s that is semi-stable (resp. stable) over SpecOS, s. The special �ber
Cs of a stable model over SpecOS, s is called the stable reduction of C at s.

Theorem 3.1.11 (Deligne-Mumford, (cf. [2, �10, Theorem 4.3]))
Let C be a smooth, projective, geometrically connected curve of genus g ≥ 2 over K(S).
Then there exists a Dedekind scheme S ′ (with a function �eld K(S ′)) that is �nite and
�at over S such that CK(S′) := C ×SpecK(S) SpecK(S ′) has a stable model over S ′ which
is unique up to isomorphism over S ′. Moreover, we can take K(S ′) separable over K(S).

Here, we give a de�nition of log smooth reduction. The following de�nition is di�erent
from the usual one. However, these de�nitions are equivalent by [13, Theorem 4.2].

De�nition 3.1.12

Let p be a prime number and K a �nite extension of Qp. Let X be a proper, smooth and
geometrically connected hyperbolic curve (hence, of genus g ≥ 2) over K. By Theorem
3.1.11, there exists a �nite extension L of K such that XL := X ×SpecK SpecL has a
stable model over OL. We say that X has log smooth reduction if we can take L tame
over K.

3.2. The case where X has stable reduction.

Let p be a prime number, K a �nite extension of Qp, OK the ring of integers of K,
MK the maximal ideal of OK , π a uniformizer of OK , k = OK/MK the residue �eld of
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OK and q the cardinality of k. Let v be the valuation of K such that v(K×) = Z. Let X
be a proper, smooth and geometrically connected hyperbolic curve over K with stable
reduction over OK . We denote the stable model by X.
Let X(K) (resp. X(OK)) be the set of K-rational (resp. OK-rational) points of X

(resp. X). Set Xk = X ×SpecOK
Spec k and denote the set of k-rational points of Xk by

Xk(k).
We have natural maps X(OK) → X(K), ρ : X(OK) → Xk(k). Since X is proper over

OK , the former is bijective by the valuative criterion of properness.

X(K) X(OK)
∼oo ρ // Xk(k) .

Proposition 3.2.1

Let P ∈ Xk(k) be a smooth point over k. Then, iK(ρ
−1(P )) ≡ 1 mod (q − 1).

Proof.
Since Xk → X is a closed immersion, we may consider P ∈ Xk(k) as a closed point of

X. If P is a smooth point over k, ÔX, P ≃ OK [[T ]] and

ρ−1(P ) ≃ HomSpecOK
(SpecOK , SpecOX, P )

≃ HomOK
(OX, P , OK)

≃ HomOK
(ÔX, P , OK)

≃ MK .

The last bijection associates x ∈ MK with fx : ÔX, P ≃ OK [[T ]] → OK such that
fx(T ) = x. Since iK(MK) ≡ 1 mod (q − 1) by Example 2.1.24, this completes the
proof.

□

Proposition 3.2.2

Let P ∈ Xk(k) be a node and assume that P is split. Then, iK(ρ
−1(P )) ≡ 0 mod (q−1).

Proof.

If P is a node and split, there exists r ∈ Z>0 such that ÔX, P ≃ OK [[S, T ]]/(ST − πr),
and we have:

ρ−1(P ) ≃ HomSpecOK
(SpecOK , SpecOX, P )

≃ HomOK
(OX, P , OK)

≃ HomOK
(ÔX, P , OK)

≃ {(x, y) ∈ MK ×MK |xy = πr} =: Ar.

The last bijection associates (x, y) ∈ Ar with f(x, y) : ÔX, P ≃ OK [[S, T ]]/(ST − πr) →
OK such that f(x, y)(S) = x, f(x, y)(T ) = y. Here, we denote the images of S, T ∈
OK [[S, T ]] in OK [[S, T ]]/(ST − πr) simply by S, T .



A p-ADIC ANALYTIC APPROACH TO THE ABSOLUTE GROTHENDIECK CONJECTURE 21

On the other hand,

Ar ≃ {x ∈ MK | 0 < v(x) < r}

≃
⨿

0<i<r

(Mi
K \Mi+1

K ).

By Example 2.1.24, iK(M
i
K \Mi+1

K ) ≡ 0 mod (q − 1) for each 0 < i < r. Therefore,
iK(ρ

−1(P )) ≡ 0 mod (q − 1).
□

Corollary 3.2.3

Let Xsm
k ⊂ Xk be the (open) set which consists of all points of Xk which are smooth over

k. If all nodes in Xk(k) are split, iK(X(K)) ≡ ♯Xsm
k (k) mod (q − 1).

Proof.

Since X(K) ≃ X(OK) =
⨿

P∈Xk(k)

ρ−1(P ), the corollary is immediate from Proposition

3.2.1 and Proposition 3.2.2.
□

Remark 3.2.4

Let Y be a proper, smooth and geometrically connected hyperbolic curve over K which
has a regular model Y over OK (Y does not necessarily have stable reduction). Then,
by an argument similar to Proposition 3.2.1 and Corollary 3.2.3, i(Y (K)) ≡ ♯Ysm

k (k)
mod (q − 1).

Remark 3.2.5

We will consider nodes which are not necessarily split in the following sections. How-
ever, Proposition 3.2.2 is independent of the arguments there (i.e., they do not imply
Proposition 3.2.2).

3.3. Galois action on the set of rational points.

Let p be a prime number, K a �nite extension of Qp and X a proper, smooth and
geometrically connected hyperbolic curve over K. By Theorem 3.1.11, there exists a
�nite Galois extension L of K such that XL := X ×SpecK SpecL has a stable model X.
Let OK (resp. OL) be the ring of integers of K (resp. L), MK (resp. ML) the maximal
ideal of OK (resp. OL), k = OK/MK (resp. kL = OL/ML) the residue �eld and q the
cardinality of k. By taking an unrami�ed extension of L if necessary, we may assume
that all singular points of XkL(kL) are split, where XkL = X×SpecOL

Spec kL and XkL(kL)
is the set of kL-rational points of XkL . Let π be a uniformizer of OL and v the valuation
of L such that v(L×) = Z. We denote the Galois group of L/K by G = Gal(L/K) and
the inertia group of L/K by I ⊂ G.
Let X(K) (resp. X(L)) be the set of K-rational (resp. L-rational) points of X and

X(OL) the set of OL-rational points of X. We denote the subset of XkL(kL) which consists
of smooth (resp. non-smooth) points over kL by Xsm

kL
(kL) (resp. X

node
kL

(kL)). In particular,

XkL(kL) = Xsm
kL
(kL) ∪ Xnode

kL
(kL).

By the uniqueness of stable model (Theorem 3.1.11), G acts on these sets. We denote
the G-invariant subsets of these sets by X(L)G and so on. There exist natural maps
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X(OL) → X(L) and ρ : X(OL) → XkL(kL). Since X is proper over OL, the former is
bijective by the valuative criterion of properness. Moreover, as P is split by assump-
tion, these maps are G-equivariant. Since X(K) = X(L)G, we obtain the following
commutative diagram:

X(L) X(OL)
∼oo ρ // XkL(kL)

X(K)
?�

OO

X(OL)
G

?�

OO

∼oo ρ′ // XkL(kL)
G

?�

OO

Remark 3.3.1

Since XkL → X is a closed immersion, we may consider P ∈ Xnode
kL

(kL) as a closed point

of X. Moreover, there exists a positive integer r such that ÔX,P ≃ OL[[S, T ]]/(ST − πr).
Set:

X′node
kL

(kL) = {P ∈ Xnode
kL

(kL) | ÔX,P ≃ OL[[S, T ]]/(ST − πr), r > 1}.

Then the image of X(OL) by ρ coincides with Xsm
kL
(kL) ∪ X′node

kL
(kL).

For each P ∈ XkL(kL)
G, we describe the G-action on ρ−1(P ) explicitly.

Let pr : XL := X ×SpecK SpecL→ X be the projection.

XL
pr //

��

X

��
SpecL //

□

SpecK

The map HomSpecL(SpecL, XL) → HomSpecK(SpecL, X), ϕL 7→ pr ◦ ϕL = ϕ is a
bijection. For each γ ∈ G, let γ̃ be the automorphism of SpecL over SpecK induced by
γ. We de�ne a G-action on HomSpecK(SpecL, X) by:

γ · ϕ = ϕ ◦ γ̃,

for all γ ∈ G and ϕ ∈ HomSpecK(SpecL, X). We let G act on HomSpecL(SpecL, XL)
so that the bijection HomSpecL(SpecL, XL) → HomSpecK(SpecL, X) is G-equivariant.
Since γ · ϕL = (γ · ϕ)L, the map γ · ϕL makes the following diagram commutative:

SpecL
γ·ϕL //

id %%JJ
JJ

JJ
JJ

J

γ·ϕ

&&
XL

pr //

��

X

��
SpecL //

□

SpecK

i.e.,

γ · ϕL = (idX × γ̃−1) ◦ ϕL ◦ γ̃.
Denote the residue �eld at P by k(P )(≃ kL). Then we have the following commutative

diagram:
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Spec (ÔX, P ⊗OL
L) //

��
□

Spec ÔX, P

��
□

Spec k(P )oo

��
X

��
□

XL
oo //

��
□

X

��
□

XkL
oo

��
SpecK SpecLoo // SpecOL Spec kLoo

Case 1.　The case where P ∈ Xsm
kL
(kL)

G.

In this case, ÔX, P ≃ OL[[T ]], and

ρ−1(P ) ≃ HomSpecOL
(SpecOL, SpecOX, P )

≃ HomOL
(OX, P , OL)

≃ HomOL
(ÔX, P ,OL)

≃ ML.

The last bijection associates x ∈ ML with f : ÔX, P ≃ OL[[T ]] → OL such that f(T ) = x.

Denote the element of HomOL
(ÔX, P ,OL) which corresponds to x ∈ ML ≃ ρ−1(P ) by

fx. Let ϕx be the element of HomSpecL(SpecL, XL) obtained from fx. Since γ · ϕx =
(idX × γ̃−1) ◦ ϕx ◦ γ̃ for each γ ∈ G,

(γ · fx)(T ) = γ(fx(γ
−1 · T )).

On the other hand, G acts on ÔX, P ≃ OL[[T ]] so that the following diagram is com-
mutative:

G ↷ ÔX, P

G ↷

⟲

OL

?�

OO

In other words, for each γ′ ∈ G and a ∈ OL ⊂ ÔX, P , we have γ
′ · a = γ′(a) (the usual

Galois-action). As to T ∈ OL[[T ]] ≃ ÔX, P , for each γ
′ ∈ G, γ′ · T can be written in the

following form for some ai = aγ′, i ∈ OL depending on γ′:

γ′ · T =
∞∑
i=0

aiT
i.

In the following, we will denote γ′ · T simply by γ′(T ).

Lemma 3.3.2

In the above notation, a0 ∈ ML and a1 ∈ O×
L .

Proof.
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γ′ ∈ G de�nes an automorphism γ′ : OL[[T ]] → OL[[T ]]. Let γ′ : kL[[T ]] → kL[[T ]] be
the automorphism of kL[[T ]] such that the following diagram is commutative. (Since γ′

preserves ML, such γ′ exists.)

OL[[T ]]
γ′

//

����

OL[[T ]]

����
kL[[T ]]

γ′
//

⟲

kL[[T ]]

Here, vertical arrows are natural surjections.
Denote the image of a ∈ OL in kL by a. Since kL[[T ]] is a DVR and T is a uniformizer,

γ′(T ) is also a uniformzer of kL[[T ]]. So, a0 = 0 and a1 ̸= 0 in kL, as desired.
□

By replacing γ′ in the above argument by γ−1, we obtain:

(γ · fx)(T ) = γ(fx(γ
−1(T ))) =

∞∑
i=0

γ(aix
i),

where ai = aγ−1, i ∈ OL. Therefore, if we identify ρ−1(P ) with ML, the image [γ](x) of
x ∈ ML by the action of γ ∈ G can be written in the following form:

[γ](x) =
∞∑
i=0

γ(aix
i).

Case 2.　The case where P ∈ Xnode
kL

(kL)
G.

In this case, ÔX, P ≃ OL[[S, T ]]/(ST −πr). In the following, we will denote the images
of S, T ∈ OL[[S, T ]] in OL[[S, T ]]/(ST − πr) simply by S, T .

Remark 3.3.3

For each element of OL[[S, T ]]/(ST − πr), the �constant term� and the � coe�cient of
Si (resp. T i)� (i ≥ 1) are not well-de�ned. However, they are well-de�ned modulo Mr

L.
Since we have ST = πr in OL[[S, T ]]/(ST − πr), any F ∈ OL[[S, T ]]/(ST − πr) can be
uniquely written in the following form:

F = a0 +
∞∑
i=1

(ai, 1S
i + ai, 2T

i) (a0, ai, j ∈ OL, i ≥ 1, j = 1, 2).

As in Case 1, we have the following bijections:

ρ−1(P ) ≃ HomSpecOL
(SpecOL, SpecOX, P )

≃ HomOL
(OX, P , OL)

≃ HomOL
(ÔX, P ,OL)

≃ {(x, y) ∈ ML ×ML |xy = πr} =: Ar.

