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Abstract

In this article, we give equations about homology classes given by the
self-intersection of singularity sets of fold maps. As an application, we
give an obstruction to the existence of fold maps up to cobordism.

1 Introduction

Let X be a closed n–dimensional manifold. For a smooth map f : X → Rp, we
denote by Σk(f) ⊂ X the Thom-Boardman singularity set (See Definition 2.1

for the details). It is known that, for a generic f , the closure Σ
k
(f) of Σk(f)

gives a homology class with Z/2 coefficients and its Poincaré dual [Σ
k
(f)]P.D

is written by a polynomial of Stiefel-Whitney classes, called Thom polynomial
([12], [5], [7], [6]). Sakuma in [11], Ohmoto, Saeki and Sakuma in [4] studied

the self-intersection of Σ
k
(f). In particular Ohmoto, Saeki and Sakuma gave

equations among the cohomology class given by the self-intersection of Σ
k
(f)

and the characteristic classes of X.
Let f : X → Rp be a fold map and let f̃ : X → Rp+k−1 be a generic map

which is a lift of f . In this article, we show the following equation (Proposi-
tion 4.1).

[Σ
n−p+1

(f)]k = [Σ
n−p+1

(f̃)] ∈ Hn−k(n−p+1)(X;Z/2).

Since [Σ
n−p+1

(f)] and [Σ
n−p+1

(f̃)] are invariant under cobordism, the above

equation also holds for any generic f and generic f̃ under the following each
condition:

(1) There is a closed manifold X ′ cobrdant to X and there is a fold map
f ′ : X → Rp. In addition, n, p, k satisfy n−k(n−p+1) = 0 (Theorem 1).

(2) There is a fold map f0 : X → Rp (Theorem 2).

In this article, we prove these equations by using arguments about homology
intersections.

We give two applications of Theorem 1 and Theorem 2.
As the first application, we give an obstruction to admitting a fold map from

the manifold into Rp up to cobordism. The existence problem of fold map was

1Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502
JAPAN,shimizu@kurims.kyoto-u.ac.jp

1



deeply studied by Ando [1], Saeki [10], Sadykov and Saeki [8], Sadykov, Saeki
and Sakuma [9].

As the second application, we give some formulas among Stiefel-Whitney
classes of X by using Ronga’s formula about Thom polynomials [7], when X
admit a fold map up to cobordism.

The organization of this paper is as follows. In Section 2 we introduce
some notations and definitions. In Section 3 we give two equations among the
homology classes determined by singularity sets and then we give proof of these
equations in Section 4. In Section 5 we give two applications of our equations.

Acknowledgments

The author expresses his appreciation to Professor Toru Ohomoto for his kind
and helpful comments about Thom polynomials. The author would like to
thank Professor Osamu Saeki and Professor Masamichi Takase for their helpful
comments for singularity sets of smooth maps. The author also expresses his
appreciation to Professor Kazuhiro Sakuma for his valuable comments and dis-
cussion about singularity sets and related topics. This work was supported by
JSPS KAKENHI Grant Number JP18K13408.

2 Preliminaries

2.1 Singularity sets

Let X be a smooth compact n–dimensional manifold and let f : X → Rp be a
smooth map. Let j1f : X → Hom(TX, TRp) be the 1-jet extension of f , namely
j1f(x) ∈ Hom(TxM,Tf(x)Rp) is the derivative of f . The typical fiber of the
vector bundle Hom(TX, TRp) can be identified with the space Hom(Rn,Rp) of
all n×p matrices. Let Σk be the Thom-Boardman singularity set ([12], [2], [3]),
namely

Σk = {f ∈ Hom(Rn,Rp) | dimker(f) = k} ⊂ Hom(Rn,Rp).

We denote by Σk(M,Rp) the associated Σk-bundle of Hom(TX, TRp). A
smooth map f : M → Rp is said to be generic if j1f is transverse to Σk(M,Rp)
for all k. Thanks to Thom’s transversality theorem, for generic map f , f−1(Σk(M,Rp))
is a smooth (may not be closed) submanifold of X of codimension k(n− p+ k),
for n− k ≥ p.

definition 2.1. Let

Σk(f) = Σk(f : X → Rp) = (j1f)−1(Σk(X,Rp)),

and we denote by Σ
k
(f) its closure in X.

