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Abstract. In the present paper, we show that there are at most finitely many

isomorphism classes of hyperbolic polycurves (i.e., successive extensions of fam-
ilies of hyperbolic curves) over certain types of fields (for example, finitely gen-

erated extension fields over Q) whose (geometrically pro-p) étale fundamental
group is isomorphic to a prescribed profinite group.

Introduction

Let p be a prime number, k a field of characteristic zero, and X a variety over k.
Write Gk for the absolute Galois group of k, ΠX for the étale fundamental group of
X, ∆X/k for the kernel of the natural (outer) surjection ΠX ↠ Gk induced by the
structure morphism X → Spec k, ∆p

X/k for the maximal pro-p quotient of ∆X/k,

and Πp
X/k := ΠX/ ker(∆X/k ↠ ∆p

X/k) (which we call geometrically pro-p étale

fundamental group). A. Grothendieck proposed that, for certain types of k, if X is
an “anabelian variety” over k, then the isomorphism class of X may be completely
determined by ΠX ↠ Gk (cf. [1],[2]), which we often call “Grothendieck conjecture”.
Although we do not have any general definition of the notion of an “anabelian
variety”, a successive extension of families of hyperbolic curves, i.e., a hyperbolic
polycurve (see Definition 2.2(ii)), has been regarded as a typical example of an
anabelian variety. In [3], the Grothendieck conjecture for hyperbolic polycurves of
dimension ≤ 4 was proved. Moreover, in [12], we show that the pro-p version of
the Grothendieck conjecture (where we consider Πp

X/k ↠ Gk instead of ΠX ↠ Gk)

for hyperbolic polycurves of dimension ≤ 4 satisfying condition (∗)p (see Definition
2.4) holds.

On the other hand, the (pro-p) Grothendieck conjecture for hyperbolic poly-
curves of dimension ≥ 5 is still open. In the present paper, we give a partial result
on the Grothendieck conjecture for hyperbolic polycurves. That is to say, we show
that the isomorphism class of a hyperbolic polycurve is determined by the étale
fundamental group (equipped with the surjective homomorphism to the absolute
Galois group of the base field) up to finitely many possibilities. More precisely, we
show the following, among other things.

Theorem (Corollary 2.8). Let p be a prime number, k a generalized sub-p-adic field
(see Definition 2.5), G a profinite group, and G↠ Gk a surjective homomorphism.
Then there are at most finitely many k-isomorphism classes of hyperbolic polycurves
over k (resp. hyperbolic polycurves over k satisfying condition (∗)p) whose étale fun-
damental group (resp. geometrically pro-p étale fundamental group) is isomorphic
to G over Gk.
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1. Finiteness of SESG-filtrations

In the present §1, we introduce the notion of an SESG-filtration and discuss the
finiteness of SESG-filtrations for a given profinite group. Main arguments of the
present §1 are essentially due to [4], which treats the discrete case. Let us fix a real
number q > 1. Write Primes for the set of all prime numbers.

First, we review some properties of cohomology groups of profinite groups.

Definition 1.1. Let G be a profinite group.

(i) A G-module A is a discrete abelian group A together with a continuous
action of G on A.

(ii) Let A be a G-module and n a nonnegative integer. Then we shall write

Hn(G,A)

for the n-th cohomology group of G with coefficients in A.
(iii) If G is topologically finitely generated, then we shall write r(G) for the

minimum number of (topological) generators of G.

Definition 1.2 (cf. [13] Definition 1.3). Let G be a profinite group.

(i) Let A be a G-module. For each nonnegative integer i, we shall write

hi(G,A) := logq(♯H
i(G,A)).

(ii) Let A be a G-module. Suppose that hi(G,A) < ∞ for any nonnegative
integer i, and that hi(G,A) = 0 for all but finitely many nonnegative
integers i. Then we shall write

χ(G,A) :=

∞∑
i=0

(−1)ihi(G,A).

In this case, we shall say that “χ(G,A) is defined”.
(iii) Let Σ ⊂ Primes be a nonempty subset of Primes. Suppose that there exists

a (unique) constant b ∈ R such that, for any finite Σ-torsion G-module A
(i.e., for any a ∈ A, there exists a positive integer n such that na = 0 and
that every prime factor of n is contained in Σ), it holds that χ(G,A) is
defined, and χ(G,A) = b logq(♯A). Then we shall write

χΣ(G) := b.

In this case, we shall say that “χΣ(G) is defined”.

Remark 1.2.1.

(i) It is clear by definition that if χΣ(G) is defined, then χΣ(G) does not
depend on q and χΣ(G) ∈ Z. Moreover, if χΣ(G) is defined, then, for any
nonempty subset Σ′ ⊂ Σ of Σ, χΣ′(G) is also defined and it holds that
χΣ′(G) = χΣ(G).

(ii) If G is a pro-p group such that χ(G,Fp) is defined, then it is well-known that
χ{p}(G) is defined. The value χ{p}(G) is often called the Euler-Poincaré

characteristic of G (cf. e.g., [14] §4.1).

Lemma 1.3 ([13] Lemma 1.4). Let Σ ⊂ Primes be a nonempty subset of Primes.
Then the following hold:
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(i) Let G be a profinite group and U an open subgroup of G. Suppose that
χΣ(G) is defined. Then χΣ(U) is also defined, and it holds that χΣ(U) =
[G : U ]χΣ(G).

(ii) Let 1 → G1 → G2 → G3 → 1 be a short exact sequence of profinite groups.
Suppose that χΣ(G3) is defined. Then for any finite Σ-torsion G2-module
A, if χ(G1, A) is defined, then χ(G2, A) is also defined, and it holds that
χ(G2, A) = χ(G1, A) · χΣ(G3). In particular, if χΣ(G1) is defined, then
χΣ(G2) is also defined, and it holds that χΣ(G2) = χΣ(G1) · χΣ(G3).