The last bijection associates (x, y) ∈ Ar with f : ÔX, P ≃ OL[[S, T ]]/(ST − πr) → OL

such that f(S) = x, f(T ) = y.
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Denote the element of HomOL
(ÔX, P , OL) which corresponds to (x, y) ∈ Ar ≃ ρ−1(P )

by f(x, y). Let ϕ(x, y) be the element of HomSpecL(SpecL, XL) obtained from f(x, y). As in
Case 1, for each γ ∈ G, {

(γ · f(x, y))(S) = γ(f(x, y)(γ
−1 · S)),

(γ · f(x, y))(T ) = γ(f(x, y)(γ
−1 · T )).

On the other hand, as in Case 1, for each γ′ ∈ G and a ∈ OL ⊂ ÔX, P , we have

γ′ · a = γ′(a) (the usual Galois-action). As to S, T ∈ OL[[S, T ]]/(ST − πr) ≃ ÔX, P , for
each γ′ ∈ G, γ′ · S and γ′ · T can be uniquely written in the following form:

γ′ ·
(
S
T

)
=

(
a0
b0

)
+

∞∑
i=1

(
ai, 1 ai, 2
bi, 1 bi, 2

)(
Si

T i

)
.

Here, a0 = aγ′, 0, b0 = bγ′, 0, ai, j = aγ′, i, j, bi, j = bγ′, i, j ∈ OL (i ≥ 1, j = 1, 2). In the
following, we will denote γ′ · S, γ′ · T simply by γ′(S), γ′(T ).

Lemma 3.3.4

In the above notation, a0, b0 ∈ Mr
L and one (and only one) of the following conditions

holds:

(i) 　 a1, 1, b1, 2 ∈ O×
L and ai, 2, bi, 1 ∈ Mr

L (i ≥ 1).
(ii) 　 a1, 2, b1, 1 ∈ O×

L and ai, 1, bi, 2 ∈ Mr
L (i ≥ 1).

Proof.
γ′ ∈ G de�nes an automorphism γ′ : OL[[S, T ]]/(ST − πr) → OL[[S, T ]]/(ST − πr).

Let γ′ : kL[[S, T ]]/(ST ) → kL[[S, T ]]/(ST ) be the automorphism of kL[[S, T ]]/(ST )
such that the following diagram is commutative. (Since γ′ preserves ML, such γ′ exists.)

OL[[S, T ]]/(ST − πr)
γ′

//

����

OL[[S, T ]]/(ST − πr)

����
kL[[S, T ]]/(ST )

γ′
//

⟲

kL[[S, T ]]/(ST )

Here, vertical arrows are natural surjections.
Now, we have:

γ′
(
S
T

)
=

(
a0
b0

)
+

∞∑
i=1

(
ai, 1 ai, 2
bi, 1 bi, 2

)(
Si

T i

)
.

If a0 ∈ O×
L , it is obvious that γ′(S) ∈ (kL[[S, T ]]/(ST ))

×. On the other hand, the
condition γ′(S) · γ′(T ) = 0 implies that γ′(T ) = 0, which is a contradiction. Therefore,
a0 ∈ ML and similarly, b0 ∈ ML. Since γ′ is an automorphism of kL[[S, T ]]/(ST ), we
have (

a1, 1 a1, 2
b1, 1 b1, 2

)
∈ GL2(kL).

Thus, (
a1, 1 a1, 2
b1, 1 b1, 2

)
∈ GL2(OL).
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The product of γ′(S) and γ′(T ) can be uniquely written in the following form:

γ′(S) · γ′(T ) = c0 +
∞∑
i=1

(ci, 1S
i + ci, 2T

i).

Here, c0, ci, j ∈ OL (i ≥ 1, j = 1, 2).
Easy calculation shows that:

c0 = a0b0 +
∞∑
i=1

(ai, 1bi, 2 + ai, 2bi, 1)π
ri,

c1, 1 = a0b1, 1 + b0a1, 1 +
∞∑
i=1

(ai+1, 1bi, 2 + ai+1, 2bi, 1)π
ri,

ck, 1 = a0bk, 1 + b0ak, 1 +
∞∑
i=1

(ai+k, 1bi, 2 + ai+k, 2bi, 1)π
ri +

∑
i+j=k
i, j≥1

ai, 1bj, 1 (k ≥ 2),

c1, 2 = a0b1, 2 + b0a1, 2 +
∞∑
i=1

(ai, 1bi+1, 2 + ai, 2bi+1, 1)π
ri,

ck, 2 = a0bk, 2 + b0ak, 2 +
∞∑
i=1

(ai, 1bi+k, 2 + ai, 2bi+k, 1)π
ri +

∑
i+j=k
i, j≥1

ai, 2bj, 2 (k ≥ 2).

(Note that ST = πr.)
On the other hand, the condition γ′(S) ·γ′(T ) = γ′(πr) implies that c0 = γ′(πr), ci, j =

0 (i ≥ 1, j = 1, 2). Therefore,(
c1, 1
c1, 2

)
≡
(
b1, 1 a1, 1
b1, 2 a1, 2

)(
a0
b0

)
≡
(
0
0

)
mod Mr

L.

Since

(
a1, 1 a1, 2
b1, 1 b1, 2

)
∈ GL2(OL), we have

(
b1, 1 a1, 1
b1, 2 a1, 2

)
∈ GL2(OL) and(

a0
b0

)
≡
(
0
0

)
mod Mr

L.

This shows that: (
c2, 1
c2, 2

)
≡
(
a1, 1b1, 1
a1, 2b1, 2

)
≡
(
0
0

)
mod Mr

L.

On the other hand, since

(
a1, 1 a1, 2
b1, 1 b1, 2

)
∈ GL2(OL), one (and only one) of a1, 1, b1, 1

belongs to O×
L and one (and only one) of the following conditions holds:

(i) 　 a1, 1 ∈ O×
L and b1, 1 ∈ Mr

L.
(ii) 　 a1, 1 ∈ Mr

L and b1, 1 ∈ O×
L .

Similarly, one (and only one) of the following condition holds:

(i)′ 　 a1, 2 ∈ O×
L and b1, 2 ∈ Mr

L.
(ii)′ 　 a1, 2 ∈ Mr

L and b1, 2 ∈ O×
L .
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The case where (i) holds.

Since

(
a1, 1 a1, 2
b1, 1 b1, 2

)
∈ GL2(OL), (ii)

′ holds in this case.

We show that ai, 2 ∈ Mr
L (i ≥ 1) by induction on i. The case where i = 1 is already

proved. Assuming that a1, 2, · · · , ai, 2 ∈ Mr
L, we show that ai+1, 2 ∈ Mr

L. By assumption,

ci+2, 2 ≡ ai+1, 2b1, 2 ≡ 0 mod Mr
L.

Since b1, 2 ∈ O×
L , we have ai+1, 2 ∈ Mr

L.
Similar arguments show that bi, 1 ∈ Mr

L (i ≥ 1).
The case where (ii) holds.

Since

(
a1, 1 a1, 2
b1, 1 b1, 2

)
∈ GL2(OL), (i)

′ holds in this case.

Similarly to the case where (i) holds, we obtain ai, 1, bi, 2 ∈ Mr
L (i ≥ 1) by induction.

□

De�nition 3.3.5

For P ∈ Xnode
kL

(kL)
G, �x an isomorphism ÔX, P ≃ OL[[S, T ]]/(ST −πr). For γ′ ∈ G, γ′ ·S

and γ′ · T can be uniquely written in the following form:

γ′
(
S
T

)
=

(
a0
b0

)
+

∞∑
i=1

(
ai, 1 ai, 2
bi, 1 bi, 2

)(
Si

T i

)
.

We say that γ′ is of type (I) (resp. of type (II)) at P (with respect to the isomorphism

ÔX, P ≃ OL[[S, T ]]/(ST − πr)) if a0, b0, ai, j, bi, j ∈ OL (i ≥ 1, j = 1, 2) satisfy the
condition (i) (resp. (ii)) in Lemma 3.3.4.

Remark 3.3.6

For P ∈ Xnode
kL

(kL)
G, the type of γ′ ∈ G at P with respect to an isomorphism ÔX, P ≃

OL[[S, T ]]/(ST−πr) de�ned in De�nition 3.3.5 is independent of the choice of the isomor-

phism. Indeed, a 2-element set which consists of irreducible components of Spec (ÔX, P/MLÔX, P )
is independent of the choice of the coordinates S, T . G acts on this 2-element set and
the action of γ′ ∈ G on this set is trivial (resp. non-trivial) if and only if γ′ is of type
(I) (resp. of type (II)).

Remark 3.3.7

Assume that γ′ ∈ G is of type (II) at some P ∈ Xnode
kL

(kL)
G and denote the order of

γ′ ∈ G by ord γ′. Then, since (γ′)ord γ′
(S) = S, we have ord γ′ is even. Moreover, the

product of two elements of the same type is of type (I) and the product of two elements
of di�erent types is of type (II).

By replacing γ′ in the above argument by γ−1, we obtain:(
(γ · f(x, y))(S)
(γ · f(x, y))(T )

)
=

(
γ(f(x, y)(γ

−1(S)))
γ(f(x, y)(γ

−1(T )))

)
=

(
γ(a0)
γ(b0)

)
+

∞∑
i=1

(
γ(ai, 1) γ(ai, 2)
γ(bi, 1) γ(bi, 2)

)(
γ(xi)
γ(yi)

)
,

where a0 = aγ−1, 0, b0 = bγ−1, 0, ai, j = aγ−1, i, j, bi, j = bγ−1, i, j ∈ OL (i ≥ 1, j = 1, 2).
Therefore, if we identify ρ−1(P ) with Ar = {(x, y) ∈ ML × ML |xy = πr}, the image
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[γ]

(
x
y

)
of (x, y) ∈ Ar by the action of γ ∈ G can be written in the following form:

[γ]

(
x
y

)
=

(
γ(a0)
γ(b0)

)
+

∞∑
i=1

(
γ(ai, 1) γ(ai, 2)
γ(bi, 1) γ(bi, 2)

)(
γ(xi)
γ(yi)

)
.

3.4. Fixed points over Xsm

kL
(kL)

G.

We follow the notations of the previous section. Moreover, we assume that X has
log smooth reduction. That is to say, there exists a �nite, Galois and tame extension
L/K such that XL := X ×SpecK SpecL has a stable model X. We may assume that all
singular points of XkL(kL) are split.
Let Kur be the maximal unrami�ed extension of K in L and OKur the ring of integers

of Kur. Set [L : Kur] = e, [Kur : K] = f (by assumption, e and p are coprime). Then,
Kur contains a primitive e-th root of unity. Furthermore, there exists a uniformizer π of
OL such that L = Kur(π) and πe is a uniformizer of OKur .
In this case, I = Gal(L/Kur) is a �nite cyclic group and we �x a generator σ of I.

There exists some τ ∈ G = Gal(L/K) such that the image of the subgroup ⟨τ⟩ ⊂ G
by the natural surjection G ↠ Gal(Kur/K) ≃ Gal(kL/k) coincides with Gal(kL/k). f
divides the order of τ and we denote the order by e0f (here, e0 | e, in particular, p ̸ | e0).
Until the end of this section, P will be an element of Xsm

kL
(kL)

G.

Lemma 3.4.1

For γ ∈ G and T ∈ OL[[T ]] ≃ ÔX, P , set:

γ−1(T ) =
∞∑
i=0

aiT
i,

where ai = aγ−1, i ∈ OL, a0 ∈ ML, a1 ∈ O×
L (cf. Lemma 3.3.2). Then, for any ν ∈ Z>0,

(the coe�cient of T in γ−ν(T )) ≡
ν∏

j=1

γ−(j−1)(a1) mod M
v(a0)
L ,

and
(γ−ν(T ))|T=0 ≡ 0 mod M

v(a0)
L .

In particular,

(the coe�cient of T in γ−ν(T )) ≡
ν∏

j=1

γ−(j−1)(a1) mod ML.

P roof.
Use induction on ν. The assertion is obvious for ν = 1.
For ν ≥ 2, assume that

(the coe�cient of T in γ−(ν−1)(T )) ≡
ν−1∏
j=1

γ−(j−1)(a1) mod M
v(a0)
L , (3.1)

and that
(γ−(ν−1)(T ))|T=0 ≡ 0 mod M

v(a0)
L . (3.2)
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Since

γ−ν(T ) = γ−(ν−1) ·

(
∞∑
i=0

aiT
i

)

=
∞∑
i=0

γ−(ν−1)(ai) · (γ−(ν−1)(T ))i,

we have
d

dT
γ−ν(T ) =

∞∑
i=0

γ−(ν−1)(ai) · i(γ−(ν−1)(T ))i−1 · d

dT
γ−(ν−1)(T ).

The coe�cients of T in γ−ν(T ) is given by

(
d

dT
γ−ν(T )

)∣∣∣∣
T=0

. By (3.1),

(
d

dT
γ−(ν−1)(T )

)∣∣∣∣
T=0

≡
ν−1∏
j=1

γ−(j−1)(a1) mod M
v(a0)
L .

This and (3.2) show that(
d

dT
γ−ν(T )

)∣∣∣∣
T=0

=
∞∑
i=0

γ−(ν−1)(ai) · i
(
(γ−(ν−1)(T ))|T=0

)i−1 ·
(
d

dT
γ−(ν−1)(T )

)∣∣∣∣
T=0

≡ γ−(ν−1)(a1) ·
ν−1∏
j=1

γ−(j−1)(a1) mod M
v(a0)
L .