In particular when k ≤ n, Σ
n−p+1

(f) is the set of singular points of f .
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definition 2.2. A smooth map f : X → Rp is said to be a fold map if f is
locally written by

f(x1, . . . , xn) = (x1, . . . , xp−1,

n∑
i=p

±x2
i )

near any singular point.

We remark that the closure Σ
k
(f) may not a manifold. It is known that,

however, Σ
k
(f) gives a homology class in H∗(X;Z/2) independent from the

choice of f (For example, See [7]).

If f is a fold map, then Σ
n−p+1

(f) = Σn−p+1(f) is a submanifold of X.

2.2 A self-intersection of a homology class

Let X be a smooth closed n–dimensional manifold. Let k, l be positive inte-
gers. For a homology class α ∈ Hk(X;Z/2), the l-th self-intersection αl ∈
Hn−l(n−k)(X;Z/2) of α is defined to be

αl = ((αP.D.)
l)P.D. ∈ Hn−l(n−k)(X;Z/2).

Here αP.D. ∈ Hn−k(X;Z/2) is the Poincaré dual of α.
Let A ⊂ X be a submanifold of X of dimension k. We denote by [A] ∈

Hk(X;Z/2) the image of the fundamental homology class of A via the homo-
morphism Hk(A;Z/2) → Hn(M ;Z/2) induced from the inclusion map A ↪→ X.
When α is given as α = [A], the l-th self-intersection αl = [A]l can be described
as the intersection of l copies of A:

Let v2, . . . , vl be sections of the normal bundle ν(A) of A in X or sections
of TX|A. Let v1 be the zero section of ν(A). Let Avi = vi(A) be the manifold
given by pushing A along vi, for i = 1, . . . , l. For generic v2, . . . , vl, the manifolds
Av1

(= A), Av2 , . . . , Avl−1
intersect transversally. Thus the intersection

∩l
i=1 Avi

is a manifold representing the homology class [A]l:

[

l∩
i=1

Avi ] = [A]l.

Remark 2.3. When l is an even number, we can define l-th self-intersection
as a homology class with integer coefficient Z as follows: For x ∈

∩
i Avi , take

a basis B1 = {b1, . . . , bn−k} of νx(A). Let Bi = {bi1, . . . , bin−k} be the basis of
νx(A

′
vi) given by pushing b1, . . . , bn−k along vi, for i = 2, . . . , l. Then a collection

of vectors B1⊔. . .⊔Bl gives a basis of νx(
∩

i Avi) and then it gives an orientation
of νx(

∩
i Avi). We orient Tx(

∩
i Avi) as Tx(

∩
i Avi)⊕νx(

∩
i Avi) = TxX. When

l is even, this orientation is independent of the choice of B1:

Lemma 2.4. The orientation of
∩

i Avi determined by B1 is independent of the
choice of the basis B1.
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Proof. Let B′
1 be an alternative choice of B1. Let U ∈ Mn−k(R) be the trans-

formation matrix U from B1 to B′
1. Then the transformation matrix from the

basis of νx(
∩

i Avi) given by B1 to that of B′
1 is represented by the matrix

U⊕l ∈ Ml(n−k)(R). Since l is even, det(U⊕l) = (detU)l = 1. This implies that
the orientation of Tx(

∩
i Avi) determined by B′

1 coincides with that of B1.

3 Equations among singularity sets.

We first define a notion of ”to admitting a fold map up to cobordism”.

definition 3.1. A smooth closed n–dimensional manifold X admits a fold map
into Rp up to cobordism if there exist a smooth n–dimensional manifold X ′

cobordant to X and there exists a fold map f ′ : X ′ → Rp on X ′.

Theorem 1. Let X be a closed oriented n–dimensional manifold admitting a
fold map into Rp up to cobordism. Let k ≥ 2 be an integer satisfying

k(n− p+ 1) = n.

Then for any generic map f : X → Rp and for any generic map f̃ : X →
Rp+k−1,

[Σ
n−p+1

(f)]k = [Σ
n−p+1

(f̃)] ∈ H0(X;Z/2).