Definition 1.4. Let G be a group and Σ ⊂ Primes a subset of Primes. Then we
shall write

GΣ

for the pro-Σ completion of G. Note that if G is a topologically finitely generated
profinite group, then, since every homomorphism from G to any finite group is
continuous (cf. [10] Theorem 1.1), GΣ is the maximal pro-Σ quotient of G. Let p
be a prime number. Then we shall write simply

Gp

for the pro-p group G{p}. Moreover, we shall write simply

G∧

for the profinite group GPrimes.

Definition 1.5.

(i) Let (g, r) be a pair of nonnegative integers. Then we shall write

Πg,r := ⟨α1, . . . , αg, β1, . . . , βg, γ1, . . . , γr | [α1, β1] · · · [αg, βg]γ1 · · · γr = 1⟩.

Note that if r > 0, then Πg,r is a free group of rank 2g + r − 1.
(ii) Let Σ ⊂ Primes be a nonempty subset of Primes and (g, r) a pair of

nonnegative integers such that 2g − 2 + r > 0. Then we shall refer to
a profinite group isomorphic to ΠΣ

g,r as a (pro-Σ) surface group (cf. [8]
Definition 1.2).

Remark 1.5.1.

(i) Let X be a curve of type (g, r) over an algebraically closed field of charac-
teristic zero and Σ ⊂ Primes a subset of Primes. Then it holds that the
maximal pro-Σ quotient of the étale fundamental group π1(X) is isomorphic
to ΠΣ

g,r (cf. e.g., [15] Proposition (1.1)(i)).
(ii) Any open subgroup of a pro-Σ surface group is a pro-Σ surface group.

Proposition 1.6. Let Σ ⊂ Primes be a nonempty subset of Primes, p ∈ Σ,
and (g, r) a pair of nonnegative integers such that 2g − 2 + r > 0. Write ε :={
0 (r > 0)

1 (r = 0).
Then the following hold:

(i) It holds that cdp(Π
Σ
g,r) = 1 + ε.

(ii) χΣ(Π
Σ
g,r) is defined, and it holds that χΣ(Π

Σ
g,r) = 2− 2g − r.

(iii) It holds that dimFp
H0(ΠΣ

g,r,Fp) = 1, dimFp
H1(ΠΣ

g,r,Fp) = 2g + r + ε −
1, dimFp

H2(ΠΣ
g,r,Fp) = ε.
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Proof. Assertion (i) is [13] Proposition 2.7(i), and assertion (ii) is [13] Proposition
2.7(iv). Assertion (iii) follows from assertions (i), (ii), together with [13] Proposition
2.7(ii), (iii). □

Corollary 1.7. Let Σ ⊂ Primes be a nonempty subset of Primes, p ∈ Σ, G
a pro-Σ surface group, and U ⊂ G an open subgroup of G. Then it holds that
dimFp

H1(G,Fp) ≤ dimFp
H1(U,Fp).

Proof. This follows from Lemma 1.3(i), Remark 1.5.1(ii), Proposition 1.6(ii), (iii).
□

Next, we consider the finiteness of normal closed subgroups of a given profinite
group such that the quotient group relative to the subgroup is isomorphic to a
surface group. Note that Lemma 1.9 (resp. Theorem 1.10) below is a pro-Σ analogue
of [4] Lemma 2.1 (resp. [4] Theorem 2.3).

Proposition 1.8 (cf. e.g., [8] Theorem 1.5). Let G be a surface group. Then G is
elastic, i.e., for any open subgroup U ⊂ G of G and topologically finitely generated
nontrivial normal closed subgroup N ⊂ U of U , N is open in G.

Lemma 1.9. Let Σ ⊂ Primes be a nonempty subset of Primes, p ∈ Σ, H a pro-Σ
surface group, G a profinite group, and N1, N2 ⊂ G normal closed subgroups of G
such that G/N1

∼= G/N2
∼= H. Suppose that N1 is topologically finitely generated

and dimFp
H1(N1,Fp) < dimFp

H1(H,Fp)(<∞). Then it holds that N1 = N2.

Proof. Write p2 : G ↠ G/N2 for the natural surjection. Then the surjection
N1 ↠ p2(N1) induces an injection H1(p2(N1),Fp) ↪→ H1(N1,Fp). In particu-
lar, it holds that dimFp

H1(p2(N1),Fp) ≤ dimFp
H1(N1,Fp) < dimFp

H1(H,Fp) =

dimFp
H1(G/N2,Fp). Thus, it follows from Corollary 1.7 that p2(N1) ⊂ G/N2 is

not open in G/N2. On the other hand, p2(N1) ⊂ G/N2 is a topologically finitely
generated normal closed subgroup of G/N2. Thus, it follows from Proposition
1.8 that p2(N1) is trivial, i.e., N1 ⊂ N2. Now, since (we have assumed that)
G/N1

∼= G/N2
∼= H, it follows from the fact that H is (topologically finitely gen-

erated, hence) hopfian (cf. [11] Proposition 2.5.2), that N1 = N2. This completes
the proof of Lemma 1.9. □

Theorem 1.10. Let p be a prime number, G a profinite group, and N a class
of profinite groups which is closed under isomorphism. Suppose that the following
hold:

• For each N ∈ N , N is topologically finitely generated.
• There exists a real number M such that, for each N ∈ N , it holds that
dimFp H

1(N,Fp) ≤M .

Then G has at most finitely many normal closed subgroups N ⊂ G such that N ∈ N
and that G/N is a pro-Σ surface group, where Σ = Σ(N) is a set of prime numbers
such that p ∈ Σ.

Proof. Write S for the set of all normal closed subgroups N ⊂ G satisfying the
condition appearing in the statement of Theorem 1.10. We may assume that S ̸= ∅.
Then G is topologically finitely generated. Let us write φ : G↠ Gp for the natural
surjective homomorphism.