Therefore,

(the coe�cient of T in γ−ν(T )) ≡
ν∏

j=1

γ−(j−1)(a1) mod M
v(a0)
L .

Moreover,

(γ−ν(T ))|T=0 ≡

(
∞∑
i=0

γ−(ν−1)(ai) · (γ−(ν−1)(T ))i

)∣∣∣∣∣
T=0

≡ 0 mod M
v(a0)
L .

□
Theorem 3.4.2

There exists some T ∈ ÔX, P such that ÔX, P ≃ OL[[T ]] andσ
−1(T ) = ωT,

τ−1(T ) =
1

u
T.

Here, ω ∈ O×
L is an e-th root of unity (not necessarily primitive) and u ∈ O×

L .

Proof.

Fix any P ∈ Xsm
kL
(kL)

G and any isomorphism ÔX, P ≃ OL[[T ]]. If we take a formal
power series T ′ ∈ OL[[T ]] in T such that the constant term belongs to ML and the
coe�cient of T belongs to O×

L , the homomorphism OL[[T ]] → OL[[T ]], T 7→ T ′ over OL
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de�nes an automorphism of OL[[T ]]. Then we have ÔX, P ≃ OL[[T
′]] and may replace T ′

by T . This process allows us to change variable T so that the image of T by the action
of G is less complicated.
Step 1.

Set σ−1(T ) =
∞∑
i=0

aiT
i (ai = aσ−1, i ∈ OL). By Lemma 3.3.2, we have a0 ∈ ML, a1 ∈

O×
L . Since σ

−e(T ) = T ,
e∏

j=1

σ−(j−1)(a1) ≡ 1 mod ML,

by lemma 3.4.1. As σ belongs to the inertia group, this shows that ae1 ≡ 1 mod ML.
Therefore, there exists an e-th root of unity ω ∈ Kur (not necessarily primitive) such
that a1 ≡ ω mod ML.
Set:

T ′ = ωe−1T + ωe−2σ−1(T ) + · · ·+ ωσ−(e−2)(T ) + σ−(e−1)(T ) =
e∑

j=1

ωe−jσ−(j−1)(T ).

We regard T ′ as a formal power series in T . By the fact that a0 ∈ ML and Lemma 3.4.1,
it is clear that the constant term of T ′ belongs to ML. As to the coe�cient of T in T ′,
by Lemma 3.4.1,

(the coe�cient of T in T ′) ≡ ωe−1 · 1 + ωe−2 · a1 + · · ·+ ω · ae−2
1 + ae−1

1

≡ ωe−1 · 1 + ωe−2 · ω + · · ·+ ω · ωe−2 + ωe−1

≡ eωe−1 mod ML.

(Note that σ ∈ I.) Since e and p are coprime, eωe−1 ̸≡ 0 mod ML. Thus, the coe�cient
of T in T ′ belongs to O×

L .
As σ acts trivially on ω ∈ Kur,

σ−1(T ′) = ωe−1σ−1(T ) + ωe−2σ−2(T ) + · · ·+ ωσ−(e−1)(T ) + T = ωT ′.

Therefore, by changing variable T , the problem is reduced to the case where the action
of σ−1 on T ∈ OL[[T ]] ≃ ÔX, P is given by σ−1(T ) = ωT .
Step 2.

Consider the case where σ−1(T ) = ωT . Since I = ⟨σ⟩ is a normal subgroup of
G, there exists an integer m ∈ {0, 1, · · · , e − 1} such that m and e are coprime and
σ−1τ−1 = τ−1σ−m. On the other hand, as τ−f ∈ Ker(G → Gal(Kur/K)) = ⟨σ⟩, there
exists an integer n ∈ {0, 1, · · · , e− 1} such that τ−f = σ−n.
Recall that a uniformizer π of OL is an e-th root of a uniformizer of OKur . So, there

exists a primitive e-th root of unity ζ ∈ Kur such that σ−1(π) = ζπ. Since ω−1 is also
an e-th root of unity, there exists an integer µ ∈ {0, 1, · · · , e− 1} such that ζµ = ω−1.
Put c = πµ. Then, σ−1(c) = ω−1c. De�ne u ∈ O×

L by τ−1(c) = uc.

Set τ−1(T ) =
∞∑
i=0

a′iT
i(a′i = a′τ−1, i ∈ OL). By Lemma 3.3.2, we have a′0 ∈ ML, a

′
1 ∈

O×
L . Compare the coe�cient of T in τ−f (T ) = σ−n(T ) by using Lemma 3.4.1. Then we
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have
τ−(f−1)(a′1) · τ−(f−2)(a′1) · · · τ−1(a′1) · a′1 ≡ ωn mod ML. (3.3)

On the other hand,

τ−f (c) = τ−(f−1)(uc) = · · · = τ−(f−1)(u) · τ−(f−2)(u) · · · τ−1(u) · uc. (3.4)

Since this is equal to σ−n(c) = ω−nc,

τ−(f−1)(u) · τ−(f−2)(u) · · · τ−1(u) · u = ω−n. (3.5)

Set:

T ′ =
c

c
dT +

τ−1(c)

c
τ−1(dT ) + · · ·+ τ−(f−1)(c)

c
τ−(f−1)(dT )

+
τ−f (c)

c
τ−f (dT ) + · · ·+ τ−(2f−1)(c)

c
τ−(2f−1)(dT )

+ · · ·

+
τ−(e0−1)f (c)

c
τ−(e0−1)f (dT ) + · · ·+ τ−(e0f−1)(c)

c
τ−(e0f−1)(dT )

=

e0f−1∑
j=0

τ−j(c)

c
τ−j(dT ),

for some d ∈ O×
Kur . We regard T ′ as a formal power series in T . We will show that by

taking d appropriately, the constant term of T ′ belongs to ML and the coe�cient of T
in T ′ belongs to O×

L . The former is obvious (for any d) from the fact that a′0 ∈ ML and
Lemma 3.4.1. As to the latter, by Lemma 3.4.1 and (3.4),(

the coe�cient of T in
τ−j(c)

c
τ−j(dT )

)
≡ τ−(j−1)(u) · · · τ−1(u) · u · τ−j(d) · τ−(j−1)(a′1) · · · τ−1(a′1) · a′1

≡ τ−j(d)

j−1∏
i=0

τ−i(ua′1) mod ML, (3.6)

for each 0 ≤ j ≤ e0f − 1. Here, we set

j−1∏
i=0

τ−i(ua′1) = 1 for j = 0. Note that (3.4) is still

correct if we replace f by any positive integer.
By (3.6),

(the coe�cient of T in T ′) ≡
e0f−1∑
j=0

τ−j(d) ·
j−1∏
i=0

τ−i(ua′1)

≡
e0−1∑
k=0

f−1∑
l=0

τ−(kf+l)(d) ·
kf+l−1∏
i=0

τ−i(ua′1)

≡
e0−1∑
k=0

f−1∑
l=0

τ−(kf+l)(d) ·
kf+l−1∏
i=kf

τ−i(ua′1) ·
kf−1∏
i=0

τ−i(ua′1) mod ML.
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This, together with (3.3) and (3.5), shows that

(the coe�cient of T in T ′) ≡
e0−1∑
k=0

f−1∑
l=0

τ−l(d) ·
l−1∏
i=0

τ−i(ua′1)

≡
f−1∑
l=0

(
e0

l−1∏
i=0

τ−i(ua′1)

)
τ−l(d) mod ML.

(Note that τ−f = σ−n ∈ I.)

Since e0 and p are coprime, e0

l−1∏
i=0

τ−i(ua′1) ̸≡ 0 mod ML for each 0 ≤ l ≤ f − 1.

Denote the image of τ ∈ G in Gal(Kur/K) ≃ Gal(kL/k) by τ and that of a ∈ OL in

kL by a. Then τ−0 = id, τ−1, · · · , τ−(f−1) are di�erent elements of Gal(kL/k). By the
linear independence of automorphisms of a �eld [9, Lemma 2.9.9], there exists δ ∈ k×L
such that in kL,

f−1∑
l=0

(
e0

l−1∏
i=0

τ−i
(
ua′1
))

τ−l(δ) ̸= 0.

If we take d ∈ O×
Kur so that d = δ, the coe�cient of T in T ′ belongs to O×

L .
Consider the action of σ−1, τ−1 on T ′. For each 0 ≤ j ≤ e0f − 1,

σ−1

(
τ−j(c)

c
τ−j(dT )

)
=
τ−j

(
σ−mj

(c)
)

σ−1(c)
τ−j

(
σ−mj

(dT )
)

=
τ−j

(
ω−mj

c
)

σ−1(c)
τ−j(ωmj

dT )

=
c

σ−1(c)
· τ

−j(c)

c
τ−j(dT )

= ω · τ
−j(c)

c
τ−j(dT ).

(Note that σ−1τ−1 = τ−1σ−m). So, we have σ−1(T ′) = ωT ′.
On the other hand, for each 0 ≤ j ≤ e0f − 1,

τ−1

(
τ−j(c)

c
τ−j(dT )

)
=
τ−(j+1)(c)

τ−1(c)
τ−(j+1)(dT )

=
c

τ−1(c)
· τ

−(j+1)(c)

c
τ−(j+1)(dT )

=
1

u
· τ

−(j+1)(c)

c
τ−(j+1)(dT ).

Thus, we have τ−1(T ′) =
1

u
T ′.

Therefore, by changing variable T , the action of G on ÔX, P ≃ OL[[T ]] is given by

σ−1(T ) = ωT, τ−1(T ) =
1

u
T .
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□

Corollary 3.4.3

For ρ′ : X(OL)
G → XkL(kL)

G, we have Xsm
kL
(kL)

G ⊂ ρ′(X(OL)
G). Moreover, for each

P ∈ Xsm
kL
(kL)

G, ρ′−1(P ) is isomorphic to a ball of dimension 1 over K. In particular,

iK(ρ
′−1(P )) ≡ 1 mod (q − 1).

Proof.

Fix any P ∈ Xsm
kL
(kL)

G. By Theorem 3.4.2, we may take an isomorphism ÔX, P ≃

OL[[T ]] such that σ−1(T ) = ωT and τ−1(T ) =
1

u
T . We will construct an element of

ρ−1(P ) ≃ ML �xed under the action of G. The action of σ, τ on x ∈ ML ≃ ρ−1(P ) is
given by the following formulae:

[σ](x) = σ(ω)σ(x) = ωσ(x),

[τ ](x) =
τ(x)

τ(u)
.

Take a uniformizer πK of K and set x0 =
πK
c
. Here, c ∈ OL is de�ned as in Step 2

of the proof of Theorem 3.4.2. As c satis�es 0 ≤ v(c) ≤ e − 1, we have x0 ∈ ML and
1 ≤ v(x0) ≤ e. x0 satis�es the following formulae:

[σ](x0) = ω · πK
σ(c)

= ω · πK
ωc

= x0,

[τ ](x0) =
1

τ(u)
· πK
τ(c)

=
1

τ(u)
· πK · τ(u)

c
= x0.

SinceG is generated by σ and τ , x0 is �xed under the action ofG and therefore, ρ′−1(P ) ̸=
∅. This shows that Xsm

kL
(kL)

G ⊂ ρ′(X(OL)
G).

Assume that two elements x1, x2 of ML �xed under G are given and that at least one
of them is not equal to 0. Without loss of generality, we may assume that v(x1) ≤ v(x2)

(in particular, x1 ̸= 0). For each i = 1, 2, we have ωσ(xi) = xi,
τ(xi)

τ(u)
= xi. So,

σ

(
x2
x1

)
=
x2
x1
, τ

(
x2
x1

)
=
x2
x1

. Thus, x2 ∈ OKx1. On the other hand, by the choice of

x0, we have v(x0) ≤ v(x) for all x ∈ ML �xed by the action of G. Indeed, suppose that
v(x0) > v(x). Then, we have x0 ∈ OKx and v(x0) ≥ v(x) + e ≥ e+ 1, which contradicts
the fact that 1 ≤ v(x0) ≤ e. Therefore, we obtain

ρ′−1(P ) = ρ−1(P )G ≃ OKx0.

Clearly, this is isomorphic to a ball of dimension 1 over K.
□

3.5. Fixed points over Xnode

kL
(kL)

G.

As in the previous section, assume that X has log smooth reduction.
Until the end of this section, P will be an element of Xnode

kL
(kL)

G.
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Lemma 3.5.1

Fix any P ∈ Xnode
kL

(kL)
G and any isomorphism ÔX, P ≃ OL[[S, T ]]/(ST − πr). With

respect to P and this isomorphism:

(i) If γ ∈ G is of type (I), there exists U ∈ (OL[[S, T ]]/(ST − πr))× such that

γ(S) = US, γ(T ) =
γ(πr)

πr
U−1T .

(ii) If γ ∈ G is of type (II), there exists U ∈ (OL[[S, T ]]/(ST − πr))× such that

γ(S) = UT, γ(T ) =
γ(πr)

πr
U−1S.