If X itself admits a fold map (not up to cobordism), the following more
precisely equation holds:

Theorem 2. Let X be a closed oriented n–dimensional manifold that there is a
fold map from X to Rp. Let k be a positive integer. Then for any generic map
f : X → Rp and for any generic map f̃ : X → Rp+k−1,

[Σ
n−p+1

(f)]k = [Σ
n−p+1

(f̃)] ∈ Hn−k(n−p+1)(X;Z/2).

Example 3.2. (1) Since Theorem 1.1 of [10], any closed connected oriented
4–manifold X admits a fold map into R3 up to cobordism. Thus Theorem 1
implies that for any generic maps f : X → R3 and f̃ : X → R4,

[Σ
2
(f)]2 = [Σ

2
(f̃)] ∈ H0(X;Z/2).

We remark that, Ohmoto, Saeki and Sakuma proved in [4] that

[Σ
2
(f)]2 = 3SignX ∈ Z

by using kinds of classifying spaces of singularities.

(2) Let X be a connected closed 8–dimensional manifold admitting a fold map
into R7 up to cobordism. Then, for any generic maps f : X → R7 and
f̃ : X → R10,

[Σ
2
(f)]4 = [Σ

2
(f̃)] ∈ H0(X;Z/2).
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(3) Let X be a connected closed 10–dimensional manifold admitting a fold map

into R8. Then, for any generic maps f : X → R8 and f̃ : X → R10,

[Σ
3
(f)]3 = [Σ

3
(f̃)] ∈ H1(X;Z/2).

Theorem 1, 2 will be proved in Section 4．

4 Proofs

In this section we prove Theorem 1, 2. Then we give an equation with Z
coefficient.

4.1 An equation for special f and f̃

Let f : X → Rp be a fold map and let f̃ : X → Rp+k−1 be a generic map that
is a lift of f , namely

πRk ◦ f̃ = f,

where πRk : Rp+k−1 → Rp is the projection defined as

πRk(x1, . . . , xp+k−1) = (x1, . . . , xp).

For i = 1, . . . , p+ k − 1, we denote by

πi : Rp+k−1 → R

the i-th projection defined as

πi(x1, . . . , xp+k−1) = xi.

Let f1, . . . , fp : X → R and h1, . . . , hk−1 : X → R be smooth functions given by

(1) fi = πi ◦ f̃(= πi ◦ f), for i = 1, . . . , p,

(2) hi = πp+i ◦ f̃ = hi, for i = 1, . . . , k − 1,

Namely,
f̃ = (f1, . . . , fp, h1, . . . , hk−1) : X → Rp+k−1,

f = (f1, . . . , fp) : X → Rp.

We first prove an equation for the above f and f̃ .

Proposition 4.1. For the above f and f̃ , we have

[Σ
n−p+1

(f)]k = [Σ
n−p+1

(f̃)] ∈ Hn−k(n−p+1)(X;Z/2).
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Proof. Take a Riemannian metric on X. For a smooth function φ : X → R, we
denote by {∂xφ ∈ TxX}x∈X the gradient vector field of φ with respect to the
chosen metric.

Since f is a fold map,

Σ
n−p+1

(f) = Σn−p+1(f)

and, for any x ∈ Σn−p+1(f), the vectors ∂xf1, . . . , ∂xfp ∈ TxX span a (p− 1)–
dimensional linear subspace of TxX. We denote by

Jx(f) = ⟨∂xf1, . . . , ∂xfp⟩ ⊂ TxX

this linear subspace. The projection J(f) = ⊔xJxX → Σn−p+1(f) is a Rp−1–
bundle over Σn−p+1(f). On the other hand, TΣn−p+1(f) is also a Rp−1-
bundle over Σn−p+1(f). The following lemma says that J(f) coincides with
TΣn−p+1(f) for an appropriate metric.

Lemma 4.2. There exists a Riemannian metric on X such that

Jx(f) = TxΣ
n−p+1(f)

for any x ∈ Σn−p+1(f).

Proof. Let x ∈ Σn−p+1(f). Let Ux ⊂ X be a neighborhood of x such that f |Ux

is locally written as follows:

f(x1, . . . , xn) = (x1, . . . , xk−1,±x2
k+1 ± . . .± x2

n).