First, we show that the set φ(S) = {φ(N) ⊂ Gp | N ∈ S} is finite. Since the
operation of taking the maximal pro-p quotient is right exact, for each N ∈ S,
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Gp/φ(N) ∼= (G/N)p is a pro-p surface group. For each isomorphism class of pro-p
surface group C, let us write φ(S)C := {φ(N) ⊂ Gp|N ∈ S, Gp/φ(N) ∈ C}. Then,
since r(Gp/φ(N)) ≤ r(G) <∞, there are finitely many isomorphism classes of pro-
p surface groups C such that φ(S)C ̸= ∅. Thus, to show the set φ(S) (=

∪
C φ(S)C)

is finite, it suffices to show that for each C, the set φ(S)C is finite.
Let C be an isomorphism class of pro-p surface group such that φ(S)C ̸= ∅ and

H ∈ C a pro-p surface group. Moreover, let us fix a positive real number M such
that, for each N ∈ N , it holds that dimFp H

1(N,Fp) ≤ M . Now, since it is well-
known (and follows easily from Proposition 1.6(i)) that H is infinite, there exists
an open subgroup V ⊂ H of H such that [H : V ] > M−1

|χ{p}(H)| . Then it follows from

Lemma 1.3(i), Remark 1.5.1(ii), Proposition 1.6(ii), (iii) thatM < dimFp
H1(V,Fp).

Let us observe that, for each N ∈ S, dimFp
H1(φ(N),Fp) ≤ dimFp

H1(N,Fp) ≤
M < dimFp

H1(V,Fp). Now, since Gp is topologically finitely generated, there exist
finitely many open subgroups U of Gp such that [Gp : U ] = [H : V ]. Write T for
the set of all open subgroups U ⊂ Gp of Gp such that [Gp : U ] = [H : V ], and
m := ♯T (<∞).

Now let us suppose that ♯φ(S)C > m. Let N1, . . . , Nm+1 ∈ S be elements of S
such that φ(N1), . . . , φ(Nm+1) are distinct elements of φ(S)C . For each integer i

such that 1 ≤ i ≤ m + 1, let us choose an isomorphism Gp/φ(Ni)
∼→ H and write

Ui for the inverse image of V ⊂ H by the composite Gp ↠ Gp/φ(Ni)
∼→ H. Then

it is immediate that Ui ∈ T, φ(Ni) ⊂ Ui, and Ui/φ(Ni) ∼= V . Since ♯T = m, there
exist two integers h, i such that 1 ≤ h < i ≤ m + 1 and that Uh = Ui. Then it
follows from Lemma 1.9 that φ(Nh) = φ(Ni), which contradicts the choice of Nh

and Ni. Thus, it holds that ♯φ(S)C ≤ m. This completes the proof of the finiteness
of φ(S)C , hence also that of φ(S).

To conclude the proof of Theorem 1.10, it suffices to show that the surjective map
S ↠ φ(S), N 7→ φ(N) is bijective. Let N1, N2 ∈ S be such that φ(N1) = φ(N2).
Write p2 : G ↠ G/N2 for the natural surjection. Then, since p2(N1) is contained
in the kernel of the natural surjection G/N2 ↠ (G/N2)

p, p2(N1) is not open in
G/N2. Moreover, p2(N1) ⊂ G/N2 is a topologically finitely generated normal closed
subgroup of G/N2. Thus, it follows from Proposition 1.8 that p2(N1) is trivial, i.e.,
N1 ⊂ N2. Similarly, we haveN1 ⊃ N2, which implies thatN1 = N2. This completes
the proof of Theorem 1.10. □

Remark 1.10.1. The proof of Theorem 1.10 implies that we can write down an upper
bound of the number of normal closed subgroups N ⊂ G satisfying the condition
appearing in the statement of Theorem 1.10 only by using p, M , and r(G). (Note
that we can write down an upper bound of the number of open subgroups of Gp of
given index and the number of isomorphism classes of pro-p surface groups C such
that φ(S)C ̸= ∅ only by using r(Gp)(≤ r(G)). Moreover, the possible values for the
index of V in H depend on p, M , and r(H)(≤ r(G)).)

In the remainder of the present §1, we consider profinite groups obtained by
forming successive extensions of surface groups.

Definition 1.11 (cf. [13] Definition 2.6). Let n be a positive integer. A successive
extension of surface groups is data (G, (Gj)0≤j≤n, (Σj)1≤j≤n) consisting of

• a profinite group G;
• a sequence of profinite groups (Gj)0≤j≤n;
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• a sequence of nonempty sets of prime numbers (Σj)1≤j≤n

such that

• G0 = G, Gn = {1};
• for any integer j such that 1 ≤ j ≤ n, Gj is a normal closed subgroup of
Gj−1, and, moreover, Gj−1/Gj is a pro-Σj surface group.

We shall refer to n as the dimension of (G, (Gj)0≤j≤n, (Σj)1≤j≤n).

Definition 1.12. Let G be a profinite group and (Gj)0≤j≤n a sequence of sub-
groups of G. Then we shall say that (Gj)0≤j≤n is an SESG-filtration (of dimension
n) on G if there exists a sequence of nonempty sets of prime numbers (Σj)1≤j≤n

such that (G, (Gj)0≤j≤n, (Σj)1≤j≤n) is a successive extension of surface groups. We
shall say that a profinite group G is of SESG-type (of dimension n) if G has an
SESG-filtration (of dimension n).

Lemma 1.13 (cf. [13] Proposition 2.13). Let (G, (Gj)0≤j≤n, (Σj)1≤j≤n) be a suc-
cessive extension of surface groups and Σ ⊂ Primes a nonempty subset of Primes.
Then the following conditions are equivalent:

(1) Σ ⊂
∩n

j=1 Σj.

(2) χΣ(G) is defined.

In particular,
∩n

j=1 Σj can be reconstructed from the profinite group G.

Theorem 1.14 (cf. [13] Theorem 2.15). Let (G, (Gj)0≤j≤n, (Σj)1≤j≤n) be a succes-
sive extension of surface groups and m a nonnegative integer. Write Σ :=

∩n
j=1 Σj.