Proof.
Set:

γ(S) = a0 +
∞∑
i=1

(ai, 1S
i + ai, 2T

i),

where a0 = aγ, 0, ai, j = aγ, i, j ∈ OL.
If γ ∈ G is of type (I), a0, ai, 2 ∈ Mr

L (i ≥ 1), a1, 1 ∈ O×
L by Lemma 3.3.4. Therefore,

γ(S) = S

(
∞∑
i=1

ai, 1S
i−1 +

a0
πr
T +

∞∑
i=1

ai, 2
πr

T i+1

)
.

(Note that ST = πr.) The fact that a1, 1 ∈ O×
L implies that U :=

∞∑
i=1

ai, 1S
i−1 +

a0
πr
T +

∞∑
i=1

ai, 2
πr

T i+1 belongs to (OL[[S, T ]]/(ST −πr))×. As γ(S) · γ(T ) = γ(πr), it is clear that

γ(T ) =
γ(πr)

πr
U−1T .

If γ ∈ G is of type (II), a0, ai, 1 ∈ Mr
L (i ≥ 1), a1, 2 ∈ O×

L by Lemma 3.3.4. Similarly
to the case where γ is of type (I), we have:

γ(S) = T

(
∞∑
i=1

ai, 2T
i−1 +

a0
πr
S +

∞∑
i=1

ai, 1
πr

Si+1

)
.

The fact that a1, 2 ∈ O×
L implies that U :=

∞∑
i=1

ai, 2T
i−1 +

a0
πr
S +

∞∑
i=1

ai, 1
πr

Si+1 belongs to

(OL[[S, T ]]/(ST − πr))×. As γ(S) · γ(T ) = γ(πr), it is clear that γ(T ) =
γ(πr)

πr
U−1S.

□
Theorem 3.5.2

Fix any P ∈ Xnode
kL

(kL)
G.

(i) 　 If σ−1 and τ−1 are of type (I) at P , there exist some S, T ∈ ÔX, P and u1, u2 ∈
O×

L such that ÔX, P ≃ OL[[S, T ]]/(ST − πr) and thatσ
−1(S) = u1S,

σ−1(T ) =
σ−1(πr)

πr
u−1
1 T,

τ
−1(S) = u2S,

τ−1(T ) =
τ−1(πr)

πr
u−1
2 T.
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(ii) 　 Assume that p is odd. If σ−1 is of type (I) at P and if τ−1 is of type

(II) at P , there exist some S, T ∈ ÔX, P and u3, u4 ∈ O×
L such that ÔX, P ≃

OL[[S, T ]]/(ST − πr) and thatσ
−1(S) = u3S,

σ−1(T ) =
σ−1(πr)

πr
u−1
3 T,

τ
−1(S) = u4T,

τ−1(T ) =
τ−1(πr)

πr
u−1
4 S.

(iii) 　 If σ−1 is of type (II) at P , then p is automatically odd and there exist S, T ∈
ÔX, P and u5, u6 ∈ O×

L such that ÔX, P ≃ OL[[S, T ]]/(ST − πr) and thatσ
−1(S) = u5T,

σ−1(T ) =
σ−1(πr)

πr
u−1
5 S,

τ
′−1(S) = u6S,

τ ′−1(T ) =
τ ′−1(πr)

πr
u−1
6 T.

Here,

τ ′ =

{
τ (τ : of type (I) at P ),

τσ (τ : of type (II) at P ).

P roof.

Fix any P ∈ Xnode
kL

(kL)
G and any isomorphism ÔX, P ≃ OL[[S, T ]]/(ST−πr). If we take

an invertible element U ∈ (OL[[S, T ]]/(ST−πr))×, the homomorphismOL[[S, T ]]/(ST−
πr) → OL[[S, T ]]/(ST − πr), S 7→ US =: S ′, T 7→ U−1T =: T ′ over OL de�nes an

automorphism of OL[[S, T ]]/(ST − πr). Then we have ÔX, P ≃ OL[[S
′, T ′]]/(S ′T ′ − πr)

and may replace S ′, T ′ by S, T . This process allows us to change variables S, T so that
the images of S, T by the action of G are less complicated.
As in Step 2 of the proof of Theorem 3.4.2, there exist integers m ∈ {0, 1, · · · , e− 1}

and n ∈ {0, 1, · · · , e − 1} such that m and e are coprime, that σ−1τ−1 = τ−1σ−m and
that τ−f = σ−n.
First, we treat the case where σ−1 is of type (I) in Case 1. Under this assumption, we

treat the case where τ−1 is of type (I) (resp. (II)) in Case 1.1 (resp. Case 1.2). Similarly,
we treat the case where σ−1 is of type (II) in Case 2. Under this assumption, we treat
the case where τ−1 is of type (I) (resp. (II)) in Case 2.1 (resp. Case 2.2). Case 2.1 is
divided into Step 2.1.1 and Step 2.1.2.
Case 1.　The case where σ−1 is of type (I).
Set:

σ−1(S) = a0 +
∞∑
i=1

(ai, 1S
i + ai, 2T

i),

where a0 = aσ−1, 0, ai, j = aσ−1, i, j ∈ OL. By Lemma 3.3.4, we have a0, ai, 2 ∈ Mr
L (i ≥

1), a1, 1 ∈ O×
L . In particular,

σ−1(S) ≡
∞∑
i=1

ai, 1S
i mod Mr

L.

Since σ−e(S) = S,

ae1, 1 ≡ 1 mod ML,
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as in the proof of Lemma 3.4.1. Therefore, there exists an e-th root of unity ω ∈ Kur

(not necessarily primitive) such that a1, 1 ≡ ω mod ML. As noted in Remark 3.3.3,
the coe�cient of S in σ−1(S) modulo Mr

L is well-de�ned. So, as in Lemma 3.4.1, for any
ν ∈ Z>0,

(the coe�cient of S in σ−ν(S)) ≡
ν∏

j=1

σ−(j−1)(a1, 1) mod Mr
L. (3.7)

Set:

S ′ = ωe−1S + ωe−2σ−1(S) + · · ·+ ωσ−(e−2)(S) + σ−(e−1)(S) =
e∑

j=1

ωe−jσ−(j−1)(S).

It is clear that σ−1(S ′) = ωS ′.
By Lemma 3.5.1, σ−1(S) = US for some U ∈ (OL[[S, T ]]/(ST − πr))×, which allows

us to set:

S ′ = S(ωe−1 + ωe−2U + ωe−3Uσ−1(U) + · · ·+ Uσ−1(U) · · ·σ−(e−2)(U)) =: SU ′.

We will show that U ′ is an invertible element of OL[[S, T ]]/(ST −πr). It su�ces to show
that the coe�cient of S in S ′ modulo ML (which is well-de�ned by Remark 3.3.3 and
the fact that r ≥ 1) is not 0. By (3.7) and the fact that a1, 1 ≡ ω mod ML,

(the coe�cient of S in S ′) ≡
e∑

j=1

ωe−j · ωj−1 ≡ eωe−1( ̸≡ 0) mod ML.

Thus, we have U ′ ∈ (OL[[S, T ]]/(ST − πr))×. Setting S ′ = SU ′, T ′ = TU ′−1, we get

σ−1(S ′) = ωS ′, σ−1(T ′) =
σ−1(πr)

πr
ω−1T ′.

Therefore, by changing variables S, T , the problem is reduced to the case where the
action of σ−1 on S, T ∈ OL[[S, T ]]/(ST−πr) ≃ ÔX, P is given by σ−1(S) = ωS, σ−1(T ) =
σ−1(πr)

πr
ω−1T .

Case 1.1.　The case where both σ−1 and τ−1 are of type (I).

By the argument in Case 1, we may assume that σ−1(S) = ωS, σ−1(T ) =
σ−1(πr)

πr
ω−1T .

As in Step 2 of the proof of Theorem 3.4.2, there exists an integer µ ∈ {0, 1, · · · , e−1}
such that σ−1(c) = ω−1c, where c = πµ. Set τ−1(c) = uc (u ∈ O×

L ).
Set:

τ−1(S) = a′0 +
∞∑
i=1

(a′i, 1S
i + a′i, 2T

i),

where a′0 = a′τ−1, 0, a
′
i, j = a′τ−1, i, j ∈ OL. By Lemma 3.3.4, we have a′0, a

′
i, 2 ∈ Mr

L (i ≥
1), a′1, 1 ∈ O×

L .
Similarly to (3.7),

(the coe�cient of S in τ−f (S)) ≡
f∏

j=1

τ−(j−1)(a′1, 1) mod Mr
L.
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Moreover, we have τ−f (S) = σ−n(S) and σ−1(S) = ωS. Therefore,

f∏
j=1

τ−(j−1)(a′1, 1) ≡ ωn mod Mr
L. (3.8)

On the other hand,
τ−f (c) = τ−(f−1)(u) · · · τ−1(u)uc.

Since we have σ−1(c) = ω−1c and τ−f (c) = σ−n(c),

f∏
j=1

τ−(j−1)(u) = ω−n. (3.9)

Set:

S ′ =

e0f−1∑
j=0

τ−j(c)

c
τ−j(dS),

for some d ∈ O×
Kur . We will show that by taking d appropriately, S ′ is a product of S and

an invertible element (of OL[[S, T ]]/(ST − πr)). Indeed, by Lemma 3.5.1, τ−1(S) is a
product of S and an invertible element. So, it is clear that S ′ ∈ (OL[[S, T ]]/(ST −πr))S.
Therefore, it su�ces to show that the coe�cient of S in S ′ modulo ML (which is well-
de�ned by Remark 3.3.3 and the fact that r ≥ 1) is not 0. By a similar argument to
Step 2 of the proof of Theorem 3.4.2, we can easily check this (using (3.8) and (3.9)).
Thus, there exists some U ′ ∈ (OL[[S, T ]]/(ST − πr))× such that S ′ = SU ′.
Again as in Step 2 of the proof of Theorem 3.4.2, we obtain σ−1(S ′) = ωS ′, τ−1(S ′) =

1

u
S ′.

Putting T ′ = TU ′−1, we get σ−1(T ′) =
σ−1(πr)

πr
ω−1T ′, τ−1(T ′) =

τ−1(πr)

πr
uT ′.

Therefore, by putting u1 = ω, u2 =
1

u
and changing variables S, T , the assertion (i)

holds.
Case 1.2.　The case where σ−1 is of type (I) and τ−1 is of type (II).
If f is odd, some power of τ−2, which is of type (I), coincides with τ−1, which contra-

dicts Remark 3.3.7. So, f is even. Applying an argument similar to Case 1.1 to σ and
τ 2, we may reduce the problem to the case where there exist some e-th root of unity ω
and u′ ∈ O×

L such thatσ
−1(S) = ωS,

σ−1(T ) =
σ−1(πr)

πr
ω−1T,


τ−2(S) =

1

u′
S,

τ−2(T ) =
τ−1(πr)

πr
u′T.

Furthermore, by Lemma 3.5.1, we can write τ−1(S) = U ′T, τ−1(T ) =
τ−1(πr)

πr
U ′−1S

for some U ′ ∈ (OL[[S, T ]]/(ST − πr))×.
Set:

τ−1(S) = a′0 +
∞∑
i=1

(a′i, 1S
i + a′i, 2T

i),
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where a′0 = a′τ−1, 0, a
′
i, j = a′τ−1, i, j ∈ OL. By Lemma 3.3.4, we have a′0, a

′
i, 1 ∈ Mr

L (i ≥
1), a′1, 2 ∈ O×

L . Then, by Lemma 3.5.1 and its proof, we can write U ′ in the following
form:

U ′ = a′1, 2 × (1 + (terms of degree at least 1 in S, T )).

Each coe�cient of Maclaurin series of (1+x)1/2 is a rational number whose denominator
is a power of 2, which belongs to OL in the case where p is odd. Therefore, there exists
W ′ ∈ (OL[[S, T ]]/(ST − πr))× such that U ′ = a′1, 2W

′2.
Now, we have

σ−1τ−1(S) = σ−1(U ′T ) = σ−1(U ′) · σ
−1(πr)

πr
ω−1T,

and
τ−1σ−m(S) = τ−1(ωmS) = τ−1(ωm)U ′T.

Since σ−1τ−1 = τ−1σ−m, these show that

σ−1(U ′)

U ′ = τ−1(ωm)ω · πr

σ−1(πr)
.

Thus,
σ−1(W ′2)

W ′2 = τ−1(ωm)ω ·
πra′1, 2

σ−1(πra′1, 2)
∈ O×

L .

Set w′
1 =

σ−1(W ′)

W ′ ∈ (OL[[S, T ]]/(ST − πr))×. Then, as w′
1
2 ∈ O×

L , we obtain w
′
1 ∈ O×

L .

On the other hand, since τ−1(S) = U ′T , we have

τ−2(S) =
τ−1(πrU ′)

πrU ′ S =
τ−1(πra′1, 2W

′2)

πra′1, 2W
′2 S.

Moreover, as τ−2(S) =
1

u′
S,

τ−1(W ′2)

W ′2 =
πra′1, 2

τ−1(πra′1, 2)
· 1

u′
∈ O×

L .

As above, we obtain w′
2 :=

τ−1(W ′)

W ′ ∈ O×
L .