Here x1, . . . , xn is a local coordinate of Ux with x = 0. Let gUx be a Riemanian
metric on Ux given by pulling back the standard metric of Rn via the local
coordinate system. Under the metric gUx ,

Σn−p+1(f) = {(x1, . . . , xp−1, 0, . . . , 0)} ⊂ Ux,

TyΣ
n−p+1(f) = {(v1, . . . , vp−1, 0, . . . , 0) ∈ Rn} ⊂ Rn = TyUx,

Jy(f) = ⟨e1, . . . , ep−1⟩ ⊂ Rn.

Here e1 . . . , en ∈ Rn is a standard basis of Rn. Therefore, Jy(f) = TyS(f) holds
for any y ∈ Ux. Finally, by using a partition of the unity, we obtain a required
metric on X.

We take and fix a metric onX so that TΣn−p+1(f) = J(f) given in Lemma 4.2.

By the definition of Σn−p+1(f̃), for any z ∈ Σ
n−p+1

(f̃),

dim⟨∂zf1, . . . , ∂zfp, ∂zh1, . . . , ∂zhk−1⟩ ≤ p− 1.

Since ⟨∂zf1, . . . , ∂zfp⟩ ⊂ ⟨∂zf1, . . . , ∂zfp, ∂zh1, . . . , ∂zhk−1⟩,

(p− 1 ≤) dim⟨∂zf1, . . . , ∂zfp⟩ ≤ dim⟨∂zf1, . . . , ∂zfp, ∂zh1, . . . , ∂zhk−1⟩.
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Thus for any z ∈ Σn−p+1(f̃),

⟨∂zf1, . . . , ∂zfp⟩ = ⟨∂zf1, . . . , ∂zfp, ∂zh1, . . . , ∂zhk−1⟩.

Therefore x ∈ Σn−p+1(f) belongs to Σn−p+1(f̃) if and only if

∂xh1, . . . , ∂xhk−1 ∈ Jx(f) = TxΣ
n−p+1(f).

We denote by TxΣ
n−p+1(f)⊥ ⊂ TxX the orthogonal complement of TxΣ

n−p+1(f)
with respect to the metric. Let

vix = πΣn−p+1(f)⊥(∂xhi) ∈ TxΣ
n−p+1(f)⊥

for i = 1, . . . , k−1. Here πΣn−p+1(f)⊥ : TxX → TxΣ
n−p+1(f)⊥ is the orthogonal

projection. Since ∂xhi ∈ TxΣ
n−p+1(f) if and only if vix = 0, we have

Σn−p+1(f̃) = {x ∈ Σn−p+1(f)|v1x = . . . = vk−1
x = 0}.

Each vi is a vector field on Σn−p+1(f) perpendicular to TΣn−p+1(f). So we can
push Σn−p+1(f) by using each vi:

Σn−p+1(f)vi .

Therefore, for generic h1, . . . , hk−1,

[Σn−p+1(f)]k = [Σn−p+1(f) ∩ Σn−p+1(f)v1 ∩ . . . ∩ Σn−p+1(f)vk−1
]

= [{x ∈ Σn−p+1(f)|v1x = . . . = vk−1
x = 0}]

= [Σn−p+1(f̃)].

This completes the proof.

4.2 Proof of Theorem 1 and 2

It is known that the Poincaré dual of the homology classes [Σ
n−p+1

(f)], [Σ
n−p+1

(f̃)]
are independent under cobordism of a maps (See [5],[7] for the details). Since
Rp and Rp+k−1 are contractible, a map f : X → Rp cobordant to a map
f ′ : X ′ → Rp if and only if X cobordant to X ′. Therefore, the equations in
Theorem 1, 2 are reduced to Proposition 4.1.

4.3 An equation with integer coefficients

Let X be a closed oriented n–dimensional manifold. Let k be a positive even
number. Let f : X → Rp be a fold map and f̃ : X → Rp+k−1 be a generic map
that is a lift of f :

πRk ◦ f̃ = f.

Since k is even, k-th self-intersection of Σ
n−p+1

(f) is oriented (See Remark 2.3).
We can apply the proof of Proposition 4.1 with orientations. Therefore we get
the following Proposition (an equation with integer coefficients):
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Proposition 4.3.