Suppose that Σ ̸= ∅. Then the following conditions are equivalent:

(1) m = n.
(2) For any positive real number M , there exists an open subgroup V ⊂ G of G

such that, for any open subgroup U ⊂ V of V , any nonzero finite Σ-torsion
U -module A, and any nonnegative integer i such that i ̸= m, it holds that
hm(U,A) > Mhi(U,A).

In particular, n can be reconstructed from the profinite group G.

Lemma 1.15. Let p be a prime number, n a positive integer, and (G, (Gj)0≤j≤n, (Σj)1≤j≤n)
a successive extension of surface groups of dimension n such that p ∈

∩n
j=1 Σj.

Then the following hold:

(i) G is topologically finitely generated and χ{p}(G) is defined.

(ii) dimFp
H1(G,Fp) ≤ r(G) ≤ |χ{p}(G)|+ 3n− 1.

Proof. It is clear by definition that G is topologically finitely generated. More-
over, it follows from Lemma 1.13 that χ{p}(G) is defined. We verify assertion

(ii). Let us observe that, since there exists a surjection from the free profinite
group of rank r(G) to G, it holds that dimFp

H1(G,Fp) ≤ r(G). Thus, it suffices
to show that r(G) ≤ |χ{p}(G)| + 3n − 1. We verify this inequality by induction

on n. If n = 1, then this follows from Proposition 1.6(ii). Now suppose that
n ≥ 2, and that the induction hypothesis is in force. Then it follows from Lemma
1.3(ii), together with Lemma 1.13 that χ{p}(G) = χ{p}(G1) · χ{p}(G/G1). More-

over, it follows from the induction hypothesis that r(G1) ≤ |χ{p}(G1)|+3(n−1)−1

and r(G/G1) ≤ |χ{p}(G/G1)| + 3 − 1. Thus, since |χ{p}(G1)| + |χ{p}(G/G1)| ≤
|χ{p}(G1)| · |χ{p}(G/G1)| + 1 (observe that it follows from Lemma 1.3(ii) and
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Proposition 1.6(ii) that |χ{p}(G1)|, |χ{p}(G/G1)| ≥ 1), we obtain that r(G) ≤
r(G1) + r(G/G1) ≤ |χ{p}(G)| + 3n − 1. This completes the proof of assertion

(ii), hence also of Lemma 1.15. □
Theorem 1.16. Let G be a profinite group. Write Σ for the set consisting of all
prime numbers p such that χ{p}(G) is defined. Suppose that Σ is nonempty. Then

G has at most finitely many SESG-filtrations.

Proof. Let us fix a prime number p ∈ Σ. We may assume that G has an SESG-
filtration of dimension n. First, let us observe that Lemma 1.13 and Theorem 1.14
imply that, for any successive extension of surface groups (H, (Hj)0≤j≤n′ , (Σj)1≤j≤n′),

if there exists an isomorphism α : H
∼→ G, then it holds that

∩n
j=1 Σj = Σ,

and n = n′. We verify Theorem 1.16 by induction on n. If n = 1, then The-
orem 1.16 is immediate. Now suppose that n ≥ 2, and that the induction hy-
pothesis is in force. Write S for the set of normal closed subgroups N ⊂ G
of G such that N is of SESG-type of dimension n − 1 and that G/N is a sur-
face group. Note that, it follows from the observation above that, if we write
Σ′ (resp. Σ′′) for the set consisting of all prime numbers p such that χ{p}(N)

(resp. χ{p}(G/N)) is defined, then Σ′ ∩ Σ′′ = Σ. Thus, it follows from the in-

duction hypothesis that, for each N ∈ S, N has finitely many SESG-filtrations.
Moreover, it follows from Lemma 1.3(ii), Proposition 1.6(ii), Lemma 1.15(ii) that
dimFp

H1(N,Fp) ≤ |χ{p}(N)| + 3(n − 1) − 1 ≤ |χ{p}(G)| + 3n − 4. Thus, by ap-

plying Theorem 1.10, where we take “N” to be the class of profinite groups N of
SESG-type of dimension n− 1 such that dimFp H

1(N,Fp) ≤ |χ{p}(G)|+3n− 4, we

obtain that ♯S <∞. This completes the proof of Theorem 1.16. □
Remark 1.16.1. It follows from the proof of Theorem 1.16, together with Lemma
1.3(ii), Lemma 1.15(ii), and Remark 1.10.1, that we can write down an upper bound
of the number of SESG-filtrations of G only by using the smallest prime number p in
Σ, χΣ(G), and n (note that these numbers can be reconstructed group-theoretically
from G).

Remark 1.16.2. In light of Lemma 1.15(ii), it follows from the proof of Lemma 1.9,
Theorem 1.10 that, to verify Theorem 1.16, we can replace all “dimFp

H1(−,Fp)”s

appearing in Lemma 1.9, Theorem 1.10 with “r(−)”s, “r((−)ab)”s, and so on.
Indeed, we have used only the following properties of f(−) := dimFp

H1(−,Fp):

• For any G1, G2, if there exists a surjective homomorphism G1 ↠ G2, then
it holds that f(G1) ≥ f(G2).

• For any pro-Σ surface group H and open subgroup U ⊂ H of H, if p ∈ Σ,
then f(U) ≥ f(H).

• For any pro-Σ surface group H and real number M ∈ R, if p ∈ Σ, then
there exists an open subgroup V ⊂ H of H such that f(V ) > M .

• For any successive extension of surface groups (G, (Gj)0≤j≤n, (Σj)1≤j≤n)
of dimension n such that

∩n
j=1 Σj ̸= ∅, there exists a real number M deter-

mined by χ{p}(G) (p ∈
∩n

j=1 Σj) and n such that f(G) ≤ M (cf. Lemma

1.15(ii)).

However, these properties also hold when f(−) = r(−) or f(−) = r((−)ab).