Set S ′ =
S

W ′ , T
′ = W ′T . Then we have

σ−1(S ′) =
σ−1(S)

σ−1(W ′)
=

ωS

σ−1(W ′)
= ω · W ′

σ−1(W ′)
· S
W ′ =

ω

w′
1

S ′.

Similarly, we get σ−1(T ′) =
σ−1(πr)

πr
· w

′
1

ω
T ′. On the other hand, we have

τ−1(S ′) =
τ−1(S)

τ−1(W ′)
=

U ′T

τ−1(W ′)
= a′1, 2 ·

W ′

τ−1(W ′)
·W ′T =

a′1, 2
w′

2

T ′.

Similarly, we get τ−1(T ′) =
τ−1(πr)

πr
· w

′
2

a′1, 2
S ′.
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Therefore, by setting u3 =
ω

w′
1

, u4 =
a′1, 2
w′

2

and changing variables S, T , the assertion

(ii) holds.
Case 2.　The case where σ−1 is of type (II).
In this case, by Remark 3.3.7, e is even and we set e = 2e′. Since L/K is tame, σ−1

cannot be of type (II) if p = 2. So, we may assume that p ̸= 2.
As σ−2 is of type (I), applying an argument similar to Case 1, we may assume that there

exists an e′-th root of unity ω′ ∈ O×
L such that σ−2(S) = ω′S, σ−2(T ) =

σ−2(πr)

πr
ω′−1T .

Set:

σ−1(S) = a0 +
∞∑
i=1

(ai, 1S
i + ai, 2T

i),

where a0 = aσ−1, 0, ai, j = aσ−1, i, j ∈ OL. By Lemma 3.3.4, we have a0, ai, 1 ∈ Mr
L (i ≥

1), a1, 2 ∈ O×
L . Then, by Lemma 3.5.1 and its proof, there exists some U ∈ (OL[[S, T ]]/(ST−

πr))× such that σ−1(S) = UT, σ−1(T ) =
σ−1(πr)

πr
U−1S and we can write U in the fol-

lowing form:

U = a1, 2 × (1 + (terms of degree at least 1 in S, T )).

Since p ̸= 2, there exists W ∈ (OL[[S, T ]]/(ST −πr))× such that U = a1, 2W
2 as in Case

1.2.
As σ−1(S) = UT , we have

σ−2(S) =
σ−1(πrU)

πrU
S =

σ−1(πra1, 2W
2)

πra1, 2W 2
S.

On the other hand, since σ−2(S) = ω′S, we get

σ−1(W 2)

W 2
=

πra1, 2
σ−1(πra1, 2)

ω′ ∈ O×
L .

Set w =
σ−1(W )

W
∈ (OL[[S, T ]]/(ST − πr))×. Then, as w2 ∈ O×

L , we obtain w ∈ O×
L .

Set S ′ =
S

W
, T ′ = WT . Then we have

σ−1(S ′) =
σ−1(S)

σ−1(W )
=

UT

σ−1(W )
= a1, 2 ·

W

σ−1(W )
·WT =

a1, 2
w
T ′.

Similarly, we get σ−1(T ′) =
σ−1(πr)

πr
· w

a1, 2
S ′.

Therefore, by changing variables S, T , the problem is reduced to the case where the ac-

tion of σ−1 on S, T ∈ OL[[S, T ]]/(ST−πr) ≃ ÔX, P is given by σ−1(S) =
a1, 2
w
T, σ−1(T ) =

σ−1(πr)

πr
· w

a1, 2
S.

Case 2.1.　The case where σ−1 is of type (II) and τ−1 is of type (I).
Step 2.1.1.
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By the above argument, we may assume that σ−1(S) =
a1, 2
w
T, σ−1(T ) =

σ−1(πr)

πr
·

w

a1, 2
S. Here, a1, 2, w ∈ O×

L and

w2 =
πra1, 2

σ−1(πra1, 2)
ω′. (3.10)

By the de�nition of w, it is clear that
e−1∏
i=0

σ−i(w) = 1. Thus, by Hilbert's Theorem

90, there exists a ∈ OL such that w =
σ−1(a)

a
. Let ω ∈ O×

L be an e-th root of unity

such that ω′ = ω2. As in Step 2 of the proof of Theorem 3.4.2, there exists an integer
µ ∈ {0, 1, · · · , e−1} such that σ−1(c) = ω−1c, where c = πµ. Set τ−1(c) = uc (u ∈ O×

L ).
Set:

τ−1(S) = a′0 +
∞∑
i=1

(a′i, 1S
i + a′i, 2T

i),

where a′0 = a′τ−1, 0, a
′
i, j = a′τ−1, i, j ∈ OL. By Lemma 3.3.4, we have a′0, a

′
i, 2 ∈ Mr

L (i ≥
1), a′1, 1 ∈ O×

L .
Now, we have

τ−f (c) = τ−(f−1)(u) · · · τ−1(u)uc.

Since σ−1(c) = ω−1c and τ−f (c) = σ−n(c),

f−1∏
j=0

τ−j(u) = ω−n. (3.11)

Set τ−1(a) = ba (b ∈ O×
L ). As τ

−f (a) = σ−n(a),

f−1∏
j=0

τ−j(b) =
n−1∏
j=0

σ−j(w). (3.12)

On the other hand,

σ−2(S) = σ−1
(a1, 2
w
T
)
=

w

σ−1(w)
· σ

−1(πra1, 2)

πra1, 2
S.

This and (3.10) show that

σ−2(S) =
ω′

σ−1(w)w
S. (3.13)

Note that σ−1 is of type (II) and τ−1 is of type (I) in the equality σ−n = τ−f . Thus,
Remark 3.3.7 shows that n is even and we set n = 2n′. As σ ∈ I, the coe�cient of S in
σ−2n′

(S) = τ−f (S) modulo ML is written in the following form by (3.13):

ω′n′

w2n′ ≡
f−1∏
i=0

τ−i(a′1, 1) mod ML.
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Therefore, this, together with (3.11) and (3.12), shows that

f−1∏
i=0

τ−i(a′1, 1ub) ≡
ω′n′

w2n′ · ω−n · wn ≡ 1 mod ML. (3.14)

(Note that ω′ = ω2.)
Set:

S ′ =

e0f−1∑
j=0

τ−j(ac)

ac
τ−j(dS),

for some d ∈ O×
Kur . We will show that by taking d appropriately, S ′ is a product of S and

an invertible element (of OL[[S, T ]]/(ST − πr)). Indeed, by Lemma 3.5.1, τ−1(S) is a
product of S and an invertible element. So, it is clear that S ′ ∈ (OL[[S, T ]]/(ST −πr))S.
Therefore, it su�ces to show that the coe�cient of S in S ′ modulo ML (which is well-
de�ned by Remark 3.3.3 and the fact that r ≥ 1) is not 0.

Similarly to Lemma 3.4.1, the coe�cient of S in
τ−1(ac)

ac
τ−j(dS) (0 ≤ j ≤ e0f − 1)

satis�es the following formula:(
the coe�cient of S in

τ−j(ac)

ac
τ−j(dS)

)
≡ τ−j(d)

j−1∏
i=0

τ−i(a′1, 1ub) mod ML. (3.15)

Here, we set

j−1∏
i=0

τ−i(a′1, 1ub) = 1 for j = 0.

By (3.15),

(the coe�cient of S in S ′)

≡
e0f−1∑
j=0

τ−j(d) ·
j−1∏
i=0

τ−i(a′1, 1ub)

≡
e0−1∑
k=0

f−1∑
l=0

τ−(kf+l)(d) ·
kf+l−1∏
i=0

τ−i(a′1, 1ub)

≡
e0−1∑
k=0

f−1∑
l=0

τ−(kf+l)(d) ·
kf+l−1∏
i=kf

τ−i(a′1, 1ub) ·
kf−1∏
i=0

τ−i(a′1, 1ub) mod ML.

This, together with (3.14) and the fact that τ−f = σ−n ∈ I, shows that

(the coe�cient of S in S ′) ≡
e0−1∑
k=0

f−1∑
l=0

τ−l(d) ·
l−1∏
i=0

τ−i(a′1, 1ub)

≡
f−1∑
l=0

(
e0

l−1∏
i=0

τ−i(a′1, 1ub)

)
τ−l(d) mod ML.
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Since e0 and p are coprime, e0

l−1∏
i=0

τ−i(a′1, 1ub) ̸≡ 0 mod ML for each 0 ≤ l ≤ f − 1.

Thus, similarly to Step 2 of the proof of Theorem 3.4.2, there exists some δ ∈ k×L such
that in kL,

f−1∑
l=0

(
e0

l−1∏
i=0

τ−i
(
a′1, 1ub

))
τ−l(δ) ̸= 0.

If we take d ∈ O×
Kur so that d = δ, the coe�cient of S in S ′ is not 0 modulo ML.

Therefore, there exists U ′ ∈ (OL[[S, T ]]/(ST − πr))× such that S ′ = SU ′. Setting
T ′ = U ′−1T , we consider the action of σ−2, τ−1 on S ′, T ′. By (3.13) and the fact that
σ−1τ−1 = τ−1σ−m, for each 0 ≤ j ≤ e0f − 1,

σ−2

(
τ−j(ac)

ac
τ−j(dS)

)
=
τ−j(σ−2mj

(ac))

σ−2(ac)
τ−j(σ−2mj

(dS))

=
τ−j(σ−(2mj−1)(w) · · ·σ−1(w)wa · ω−2mj

c)

σ−2(ac)
· τ−j(d) · τ−j

(
ω′mj

σ−(2mj−1)(w) · · ·σ−1(w)w
S

)

=
τ−j(ac)

σ−2(ac)
τ−j(dS)

=
ac

σ−2(ac)
· τ

−j(ac)

ac
τ−j(dS)

=
ω2

σ−1(w)w
· τ

−j(ac)

ac
τ−j(dS)

=
ω′

σ−1(w)w
· τ

−j(ac)

ac
τ−j(dS).

So, we obtain σ−2(S ′) =
ω′

σ−1(w)w
S ′. Similarly, we get σ−2(T ′) =

σ−2(πr)

πr
· σ

−1(w)w

ω′ T ′.

On the other hand, for each 0 ≤ j ≤ e0f − 1,

τ−1

(
τ−j(ac)

ac
τ−j(dS)

)
=
τ−(j+1)(ac)

τ−1(ac)
τ−(j+1)(dS)

=
ac

τ−1(ac)
· τ

−(j+1)(ac)

ac
τ−(j+1)(dS)

=
1

ub
· τ

−(j+1)(ac)

ac
τ−(j+1)(dS).

So, we obtain τ−1(S ′) =
1

ub
S ′. Similarly, we get τ−1(T ′) =

τ−1(πr)

πr
ubT ′.
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Therefore, by changing variables S, T , the problem is reduced to the case where the
action of σ−2, τ−1 on S, T ∈ OL[[S, T ]]/(ST − πr) ≃ ÔX, P is given by:

σ−2(S) =
ω′

σ−1(w)w
S,

σ−2(T ) =
σ−2(πr)

πr
· σ

−1(w)w

ω′ T,


τ−1(S) =

1

ub
S,

τ−1(T ) =
τ−1(πr)

πr
ubT.

Step 2.1.2.

By the above argument, we may assume that σ−2(S) =
ω′

σ−1(w)w
S, σ−2(T ) =

σ−2(πr)

πr
·

σ−1(w)w

ω′ T and τ−1(S) =
1

ub
S, τ−1(T ) =

τ−1(πr)

πr
ubT .

Set:

σ−1(S) = a0 +
∞∑
i=1

(a′′i, 1S
i + a′′i, 2T

i)

where a′′0 = a′′σ−1, 0, a
′′
i, j = a′′σ−1, i, j ∈ OL. By Lemma 3.3.4, we have a′′0, a

′′
i, 1 ∈ Mr

L (i ≥
1), a′′1, 2 ∈ O×

L . Then, by Lemma 3.5.1 and its proof, we can write σ−1(S) = U ′′T, σ−1(T ) =

σ−1(πr)

πr
U ′′−1S for some U ′′ ∈ (OL[[S, T ]]/(ST − πr))× and

U ′′ = a′′1, 2 × (1 + (terms of degree at least 1 in S, T )).

Since p ̸= 2, there exists W ′′ ∈ (OL[[S, T ]]/(ST − πr))× such that U ′′ = a′′1, 2W
′′2 as in

Case 1.2.
As σ−1(S) = U ′′T , we have

σ−2(S) =
σ−1(πrU ′′)

πrU ′′ S =
σ−1(πra′′1, 2W

′′2)

πra′′1, 2W
′′2 S.

On the other hand, since σ−2(S) =
ω′

σ−1(w)w
S, we get

σ−1(W ′′2)

W ′′2 =
πra′′1, 2

σ−1(πra′′1, 2)
· ω′

σ−1(w)w
∈ O×

L .

Similarly to the argument in Case 1.2, we obtain w′′
1 :=

σ−1(W ′′)

W ′′ ∈ O×
L .