[Σ
n−p+1

(f : X → Rp)]kP.D. = [Σ
n−p+1

(f̃ : X → Rp+k−1)]P.D. ∈ Hk(n−p+1)(X;Z).

Here the orientation of [Σ
n−p+1

(f̃)] is given as the k-the self-intersection of

[Σ
n−p+1

(f)].

Example 4.4. (1) Let X be a closed oriented 4-dimensional manifold. For

any fold map f : X → R3 and its generic lift f̃ : X → R4,

[Σ
2
(f)]2 = [Σ

2
(f̃)] ∈ H0(X;Z).

(2) Let X be a closed 12–dimensional manifold. Then, for any fold map f :

X → R11 and its generic lift f̃ : X → R14,

[Σ
2
(f)]4 = [Σ

2
(f̃)] ∈ H4(X;Z).

5 Applications

5.1 An obstruction to admitting a fold map up to cobor-
dism

In this subsection, we define an obstruction to admitting a fold map up to
cobordism, by using Theorem1. Let X be a closed n–dimensional manifold. Let
ε : H0(X;Z/2) → Z/2 be the homomorphism defined to be

ε([∗]) = 1

for any point ∗ ∈ X. Let p, k be positive integers satisfying k(n − p + 1) = n.

Let f : X → Rp and f̃ : X → Rp+k−1 be generic maps. The number

ε([Σ
n−p+1

(f)]k − [Σ
n−p+1

(f̃)]) ∈ Z/2

is independent from f and f̃ . We denote

dn,p,k(X) = ε([Σ
n−p+1

(f)]k − [Σ
n−p+1

(f̃)]).

dn is a cobordism invariant, thus we have a homomorphism

dn : Ωn → Z/2.

Here Ωn is the cobordism group of n-dimensional manifolds. Theorem 1 implies
that dn gives an obstruction to admitting a fold map into Rp up to cobordism:

Proposition 5.1. If X admit a fold map into Rp up to cobordism, then

dn,p,k(X) = 0.
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Example 5.2. If a closed 8–manifold X admits a fold map into R7 up to
cobordism, then d8,7,4 = 0.

Remark 5.3. We can also define

dn,p,k = [Σ
n−p+1

(f)]k − [Σ
n−p+1

(f̃)] ∈ Hn−k(n−p+1)(X;Z/2)

for other n, p, k may not satisfying n = k(n− p+1). dn,p,k is an obstruction to
admitting a fold map (not up to cobordism).

5.2 Some formulas about Stiefel–Whitney classes

Ronga in [7] gave the following formulas:

(Ronga1) [Σ
n−p+1

(f : Xn → Rp)]P.D. = wn−p+1(X),

(Ronga2) [Σ
n−p+1

(f̃ : Xn → Rp+k−1)]P.D. = det

 wn−p+1(X) · · · wn−p−k+2(X)
...

...
wn−p+k(X) · · · wn−p+1(X)

 .

Here wi(X) ∈ Hi(X;Z/2) is the i-th Stiefel–Whitney class of X. Thank to
Ronga’s formula, we have

dn,p,k(X) = wn+p−1(X)k − det

 wn−p+1(X) · · · wn−p−k+2(X)
...

...
wn−p+k(X) · · · wn−p+1(X)

 .

Example 5.4. In this example, wi means wi(X).

(1) Let X be a closed 8–manifold. d8,7,4(X) = w4
2−det


w2 w1 0 0
w3 w2 w1 0
w4 w3 w2 w1

w5 w4 w3 w2

 =

w1(w
2
2w3+w2w4+w1w5). If X admit a fold map into R7 up to cobordism,

then w1(w
2
2w3 + w2w4 + w1w5) = 0.

(2) Let X be a 16–dimensional closed manifold.

d16,12,3(X) = w3
5−det

 w5 w4 w3

w6 w5 w4

w7 w6 w5

 = w3
5+w2

4w7+w4 det

(
w6 w5

w7 w6

)
.

If X admit a fold map f into R12, Σ
6
(f) = ∅. Thus [Σ

6
(f)]P.D. =

det

(
w6 w5

w7 w6

)
= 0. Therefore if X admits a fold map into R12 then

w3
5 + w2

4w7 = 0.
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