Remark 1.16.3. Let us fix a prime number p. Let G be a profinite group. Write Cp
for the class of profinite group isomorphic to Gk (cf. Definition 2.1(i)) or Gp

k, where
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k is a finite extension field of Qp. Then G ∈ Cp satisfies some properties similar to
the properties of pro-p surface groups. For example:

• Any open subgroup of G is in Cp.
• cdp(G) ≤ 2 (cf. [9] Theorem (7.1.8)(i), Proposition (7.5.8)).
• χ{p}(G) is defined, and it holds that χ{p}(G) < 0 (cf. [9] Theorem (7.3.1),

Proposition (7.5.8)).
• For any finite p-primary G-module A, it holds that ♯Hi(G,A) ≤ ♯A (i =
0, 2) (cf. [9] Theorem (7.2.6), Proposition (7.5.8)).

• G is topologically finitely generated and elastic (cf. [9] Theorem (7.4.1), [7]
Theorem 1.7(ii)).

Moreover, it follows from local class field theory that, for any positive integer m,
there are at most finitely many isomorphism classes of profinite groups C such that
if G ∈ C, then G ∈ Cp and r(G) ≤ m. Thus, by the argument of Theorem 1.17, we
can show that there are at most finitely many (finite) filtrations of a given profinite
group such that each subquotient is in Cp or a pro-Σ surface group, where Σ is a
set of prime numbers such that p ∈ Σ.

2. Finiteness of Isomorphism Classes of Hyperbolic Polycurves

In the present §2, we discuss the finiteness of hyperbolic polycurves whose étale
fundamental group is isomorphic to a given profinite group.

Definition 2.1. Let p be a prime number, k a field, X,S connected noetherian
schemes, and X → S a morphism of schemes.

(i) We shall write
Gk

for the absolute Galois group of k (for some choice of a separable closure
of k).

(ii) We shall write
ΠX

for the étale fundamental group of X (for some choice of basepoint).
(iii) We shall write

∆X/S ⊂ ΠX

for the kernel of the outer homomorphism ΠX → ΠS induced by X → S.
If S = Spec k, then by abuse of notation we sometimes write

∆X/k

instead of ∆X/S .
(iv) We shall write

Πp
X/S

for the quotient of ΠX by the kernel of the natural surjection from ∆X/S

to its maximal pro-p quotient (which is a characteristic subgroup of ∆X/S).
If S = Spec k, then by abuse of notation we sometimes write

Πp
X/k

instead of Πp
X/S . We shall refer to Πp

X/k as the geometrically pro-p étale

fundamental group of X (over k).

Definition 2.2 (cf. [3] Definition 2.1). Let S be a scheme and X a scheme over S.
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(i) We shall say that X is a hyperbolic curve (of type (g, r)) over S if there
exist

• a pair of nonnegative integers (g, r);
• a scheme Xcpt which is smooth, proper, geometrically connected, and
of relative dimension one over S;

• a (possibly empty) closed subscheme D ⊂ Xcpt of Xcpt which is finite
and étale over S

such that
• 2g − 2 + r > 0;
• any geometric fiber of Xcpt → S is (a necessarily smooth proper curve)
of genus g;

• the finite étale morphism D ↪→ Xcpt → S is of degree r;
• X is isomorphic to Xcpt \D over S.

(ii) We shall say that X is a hyperbolic polycurve (of relative dimension n)
over S if there exist a positive integer n and a (not necessarily unique)
factorization of the structure morphism X → S

X = Xn → Xn−1 → · · · → X2 → X1 → S = X0

such that, for each integer j such that 1 ≤ j ≤ n, Xj → Xj−1 is a hyperbolic
curve. We shall refer to the above morphism X → Xn−1 as a parametrizing
morphism forX and refer to the above factorization ofX → S as a sequence
of parametrizing morphisms.

Definition 2.3. Let S be a scheme.

(i) A parametrized hyperbolic polycurve (of relative dimension n) is a pair
X = (X,X = Xn → Xn−1 → · · · → X1 → S = X0) consisting of a
hyperbolic polycurve X (of relative dimension n) over S and a sequence of
parametrizing morphisms X = Xn → Xn−1 → · · · → X1 → S = X0 of
X/S. We shall refer to X (over S) as an underlying hyperbolic polycurve of
X.

(ii) Let X be a parametrized hyperbolic polycurve over S whose underlying
hyperbolic polycurve is X. Then we shall write ∆X/S := ∆X/S , ΠX := ΠX ,
Πp

X/S := Πp
X/S . If S = Spec k, then by abuse of notation we sometimes write

∆X/k (resp. Πp
X/k) instead of ∆X/S (resp. Πp

X/S). By abuse of terminology,

we shall refer to ΠX (resp. Πp
X/k) as the étale fundamental group of X (resp.

geometrically pro-p étale fundamental group of X over k).
(iii) Let T be a scheme and X = (X,X = Xn → Xn−1 → · · · → X1 → S = X0),

Y = (Y, Y = Yn → Yn−1 → · · · → Y1 → T = Y0) parametrized hyperbolic
polycurves of relative dimension n. An isomorphism from Y to X is defined
to be a collection of isomorphisms of schemes {Yj

∼→ Xj}0≤j≤n such that,
for each integer j such that 1 ≤ j ≤ n, the diagram

Yj
∼−−−−→ Xjy y

Yj−1
∼−−−−→ Xj−1
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commutes. If S = T , then an S-isomorphism Y
∼→ X is defined to be an

isomorphism {Yj
∼→ Xj}0≤j≤n such that T = Y0

∼→ X0 = S is the identity

morphism (i.e., each Yj
∼→ Xj is an S-isomorphism).

Remark 2.3.1. Let k be a field of characteristic zero, S a connected noetherian
separated normal scheme over k, and X a hyperbolic curve over S. Then it follows
from Remark 1.5.1(i), together with [3] Proposition 2.4(ii), that ∆X/S is a (pro-
Primes) surface group.