Now, we have σ−1τ−1 = τ−1σ−m. Furthermore, m and e = 2e′ are coprime. So, m is
odd and we set m = 2m′ + 1. Comparing

σ−1τ−1(S) = σ−1

(
1

ub
S

)
=

U ′′T

σ−1(ub)
=
a′′1, 2W

′′2

σ−1(ub)
T
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and

τ−1σ−m(S) = τ−1(σ−m(S))

= τ−1σ−1(σ−2m′
(S))

= τ−1σ−1

(
ω′m′

σ−(2m′−1)(w) · · ·σ−1(w)w
S

)

= τ−1

(
ω′m′

σ−2m′(w) · · ·σ−1(w)
U ′′T

)

= τ−1

(
ω′m′

σ−2m′(w) · · ·σ−1(w)

)
· τ−1(a′′1, 2W

′′2) · τ
−1(πr)

πr
ubT,

we get

τ−1(W ′′2)

W ′′2 = τ−1

(
σ−2m′

(w) · · ·σ−1(w)

ω′m′

)
·

πra′′1, 2
τ−1(πra′′1, 2)

· 1

σ−1(ub)ub
∈ O×

L .

As above, we obtain w′′
2 :=

τ−1(W ′′)

W ′′ ∈ O×
L .

Set S ′ =
S

W ′′ , T
′ = W ′′T . Then we have

σ−1(S ′) =
σ−1(S)

σ−1(W ′′)
=

U ′′T

σ−1(W ′′)
= a′′1, 2 ·

W ′′

σ−1(W ′′)
·W ′′T =

a′′1, 2
w′′

1

T ′.

Similarly, we get σ−1(T ′) =
σ−1(πr)

πr
· w

′′
1

a′′1, 2
S ′. Moreover, we obtain

τ−1(S ′) =
τ−1(S)

τ−1(W ′′)
=

1

τ−1(W ′′)
· 1

ub
S =

W ′′

τ−1(W ′′)
· 1

ub
· S

W ′′ =
1

w′′
2ub

S ′.

Similarly, we get τ−1(T ′) =
τ−1(πr)

πr
· w′′

2ubT
′.

Therefore, by setting u5 =
a′′1, 2
w′′

1

, u6 =
1

w′′
2ub

and changing variables S, T , the assertion

(iii) holds in the case where τ−1 is of type (I).
Case 2.2.　The case where both σ−1 and τ−1 are of type (II).
In this case, by Remark 3.3.7, σ−1τ−1 is of type (I). Moreover, ⟨σ−1τ−1⟩ surjects to

Gal(kL/k). Therefore, by replacing τ−1 by σ−1τ−1, we can reduce this case to Case 2.1.
□

Remark 3.5.3

We use the condition that p ̸= 2 to prove Theorem 3.5.2(ii). The author at the time of
writing does not know whether a similar assertion holds in the case where p = 2.

Corollary 3.5.4

If p is odd, for any P ∈ Xnode
kL

(kL)
G, iK(ρ

′−1(P )) ≡ 0 or 2 mod (q − 1). In particular,

iK(ρ
′−1(P )) ≡ 0 mod 2 (since p is odd, we have 2 | (q − 1)).
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Proof.

Fix any P ∈ Xnode
kL

(kL)
G and take an isomorphism ÔX, P ≃ OL[[S, T ]]/(ST − πr).

Case 1.　The case where both σ−1 and τ−1 are of type (I).
By Theorem 3.5.2, we may assume that there exist u1, u2 ∈ O×

L such that σ−1(S) =

u1S, σ
−1(T ) =

σ−1(πr)

πr
u−1
1 T and τ−1(S) = u2S, τ

−1(T ) =
τ−1(πr)

πr
u−1
2 T . We will show

that iK(ρ
′−1(P )) ≡ 0 mod (q − 1). (Here, ρ′−1(P ) = ρ−1(P )G is the G-invariant

subset of ρ−1(P ) ≃ {(x, y) ∈ ML × ML |xy = πr} =: Ar.) The action of σ, τ on
(x, y) ∈ Ar ≃ ρ−1(P ) is given by the following formulae:

[σ]

(
x
y

)
=

 σ(u1x)
πr

σ(πr)
σ(u−1

1 y)

 ,

[τ ]

(
x
y

)
=

 τ (u2x)
πr

τ(πr)
τ(u−1

2 y)

 .

If ρ′−1(P ) = ρ−1(P )G = ∅, it is clear that iK(ρ′−1(P )) ≡ 0 mod (q− 1). So, we may
assume that ρ′−1(P ) ̸= ∅.
Consider two elements (x1, y2), (x2, y2) of Ar with v(x1) ≤ v(x2) and assume that

(x1, y1) is �xed under G. If (x2, y2) is also �xed under G, then for each i = 1, 2, we

have σ(u1xi) = xi, τ (u2xi) = xi. So, σ

(
x2
x1

)
=
x2
x1
, τ

(
x2
x1

)
=
x2
x1

. Thus, x2 ∈ OKx1.

Conversely, if x2 ∈ OKx1, then (x2, y2) is �xed under G.
We �x any (x0, y0) ∈ AG

r such that v(x0) = min
(x, y)∈AG

r

v(x). Then we have

ρ′
−1
(P ) = ρ−1(P )G

≃ {x ∈ ML \Mr
L | (x, πr/x) is �xed under G}

≃
⨿
i≥0

ie+v(x0)<r

(Mi
K \Mi+1

K )x0.

For each i ≥ 0, we have iK(M
i
K \Mi+1

K ) ≡ 0 mod (q − 1) by Example 2.1.24. Now, it
is clear that iK(ρ

′−1(P )) ≡ 0 mod (q − 1).
Case 2.　The case where σ−1 is of type (I) and τ−1 is of type (II).
By Theorem 3.5.2, we may assume that there exist u3, u4 ∈ O×

L such that σ−1(S) =

u3S, σ
−1(T ) =

σ−1(πr)

πr
u−1
3 T and τ−1(S) = u4T, τ

−1(T ) =
τ−1(πr)

πr
u−1
4 S. We will show

that iK(ρ
′−1(P )) ≡ 0 or 2 mod (q − 1). (Here, ρ′−1(P ) = ρ−1(P )G is the G-invariant

subset of ρ−1(P ) ≃ Ar.) The action of σ, τ on (x, y) ∈ Ar ≃ ρ−1(P ) is given by the
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following formulae:

[σ]

(
x
y

)
=

 σ(u3x)
πr

σ(πr)
σ(u−1

3 y)

 ,

[τ ]

(
x
y

)
=

 τ (u4y)
πr

τ(πr)
τ
(
u−1
4 x
) .

If ρ′−1(P ) = ρ−1(P )G = ∅, it is clear that iK(ρ′−1(P )) ≡ 0 mod (q− 1). So, we may
assume that ρ−1(P )G ̸= ∅.
Consider two elements (x1, y2), (x2, y2) of Ar with v(x1) ≤ v(x2) and assume that

(x1, y1) is �xed under G. If (x2, y2) is also �xed under G, then for each i = 1, 2, we have

σ(u3xi) = xi, τ (u4yi) = xi. So, σ

(
x2
x1

)
=
x2
x1
, τ

(
y2
y1

)
=
x2
x1

. Since
y2
y1

=
x1
x2

, we have

τ

(
x1
x2

)
=
x2
x1

. Thus, r is even and v(x1) = v(x2). We set z =
x2
x1

∈ OL. Then we have

σ(z) = z and τ(z) = z−1. Conversely, if z :=
x2
x1

∈ OL satis�es σ(z) = z and τ(z) = z−1,

then (x2, y2) is �xed under G.
Consider an element z ∈ OL satisfying σ(z) = z and τ(z) = z−1. The former implies

that z ∈ OKur and the latter implies that z ∈ O×
L and τ 2(z) = z. Denote the intermediate

�eld which corresponds to ⟨σ, τ 2⟩ ⊂ G by M . M/K is an unrami�ed Galois extension
of degree 2. Let OM be the ring of integers of M , MM the maximal ideal of OM and
kM = OM/MM the residue �eld. By Kummer theory, there exists some ξ ∈ O×

K such
that M = K(

√
ξ) and that OM = OK ⊕

√
ξOK

We have isomorphisms O×
M ≃ (1 + MM) × k×M and O×

K ≃ (1 + MK) × k×. The
restriction of the norm NM/K |O×

M
: O×

M → O×
K sends (a, b) ∈ (1 + MM) × k×M to

(NM/K(a), NkM/k(b)) = (τ(a)a, bq+1) ∈ (1 + MK) × k×. We will consider the kernel
of NM/K |O×

M
.

Set a = α +
√
ξβ ∈ 1 +MM (α, β ∈ OK). Then we have α ∈ 1 +MK and β ∈ MK .

If NM/K(a) = 1, we obtain

α2 − ξβ2 = 1 ⇐⇒ α2 = 1 + ξβ2.

Since p ̸= 2, 1+ ξβ2 ∈ OK has square roots in OK and one and only one of them belongs
to 1 + MK . This implies that each β ∈ MK uniquely determines α ∈ 1 + MK such
that α2 − ξβ2 = 1. Thus, there exists a bijection between the kernel of the restriction to
1+MM of NM/K and MK . On the other hand, we have |KerNkM/k| = q+1 since NkM/k

is surjective. Therefore, there exists a bijection between KerNM/K |O×
M

and the disjoint

union of q + 1 copies of MK .
The above argument shows that if there exists (x0, y0) ∈ Ar �xed under G, the G-

invariant subset of Ar is given by:

{(zx0, z−1y0) | z ∈ O×
M , NM/K(z) = 1}.
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Thus, there exists a bijection between this set and KerNM/K |O×
M
. Now, it is clear that

iK(ρ
′−1(P )) ≡ q + 1 ≡ 2 mod (q − 1).

Case 3.　The case where σ−1 is of type (II).
By Theorem 3.5.2, by replacing τ by τσ if necessary, we may assume that there

exist u5, u6 ∈ O×
L such that σ−1(S) = u5T, σ

−1(T ) =
σ−1(πr)

πr
u−1
5 S and τ−1(S) =

u6S, τ
−1(T ) =

τ−1(πr)

πr
u−1
6 T . We will show that iK(ρ

′−1(P )) ≡ 0 or 2 mod (q − 1).

(Here, ρ′−1(P ) = ρ−1(P )G is the G-invariant subset of ρ−1(P ) ≃ Ar.) The action of σ, τ
on (x, y) ∈ Ar ≃ ρ−1(P ) is given by the following formulae:

[σ]

(
x
y

)
=

 σ (u5y)
πr

σ(πr)
σ
(
u−1
5 x
) ,

[τ ]

(
x
y

)
=

 τ (u6x)
πr

τ(πr)
τ(u−1

6 y)

 .

If ρ′−1(P ) = ρ−1(P )G = ∅, it is clear that iK(ρ′−1(P )) ≡ 0 mod (q− 1). So, we may
assume that ρ−1(P )G ̸= ∅.
Consider two elements (x1, y2), (x2, y2) of Ar with v(x1) ≤ v(x2) and assume that

(x1, y1) is �xed under G. If (x2, y2) is also �xed under G, then for each i = 1, 2, we have

σ (u5yi) = xi, τ (u6xi) = xi. So, σ

(
y2
y1

)
=
x2
x1
, τ

(
x2
x1

)
=
x2
x1

. Since
y2
y1

=
x1
x2

, we have

σ

(
x1
x2

)
=
x2
x1

. Thus, r is even and v(x1) = v(x2). We set z =
x2
x1

∈ OL. Then we have

σ(z) = z−1 and τ(z) = z. Conversely, if z :=
x2
x1

∈ OL satis�es σ(z) = z−1 and τ(z) = z,

then (x2, y2) is �xed under G.
Consider an element z ∈ OL satisfying σ(z) = z−1 and τ(z) = z. The former implies

that z ∈ O×
L and σ2(z) = z. Denote the intermediate �eld which corresponds to ⟨σ2, τ⟩ ⊂

G by M . Let OM be the ring of integers of M and MM the maximal ideal of OM . The
residue �eld of M is OM/MM ≃ k. In this case, there exists a uniformizer πK of OK

such that M = K(
√
πK) and that OM = OK ⊕√

πKOK .
We have isomorphisms O×

M ≃ (1 + MM) × k× and OK ≃ (1 + MK) × k×. The
restriction to O×

M of the norm NM/K |O×
M

: O×
M → O×

K sends (a, b) ∈ (1 +MM) × k× to

(NM/K(a), b
2) = (σ(a)a, b2) ∈ (1+MK)× k×. We will consider the kernel of NM/K |O×

M
.

Set a = α+
√
πKβ ∈ 1+MM (α, β ∈ OK). Then we have α ∈ 1+MK . IfNM/K(a) = 1,

we obtain

α2 − πKβ
2 = 1 ⇐⇒ α2 = 1 + πKβ

2.

Since p ̸= 2, 1 + πKβ
2 ∈ OK has square roots in OK and one and only one of them

belongs to 1 +MK . This implies that each β ∈ OK uniquely determines α ∈ 1 + MK

such that α2 − πKβ
2 = 1. Thus, there exists a bijection between the kernel of the

restriction to 1 +MM of NM/K and OK . On the other hand, the kernel of k ∋ b 7→ b2 is
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{±1}. Therefore, there exists a bijection between KerNM/K |O×
M

and the disjoint union

of 2 copies of OK .
The above argument shows that if there exists (x0, y0) ∈ Ar �xed under G, the G-

invariant subset of Ar is given by:

{(zx0, z−1y0) | z ∈ O×
M , NM/K(z) = 1}.