Remark 2.3.2 (cf. [12] Remark 2.8). Let k be a field of characteristic zero, S a
connected noetherian separated normal scheme over k, and (X,X = Xn → Xn−1 →
· · · → X1 → S = X0) a parametrized hyperbolic polycurve of relative dimension n
over S. Then, for any triplet of integers (i, j, l) such that 0 ≤ i < j < l ≤ n, we
obtain a natural exact sequence of profinite groups

1 → ∆Xl/Xj
→ ∆Xl/Xi

→ ∆Xj/Xi
→ 1

(for any choice of basepoints).

Definition 2.4 (cf. [12] Definition 2.10). Let p be a prime number, n a positive
integer, k a field of characteristic zero, and S a connected noetherian separated
normal scheme over k.

(i) Let X be a hyperbolic polycurve of relative dimension n over S and X =
Xn → Xn−1 → · · · → X1 → S = X0 a sequence of parametrizing mor-
phisms. Then we shall say that the sequence X = Xn → Xn−1 → · · · →
X1 → S = X0 satisfies condition (∗)p if for any triplet of integers (i, j, l)
such that 0 ≤ i < j < l ≤ n, the sequence of profinite groups

1 → ∆p
Xl/Xj

→ ∆p
Xl/Xi

→ ∆p
Xj/Xi

→ 1

is exact. We shall say that X/S satisfies condition (∗)p if there exists a
sequence of parametrizing morphisms of X/S satisfying condition (∗)p.

(ii) Let X = (X,X = Xn → Xn−1 → · · · → X1 → S = X0) be a parametrized
hyperbolic polycurve of relative dimension n over S. Then we shall say
that X/S satisfies condition (∗)p if the sequence X = Xn → Xn−1 → · · · →
X1 → S = X0 satisfies condition (∗)p.

Remark 2.4.1 (cf. [13] Remark 2.5.3). If X/S satisfies condition (∗)p, then ∆X/S

admits various group-theoretic properties (cf. e.g., [12] Proposition 2.16(iii), [13]
Corollary 2.8). However, it is unknown whether the validity of condition (∗)p for
X/S only depends on the profinite group ∆X/S or not.

Remark 2.4.2. Let n be a positive integer, k a field of characteristic zero, S a
connected noetherian separated normal scheme over k, and X = (X,X = Xn →
Xn−1 → · · · → X1 → S = X0) a parametrized hyperbolic polycurve of relative
dimension n over S. Then the data (∆X/S , (∆X/Xj

)0≤j≤n, (Primes)1≤j≤n) is a suc-
cessive extension of surface groups of dimension n. If, moreover, X/S satisfies con-
dition (∗)p (where p is a prime number), then (∆p

X/S , (∆
p
X/Xj

)0≤j≤n, ({p})1≤j≤n)

is also a successive extension of surface groups of dimension n.

Definition 2.5 (cf. [6] Definition 4.11). Let p be a prime number and k a field.
Then we shall say that k is generalized sub-p-adic if k is isomorphic to a subfield
of a finitely generated extension of the quotient field of W (Fp) (the ring of Witt

vectors with coefficients in Fp).
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Theorem 2.6. Let p be a prime number, n a positive integer, k a generalized
sub-p-adic field, and X = (X,X = Xn → Xn−1 → · · · → X1 → Spec k = X0),
Y = (Y, Y = Yn → Yn−1 → · · · → Y1 → Spec k = Y0) parametrized hyperbolic
polycurves of dimension n over k. Then the following hold:

(i) Let φ : ΠY
∼→ ΠX be an isomorphism from ΠY to ΠX over Gk. Suppose that

for each integer j such that 0 ≤ j ≤ n, it holds that φ(∆Y/Yj
) = ∆X/Xj

.

Then φ arises from a unique isomorphism Y
∼→ X over k.

(ii) Let ψ : Πp
Y/k

∼→ Πp
X/k be an isomorphism from Πp

Y/k to Πp
X/k over Gk.

Suppose that both of X and Y satisfy condition (∗)p, and that for each
integer j such that 0 ≤ j ≤ n, it holds that ψ(∆p

Y/Yj
) = ∆p

X/Xj
. Then ψ

arises from a unique isomorphism Y
∼→ X over k.

Proof. Assertion (i) follows from [3] Proposition 3.2(i) and the proof of [3] Lemma
4.2(iii). Assertion (ii) follows from [12] Proposition 3.2(i) and the proof of [12]
Lemma 4.3(ii). □
Remark 2.6.1. In [3] §4 and [12] §4 (especially [3] Lemma 4.2(iii) and [12] Lemma
4.3(ii)), we sometimes assumed that the base field is sub-p-adic (cf. [5] Definition
15.4(i)). That is because we have used [5] Theorem A (i.e., a “Hom-version” of the
Grothendieck conjecture for hyperbolic curves over a sub-p-adic field). However,
in these two sections, by using [6] Theorem 4.12 (i.e., an “Isom-version” of the
Grothendieck conjecture for hyperbolic curves over a generalized sub-p-adic field)
instead of [5] Theorem A, we can replace “sub-p-adic” with “generalized sub-p-
adic”.

Theorem 2.7. Let p be a prime number, k a generalized sub-p-adic field, G a
profinite group, and G ↠ Gk a surjective homomorphism. Then there are at most
finitely many (possibly none) k-isomorphism classes of parametrized hyperbolic poly-
curves over k (resp. parametrized hyperbolic polycurves over k satisfying condition
(∗)p) whose étale fundamental group (resp. geometrically pro-p étale fundamental
group) is isomorphic to G over Gk.