Thus, there exists a bijection between this set and KerNM/K |O×
M
. Now, it is clear that

iK(ρ
′−1(P )) ≡ 2 mod (q − 1).

□
Corollary 3.5.5

If p is odd,
iK(X(K)) ≡ ♯Xsm

kL
(kL)

G mod 2.

P roof.
Immediate from Corollary 3.4.3 and Corollary 3.5.4.

□
Remark 3.5.6

Corollary 3.5.5 holds without assuming that all singular points of XkL(kL) are split.
Indeed, let L/K be a �nite extension such that singular points of XkL(kL) are not
necessarily split (where X is the stable model of XL). Then, there exists a �nite un-
rami�ed extension L′/L such that X′ := X ×SpecOL

SpecOL′ is the stable model of
XL′ := XL×SpecL SpecL

′ and that all singular points of X′
kL′ (kL′) are split. (Here, OL′ is

the ring of integers of L′ and kL′ is the residue �eld.) We may assume that L′ is Galois
over K.
Set G′ := Gal(L′/K) and N := Gal(L′/L). We have

X′
kL′ = (X×SpecOL

SpecOL′)×SpecOL′ Spec kL′ = XkL ×Spec kL Spec kL′ .

Since N acts trivially on XkL , the fact that X
sm
kL
(kL′) = X′sm

kL′ (kL′) shows that

(X′sm
kL′ (kL′))N = (Xsm

kL
(kL′))N = Xsm

kL
(kNL′) = Xsm

kL
(kL).

Therefore, we have

(X′sm
kL′ (kL′))G

′
= ((X′sm

kL′ (kL′))N)G = (Xsm
kL
(kL))

G.

This shows that we can reduce to the case where all singular points of XkL(kL) are split.

4. An application to anabelian geometry

In this chapter, we apply the arguments in Chapter 2 and Chapter 3 to anabelian
geometry. We review some general facts on arithmetic fundamental groups in Section
4.1. In Section 4.2, assuming that we are given an isomorphism between arithmetic
fundamental groups of hyperbolic curves over �nite extensions of Qp, we show that
the isomorphism arises from a unique isomorphism of schemes if the i-invariants of
the sets of rational points of hyperbolic curves and their coverings �coincide� in some
sense. In Section 4.3, assuming that p is odd and that we are given an isomorphism of
arithmetic fundamental groups of hyperbolic curves which have log smooth reduction,
the i-invariants of the sets of rational points of these curves coincide modulo 2.
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4.1. Some general facts on arithmetic fundamental groups.

Let κ be a �eld, κsep a separable closure of κ and S a geometrically connected scheme
of �nite type over κ. Take any geometric point s of Sκsep := S ×Specκ Specκ

sep. The
image of s in S will be also denoted by s. Let π1(S, s) (resp. π1(Sκsep , s)) be the
étale fundamental group of S (resp. Sκsep) with base point s and Gκ = Gal(κsep/κ)
the absolute Galois group of κ. Then, we have the following natural exact sequence of
pro�nite groups:

1 → π1(Sκsep , s) → π1(S, s) → Gκ → 1. (4.1)

We sometimes call π1(S, s) (resp. π1(Sκsep , s)) the arithmetic fundamental group (resp.
the geometric fundamental group) of S.

Remark 4.1.1

The isomorphism classes (as topological groups) of the étale fundamental groups π1(S, s)
and π1(Sκsep , s) are independent of the choice of the geometric point s. In the following,
unless otherwise noted, we �x any base point and omit it (e.g. π1(S), π1(Sκsep), etc.).

Let p be a prime number, K a �nite extension of Qp, K an algebraic closure of K,
OK the ring of integers of K, MK the maximal ideal of OK , k = OK/MK the residue
�eld of OK and q the cardinality of k. Let U be a smooth and geometrically connected
hyperbolic curve over K, X the smooth compacti�cation of U and g the genus of X. Set
S := X \U and n := ♯S(K). Then we have 2g+n− 2 > 0. We denote the function �eld
of U by KU .
Set UK := U ×SpecK SpecK. The following is the exact sequence (4.1) with respect to

U (and its geometric point SpecKU → U):

1 → π1(UK) → π1(U)
pr→ GK → 1. (4.2)

Let K̃U be the maximal algebraic extension of KU unrami�ed on U . Then we may
naturally identify (4.2) with the following exact sequence:

1 → Gal(K̃U/KU ·K) → Gal(K̃U/KU) → Gal(KU ·K/KU) (≃ GK) → 1. (4.3)

We denote the integral closure of U (resp. X) in K̃U by Ũ (resp. X̃). Let X̃cl be the

set of closed points of X̃.

De�nition 4.1.2 (cf. [18, �2])

For each x̃ ∈ X̃cl, we denote the residue �eld at x̃ by k(x̃). We de�ne the decomposition
group Dx̃ of x̃ and the inertia group Ix̃ of x̃ by:

Dx̃ = {γ ∈ π1(U) | γ(x̃) = x̃},
Ix̃ = {γ ∈ Dx̃ | γ acts trivially on k(x̃)}.

For each open subgroup H ⊂ π1(U), let UH be the covering of U corresponding to
H and KH the integral closure of K in UH. Then UH is a smooth and geometrically
connected hyperbolic curve over KH. We denote the residue �eld of KH by kH and set
qH := ♯kH. Let XH be the smooth compacti�cation of UH and gH the genus of XH. Set
SH := XH \ UH and nH := ♯SH(K).
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De�nition 4.1.3 (cf. [18, De�nition 2.3])
Let G ⊂ GK be an open subgroup, ι : G → GK the natural inclusion and pr : π1(U) ↠
GK the natural surjection. Let H ⊂ π1(U) be an open subgroup.

(i) We de�ne

S(G) := {s ∈ Homcont(G, π1(U)) | pr ◦ s = ι},
SH(G) := {s ∈ S(G) | s(G) ⊂ H}.

We refer to an element of S(G) as section.
(ii) We say that a section s ∈ SH(G) is geometric if its image s(G) is contained in

Dx̃ for some x̃ ∈ X̃cl. We denote the set of geometric sections in SH(G) by
SH(G)

geom, and Sπ1(U)(G)
geom simply by S(G)geom.

Remark 4.1.4

In the situation of De�nition 4.1.3(ii), let x be the image of x̃ in X and k(x) the residue
�eld at x. Then, if x ∈ U and G = Gk(x), we have Dx̃ = s(G).

4.2. Reconstruction of decomposition groups from i-invariants.
For i = 1, 2, let pi be a prime number, Ki a �nite extension of Qpi , Ki an algebraic

closure of Ki, OKi
the ring of integers of Ki, MKi

the maximal ideal of OKi
, ki =

OKi
/MKi

the residue �eld of OKi
and qi the cardinality of ki. Let Ui be a smooth and

geometrically connected hyperbolic curve over Ki, Xi the smooth compacti�cation of Ui

and gi the genus of Xi. Set Si := Xi \ Ui and ni := ♯Si(Ki).
In the following, assume that we are given an isomorphism of pro�nite groups α :

π1(U1)
∼→ π1(U2). By [6, Lemma 1.3.8], there exists an isomorphism of pro�nite groups

αK : GK1

∼→ GK2 such that the following diagram is commutative:

π1(U1)
∼
α

//

pr1
����

π1(U2)

pr2
����

GK1

∼
αK

// GK2

Here, pr1 : π1(U1) → GK1 and pr2 : π1(U2) → GK2 are natural surjections.

Proposition 4.2.1 (cf. [6, Proposition 1.2.1])
Suppose that we are given an isomorphism of pro�nite groups:

αK : GK1

∼→ GK2 .

Then:

(i) We have p1 = p2. Thus, we shall write p = p1 = p2.
(ii) αK induces an isomorphism IK1

∼→ IK2 between the respective inertia subgroups
of GK1 , GK2.

(iii) We have [K1 : Qp] = [K2 : Qp] and [k1 : Fp] = [k2 : Fp]. In particular, the
rami�cation indices of K1, K2 over Qp coincide.

This proposition shows that p1 = p2 and q1 = q2. Thus, we shall write p = p1 = p2
and q = q1 = q2.
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The following theorem reduces the absolute p-adic Grothendieck conjecture to the
group-theoretic characterization of decomposition groups:

Theorem 4.2.2 (cf. [8, Corollary 2.9])
Suppose that an isomorphism of pro�nite groups α : π1(U1)

∼→ π1(U2) satis�es the fol-
lowing condition: A closed subgroup of π1(U1) is the decomposition group of a point of

X̃1

cl
if and only if the image of the subgroup by α is the decomposition group of a point of

X̃2

cl
. Then α is geometric, i.e., arises from a unique isomorphism of schemes U1

∼→ U2

(more precisely, Ũ1
∼→ Ũ2).

Remark 4.2.3

The original statement of Corollary 2.9 of [8] is stronger than that of Theorem 4.2.2. More
precisely, the following result is proved there: Let Σi be a set of primes such that ♯Σi ≥ 2
and that pi ∈ Σi, ∆i the maximal pro-Σi quotient of π1(Ui ×SpecKi

SpecKi) and Πi the
quotient of π1(Ui) by the kernel of the natural surjection π1(Ui ×SpecKi

SpecKi) ↠ ∆i.

If an isomorphism of pro�nite groups Π1
∼→ Π2 preserves decomposition groups in the

sense as in the statement of Theorem 4.2.2, then this isomorphism is geometric.

On the other hand, the following theorem reduces the group-theoretic characterization
of decomposition groups to the group-theoretic determination of whether or not the sets
of rational points of hyperbolic curves are empty:

Theorem 4.2.4 (cf. [18, Corollary 2.10])

The map x̃i 7→ Dx̃i
from X̃i

cl
to the set of closed subgroups of π1(Ui) is injective. For

each open subgroup Gi ⊂ GKi
, S(Gi)

geom ⊂ S(Gi) is characterized by:

si ∈ S(Gi)
geom ⇐⇒ (Xi)Hi

(Li) ̸= ∅ for all open subgroups Hi ⊂ π1(Ui) such that si(Gi) ⊂ Hi.

Here, Li = Ki
Gi
.

Moreover, suppose that the commutative diagram

π1(U1)
∼
α

//

pr1
����

π1(U2)

pr2
����

GK1

∼
αK

// GK2

satis�es the following condition: For all open subgroups G1 ⊂ GK1 and all s1 ∈ S(G1),
we have:

s1 ∈ S(G1)
geom ⇐⇒ α ◦ s1 ◦ α−1

K ∈ S(αK(G1))
geom.

Then a closed subgroup of π1(U1) is the decomposition group of a point of X̃1

cl
if and

only if the image of the closed subgroup by α is the decomposition group of a point of

X̃2

cl
.

Remark 4.2.5

In the original statement of Corollary 2.10 of [18], an explicit characterization of de-
composition groups by using the data on whether or not the hyperbolic curve and its
coverings admit rational points is given.
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The following two lemmas are used to prove the main theorem (Theorem 4.2.8):

Lemma 4.2.6 (cf. [18, Theorem 2.8, Remark 2.11])
Let G′

i ⊂ Gi be open subgroups of GKi
. Then, for si ∈ S(Gi),

si|G′
i
∈ S(G′

i)
geom ⇐⇒ si ∈ S(Gi)

geom.

Lemma 4.2.7

There exists an open subgroup Hi ⊂ π1(Ui) such that gHi
≥ 2.

Proof.
We show this lemma by an argument similar to that of the proof of [18, Proposition

2.8].
By [18, Lemma 1.10], there exists an open normal subgroupH of π1(Ui×SpecKi

SpecKi)
such that the corresponding covering (Xi)H is of genus at least 2. It su�ces to show that
there exists an open subgroup H ⊂ π1(Ui) such that H ∩ π1(Ui ×SpecKi

SpecKi) ⊂ H.
Suppose that there are no such subgroups of π1(Ui). Then the family {(H∩π1(Ui×SpecKi

SpecKi)) \H}H⊂π1(Ui):open of closed subsets of π1(Ui ×SpecKi
SpecKi) has the �nite in-

tersection property. Indeed, assuming that

N∩
j=1

((Hj ∩ π1(Ui ×SpecKi
SpecKi)) \H) = ∅,

for some open subgroups Hj ⊂ π1(U) (1 ≤ j ≤ N, N ∈ Z>0), we have

(
N∩
j=1

Hj

)
∩

π1(Ui ×SpecKi
SpecKi) ⊂ H, which contradicts our assumption. Thus, by the compact-

ness of π1(Ui ×SpecKi
SpecKi), we obtain∩

H⊂π1(Ui):open

((H ∩ π1(Ui ×SpecKi
SpecKi)) \H) ̸= ∅.

However, we have ∩
H⊂π1(Ui):open

(H ∩ π1(Ui ×SpecKi
SpecKi)) = {1} ⊂ H.