Proof. Write ∆ := ker(G ↠ Gk) and S for the set of k-isomorphism classes of
parametrized hyperbolic polycurves over k (resp. parametrized hyperbolic poly-
curves over k satisfying condition (∗)p) whose étale fundamental group (resp. ge-
ometrically pro-p étale fundamental group) is isomorphic to G over Gk. We may
assume that S ̸= ∅. Then it follows from Theorem 1.16 that ∆ has finitely many
SESG-filtrations. Write m for the number of SESG-filtrations of ∆. Suppose that
♯S ≥ m + 1. Let C(1), . . . , C(m+1) ∈ S be distinct elements of S. For each integer
i such that 1 ≤ i ≤ m+ 1, let us fix a parametrized hyperbolic polycurve X(i) over
k whose k-isomorphism class is C(i), and an isomorphism α(i) : ΠX(i)

∼→ G (resp.

α(i) : Πp
X(i)/k

∼→ G) over Gk. Let us write (∆
(i)
j )0≤j≤n for the SESG-filtration of

∆(i) := ∆X(i)/k (resp. ∆(i) := ∆p
X(i)/k

) determined by X/k as in Remark 2.4.2.

Note that it follows from Theorem 1.14 that the dimension n does not depend on i.

Now since (α(i)(∆
(i)
j ))0≤j≤n is an SESG-filtration of ∆, it follows from our choice

of m that there exist two integers h, i such that 1 ≤ h < i ≤ m + 1 and that

α(h)(∆
(h)
j ) = α(i)(∆

(i)
j ) for each integer j such that 0 ≤ j ≤ n. Then it follows

from Theorem 2.6 that the isomorphism (α(i))−1 ◦α(h) arises from a k-isomorphism

X(h) ∼→ X(i) over k. However, since (we have assumed that) the k-isomorphism class
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of X(h) (i.e., C(h)) and that of X(i) (i.e., C(i)) are distinct from each other, we ob-
tain a contradiction. Thus, we conclude that ♯S ≤ m < ∞. This completes the
proof of Theorem 2.7. □

Remark 2.7.1. It follows from the proof of Theorem 2.7, together with Remark
1.16.1, that, if the set of k-isomorphism classes of parametrized hyperbolic poly-
curves over k (resp. parametrized hyperbolic polycurves over k satisfying condition
(∗)p) whose étale fundamental group (resp. geometrically pro-p étale fundamental
group) is isomorphic to G over Gk is nonempty, then we can write down an upper
bound of the cardinality of the set only by using χPrimes(ker(G ↠ Gk)) and the

dimension of ker(G ↠ Gk) (resp. p, χ{p}(ker(G ↠ Gk)), and the dimension of

ker(G ↠ Gk)). Note that these numbers can be reconstructed group-theoretically
from ker(G↠ Gk).

The following corollary immediately follows from Theorem 2.7.

Corollary 2.8. Let p be a prime number, k a generalized sub-p-adic field, G a
profinite group, and G ↠ Gk a surjective homomorphism. Then there are at most
finitely many k-isomorphism classes of hyperbolic polycurves over k (resp. hyperbolic
polycurves over k satisfying condition (∗)p) whose étale fundamental group (resp.
geometrically pro-p étale fundamental group) is isomorphic to G over Gk.

Moreover, by using an argument similar to Theorem 2.7, we can show the fol-
lowing theorem. Theorem 2.9 states that, roughly speaking, any hyperbolic poly-
curve (over a field of characteristic zero) has at most finitely many sequences of
parametrizing morphisms (up to isomorphism).

Theorem 2.9. Let k be a field of characteristic zero and X a hyperbolic polycurve
over k. Then there are at most finitely many k-isomorphism classes of parametrized
hyperbolic polycurves over k whose underlying hyperbolic polycurve is X/k.

Proof. Since k is a direct limit of finitely generated subextensions of k/Q, there
exists a finitely generated subextension k0 of k/Q such that X/k has a model
Xk0/k0. For a subextension l of k/k0, let us write Pl for the set of isomorphism
class of parametrized hyperbolic polycurves over l whose underlying hyperbolic
polycurve is Xk0

×k0
l/l. Note that it follows from [3] Proposition 2.4(ii) that X ∼=

(Xk0
×k0

l)×lk → Xk0
×k0

l determines an isomorphism ∆X/k
∼→ ∆Xk0

×k0
l/l. Thus,

if we write F for the set of SESG-filtrations of ∆X/k, there exists a natural map
Pl → F (cf. Remark 2.4.2). Moreover, if l is finitely generated over Q, then (since
l is generalized sub-p-adic for any prime number p), it follows from Theorem 2.6(i)
that the natural map Pl → F is injective. It is clear that this map is compatible
with finitely generated subextensions l′ ⊃ l of k/k0. Moreover, any parametrized
hyperbolic polycurve over k whose underlying hyperbolic polycurve is X/k has a
model for some finitely generated subextension of k/k0. Thus, the natural map
Pk → F is injective. Since it follows from Theorem 1.16 that F , hence also Pk, is
a finite set. This completes the proof of Theorem 2.9. □

Remark 2.9.1. The statement of Theorem 2.9 is purely algebro-geometric. However,
the author does not know at the time of writing whether we can prove Theorem
2.9 only by using a purely algebro-geometric method (i.e., without using anabelian
geometry) or not.
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When the base field k is finitely generated over Q, then we can also prove the
“absolute version” of Theorem 2.7, i.e., we can consider only the (geometrically pro-
p) étale fundamental group instead of the (geometrically pro-p) étale fundamental
group equipped with the surjective homomorphism to the absolute Galois group of
the base field. (However, since the automorphism group of k is not finite in general,
we cannot prove the finiteness of k-isomorphism classes of parametrized hyperbolic
polycurves.)

Proposition 2.10 ([3] Proposition 3.19). Let kX , kY be finitely generated extension
fields of Q and kX , kY algebraic closures of kX , kY , respectively. Then the following
hold:

(i) Let H ⊂ GkX
be a closed subgroup of GkX

. Suppose that H is topologically
finitely generated and normal in an open subgroup of GkX

. Then H is
trivial.

(ii) Write Isom(kX/kX , kY /kY ) for the set of isomorphisms kX
∼→ kY that de-

termine isomorphisms kX
∼→ kY . Then the natural map Isom(kX/kX , kY /kY ) →

Isom(GkY
, GkX

) is bijective.