This is a contradiction.
□

Theorem 4.2.8

Suppose that there exist an open subgroup H0 ⊂ π1(U1) and a divisor m > 1 of qH0 − 1
such that:

i(K1)H((X1)H((K1)H)) ≡ i(K2)α(H)
((X2)α(H)((K2)α(H))) mod m,

for all open subgroups H of π1(U1) satisfying H ⊂ H0. Then, for all open subgroups
G1 ⊂ GK1 and all s1 ∈ S(G1), we have

s1 ∈ S(G1)
geom ⇐⇒ α ◦ s1 ◦ α−1

K ∈ S(αK(G1))
geom.
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Proof.
Take any open subgroup G1 ⊂ GK1 and any s1 ∈ S(G1). By Lemma 4.2.7, there

exists an open subgroup H′
0 of π1(U1) such that H′

0 ⊂ H0 and that gH′
0
≥ 2. Then, by [6,

Lemma 1.3.9], we obtain gα(H′
0)
= gH′

0
≥ 2. G′

1 := pr1(s1(G1)∩H′
0) is an open subgroup

of GK1 such that s1(G
′
1) ⊂ H′

0. Set L1 := K1
G′

1 and L2 := K2
αK(G′

1). By assumption, for
all open subgroups H of π1(U1) satisfying H ⊂ H′

0, we have

i(K1)H((X1)H((K1)H)) ≡ i(K2)α(H)
((X2)α(H)((K2)α(H))) mod m.

So, by Theorem 2.4.1, for all open subgroup H of π1(U1) satisfying s1(G
′
1) ⊂ H ⊂ H′

0,
we have

(X1)H(L1) ̸= ∅ ⇐⇒ (X2)α(H)(L2) ̸= ∅.
Thus, by Theorem 4.2.4,

s1|G′
1
∈ S(G′

1)
geom ⇐⇒ s2|αK(G′

1)
∈ S(αK(G

′
1))

geom,

where s2 := α ◦ s1 ◦ α−1
K ∈ S(αK(G1)). Therefore, by Lemma 4.2.6, we obtain

s1 ∈ S(G1)
geom ⇐⇒ s2 ∈ S(αK(G1))

geom.

□
Corollary 4.2.9

Suppose that there exist an open subgroup H0 ⊂ π1(U1) and a divisor m > 1 of qH0 − 1
such that:

i(K1)H((X1)H((K1)H)) ≡ i(K2)α(H)
((X2)α(H)((K2)α(H))) mod m,

for all open subgroups H of π1(U1) satisfying H ⊂ H0. Then α arises from a unique

isomorphism of schemes U1
∼→ U2 (more precisely, Ũ1

∼→ Ũ2).

Proof.
Immediate from Theorems 4.2.2, 4.2.4 and 4.2.8.

□

4.3. Group-theoreticity of i-invariants.
We follow the notations of the previous section. Suppose that we are given an isomor-

phism of pro�nite groups α : π1(U1)
∼→ π1(U2).

Theorem 4.3.1 (cf. [6, Theorem 2.7])
For i = 1, 2, suppose that Xi is of genus gi ≥ 2 and that Xi has a stable model Xi

over OKi
. Set (Xi)ki := Xi ×SpecOKi

Spec ki. Then an isomorphism of pro�nite groups

π1(X1)
∼→ π1(X2) induces the following commutative diagram:

π1(X1)
∼ //

��

π1(X2)

��
GK1

∼ // GK2

Moreover, the isomorphism induces the following commutative diagram of schemes:
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(X1)k1
∼ //

��

(X2)k2

��
Spec k1

∼ // Spec k2

This correspondence is functorial in the following sense: De�ne Xi, Ki, etc. for i = 3
in the same manner as for i = 1, 2 and suppose that X3 has a stable model X3 over OK3.
Moreover, we assume that we are given isomorphisms of pro�nite groups αij : π1(Xi)

∼→
π1(Xj) for 1 ≤ i < j ≤ 3. Let fij : (Xi)ki

∼→ (Xj)kj be the isomorphism of schemes
induced by αij. Then α13 = α23 ◦ α12 implies f13 = f23 ◦ f12.

Remark 4.3.2

Theorem 2.7 of [6] shows a stronger result including the data of log structures of schemes
without assuming the properness of hyperbolic curves. However, we do not use this result
in the present paper.

The following theorem shows that the i-invariants (mod 2) of the sets of rational points
of hyperbolic curves are group-theoretic in a certain situation:

Theorem 4.3.3

Suppose that p is odd. Moreover, for i = 1, 2, assume that Xi is of genus gi ≥ 2 and
that Xi has log smooth reduction. Then we have

iK1(X1(K1)) ≡ iK2(X2(K2)) mod 2.

P roof.
Note that we obtain the following commutative diagram from the isomorphism α :

π1(U1)
∼→ π1(U2) by [6, Lemma 1.3.9]:

π1(U1)
∼ //

��

π1(U2)

��
π1(X1)

∼ //

��

π1(X2)

��
GK1

∼ // GK2

There exists a �nite tamely rami�ed extension L1/K1 such that (X1)L1 := X1×SpecK1

SpecL1 has a stable model X1 overOL1 . Then, L2 := K2
αK(GL1

)
is a �nite tamely rami�ed

extension of K2 by Proposition 4.2.1(iii). Moreover, (X2)L2 := X2 ×SpecK2 SpecL2 has a
stable model X2 over OL2 (cf. Remark 4.3.4）. Let kL1 (resp. kL2) be the residue �eld
of L1 (resp. L2).
By Theorem 4.3.1, the isomorphism of pro�nite groups π1(X1)

∼→ π1(X2) induces the
following commutative diagram:
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π1((X1)L1)
∼ //

��

π1((X2)L2)

��
π1(X1)

∼ //

��

π1(X2)

��
GK1

∼ //

��

GK2

��
Gal(L1/K1)

∼ // Gal(L2/K2)

Again by Theorem 4.3.1, the induced isomorphism of special �bers and the Galois
actions on the �bers make the following commutative diagram:

(X1)kL1

∼ //

↶

(X2)kL2

↶

Gal (L1/K1)
∼ // Gal(L2/K2)

Now the theorem is immediate from Corollary 3.5.5 and Remark 3.5.6.
□

Remark 4.3.4

Suppose that we are given an isomorphism of pro�nite groups α : π1(X1)
∼→ π1(X2).

Then, by [6, Lemma 2.1], X1 has stable reduction if and only if X2 has stable reduction.
On the other hand, by Proposition 4.2.1(ii) and [13], X1 has log smooth reduction if
and only of X2 has log smooth reduction. Moreover, if L1 is a �nite tamely rami�ed
extension of K1 such that (X1)L1 := X1 ×SpecK1 SpecL1 has a stable model over OL1 ,

(X2)L2 := X2 ×SpecK2 SpecL2 has a stable model over OL2 where L2 := K2
αK(GL1

)
is a

�nite tamely rami�ed extension of K2 by Proposition 4.2.1(iii).

Remark 4.3.5

If we prove Theorem 4.3.3 without assuming that Xi has log smooth reduction, we can
prove, by using Corollary 4.2.9, the absolute p-adic Grothendieck conjecture for p odd.

In the case where Xi has stable reduction over OKi
, the following theorem holds

without assuming p ̸= 2:

Theorem 4.3.6

For i = 1, 2, suppose that Xi is of genus gi ≥ 2 and that Xi has a stable model Xi over
OKi

. Moreover, assume that all nodes of (Xi)ki(ki) are split. Then we have

iK1(X1(K1)) ≡ iK2(X2(K2)) mod (q − 1).

P roof.
Immediate from Corollary 3.2.3 and Theorem 4.3.1.

□
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Remark 4.3.7

By Theorem 4.3.1 and [6, Lemma 2.1], X1 has a stable model X1 over OK1 and all nodes
of (X1)k1 are split if and only if X2 satis�es the similar conditions.

AppendixA. A real analogue

In Chapter 2, we gave a criterion for existence of rational points of proper, smooth
and geometrically connected hyperbolic curves over K in terms of i-invariants, where K
is a �nite extension of Qp. On the other hand, for a proper, smooth and geometrically
connected hyperbolic curve X over R, the number of connected components |π0(X(R))|
of the set X(R) of R-rational points of X may be considered as an analogue of the
i-invariants. In this appendix, we show that |π0(X(R))| may be recovered from the
arithmetic fundamental group of X.
In the following, let X be a proper, smooth and geometrically connected hyperbolic

curve over R, X(R) the set of R-rational points of X, g (≥ 2) the genus of X and πalg
1 (X)

the arithmetic fundamental group of X. Set n(X) := |π0(X(R))|. For a real manifold
Y , we denote the usual topological fundamental group of Y by π1(Y ).

The action of GR = Gal(C/R) = {1, τ} on the vector space V := πalg
1 (X ×SpecR

SpecC)ab⊗F2 of dimension 2g over F2 de�nes a homomorphism ρ : GR → GL(V ). (Here,

πalg
1 (X ×SpecR SpecC) is the arithmetic fundamental group of X ×SpecR SpecC.) Let rX

be the rank of ρ(τ) − 1 ∈ End(V ). Clearly, rX may be recovered group-theoretically

from πalg
1 (X) ↠ GR.

The following is a key proposition for the group-theoretic recoverability of n(X):

Proposition A.0.1 (cf. [1, Proposition 4.4])

(i) 　 If n(X) > 0, then:
rX + n(X) = g + 1.

(ii) 　 If n(X) = 0, then:

rX = 2
[g
2

]
.

Here,
[g
2

]
is the largest integer less than or equal to

g

2
.

Remark A.0.2

In [1, Proposition 4.4], rX is denoted by rank (H).

Except for the case where g + 1− n(X) = 2
[g
2

]
holds, n(X) can be recovered imme-

diately from rX by using Proposition A.0.1 (this recovery is clearly group-theoretic). On

the other hand, we may not distinguish the following cases (where g+1−n(X) = 2
[g
2

]
holds) from the case where n(X) = 0 only by the data of rX :

(i) 　 g is even and n(X) = 1.
(ii) 　 g is odd and n(X) = 2.

We distinguish these cases from the case where n(X) = 0 by using the data of coverings
of X.
Let J be the Jacobian of X, J(R) the set of R-rational points of X and J(R)0 the

connected component of J(R) which contains the unit element of the abelian group
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J(R). By [1, Proposition 1.1], there exists a �nite abelian group G such that G ≃
(Z/2Z)⊕N (0 ≤ N ≤ g) and that the following split exact sequence exists:

0 → J(R)0 → J(R) → G→ 0.

Since J(R)0 ≃ (R/Z)⊕g, we have J(R) ≃ (R/Z)⊕g ⊕G.

Proposition A.0.3

If n(X) ̸= 0, there exists a �nite étale covering X ′ of X such that X ′ is geometrically
connected over R and of odd genus, and that n(X ′) > 2.

Proof.
Since n(X) ̸= 0, we have X(R) ̸= ∅. So, by taking a point of X(R), we obtain a closed

immersion j : X ↪→ J . Let 2J : J → J stand for multiplication by 2 on J . We de�ne
X2 = X ×J J by the following diagram:

X2 := X ×J J //

��

J

2J
��

X

□
j // J

X2 is a �nite étale covering ofX and geometrically connected over R. Let ν (= 22g) be the
degree of X2 → X and g2 the genus ofX2. By Hurwitz formula, we have g2 = ν(g−1)+1.
Since ν is a positive power of 2, g2 is odd.
Let m1(X) (resp. m2(X)) be the number of the connected components of X(R)

which are contained (resp. not contained) in J(R)0. Then we have m1(X) > 0 and
n(X) = m1(X) +m2(X).
Set:

J(R) =
⨿
σ∈G

(σ + J(R)0) =:
⨿
σ∈G

Aσ.

For each σ ∈ G, Aσ surjects onto J(R)0 by multiplication by 2. By translating by σ, we
see that it is isomorphic to the covering J(R)0 → J(R)0 de�ned by multiplication by 2.
The latter covering corresponds to the surjection π1(J(R)0)(≃ Z⊕g) ↠ (Z/2Z)⊕g.
On the other hand, since m1(X) > 0, we may take a connected component C of X(R)

which is contained in J(R)0 and �x it. As C is a compact manifold of dimension 1 over
R, C is homeomorphic to S1 and we have π1(C) ≃ Z. Thus, the image of π1(C) in
(Z/2Z)⊕g is trivial or isomorphic to Z/2Z, in particular, the index of the image of π1(C)
in (Z/2Z)⊕g is at least 2g−1. This shows that the inverse image of C by the covering
Aσ → J(R)0 induced by multiplication by 2 has at least 2g−1 connected components.
Denote mσ by the number of the connected components of X2(R) which are contained
in Aσ. Then we have:

2g−1m1(X) ≤ mσ ≤ 2gm1(X).

Summing over σ ∈ G, we obtain:

|G| · 2g−1m1(X) ≤ n(X2) ≤ |G| · 2gm1(X).

(Note that
∑
σ∈G

mσ = n(X2).) In particular, we have n(X2) ≥ 2g−1. So, if g > 2, we may

take X2 for X
′.
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If g = 2, we have g2 > 2. Therefore, by applying the same argument for X2, we obtain
a curve with the desired properties.

□

Corollary A.0.4

n(X) = |π0(X(R))| may be recovered group-theoretically from πalg
1 (X) ↠ GR

Proof.
By Proposition A.0.3, whether n(X) = 0 or not is determined group-theoretically.

Now the proposition is immediate from Proposition A.0.1.
□

Remark A.0.5

In [4, Corollary 3.13], a real analogue of the section conjecture is proved. Corollary A.0.4
also follows from this result.
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