Theorem 2.11. Let p be a prime number and G a profinite group. Then the
following hold:

(i) Suppose that there exist a finitely generated extension field k of Q and a
hyperbolic polycurve X over k (resp. a hyperbolic polycurve X over k satis-
fying condition (∗)p) such that G is isomorphic to ΠX (resp. Πp

X/k). Then

there exists a unique maximal normal closed subgroup H of G which is
topologically finitely generated. Moreover, for any isomorphism α from ΠX

(resp. Πp
X/k) to G, it holds that H = α(∆X/k) (resp. H = α(∆p

X/k)) and α

induces an isomorphism Gk
∼→ G/H.

(ii) In the notation of (i), k is completely determined by G up to isomor-
phism. Moreover, for any finitely generated extension field k′ of Q, the
map Isom(k′/k′, k/k) → Isom(Gk′ , G/H) determined by the isomorphism

Gk
∼→ G/H appearing in (i) (for any fixed isomorphism α) is bijective.

(iii) There are at most finitely many isomorphism classes of parametrized hyper-
bolic polycurves over finitely generated extension fields of Q (resp. parametrized
hyperbolic polycurves over finitely generated extension fields of Q satisfying
condition (∗)p) whose étale fundamental group (resp. geometrically pro-p
étale fundamental group) is isomorphic to G.

Proof. Assertion (ii) follows from assertion (i), together with Proposition 2.10(ii).
Assertion (iii) follows from assertion (ii), together with Theorem 2.7. We verify
assertion (i). Let us write β : ΠX ↠ Gk (resp. β : Πp

X/k ↠ Gk). Let H ⊂ G be a

topologically finitely generated normal closed subgroup of G. Then it follows from
Proposition 2.10(i) that the image of H ⊂ G by the composite of α−1 and β is
trivial. Thus, H ⊂ α(kerβ). Since kerβ = ∆X/k (resp. (kerβ = ∆p

X/k)), hence

also α(kerβ), is of SESG-type, α(kerβ) is topologically finitely generated. Thus,
α(kerβ) is the unique maximal normal closed subgroup of G which is topologically
finitely generated. Moreover, since Gk

∼= ΠX/∆X/k (resp. Gk
∼= Πp

X/k/∆
p
X/k), α

induces an isomorphism Gk
∼→ G/α(kerβ). This completes the proof of assertion

(i), hence also of Theorem 2.11. □
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Remark 2.11.1. If we consider the case where the base field k is a number field, then,
since the automorphism group of a number field is finite, we can prove the finiteness
of k-isomorphism class of parametrized hyperbolic polycurves over k whose étale
fundamental group is isomorphic to a given profinite group.

Finally, as another application of Theorem 1.16, we give an alternative proof of
[3] Theorem 4.4 and [12] Theorem 4.6 (see also Remark 2.6.1).

Theorem 2.12 ([3] Theorem 4.4, [12] Theorem 4.6). Let p be a prime num-
ber, k a generalized sub-p-adic field, X,Y hyperbolic polycurves over k. Write
IsomGk

(ΠY ,ΠX) (resp. IsomGk
(Πp

Y/k,Π
p
X/k)) for the set of isomorphisms of ΠY

(resp. Πp
Y/k) with ΠX (resp. Πp

X/k) over Gk. Then the set

IsomGk
(ΠY ,ΠX)/ Inn(∆X/k)

is finite. Moreover, if at least one of X/k, Y/k satisfies condition (∗)p, then the set

IsomGk
(Πp

Y/k,Π
p
X/k)/ Inn(∆

p
X/k)

is finite.

Proof. We may assume that IsomGk
(ΠY ,ΠX) ̸= ∅ (resp. IsomGk

(Πp
Y/k,Π

p
X/k) ̸= ∅).

Then any element of IsomGk
(ΠY ,ΠX) (resp. IsomGk

(Πp
Y/k,Π

p
X/k)) determines a bi-

jection between IsomGk
(ΠY ,ΠX)/ Inn(∆X/k) (resp. IsomGk

(Πp
Y/k,Π

p
X/k)/ Inn(∆

p
X/k))

and AutGk
(ΠX)/ Inn(∆X/k) (resp. AutGk

(Πp
X/k)/ Inn(∆

p
X/k)). Thus, to verify The-

orem 2.12, we may assume without loss of generality that X = Y (resp. X = Y , and
that X/k satisfies condition (∗)p). For convenience, let us write ∆ := ∆X/k,Π :=
ΠX (resp. ∆ := ∆p

X/k,Π := Πp
X/k). Let us fix an SESG-filtration (∆j)0≤j≤dimX of

∆ determined by a sequence of parametrizing morphisms of X/k (resp. a sequence
of parametrizing morphisms of X/k satisfying condition (∗)p) as in Remark 2.4.2.

Now it follows from Theorem 1.16 that ∆ has finitely many SESG-filtrations, and
it follows from [3] Proposition 4.5 (note that the proof of [3] Proposition 4.5 does not
use [3] Theorem 4.4) that Autk(X) is finite. Write S for the set of SESG-filtrations
of ∆. Then AutGk

(Π) acts naturally on S. Write A ⊂ AutGk
(Π) for the stabilizer

subgroup of AutGk
(Π) with respect to (∆j)0≤j≤dimX ∈ S. Then it is immediate

that [AutGk
(Π) : A] ≤ ♯S. Moreover, it follows from Theorem 2.6 that the image

of A ⊂ AutGk
(Π) by the natural surjection AutGk

(Π) ↠ AutGk
(Π)/ Inn(∆) is

contained in the image of the natural map Autk(X) → AutGk
(Π)/ Inn(∆), which

implies that ♯(AutGk
(Π)/ Inn(∆)) ≤ ♯S · ♯Autk(X) <∞. This completes the proof

of Theorem 2.12. □
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